x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / drivers / crypto / hifn_795x.c
1 /*
2  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/slab.h>
23 #include <linux/delay.h>
24 #include <linux/mm.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/scatterlist.h>
27 #include <linux/highmem.h>
28 #include <linux/crypto.h>
29 #include <linux/hw_random.h>
30 #include <linux/ktime.h>
31
32 #include <crypto/algapi.h>
33 #include <crypto/des.h>
34
35 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
36 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
37 MODULE_PARM_DESC(hifn_pll_ref,
38                  "PLL reference clock (pci[freq] or ext[freq], default ext)");
39
40 static atomic_t hifn_dev_number;
41
42 #define ACRYPTO_OP_DECRYPT      0
43 #define ACRYPTO_OP_ENCRYPT      1
44 #define ACRYPTO_OP_HMAC         2
45 #define ACRYPTO_OP_RNG          3
46
47 #define ACRYPTO_MODE_ECB                0
48 #define ACRYPTO_MODE_CBC                1
49 #define ACRYPTO_MODE_CFB                2
50 #define ACRYPTO_MODE_OFB                3
51
52 #define ACRYPTO_TYPE_AES_128    0
53 #define ACRYPTO_TYPE_AES_192    1
54 #define ACRYPTO_TYPE_AES_256    2
55 #define ACRYPTO_TYPE_3DES       3
56 #define ACRYPTO_TYPE_DES        4
57
58 #define PCI_VENDOR_ID_HIFN              0x13A3
59 #define PCI_DEVICE_ID_HIFN_7955         0x0020
60 #define PCI_DEVICE_ID_HIFN_7956         0x001d
61
62 /* I/O region sizes */
63
64 #define HIFN_BAR0_SIZE                  0x1000
65 #define HIFN_BAR1_SIZE                  0x2000
66 #define HIFN_BAR2_SIZE                  0x8000
67
68 /* DMA registres */
69
70 #define HIFN_DMA_CRA                    0x0C    /* DMA Command Ring Address */
71 #define HIFN_DMA_SDRA                   0x1C    /* DMA Source Data Ring Address */
72 #define HIFN_DMA_RRA                    0x2C    /* DMA Result Ring Address */
73 #define HIFN_DMA_DDRA                   0x3C    /* DMA Destination Data Ring Address */
74 #define HIFN_DMA_STCTL                  0x40    /* DMA Status and Control */
75 #define HIFN_DMA_INTREN                 0x44    /* DMA Interrupt Enable */
76 #define HIFN_DMA_CFG1                   0x48    /* DMA Configuration #1 */
77 #define HIFN_DMA_CFG2                   0x6C    /* DMA Configuration #2 */
78 #define HIFN_CHIP_ID                    0x98    /* Chip ID */
79
80 /*
81  * Processing Unit Registers (offset from BASEREG0)
82  */
83 #define HIFN_0_PUDATA           0x00    /* Processing Unit Data */
84 #define HIFN_0_PUCTRL           0x04    /* Processing Unit Control */
85 #define HIFN_0_PUISR            0x08    /* Processing Unit Interrupt Status */
86 #define HIFN_0_PUCNFG           0x0c    /* Processing Unit Configuration */
87 #define HIFN_0_PUIER            0x10    /* Processing Unit Interrupt Enable */
88 #define HIFN_0_PUSTAT           0x14    /* Processing Unit Status/Chip ID */
89 #define HIFN_0_FIFOSTAT         0x18    /* FIFO Status */
90 #define HIFN_0_FIFOCNFG         0x1c    /* FIFO Configuration */
91 #define HIFN_0_SPACESIZE        0x20    /* Register space size */
92
93 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
94 #define HIFN_PUCTRL_CLRSRCFIFO  0x0010  /* clear source fifo */
95 #define HIFN_PUCTRL_STOP        0x0008  /* stop pu */
96 #define HIFN_PUCTRL_LOCKRAM     0x0004  /* lock ram */
97 #define HIFN_PUCTRL_DMAENA      0x0002  /* enable dma */
98 #define HIFN_PUCTRL_RESET       0x0001  /* Reset processing unit */
99
100 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
101 #define HIFN_PUISR_CMDINVAL     0x8000  /* Invalid command interrupt */
102 #define HIFN_PUISR_DATAERR      0x4000  /* Data error interrupt */
103 #define HIFN_PUISR_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
104 #define HIFN_PUISR_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
105 #define HIFN_PUISR_DSTOVER      0x0200  /* Destination overrun interrupt */
106 #define HIFN_PUISR_SRCCMD       0x0080  /* Source command interrupt */
107 #define HIFN_PUISR_SRCCTX       0x0040  /* Source context interrupt */
108 #define HIFN_PUISR_SRCDATA      0x0020  /* Source data interrupt */
109 #define HIFN_PUISR_DSTDATA      0x0010  /* Destination data interrupt */
110 #define HIFN_PUISR_DSTRESULT    0x0004  /* Destination result interrupt */
111
112 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
113 #define HIFN_PUCNFG_DRAMMASK    0xe000  /* DRAM size mask */
114 #define HIFN_PUCNFG_DSZ_256K    0x0000  /* 256k dram */
115 #define HIFN_PUCNFG_DSZ_512K    0x2000  /* 512k dram */
116 #define HIFN_PUCNFG_DSZ_1M      0x4000  /* 1m dram */
117 #define HIFN_PUCNFG_DSZ_2M      0x6000  /* 2m dram */
118 #define HIFN_PUCNFG_DSZ_4M      0x8000  /* 4m dram */
119 #define HIFN_PUCNFG_DSZ_8M      0xa000  /* 8m dram */
120 #define HIFN_PUNCFG_DSZ_16M     0xc000  /* 16m dram */
121 #define HIFN_PUCNFG_DSZ_32M     0xe000  /* 32m dram */
122 #define HIFN_PUCNFG_DRAMREFRESH 0x1800  /* DRAM refresh rate mask */
123 #define HIFN_PUCNFG_DRFR_512    0x0000  /* 512 divisor of ECLK */
124 #define HIFN_PUCNFG_DRFR_256    0x0800  /* 256 divisor of ECLK */
125 #define HIFN_PUCNFG_DRFR_128    0x1000  /* 128 divisor of ECLK */
126 #define HIFN_PUCNFG_TCALLPHASES 0x0200  /* your guess is as good as mine... */
127 #define HIFN_PUCNFG_TCDRVTOTEM  0x0100  /* your guess is as good as mine... */
128 #define HIFN_PUCNFG_BIGENDIAN   0x0080  /* DMA big endian mode */
129 #define HIFN_PUCNFG_BUS32       0x0040  /* Bus width 32bits */
130 #define HIFN_PUCNFG_BUS16       0x0000  /* Bus width 16 bits */
131 #define HIFN_PUCNFG_CHIPID      0x0020  /* Allow chipid from PUSTAT */
132 #define HIFN_PUCNFG_DRAM        0x0010  /* Context RAM is DRAM */
133 #define HIFN_PUCNFG_SRAM        0x0000  /* Context RAM is SRAM */
134 #define HIFN_PUCNFG_COMPSING    0x0004  /* Enable single compression context */
135 #define HIFN_PUCNFG_ENCCNFG     0x0002  /* Encryption configuration */
136
137 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
138 #define HIFN_PUIER_CMDINVAL     0x8000  /* Invalid command interrupt */
139 #define HIFN_PUIER_DATAERR      0x4000  /* Data error interrupt */
140 #define HIFN_PUIER_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
141 #define HIFN_PUIER_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
142 #define HIFN_PUIER_DSTOVER      0x0200  /* Destination overrun interrupt */
143 #define HIFN_PUIER_SRCCMD       0x0080  /* Source command interrupt */
144 #define HIFN_PUIER_SRCCTX       0x0040  /* Source context interrupt */
145 #define HIFN_PUIER_SRCDATA      0x0020  /* Source data interrupt */
146 #define HIFN_PUIER_DSTDATA      0x0010  /* Destination data interrupt */
147 #define HIFN_PUIER_DSTRESULT    0x0004  /* Destination result interrupt */
148
149 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
150 #define HIFN_PUSTAT_CMDINVAL    0x8000  /* Invalid command interrupt */
151 #define HIFN_PUSTAT_DATAERR     0x4000  /* Data error interrupt */
152 #define HIFN_PUSTAT_SRCFIFO     0x2000  /* Source FIFO ready interrupt */
153 #define HIFN_PUSTAT_DSTFIFO     0x1000  /* Destination FIFO ready interrupt */
154 #define HIFN_PUSTAT_DSTOVER     0x0200  /* Destination overrun interrupt */
155 #define HIFN_PUSTAT_SRCCMD      0x0080  /* Source command interrupt */
156 #define HIFN_PUSTAT_SRCCTX      0x0040  /* Source context interrupt */
157 #define HIFN_PUSTAT_SRCDATA     0x0020  /* Source data interrupt */
158 #define HIFN_PUSTAT_DSTDATA     0x0010  /* Destination data interrupt */
159 #define HIFN_PUSTAT_DSTRESULT   0x0004  /* Destination result interrupt */
160 #define HIFN_PUSTAT_CHIPREV     0x00ff  /* Chip revision mask */
161 #define HIFN_PUSTAT_CHIPENA     0xff00  /* Chip enabled mask */
162 #define HIFN_PUSTAT_ENA_2       0x1100  /* Level 2 enabled */
163 #define HIFN_PUSTAT_ENA_1       0x1000  /* Level 1 enabled */
164 #define HIFN_PUSTAT_ENA_0       0x3000  /* Level 0 enabled */
165 #define HIFN_PUSTAT_REV_2       0x0020  /* 7751 PT6/2 */
166 #define HIFN_PUSTAT_REV_3       0x0030  /* 7751 PT6/3 */
167
168 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
169 #define HIFN_FIFOSTAT_SRC       0x7f00  /* Source FIFO available */
170 #define HIFN_FIFOSTAT_DST       0x007f  /* Destination FIFO available */
171
172 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
173 #define HIFN_FIFOCNFG_THRESHOLD 0x0400  /* must be written as 1 */
174
175 /*
176  * DMA Interface Registers (offset from BASEREG1)
177  */
178 #define HIFN_1_DMA_CRAR         0x0c    /* DMA Command Ring Address */
179 #define HIFN_1_DMA_SRAR         0x1c    /* DMA Source Ring Address */
180 #define HIFN_1_DMA_RRAR         0x2c    /* DMA Result Ring Address */
181 #define HIFN_1_DMA_DRAR         0x3c    /* DMA Destination Ring Address */
182 #define HIFN_1_DMA_CSR          0x40    /* DMA Status and Control */
183 #define HIFN_1_DMA_IER          0x44    /* DMA Interrupt Enable */
184 #define HIFN_1_DMA_CNFG         0x48    /* DMA Configuration */
185 #define HIFN_1_PLL              0x4c    /* 795x: PLL config */
186 #define HIFN_1_7811_RNGENA      0x60    /* 7811: rng enable */
187 #define HIFN_1_7811_RNGCFG      0x64    /* 7811: rng config */
188 #define HIFN_1_7811_RNGDAT      0x68    /* 7811: rng data */
189 #define HIFN_1_7811_RNGSTS      0x6c    /* 7811: rng status */
190 #define HIFN_1_7811_MIPSRST     0x94    /* 7811: MIPS reset */
191 #define HIFN_1_REVID            0x98    /* Revision ID */
192 #define HIFN_1_UNLOCK_SECRET1   0xf4
193 #define HIFN_1_UNLOCK_SECRET2   0xfc
194 #define HIFN_1_PUB_RESET        0x204   /* Public/RNG Reset */
195 #define HIFN_1_PUB_BASE         0x300   /* Public Base Address */
196 #define HIFN_1_PUB_OPLEN        0x304   /* Public Operand Length */
197 #define HIFN_1_PUB_OP           0x308   /* Public Operand */
198 #define HIFN_1_PUB_STATUS       0x30c   /* Public Status */
199 #define HIFN_1_PUB_IEN          0x310   /* Public Interrupt enable */
200 #define HIFN_1_RNG_CONFIG       0x314   /* RNG config */
201 #define HIFN_1_RNG_DATA         0x318   /* RNG data */
202 #define HIFN_1_PUB_MEM          0x400   /* start of Public key memory */
203 #define HIFN_1_PUB_MEMEND       0xbff   /* end of Public key memory */
204
205 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
206 #define HIFN_DMACSR_D_CTRLMASK  0xc0000000      /* Destinition Ring Control */
207 #define HIFN_DMACSR_D_CTRL_NOP  0x00000000      /* Dest. Control: no-op */
208 #define HIFN_DMACSR_D_CTRL_DIS  0x40000000      /* Dest. Control: disable */
209 #define HIFN_DMACSR_D_CTRL_ENA  0x80000000      /* Dest. Control: enable */
210 #define HIFN_DMACSR_D_ABORT     0x20000000      /* Destinition Ring PCIAbort */
211 #define HIFN_DMACSR_D_DONE      0x10000000      /* Destinition Ring Done */
212 #define HIFN_DMACSR_D_LAST      0x08000000      /* Destinition Ring Last */
213 #define HIFN_DMACSR_D_WAIT      0x04000000      /* Destinition Ring Waiting */
214 #define HIFN_DMACSR_D_OVER      0x02000000      /* Destinition Ring Overflow */
215 #define HIFN_DMACSR_R_CTRL      0x00c00000      /* Result Ring Control */
216 #define HIFN_DMACSR_R_CTRL_NOP  0x00000000      /* Result Control: no-op */
217 #define HIFN_DMACSR_R_CTRL_DIS  0x00400000      /* Result Control: disable */
218 #define HIFN_DMACSR_R_CTRL_ENA  0x00800000      /* Result Control: enable */
219 #define HIFN_DMACSR_R_ABORT     0x00200000      /* Result Ring PCI Abort */
220 #define HIFN_DMACSR_R_DONE      0x00100000      /* Result Ring Done */
221 #define HIFN_DMACSR_R_LAST      0x00080000      /* Result Ring Last */
222 #define HIFN_DMACSR_R_WAIT      0x00040000      /* Result Ring Waiting */
223 #define HIFN_DMACSR_R_OVER      0x00020000      /* Result Ring Overflow */
224 #define HIFN_DMACSR_S_CTRL      0x0000c000      /* Source Ring Control */
225 #define HIFN_DMACSR_S_CTRL_NOP  0x00000000      /* Source Control: no-op */
226 #define HIFN_DMACSR_S_CTRL_DIS  0x00004000      /* Source Control: disable */
227 #define HIFN_DMACSR_S_CTRL_ENA  0x00008000      /* Source Control: enable */
228 #define HIFN_DMACSR_S_ABORT     0x00002000      /* Source Ring PCI Abort */
229 #define HIFN_DMACSR_S_DONE      0x00001000      /* Source Ring Done */
230 #define HIFN_DMACSR_S_LAST      0x00000800      /* Source Ring Last */
231 #define HIFN_DMACSR_S_WAIT      0x00000400      /* Source Ring Waiting */
232 #define HIFN_DMACSR_ILLW        0x00000200      /* Illegal write (7811 only) */
233 #define HIFN_DMACSR_ILLR        0x00000100      /* Illegal read (7811 only) */
234 #define HIFN_DMACSR_C_CTRL      0x000000c0      /* Command Ring Control */
235 #define HIFN_DMACSR_C_CTRL_NOP  0x00000000      /* Command Control: no-op */
236 #define HIFN_DMACSR_C_CTRL_DIS  0x00000040      /* Command Control: disable */
237 #define HIFN_DMACSR_C_CTRL_ENA  0x00000080      /* Command Control: enable */
238 #define HIFN_DMACSR_C_ABORT     0x00000020      /* Command Ring PCI Abort */
239 #define HIFN_DMACSR_C_DONE      0x00000010      /* Command Ring Done */
240 #define HIFN_DMACSR_C_LAST      0x00000008      /* Command Ring Last */
241 #define HIFN_DMACSR_C_WAIT      0x00000004      /* Command Ring Waiting */
242 #define HIFN_DMACSR_PUBDONE     0x00000002      /* Public op done (7951 only) */
243 #define HIFN_DMACSR_ENGINE      0x00000001      /* Command Ring Engine IRQ */
244
245 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
246 #define HIFN_DMAIER_D_ABORT     0x20000000      /* Destination Ring PCIAbort */
247 #define HIFN_DMAIER_D_DONE      0x10000000      /* Destination Ring Done */
248 #define HIFN_DMAIER_D_LAST      0x08000000      /* Destination Ring Last */
249 #define HIFN_DMAIER_D_WAIT      0x04000000      /* Destination Ring Waiting */
250 #define HIFN_DMAIER_D_OVER      0x02000000      /* Destination Ring Overflow */
251 #define HIFN_DMAIER_R_ABORT     0x00200000      /* Result Ring PCI Abort */
252 #define HIFN_DMAIER_R_DONE      0x00100000      /* Result Ring Done */
253 #define HIFN_DMAIER_R_LAST      0x00080000      /* Result Ring Last */
254 #define HIFN_DMAIER_R_WAIT      0x00040000      /* Result Ring Waiting */
255 #define HIFN_DMAIER_R_OVER      0x00020000      /* Result Ring Overflow */
256 #define HIFN_DMAIER_S_ABORT     0x00002000      /* Source Ring PCI Abort */
257 #define HIFN_DMAIER_S_DONE      0x00001000      /* Source Ring Done */
258 #define HIFN_DMAIER_S_LAST      0x00000800      /* Source Ring Last */
259 #define HIFN_DMAIER_S_WAIT      0x00000400      /* Source Ring Waiting */
260 #define HIFN_DMAIER_ILLW        0x00000200      /* Illegal write (7811 only) */
261 #define HIFN_DMAIER_ILLR        0x00000100      /* Illegal read (7811 only) */
262 #define HIFN_DMAIER_C_ABORT     0x00000020      /* Command Ring PCI Abort */
263 #define HIFN_DMAIER_C_DONE      0x00000010      /* Command Ring Done */
264 #define HIFN_DMAIER_C_LAST      0x00000008      /* Command Ring Last */
265 #define HIFN_DMAIER_C_WAIT      0x00000004      /* Command Ring Waiting */
266 #define HIFN_DMAIER_PUBDONE     0x00000002      /* public op done (7951 only) */
267 #define HIFN_DMAIER_ENGINE      0x00000001      /* Engine IRQ */
268
269 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
270 #define HIFN_DMACNFG_BIGENDIAN  0x10000000      /* big endian mode */
271 #define HIFN_DMACNFG_POLLFREQ   0x00ff0000      /* Poll frequency mask */
272 #define HIFN_DMACNFG_UNLOCK     0x00000800
273 #define HIFN_DMACNFG_POLLINVAL  0x00000700      /* Invalid Poll Scalar */
274 #define HIFN_DMACNFG_LAST       0x00000010      /* Host control LAST bit */
275 #define HIFN_DMACNFG_MODE       0x00000004      /* DMA mode */
276 #define HIFN_DMACNFG_DMARESET   0x00000002      /* DMA Reset # */
277 #define HIFN_DMACNFG_MSTRESET   0x00000001      /* Master Reset # */
278
279 /* PLL configuration register */
280 #define HIFN_PLL_REF_CLK_HBI    0x00000000      /* HBI reference clock */
281 #define HIFN_PLL_REF_CLK_PLL    0x00000001      /* PLL reference clock */
282 #define HIFN_PLL_BP             0x00000002      /* Reference clock bypass */
283 #define HIFN_PLL_PK_CLK_HBI     0x00000000      /* PK engine HBI clock */
284 #define HIFN_PLL_PK_CLK_PLL     0x00000008      /* PK engine PLL clock */
285 #define HIFN_PLL_PE_CLK_HBI     0x00000000      /* PE engine HBI clock */
286 #define HIFN_PLL_PE_CLK_PLL     0x00000010      /* PE engine PLL clock */
287 #define HIFN_PLL_RESERVED_1     0x00000400      /* Reserved bit, must be 1 */
288 #define HIFN_PLL_ND_SHIFT       11              /* Clock multiplier shift */
289 #define HIFN_PLL_ND_MULT_2      0x00000000      /* PLL clock multiplier 2 */
290 #define HIFN_PLL_ND_MULT_4      0x00000800      /* PLL clock multiplier 4 */
291 #define HIFN_PLL_ND_MULT_6      0x00001000      /* PLL clock multiplier 6 */
292 #define HIFN_PLL_ND_MULT_8      0x00001800      /* PLL clock multiplier 8 */
293 #define HIFN_PLL_ND_MULT_10     0x00002000      /* PLL clock multiplier 10 */
294 #define HIFN_PLL_ND_MULT_12     0x00002800      /* PLL clock multiplier 12 */
295 #define HIFN_PLL_IS_1_8         0x00000000      /* charge pump (mult. 1-8) */
296 #define HIFN_PLL_IS_9_12        0x00010000      /* charge pump (mult. 9-12) */
297
298 #define HIFN_PLL_FCK_MAX        266             /* Maximum PLL frequency */
299
300 /* Public key reset register (HIFN_1_PUB_RESET) */
301 #define HIFN_PUBRST_RESET       0x00000001      /* reset public/rng unit */
302
303 /* Public base address register (HIFN_1_PUB_BASE) */
304 #define HIFN_PUBBASE_ADDR       0x00003fff      /* base address */
305
306 /* Public operand length register (HIFN_1_PUB_OPLEN) */
307 #define HIFN_PUBOPLEN_MOD_M     0x0000007f      /* modulus length mask */
308 #define HIFN_PUBOPLEN_MOD_S     0               /* modulus length shift */
309 #define HIFN_PUBOPLEN_EXP_M     0x0003ff80      /* exponent length mask */
310 #define HIFN_PUBOPLEN_EXP_S     7               /* exponent length shift */
311 #define HIFN_PUBOPLEN_RED_M     0x003c0000      /* reducend length mask */
312 #define HIFN_PUBOPLEN_RED_S     18              /* reducend length shift */
313
314 /* Public operation register (HIFN_1_PUB_OP) */
315 #define HIFN_PUBOP_AOFFSET_M    0x0000007f      /* A offset mask */
316 #define HIFN_PUBOP_AOFFSET_S    0               /* A offset shift */
317 #define HIFN_PUBOP_BOFFSET_M    0x00000f80      /* B offset mask */
318 #define HIFN_PUBOP_BOFFSET_S    7               /* B offset shift */
319 #define HIFN_PUBOP_MOFFSET_M    0x0003f000      /* M offset mask */
320 #define HIFN_PUBOP_MOFFSET_S    12              /* M offset shift */
321 #define HIFN_PUBOP_OP_MASK      0x003c0000      /* Opcode: */
322 #define HIFN_PUBOP_OP_NOP       0x00000000      /*  NOP */
323 #define HIFN_PUBOP_OP_ADD       0x00040000      /*  ADD */
324 #define HIFN_PUBOP_OP_ADDC      0x00080000      /*  ADD w/carry */
325 #define HIFN_PUBOP_OP_SUB       0x000c0000      /*  SUB */
326 #define HIFN_PUBOP_OP_SUBC      0x00100000      /*  SUB w/carry */
327 #define HIFN_PUBOP_OP_MODADD    0x00140000      /*  Modular ADD */
328 #define HIFN_PUBOP_OP_MODSUB    0x00180000      /*  Modular SUB */
329 #define HIFN_PUBOP_OP_INCA      0x001c0000      /*  INC A */
330 #define HIFN_PUBOP_OP_DECA      0x00200000      /*  DEC A */
331 #define HIFN_PUBOP_OP_MULT      0x00240000      /*  MULT */
332 #define HIFN_PUBOP_OP_MODMULT   0x00280000      /*  Modular MULT */
333 #define HIFN_PUBOP_OP_MODRED    0x002c0000      /*  Modular RED */
334 #define HIFN_PUBOP_OP_MODEXP    0x00300000      /*  Modular EXP */
335
336 /* Public status register (HIFN_1_PUB_STATUS) */
337 #define HIFN_PUBSTS_DONE        0x00000001      /* operation done */
338 #define HIFN_PUBSTS_CARRY       0x00000002      /* carry */
339
340 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
341 #define HIFN_PUBIEN_DONE        0x00000001      /* operation done interrupt */
342
343 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
344 #define HIFN_RNGCFG_ENA         0x00000001      /* enable rng */
345
346 #define HIFN_NAMESIZE                   32
347 #define HIFN_MAX_RESULT_ORDER           5
348
349 #define HIFN_D_CMD_RSIZE                (24 * 1)
350 #define HIFN_D_SRC_RSIZE                (80 * 1)
351 #define HIFN_D_DST_RSIZE                (80 * 1)
352 #define HIFN_D_RES_RSIZE                (24 * 1)
353
354 #define HIFN_D_DST_DALIGN               4
355
356 #define HIFN_QUEUE_LENGTH               (HIFN_D_CMD_RSIZE - 1)
357
358 #define AES_MIN_KEY_SIZE                16
359 #define AES_MAX_KEY_SIZE                32
360
361 #define HIFN_DES_KEY_LENGTH             8
362 #define HIFN_3DES_KEY_LENGTH            24
363 #define HIFN_MAX_CRYPT_KEY_LENGTH       AES_MAX_KEY_SIZE
364 #define HIFN_IV_LENGTH                  8
365 #define HIFN_AES_IV_LENGTH              16
366 #define HIFN_MAX_IV_LENGTH              HIFN_AES_IV_LENGTH
367
368 #define HIFN_MAC_KEY_LENGTH             64
369 #define HIFN_MD5_LENGTH                 16
370 #define HIFN_SHA1_LENGTH                20
371 #define HIFN_MAC_TRUNC_LENGTH           12
372
373 #define HIFN_MAX_COMMAND                (8 + 8 + 8 + 64 + 260)
374 #define HIFN_MAX_RESULT                 (8 + 4 + 4 + 20 + 4)
375 #define HIFN_USED_RESULT                12
376
377 struct hifn_desc {
378         volatile __le32         l;
379         volatile __le32         p;
380 };
381
382 struct hifn_dma {
383         struct hifn_desc        cmdr[HIFN_D_CMD_RSIZE + 1];
384         struct hifn_desc        srcr[HIFN_D_SRC_RSIZE + 1];
385         struct hifn_desc        dstr[HIFN_D_DST_RSIZE + 1];
386         struct hifn_desc        resr[HIFN_D_RES_RSIZE + 1];
387
388         u8                      command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
389         u8                      result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
390
391         /*
392          *  Our current positions for insertion and removal from the descriptor
393          *  rings.
394          */
395         volatile int            cmdi, srci, dsti, resi;
396         volatile int            cmdu, srcu, dstu, resu;
397         int                     cmdk, srck, dstk, resk;
398 };
399
400 #define HIFN_FLAG_CMD_BUSY      (1 << 0)
401 #define HIFN_FLAG_SRC_BUSY      (1 << 1)
402 #define HIFN_FLAG_DST_BUSY      (1 << 2)
403 #define HIFN_FLAG_RES_BUSY      (1 << 3)
404 #define HIFN_FLAG_OLD_KEY       (1 << 4)
405
406 #define HIFN_DEFAULT_ACTIVE_NUM 5
407
408 struct hifn_device {
409         char                    name[HIFN_NAMESIZE];
410
411         int                     irq;
412
413         struct pci_dev          *pdev;
414         void __iomem            *bar[3];
415
416         void                    *desc_virt;
417         dma_addr_t              desc_dma;
418
419         u32                     dmareg;
420
421         void                    *sa[HIFN_D_RES_RSIZE];
422
423         spinlock_t              lock;
424
425         u32                     flags;
426         int                     active, started;
427         struct delayed_work     work;
428         unsigned long           reset;
429         unsigned long           success;
430         unsigned long           prev_success;
431
432         u8                      snum;
433
434         struct tasklet_struct   tasklet;
435
436         struct crypto_queue     queue;
437         struct list_head        alg_list;
438
439         unsigned int            pk_clk_freq;
440
441 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
442         unsigned int            rng_wait_time;
443         ktime_t                 rngtime;
444         struct hwrng            rng;
445 #endif
446 };
447
448 #define HIFN_D_LENGTH                   0x0000ffff
449 #define HIFN_D_NOINVALID                0x01000000
450 #define HIFN_D_MASKDONEIRQ              0x02000000
451 #define HIFN_D_DESTOVER                 0x04000000
452 #define HIFN_D_OVER                     0x08000000
453 #define HIFN_D_LAST                     0x20000000
454 #define HIFN_D_JUMP                     0x40000000
455 #define HIFN_D_VALID                    0x80000000
456
457 struct hifn_base_command {
458         volatile __le16         masks;
459         volatile __le16         session_num;
460         volatile __le16         total_source_count;
461         volatile __le16         total_dest_count;
462 };
463
464 #define HIFN_BASE_CMD_COMP              0x0100  /* enable compression engine */
465 #define HIFN_BASE_CMD_PAD               0x0200  /* enable padding engine */
466 #define HIFN_BASE_CMD_MAC               0x0400  /* enable MAC engine */
467 #define HIFN_BASE_CMD_CRYPT             0x0800  /* enable crypt engine */
468 #define HIFN_BASE_CMD_DECODE            0x2000
469 #define HIFN_BASE_CMD_SRCLEN_M          0xc000
470 #define HIFN_BASE_CMD_SRCLEN_S          14
471 #define HIFN_BASE_CMD_DSTLEN_M          0x3000
472 #define HIFN_BASE_CMD_DSTLEN_S          12
473 #define HIFN_BASE_CMD_LENMASK_HI        0x30000
474 #define HIFN_BASE_CMD_LENMASK_LO        0x0ffff
475
476 /*
477  * Structure to help build up the command data structure.
478  */
479 struct hifn_crypt_command {
480         volatile __le16         masks;
481         volatile __le16         header_skip;
482         volatile __le16         source_count;
483         volatile __le16         reserved;
484 };
485
486 #define HIFN_CRYPT_CMD_ALG_MASK         0x0003          /* algorithm: */
487 #define HIFN_CRYPT_CMD_ALG_DES          0x0000          /*   DES */
488 #define HIFN_CRYPT_CMD_ALG_3DES         0x0001          /*   3DES */
489 #define HIFN_CRYPT_CMD_ALG_RC4          0x0002          /*   RC4 */
490 #define HIFN_CRYPT_CMD_ALG_AES          0x0003          /*   AES */
491 #define HIFN_CRYPT_CMD_MODE_MASK        0x0018          /* Encrypt mode: */
492 #define HIFN_CRYPT_CMD_MODE_ECB         0x0000          /*   ECB */
493 #define HIFN_CRYPT_CMD_MODE_CBC         0x0008          /*   CBC */
494 #define HIFN_CRYPT_CMD_MODE_CFB         0x0010          /*   CFB */
495 #define HIFN_CRYPT_CMD_MODE_OFB         0x0018          /*   OFB */
496 #define HIFN_CRYPT_CMD_CLR_CTX          0x0040          /* clear context */
497 #define HIFN_CRYPT_CMD_KSZ_MASK         0x0600          /* AES key size: */
498 #define HIFN_CRYPT_CMD_KSZ_128          0x0000          /*  128 bit */
499 #define HIFN_CRYPT_CMD_KSZ_192          0x0200          /*  192 bit */
500 #define HIFN_CRYPT_CMD_KSZ_256          0x0400          /*  256 bit */
501 #define HIFN_CRYPT_CMD_NEW_KEY          0x0800          /* expect new key */
502 #define HIFN_CRYPT_CMD_NEW_IV           0x1000          /* expect new iv */
503 #define HIFN_CRYPT_CMD_SRCLEN_M         0xc000
504 #define HIFN_CRYPT_CMD_SRCLEN_S         14
505
506 /*
507  * Structure to help build up the command data structure.
508  */
509 struct hifn_mac_command {
510         volatile __le16 masks;
511         volatile __le16 header_skip;
512         volatile __le16 source_count;
513         volatile __le16 reserved;
514 };
515
516 #define HIFN_MAC_CMD_ALG_MASK           0x0001
517 #define HIFN_MAC_CMD_ALG_SHA1           0x0000
518 #define HIFN_MAC_CMD_ALG_MD5            0x0001
519 #define HIFN_MAC_CMD_MODE_MASK          0x000c
520 #define HIFN_MAC_CMD_MODE_HMAC          0x0000
521 #define HIFN_MAC_CMD_MODE_SSL_MAC       0x0004
522 #define HIFN_MAC_CMD_MODE_HASH          0x0008
523 #define HIFN_MAC_CMD_MODE_FULL          0x0004
524 #define HIFN_MAC_CMD_TRUNC              0x0010
525 #define HIFN_MAC_CMD_RESULT             0x0020
526 #define HIFN_MAC_CMD_APPEND             0x0040
527 #define HIFN_MAC_CMD_SRCLEN_M           0xc000
528 #define HIFN_MAC_CMD_SRCLEN_S           14
529
530 /*
531  * MAC POS IPsec initiates authentication after encryption on encodes
532  * and before decryption on decodes.
533  */
534 #define HIFN_MAC_CMD_POS_IPSEC          0x0200
535 #define HIFN_MAC_CMD_NEW_KEY            0x0800
536
537 struct hifn_comp_command {
538         volatile __le16         masks;
539         volatile __le16         header_skip;
540         volatile __le16         source_count;
541         volatile __le16         reserved;
542 };
543
544 #define HIFN_COMP_CMD_SRCLEN_M          0xc000
545 #define HIFN_COMP_CMD_SRCLEN_S          14
546 #define HIFN_COMP_CMD_ONE               0x0100  /* must be one */
547 #define HIFN_COMP_CMD_CLEARHIST         0x0010  /* clear history */
548 #define HIFN_COMP_CMD_UPDATEHIST        0x0008  /* update history */
549 #define HIFN_COMP_CMD_LZS_STRIP0        0x0004  /* LZS: strip zero */
550 #define HIFN_COMP_CMD_MPPC_RESTART      0x0004  /* MPPC: restart */
551 #define HIFN_COMP_CMD_ALG_MASK          0x0001  /* compression mode: */
552 #define HIFN_COMP_CMD_ALG_MPPC          0x0001  /*   MPPC */
553 #define HIFN_COMP_CMD_ALG_LZS           0x0000  /*   LZS */
554
555 struct hifn_base_result {
556         volatile __le16         flags;
557         volatile __le16         session;
558         volatile __le16         src_cnt;                /* 15:0 of source count */
559         volatile __le16         dst_cnt;                /* 15:0 of dest count */
560 };
561
562 #define HIFN_BASE_RES_DSTOVERRUN        0x0200  /* destination overrun */
563 #define HIFN_BASE_RES_SRCLEN_M          0xc000  /* 17:16 of source count */
564 #define HIFN_BASE_RES_SRCLEN_S          14
565 #define HIFN_BASE_RES_DSTLEN_M          0x3000  /* 17:16 of dest count */
566 #define HIFN_BASE_RES_DSTLEN_S          12
567
568 struct hifn_comp_result {
569         volatile __le16         flags;
570         volatile __le16         crc;
571 };
572
573 #define HIFN_COMP_RES_LCB_M             0xff00  /* longitudinal check byte */
574 #define HIFN_COMP_RES_LCB_S             8
575 #define HIFN_COMP_RES_RESTART           0x0004  /* MPPC: restart */
576 #define HIFN_COMP_RES_ENDMARKER         0x0002  /* LZS: end marker seen */
577 #define HIFN_COMP_RES_SRC_NOTZERO       0x0001  /* source expired */
578
579 struct hifn_mac_result {
580         volatile __le16         flags;
581         volatile __le16         reserved;
582         /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
583 };
584
585 #define HIFN_MAC_RES_MISCOMPARE         0x0002  /* compare failed */
586 #define HIFN_MAC_RES_SRC_NOTZERO        0x0001  /* source expired */
587
588 struct hifn_crypt_result {
589         volatile __le16         flags;
590         volatile __le16         reserved;
591 };
592
593 #define HIFN_CRYPT_RES_SRC_NOTZERO      0x0001  /* source expired */
594
595 #ifndef HIFN_POLL_FREQUENCY
596 #define HIFN_POLL_FREQUENCY     0x1
597 #endif
598
599 #ifndef HIFN_POLL_SCALAR
600 #define HIFN_POLL_SCALAR        0x0
601 #endif
602
603 #define HIFN_MAX_SEGLEN         0xffff          /* maximum dma segment len */
604 #define HIFN_MAX_DMALEN         0x3ffff         /* maximum dma length */
605
606 struct hifn_crypto_alg {
607         struct list_head        entry;
608         struct crypto_alg       alg;
609         struct hifn_device      *dev;
610 };
611
612 #define ASYNC_SCATTERLIST_CACHE 16
613
614 #define ASYNC_FLAGS_MISALIGNED  (1 << 0)
615
616 struct hifn_cipher_walk {
617         struct scatterlist      cache[ASYNC_SCATTERLIST_CACHE];
618         u32                     flags;
619         int                     num;
620 };
621
622 struct hifn_context {
623         u8                      key[HIFN_MAX_CRYPT_KEY_LENGTH];
624         struct hifn_device      *dev;
625         unsigned int            keysize;
626 };
627
628 struct hifn_request_context {
629         u8                      *iv;
630         unsigned int            ivsize;
631         u8                      op, type, mode, unused;
632         struct hifn_cipher_walk walk;
633 };
634
635 #define crypto_alg_to_hifn(a)   container_of(a, struct hifn_crypto_alg, alg)
636
637 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
638 {
639         return readl(dev->bar[0] + reg);
640 }
641
642 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
643 {
644         return readl(dev->bar[1] + reg);
645 }
646
647 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
648 {
649         writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
650 }
651
652 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
653 {
654         writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
655 }
656
657 static void hifn_wait_puc(struct hifn_device *dev)
658 {
659         int i;
660         u32 ret;
661
662         for (i = 10000; i > 0; --i) {
663                 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
664                 if (!(ret & HIFN_PUCTRL_RESET))
665                         break;
666
667                 udelay(1);
668         }
669
670         if (!i)
671                 dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
672 }
673
674 static void hifn_reset_puc(struct hifn_device *dev)
675 {
676         hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
677         hifn_wait_puc(dev);
678 }
679
680 static void hifn_stop_device(struct hifn_device *dev)
681 {
682         hifn_write_1(dev, HIFN_1_DMA_CSR,
683                 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
684                 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
685         hifn_write_0(dev, HIFN_0_PUIER, 0);
686         hifn_write_1(dev, HIFN_1_DMA_IER, 0);
687 }
688
689 static void hifn_reset_dma(struct hifn_device *dev, int full)
690 {
691         hifn_stop_device(dev);
692
693         /*
694          * Setting poll frequency and others to 0.
695          */
696         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
697                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
698         mdelay(1);
699
700         /*
701          * Reset DMA.
702          */
703         if (full) {
704                 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
705                 mdelay(1);
706         } else {
707                 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
708                                 HIFN_DMACNFG_MSTRESET);
709                 hifn_reset_puc(dev);
710         }
711
712         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
713                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
714
715         hifn_reset_puc(dev);
716 }
717
718 static u32 hifn_next_signature(u32 a, u_int cnt)
719 {
720         int i;
721         u32 v;
722
723         for (i = 0; i < cnt; i++) {
724                 /* get the parity */
725                 v = a & 0x80080125;
726                 v ^= v >> 16;
727                 v ^= v >> 8;
728                 v ^= v >> 4;
729                 v ^= v >> 2;
730                 v ^= v >> 1;
731
732                 a = (v & 1) ^ (a << 1);
733         }
734
735         return a;
736 }
737
738 static struct pci2id {
739         u_short         pci_vendor;
740         u_short         pci_prod;
741         char            card_id[13];
742 } pci2id[] = {
743         {
744                 PCI_VENDOR_ID_HIFN,
745                 PCI_DEVICE_ID_HIFN_7955,
746                 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
747                   0x00, 0x00, 0x00, 0x00, 0x00 }
748         },
749         {
750                 PCI_VENDOR_ID_HIFN,
751                 PCI_DEVICE_ID_HIFN_7956,
752                 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
753                   0x00, 0x00, 0x00, 0x00, 0x00 }
754         }
755 };
756
757 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
758 static int hifn_rng_data_present(struct hwrng *rng, int wait)
759 {
760         struct hifn_device *dev = (struct hifn_device *)rng->priv;
761         s64 nsec;
762
763         nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
764         nsec -= dev->rng_wait_time;
765         if (nsec <= 0)
766                 return 1;
767         if (!wait)
768                 return 0;
769         ndelay(nsec);
770         return 1;
771 }
772
773 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
774 {
775         struct hifn_device *dev = (struct hifn_device *)rng->priv;
776
777         *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
778         dev->rngtime = ktime_get();
779         return 4;
780 }
781
782 static int hifn_register_rng(struct hifn_device *dev)
783 {
784         /*
785          * We must wait at least 256 Pk_clk cycles between two reads of the rng.
786          */
787         dev->rng_wait_time      = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
788                                                    dev->pk_clk_freq) * 256;
789
790         dev->rng.name           = dev->name;
791         dev->rng.data_present   = hifn_rng_data_present,
792         dev->rng.data_read      = hifn_rng_data_read,
793         dev->rng.priv           = (unsigned long)dev;
794
795         return hwrng_register(&dev->rng);
796 }
797
798 static void hifn_unregister_rng(struct hifn_device *dev)
799 {
800         hwrng_unregister(&dev->rng);
801 }
802 #else
803 #define hifn_register_rng(dev)          0
804 #define hifn_unregister_rng(dev)
805 #endif
806
807 static int hifn_init_pubrng(struct hifn_device *dev)
808 {
809         int i;
810
811         hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
812                         HIFN_PUBRST_RESET);
813
814         for (i = 100; i > 0; --i) {
815                 mdelay(1);
816
817                 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
818                         break;
819         }
820
821         if (!i) {
822                 dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
823         } else {
824                 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
825                 dev->dmareg |= HIFN_DMAIER_PUBDONE;
826                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
827
828                 dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
829         }
830
831         /* Enable RNG engine. */
832
833         hifn_write_1(dev, HIFN_1_RNG_CONFIG,
834                         hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
835         dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
836
837 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
838         /* First value must be discarded */
839         hifn_read_1(dev, HIFN_1_RNG_DATA);
840         dev->rngtime = ktime_get();
841 #endif
842         return 0;
843 }
844
845 static int hifn_enable_crypto(struct hifn_device *dev)
846 {
847         u32 dmacfg, addr;
848         char *offtbl = NULL;
849         int i;
850
851         for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
852                 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
853                                 pci2id[i].pci_prod == dev->pdev->device) {
854                         offtbl = pci2id[i].card_id;
855                         break;
856                 }
857         }
858
859         if (!offtbl) {
860                 dev_err(&dev->pdev->dev, "Unknown card!\n");
861                 return -ENODEV;
862         }
863
864         dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
865
866         hifn_write_1(dev, HIFN_1_DMA_CNFG,
867                         HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
868                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
869         mdelay(1);
870         addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
871         mdelay(1);
872         hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
873         mdelay(1);
874
875         for (i = 0; i < 12; ++i) {
876                 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
877                 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
878
879                 mdelay(1);
880         }
881         hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
882
883         dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
884
885         return 0;
886 }
887
888 static void hifn_init_dma(struct hifn_device *dev)
889 {
890         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
891         u32 dptr = dev->desc_dma;
892         int i;
893
894         for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
895                 dma->cmdr[i].p = __cpu_to_le32(dptr +
896                                 offsetof(struct hifn_dma, command_bufs[i][0]));
897         for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
898                 dma->resr[i].p = __cpu_to_le32(dptr +
899                                 offsetof(struct hifn_dma, result_bufs[i][0]));
900
901         /* Setup LAST descriptors. */
902         dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
903                         offsetof(struct hifn_dma, cmdr[0]));
904         dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
905                         offsetof(struct hifn_dma, srcr[0]));
906         dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
907                         offsetof(struct hifn_dma, dstr[0]));
908         dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
909                         offsetof(struct hifn_dma, resr[0]));
910
911         dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
912         dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
913         dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
914 }
915
916 /*
917  * Initialize the PLL. We need to know the frequency of the reference clock
918  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
919  * allows us to operate without the risk of overclocking the chip. If it
920  * actually uses 33MHz, the chip will operate at half the speed, this can be
921  * overridden by specifying the frequency as module parameter (pci33).
922  *
923  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
924  * stable clock and the PCI clock frequency may vary, so the default is the
925  * external clock. There is no way to find out its frequency, we default to
926  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
927  * has an external crystal populated at 66MHz.
928  */
929 static void hifn_init_pll(struct hifn_device *dev)
930 {
931         unsigned int freq, m;
932         u32 pllcfg;
933
934         pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
935
936         if (strncmp(hifn_pll_ref, "ext", 3) == 0)
937                 pllcfg |= HIFN_PLL_REF_CLK_PLL;
938         else
939                 pllcfg |= HIFN_PLL_REF_CLK_HBI;
940
941         if (hifn_pll_ref[3] != '\0')
942                 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
943         else {
944                 freq = 66;
945                 dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
946                          freq, hifn_pll_ref);
947         }
948
949         m = HIFN_PLL_FCK_MAX / freq;
950
951         pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
952         if (m <= 8)
953                 pllcfg |= HIFN_PLL_IS_1_8;
954         else
955                 pllcfg |= HIFN_PLL_IS_9_12;
956
957         /* Select clock source and enable clock bypass */
958         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
959                      HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
960
961         /* Let the chip lock to the input clock */
962         mdelay(10);
963
964         /* Disable clock bypass */
965         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
966                      HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
967
968         /* Switch the engines to the PLL */
969         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
970                      HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
971
972         /*
973          * The Fpk_clk runs at half the total speed. Its frequency is needed to
974          * calculate the minimum time between two reads of the rng. Since 33MHz
975          * is actually 33.333... we overestimate the frequency here, resulting
976          * in slightly larger intervals.
977          */
978         dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
979 }
980
981 static void hifn_init_registers(struct hifn_device *dev)
982 {
983         u32 dptr = dev->desc_dma;
984
985         /* Initialization magic... */
986         hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
987         hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
988         hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
989
990         /* write all 4 ring address registers */
991         hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
992                                 offsetof(struct hifn_dma, cmdr[0]));
993         hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
994                                 offsetof(struct hifn_dma, srcr[0]));
995         hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
996                                 offsetof(struct hifn_dma, dstr[0]));
997         hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
998                                 offsetof(struct hifn_dma, resr[0]));
999
1000         mdelay(2);
1001 #if 0
1002         hifn_write_1(dev, HIFN_1_DMA_CSR,
1003             HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1004             HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1005             HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1006             HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1007             HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1008             HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1009             HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1010             HIFN_DMACSR_S_WAIT |
1011             HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1012             HIFN_DMACSR_C_WAIT |
1013             HIFN_DMACSR_ENGINE |
1014             HIFN_DMACSR_PUBDONE);
1015 #else
1016         hifn_write_1(dev, HIFN_1_DMA_CSR,
1017             HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1018             HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1019             HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1020             HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1021             HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1022             HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1023             HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1024             HIFN_DMACSR_S_WAIT |
1025             HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1026             HIFN_DMACSR_C_WAIT |
1027             HIFN_DMACSR_ENGINE |
1028             HIFN_DMACSR_PUBDONE);
1029 #endif
1030         hifn_read_1(dev, HIFN_1_DMA_CSR);
1031
1032         dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1033             HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1034             HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1035             HIFN_DMAIER_ENGINE;
1036         dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1037
1038         hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1039         hifn_read_1(dev, HIFN_1_DMA_IER);
1040 #if 0
1041         hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1042                     HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1043                     HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1044                     HIFN_PUCNFG_DRAM);
1045 #else
1046         hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1047 #endif
1048         hifn_init_pll(dev);
1049
1050         hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1051         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1052             HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1053             ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1054             ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1055 }
1056
1057 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1058                 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1059 {
1060         struct hifn_base_command *base_cmd;
1061         u8 *buf_pos = buf;
1062
1063         base_cmd = (struct hifn_base_command *)buf_pos;
1064         base_cmd->masks = __cpu_to_le16(mask);
1065         base_cmd->total_source_count =
1066                 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1067         base_cmd->total_dest_count =
1068                 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1069
1070         dlen >>= 16;
1071         slen >>= 16;
1072         base_cmd->session_num = __cpu_to_le16(snum |
1073             ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1074             ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1075
1076         return sizeof(struct hifn_base_command);
1077 }
1078
1079 static int hifn_setup_crypto_command(struct hifn_device *dev,
1080                 u8 *buf, unsigned dlen, unsigned slen,
1081                 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1082 {
1083         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1084         struct hifn_crypt_command *cry_cmd;
1085         u8 *buf_pos = buf;
1086         u16 cmd_len;
1087
1088         cry_cmd = (struct hifn_crypt_command *)buf_pos;
1089
1090         cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1091         dlen >>= 16;
1092         cry_cmd->masks = __cpu_to_le16(mode |
1093                         ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1094                          HIFN_CRYPT_CMD_SRCLEN_M));
1095         cry_cmd->header_skip = 0;
1096         cry_cmd->reserved = 0;
1097
1098         buf_pos += sizeof(struct hifn_crypt_command);
1099
1100         dma->cmdu++;
1101         if (dma->cmdu > 1) {
1102                 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1103                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1104         }
1105
1106         if (keylen) {
1107                 memcpy(buf_pos, key, keylen);
1108                 buf_pos += keylen;
1109         }
1110         if (ivsize) {
1111                 memcpy(buf_pos, iv, ivsize);
1112                 buf_pos += ivsize;
1113         }
1114
1115         cmd_len = buf_pos - buf;
1116
1117         return cmd_len;
1118 }
1119
1120 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1121                 struct hifn_context *ctx, struct hifn_request_context *rctx,
1122                 void *priv, unsigned int nbytes)
1123 {
1124         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1125         int cmd_len, sa_idx;
1126         u8 *buf, *buf_pos;
1127         u16 mask;
1128
1129         sa_idx = dma->cmdi;
1130         buf_pos = buf = dma->command_bufs[dma->cmdi];
1131
1132         mask = 0;
1133         switch (rctx->op) {
1134         case ACRYPTO_OP_DECRYPT:
1135                 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1136                 break;
1137         case ACRYPTO_OP_ENCRYPT:
1138                 mask = HIFN_BASE_CMD_CRYPT;
1139                 break;
1140         case ACRYPTO_OP_HMAC:
1141                 mask = HIFN_BASE_CMD_MAC;
1142                 break;
1143         default:
1144                 goto err_out;
1145         }
1146
1147         buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1148                         nbytes, mask, dev->snum);
1149
1150         if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1151                 u16 md = 0;
1152
1153                 if (ctx->keysize)
1154                         md |= HIFN_CRYPT_CMD_NEW_KEY;
1155                 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1156                         md |= HIFN_CRYPT_CMD_NEW_IV;
1157
1158                 switch (rctx->mode) {
1159                 case ACRYPTO_MODE_ECB:
1160                         md |= HIFN_CRYPT_CMD_MODE_ECB;
1161                         break;
1162                 case ACRYPTO_MODE_CBC:
1163                         md |= HIFN_CRYPT_CMD_MODE_CBC;
1164                         break;
1165                 case ACRYPTO_MODE_CFB:
1166                         md |= HIFN_CRYPT_CMD_MODE_CFB;
1167                         break;
1168                 case ACRYPTO_MODE_OFB:
1169                         md |= HIFN_CRYPT_CMD_MODE_OFB;
1170                         break;
1171                 default:
1172                         goto err_out;
1173                 }
1174
1175                 switch (rctx->type) {
1176                 case ACRYPTO_TYPE_AES_128:
1177                         if (ctx->keysize != 16)
1178                                 goto err_out;
1179                         md |= HIFN_CRYPT_CMD_KSZ_128 |
1180                                 HIFN_CRYPT_CMD_ALG_AES;
1181                         break;
1182                 case ACRYPTO_TYPE_AES_192:
1183                         if (ctx->keysize != 24)
1184                                 goto err_out;
1185                         md |= HIFN_CRYPT_CMD_KSZ_192 |
1186                                 HIFN_CRYPT_CMD_ALG_AES;
1187                         break;
1188                 case ACRYPTO_TYPE_AES_256:
1189                         if (ctx->keysize != 32)
1190                                 goto err_out;
1191                         md |= HIFN_CRYPT_CMD_KSZ_256 |
1192                                 HIFN_CRYPT_CMD_ALG_AES;
1193                         break;
1194                 case ACRYPTO_TYPE_3DES:
1195                         if (ctx->keysize != 24)
1196                                 goto err_out;
1197                         md |= HIFN_CRYPT_CMD_ALG_3DES;
1198                         break;
1199                 case ACRYPTO_TYPE_DES:
1200                         if (ctx->keysize != 8)
1201                                 goto err_out;
1202                         md |= HIFN_CRYPT_CMD_ALG_DES;
1203                         break;
1204                 default:
1205                         goto err_out;
1206                 }
1207
1208                 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1209                                 nbytes, nbytes, ctx->key, ctx->keysize,
1210                                 rctx->iv, rctx->ivsize, md);
1211         }
1212
1213         dev->sa[sa_idx] = priv;
1214         dev->started++;
1215
1216         cmd_len = buf_pos - buf;
1217         dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1218                         HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1219
1220         if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1221                 dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1222                         HIFN_D_VALID | HIFN_D_LAST |
1223                         HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1224                 dma->cmdi = 0;
1225         } else {
1226                 dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1227         }
1228
1229         if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1230                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1231                 dev->flags |= HIFN_FLAG_CMD_BUSY;
1232         }
1233         return 0;
1234
1235 err_out:
1236         return -EINVAL;
1237 }
1238
1239 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1240                 unsigned int offset, unsigned int size, int last)
1241 {
1242         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1243         int idx;
1244         dma_addr_t addr;
1245
1246         addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1247
1248         idx = dma->srci;
1249
1250         dma->srcr[idx].p = __cpu_to_le32(addr);
1251         dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1252                         HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1253
1254         if (++idx == HIFN_D_SRC_RSIZE) {
1255                 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1256                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1257                                 (last ? HIFN_D_LAST : 0));
1258                 idx = 0;
1259         }
1260
1261         dma->srci = idx;
1262         dma->srcu++;
1263
1264         if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1265                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1266                 dev->flags |= HIFN_FLAG_SRC_BUSY;
1267         }
1268
1269         return size;
1270 }
1271
1272 static void hifn_setup_res_desc(struct hifn_device *dev)
1273 {
1274         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1275
1276         dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1277                         HIFN_D_VALID | HIFN_D_LAST);
1278         /*
1279          * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1280          *                                      HIFN_D_LAST);
1281          */
1282
1283         if (++dma->resi == HIFN_D_RES_RSIZE) {
1284                 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1285                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1286                 dma->resi = 0;
1287         }
1288
1289         dma->resu++;
1290
1291         if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1292                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1293                 dev->flags |= HIFN_FLAG_RES_BUSY;
1294         }
1295 }
1296
1297 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1298                 unsigned offset, unsigned size, int last)
1299 {
1300         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1301         int idx;
1302         dma_addr_t addr;
1303
1304         addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1305
1306         idx = dma->dsti;
1307         dma->dstr[idx].p = __cpu_to_le32(addr);
1308         dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1309                         HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1310
1311         if (++idx == HIFN_D_DST_RSIZE) {
1312                 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1313                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1314                                 (last ? HIFN_D_LAST : 0));
1315                 idx = 0;
1316         }
1317         dma->dsti = idx;
1318         dma->dstu++;
1319
1320         if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1321                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1322                 dev->flags |= HIFN_FLAG_DST_BUSY;
1323         }
1324 }
1325
1326 static int hifn_setup_dma(struct hifn_device *dev,
1327                 struct hifn_context *ctx, struct hifn_request_context *rctx,
1328                 struct scatterlist *src, struct scatterlist *dst,
1329                 unsigned int nbytes, void *priv)
1330 {
1331         struct scatterlist *t;
1332         struct page *spage, *dpage;
1333         unsigned int soff, doff;
1334         unsigned int n, len;
1335
1336         n = nbytes;
1337         while (n) {
1338                 spage = sg_page(src);
1339                 soff = src->offset;
1340                 len = min(src->length, n);
1341
1342                 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1343
1344                 src++;
1345                 n -= len;
1346         }
1347
1348         t = &rctx->walk.cache[0];
1349         n = nbytes;
1350         while (n) {
1351                 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1352                         BUG_ON(!sg_page(t));
1353                         dpage = sg_page(t);
1354                         doff = 0;
1355                         len = t->length;
1356                 } else {
1357                         BUG_ON(!sg_page(dst));
1358                         dpage = sg_page(dst);
1359                         doff = dst->offset;
1360                         len = dst->length;
1361                 }
1362                 len = min(len, n);
1363
1364                 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1365
1366                 dst++;
1367                 t++;
1368                 n -= len;
1369         }
1370
1371         hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1372         hifn_setup_res_desc(dev);
1373         return 0;
1374 }
1375
1376 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1377                 int num, gfp_t gfp_flags)
1378 {
1379         int i;
1380
1381         num = min(ASYNC_SCATTERLIST_CACHE, num);
1382         sg_init_table(w->cache, num);
1383
1384         w->num = 0;
1385         for (i = 0; i < num; ++i) {
1386                 struct page *page = alloc_page(gfp_flags);
1387                 struct scatterlist *s;
1388
1389                 if (!page)
1390                         break;
1391
1392                 s = &w->cache[i];
1393
1394                 sg_set_page(s, page, PAGE_SIZE, 0);
1395                 w->num++;
1396         }
1397
1398         return i;
1399 }
1400
1401 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1402 {
1403         int i;
1404
1405         for (i = 0; i < w->num; ++i) {
1406                 struct scatterlist *s = &w->cache[i];
1407
1408                 __free_page(sg_page(s));
1409
1410                 s->length = 0;
1411         }
1412
1413         w->num = 0;
1414 }
1415
1416 static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1417                 unsigned int size, unsigned int *nbytesp)
1418 {
1419         unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1420         int idx = 0;
1421
1422         if (drest < size || size > nbytes)
1423                 return -EINVAL;
1424
1425         while (size) {
1426                 copy = min3(drest, size, dst->length);
1427
1428                 size -= copy;
1429                 drest -= copy;
1430                 nbytes -= copy;
1431
1432                 pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1433                          __func__, copy, size, drest, nbytes);
1434
1435                 dst++;
1436                 idx++;
1437         }
1438
1439         *nbytesp = nbytes;
1440         *drestp = drest;
1441
1442         return idx;
1443 }
1444
1445 static int hifn_cipher_walk(struct ablkcipher_request *req,
1446                 struct hifn_cipher_walk *w)
1447 {
1448         struct scatterlist *dst, *t;
1449         unsigned int nbytes = req->nbytes, offset, copy, diff;
1450         int idx, tidx, err;
1451
1452         tidx = idx = 0;
1453         offset = 0;
1454         while (nbytes) {
1455                 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1456                         return -EINVAL;
1457
1458                 dst = &req->dst[idx];
1459
1460                 pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1461                          __func__, dst->length, dst->offset, offset, nbytes);
1462
1463                 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1464                     !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1465                     offset) {
1466                         unsigned slen = min(dst->length - offset, nbytes);
1467                         unsigned dlen = PAGE_SIZE;
1468
1469                         t = &w->cache[idx];
1470
1471                         err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1472                         if (err < 0)
1473                                 return err;
1474
1475                         idx += err;
1476
1477                         copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1478                         diff = slen & (HIFN_D_DST_DALIGN - 1);
1479
1480                         if (dlen < nbytes) {
1481                                 /*
1482                                  * Destination page does not have enough space
1483                                  * to put there additional blocksized chunk,
1484                                  * so we mark that page as containing only
1485                                  * blocksize aligned chunks:
1486                                  *      t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1487                                  * and increase number of bytes to be processed
1488                                  * in next chunk:
1489                                  *      nbytes += diff;
1490                                  */
1491                                 nbytes += diff;
1492
1493                                 /*
1494                                  * Temporary of course...
1495                                  * Kick author if you will catch this one.
1496                                  */
1497                                 pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1498                                        __func__, dlen, nbytes, slen, offset);
1499                                 pr_err("%s: please contact author to fix this "
1500                                        "issue, generally you should not catch "
1501                                        "this path under any condition but who "
1502                                        "knows how did you use crypto code.\n"
1503                                        "Thank you.\n",  __func__);
1504                                 BUG();
1505                         } else {
1506                                 copy += diff + nbytes;
1507
1508                                 dst = &req->dst[idx];
1509
1510                                 err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1511                                 if (err < 0)
1512                                         return err;
1513
1514                                 idx += err;
1515                         }
1516
1517                         t->length = copy;
1518                         t->offset = offset;
1519                 } else {
1520                         nbytes -= min(dst->length, nbytes);
1521                         idx++;
1522                 }
1523
1524                 tidx++;
1525         }
1526
1527         return tidx;
1528 }
1529
1530 static int hifn_setup_session(struct ablkcipher_request *req)
1531 {
1532         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1533         struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1534         struct hifn_device *dev = ctx->dev;
1535         unsigned long dlen, flags;
1536         unsigned int nbytes = req->nbytes, idx = 0;
1537         int err = -EINVAL, sg_num;
1538         struct scatterlist *dst;
1539
1540         if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1541                 goto err_out_exit;
1542
1543         rctx->walk.flags = 0;
1544
1545         while (nbytes) {
1546                 dst = &req->dst[idx];
1547                 dlen = min(dst->length, nbytes);
1548
1549                 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1550                     !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1551                         rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1552
1553                 nbytes -= dlen;
1554                 idx++;
1555         }
1556
1557         if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1558                 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1559                 if (err < 0)
1560                         return err;
1561         }
1562
1563         sg_num = hifn_cipher_walk(req, &rctx->walk);
1564         if (sg_num < 0) {
1565                 err = sg_num;
1566                 goto err_out_exit;
1567         }
1568
1569         spin_lock_irqsave(&dev->lock, flags);
1570         if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1571                 err = -EAGAIN;
1572                 goto err_out;
1573         }
1574
1575         err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1576         if (err)
1577                 goto err_out;
1578
1579         dev->snum++;
1580
1581         dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1582         spin_unlock_irqrestore(&dev->lock, flags);
1583
1584         return 0;
1585
1586 err_out:
1587         spin_unlock_irqrestore(&dev->lock, flags);
1588 err_out_exit:
1589         if (err) {
1590                 dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1591                          "type: %u, err: %d.\n",
1592                          rctx->iv, rctx->ivsize,
1593                          ctx->key, ctx->keysize,
1594                          rctx->mode, rctx->op, rctx->type, err);
1595         }
1596
1597         return err;
1598 }
1599
1600 static int hifn_start_device(struct hifn_device *dev)
1601 {
1602         int err;
1603
1604         dev->started = dev->active = 0;
1605         hifn_reset_dma(dev, 1);
1606
1607         err = hifn_enable_crypto(dev);
1608         if (err)
1609                 return err;
1610
1611         hifn_reset_puc(dev);
1612
1613         hifn_init_dma(dev);
1614
1615         hifn_init_registers(dev);
1616
1617         hifn_init_pubrng(dev);
1618
1619         return 0;
1620 }
1621
1622 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1623                 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1624 {
1625         unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1626         void *daddr;
1627         int idx = 0;
1628
1629         if (srest < size || size > nbytes)
1630                 return -EINVAL;
1631
1632         while (size) {
1633                 copy = min3(srest, dst->length, size);
1634
1635                 daddr = kmap_atomic(sg_page(dst));
1636                 memcpy(daddr + dst->offset + offset, saddr, copy);
1637                 kunmap_atomic(daddr);
1638
1639                 nbytes -= copy;
1640                 size -= copy;
1641                 srest -= copy;
1642                 saddr += copy;
1643                 offset = 0;
1644
1645                 pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1646                          __func__, copy, size, srest, nbytes);
1647
1648                 dst++;
1649                 idx++;
1650         }
1651
1652         *nbytesp = nbytes;
1653         *srestp = srest;
1654
1655         return idx;
1656 }
1657
1658 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1659 {
1660         unsigned long flags;
1661
1662         spin_lock_irqsave(&dev->lock, flags);
1663         dev->sa[i] = NULL;
1664         dev->started--;
1665         if (dev->started < 0)
1666                 dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1667                          dev->started);
1668         spin_unlock_irqrestore(&dev->lock, flags);
1669         BUG_ON(dev->started < 0);
1670 }
1671
1672 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1673 {
1674         struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1675
1676         if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1677                 unsigned int nbytes = req->nbytes;
1678                 int idx = 0, err;
1679                 struct scatterlist *dst, *t;
1680                 void *saddr;
1681
1682                 while (nbytes) {
1683                         t = &rctx->walk.cache[idx];
1684                         dst = &req->dst[idx];
1685
1686                         pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1687                                 "sg_page(dst): %p, dst->length: %u, "
1688                                 "nbytes: %u.\n",
1689                                 __func__, sg_page(t), t->length,
1690                                 sg_page(dst), dst->length, nbytes);
1691
1692                         if (!t->length) {
1693                                 nbytes -= min(dst->length, nbytes);
1694                                 idx++;
1695                                 continue;
1696                         }
1697
1698                         saddr = kmap_atomic(sg_page(t));
1699
1700                         err = ablkcipher_get(saddr, &t->length, t->offset,
1701                                         dst, nbytes, &nbytes);
1702                         if (err < 0) {
1703                                 kunmap_atomic(saddr);
1704                                 break;
1705                         }
1706
1707                         idx += err;
1708                         kunmap_atomic(saddr);
1709                 }
1710
1711                 hifn_cipher_walk_exit(&rctx->walk);
1712         }
1713
1714         req->base.complete(&req->base, error);
1715 }
1716
1717 static void hifn_clear_rings(struct hifn_device *dev, int error)
1718 {
1719         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1720         int i, u;
1721
1722         dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1723                         "k: %d.%d.%d.%d.\n",
1724                         dma->cmdi, dma->srci, dma->dsti, dma->resi,
1725                         dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1726                         dma->cmdk, dma->srck, dma->dstk, dma->resk);
1727
1728         i = dma->resk; u = dma->resu;
1729         while (u != 0) {
1730                 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1731                         break;
1732
1733                 if (dev->sa[i]) {
1734                         dev->success++;
1735                         dev->reset = 0;
1736                         hifn_process_ready(dev->sa[i], error);
1737                         hifn_complete_sa(dev, i);
1738                 }
1739
1740                 if (++i == HIFN_D_RES_RSIZE)
1741                         i = 0;
1742                 u--;
1743         }
1744         dma->resk = i; dma->resu = u;
1745
1746         i = dma->srck; u = dma->srcu;
1747         while (u != 0) {
1748                 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1749                         break;
1750                 if (++i == HIFN_D_SRC_RSIZE)
1751                         i = 0;
1752                 u--;
1753         }
1754         dma->srck = i; dma->srcu = u;
1755
1756         i = dma->cmdk; u = dma->cmdu;
1757         while (u != 0) {
1758                 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1759                         break;
1760                 if (++i == HIFN_D_CMD_RSIZE)
1761                         i = 0;
1762                 u--;
1763         }
1764         dma->cmdk = i; dma->cmdu = u;
1765
1766         i = dma->dstk; u = dma->dstu;
1767         while (u != 0) {
1768                 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1769                         break;
1770                 if (++i == HIFN_D_DST_RSIZE)
1771                         i = 0;
1772                 u--;
1773         }
1774         dma->dstk = i; dma->dstu = u;
1775
1776         dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1777                         "k: %d.%d.%d.%d.\n",
1778                         dma->cmdi, dma->srci, dma->dsti, dma->resi,
1779                         dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1780                         dma->cmdk, dma->srck, dma->dstk, dma->resk);
1781 }
1782
1783 static void hifn_work(struct work_struct *work)
1784 {
1785         struct delayed_work *dw = to_delayed_work(work);
1786         struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1787         unsigned long flags;
1788         int reset = 0;
1789         u32 r = 0;
1790
1791         spin_lock_irqsave(&dev->lock, flags);
1792         if (dev->active == 0) {
1793                 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1794
1795                 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1796                         dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1797                         r |= HIFN_DMACSR_C_CTRL_DIS;
1798                 }
1799                 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1800                         dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1801                         r |= HIFN_DMACSR_S_CTRL_DIS;
1802                 }
1803                 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1804                         dev->flags &= ~HIFN_FLAG_DST_BUSY;
1805                         r |= HIFN_DMACSR_D_CTRL_DIS;
1806                 }
1807                 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1808                         dev->flags &= ~HIFN_FLAG_RES_BUSY;
1809                         r |= HIFN_DMACSR_R_CTRL_DIS;
1810                 }
1811                 if (r)
1812                         hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1813         } else
1814                 dev->active--;
1815
1816         if ((dev->prev_success == dev->success) && dev->started)
1817                 reset = 1;
1818         dev->prev_success = dev->success;
1819         spin_unlock_irqrestore(&dev->lock, flags);
1820
1821         if (reset) {
1822                 if (++dev->reset >= 5) {
1823                         int i;
1824                         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1825
1826                         dev_info(&dev->pdev->dev,
1827                                  "r: %08x, active: %d, started: %d, "
1828                                  "success: %lu: qlen: %u/%u, reset: %d.\n",
1829                                  r, dev->active, dev->started,
1830                                  dev->success, dev->queue.qlen, dev->queue.max_qlen,
1831                                  reset);
1832
1833                         dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1834                         for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1835                                 pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1836                                 if (dev->sa[i]) {
1837                                         hifn_process_ready(dev->sa[i], -ENODEV);
1838                                         hifn_complete_sa(dev, i);
1839                                 }
1840                         }
1841                         pr_info("\n");
1842
1843                         hifn_reset_dma(dev, 1);
1844                         hifn_stop_device(dev);
1845                         hifn_start_device(dev);
1846                         dev->reset = 0;
1847                 }
1848
1849                 tasklet_schedule(&dev->tasklet);
1850         }
1851
1852         schedule_delayed_work(&dev->work, HZ);
1853 }
1854
1855 static irqreturn_t hifn_interrupt(int irq, void *data)
1856 {
1857         struct hifn_device *dev = (struct hifn_device *)data;
1858         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1859         u32 dmacsr, restart;
1860
1861         dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1862
1863         dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1864                         "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1865                 dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1866                 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1867                 dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1868
1869         if ((dmacsr & dev->dmareg) == 0)
1870                 return IRQ_NONE;
1871
1872         hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1873
1874         if (dmacsr & HIFN_DMACSR_ENGINE)
1875                 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1876         if (dmacsr & HIFN_DMACSR_PUBDONE)
1877                 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1878                         hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1879
1880         restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1881         if (restart) {
1882                 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1883
1884                 dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1885                          !!(dmacsr & HIFN_DMACSR_R_OVER),
1886                          !!(dmacsr & HIFN_DMACSR_D_OVER),
1887                         puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1888                 if (!!(puisr & HIFN_PUISR_DSTOVER))
1889                         hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1890                 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1891                                         HIFN_DMACSR_D_OVER));
1892         }
1893
1894         restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1895                         HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1896         if (restart) {
1897                 dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1898                          !!(dmacsr & HIFN_DMACSR_C_ABORT),
1899                          !!(dmacsr & HIFN_DMACSR_S_ABORT),
1900                          !!(dmacsr & HIFN_DMACSR_D_ABORT),
1901                          !!(dmacsr & HIFN_DMACSR_R_ABORT));
1902                 hifn_reset_dma(dev, 1);
1903                 hifn_init_dma(dev);
1904                 hifn_init_registers(dev);
1905         }
1906
1907         if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1908                 dev_dbg(&dev->pdev->dev, "wait on command.\n");
1909                 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1910                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1911         }
1912
1913         tasklet_schedule(&dev->tasklet);
1914
1915         return IRQ_HANDLED;
1916 }
1917
1918 static void hifn_flush(struct hifn_device *dev)
1919 {
1920         unsigned long flags;
1921         struct crypto_async_request *async_req;
1922         struct ablkcipher_request *req;
1923         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1924         int i;
1925
1926         for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1927                 struct hifn_desc *d = &dma->resr[i];
1928
1929                 if (dev->sa[i]) {
1930                         hifn_process_ready(dev->sa[i],
1931                                 (d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1932                         hifn_complete_sa(dev, i);
1933                 }
1934         }
1935
1936         spin_lock_irqsave(&dev->lock, flags);
1937         while ((async_req = crypto_dequeue_request(&dev->queue))) {
1938                 req = ablkcipher_request_cast(async_req);
1939                 spin_unlock_irqrestore(&dev->lock, flags);
1940
1941                 hifn_process_ready(req, -ENODEV);
1942
1943                 spin_lock_irqsave(&dev->lock, flags);
1944         }
1945         spin_unlock_irqrestore(&dev->lock, flags);
1946 }
1947
1948 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1949                 unsigned int len)
1950 {
1951         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1952         struct hifn_context *ctx = crypto_tfm_ctx(tfm);
1953         struct hifn_device *dev = ctx->dev;
1954
1955         if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
1956                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1957                 return -1;
1958         }
1959
1960         if (len == HIFN_DES_KEY_LENGTH) {
1961                 u32 tmp[DES_EXPKEY_WORDS];
1962                 int ret = des_ekey(tmp, key);
1963
1964                 if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
1965                         tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
1966                         return -EINVAL;
1967                 }
1968         }
1969
1970         dev->flags &= ~HIFN_FLAG_OLD_KEY;
1971
1972         memcpy(ctx->key, key, len);
1973         ctx->keysize = len;
1974
1975         return 0;
1976 }
1977
1978 static int hifn_handle_req(struct ablkcipher_request *req)
1979 {
1980         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1981         struct hifn_device *dev = ctx->dev;
1982         int err = -EAGAIN;
1983
1984         if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1985                 err = hifn_setup_session(req);
1986
1987         if (err == -EAGAIN) {
1988                 unsigned long flags;
1989
1990                 spin_lock_irqsave(&dev->lock, flags);
1991                 err = ablkcipher_enqueue_request(&dev->queue, req);
1992                 spin_unlock_irqrestore(&dev->lock, flags);
1993         }
1994
1995         return err;
1996 }
1997
1998 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
1999                 u8 type, u8 mode)
2000 {
2001         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2002         struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2003         unsigned ivsize;
2004
2005         ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2006
2007         if (req->info && mode != ACRYPTO_MODE_ECB) {
2008                 if (type == ACRYPTO_TYPE_AES_128)
2009                         ivsize = HIFN_AES_IV_LENGTH;
2010                 else if (type == ACRYPTO_TYPE_DES)
2011                         ivsize = HIFN_DES_KEY_LENGTH;
2012                 else if (type == ACRYPTO_TYPE_3DES)
2013                         ivsize = HIFN_3DES_KEY_LENGTH;
2014         }
2015
2016         if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2017                 if (ctx->keysize == 24)
2018                         type = ACRYPTO_TYPE_AES_192;
2019                 else if (ctx->keysize == 32)
2020                         type = ACRYPTO_TYPE_AES_256;
2021         }
2022
2023         rctx->op = op;
2024         rctx->mode = mode;
2025         rctx->type = type;
2026         rctx->iv = req->info;
2027         rctx->ivsize = ivsize;
2028
2029         /*
2030          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2031          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2032          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2033          */
2034
2035         return hifn_handle_req(req);
2036 }
2037
2038 static int hifn_process_queue(struct hifn_device *dev)
2039 {
2040         struct crypto_async_request *async_req, *backlog;
2041         struct ablkcipher_request *req;
2042         unsigned long flags;
2043         int err = 0;
2044
2045         while (dev->started < HIFN_QUEUE_LENGTH) {
2046                 spin_lock_irqsave(&dev->lock, flags);
2047                 backlog = crypto_get_backlog(&dev->queue);
2048                 async_req = crypto_dequeue_request(&dev->queue);
2049                 spin_unlock_irqrestore(&dev->lock, flags);
2050
2051                 if (!async_req)
2052                         break;
2053
2054                 if (backlog)
2055                         backlog->complete(backlog, -EINPROGRESS);
2056
2057                 req = ablkcipher_request_cast(async_req);
2058
2059                 err = hifn_handle_req(req);
2060                 if (err)
2061                         break;
2062         }
2063
2064         return err;
2065 }
2066
2067 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2068                 u8 type, u8 mode)
2069 {
2070         int err;
2071         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2072         struct hifn_device *dev = ctx->dev;
2073
2074         err = hifn_setup_crypto_req(req, op, type, mode);
2075         if (err)
2076                 return err;
2077
2078         if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2079                 hifn_process_queue(dev);
2080
2081         return -EINPROGRESS;
2082 }
2083
2084 /*
2085  * AES ecryption functions.
2086  */
2087 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2088 {
2089         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2090                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2091 }
2092 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2093 {
2094         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2095                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2096 }
2097 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2098 {
2099         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2100                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2101 }
2102 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2103 {
2104         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2105                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2106 }
2107
2108 /*
2109  * AES decryption functions.
2110  */
2111 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2112 {
2113         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2114                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2115 }
2116 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2117 {
2118         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2119                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2120 }
2121 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2122 {
2123         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2124                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2125 }
2126 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2127 {
2128         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2129                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2130 }
2131
2132 /*
2133  * DES ecryption functions.
2134  */
2135 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2136 {
2137         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2138                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2139 }
2140 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2141 {
2142         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2143                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2144 }
2145 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2146 {
2147         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2148                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2149 }
2150 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2151 {
2152         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2153                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2154 }
2155
2156 /*
2157  * DES decryption functions.
2158  */
2159 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2160 {
2161         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2162                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2163 }
2164 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2165 {
2166         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2167                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2168 }
2169 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2170 {
2171         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2172                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2173 }
2174 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2175 {
2176         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2177                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2178 }
2179
2180 /*
2181  * 3DES ecryption functions.
2182  */
2183 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2184 {
2185         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2186                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2187 }
2188 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2189 {
2190         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2191                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2192 }
2193 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2194 {
2195         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2196                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2197 }
2198 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2199 {
2200         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2201                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2202 }
2203
2204 /* 3DES decryption functions. */
2205 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2206 {
2207         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2208                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2209 }
2210 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2211 {
2212         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2213                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2214 }
2215 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2216 {
2217         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2218                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2219 }
2220 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2221 {
2222         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2223                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2224 }
2225
2226 struct hifn_alg_template {
2227         char name[CRYPTO_MAX_ALG_NAME];
2228         char drv_name[CRYPTO_MAX_ALG_NAME];
2229         unsigned int bsize;
2230         struct ablkcipher_alg ablkcipher;
2231 };
2232
2233 static struct hifn_alg_template hifn_alg_templates[] = {
2234         /*
2235          * 3DES ECB, CBC, CFB and OFB modes.
2236          */
2237         {
2238                 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2239                 .ablkcipher = {
2240                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2241                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2242                         .setkey         =       hifn_setkey,
2243                         .encrypt        =       hifn_encrypt_3des_cfb,
2244                         .decrypt        =       hifn_decrypt_3des_cfb,
2245                 },
2246         },
2247         {
2248                 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2249                 .ablkcipher = {
2250                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2251                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2252                         .setkey         =       hifn_setkey,
2253                         .encrypt        =       hifn_encrypt_3des_ofb,
2254                         .decrypt        =       hifn_decrypt_3des_ofb,
2255                 },
2256         },
2257         {
2258                 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2259                 .ablkcipher = {
2260                         .ivsize         =       HIFN_IV_LENGTH,
2261                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2262                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2263                         .setkey         =       hifn_setkey,
2264                         .encrypt        =       hifn_encrypt_3des_cbc,
2265                         .decrypt        =       hifn_decrypt_3des_cbc,
2266                 },
2267         },
2268         {
2269                 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2270                 .ablkcipher = {
2271                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2272                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2273                         .setkey         =       hifn_setkey,
2274                         .encrypt        =       hifn_encrypt_3des_ecb,
2275                         .decrypt        =       hifn_decrypt_3des_ecb,
2276                 },
2277         },
2278
2279         /*
2280          * DES ECB, CBC, CFB and OFB modes.
2281          */
2282         {
2283                 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2284                 .ablkcipher = {
2285                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2286                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2287                         .setkey         =       hifn_setkey,
2288                         .encrypt        =       hifn_encrypt_des_cfb,
2289                         .decrypt        =       hifn_decrypt_des_cfb,
2290                 },
2291         },
2292         {
2293                 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2294                 .ablkcipher = {
2295                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2296                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2297                         .setkey         =       hifn_setkey,
2298                         .encrypt        =       hifn_encrypt_des_ofb,
2299                         .decrypt        =       hifn_decrypt_des_ofb,
2300                 },
2301         },
2302         {
2303                 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2304                 .ablkcipher = {
2305                         .ivsize         =       HIFN_IV_LENGTH,
2306                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2307                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2308                         .setkey         =       hifn_setkey,
2309                         .encrypt        =       hifn_encrypt_des_cbc,
2310                         .decrypt        =       hifn_decrypt_des_cbc,
2311                 },
2312         },
2313         {
2314                 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2315                 .ablkcipher = {
2316                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2317                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2318                         .setkey         =       hifn_setkey,
2319                         .encrypt        =       hifn_encrypt_des_ecb,
2320                         .decrypt        =       hifn_decrypt_des_ecb,
2321                 },
2322         },
2323
2324         /*
2325          * AES ECB, CBC, CFB and OFB modes.
2326          */
2327         {
2328                 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2329                 .ablkcipher = {
2330                         .min_keysize    =       AES_MIN_KEY_SIZE,
2331                         .max_keysize    =       AES_MAX_KEY_SIZE,
2332                         .setkey         =       hifn_setkey,
2333                         .encrypt        =       hifn_encrypt_aes_ecb,
2334                         .decrypt        =       hifn_decrypt_aes_ecb,
2335                 },
2336         },
2337         {
2338                 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2339                 .ablkcipher = {
2340                         .ivsize         =       HIFN_AES_IV_LENGTH,
2341                         .min_keysize    =       AES_MIN_KEY_SIZE,
2342                         .max_keysize    =       AES_MAX_KEY_SIZE,
2343                         .setkey         =       hifn_setkey,
2344                         .encrypt        =       hifn_encrypt_aes_cbc,
2345                         .decrypt        =       hifn_decrypt_aes_cbc,
2346                 },
2347         },
2348         {
2349                 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2350                 .ablkcipher = {
2351                         .min_keysize    =       AES_MIN_KEY_SIZE,
2352                         .max_keysize    =       AES_MAX_KEY_SIZE,
2353                         .setkey         =       hifn_setkey,
2354                         .encrypt        =       hifn_encrypt_aes_cfb,
2355                         .decrypt        =       hifn_decrypt_aes_cfb,
2356                 },
2357         },
2358         {
2359                 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2360                 .ablkcipher = {
2361                         .min_keysize    =       AES_MIN_KEY_SIZE,
2362                         .max_keysize    =       AES_MAX_KEY_SIZE,
2363                         .setkey         =       hifn_setkey,
2364                         .encrypt        =       hifn_encrypt_aes_ofb,
2365                         .decrypt        =       hifn_decrypt_aes_ofb,
2366                 },
2367         },
2368 };
2369
2370 static int hifn_cra_init(struct crypto_tfm *tfm)
2371 {
2372         struct crypto_alg *alg = tfm->__crt_alg;
2373         struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2374         struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2375
2376         ctx->dev = ha->dev;
2377         tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
2378         return 0;
2379 }
2380
2381 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2382 {
2383         struct hifn_crypto_alg *alg;
2384         int err;
2385
2386         alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2387         if (!alg)
2388                 return -ENOMEM;
2389
2390         snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2391         snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2392                  t->drv_name, dev->name);
2393
2394         alg->alg.cra_priority = 300;
2395         alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2396                                 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2397         alg->alg.cra_blocksize = t->bsize;
2398         alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2399         alg->alg.cra_alignmask = 0;
2400         alg->alg.cra_type = &crypto_ablkcipher_type;
2401         alg->alg.cra_module = THIS_MODULE;
2402         alg->alg.cra_u.ablkcipher = t->ablkcipher;
2403         alg->alg.cra_init = hifn_cra_init;
2404
2405         alg->dev = dev;
2406
2407         list_add_tail(&alg->entry, &dev->alg_list);
2408
2409         err = crypto_register_alg(&alg->alg);
2410         if (err) {
2411                 list_del(&alg->entry);
2412                 kfree(alg);
2413         }
2414
2415         return err;
2416 }
2417
2418 static void hifn_unregister_alg(struct hifn_device *dev)
2419 {
2420         struct hifn_crypto_alg *a, *n;
2421
2422         list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2423                 list_del(&a->entry);
2424                 crypto_unregister_alg(&a->alg);
2425                 kfree(a);
2426         }
2427 }
2428
2429 static int hifn_register_alg(struct hifn_device *dev)
2430 {
2431         int i, err;
2432
2433         for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2434                 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2435                 if (err)
2436                         goto err_out_exit;
2437         }
2438
2439         return 0;
2440
2441 err_out_exit:
2442         hifn_unregister_alg(dev);
2443         return err;
2444 }
2445
2446 static void hifn_tasklet_callback(unsigned long data)
2447 {
2448         struct hifn_device *dev = (struct hifn_device *)data;
2449
2450         /*
2451          * This is ok to call this without lock being held,
2452          * althogh it modifies some parameters used in parallel,
2453          * (like dev->success), but they are used in process
2454          * context or update is atomic (like setting dev->sa[i] to NULL).
2455          */
2456         hifn_clear_rings(dev, 0);
2457
2458         if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2459                 hifn_process_queue(dev);
2460 }
2461
2462 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2463 {
2464         int err, i;
2465         struct hifn_device *dev;
2466         char name[8];
2467
2468         err = pci_enable_device(pdev);
2469         if (err)
2470                 return err;
2471         pci_set_master(pdev);
2472
2473         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2474         if (err)
2475                 goto err_out_disable_pci_device;
2476
2477         snprintf(name, sizeof(name), "hifn%d",
2478                         atomic_inc_return(&hifn_dev_number) - 1);
2479
2480         err = pci_request_regions(pdev, name);
2481         if (err)
2482                 goto err_out_disable_pci_device;
2483
2484         if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2485             pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2486             pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2487                 dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2488                 err = -ENODEV;
2489                 goto err_out_free_regions;
2490         }
2491
2492         dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2493                         GFP_KERNEL);
2494         if (!dev) {
2495                 err = -ENOMEM;
2496                 goto err_out_free_regions;
2497         }
2498
2499         INIT_LIST_HEAD(&dev->alg_list);
2500
2501         snprintf(dev->name, sizeof(dev->name), "%s", name);
2502         spin_lock_init(&dev->lock);
2503
2504         for (i = 0; i < 3; ++i) {
2505                 unsigned long addr, size;
2506
2507                 addr = pci_resource_start(pdev, i);
2508                 size = pci_resource_len(pdev, i);
2509
2510                 dev->bar[i] = ioremap_nocache(addr, size);
2511                 if (!dev->bar[i]) {
2512                         err = -ENOMEM;
2513                         goto err_out_unmap_bars;
2514                 }
2515         }
2516
2517         dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma),
2518                                                &dev->desc_dma);
2519         if (!dev->desc_virt) {
2520                 dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2521                 err = -ENOMEM;
2522                 goto err_out_unmap_bars;
2523         }
2524
2525         dev->pdev = pdev;
2526         dev->irq = pdev->irq;
2527
2528         for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2529                 dev->sa[i] = NULL;
2530
2531         pci_set_drvdata(pdev, dev);
2532
2533         tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2534
2535         crypto_init_queue(&dev->queue, 1);
2536
2537         err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2538         if (err) {
2539                 dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2540                         dev->irq, err);
2541                 dev->irq = 0;
2542                 goto err_out_free_desc;
2543         }
2544
2545         err = hifn_start_device(dev);
2546         if (err)
2547                 goto err_out_free_irq;
2548
2549         err = hifn_register_rng(dev);
2550         if (err)
2551                 goto err_out_stop_device;
2552
2553         err = hifn_register_alg(dev);
2554         if (err)
2555                 goto err_out_unregister_rng;
2556
2557         INIT_DELAYED_WORK(&dev->work, hifn_work);
2558         schedule_delayed_work(&dev->work, HZ);
2559
2560         dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2561                 "successfully registered as %s.\n",
2562                 pci_name(pdev), dev->name);
2563
2564         return 0;
2565
2566 err_out_unregister_rng:
2567         hifn_unregister_rng(dev);
2568 err_out_stop_device:
2569         hifn_reset_dma(dev, 1);
2570         hifn_stop_device(dev);
2571 err_out_free_irq:
2572         free_irq(dev->irq, dev);
2573         tasklet_kill(&dev->tasklet);
2574 err_out_free_desc:
2575         pci_free_consistent(pdev, sizeof(struct hifn_dma),
2576                         dev->desc_virt, dev->desc_dma);
2577
2578 err_out_unmap_bars:
2579         for (i = 0; i < 3; ++i)
2580                 if (dev->bar[i])
2581                         iounmap(dev->bar[i]);
2582
2583 err_out_free_regions:
2584         pci_release_regions(pdev);
2585
2586 err_out_disable_pci_device:
2587         pci_disable_device(pdev);
2588
2589         return err;
2590 }
2591
2592 static void hifn_remove(struct pci_dev *pdev)
2593 {
2594         int i;
2595         struct hifn_device *dev;
2596
2597         dev = pci_get_drvdata(pdev);
2598
2599         if (dev) {
2600                 cancel_delayed_work_sync(&dev->work);
2601
2602                 hifn_unregister_rng(dev);
2603                 hifn_unregister_alg(dev);
2604                 hifn_reset_dma(dev, 1);
2605                 hifn_stop_device(dev);
2606
2607                 free_irq(dev->irq, dev);
2608                 tasklet_kill(&dev->tasklet);
2609
2610                 hifn_flush(dev);
2611
2612                 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2613                                 dev->desc_virt, dev->desc_dma);
2614                 for (i = 0; i < 3; ++i)
2615                         if (dev->bar[i])
2616                                 iounmap(dev->bar[i]);
2617
2618                 kfree(dev);
2619         }
2620
2621         pci_release_regions(pdev);
2622         pci_disable_device(pdev);
2623 }
2624
2625 static struct pci_device_id hifn_pci_tbl[] = {
2626         { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2627         { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2628         { 0 }
2629 };
2630 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2631
2632 static struct pci_driver hifn_pci_driver = {
2633         .name     = "hifn795x",
2634         .id_table = hifn_pci_tbl,
2635         .probe    = hifn_probe,
2636         .remove   = hifn_remove,
2637 };
2638
2639 static int __init hifn_init(void)
2640 {
2641         unsigned int freq;
2642         int err;
2643
2644         /* HIFN supports only 32-bit addresses */
2645         BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2646
2647         if (strncmp(hifn_pll_ref, "ext", 3) &&
2648             strncmp(hifn_pll_ref, "pci", 3)) {
2649                 pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2650                 return -EINVAL;
2651         }
2652
2653         /*
2654          * For the 7955/7956 the reference clock frequency must be in the
2655          * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2656          * but this chip is currently not supported.
2657          */
2658         if (hifn_pll_ref[3] != '\0') {
2659                 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2660                 if (freq < 20 || freq > 100) {
2661                         pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2662                                "be in the range of 20-100");
2663                         return -EINVAL;
2664                 }
2665         }
2666
2667         err = pci_register_driver(&hifn_pci_driver);
2668         if (err < 0) {
2669                 pr_err("Failed to register PCI driver for %s device.\n",
2670                        hifn_pci_driver.name);
2671                 return -ENODEV;
2672         }
2673
2674         pr_info("Driver for HIFN 795x crypto accelerator chip "
2675                 "has been successfully registered.\n");
2676
2677         return 0;
2678 }
2679
2680 static void __exit hifn_fini(void)
2681 {
2682         pci_unregister_driver(&hifn_pci_driver);
2683
2684         pr_info("Driver for HIFN 795x crypto accelerator chip "
2685                 "has been successfully unregistered.\n");
2686 }
2687
2688 module_init(hifn_init);
2689 module_exit(hifn_fini);
2690
2691 MODULE_LICENSE("GPL");
2692 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2693 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");