Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[cascardo/linux.git] / drivers / crypto / ccp / ccp-dev.c
1 /*
2  * AMD Cryptographic Coprocessor (CCP) driver
3  *
4  * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  * Author: Gary R Hook <gary.hook@amd.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/kthread.h>
17 #include <linux/sched.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/spinlock_types.h>
21 #include <linux/types.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/hw_random.h>
25 #include <linux/cpu.h>
26 #ifdef CONFIG_X86
27 #include <asm/cpu_device_id.h>
28 #endif
29 #include <linux/ccp.h>
30
31 #include "ccp-dev.h"
32
33 MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
34 MODULE_LICENSE("GPL");
35 MODULE_VERSION("1.0.0");
36 MODULE_DESCRIPTION("AMD Cryptographic Coprocessor driver");
37
38 struct ccp_tasklet_data {
39         struct completion completion;
40         struct ccp_cmd *cmd;
41 };
42
43 /* Human-readable error strings */
44 char *ccp_error_codes[] = {
45         "",
46         "ERR 01: ILLEGAL_ENGINE",
47         "ERR 02: ILLEGAL_KEY_ID",
48         "ERR 03: ILLEGAL_FUNCTION_TYPE",
49         "ERR 04: ILLEGAL_FUNCTION_MODE",
50         "ERR 05: ILLEGAL_FUNCTION_ENCRYPT",
51         "ERR 06: ILLEGAL_FUNCTION_SIZE",
52         "ERR 07: Zlib_MISSING_INIT_EOM",
53         "ERR 08: ILLEGAL_FUNCTION_RSVD",
54         "ERR 09: ILLEGAL_BUFFER_LENGTH",
55         "ERR 10: VLSB_FAULT",
56         "ERR 11: ILLEGAL_MEM_ADDR",
57         "ERR 12: ILLEGAL_MEM_SEL",
58         "ERR 13: ILLEGAL_CONTEXT_ID",
59         "ERR 14: ILLEGAL_KEY_ADDR",
60         "ERR 15: 0xF Reserved",
61         "ERR 16: Zlib_ILLEGAL_MULTI_QUEUE",
62         "ERR 17: Zlib_ILLEGAL_JOBID_CHANGE",
63         "ERR 18: CMD_TIMEOUT",
64         "ERR 19: IDMA0_AXI_SLVERR",
65         "ERR 20: IDMA0_AXI_DECERR",
66         "ERR 21: 0x15 Reserved",
67         "ERR 22: IDMA1_AXI_SLAVE_FAULT",
68         "ERR 23: IDMA1_AIXI_DECERR",
69         "ERR 24: 0x18 Reserved",
70         "ERR 25: ZLIBVHB_AXI_SLVERR",
71         "ERR 26: ZLIBVHB_AXI_DECERR",
72         "ERR 27: 0x1B Reserved",
73         "ERR 27: ZLIB_UNEXPECTED_EOM",
74         "ERR 27: ZLIB_EXTRA_DATA",
75         "ERR 30: ZLIB_BTYPE",
76         "ERR 31: ZLIB_UNDEFINED_SYMBOL",
77         "ERR 32: ZLIB_UNDEFINED_DISTANCE_S",
78         "ERR 33: ZLIB_CODE_LENGTH_SYMBOL",
79         "ERR 34: ZLIB _VHB_ILLEGAL_FETCH",
80         "ERR 35: ZLIB_UNCOMPRESSED_LEN",
81         "ERR 36: ZLIB_LIMIT_REACHED",
82         "ERR 37: ZLIB_CHECKSUM_MISMATCH0",
83         "ERR 38: ODMA0_AXI_SLVERR",
84         "ERR 39: ODMA0_AXI_DECERR",
85         "ERR 40: 0x28 Reserved",
86         "ERR 41: ODMA1_AXI_SLVERR",
87         "ERR 42: ODMA1_AXI_DECERR",
88         "ERR 43: LSB_PARITY_ERR",
89 };
90
91 void ccp_log_error(struct ccp_device *d, int e)
92 {
93         dev_err(d->dev, "CCP error: %s (0x%x)\n", ccp_error_codes[e], e);
94 }
95
96 /* List of CCPs, CCP count, read-write access lock, and access functions
97  *
98  * Lock structure: get ccp_unit_lock for reading whenever we need to
99  * examine the CCP list. While holding it for reading we can acquire
100  * the RR lock to update the round-robin next-CCP pointer. The unit lock
101  * must be acquired before the RR lock.
102  *
103  * If the unit-lock is acquired for writing, we have total control over
104  * the list, so there's no value in getting the RR lock.
105  */
106 static DEFINE_RWLOCK(ccp_unit_lock);
107 static LIST_HEAD(ccp_units);
108
109 /* Round-robin counter */
110 static DEFINE_SPINLOCK(ccp_rr_lock);
111 static struct ccp_device *ccp_rr;
112
113 /* Ever-increasing value to produce unique unit numbers */
114 static atomic_t ccp_unit_ordinal;
115 static unsigned int ccp_increment_unit_ordinal(void)
116 {
117         return atomic_inc_return(&ccp_unit_ordinal);
118 }
119
120 /**
121  * ccp_add_device - add a CCP device to the list
122  *
123  * @ccp: ccp_device struct pointer
124  *
125  * Put this CCP on the unit list, which makes it available
126  * for use.
127  *
128  * Returns zero if a CCP device is present, -ENODEV otherwise.
129  */
130 void ccp_add_device(struct ccp_device *ccp)
131 {
132         unsigned long flags;
133
134         write_lock_irqsave(&ccp_unit_lock, flags);
135         list_add_tail(&ccp->entry, &ccp_units);
136         if (!ccp_rr)
137                 /* We already have the list lock (we're first) so this
138                  * pointer can't change on us. Set its initial value.
139                  */
140                 ccp_rr = ccp;
141         write_unlock_irqrestore(&ccp_unit_lock, flags);
142 }
143
144 /**
145  * ccp_del_device - remove a CCP device from the list
146  *
147  * @ccp: ccp_device struct pointer
148  *
149  * Remove this unit from the list of devices. If the next device
150  * up for use is this one, adjust the pointer. If this is the last
151  * device, NULL the pointer.
152  */
153 void ccp_del_device(struct ccp_device *ccp)
154 {
155         unsigned long flags;
156
157         write_lock_irqsave(&ccp_unit_lock, flags);
158         if (ccp_rr == ccp) {
159                 /* ccp_unit_lock is read/write; any read access
160                  * will be suspended while we make changes to the
161                  * list and RR pointer.
162                  */
163                 if (list_is_last(&ccp_rr->entry, &ccp_units))
164                         ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
165                                                   entry);
166                 else
167                         ccp_rr = list_next_entry(ccp_rr, entry);
168         }
169         list_del(&ccp->entry);
170         if (list_empty(&ccp_units))
171                 ccp_rr = NULL;
172         write_unlock_irqrestore(&ccp_unit_lock, flags);
173 }
174
175
176
177 int ccp_register_rng(struct ccp_device *ccp)
178 {
179         int ret = 0;
180
181         dev_dbg(ccp->dev, "Registering RNG...\n");
182         /* Register an RNG */
183         ccp->hwrng.name = ccp->rngname;
184         ccp->hwrng.read = ccp_trng_read;
185         ret = hwrng_register(&ccp->hwrng);
186         if (ret)
187                 dev_err(ccp->dev, "error registering hwrng (%d)\n", ret);
188
189         return ret;
190 }
191
192 void ccp_unregister_rng(struct ccp_device *ccp)
193 {
194         if (ccp->hwrng.name)
195                 hwrng_unregister(&ccp->hwrng);
196 }
197
198 static struct ccp_device *ccp_get_device(void)
199 {
200         unsigned long flags;
201         struct ccp_device *dp = NULL;
202
203         /* We round-robin through the unit list.
204          * The (ccp_rr) pointer refers to the next unit to use.
205          */
206         read_lock_irqsave(&ccp_unit_lock, flags);
207         if (!list_empty(&ccp_units)) {
208                 spin_lock(&ccp_rr_lock);
209                 dp = ccp_rr;
210                 if (list_is_last(&ccp_rr->entry, &ccp_units))
211                         ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
212                                                   entry);
213                 else
214                         ccp_rr = list_next_entry(ccp_rr, entry);
215                 spin_unlock(&ccp_rr_lock);
216         }
217         read_unlock_irqrestore(&ccp_unit_lock, flags);
218
219         return dp;
220 }
221
222 /**
223  * ccp_present - check if a CCP device is present
224  *
225  * Returns zero if a CCP device is present, -ENODEV otherwise.
226  */
227 int ccp_present(void)
228 {
229         unsigned long flags;
230         int ret;
231
232         read_lock_irqsave(&ccp_unit_lock, flags);
233         ret = list_empty(&ccp_units);
234         read_unlock_irqrestore(&ccp_unit_lock, flags);
235
236         return ret ? -ENODEV : 0;
237 }
238 EXPORT_SYMBOL_GPL(ccp_present);
239
240 /**
241  * ccp_version - get the version of the CCP device
242  *
243  * Returns the version from the first unit on the list;
244  * otherwise a zero if no CCP device is present
245  */
246 unsigned int ccp_version(void)
247 {
248         struct ccp_device *dp;
249         unsigned long flags;
250         int ret = 0;
251
252         read_lock_irqsave(&ccp_unit_lock, flags);
253         if (!list_empty(&ccp_units)) {
254                 dp = list_first_entry(&ccp_units, struct ccp_device, entry);
255                 ret = dp->vdata->version;
256         }
257         read_unlock_irqrestore(&ccp_unit_lock, flags);
258
259         return ret;
260 }
261 EXPORT_SYMBOL_GPL(ccp_version);
262
263 /**
264  * ccp_enqueue_cmd - queue an operation for processing by the CCP
265  *
266  * @cmd: ccp_cmd struct to be processed
267  *
268  * Queue a cmd to be processed by the CCP. If queueing the cmd
269  * would exceed the defined length of the cmd queue the cmd will
270  * only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will
271  * result in a return code of -EBUSY.
272  *
273  * The callback routine specified in the ccp_cmd struct will be
274  * called to notify the caller of completion (if the cmd was not
275  * backlogged) or advancement out of the backlog. If the cmd has
276  * advanced out of the backlog the "err" value of the callback
277  * will be -EINPROGRESS. Any other "err" value during callback is
278  * the result of the operation.
279  *
280  * The cmd has been successfully queued if:
281  *   the return code is -EINPROGRESS or
282  *   the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set
283  */
284 int ccp_enqueue_cmd(struct ccp_cmd *cmd)
285 {
286         struct ccp_device *ccp = ccp_get_device();
287         unsigned long flags;
288         unsigned int i;
289         int ret;
290
291         if (!ccp)
292                 return -ENODEV;
293
294         /* Caller must supply a callback routine */
295         if (!cmd->callback)
296                 return -EINVAL;
297
298         cmd->ccp = ccp;
299
300         spin_lock_irqsave(&ccp->cmd_lock, flags);
301
302         i = ccp->cmd_q_count;
303
304         if (ccp->cmd_count >= MAX_CMD_QLEN) {
305                 ret = -EBUSY;
306                 if (cmd->flags & CCP_CMD_MAY_BACKLOG)
307                         list_add_tail(&cmd->entry, &ccp->backlog);
308         } else {
309                 ret = -EINPROGRESS;
310                 ccp->cmd_count++;
311                 list_add_tail(&cmd->entry, &ccp->cmd);
312
313                 /* Find an idle queue */
314                 if (!ccp->suspending) {
315                         for (i = 0; i < ccp->cmd_q_count; i++) {
316                                 if (ccp->cmd_q[i].active)
317                                         continue;
318
319                                 break;
320                         }
321                 }
322         }
323
324         spin_unlock_irqrestore(&ccp->cmd_lock, flags);
325
326         /* If we found an idle queue, wake it up */
327         if (i < ccp->cmd_q_count)
328                 wake_up_process(ccp->cmd_q[i].kthread);
329
330         return ret;
331 }
332 EXPORT_SYMBOL_GPL(ccp_enqueue_cmd);
333
334 static void ccp_do_cmd_backlog(struct work_struct *work)
335 {
336         struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work);
337         struct ccp_device *ccp = cmd->ccp;
338         unsigned long flags;
339         unsigned int i;
340
341         cmd->callback(cmd->data, -EINPROGRESS);
342
343         spin_lock_irqsave(&ccp->cmd_lock, flags);
344
345         ccp->cmd_count++;
346         list_add_tail(&cmd->entry, &ccp->cmd);
347
348         /* Find an idle queue */
349         for (i = 0; i < ccp->cmd_q_count; i++) {
350                 if (ccp->cmd_q[i].active)
351                         continue;
352
353                 break;
354         }
355
356         spin_unlock_irqrestore(&ccp->cmd_lock, flags);
357
358         /* If we found an idle queue, wake it up */
359         if (i < ccp->cmd_q_count)
360                 wake_up_process(ccp->cmd_q[i].kthread);
361 }
362
363 static struct ccp_cmd *ccp_dequeue_cmd(struct ccp_cmd_queue *cmd_q)
364 {
365         struct ccp_device *ccp = cmd_q->ccp;
366         struct ccp_cmd *cmd = NULL;
367         struct ccp_cmd *backlog = NULL;
368         unsigned long flags;
369
370         spin_lock_irqsave(&ccp->cmd_lock, flags);
371
372         cmd_q->active = 0;
373
374         if (ccp->suspending) {
375                 cmd_q->suspended = 1;
376
377                 spin_unlock_irqrestore(&ccp->cmd_lock, flags);
378                 wake_up_interruptible(&ccp->suspend_queue);
379
380                 return NULL;
381         }
382
383         if (ccp->cmd_count) {
384                 cmd_q->active = 1;
385
386                 cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
387                 list_del(&cmd->entry);
388
389                 ccp->cmd_count--;
390         }
391
392         if (!list_empty(&ccp->backlog)) {
393                 backlog = list_first_entry(&ccp->backlog, struct ccp_cmd,
394                                            entry);
395                 list_del(&backlog->entry);
396         }
397
398         spin_unlock_irqrestore(&ccp->cmd_lock, flags);
399
400         if (backlog) {
401                 INIT_WORK(&backlog->work, ccp_do_cmd_backlog);
402                 schedule_work(&backlog->work);
403         }
404
405         return cmd;
406 }
407
408 static void ccp_do_cmd_complete(unsigned long data)
409 {
410         struct ccp_tasklet_data *tdata = (struct ccp_tasklet_data *)data;
411         struct ccp_cmd *cmd = tdata->cmd;
412
413         cmd->callback(cmd->data, cmd->ret);
414         complete(&tdata->completion);
415 }
416
417 /**
418  * ccp_cmd_queue_thread - create a kernel thread to manage a CCP queue
419  *
420  * @data: thread-specific data
421  */
422 int ccp_cmd_queue_thread(void *data)
423 {
424         struct ccp_cmd_queue *cmd_q = (struct ccp_cmd_queue *)data;
425         struct ccp_cmd *cmd;
426         struct ccp_tasklet_data tdata;
427         struct tasklet_struct tasklet;
428
429         tasklet_init(&tasklet, ccp_do_cmd_complete, (unsigned long)&tdata);
430
431         set_current_state(TASK_INTERRUPTIBLE);
432         while (!kthread_should_stop()) {
433                 schedule();
434
435                 set_current_state(TASK_INTERRUPTIBLE);
436
437                 cmd = ccp_dequeue_cmd(cmd_q);
438                 if (!cmd)
439                         continue;
440
441                 __set_current_state(TASK_RUNNING);
442
443                 /* Execute the command */
444                 cmd->ret = ccp_run_cmd(cmd_q, cmd);
445
446                 /* Schedule the completion callback */
447                 tdata.cmd = cmd;
448                 init_completion(&tdata.completion);
449                 tasklet_schedule(&tasklet);
450                 wait_for_completion(&tdata.completion);
451         }
452
453         __set_current_state(TASK_RUNNING);
454
455         return 0;
456 }
457
458 /**
459  * ccp_alloc_struct - allocate and initialize the ccp_device struct
460  *
461  * @dev: device struct of the CCP
462  */
463 struct ccp_device *ccp_alloc_struct(struct device *dev)
464 {
465         struct ccp_device *ccp;
466
467         ccp = devm_kzalloc(dev, sizeof(*ccp), GFP_KERNEL);
468         if (!ccp)
469                 return NULL;
470         ccp->dev = dev;
471
472         INIT_LIST_HEAD(&ccp->cmd);
473         INIT_LIST_HEAD(&ccp->backlog);
474
475         spin_lock_init(&ccp->cmd_lock);
476         mutex_init(&ccp->req_mutex);
477         mutex_init(&ccp->sb_mutex);
478         ccp->sb_count = KSB_COUNT;
479         ccp->sb_start = 0;
480
481         ccp->ord = ccp_increment_unit_ordinal();
482         snprintf(ccp->name, MAX_CCP_NAME_LEN, "ccp-%u", ccp->ord);
483         snprintf(ccp->rngname, MAX_CCP_NAME_LEN, "ccp-%u-rng", ccp->ord);
484
485         return ccp;
486 }
487
488 int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait)
489 {
490         struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng);
491         u32 trng_value;
492         int len = min_t(int, sizeof(trng_value), max);
493
494         /* Locking is provided by the caller so we can update device
495          * hwrng-related fields safely
496          */
497         trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG);
498         if (!trng_value) {
499                 /* Zero is returned if not data is available or if a
500                  * bad-entropy error is present. Assume an error if
501                  * we exceed TRNG_RETRIES reads of zero.
502                  */
503                 if (ccp->hwrng_retries++ > TRNG_RETRIES)
504                         return -EIO;
505
506                 return 0;
507         }
508
509         /* Reset the counter and save the rng value */
510         ccp->hwrng_retries = 0;
511         memcpy(data, &trng_value, len);
512
513         return len;
514 }
515
516 #ifdef CONFIG_PM
517 bool ccp_queues_suspended(struct ccp_device *ccp)
518 {
519         unsigned int suspended = 0;
520         unsigned long flags;
521         unsigned int i;
522
523         spin_lock_irqsave(&ccp->cmd_lock, flags);
524
525         for (i = 0; i < ccp->cmd_q_count; i++)
526                 if (ccp->cmd_q[i].suspended)
527                         suspended++;
528
529         spin_unlock_irqrestore(&ccp->cmd_lock, flags);
530
531         return ccp->cmd_q_count == suspended;
532 }
533 #endif
534
535 static int __init ccp_mod_init(void)
536 {
537 #ifdef CONFIG_X86
538         int ret;
539
540         ret = ccp_pci_init();
541         if (ret)
542                 return ret;
543
544         /* Don't leave the driver loaded if init failed */
545         if (ccp_present() != 0) {
546                 ccp_pci_exit();
547                 return -ENODEV;
548         }
549
550         return 0;
551 #endif
552
553 #ifdef CONFIG_ARM64
554         int ret;
555
556         ret = ccp_platform_init();
557         if (ret)
558                 return ret;
559
560         /* Don't leave the driver loaded if init failed */
561         if (ccp_present() != 0) {
562                 ccp_platform_exit();
563                 return -ENODEV;
564         }
565
566         return 0;
567 #endif
568
569         return -ENODEV;
570 }
571
572 static void __exit ccp_mod_exit(void)
573 {
574 #ifdef CONFIG_X86
575         ccp_pci_exit();
576 #endif
577
578 #ifdef CONFIG_ARM64
579         ccp_platform_exit();
580 #endif
581 }
582
583 module_init(ccp_mod_init);
584 module_exit(ccp_mod_exit);