Merge remote-tracking branches 'regulator/topic/pv88090', 'regulator/topic/qcom-smd...
[cascardo/linux.git] / drivers / dma / at_hdmac.c
1 /*
2  * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3  *
4  * Copyright (C) 2008 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  *
12  * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13  * The only Atmel DMA Controller that is not covered by this driver is the one
14  * found on AT91SAM9263.
15  */
16
17 #include <dt-bindings/dma/at91.h>
18 #include <linux/clk.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_dma.h>
29
30 #include "at_hdmac_regs.h"
31 #include "dmaengine.h"
32
33 /*
34  * Glossary
35  * --------
36  *
37  * at_hdmac             : Name of the ATmel AHB DMA Controller
38  * at_dma_ / atdma      : ATmel DMA controller entity related
39  * atc_ / atchan        : ATmel DMA Channel entity related
40  */
41
42 #define ATC_DEFAULT_CFG         (ATC_FIFOCFG_HALFFIFO)
43 #define ATC_DEFAULT_CTRLB       (ATC_SIF(AT_DMA_MEM_IF) \
44                                 |ATC_DIF(AT_DMA_MEM_IF))
45 #define ATC_DMA_BUSWIDTHS\
46         (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47         BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48         BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49         BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50
51 #define ATC_MAX_DSCR_TRIALS     10
52
53 /*
54  * Initial number of descriptors to allocate for each channel. This could
55  * be increased during dma usage.
56  */
57 static unsigned int init_nr_desc_per_channel = 64;
58 module_param(init_nr_desc_per_channel, uint, 0644);
59 MODULE_PARM_DESC(init_nr_desc_per_channel,
60                  "initial descriptors per channel (default: 64)");
61
62
63 /* prototypes */
64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65 static void atc_issue_pending(struct dma_chan *chan);
66
67
68 /*----------------------------------------------------------------------*/
69
70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71                                                 size_t len)
72 {
73         unsigned int width;
74
75         if (!((src | dst  | len) & 3))
76                 width = 2;
77         else if (!((src | dst | len) & 1))
78                 width = 1;
79         else
80                 width = 0;
81
82         return width;
83 }
84
85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
86 {
87         return list_first_entry(&atchan->active_list,
88                                 struct at_desc, desc_node);
89 }
90
91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
92 {
93         return list_first_entry(&atchan->queue,
94                                 struct at_desc, desc_node);
95 }
96
97 /**
98  * atc_alloc_descriptor - allocate and return an initialized descriptor
99  * @chan: the channel to allocate descriptors for
100  * @gfp_flags: GFP allocation flags
101  *
102  * Note: The ack-bit is positioned in the descriptor flag at creation time
103  *       to make initial allocation more convenient. This bit will be cleared
104  *       and control will be given to client at usage time (during
105  *       preparation functions).
106  */
107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108                                             gfp_t gfp_flags)
109 {
110         struct at_desc  *desc = NULL;
111         struct at_dma   *atdma = to_at_dma(chan->device);
112         dma_addr_t phys;
113
114         desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys);
115         if (desc) {
116                 memset(desc, 0, sizeof(struct at_desc));
117                 INIT_LIST_HEAD(&desc->tx_list);
118                 dma_async_tx_descriptor_init(&desc->txd, chan);
119                 /* txd.flags will be overwritten in prep functions */
120                 desc->txd.flags = DMA_CTRL_ACK;
121                 desc->txd.tx_submit = atc_tx_submit;
122                 desc->txd.phys = phys;
123         }
124
125         return desc;
126 }
127
128 /**
129  * atc_desc_get - get an unused descriptor from free_list
130  * @atchan: channel we want a new descriptor for
131  */
132 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
133 {
134         struct at_desc *desc, *_desc;
135         struct at_desc *ret = NULL;
136         unsigned long flags;
137         unsigned int i = 0;
138         LIST_HEAD(tmp_list);
139
140         spin_lock_irqsave(&atchan->lock, flags);
141         list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
142                 i++;
143                 if (async_tx_test_ack(&desc->txd)) {
144                         list_del(&desc->desc_node);
145                         ret = desc;
146                         break;
147                 }
148                 dev_dbg(chan2dev(&atchan->chan_common),
149                                 "desc %p not ACKed\n", desc);
150         }
151         spin_unlock_irqrestore(&atchan->lock, flags);
152         dev_vdbg(chan2dev(&atchan->chan_common),
153                 "scanned %u descriptors on freelist\n", i);
154
155         /* no more descriptor available in initial pool: create one more */
156         if (!ret) {
157                 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
158                 if (ret) {
159                         spin_lock_irqsave(&atchan->lock, flags);
160                         atchan->descs_allocated++;
161                         spin_unlock_irqrestore(&atchan->lock, flags);
162                 } else {
163                         dev_err(chan2dev(&atchan->chan_common),
164                                         "not enough descriptors available\n");
165                 }
166         }
167
168         return ret;
169 }
170
171 /**
172  * atc_desc_put - move a descriptor, including any children, to the free list
173  * @atchan: channel we work on
174  * @desc: descriptor, at the head of a chain, to move to free list
175  */
176 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
177 {
178         if (desc) {
179                 struct at_desc *child;
180                 unsigned long flags;
181
182                 spin_lock_irqsave(&atchan->lock, flags);
183                 list_for_each_entry(child, &desc->tx_list, desc_node)
184                         dev_vdbg(chan2dev(&atchan->chan_common),
185                                         "moving child desc %p to freelist\n",
186                                         child);
187                 list_splice_init(&desc->tx_list, &atchan->free_list);
188                 dev_vdbg(chan2dev(&atchan->chan_common),
189                          "moving desc %p to freelist\n", desc);
190                 list_add(&desc->desc_node, &atchan->free_list);
191                 spin_unlock_irqrestore(&atchan->lock, flags);
192         }
193 }
194
195 /**
196  * atc_desc_chain - build chain adding a descriptor
197  * @first: address of first descriptor of the chain
198  * @prev: address of previous descriptor of the chain
199  * @desc: descriptor to queue
200  *
201  * Called from prep_* functions
202  */
203 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
204                            struct at_desc *desc)
205 {
206         if (!(*first)) {
207                 *first = desc;
208         } else {
209                 /* inform the HW lli about chaining */
210                 (*prev)->lli.dscr = desc->txd.phys;
211                 /* insert the link descriptor to the LD ring */
212                 list_add_tail(&desc->desc_node,
213                                 &(*first)->tx_list);
214         }
215         *prev = desc;
216 }
217
218 /**
219  * atc_dostart - starts the DMA engine for real
220  * @atchan: the channel we want to start
221  * @first: first descriptor in the list we want to begin with
222  *
223  * Called with atchan->lock held and bh disabled
224  */
225 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
226 {
227         struct at_dma   *atdma = to_at_dma(atchan->chan_common.device);
228
229         /* ASSERT:  channel is idle */
230         if (atc_chan_is_enabled(atchan)) {
231                 dev_err(chan2dev(&atchan->chan_common),
232                         "BUG: Attempted to start non-idle channel\n");
233                 dev_err(chan2dev(&atchan->chan_common),
234                         "  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
235                         channel_readl(atchan, SADDR),
236                         channel_readl(atchan, DADDR),
237                         channel_readl(atchan, CTRLA),
238                         channel_readl(atchan, CTRLB),
239                         channel_readl(atchan, DSCR));
240
241                 /* The tasklet will hopefully advance the queue... */
242                 return;
243         }
244
245         vdbg_dump_regs(atchan);
246
247         channel_writel(atchan, SADDR, 0);
248         channel_writel(atchan, DADDR, 0);
249         channel_writel(atchan, CTRLA, 0);
250         channel_writel(atchan, CTRLB, 0);
251         channel_writel(atchan, DSCR, first->txd.phys);
252         channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
253                        ATC_SPIP_BOUNDARY(first->boundary));
254         channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
255                        ATC_DPIP_BOUNDARY(first->boundary));
256         dma_writel(atdma, CHER, atchan->mask);
257
258         vdbg_dump_regs(atchan);
259 }
260
261 /*
262  * atc_get_desc_by_cookie - get the descriptor of a cookie
263  * @atchan: the DMA channel
264  * @cookie: the cookie to get the descriptor for
265  */
266 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
267                                                 dma_cookie_t cookie)
268 {
269         struct at_desc *desc, *_desc;
270
271         list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
272                 if (desc->txd.cookie == cookie)
273                         return desc;
274         }
275
276         list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
277                 if (desc->txd.cookie == cookie)
278                         return desc;
279         }
280
281         return NULL;
282 }
283
284 /**
285  * atc_calc_bytes_left - calculates the number of bytes left according to the
286  * value read from CTRLA.
287  *
288  * @current_len: the number of bytes left before reading CTRLA
289  * @ctrla: the value of CTRLA
290  */
291 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
292 {
293         u32 btsize = (ctrla & ATC_BTSIZE_MAX);
294         u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
295
296         /*
297          * According to the datasheet, when reading the Control A Register
298          * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
299          * number of transfers completed on the Source Interface.
300          * So btsize is always a number of source width transfers.
301          */
302         return current_len - (btsize << src_width);
303 }
304
305 /**
306  * atc_get_bytes_left - get the number of bytes residue for a cookie
307  * @chan: DMA channel
308  * @cookie: transaction identifier to check status of
309  */
310 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
311 {
312         struct at_dma_chan      *atchan = to_at_dma_chan(chan);
313         struct at_desc *desc_first = atc_first_active(atchan);
314         struct at_desc *desc;
315         int ret;
316         u32 ctrla, dscr, trials;
317
318         /*
319          * If the cookie doesn't match to the currently running transfer then
320          * we can return the total length of the associated DMA transfer,
321          * because it is still queued.
322          */
323         desc = atc_get_desc_by_cookie(atchan, cookie);
324         if (desc == NULL)
325                 return -EINVAL;
326         else if (desc != desc_first)
327                 return desc->total_len;
328
329         /* cookie matches to the currently running transfer */
330         ret = desc_first->total_len;
331
332         if (desc_first->lli.dscr) {
333                 /* hardware linked list transfer */
334
335                 /*
336                  * Calculate the residue by removing the length of the child
337                  * descriptors already transferred from the total length.
338                  * To get the current child descriptor we can use the value of
339                  * the channel's DSCR register and compare it against the value
340                  * of the hardware linked list structure of each child
341                  * descriptor.
342                  *
343                  * The CTRLA register provides us with the amount of data
344                  * already read from the source for the current child
345                  * descriptor. So we can compute a more accurate residue by also
346                  * removing the number of bytes corresponding to this amount of
347                  * data.
348                  *
349                  * However, the DSCR and CTRLA registers cannot be read both
350                  * atomically. Hence a race condition may occur: the first read
351                  * register may refer to one child descriptor whereas the second
352                  * read may refer to a later child descriptor in the list
353                  * because of the DMA transfer progression inbetween the two
354                  * reads.
355                  *
356                  * One solution could have been to pause the DMA transfer, read
357                  * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
358                  * this approach presents some drawbacks:
359                  * - If the DMA transfer is paused, RX overruns or TX underruns
360                  *   are more likey to occur depending on the system latency.
361                  *   Taking the USART driver as an example, it uses a cyclic DMA
362                  *   transfer to read data from the Receive Holding Register
363                  *   (RHR) to avoid RX overruns since the RHR is not protected
364                  *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
365                  *   to compute the residue would break the USART driver design.
366                  * - The atc_pause() function masks interrupts but we'd rather
367                  *   avoid to do so for system latency purpose.
368                  *
369                  * Then we'd rather use another solution: the DSCR is read a
370                  * first time, the CTRLA is read in turn, next the DSCR is read
371                  * a second time. If the two consecutive read values of the DSCR
372                  * are the same then we assume both refers to the very same
373                  * child descriptor as well as the CTRLA value read inbetween
374                  * does. For cyclic tranfers, the assumption is that a full loop
375                  * is "not so fast".
376                  * If the two DSCR values are different, we read again the CTRLA
377                  * then the DSCR till two consecutive read values from DSCR are
378                  * equal or till the maxium trials is reach.
379                  * This algorithm is very unlikely not to find a stable value for
380                  * DSCR.
381                  */
382
383                 dscr = channel_readl(atchan, DSCR);
384                 rmb(); /* ensure DSCR is read before CTRLA */
385                 ctrla = channel_readl(atchan, CTRLA);
386                 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
387                         u32 new_dscr;
388
389                         rmb(); /* ensure DSCR is read after CTRLA */
390                         new_dscr = channel_readl(atchan, DSCR);
391
392                         /*
393                          * If the DSCR register value has not changed inside the
394                          * DMA controller since the previous read, we assume
395                          * that both the dscr and ctrla values refers to the
396                          * very same descriptor.
397                          */
398                         if (likely(new_dscr == dscr))
399                                 break;
400
401                         /*
402                          * DSCR has changed inside the DMA controller, so the
403                          * previouly read value of CTRLA may refer to an already
404                          * processed descriptor hence could be outdated.
405                          * We need to update ctrla to match the current
406                          * descriptor.
407                          */
408                         dscr = new_dscr;
409                         rmb(); /* ensure DSCR is read before CTRLA */
410                         ctrla = channel_readl(atchan, CTRLA);
411                 }
412                 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
413                         return -ETIMEDOUT;
414
415                 /* for the first descriptor we can be more accurate */
416                 if (desc_first->lli.dscr == dscr)
417                         return atc_calc_bytes_left(ret, ctrla);
418
419                 ret -= desc_first->len;
420                 list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
421                         if (desc->lli.dscr == dscr)
422                                 break;
423
424                         ret -= desc->len;
425                 }
426
427                 /*
428                  * For the current descriptor in the chain we can calculate
429                  * the remaining bytes using the channel's register.
430                  */
431                 ret = atc_calc_bytes_left(ret, ctrla);
432         } else {
433                 /* single transfer */
434                 ctrla = channel_readl(atchan, CTRLA);
435                 ret = atc_calc_bytes_left(ret, ctrla);
436         }
437
438         return ret;
439 }
440
441 /**
442  * atc_chain_complete - finish work for one transaction chain
443  * @atchan: channel we work on
444  * @desc: descriptor at the head of the chain we want do complete
445  *
446  * Called with atchan->lock held and bh disabled */
447 static void
448 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
449 {
450         struct dma_async_tx_descriptor  *txd = &desc->txd;
451         struct at_dma                   *atdma = to_at_dma(atchan->chan_common.device);
452
453         dev_vdbg(chan2dev(&atchan->chan_common),
454                 "descriptor %u complete\n", txd->cookie);
455
456         /* mark the descriptor as complete for non cyclic cases only */
457         if (!atc_chan_is_cyclic(atchan))
458                 dma_cookie_complete(txd);
459
460         /* If the transfer was a memset, free our temporary buffer */
461         if (desc->memset_buffer) {
462                 dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
463                               desc->memset_paddr);
464                 desc->memset_buffer = false;
465         }
466
467         /* move children to free_list */
468         list_splice_init(&desc->tx_list, &atchan->free_list);
469         /* move myself to free_list */
470         list_move(&desc->desc_node, &atchan->free_list);
471
472         dma_descriptor_unmap(txd);
473         /* for cyclic transfers,
474          * no need to replay callback function while stopping */
475         if (!atc_chan_is_cyclic(atchan)) {
476                 dma_async_tx_callback   callback = txd->callback;
477                 void                    *param = txd->callback_param;
478
479                 /*
480                  * The API requires that no submissions are done from a
481                  * callback, so we don't need to drop the lock here
482                  */
483                 if (callback)
484                         callback(param);
485         }
486
487         dma_run_dependencies(txd);
488 }
489
490 /**
491  * atc_complete_all - finish work for all transactions
492  * @atchan: channel to complete transactions for
493  *
494  * Eventually submit queued descriptors if any
495  *
496  * Assume channel is idle while calling this function
497  * Called with atchan->lock held and bh disabled
498  */
499 static void atc_complete_all(struct at_dma_chan *atchan)
500 {
501         struct at_desc *desc, *_desc;
502         LIST_HEAD(list);
503
504         dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
505
506         /*
507          * Submit queued descriptors ASAP, i.e. before we go through
508          * the completed ones.
509          */
510         if (!list_empty(&atchan->queue))
511                 atc_dostart(atchan, atc_first_queued(atchan));
512         /* empty active_list now it is completed */
513         list_splice_init(&atchan->active_list, &list);
514         /* empty queue list by moving descriptors (if any) to active_list */
515         list_splice_init(&atchan->queue, &atchan->active_list);
516
517         list_for_each_entry_safe(desc, _desc, &list, desc_node)
518                 atc_chain_complete(atchan, desc);
519 }
520
521 /**
522  * atc_advance_work - at the end of a transaction, move forward
523  * @atchan: channel where the transaction ended
524  *
525  * Called with atchan->lock held and bh disabled
526  */
527 static void atc_advance_work(struct at_dma_chan *atchan)
528 {
529         dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
530
531         if (atc_chan_is_enabled(atchan))
532                 return;
533
534         if (list_empty(&atchan->active_list) ||
535             list_is_singular(&atchan->active_list)) {
536                 atc_complete_all(atchan);
537         } else {
538                 atc_chain_complete(atchan, atc_first_active(atchan));
539                 /* advance work */
540                 atc_dostart(atchan, atc_first_active(atchan));
541         }
542 }
543
544
545 /**
546  * atc_handle_error - handle errors reported by DMA controller
547  * @atchan: channel where error occurs
548  *
549  * Called with atchan->lock held and bh disabled
550  */
551 static void atc_handle_error(struct at_dma_chan *atchan)
552 {
553         struct at_desc *bad_desc;
554         struct at_desc *child;
555
556         /*
557          * The descriptor currently at the head of the active list is
558          * broked. Since we don't have any way to report errors, we'll
559          * just have to scream loudly and try to carry on.
560          */
561         bad_desc = atc_first_active(atchan);
562         list_del_init(&bad_desc->desc_node);
563
564         /* As we are stopped, take advantage to push queued descriptors
565          * in active_list */
566         list_splice_init(&atchan->queue, atchan->active_list.prev);
567
568         /* Try to restart the controller */
569         if (!list_empty(&atchan->active_list))
570                 atc_dostart(atchan, atc_first_active(atchan));
571
572         /*
573          * KERN_CRITICAL may seem harsh, but since this only happens
574          * when someone submits a bad physical address in a
575          * descriptor, we should consider ourselves lucky that the
576          * controller flagged an error instead of scribbling over
577          * random memory locations.
578          */
579         dev_crit(chan2dev(&atchan->chan_common),
580                         "Bad descriptor submitted for DMA!\n");
581         dev_crit(chan2dev(&atchan->chan_common),
582                         "  cookie: %d\n", bad_desc->txd.cookie);
583         atc_dump_lli(atchan, &bad_desc->lli);
584         list_for_each_entry(child, &bad_desc->tx_list, desc_node)
585                 atc_dump_lli(atchan, &child->lli);
586
587         /* Pretend the descriptor completed successfully */
588         atc_chain_complete(atchan, bad_desc);
589 }
590
591 /**
592  * atc_handle_cyclic - at the end of a period, run callback function
593  * @atchan: channel used for cyclic operations
594  *
595  * Called with atchan->lock held and bh disabled
596  */
597 static void atc_handle_cyclic(struct at_dma_chan *atchan)
598 {
599         struct at_desc                  *first = atc_first_active(atchan);
600         struct dma_async_tx_descriptor  *txd = &first->txd;
601         dma_async_tx_callback           callback = txd->callback;
602         void                            *param = txd->callback_param;
603
604         dev_vdbg(chan2dev(&atchan->chan_common),
605                         "new cyclic period llp 0x%08x\n",
606                         channel_readl(atchan, DSCR));
607
608         if (callback)
609                 callback(param);
610 }
611
612 /*--  IRQ & Tasklet  ---------------------------------------------------*/
613
614 static void atc_tasklet(unsigned long data)
615 {
616         struct at_dma_chan *atchan = (struct at_dma_chan *)data;
617         unsigned long flags;
618
619         spin_lock_irqsave(&atchan->lock, flags);
620         if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
621                 atc_handle_error(atchan);
622         else if (atc_chan_is_cyclic(atchan))
623                 atc_handle_cyclic(atchan);
624         else
625                 atc_advance_work(atchan);
626
627         spin_unlock_irqrestore(&atchan->lock, flags);
628 }
629
630 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
631 {
632         struct at_dma           *atdma = (struct at_dma *)dev_id;
633         struct at_dma_chan      *atchan;
634         int                     i;
635         u32                     status, pending, imr;
636         int                     ret = IRQ_NONE;
637
638         do {
639                 imr = dma_readl(atdma, EBCIMR);
640                 status = dma_readl(atdma, EBCISR);
641                 pending = status & imr;
642
643                 if (!pending)
644                         break;
645
646                 dev_vdbg(atdma->dma_common.dev,
647                         "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
648                          status, imr, pending);
649
650                 for (i = 0; i < atdma->dma_common.chancnt; i++) {
651                         atchan = &atdma->chan[i];
652                         if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
653                                 if (pending & AT_DMA_ERR(i)) {
654                                         /* Disable channel on AHB error */
655                                         dma_writel(atdma, CHDR,
656                                                 AT_DMA_RES(i) | atchan->mask);
657                                         /* Give information to tasklet */
658                                         set_bit(ATC_IS_ERROR, &atchan->status);
659                                 }
660                                 tasklet_schedule(&atchan->tasklet);
661                                 ret = IRQ_HANDLED;
662                         }
663                 }
664
665         } while (pending);
666
667         return ret;
668 }
669
670
671 /*--  DMA Engine API  --------------------------------------------------*/
672
673 /**
674  * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
675  * @desc: descriptor at the head of the transaction chain
676  *
677  * Queue chain if DMA engine is working already
678  *
679  * Cookie increment and adding to active_list or queue must be atomic
680  */
681 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
682 {
683         struct at_desc          *desc = txd_to_at_desc(tx);
684         struct at_dma_chan      *atchan = to_at_dma_chan(tx->chan);
685         dma_cookie_t            cookie;
686         unsigned long           flags;
687
688         spin_lock_irqsave(&atchan->lock, flags);
689         cookie = dma_cookie_assign(tx);
690
691         if (list_empty(&atchan->active_list)) {
692                 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
693                                 desc->txd.cookie);
694                 atc_dostart(atchan, desc);
695                 list_add_tail(&desc->desc_node, &atchan->active_list);
696         } else {
697                 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
698                                 desc->txd.cookie);
699                 list_add_tail(&desc->desc_node, &atchan->queue);
700         }
701
702         spin_unlock_irqrestore(&atchan->lock, flags);
703
704         return cookie;
705 }
706
707 /**
708  * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
709  * @chan: the channel to prepare operation on
710  * @xt: Interleaved transfer template
711  * @flags: tx descriptor status flags
712  */
713 static struct dma_async_tx_descriptor *
714 atc_prep_dma_interleaved(struct dma_chan *chan,
715                          struct dma_interleaved_template *xt,
716                          unsigned long flags)
717 {
718         struct at_dma_chan      *atchan = to_at_dma_chan(chan);
719         struct data_chunk       *first = xt->sgl;
720         struct at_desc          *desc = NULL;
721         size_t                  xfer_count;
722         unsigned int            dwidth;
723         u32                     ctrla;
724         u32                     ctrlb;
725         size_t                  len = 0;
726         int                     i;
727
728         if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
729                 return NULL;
730
731         dev_info(chan2dev(chan),
732                  "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
733                 __func__, &xt->src_start, &xt->dst_start, xt->numf,
734                 xt->frame_size, flags);
735
736         /*
737          * The controller can only "skip" X bytes every Y bytes, so we
738          * need to make sure we are given a template that fit that
739          * description, ie a template with chunks that always have the
740          * same size, with the same ICGs.
741          */
742         for (i = 0; i < xt->frame_size; i++) {
743                 struct data_chunk *chunk = xt->sgl + i;
744
745                 if ((chunk->size != xt->sgl->size) ||
746                     (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
747                     (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
748                         dev_err(chan2dev(chan),
749                                 "%s: the controller can transfer only identical chunks\n",
750                                 __func__);
751                         return NULL;
752                 }
753
754                 len += chunk->size;
755         }
756
757         dwidth = atc_get_xfer_width(xt->src_start,
758                                     xt->dst_start, len);
759
760         xfer_count = len >> dwidth;
761         if (xfer_count > ATC_BTSIZE_MAX) {
762                 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
763                 return NULL;
764         }
765
766         ctrla = ATC_SRC_WIDTH(dwidth) |
767                 ATC_DST_WIDTH(dwidth);
768
769         ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
770                 | ATC_SRC_ADDR_MODE_INCR
771                 | ATC_DST_ADDR_MODE_INCR
772                 | ATC_SRC_PIP
773                 | ATC_DST_PIP
774                 | ATC_FC_MEM2MEM;
775
776         /* create the transfer */
777         desc = atc_desc_get(atchan);
778         if (!desc) {
779                 dev_err(chan2dev(chan),
780                         "%s: couldn't allocate our descriptor\n", __func__);
781                 return NULL;
782         }
783
784         desc->lli.saddr = xt->src_start;
785         desc->lli.daddr = xt->dst_start;
786         desc->lli.ctrla = ctrla | xfer_count;
787         desc->lli.ctrlb = ctrlb;
788
789         desc->boundary = first->size >> dwidth;
790         desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
791         desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
792
793         desc->txd.cookie = -EBUSY;
794         desc->total_len = desc->len = len;
795
796         /* set end-of-link to the last link descriptor of list*/
797         set_desc_eol(desc);
798
799         desc->txd.flags = flags; /* client is in control of this ack */
800
801         return &desc->txd;
802 }
803
804 /**
805  * atc_prep_dma_memcpy - prepare a memcpy operation
806  * @chan: the channel to prepare operation on
807  * @dest: operation virtual destination address
808  * @src: operation virtual source address
809  * @len: operation length
810  * @flags: tx descriptor status flags
811  */
812 static struct dma_async_tx_descriptor *
813 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
814                 size_t len, unsigned long flags)
815 {
816         struct at_dma_chan      *atchan = to_at_dma_chan(chan);
817         struct at_desc          *desc = NULL;
818         struct at_desc          *first = NULL;
819         struct at_desc          *prev = NULL;
820         size_t                  xfer_count;
821         size_t                  offset;
822         unsigned int            src_width;
823         unsigned int            dst_width;
824         u32                     ctrla;
825         u32                     ctrlb;
826
827         dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
828                         &dest, &src, len, flags);
829
830         if (unlikely(!len)) {
831                 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
832                 return NULL;
833         }
834
835         ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
836                 | ATC_SRC_ADDR_MODE_INCR
837                 | ATC_DST_ADDR_MODE_INCR
838                 | ATC_FC_MEM2MEM;
839
840         /*
841          * We can be a lot more clever here, but this should take care
842          * of the most common optimization.
843          */
844         src_width = dst_width = atc_get_xfer_width(src, dest, len);
845
846         ctrla = ATC_SRC_WIDTH(src_width) |
847                 ATC_DST_WIDTH(dst_width);
848
849         for (offset = 0; offset < len; offset += xfer_count << src_width) {
850                 xfer_count = min_t(size_t, (len - offset) >> src_width,
851                                 ATC_BTSIZE_MAX);
852
853                 desc = atc_desc_get(atchan);
854                 if (!desc)
855                         goto err_desc_get;
856
857                 desc->lli.saddr = src + offset;
858                 desc->lli.daddr = dest + offset;
859                 desc->lli.ctrla = ctrla | xfer_count;
860                 desc->lli.ctrlb = ctrlb;
861
862                 desc->txd.cookie = 0;
863                 desc->len = xfer_count << src_width;
864
865                 atc_desc_chain(&first, &prev, desc);
866         }
867
868         /* First descriptor of the chain embedds additional information */
869         first->txd.cookie = -EBUSY;
870         first->total_len = len;
871
872         /* set end-of-link to the last link descriptor of list*/
873         set_desc_eol(desc);
874
875         first->txd.flags = flags; /* client is in control of this ack */
876
877         return &first->txd;
878
879 err_desc_get:
880         atc_desc_put(atchan, first);
881         return NULL;
882 }
883
884 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
885                                               dma_addr_t psrc,
886                                               dma_addr_t pdst,
887                                               size_t len)
888 {
889         struct at_dma_chan *atchan = to_at_dma_chan(chan);
890         struct at_desc *desc;
891         size_t xfer_count;
892
893         u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
894         u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
895                 ATC_SRC_ADDR_MODE_FIXED |
896                 ATC_DST_ADDR_MODE_INCR |
897                 ATC_FC_MEM2MEM;
898
899         xfer_count = len >> 2;
900         if (xfer_count > ATC_BTSIZE_MAX) {
901                 dev_err(chan2dev(chan), "%s: buffer is too big\n",
902                         __func__);
903                 return NULL;
904         }
905
906         desc = atc_desc_get(atchan);
907         if (!desc) {
908                 dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
909                         __func__);
910                 return NULL;
911         }
912
913         desc->lli.saddr = psrc;
914         desc->lli.daddr = pdst;
915         desc->lli.ctrla = ctrla | xfer_count;
916         desc->lli.ctrlb = ctrlb;
917
918         desc->txd.cookie = 0;
919         desc->len = len;
920
921         return desc;
922 }
923
924 /**
925  * atc_prep_dma_memset - prepare a memcpy operation
926  * @chan: the channel to prepare operation on
927  * @dest: operation virtual destination address
928  * @value: value to set memory buffer to
929  * @len: operation length
930  * @flags: tx descriptor status flags
931  */
932 static struct dma_async_tx_descriptor *
933 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
934                     size_t len, unsigned long flags)
935 {
936         struct at_dma           *atdma = to_at_dma(chan->device);
937         struct at_desc          *desc;
938         void __iomem            *vaddr;
939         dma_addr_t              paddr;
940
941         dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
942                 &dest, value, len, flags);
943
944         if (unlikely(!len)) {
945                 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
946                 return NULL;
947         }
948
949         if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
950                 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
951                         __func__);
952                 return NULL;
953         }
954
955         vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
956         if (!vaddr) {
957                 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
958                         __func__);
959                 return NULL;
960         }
961         *(u32*)vaddr = value;
962
963         desc = atc_create_memset_desc(chan, paddr, dest, len);
964         if (!desc) {
965                 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
966                         __func__);
967                 goto err_free_buffer;
968         }
969
970         desc->memset_paddr = paddr;
971         desc->memset_vaddr = vaddr;
972         desc->memset_buffer = true;
973
974         desc->txd.cookie = -EBUSY;
975         desc->total_len = len;
976
977         /* set end-of-link on the descriptor */
978         set_desc_eol(desc);
979
980         desc->txd.flags = flags;
981
982         return &desc->txd;
983
984 err_free_buffer:
985         dma_pool_free(atdma->memset_pool, vaddr, paddr);
986         return NULL;
987 }
988
989 static struct dma_async_tx_descriptor *
990 atc_prep_dma_memset_sg(struct dma_chan *chan,
991                        struct scatterlist *sgl,
992                        unsigned int sg_len, int value,
993                        unsigned long flags)
994 {
995         struct at_dma_chan      *atchan = to_at_dma_chan(chan);
996         struct at_dma           *atdma = to_at_dma(chan->device);
997         struct at_desc          *desc = NULL, *first = NULL, *prev = NULL;
998         struct scatterlist      *sg;
999         void __iomem            *vaddr;
1000         dma_addr_t              paddr;
1001         size_t                  total_len = 0;
1002         int                     i;
1003
1004         dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
1005                  value, sg_len, flags);
1006
1007         if (unlikely(!sgl || !sg_len)) {
1008                 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1009                         __func__);
1010                 return NULL;
1011         }
1012
1013         vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1014         if (!vaddr) {
1015                 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1016                         __func__);
1017                 return NULL;
1018         }
1019         *(u32*)vaddr = value;
1020
1021         for_each_sg(sgl, sg, sg_len, i) {
1022                 dma_addr_t dest = sg_dma_address(sg);
1023                 size_t len = sg_dma_len(sg);
1024
1025                 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1026                          __func__, &dest, len);
1027
1028                 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1029                         dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1030                                 __func__);
1031                         goto err_put_desc;
1032                 }
1033
1034                 desc = atc_create_memset_desc(chan, paddr, dest, len);
1035                 if (!desc)
1036                         goto err_put_desc;
1037
1038                 atc_desc_chain(&first, &prev, desc);
1039
1040                 total_len += len;
1041         }
1042
1043         /*
1044          * Only set the buffer pointers on the last descriptor to
1045          * avoid free'ing while we have our transfer still going
1046          */
1047         desc->memset_paddr = paddr;
1048         desc->memset_vaddr = vaddr;
1049         desc->memset_buffer = true;
1050
1051         first->txd.cookie = -EBUSY;
1052         first->total_len = total_len;
1053
1054         /* set end-of-link on the descriptor */
1055         set_desc_eol(desc);
1056
1057         first->txd.flags = flags;
1058
1059         return &first->txd;
1060
1061 err_put_desc:
1062         atc_desc_put(atchan, first);
1063         return NULL;
1064 }
1065
1066 /**
1067  * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1068  * @chan: DMA channel
1069  * @sgl: scatterlist to transfer to/from
1070  * @sg_len: number of entries in @scatterlist
1071  * @direction: DMA direction
1072  * @flags: tx descriptor status flags
1073  * @context: transaction context (ignored)
1074  */
1075 static struct dma_async_tx_descriptor *
1076 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1077                 unsigned int sg_len, enum dma_transfer_direction direction,
1078                 unsigned long flags, void *context)
1079 {
1080         struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1081         struct at_dma_slave     *atslave = chan->private;
1082         struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1083         struct at_desc          *first = NULL;
1084         struct at_desc          *prev = NULL;
1085         u32                     ctrla;
1086         u32                     ctrlb;
1087         dma_addr_t              reg;
1088         unsigned int            reg_width;
1089         unsigned int            mem_width;
1090         unsigned int            i;
1091         struct scatterlist      *sg;
1092         size_t                  total_len = 0;
1093
1094         dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1095                         sg_len,
1096                         direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1097                         flags);
1098
1099         if (unlikely(!atslave || !sg_len)) {
1100                 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1101                 return NULL;
1102         }
1103
1104         ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1105                 | ATC_DCSIZE(sconfig->dst_maxburst);
1106         ctrlb = ATC_IEN;
1107
1108         switch (direction) {
1109         case DMA_MEM_TO_DEV:
1110                 reg_width = convert_buswidth(sconfig->dst_addr_width);
1111                 ctrla |=  ATC_DST_WIDTH(reg_width);
1112                 ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1113                         | ATC_SRC_ADDR_MODE_INCR
1114                         | ATC_FC_MEM2PER
1115                         | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1116                 reg = sconfig->dst_addr;
1117                 for_each_sg(sgl, sg, sg_len, i) {
1118                         struct at_desc  *desc;
1119                         u32             len;
1120                         u32             mem;
1121
1122                         desc = atc_desc_get(atchan);
1123                         if (!desc)
1124                                 goto err_desc_get;
1125
1126                         mem = sg_dma_address(sg);
1127                         len = sg_dma_len(sg);
1128                         if (unlikely(!len)) {
1129                                 dev_dbg(chan2dev(chan),
1130                                         "prep_slave_sg: sg(%d) data length is zero\n", i);
1131                                 goto err;
1132                         }
1133                         mem_width = 2;
1134                         if (unlikely(mem & 3 || len & 3))
1135                                 mem_width = 0;
1136
1137                         desc->lli.saddr = mem;
1138                         desc->lli.daddr = reg;
1139                         desc->lli.ctrla = ctrla
1140                                         | ATC_SRC_WIDTH(mem_width)
1141                                         | len >> mem_width;
1142                         desc->lli.ctrlb = ctrlb;
1143                         desc->len = len;
1144
1145                         atc_desc_chain(&first, &prev, desc);
1146                         total_len += len;
1147                 }
1148                 break;
1149         case DMA_DEV_TO_MEM:
1150                 reg_width = convert_buswidth(sconfig->src_addr_width);
1151                 ctrla |=  ATC_SRC_WIDTH(reg_width);
1152                 ctrlb |=  ATC_DST_ADDR_MODE_INCR
1153                         | ATC_SRC_ADDR_MODE_FIXED
1154                         | ATC_FC_PER2MEM
1155                         | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1156
1157                 reg = sconfig->src_addr;
1158                 for_each_sg(sgl, sg, sg_len, i) {
1159                         struct at_desc  *desc;
1160                         u32             len;
1161                         u32             mem;
1162
1163                         desc = atc_desc_get(atchan);
1164                         if (!desc)
1165                                 goto err_desc_get;
1166
1167                         mem = sg_dma_address(sg);
1168                         len = sg_dma_len(sg);
1169                         if (unlikely(!len)) {
1170                                 dev_dbg(chan2dev(chan),
1171                                         "prep_slave_sg: sg(%d) data length is zero\n", i);
1172                                 goto err;
1173                         }
1174                         mem_width = 2;
1175                         if (unlikely(mem & 3 || len & 3))
1176                                 mem_width = 0;
1177
1178                         desc->lli.saddr = reg;
1179                         desc->lli.daddr = mem;
1180                         desc->lli.ctrla = ctrla
1181                                         | ATC_DST_WIDTH(mem_width)
1182                                         | len >> reg_width;
1183                         desc->lli.ctrlb = ctrlb;
1184                         desc->len = len;
1185
1186                         atc_desc_chain(&first, &prev, desc);
1187                         total_len += len;
1188                 }
1189                 break;
1190         default:
1191                 return NULL;
1192         }
1193
1194         /* set end-of-link to the last link descriptor of list*/
1195         set_desc_eol(prev);
1196
1197         /* First descriptor of the chain embedds additional information */
1198         first->txd.cookie = -EBUSY;
1199         first->total_len = total_len;
1200
1201         /* first link descriptor of list is responsible of flags */
1202         first->txd.flags = flags; /* client is in control of this ack */
1203
1204         return &first->txd;
1205
1206 err_desc_get:
1207         dev_err(chan2dev(chan), "not enough descriptors available\n");
1208 err:
1209         atc_desc_put(atchan, first);
1210         return NULL;
1211 }
1212
1213 /**
1214  * atc_prep_dma_sg - prepare memory to memory scather-gather operation
1215  * @chan: the channel to prepare operation on
1216  * @dst_sg: destination scatterlist
1217  * @dst_nents: number of destination scatterlist entries
1218  * @src_sg: source scatterlist
1219  * @src_nents: number of source scatterlist entries
1220  * @flags: tx descriptor status flags
1221  */
1222 static struct dma_async_tx_descriptor *
1223 atc_prep_dma_sg(struct dma_chan *chan,
1224                 struct scatterlist *dst_sg, unsigned int dst_nents,
1225                 struct scatterlist *src_sg, unsigned int src_nents,
1226                 unsigned long flags)
1227 {
1228         struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1229         struct at_desc          *desc = NULL;
1230         struct at_desc          *first = NULL;
1231         struct at_desc          *prev = NULL;
1232         unsigned int            src_width;
1233         unsigned int            dst_width;
1234         size_t                  xfer_count;
1235         u32                     ctrla;
1236         u32                     ctrlb;
1237         size_t                  dst_len = 0, src_len = 0;
1238         dma_addr_t              dst = 0, src = 0;
1239         size_t                  len = 0, total_len = 0;
1240
1241         if (unlikely(dst_nents == 0 || src_nents == 0))
1242                 return NULL;
1243
1244         if (unlikely(dst_sg == NULL || src_sg == NULL))
1245                 return NULL;
1246
1247         ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
1248                 | ATC_SRC_ADDR_MODE_INCR
1249                 | ATC_DST_ADDR_MODE_INCR
1250                 | ATC_FC_MEM2MEM;
1251
1252         /*
1253          * loop until there is either no more source or no more destination
1254          * scatterlist entry
1255          */
1256         while (true) {
1257
1258                 /* prepare the next transfer */
1259                 if (dst_len == 0) {
1260
1261                         /* no more destination scatterlist entries */
1262                         if (!dst_sg || !dst_nents)
1263                                 break;
1264
1265                         dst = sg_dma_address(dst_sg);
1266                         dst_len = sg_dma_len(dst_sg);
1267
1268                         dst_sg = sg_next(dst_sg);
1269                         dst_nents--;
1270                 }
1271
1272                 if (src_len == 0) {
1273
1274                         /* no more source scatterlist entries */
1275                         if (!src_sg || !src_nents)
1276                                 break;
1277
1278                         src = sg_dma_address(src_sg);
1279                         src_len = sg_dma_len(src_sg);
1280
1281                         src_sg = sg_next(src_sg);
1282                         src_nents--;
1283                 }
1284
1285                 len = min_t(size_t, src_len, dst_len);
1286                 if (len == 0)
1287                         continue;
1288
1289                 /* take care for the alignment */
1290                 src_width = dst_width = atc_get_xfer_width(src, dst, len);
1291
1292                 ctrla = ATC_SRC_WIDTH(src_width) |
1293                         ATC_DST_WIDTH(dst_width);
1294
1295                 /*
1296                  * The number of transfers to set up refer to the source width
1297                  * that depends on the alignment.
1298                  */
1299                 xfer_count = len >> src_width;
1300                 if (xfer_count > ATC_BTSIZE_MAX) {
1301                         xfer_count = ATC_BTSIZE_MAX;
1302                         len = ATC_BTSIZE_MAX << src_width;
1303                 }
1304
1305                 /* create the transfer */
1306                 desc = atc_desc_get(atchan);
1307                 if (!desc)
1308                         goto err_desc_get;
1309
1310                 desc->lli.saddr = src;
1311                 desc->lli.daddr = dst;
1312                 desc->lli.ctrla = ctrla | xfer_count;
1313                 desc->lli.ctrlb = ctrlb;
1314
1315                 desc->txd.cookie = 0;
1316                 desc->len = len;
1317
1318                 atc_desc_chain(&first, &prev, desc);
1319
1320                 /* update the lengths and addresses for the next loop cycle */
1321                 dst_len -= len;
1322                 src_len -= len;
1323                 dst += len;
1324                 src += len;
1325
1326                 total_len += len;
1327         }
1328
1329         /* First descriptor of the chain embedds additional information */
1330         first->txd.cookie = -EBUSY;
1331         first->total_len = total_len;
1332
1333         /* set end-of-link to the last link descriptor of list*/
1334         set_desc_eol(desc);
1335
1336         first->txd.flags = flags; /* client is in control of this ack */
1337
1338         return &first->txd;
1339
1340 err_desc_get:
1341         atc_desc_put(atchan, first);
1342         return NULL;
1343 }
1344
1345 /**
1346  * atc_dma_cyclic_check_values
1347  * Check for too big/unaligned periods and unaligned DMA buffer
1348  */
1349 static int
1350 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1351                 size_t period_len)
1352 {
1353         if (period_len > (ATC_BTSIZE_MAX << reg_width))
1354                 goto err_out;
1355         if (unlikely(period_len & ((1 << reg_width) - 1)))
1356                 goto err_out;
1357         if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1358                 goto err_out;
1359
1360         return 0;
1361
1362 err_out:
1363         return -EINVAL;
1364 }
1365
1366 /**
1367  * atc_dma_cyclic_fill_desc - Fill one period descriptor
1368  */
1369 static int
1370 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1371                 unsigned int period_index, dma_addr_t buf_addr,
1372                 unsigned int reg_width, size_t period_len,
1373                 enum dma_transfer_direction direction)
1374 {
1375         struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1376         struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1377         u32                     ctrla;
1378
1379         /* prepare common CRTLA value */
1380         ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1381                 | ATC_DCSIZE(sconfig->dst_maxburst)
1382                 | ATC_DST_WIDTH(reg_width)
1383                 | ATC_SRC_WIDTH(reg_width)
1384                 | period_len >> reg_width;
1385
1386         switch (direction) {
1387         case DMA_MEM_TO_DEV:
1388                 desc->lli.saddr = buf_addr + (period_len * period_index);
1389                 desc->lli.daddr = sconfig->dst_addr;
1390                 desc->lli.ctrla = ctrla;
1391                 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1392                                 | ATC_SRC_ADDR_MODE_INCR
1393                                 | ATC_FC_MEM2PER
1394                                 | ATC_SIF(atchan->mem_if)
1395                                 | ATC_DIF(atchan->per_if);
1396                 desc->len = period_len;
1397                 break;
1398
1399         case DMA_DEV_TO_MEM:
1400                 desc->lli.saddr = sconfig->src_addr;
1401                 desc->lli.daddr = buf_addr + (period_len * period_index);
1402                 desc->lli.ctrla = ctrla;
1403                 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1404                                 | ATC_SRC_ADDR_MODE_FIXED
1405                                 | ATC_FC_PER2MEM
1406                                 | ATC_SIF(atchan->per_if)
1407                                 | ATC_DIF(atchan->mem_if);
1408                 desc->len = period_len;
1409                 break;
1410
1411         default:
1412                 return -EINVAL;
1413         }
1414
1415         return 0;
1416 }
1417
1418 /**
1419  * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1420  * @chan: the DMA channel to prepare
1421  * @buf_addr: physical DMA address where the buffer starts
1422  * @buf_len: total number of bytes for the entire buffer
1423  * @period_len: number of bytes for each period
1424  * @direction: transfer direction, to or from device
1425  * @flags: tx descriptor status flags
1426  */
1427 static struct dma_async_tx_descriptor *
1428 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1429                 size_t period_len, enum dma_transfer_direction direction,
1430                 unsigned long flags)
1431 {
1432         struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1433         struct at_dma_slave     *atslave = chan->private;
1434         struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1435         struct at_desc          *first = NULL;
1436         struct at_desc          *prev = NULL;
1437         unsigned long           was_cyclic;
1438         unsigned int            reg_width;
1439         unsigned int            periods = buf_len / period_len;
1440         unsigned int            i;
1441
1442         dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1443                         direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1444                         &buf_addr,
1445                         periods, buf_len, period_len);
1446
1447         if (unlikely(!atslave || !buf_len || !period_len)) {
1448                 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1449                 return NULL;
1450         }
1451
1452         was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1453         if (was_cyclic) {
1454                 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1455                 return NULL;
1456         }
1457
1458         if (unlikely(!is_slave_direction(direction)))
1459                 goto err_out;
1460
1461         if (sconfig->direction == DMA_MEM_TO_DEV)
1462                 reg_width = convert_buswidth(sconfig->dst_addr_width);
1463         else
1464                 reg_width = convert_buswidth(sconfig->src_addr_width);
1465
1466         /* Check for too big/unaligned periods and unaligned DMA buffer */
1467         if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1468                 goto err_out;
1469
1470         /* build cyclic linked list */
1471         for (i = 0; i < periods; i++) {
1472                 struct at_desc  *desc;
1473
1474                 desc = atc_desc_get(atchan);
1475                 if (!desc)
1476                         goto err_desc_get;
1477
1478                 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1479                                              reg_width, period_len, direction))
1480                         goto err_desc_get;
1481
1482                 atc_desc_chain(&first, &prev, desc);
1483         }
1484
1485         /* lets make a cyclic list */
1486         prev->lli.dscr = first->txd.phys;
1487
1488         /* First descriptor of the chain embedds additional information */
1489         first->txd.cookie = -EBUSY;
1490         first->total_len = buf_len;
1491
1492         return &first->txd;
1493
1494 err_desc_get:
1495         dev_err(chan2dev(chan), "not enough descriptors available\n");
1496         atc_desc_put(atchan, first);
1497 err_out:
1498         clear_bit(ATC_IS_CYCLIC, &atchan->status);
1499         return NULL;
1500 }
1501
1502 static int atc_config(struct dma_chan *chan,
1503                       struct dma_slave_config *sconfig)
1504 {
1505         struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1506
1507         dev_vdbg(chan2dev(chan), "%s\n", __func__);
1508
1509         /* Check if it is chan is configured for slave transfers */
1510         if (!chan->private)
1511                 return -EINVAL;
1512
1513         memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1514
1515         convert_burst(&atchan->dma_sconfig.src_maxburst);
1516         convert_burst(&atchan->dma_sconfig.dst_maxburst);
1517
1518         return 0;
1519 }
1520
1521 static int atc_pause(struct dma_chan *chan)
1522 {
1523         struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1524         struct at_dma           *atdma = to_at_dma(chan->device);
1525         int                     chan_id = atchan->chan_common.chan_id;
1526         unsigned long           flags;
1527
1528         LIST_HEAD(list);
1529
1530         dev_vdbg(chan2dev(chan), "%s\n", __func__);
1531
1532         spin_lock_irqsave(&atchan->lock, flags);
1533
1534         dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1535         set_bit(ATC_IS_PAUSED, &atchan->status);
1536
1537         spin_unlock_irqrestore(&atchan->lock, flags);
1538
1539         return 0;
1540 }
1541
1542 static int atc_resume(struct dma_chan *chan)
1543 {
1544         struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1545         struct at_dma           *atdma = to_at_dma(chan->device);
1546         int                     chan_id = atchan->chan_common.chan_id;
1547         unsigned long           flags;
1548
1549         LIST_HEAD(list);
1550
1551         dev_vdbg(chan2dev(chan), "%s\n", __func__);
1552
1553         if (!atc_chan_is_paused(atchan))
1554                 return 0;
1555
1556         spin_lock_irqsave(&atchan->lock, flags);
1557
1558         dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1559         clear_bit(ATC_IS_PAUSED, &atchan->status);
1560
1561         spin_unlock_irqrestore(&atchan->lock, flags);
1562
1563         return 0;
1564 }
1565
1566 static int atc_terminate_all(struct dma_chan *chan)
1567 {
1568         struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1569         struct at_dma           *atdma = to_at_dma(chan->device);
1570         int                     chan_id = atchan->chan_common.chan_id;
1571         struct at_desc          *desc, *_desc;
1572         unsigned long           flags;
1573
1574         LIST_HEAD(list);
1575
1576         dev_vdbg(chan2dev(chan), "%s\n", __func__);
1577
1578         /*
1579          * This is only called when something went wrong elsewhere, so
1580          * we don't really care about the data. Just disable the
1581          * channel. We still have to poll the channel enable bit due
1582          * to AHB/HSB limitations.
1583          */
1584         spin_lock_irqsave(&atchan->lock, flags);
1585
1586         /* disabling channel: must also remove suspend state */
1587         dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1588
1589         /* confirm that this channel is disabled */
1590         while (dma_readl(atdma, CHSR) & atchan->mask)
1591                 cpu_relax();
1592
1593         /* active_list entries will end up before queued entries */
1594         list_splice_init(&atchan->queue, &list);
1595         list_splice_init(&atchan->active_list, &list);
1596
1597         /* Flush all pending and queued descriptors */
1598         list_for_each_entry_safe(desc, _desc, &list, desc_node)
1599                 atc_chain_complete(atchan, desc);
1600
1601         clear_bit(ATC_IS_PAUSED, &atchan->status);
1602         /* if channel dedicated to cyclic operations, free it */
1603         clear_bit(ATC_IS_CYCLIC, &atchan->status);
1604
1605         spin_unlock_irqrestore(&atchan->lock, flags);
1606
1607         return 0;
1608 }
1609
1610 /**
1611  * atc_tx_status - poll for transaction completion
1612  * @chan: DMA channel
1613  * @cookie: transaction identifier to check status of
1614  * @txstate: if not %NULL updated with transaction state
1615  *
1616  * If @txstate is passed in, upon return it reflect the driver
1617  * internal state and can be used with dma_async_is_complete() to check
1618  * the status of multiple cookies without re-checking hardware state.
1619  */
1620 static enum dma_status
1621 atc_tx_status(struct dma_chan *chan,
1622                 dma_cookie_t cookie,
1623                 struct dma_tx_state *txstate)
1624 {
1625         struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1626         unsigned long           flags;
1627         enum dma_status         ret;
1628         int bytes = 0;
1629
1630         ret = dma_cookie_status(chan, cookie, txstate);
1631         if (ret == DMA_COMPLETE)
1632                 return ret;
1633         /*
1634          * There's no point calculating the residue if there's
1635          * no txstate to store the value.
1636          */
1637         if (!txstate)
1638                 return DMA_ERROR;
1639
1640         spin_lock_irqsave(&atchan->lock, flags);
1641
1642         /*  Get number of bytes left in the active transactions */
1643         bytes = atc_get_bytes_left(chan, cookie);
1644
1645         spin_unlock_irqrestore(&atchan->lock, flags);
1646
1647         if (unlikely(bytes < 0)) {
1648                 dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1649                 return DMA_ERROR;
1650         } else {
1651                 dma_set_residue(txstate, bytes);
1652         }
1653
1654         dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1655                  ret, cookie, bytes);
1656
1657         return ret;
1658 }
1659
1660 /**
1661  * atc_issue_pending - try to finish work
1662  * @chan: target DMA channel
1663  */
1664 static void atc_issue_pending(struct dma_chan *chan)
1665 {
1666         struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1667         unsigned long           flags;
1668
1669         dev_vdbg(chan2dev(chan), "issue_pending\n");
1670
1671         /* Not needed for cyclic transfers */
1672         if (atc_chan_is_cyclic(atchan))
1673                 return;
1674
1675         spin_lock_irqsave(&atchan->lock, flags);
1676         atc_advance_work(atchan);
1677         spin_unlock_irqrestore(&atchan->lock, flags);
1678 }
1679
1680 /**
1681  * atc_alloc_chan_resources - allocate resources for DMA channel
1682  * @chan: allocate descriptor resources for this channel
1683  * @client: current client requesting the channel be ready for requests
1684  *
1685  * return - the number of allocated descriptors
1686  */
1687 static int atc_alloc_chan_resources(struct dma_chan *chan)
1688 {
1689         struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1690         struct at_dma           *atdma = to_at_dma(chan->device);
1691         struct at_desc          *desc;
1692         struct at_dma_slave     *atslave;
1693         unsigned long           flags;
1694         int                     i;
1695         u32                     cfg;
1696         LIST_HEAD(tmp_list);
1697
1698         dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1699
1700         /* ASSERT:  channel is idle */
1701         if (atc_chan_is_enabled(atchan)) {
1702                 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1703                 return -EIO;
1704         }
1705
1706         cfg = ATC_DEFAULT_CFG;
1707
1708         atslave = chan->private;
1709         if (atslave) {
1710                 /*
1711                  * We need controller-specific data to set up slave
1712                  * transfers.
1713                  */
1714                 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1715
1716                 /* if cfg configuration specified take it instead of default */
1717                 if (atslave->cfg)
1718                         cfg = atslave->cfg;
1719         }
1720
1721         /* have we already been set up?
1722          * reconfigure channel but no need to reallocate descriptors */
1723         if (!list_empty(&atchan->free_list))
1724                 return atchan->descs_allocated;
1725
1726         /* Allocate initial pool of descriptors */
1727         for (i = 0; i < init_nr_desc_per_channel; i++) {
1728                 desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1729                 if (!desc) {
1730                         dev_err(atdma->dma_common.dev,
1731                                 "Only %d initial descriptors\n", i);
1732                         break;
1733                 }
1734                 list_add_tail(&desc->desc_node, &tmp_list);
1735         }
1736
1737         spin_lock_irqsave(&atchan->lock, flags);
1738         atchan->descs_allocated = i;
1739         list_splice(&tmp_list, &atchan->free_list);
1740         dma_cookie_init(chan);
1741         spin_unlock_irqrestore(&atchan->lock, flags);
1742
1743         /* channel parameters */
1744         channel_writel(atchan, CFG, cfg);
1745
1746         dev_dbg(chan2dev(chan),
1747                 "alloc_chan_resources: allocated %d descriptors\n",
1748                 atchan->descs_allocated);
1749
1750         return atchan->descs_allocated;
1751 }
1752
1753 /**
1754  * atc_free_chan_resources - free all channel resources
1755  * @chan: DMA channel
1756  */
1757 static void atc_free_chan_resources(struct dma_chan *chan)
1758 {
1759         struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1760         struct at_dma           *atdma = to_at_dma(chan->device);
1761         struct at_desc          *desc, *_desc;
1762         LIST_HEAD(list);
1763
1764         dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1765                 atchan->descs_allocated);
1766
1767         /* ASSERT:  channel is idle */
1768         BUG_ON(!list_empty(&atchan->active_list));
1769         BUG_ON(!list_empty(&atchan->queue));
1770         BUG_ON(atc_chan_is_enabled(atchan));
1771
1772         list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1773                 dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1774                 list_del(&desc->desc_node);
1775                 /* free link descriptor */
1776                 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1777         }
1778         list_splice_init(&atchan->free_list, &list);
1779         atchan->descs_allocated = 0;
1780         atchan->status = 0;
1781
1782         dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1783 }
1784
1785 #ifdef CONFIG_OF
1786 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1787 {
1788         struct at_dma_slave *atslave = slave;
1789
1790         if (atslave->dma_dev == chan->device->dev) {
1791                 chan->private = atslave;
1792                 return true;
1793         } else {
1794                 return false;
1795         }
1796 }
1797
1798 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1799                                      struct of_dma *of_dma)
1800 {
1801         struct dma_chan *chan;
1802         struct at_dma_chan *atchan;
1803         struct at_dma_slave *atslave;
1804         dma_cap_mask_t mask;
1805         unsigned int per_id;
1806         struct platform_device *dmac_pdev;
1807
1808         if (dma_spec->args_count != 2)
1809                 return NULL;
1810
1811         dmac_pdev = of_find_device_by_node(dma_spec->np);
1812
1813         dma_cap_zero(mask);
1814         dma_cap_set(DMA_SLAVE, mask);
1815
1816         atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1817         if (!atslave)
1818                 return NULL;
1819
1820         atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1821         /*
1822          * We can fill both SRC_PER and DST_PER, one of these fields will be
1823          * ignored depending on DMA transfer direction.
1824          */
1825         per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1826         atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1827                      | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1828         /*
1829          * We have to translate the value we get from the device tree since
1830          * the half FIFO configuration value had to be 0 to keep backward
1831          * compatibility.
1832          */
1833         switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1834         case AT91_DMA_CFG_FIFOCFG_ALAP:
1835                 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1836                 break;
1837         case AT91_DMA_CFG_FIFOCFG_ASAP:
1838                 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1839                 break;
1840         case AT91_DMA_CFG_FIFOCFG_HALF:
1841         default:
1842                 atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1843         }
1844         atslave->dma_dev = &dmac_pdev->dev;
1845
1846         chan = dma_request_channel(mask, at_dma_filter, atslave);
1847         if (!chan)
1848                 return NULL;
1849
1850         atchan = to_at_dma_chan(chan);
1851         atchan->per_if = dma_spec->args[0] & 0xff;
1852         atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1853
1854         return chan;
1855 }
1856 #else
1857 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1858                                      struct of_dma *of_dma)
1859 {
1860         return NULL;
1861 }
1862 #endif
1863
1864 /*--  Module Management  -----------------------------------------------*/
1865
1866 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1867 static struct at_dma_platform_data at91sam9rl_config = {
1868         .nr_channels = 2,
1869 };
1870 static struct at_dma_platform_data at91sam9g45_config = {
1871         .nr_channels = 8,
1872 };
1873
1874 #if defined(CONFIG_OF)
1875 static const struct of_device_id atmel_dma_dt_ids[] = {
1876         {
1877                 .compatible = "atmel,at91sam9rl-dma",
1878                 .data = &at91sam9rl_config,
1879         }, {
1880                 .compatible = "atmel,at91sam9g45-dma",
1881                 .data = &at91sam9g45_config,
1882         }, {
1883                 /* sentinel */
1884         }
1885 };
1886
1887 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1888 #endif
1889
1890 static const struct platform_device_id atdma_devtypes[] = {
1891         {
1892                 .name = "at91sam9rl_dma",
1893                 .driver_data = (unsigned long) &at91sam9rl_config,
1894         }, {
1895                 .name = "at91sam9g45_dma",
1896                 .driver_data = (unsigned long) &at91sam9g45_config,
1897         }, {
1898                 /* sentinel */
1899         }
1900 };
1901
1902 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1903                                                 struct platform_device *pdev)
1904 {
1905         if (pdev->dev.of_node) {
1906                 const struct of_device_id *match;
1907                 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1908                 if (match == NULL)
1909                         return NULL;
1910                 return match->data;
1911         }
1912         return (struct at_dma_platform_data *)
1913                         platform_get_device_id(pdev)->driver_data;
1914 }
1915
1916 /**
1917  * at_dma_off - disable DMA controller
1918  * @atdma: the Atmel HDAMC device
1919  */
1920 static void at_dma_off(struct at_dma *atdma)
1921 {
1922         dma_writel(atdma, EN, 0);
1923
1924         /* disable all interrupts */
1925         dma_writel(atdma, EBCIDR, -1L);
1926
1927         /* confirm that all channels are disabled */
1928         while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1929                 cpu_relax();
1930 }
1931
1932 static int __init at_dma_probe(struct platform_device *pdev)
1933 {
1934         struct resource         *io;
1935         struct at_dma           *atdma;
1936         size_t                  size;
1937         int                     irq;
1938         int                     err;
1939         int                     i;
1940         const struct at_dma_platform_data *plat_dat;
1941
1942         /* setup platform data for each SoC */
1943         dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1944         dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask);
1945         dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1946         dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1947         dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1948         dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1949         dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1950         dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1951         dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask);
1952
1953         /* get DMA parameters from controller type */
1954         plat_dat = at_dma_get_driver_data(pdev);
1955         if (!plat_dat)
1956                 return -ENODEV;
1957
1958         io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1959         if (!io)
1960                 return -EINVAL;
1961
1962         irq = platform_get_irq(pdev, 0);
1963         if (irq < 0)
1964                 return irq;
1965
1966         size = sizeof(struct at_dma);
1967         size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1968         atdma = kzalloc(size, GFP_KERNEL);
1969         if (!atdma)
1970                 return -ENOMEM;
1971
1972         /* discover transaction capabilities */
1973         atdma->dma_common.cap_mask = plat_dat->cap_mask;
1974         atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1975
1976         size = resource_size(io);
1977         if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1978                 err = -EBUSY;
1979                 goto err_kfree;
1980         }
1981
1982         atdma->regs = ioremap(io->start, size);
1983         if (!atdma->regs) {
1984                 err = -ENOMEM;
1985                 goto err_release_r;
1986         }
1987
1988         atdma->clk = clk_get(&pdev->dev, "dma_clk");
1989         if (IS_ERR(atdma->clk)) {
1990                 err = PTR_ERR(atdma->clk);
1991                 goto err_clk;
1992         }
1993         err = clk_prepare_enable(atdma->clk);
1994         if (err)
1995                 goto err_clk_prepare;
1996
1997         /* force dma off, just in case */
1998         at_dma_off(atdma);
1999
2000         err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
2001         if (err)
2002                 goto err_irq;
2003
2004         platform_set_drvdata(pdev, atdma);
2005
2006         /* create a pool of consistent memory blocks for hardware descriptors */
2007         atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
2008                         &pdev->dev, sizeof(struct at_desc),
2009                         4 /* word alignment */, 0);
2010         if (!atdma->dma_desc_pool) {
2011                 dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
2012                 err = -ENOMEM;
2013                 goto err_desc_pool_create;
2014         }
2015
2016         /* create a pool of consistent memory blocks for memset blocks */
2017         atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
2018                                              &pdev->dev, sizeof(int), 4, 0);
2019         if (!atdma->memset_pool) {
2020                 dev_err(&pdev->dev, "No memory for memset dma pool\n");
2021                 err = -ENOMEM;
2022                 goto err_memset_pool_create;
2023         }
2024
2025         /* clear any pending interrupt */
2026         while (dma_readl(atdma, EBCISR))
2027                 cpu_relax();
2028
2029         /* initialize channels related values */
2030         INIT_LIST_HEAD(&atdma->dma_common.channels);
2031         for (i = 0; i < plat_dat->nr_channels; i++) {
2032                 struct at_dma_chan      *atchan = &atdma->chan[i];
2033
2034                 atchan->mem_if = AT_DMA_MEM_IF;
2035                 atchan->per_if = AT_DMA_PER_IF;
2036                 atchan->chan_common.device = &atdma->dma_common;
2037                 dma_cookie_init(&atchan->chan_common);
2038                 list_add_tail(&atchan->chan_common.device_node,
2039                                 &atdma->dma_common.channels);
2040
2041                 atchan->ch_regs = atdma->regs + ch_regs(i);
2042                 spin_lock_init(&atchan->lock);
2043                 atchan->mask = 1 << i;
2044
2045                 INIT_LIST_HEAD(&atchan->active_list);
2046                 INIT_LIST_HEAD(&atchan->queue);
2047                 INIT_LIST_HEAD(&atchan->free_list);
2048
2049                 tasklet_init(&atchan->tasklet, atc_tasklet,
2050                                 (unsigned long)atchan);
2051                 atc_enable_chan_irq(atdma, i);
2052         }
2053
2054         /* set base routines */
2055         atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
2056         atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
2057         atdma->dma_common.device_tx_status = atc_tx_status;
2058         atdma->dma_common.device_issue_pending = atc_issue_pending;
2059         atdma->dma_common.dev = &pdev->dev;
2060
2061         /* set prep routines based on capability */
2062         if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
2063                 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2064
2065         if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
2066                 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2067
2068         if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
2069                 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
2070                 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2071                 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
2072         }
2073
2074         if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
2075                 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
2076                 /* controller can do slave DMA: can trigger cyclic transfers */
2077                 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
2078                 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2079                 atdma->dma_common.device_config = atc_config;
2080                 atdma->dma_common.device_pause = atc_pause;
2081                 atdma->dma_common.device_resume = atc_resume;
2082                 atdma->dma_common.device_terminate_all = atc_terminate_all;
2083                 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
2084                 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2085                 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2086                 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2087         }
2088
2089         if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask))
2090                 atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg;
2091
2092         dma_writel(atdma, EN, AT_DMA_ENABLE);
2093
2094         dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s%s), %d channels\n",
2095           dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
2096           dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
2097           dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
2098           dma_has_cap(DMA_SG, atdma->dma_common.cap_mask)  ? "sg-cpy " : "",
2099           plat_dat->nr_channels);
2100
2101         dma_async_device_register(&atdma->dma_common);
2102
2103         /*
2104          * Do not return an error if the dmac node is not present in order to
2105          * not break the existing way of requesting channel with
2106          * dma_request_channel().
2107          */
2108         if (pdev->dev.of_node) {
2109                 err = of_dma_controller_register(pdev->dev.of_node,
2110                                                  at_dma_xlate, atdma);
2111                 if (err) {
2112                         dev_err(&pdev->dev, "could not register of_dma_controller\n");
2113                         goto err_of_dma_controller_register;
2114                 }
2115         }
2116
2117         return 0;
2118
2119 err_of_dma_controller_register:
2120         dma_async_device_unregister(&atdma->dma_common);
2121         dma_pool_destroy(atdma->memset_pool);
2122 err_memset_pool_create:
2123         dma_pool_destroy(atdma->dma_desc_pool);
2124 err_desc_pool_create:
2125         free_irq(platform_get_irq(pdev, 0), atdma);
2126 err_irq:
2127         clk_disable_unprepare(atdma->clk);
2128 err_clk_prepare:
2129         clk_put(atdma->clk);
2130 err_clk:
2131         iounmap(atdma->regs);
2132         atdma->regs = NULL;
2133 err_release_r:
2134         release_mem_region(io->start, size);
2135 err_kfree:
2136         kfree(atdma);
2137         return err;
2138 }
2139
2140 static int at_dma_remove(struct platform_device *pdev)
2141 {
2142         struct at_dma           *atdma = platform_get_drvdata(pdev);
2143         struct dma_chan         *chan, *_chan;
2144         struct resource         *io;
2145
2146         at_dma_off(atdma);
2147         dma_async_device_unregister(&atdma->dma_common);
2148
2149         dma_pool_destroy(atdma->memset_pool);
2150         dma_pool_destroy(atdma->dma_desc_pool);
2151         free_irq(platform_get_irq(pdev, 0), atdma);
2152
2153         list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2154                         device_node) {
2155                 struct at_dma_chan      *atchan = to_at_dma_chan(chan);
2156
2157                 /* Disable interrupts */
2158                 atc_disable_chan_irq(atdma, chan->chan_id);
2159
2160                 tasklet_kill(&atchan->tasklet);
2161                 list_del(&chan->device_node);
2162         }
2163
2164         clk_disable_unprepare(atdma->clk);
2165         clk_put(atdma->clk);
2166
2167         iounmap(atdma->regs);
2168         atdma->regs = NULL;
2169
2170         io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2171         release_mem_region(io->start, resource_size(io));
2172
2173         kfree(atdma);
2174
2175         return 0;
2176 }
2177
2178 static void at_dma_shutdown(struct platform_device *pdev)
2179 {
2180         struct at_dma   *atdma = platform_get_drvdata(pdev);
2181
2182         at_dma_off(platform_get_drvdata(pdev));
2183         clk_disable_unprepare(atdma->clk);
2184 }
2185
2186 static int at_dma_prepare(struct device *dev)
2187 {
2188         struct platform_device *pdev = to_platform_device(dev);
2189         struct at_dma *atdma = platform_get_drvdata(pdev);
2190         struct dma_chan *chan, *_chan;
2191
2192         list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2193                         device_node) {
2194                 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2195                 /* wait for transaction completion (except in cyclic case) */
2196                 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2197                         return -EAGAIN;
2198         }
2199         return 0;
2200 }
2201
2202 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2203 {
2204         struct dma_chan *chan = &atchan->chan_common;
2205
2206         /* Channel should be paused by user
2207          * do it anyway even if it is not done already */
2208         if (!atc_chan_is_paused(atchan)) {
2209                 dev_warn(chan2dev(chan),
2210                 "cyclic channel not paused, should be done by channel user\n");
2211                 atc_pause(chan);
2212         }
2213
2214         /* now preserve additional data for cyclic operations */
2215         /* next descriptor address in the cyclic list */
2216         atchan->save_dscr = channel_readl(atchan, DSCR);
2217
2218         vdbg_dump_regs(atchan);
2219 }
2220
2221 static int at_dma_suspend_noirq(struct device *dev)
2222 {
2223         struct platform_device *pdev = to_platform_device(dev);
2224         struct at_dma *atdma = platform_get_drvdata(pdev);
2225         struct dma_chan *chan, *_chan;
2226
2227         /* preserve data */
2228         list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2229                         device_node) {
2230                 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2231
2232                 if (atc_chan_is_cyclic(atchan))
2233                         atc_suspend_cyclic(atchan);
2234                 atchan->save_cfg = channel_readl(atchan, CFG);
2235         }
2236         atdma->save_imr = dma_readl(atdma, EBCIMR);
2237
2238         /* disable DMA controller */
2239         at_dma_off(atdma);
2240         clk_disable_unprepare(atdma->clk);
2241         return 0;
2242 }
2243
2244 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2245 {
2246         struct at_dma   *atdma = to_at_dma(atchan->chan_common.device);
2247
2248         /* restore channel status for cyclic descriptors list:
2249          * next descriptor in the cyclic list at the time of suspend */
2250         channel_writel(atchan, SADDR, 0);
2251         channel_writel(atchan, DADDR, 0);
2252         channel_writel(atchan, CTRLA, 0);
2253         channel_writel(atchan, CTRLB, 0);
2254         channel_writel(atchan, DSCR, atchan->save_dscr);
2255         dma_writel(atdma, CHER, atchan->mask);
2256
2257         /* channel pause status should be removed by channel user
2258          * We cannot take the initiative to do it here */
2259
2260         vdbg_dump_regs(atchan);
2261 }
2262
2263 static int at_dma_resume_noirq(struct device *dev)
2264 {
2265         struct platform_device *pdev = to_platform_device(dev);
2266         struct at_dma *atdma = platform_get_drvdata(pdev);
2267         struct dma_chan *chan, *_chan;
2268
2269         /* bring back DMA controller */
2270         clk_prepare_enable(atdma->clk);
2271         dma_writel(atdma, EN, AT_DMA_ENABLE);
2272
2273         /* clear any pending interrupt */
2274         while (dma_readl(atdma, EBCISR))
2275                 cpu_relax();
2276
2277         /* restore saved data */
2278         dma_writel(atdma, EBCIER, atdma->save_imr);
2279         list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2280                         device_node) {
2281                 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2282
2283                 channel_writel(atchan, CFG, atchan->save_cfg);
2284                 if (atc_chan_is_cyclic(atchan))
2285                         atc_resume_cyclic(atchan);
2286         }
2287         return 0;
2288 }
2289
2290 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2291         .prepare = at_dma_prepare,
2292         .suspend_noirq = at_dma_suspend_noirq,
2293         .resume_noirq = at_dma_resume_noirq,
2294 };
2295
2296 static struct platform_driver at_dma_driver = {
2297         .remove         = at_dma_remove,
2298         .shutdown       = at_dma_shutdown,
2299         .id_table       = atdma_devtypes,
2300         .driver = {
2301                 .name   = "at_hdmac",
2302                 .pm     = &at_dma_dev_pm_ops,
2303                 .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2304         },
2305 };
2306
2307 static int __init at_dma_init(void)
2308 {
2309         return platform_driver_probe(&at_dma_driver, at_dma_probe);
2310 }
2311 subsys_initcall(at_dma_init);
2312
2313 static void __exit at_dma_exit(void)
2314 {
2315         platform_driver_unregister(&at_dma_driver);
2316 }
2317 module_exit(at_dma_exit);
2318
2319 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2320 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2321 MODULE_LICENSE("GPL");
2322 MODULE_ALIAS("platform:at_hdmac");