x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / drivers / crypto / ixp4xx_crypto.c
1 /*
2  * Intel IXP4xx NPE-C crypto driver
3  *
4  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  */
11
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
21 #include <linux/module.h>
22
23 #include <crypto/ctr.h>
24 #include <crypto/des.h>
25 #include <crypto/aes.h>
26 #include <crypto/sha.h>
27 #include <crypto/algapi.h>
28 #include <crypto/internal/aead.h>
29 #include <crypto/authenc.h>
30 #include <crypto/scatterwalk.h>
31
32 #include <mach/npe.h>
33 #include <mach/qmgr.h>
34
35 #define MAX_KEYLEN 32
36
37 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
38 #define NPE_CTX_LEN 80
39 #define AES_BLOCK128 16
40
41 #define NPE_OP_HASH_VERIFY   0x01
42 #define NPE_OP_CCM_ENABLE    0x04
43 #define NPE_OP_CRYPT_ENABLE  0x08
44 #define NPE_OP_HASH_ENABLE   0x10
45 #define NPE_OP_NOT_IN_PLACE  0x20
46 #define NPE_OP_HMAC_DISABLE  0x40
47 #define NPE_OP_CRYPT_ENCRYPT 0x80
48
49 #define NPE_OP_CCM_GEN_MIC   0xcc
50 #define NPE_OP_HASH_GEN_ICV  0x50
51 #define NPE_OP_ENC_GEN_KEY   0xc9
52
53 #define MOD_ECB     0x0000
54 #define MOD_CTR     0x1000
55 #define MOD_CBC_ENC 0x2000
56 #define MOD_CBC_DEC 0x3000
57 #define MOD_CCM_ENC 0x4000
58 #define MOD_CCM_DEC 0x5000
59
60 #define KEYLEN_128  4
61 #define KEYLEN_192  6
62 #define KEYLEN_256  8
63
64 #define CIPH_DECR   0x0000
65 #define CIPH_ENCR   0x0400
66
67 #define MOD_DES     0x0000
68 #define MOD_TDEA2   0x0100
69 #define MOD_3DES   0x0200
70 #define MOD_AES     0x0800
71 #define MOD_AES128  (0x0800 | KEYLEN_128)
72 #define MOD_AES192  (0x0900 | KEYLEN_192)
73 #define MOD_AES256  (0x0a00 | KEYLEN_256)
74
75 #define MAX_IVLEN   16
76 #define NPE_ID      2  /* NPE C */
77 #define NPE_QLEN    16
78 /* Space for registering when the first
79  * NPE_QLEN crypt_ctl are busy */
80 #define NPE_QLEN_TOTAL 64
81
82 #define SEND_QID    29
83 #define RECV_QID    30
84
85 #define CTL_FLAG_UNUSED         0x0000
86 #define CTL_FLAG_USED           0x1000
87 #define CTL_FLAG_PERFORM_ABLK   0x0001
88 #define CTL_FLAG_GEN_ICV        0x0002
89 #define CTL_FLAG_GEN_REVAES     0x0004
90 #define CTL_FLAG_PERFORM_AEAD   0x0008
91 #define CTL_FLAG_MASK           0x000f
92
93 #define HMAC_IPAD_VALUE   0x36
94 #define HMAC_OPAD_VALUE   0x5C
95 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
96
97 #define MD5_DIGEST_SIZE   16
98
99 struct buffer_desc {
100         u32 phys_next;
101 #ifdef __ARMEB__
102         u16 buf_len;
103         u16 pkt_len;
104 #else
105         u16 pkt_len;
106         u16 buf_len;
107 #endif
108         u32 phys_addr;
109         u32 __reserved[4];
110         struct buffer_desc *next;
111         enum dma_data_direction dir;
112 };
113
114 struct crypt_ctl {
115 #ifdef __ARMEB__
116         u8 mode;                /* NPE_OP_*  operation mode */
117         u8 init_len;
118         u16 reserved;
119 #else
120         u16 reserved;
121         u8 init_len;
122         u8 mode;                /* NPE_OP_*  operation mode */
123 #endif
124         u8 iv[MAX_IVLEN];       /* IV for CBC mode or CTR IV for CTR mode */
125         u32 icv_rev_aes;        /* icv or rev aes */
126         u32 src_buf;
127         u32 dst_buf;
128 #ifdef __ARMEB__
129         u16 auth_offs;          /* Authentication start offset */
130         u16 auth_len;           /* Authentication data length */
131         u16 crypt_offs;         /* Cryption start offset */
132         u16 crypt_len;          /* Cryption data length */
133 #else
134         u16 auth_len;           /* Authentication data length */
135         u16 auth_offs;          /* Authentication start offset */
136         u16 crypt_len;          /* Cryption data length */
137         u16 crypt_offs;         /* Cryption start offset */
138 #endif
139         u32 aadAddr;            /* Additional Auth Data Addr for CCM mode */
140         u32 crypto_ctx;         /* NPE Crypto Param structure address */
141
142         /* Used by Host: 4*4 bytes*/
143         unsigned ctl_flags;
144         union {
145                 struct ablkcipher_request *ablk_req;
146                 struct aead_request *aead_req;
147                 struct crypto_tfm *tfm;
148         } data;
149         struct buffer_desc *regist_buf;
150         u8 *regist_ptr;
151 };
152
153 struct ablk_ctx {
154         struct buffer_desc *src;
155         struct buffer_desc *dst;
156 };
157
158 struct aead_ctx {
159         struct buffer_desc *src;
160         struct buffer_desc *dst;
161         struct scatterlist ivlist;
162         /* used when the hmac is not on one sg entry */
163         u8 *hmac_virt;
164         int encrypt;
165 };
166
167 struct ix_hash_algo {
168         u32 cfgword;
169         unsigned char *icv;
170 };
171
172 struct ix_sa_dir {
173         unsigned char *npe_ctx;
174         dma_addr_t npe_ctx_phys;
175         int npe_ctx_idx;
176         u8 npe_mode;
177 };
178
179 struct ixp_ctx {
180         struct ix_sa_dir encrypt;
181         struct ix_sa_dir decrypt;
182         int authkey_len;
183         u8 authkey[MAX_KEYLEN];
184         int enckey_len;
185         u8 enckey[MAX_KEYLEN];
186         u8 salt[MAX_IVLEN];
187         u8 nonce[CTR_RFC3686_NONCE_SIZE];
188         unsigned salted;
189         atomic_t configuring;
190         struct completion completion;
191 };
192
193 struct ixp_alg {
194         struct crypto_alg crypto;
195         const struct ix_hash_algo *hash;
196         u32 cfg_enc;
197         u32 cfg_dec;
198
199         int registered;
200 };
201
202 struct ixp_aead_alg {
203         struct aead_alg crypto;
204         const struct ix_hash_algo *hash;
205         u32 cfg_enc;
206         u32 cfg_dec;
207
208         int registered;
209 };
210
211 static const struct ix_hash_algo hash_alg_md5 = {
212         .cfgword        = 0xAA010004,
213         .icv            = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
214                           "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
215 };
216 static const struct ix_hash_algo hash_alg_sha1 = {
217         .cfgword        = 0x00000005,
218         .icv            = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
219                           "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
220 };
221
222 static struct npe *npe_c;
223 static struct dma_pool *buffer_pool = NULL;
224 static struct dma_pool *ctx_pool = NULL;
225
226 static struct crypt_ctl *crypt_virt = NULL;
227 static dma_addr_t crypt_phys;
228
229 static int support_aes = 1;
230
231 #define DRIVER_NAME "ixp4xx_crypto"
232
233 static struct platform_device *pdev;
234
235 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
236 {
237         return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
238 }
239
240 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
241 {
242         return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
243 }
244
245 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
246 {
247         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
248 }
249
250 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
251 {
252         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
253 }
254
255 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
256 {
257         return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
258 }
259
260 static int setup_crypt_desc(void)
261 {
262         struct device *dev = &pdev->dev;
263         BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
264         crypt_virt = dma_alloc_coherent(dev,
265                         NPE_QLEN * sizeof(struct crypt_ctl),
266                         &crypt_phys, GFP_ATOMIC);
267         if (!crypt_virt)
268                 return -ENOMEM;
269         memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
270         return 0;
271 }
272
273 static spinlock_t desc_lock;
274 static struct crypt_ctl *get_crypt_desc(void)
275 {
276         int i;
277         static int idx = 0;
278         unsigned long flags;
279
280         spin_lock_irqsave(&desc_lock, flags);
281
282         if (unlikely(!crypt_virt))
283                 setup_crypt_desc();
284         if (unlikely(!crypt_virt)) {
285                 spin_unlock_irqrestore(&desc_lock, flags);
286                 return NULL;
287         }
288         i = idx;
289         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
290                 if (++idx >= NPE_QLEN)
291                         idx = 0;
292                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
293                 spin_unlock_irqrestore(&desc_lock, flags);
294                 return crypt_virt +i;
295         } else {
296                 spin_unlock_irqrestore(&desc_lock, flags);
297                 return NULL;
298         }
299 }
300
301 static spinlock_t emerg_lock;
302 static struct crypt_ctl *get_crypt_desc_emerg(void)
303 {
304         int i;
305         static int idx = NPE_QLEN;
306         struct crypt_ctl *desc;
307         unsigned long flags;
308
309         desc = get_crypt_desc();
310         if (desc)
311                 return desc;
312         if (unlikely(!crypt_virt))
313                 return NULL;
314
315         spin_lock_irqsave(&emerg_lock, flags);
316         i = idx;
317         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
318                 if (++idx >= NPE_QLEN_TOTAL)
319                         idx = NPE_QLEN;
320                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
321                 spin_unlock_irqrestore(&emerg_lock, flags);
322                 return crypt_virt +i;
323         } else {
324                 spin_unlock_irqrestore(&emerg_lock, flags);
325                 return NULL;
326         }
327 }
328
329 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
330 {
331         while (buf) {
332                 struct buffer_desc *buf1;
333                 u32 phys1;
334
335                 buf1 = buf->next;
336                 phys1 = buf->phys_next;
337                 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
338                 dma_pool_free(buffer_pool, buf, phys);
339                 buf = buf1;
340                 phys = phys1;
341         }
342 }
343
344 static struct tasklet_struct crypto_done_tasklet;
345
346 static void finish_scattered_hmac(struct crypt_ctl *crypt)
347 {
348         struct aead_request *req = crypt->data.aead_req;
349         struct aead_ctx *req_ctx = aead_request_ctx(req);
350         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
351         int authsize = crypto_aead_authsize(tfm);
352         int decryptlen = req->assoclen + req->cryptlen - authsize;
353
354         if (req_ctx->encrypt) {
355                 scatterwalk_map_and_copy(req_ctx->hmac_virt,
356                         req->dst, decryptlen, authsize, 1);
357         }
358         dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
359 }
360
361 static void one_packet(dma_addr_t phys)
362 {
363         struct device *dev = &pdev->dev;
364         struct crypt_ctl *crypt;
365         struct ixp_ctx *ctx;
366         int failed;
367
368         failed = phys & 0x1 ? -EBADMSG : 0;
369         phys &= ~0x3;
370         crypt = crypt_phys2virt(phys);
371
372         switch (crypt->ctl_flags & CTL_FLAG_MASK) {
373         case CTL_FLAG_PERFORM_AEAD: {
374                 struct aead_request *req = crypt->data.aead_req;
375                 struct aead_ctx *req_ctx = aead_request_ctx(req);
376
377                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
378                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
379                 if (req_ctx->hmac_virt) {
380                         finish_scattered_hmac(crypt);
381                 }
382                 req->base.complete(&req->base, failed);
383                 break;
384         }
385         case CTL_FLAG_PERFORM_ABLK: {
386                 struct ablkcipher_request *req = crypt->data.ablk_req;
387                 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
388
389                 if (req_ctx->dst) {
390                         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
391                 }
392                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
393                 req->base.complete(&req->base, failed);
394                 break;
395         }
396         case CTL_FLAG_GEN_ICV:
397                 ctx = crypto_tfm_ctx(crypt->data.tfm);
398                 dma_pool_free(ctx_pool, crypt->regist_ptr,
399                                 crypt->regist_buf->phys_addr);
400                 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
401                 if (atomic_dec_and_test(&ctx->configuring))
402                         complete(&ctx->completion);
403                 break;
404         case CTL_FLAG_GEN_REVAES:
405                 ctx = crypto_tfm_ctx(crypt->data.tfm);
406                 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
407                 if (atomic_dec_and_test(&ctx->configuring))
408                         complete(&ctx->completion);
409                 break;
410         default:
411                 BUG();
412         }
413         crypt->ctl_flags = CTL_FLAG_UNUSED;
414 }
415
416 static void irqhandler(void *_unused)
417 {
418         tasklet_schedule(&crypto_done_tasklet);
419 }
420
421 static void crypto_done_action(unsigned long arg)
422 {
423         int i;
424
425         for(i=0; i<4; i++) {
426                 dma_addr_t phys = qmgr_get_entry(RECV_QID);
427                 if (!phys)
428                         return;
429                 one_packet(phys);
430         }
431         tasklet_schedule(&crypto_done_tasklet);
432 }
433
434 static int init_ixp_crypto(struct device *dev)
435 {
436         int ret = -ENODEV;
437         u32 msg[2] = { 0, 0 };
438
439         if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
440                                 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
441                 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
442                 return ret;
443         }
444         npe_c = npe_request(NPE_ID);
445         if (!npe_c)
446                 return ret;
447
448         if (!npe_running(npe_c)) {
449                 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
450                 if (ret)
451                         goto npe_release;
452                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
453                         goto npe_error;
454         } else {
455                 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
456                         goto npe_error;
457
458                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
459                         goto npe_error;
460         }
461
462         switch ((msg[1]>>16) & 0xff) {
463         case 3:
464                 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
465                                 npe_name(npe_c));
466                 support_aes = 0;
467                 break;
468         case 4:
469         case 5:
470                 support_aes = 1;
471                 break;
472         default:
473                 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
474                         npe_name(npe_c));
475                 ret = -ENODEV;
476                 goto npe_release;
477         }
478         /* buffer_pool will also be used to sometimes store the hmac,
479          * so assure it is large enough
480          */
481         BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
482         buffer_pool = dma_pool_create("buffer", dev,
483                         sizeof(struct buffer_desc), 32, 0);
484         ret = -ENOMEM;
485         if (!buffer_pool) {
486                 goto err;
487         }
488         ctx_pool = dma_pool_create("context", dev,
489                         NPE_CTX_LEN, 16, 0);
490         if (!ctx_pool) {
491                 goto err;
492         }
493         ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
494                                  "ixp_crypto:out", NULL);
495         if (ret)
496                 goto err;
497         ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
498                                  "ixp_crypto:in", NULL);
499         if (ret) {
500                 qmgr_release_queue(SEND_QID);
501                 goto err;
502         }
503         qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
504         tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
505
506         qmgr_enable_irq(RECV_QID);
507         return 0;
508
509 npe_error:
510         printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
511         ret = -EIO;
512 err:
513         dma_pool_destroy(ctx_pool);
514         dma_pool_destroy(buffer_pool);
515 npe_release:
516         npe_release(npe_c);
517         return ret;
518 }
519
520 static void release_ixp_crypto(struct device *dev)
521 {
522         qmgr_disable_irq(RECV_QID);
523         tasklet_kill(&crypto_done_tasklet);
524
525         qmgr_release_queue(SEND_QID);
526         qmgr_release_queue(RECV_QID);
527
528         dma_pool_destroy(ctx_pool);
529         dma_pool_destroy(buffer_pool);
530
531         npe_release(npe_c);
532
533         if (crypt_virt) {
534                 dma_free_coherent(dev,
535                         NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
536                         crypt_virt, crypt_phys);
537         }
538         return;
539 }
540
541 static void reset_sa_dir(struct ix_sa_dir *dir)
542 {
543         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
544         dir->npe_ctx_idx = 0;
545         dir->npe_mode = 0;
546 }
547
548 static int init_sa_dir(struct ix_sa_dir *dir)
549 {
550         dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
551         if (!dir->npe_ctx) {
552                 return -ENOMEM;
553         }
554         reset_sa_dir(dir);
555         return 0;
556 }
557
558 static void free_sa_dir(struct ix_sa_dir *dir)
559 {
560         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
561         dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
562 }
563
564 static int init_tfm(struct crypto_tfm *tfm)
565 {
566         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
567         int ret;
568
569         atomic_set(&ctx->configuring, 0);
570         ret = init_sa_dir(&ctx->encrypt);
571         if (ret)
572                 return ret;
573         ret = init_sa_dir(&ctx->decrypt);
574         if (ret) {
575                 free_sa_dir(&ctx->encrypt);
576         }
577         return ret;
578 }
579
580 static int init_tfm_ablk(struct crypto_tfm *tfm)
581 {
582         tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
583         return init_tfm(tfm);
584 }
585
586 static int init_tfm_aead(struct crypto_aead *tfm)
587 {
588         crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
589         return init_tfm(crypto_aead_tfm(tfm));
590 }
591
592 static void exit_tfm(struct crypto_tfm *tfm)
593 {
594         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
595         free_sa_dir(&ctx->encrypt);
596         free_sa_dir(&ctx->decrypt);
597 }
598
599 static void exit_tfm_aead(struct crypto_aead *tfm)
600 {
601         exit_tfm(crypto_aead_tfm(tfm));
602 }
603
604 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
605                 int init_len, u32 ctx_addr, const u8 *key, int key_len)
606 {
607         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
608         struct crypt_ctl *crypt;
609         struct buffer_desc *buf;
610         int i;
611         u8 *pad;
612         u32 pad_phys, buf_phys;
613
614         BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
615         pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
616         if (!pad)
617                 return -ENOMEM;
618         buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
619         if (!buf) {
620                 dma_pool_free(ctx_pool, pad, pad_phys);
621                 return -ENOMEM;
622         }
623         crypt = get_crypt_desc_emerg();
624         if (!crypt) {
625                 dma_pool_free(ctx_pool, pad, pad_phys);
626                 dma_pool_free(buffer_pool, buf, buf_phys);
627                 return -EAGAIN;
628         }
629
630         memcpy(pad, key, key_len);
631         memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
632         for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
633                 pad[i] ^= xpad;
634         }
635
636         crypt->data.tfm = tfm;
637         crypt->regist_ptr = pad;
638         crypt->regist_buf = buf;
639
640         crypt->auth_offs = 0;
641         crypt->auth_len = HMAC_PAD_BLOCKLEN;
642         crypt->crypto_ctx = ctx_addr;
643         crypt->src_buf = buf_phys;
644         crypt->icv_rev_aes = target;
645         crypt->mode = NPE_OP_HASH_GEN_ICV;
646         crypt->init_len = init_len;
647         crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
648
649         buf->next = 0;
650         buf->buf_len = HMAC_PAD_BLOCKLEN;
651         buf->pkt_len = 0;
652         buf->phys_addr = pad_phys;
653
654         atomic_inc(&ctx->configuring);
655         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
656         BUG_ON(qmgr_stat_overflow(SEND_QID));
657         return 0;
658 }
659
660 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
661                 const u8 *key, int key_len, unsigned digest_len)
662 {
663         u32 itarget, otarget, npe_ctx_addr;
664         unsigned char *cinfo;
665         int init_len, ret = 0;
666         u32 cfgword;
667         struct ix_sa_dir *dir;
668         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
669         const struct ix_hash_algo *algo;
670
671         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
672         cinfo = dir->npe_ctx + dir->npe_ctx_idx;
673         algo = ix_hash(tfm);
674
675         /* write cfg word to cryptinfo */
676         cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
677 #ifndef __ARMEB__
678         cfgword ^= 0xAA000000; /* change the "byte swap" flags */
679 #endif
680         *(u32*)cinfo = cpu_to_be32(cfgword);
681         cinfo += sizeof(cfgword);
682
683         /* write ICV to cryptinfo */
684         memcpy(cinfo, algo->icv, digest_len);
685         cinfo += digest_len;
686
687         itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
688                                 + sizeof(algo->cfgword);
689         otarget = itarget + digest_len;
690         init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
691         npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
692
693         dir->npe_ctx_idx += init_len;
694         dir->npe_mode |= NPE_OP_HASH_ENABLE;
695
696         if (!encrypt)
697                 dir->npe_mode |= NPE_OP_HASH_VERIFY;
698
699         ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
700                         init_len, npe_ctx_addr, key, key_len);
701         if (ret)
702                 return ret;
703         return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
704                         init_len, npe_ctx_addr, key, key_len);
705 }
706
707 static int gen_rev_aes_key(struct crypto_tfm *tfm)
708 {
709         struct crypt_ctl *crypt;
710         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
711         struct ix_sa_dir *dir = &ctx->decrypt;
712
713         crypt = get_crypt_desc_emerg();
714         if (!crypt) {
715                 return -EAGAIN;
716         }
717         *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
718
719         crypt->data.tfm = tfm;
720         crypt->crypt_offs = 0;
721         crypt->crypt_len = AES_BLOCK128;
722         crypt->src_buf = 0;
723         crypt->crypto_ctx = dir->npe_ctx_phys;
724         crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
725         crypt->mode = NPE_OP_ENC_GEN_KEY;
726         crypt->init_len = dir->npe_ctx_idx;
727         crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
728
729         atomic_inc(&ctx->configuring);
730         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
731         BUG_ON(qmgr_stat_overflow(SEND_QID));
732         return 0;
733 }
734
735 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
736                 const u8 *key, int key_len)
737 {
738         u8 *cinfo;
739         u32 cipher_cfg;
740         u32 keylen_cfg = 0;
741         struct ix_sa_dir *dir;
742         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
743         u32 *flags = &tfm->crt_flags;
744
745         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
746         cinfo = dir->npe_ctx;
747
748         if (encrypt) {
749                 cipher_cfg = cipher_cfg_enc(tfm);
750                 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
751         } else {
752                 cipher_cfg = cipher_cfg_dec(tfm);
753         }
754         if (cipher_cfg & MOD_AES) {
755                 switch (key_len) {
756                 case 16: keylen_cfg = MOD_AES128; break;
757                 case 24: keylen_cfg = MOD_AES192; break;
758                 case 32: keylen_cfg = MOD_AES256; break;
759                 default:
760                         *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
761                         return -EINVAL;
762                 }
763                 cipher_cfg |= keylen_cfg;
764         } else if (cipher_cfg & MOD_3DES) {
765                 const u32 *K = (const u32 *)key;
766                 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
767                              !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
768                 {
769                         *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
770                         return -EINVAL;
771                 }
772         } else {
773                 u32 tmp[DES_EXPKEY_WORDS];
774                 if (des_ekey(tmp, key) == 0) {
775                         *flags |= CRYPTO_TFM_RES_WEAK_KEY;
776                 }
777         }
778         /* write cfg word to cryptinfo */
779         *(u32*)cinfo = cpu_to_be32(cipher_cfg);
780         cinfo += sizeof(cipher_cfg);
781
782         /* write cipher key to cryptinfo */
783         memcpy(cinfo, key, key_len);
784         /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
785         if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
786                 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
787                 key_len = DES3_EDE_KEY_SIZE;
788         }
789         dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
790         dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
791         if ((cipher_cfg & MOD_AES) && !encrypt) {
792                 return gen_rev_aes_key(tfm);
793         }
794         return 0;
795 }
796
797 static struct buffer_desc *chainup_buffers(struct device *dev,
798                 struct scatterlist *sg, unsigned nbytes,
799                 struct buffer_desc *buf, gfp_t flags,
800                 enum dma_data_direction dir)
801 {
802         for (; nbytes > 0; sg = sg_next(sg)) {
803                 unsigned len = min(nbytes, sg->length);
804                 struct buffer_desc *next_buf;
805                 u32 next_buf_phys;
806                 void *ptr;
807
808                 nbytes -= len;
809                 ptr = page_address(sg_page(sg)) + sg->offset;
810                 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
811                 if (!next_buf) {
812                         buf = NULL;
813                         break;
814                 }
815                 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
816                 buf->next = next_buf;
817                 buf->phys_next = next_buf_phys;
818                 buf = next_buf;
819
820                 buf->phys_addr = sg_dma_address(sg);
821                 buf->buf_len = len;
822                 buf->dir = dir;
823         }
824         buf->next = NULL;
825         buf->phys_next = 0;
826         return buf;
827 }
828
829 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
830                         unsigned int key_len)
831 {
832         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
833         u32 *flags = &tfm->base.crt_flags;
834         int ret;
835
836         init_completion(&ctx->completion);
837         atomic_inc(&ctx->configuring);
838
839         reset_sa_dir(&ctx->encrypt);
840         reset_sa_dir(&ctx->decrypt);
841
842         ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
843         ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
844
845         ret = setup_cipher(&tfm->base, 0, key, key_len);
846         if (ret)
847                 goto out;
848         ret = setup_cipher(&tfm->base, 1, key, key_len);
849         if (ret)
850                 goto out;
851
852         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
853                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
854                         ret = -EINVAL;
855                 } else {
856                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
857                 }
858         }
859 out:
860         if (!atomic_dec_and_test(&ctx->configuring))
861                 wait_for_completion(&ctx->completion);
862         return ret;
863 }
864
865 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
866                 unsigned int key_len)
867 {
868         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
869
870         /* the nonce is stored in bytes at end of key */
871         if (key_len < CTR_RFC3686_NONCE_SIZE)
872                 return -EINVAL;
873
874         memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
875                         CTR_RFC3686_NONCE_SIZE);
876
877         key_len -= CTR_RFC3686_NONCE_SIZE;
878         return ablk_setkey(tfm, key, key_len);
879 }
880
881 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
882 {
883         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
884         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
885         unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
886         struct ix_sa_dir *dir;
887         struct crypt_ctl *crypt;
888         unsigned int nbytes = req->nbytes;
889         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
890         struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
891         struct buffer_desc src_hook;
892         struct device *dev = &pdev->dev;
893         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
894                                 GFP_KERNEL : GFP_ATOMIC;
895
896         if (qmgr_stat_full(SEND_QID))
897                 return -EAGAIN;
898         if (atomic_read(&ctx->configuring))
899                 return -EAGAIN;
900
901         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
902
903         crypt = get_crypt_desc();
904         if (!crypt)
905                 return -ENOMEM;
906
907         crypt->data.ablk_req = req;
908         crypt->crypto_ctx = dir->npe_ctx_phys;
909         crypt->mode = dir->npe_mode;
910         crypt->init_len = dir->npe_ctx_idx;
911
912         crypt->crypt_offs = 0;
913         crypt->crypt_len = nbytes;
914
915         BUG_ON(ivsize && !req->info);
916         memcpy(crypt->iv, req->info, ivsize);
917         if (req->src != req->dst) {
918                 struct buffer_desc dst_hook;
919                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
920                 /* This was never tested by Intel
921                  * for more than one dst buffer, I think. */
922                 req_ctx->dst = NULL;
923                 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
924                                         flags, DMA_FROM_DEVICE))
925                         goto free_buf_dest;
926                 src_direction = DMA_TO_DEVICE;
927                 req_ctx->dst = dst_hook.next;
928                 crypt->dst_buf = dst_hook.phys_next;
929         } else {
930                 req_ctx->dst = NULL;
931         }
932         req_ctx->src = NULL;
933         if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
934                                 flags, src_direction))
935                 goto free_buf_src;
936
937         req_ctx->src = src_hook.next;
938         crypt->src_buf = src_hook.phys_next;
939         crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
940         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
941         BUG_ON(qmgr_stat_overflow(SEND_QID));
942         return -EINPROGRESS;
943
944 free_buf_src:
945         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
946 free_buf_dest:
947         if (req->src != req->dst) {
948                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
949         }
950         crypt->ctl_flags = CTL_FLAG_UNUSED;
951         return -ENOMEM;
952 }
953
954 static int ablk_encrypt(struct ablkcipher_request *req)
955 {
956         return ablk_perform(req, 1);
957 }
958
959 static int ablk_decrypt(struct ablkcipher_request *req)
960 {
961         return ablk_perform(req, 0);
962 }
963
964 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
965 {
966         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
967         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
968         u8 iv[CTR_RFC3686_BLOCK_SIZE];
969         u8 *info = req->info;
970         int ret;
971
972         /* set up counter block */
973         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
974         memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
975
976         /* initialize counter portion of counter block */
977         *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
978                 cpu_to_be32(1);
979
980         req->info = iv;
981         ret = ablk_perform(req, 1);
982         req->info = info;
983         return ret;
984 }
985
986 static int aead_perform(struct aead_request *req, int encrypt,
987                 int cryptoffset, int eff_cryptlen, u8 *iv)
988 {
989         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
990         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
991         unsigned ivsize = crypto_aead_ivsize(tfm);
992         unsigned authsize = crypto_aead_authsize(tfm);
993         struct ix_sa_dir *dir;
994         struct crypt_ctl *crypt;
995         unsigned int cryptlen;
996         struct buffer_desc *buf, src_hook;
997         struct aead_ctx *req_ctx = aead_request_ctx(req);
998         struct device *dev = &pdev->dev;
999         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1000                                 GFP_KERNEL : GFP_ATOMIC;
1001         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
1002         unsigned int lastlen;
1003
1004         if (qmgr_stat_full(SEND_QID))
1005                 return -EAGAIN;
1006         if (atomic_read(&ctx->configuring))
1007                 return -EAGAIN;
1008
1009         if (encrypt) {
1010                 dir = &ctx->encrypt;
1011                 cryptlen = req->cryptlen;
1012         } else {
1013                 dir = &ctx->decrypt;
1014                 /* req->cryptlen includes the authsize when decrypting */
1015                 cryptlen = req->cryptlen -authsize;
1016                 eff_cryptlen -= authsize;
1017         }
1018         crypt = get_crypt_desc();
1019         if (!crypt)
1020                 return -ENOMEM;
1021
1022         crypt->data.aead_req = req;
1023         crypt->crypto_ctx = dir->npe_ctx_phys;
1024         crypt->mode = dir->npe_mode;
1025         crypt->init_len = dir->npe_ctx_idx;
1026
1027         crypt->crypt_offs = cryptoffset;
1028         crypt->crypt_len = eff_cryptlen;
1029
1030         crypt->auth_offs = 0;
1031         crypt->auth_len = req->assoclen + cryptlen;
1032         BUG_ON(ivsize && !req->iv);
1033         memcpy(crypt->iv, req->iv, ivsize);
1034
1035         buf = chainup_buffers(dev, req->src, crypt->auth_len,
1036                               &src_hook, flags, src_direction);
1037         req_ctx->src = src_hook.next;
1038         crypt->src_buf = src_hook.phys_next;
1039         if (!buf)
1040                 goto free_buf_src;
1041
1042         lastlen = buf->buf_len;
1043         if (lastlen >= authsize)
1044                 crypt->icv_rev_aes = buf->phys_addr +
1045                                      buf->buf_len - authsize;
1046
1047         req_ctx->dst = NULL;
1048
1049         if (req->src != req->dst) {
1050                 struct buffer_desc dst_hook;
1051
1052                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
1053                 src_direction = DMA_TO_DEVICE;
1054
1055                 buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1056                                       &dst_hook, flags, DMA_FROM_DEVICE);
1057                 req_ctx->dst = dst_hook.next;
1058                 crypt->dst_buf = dst_hook.phys_next;
1059
1060                 if (!buf)
1061                         goto free_buf_dst;
1062
1063                 if (encrypt) {
1064                         lastlen = buf->buf_len;
1065                         if (lastlen >= authsize)
1066                                 crypt->icv_rev_aes = buf->phys_addr +
1067                                                      buf->buf_len - authsize;
1068                 }
1069         }
1070
1071         if (unlikely(lastlen < authsize)) {
1072                 /* The 12 hmac bytes are scattered,
1073                  * we need to copy them into a safe buffer */
1074                 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1075                                 &crypt->icv_rev_aes);
1076                 if (unlikely(!req_ctx->hmac_virt))
1077                         goto free_buf_src;
1078                 if (!encrypt) {
1079                         scatterwalk_map_and_copy(req_ctx->hmac_virt,
1080                                 req->src, cryptlen, authsize, 0);
1081                 }
1082                 req_ctx->encrypt = encrypt;
1083         } else {
1084                 req_ctx->hmac_virt = NULL;
1085         }
1086
1087         crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1088         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1089         BUG_ON(qmgr_stat_overflow(SEND_QID));
1090         return -EINPROGRESS;
1091
1092 free_buf_src:
1093         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1094 free_buf_dst:
1095         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1096         crypt->ctl_flags = CTL_FLAG_UNUSED;
1097         return -ENOMEM;
1098 }
1099
1100 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1101 {
1102         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1103         u32 *flags = &tfm->base.crt_flags;
1104         unsigned digest_len = crypto_aead_maxauthsize(tfm);
1105         int ret;
1106
1107         if (!ctx->enckey_len && !ctx->authkey_len)
1108                 return 0;
1109         init_completion(&ctx->completion);
1110         atomic_inc(&ctx->configuring);
1111
1112         reset_sa_dir(&ctx->encrypt);
1113         reset_sa_dir(&ctx->decrypt);
1114
1115         ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1116         if (ret)
1117                 goto out;
1118         ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1119         if (ret)
1120                 goto out;
1121         ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1122                         ctx->authkey_len, digest_len);
1123         if (ret)
1124                 goto out;
1125         ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1126                         ctx->authkey_len, digest_len);
1127         if (ret)
1128                 goto out;
1129
1130         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1131                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1132                         ret = -EINVAL;
1133                         goto out;
1134                 } else {
1135                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1136                 }
1137         }
1138 out:
1139         if (!atomic_dec_and_test(&ctx->configuring))
1140                 wait_for_completion(&ctx->completion);
1141         return ret;
1142 }
1143
1144 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1145 {
1146         int max = crypto_aead_maxauthsize(tfm) >> 2;
1147
1148         if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1149                 return -EINVAL;
1150         return aead_setup(tfm, authsize);
1151 }
1152
1153 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1154                         unsigned int keylen)
1155 {
1156         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1157         struct crypto_authenc_keys keys;
1158
1159         if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1160                 goto badkey;
1161
1162         if (keys.authkeylen > sizeof(ctx->authkey))
1163                 goto badkey;
1164
1165         if (keys.enckeylen > sizeof(ctx->enckey))
1166                 goto badkey;
1167
1168         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1169         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1170         ctx->authkey_len = keys.authkeylen;
1171         ctx->enckey_len = keys.enckeylen;
1172
1173         return aead_setup(tfm, crypto_aead_authsize(tfm));
1174 badkey:
1175         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1176         return -EINVAL;
1177 }
1178
1179 static int aead_encrypt(struct aead_request *req)
1180 {
1181         return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1182 }
1183
1184 static int aead_decrypt(struct aead_request *req)
1185 {
1186         return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1187 }
1188
1189 static struct ixp_alg ixp4xx_algos[] = {
1190 {
1191         .crypto = {
1192                 .cra_name       = "cbc(des)",
1193                 .cra_blocksize  = DES_BLOCK_SIZE,
1194                 .cra_u          = { .ablkcipher = {
1195                         .min_keysize    = DES_KEY_SIZE,
1196                         .max_keysize    = DES_KEY_SIZE,
1197                         .ivsize         = DES_BLOCK_SIZE,
1198                         .geniv          = "eseqiv",
1199                         }
1200                 }
1201         },
1202         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1203         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1204
1205 }, {
1206         .crypto = {
1207                 .cra_name       = "ecb(des)",
1208                 .cra_blocksize  = DES_BLOCK_SIZE,
1209                 .cra_u          = { .ablkcipher = {
1210                         .min_keysize    = DES_KEY_SIZE,
1211                         .max_keysize    = DES_KEY_SIZE,
1212                         }
1213                 }
1214         },
1215         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1216         .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1217 }, {
1218         .crypto = {
1219                 .cra_name       = "cbc(des3_ede)",
1220                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1221                 .cra_u          = { .ablkcipher = {
1222                         .min_keysize    = DES3_EDE_KEY_SIZE,
1223                         .max_keysize    = DES3_EDE_KEY_SIZE,
1224                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1225                         .geniv          = "eseqiv",
1226                         }
1227                 }
1228         },
1229         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1230         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1231 }, {
1232         .crypto = {
1233                 .cra_name       = "ecb(des3_ede)",
1234                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1235                 .cra_u          = { .ablkcipher = {
1236                         .min_keysize    = DES3_EDE_KEY_SIZE,
1237                         .max_keysize    = DES3_EDE_KEY_SIZE,
1238                         }
1239                 }
1240         },
1241         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1242         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1243 }, {
1244         .crypto = {
1245                 .cra_name       = "cbc(aes)",
1246                 .cra_blocksize  = AES_BLOCK_SIZE,
1247                 .cra_u          = { .ablkcipher = {
1248                         .min_keysize    = AES_MIN_KEY_SIZE,
1249                         .max_keysize    = AES_MAX_KEY_SIZE,
1250                         .ivsize         = AES_BLOCK_SIZE,
1251                         .geniv          = "eseqiv",
1252                         }
1253                 }
1254         },
1255         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1256         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1257 }, {
1258         .crypto = {
1259                 .cra_name       = "ecb(aes)",
1260                 .cra_blocksize  = AES_BLOCK_SIZE,
1261                 .cra_u          = { .ablkcipher = {
1262                         .min_keysize    = AES_MIN_KEY_SIZE,
1263                         .max_keysize    = AES_MAX_KEY_SIZE,
1264                         }
1265                 }
1266         },
1267         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1268         .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1269 }, {
1270         .crypto = {
1271                 .cra_name       = "ctr(aes)",
1272                 .cra_blocksize  = AES_BLOCK_SIZE,
1273                 .cra_u          = { .ablkcipher = {
1274                         .min_keysize    = AES_MIN_KEY_SIZE,
1275                         .max_keysize    = AES_MAX_KEY_SIZE,
1276                         .ivsize         = AES_BLOCK_SIZE,
1277                         .geniv          = "eseqiv",
1278                         }
1279                 }
1280         },
1281         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1282         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1283 }, {
1284         .crypto = {
1285                 .cra_name       = "rfc3686(ctr(aes))",
1286                 .cra_blocksize  = AES_BLOCK_SIZE,
1287                 .cra_u          = { .ablkcipher = {
1288                         .min_keysize    = AES_MIN_KEY_SIZE,
1289                         .max_keysize    = AES_MAX_KEY_SIZE,
1290                         .ivsize         = AES_BLOCK_SIZE,
1291                         .geniv          = "eseqiv",
1292                         .setkey         = ablk_rfc3686_setkey,
1293                         .encrypt        = ablk_rfc3686_crypt,
1294                         .decrypt        = ablk_rfc3686_crypt }
1295                 }
1296         },
1297         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1298         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1299 } };
1300
1301 static struct ixp_aead_alg ixp4xx_aeads[] = {
1302 {
1303         .crypto = {
1304                 .base = {
1305                         .cra_name       = "authenc(hmac(md5),cbc(des))",
1306                         .cra_blocksize  = DES_BLOCK_SIZE,
1307                 },
1308                 .ivsize         = DES_BLOCK_SIZE,
1309                 .maxauthsize    = MD5_DIGEST_SIZE,
1310         },
1311         .hash = &hash_alg_md5,
1312         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1313         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1314 }, {
1315         .crypto = {
1316                 .base = {
1317                         .cra_name       = "authenc(hmac(md5),cbc(des3_ede))",
1318                         .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1319                 },
1320                 .ivsize         = DES3_EDE_BLOCK_SIZE,
1321                 .maxauthsize    = MD5_DIGEST_SIZE,
1322         },
1323         .hash = &hash_alg_md5,
1324         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1325         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1326 }, {
1327         .crypto = {
1328                 .base = {
1329                         .cra_name       = "authenc(hmac(sha1),cbc(des))",
1330                         .cra_blocksize  = DES_BLOCK_SIZE,
1331                 },
1332                         .ivsize         = DES_BLOCK_SIZE,
1333                         .maxauthsize    = SHA1_DIGEST_SIZE,
1334         },
1335         .hash = &hash_alg_sha1,
1336         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1337         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1338 }, {
1339         .crypto = {
1340                 .base = {
1341                         .cra_name       = "authenc(hmac(sha1),cbc(des3_ede))",
1342                         .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1343                 },
1344                 .ivsize         = DES3_EDE_BLOCK_SIZE,
1345                 .maxauthsize    = SHA1_DIGEST_SIZE,
1346         },
1347         .hash = &hash_alg_sha1,
1348         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1349         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1350 }, {
1351         .crypto = {
1352                 .base = {
1353                         .cra_name       = "authenc(hmac(md5),cbc(aes))",
1354                         .cra_blocksize  = AES_BLOCK_SIZE,
1355                 },
1356                 .ivsize         = AES_BLOCK_SIZE,
1357                 .maxauthsize    = MD5_DIGEST_SIZE,
1358         },
1359         .hash = &hash_alg_md5,
1360         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1361         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1362 }, {
1363         .crypto = {
1364                 .base = {
1365                         .cra_name       = "authenc(hmac(sha1),cbc(aes))",
1366                         .cra_blocksize  = AES_BLOCK_SIZE,
1367                 },
1368                 .ivsize         = AES_BLOCK_SIZE,
1369                 .maxauthsize    = SHA1_DIGEST_SIZE,
1370         },
1371         .hash = &hash_alg_sha1,
1372         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1373         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1374 } };
1375
1376 #define IXP_POSTFIX "-ixp4xx"
1377
1378 static const struct platform_device_info ixp_dev_info __initdata = {
1379         .name           = DRIVER_NAME,
1380         .id             = 0,
1381         .dma_mask       = DMA_BIT_MASK(32),
1382 };
1383
1384 static int __init ixp_module_init(void)
1385 {
1386         int num = ARRAY_SIZE(ixp4xx_algos);
1387         int i, err;
1388
1389         pdev = platform_device_register_full(&ixp_dev_info);
1390         if (IS_ERR(pdev))
1391                 return PTR_ERR(pdev);
1392
1393         spin_lock_init(&desc_lock);
1394         spin_lock_init(&emerg_lock);
1395
1396         err = init_ixp_crypto(&pdev->dev);
1397         if (err) {
1398                 platform_device_unregister(pdev);
1399                 return err;
1400         }
1401         for (i=0; i< num; i++) {
1402                 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1403
1404                 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1405                         "%s"IXP_POSTFIX, cra->cra_name) >=
1406                         CRYPTO_MAX_ALG_NAME)
1407                 {
1408                         continue;
1409                 }
1410                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1411                         continue;
1412                 }
1413
1414                 /* block ciphers */
1415                 cra->cra_type = &crypto_ablkcipher_type;
1416                 cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1417                                  CRYPTO_ALG_KERN_DRIVER_ONLY |
1418                                  CRYPTO_ALG_ASYNC;
1419                 if (!cra->cra_ablkcipher.setkey)
1420                         cra->cra_ablkcipher.setkey = ablk_setkey;
1421                 if (!cra->cra_ablkcipher.encrypt)
1422                         cra->cra_ablkcipher.encrypt = ablk_encrypt;
1423                 if (!cra->cra_ablkcipher.decrypt)
1424                         cra->cra_ablkcipher.decrypt = ablk_decrypt;
1425                 cra->cra_init = init_tfm_ablk;
1426
1427                 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1428                 cra->cra_module = THIS_MODULE;
1429                 cra->cra_alignmask = 3;
1430                 cra->cra_priority = 300;
1431                 cra->cra_exit = exit_tfm;
1432                 if (crypto_register_alg(cra))
1433                         printk(KERN_ERR "Failed to register '%s'\n",
1434                                 cra->cra_name);
1435                 else
1436                         ixp4xx_algos[i].registered = 1;
1437         }
1438
1439         for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1440                 struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1441
1442                 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1443                              "%s"IXP_POSTFIX, cra->base.cra_name) >=
1444                     CRYPTO_MAX_ALG_NAME)
1445                         continue;
1446                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1447                         continue;
1448
1449                 /* authenc */
1450                 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1451                                       CRYPTO_ALG_ASYNC;
1452                 cra->setkey = aead_setkey;
1453                 cra->setauthsize = aead_setauthsize;
1454                 cra->encrypt = aead_encrypt;
1455                 cra->decrypt = aead_decrypt;
1456                 cra->init = init_tfm_aead;
1457                 cra->exit = exit_tfm_aead;
1458
1459                 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1460                 cra->base.cra_module = THIS_MODULE;
1461                 cra->base.cra_alignmask = 3;
1462                 cra->base.cra_priority = 300;
1463
1464                 if (crypto_register_aead(cra))
1465                         printk(KERN_ERR "Failed to register '%s'\n",
1466                                 cra->base.cra_driver_name);
1467                 else
1468                         ixp4xx_aeads[i].registered = 1;
1469         }
1470         return 0;
1471 }
1472
1473 static void __exit ixp_module_exit(void)
1474 {
1475         int num = ARRAY_SIZE(ixp4xx_algos);
1476         int i;
1477
1478         for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1479                 if (ixp4xx_aeads[i].registered)
1480                         crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1481         }
1482
1483         for (i=0; i< num; i++) {
1484                 if (ixp4xx_algos[i].registered)
1485                         crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1486         }
1487         release_ixp_crypto(&pdev->dev);
1488         platform_device_unregister(pdev);
1489 }
1490
1491 module_init(ixp_module_init);
1492 module_exit(ixp_module_exit);
1493
1494 MODULE_LICENSE("GPL");
1495 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1496 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1497