x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / drivers / dma / cppi41.c
1 #include <linux/delay.h>
2 #include <linux/dmaengine.h>
3 #include <linux/dma-mapping.h>
4 #include <linux/platform_device.h>
5 #include <linux/module.h>
6 #include <linux/of.h>
7 #include <linux/slab.h>
8 #include <linux/of_dma.h>
9 #include <linux/of_irq.h>
10 #include <linux/dmapool.h>
11 #include <linux/interrupt.h>
12 #include <linux/of_address.h>
13 #include <linux/pm_runtime.h>
14 #include "dmaengine.h"
15
16 #define DESC_TYPE       27
17 #define DESC_TYPE_HOST  0x10
18 #define DESC_TYPE_TEARD 0x13
19
20 #define TD_DESC_IS_RX   (1 << 16)
21 #define TD_DESC_DMA_NUM 10
22
23 #define DESC_LENGTH_BITS_NUM    21
24
25 #define DESC_TYPE_USB   (5 << 26)
26 #define DESC_PD_COMPLETE        (1 << 31)
27
28 /* DMA engine */
29 #define DMA_TDFDQ       4
30 #define DMA_TXGCR(x)    (0x800 + (x) * 0x20)
31 #define DMA_RXGCR(x)    (0x808 + (x) * 0x20)
32 #define RXHPCRA0                4
33
34 #define GCR_CHAN_ENABLE         (1 << 31)
35 #define GCR_TEARDOWN            (1 << 30)
36 #define GCR_STARV_RETRY         (1 << 24)
37 #define GCR_DESC_TYPE_HOST      (1 << 14)
38
39 /* DMA scheduler */
40 #define DMA_SCHED_CTRL          0
41 #define DMA_SCHED_CTRL_EN       (1 << 31)
42 #define DMA_SCHED_WORD(x)       ((x) * 4 + 0x800)
43
44 #define SCHED_ENTRY0_CHAN(x)    ((x) << 0)
45 #define SCHED_ENTRY0_IS_RX      (1 << 7)
46
47 #define SCHED_ENTRY1_CHAN(x)    ((x) << 8)
48 #define SCHED_ENTRY1_IS_RX      (1 << 15)
49
50 #define SCHED_ENTRY2_CHAN(x)    ((x) << 16)
51 #define SCHED_ENTRY2_IS_RX      (1 << 23)
52
53 #define SCHED_ENTRY3_CHAN(x)    ((x) << 24)
54 #define SCHED_ENTRY3_IS_RX      (1 << 31)
55
56 /* Queue manager */
57 /* 4 KiB of memory for descriptors, 2 for each endpoint */
58 #define ALLOC_DECS_NUM          128
59 #define DESCS_AREAS             1
60 #define TOTAL_DESCS_NUM         (ALLOC_DECS_NUM * DESCS_AREAS)
61 #define QMGR_SCRATCH_SIZE       (TOTAL_DESCS_NUM * 4)
62
63 #define QMGR_LRAM0_BASE         0x80
64 #define QMGR_LRAM_SIZE          0x84
65 #define QMGR_LRAM1_BASE         0x88
66 #define QMGR_MEMBASE(x)         (0x1000 + (x) * 0x10)
67 #define QMGR_MEMCTRL(x)         (0x1004 + (x) * 0x10)
68 #define QMGR_MEMCTRL_IDX_SH     16
69 #define QMGR_MEMCTRL_DESC_SH    8
70
71 #define QMGR_NUM_PEND   5
72 #define QMGR_PEND(x)    (0x90 + (x) * 4)
73
74 #define QMGR_PENDING_SLOT_Q(x)  (x / 32)
75 #define QMGR_PENDING_BIT_Q(x)   (x % 32)
76
77 #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
78 #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
79 #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
80 #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
81
82 /* Glue layer specific */
83 /* USBSS  / USB AM335x */
84 #define USBSS_IRQ_STATUS        0x28
85 #define USBSS_IRQ_ENABLER       0x2c
86 #define USBSS_IRQ_CLEARR        0x30
87
88 #define USBSS_IRQ_PD_COMP       (1 <<  2)
89
90 /* Packet Descriptor */
91 #define PD2_ZERO_LENGTH         (1 << 19)
92
93 struct cppi41_channel {
94         struct dma_chan chan;
95         struct dma_async_tx_descriptor txd;
96         struct cppi41_dd *cdd;
97         struct cppi41_desc *desc;
98         dma_addr_t desc_phys;
99         void __iomem *gcr_reg;
100         int is_tx;
101         u32 residue;
102
103         unsigned int q_num;
104         unsigned int q_comp_num;
105         unsigned int port_num;
106
107         unsigned td_retry;
108         unsigned td_queued:1;
109         unsigned td_seen:1;
110         unsigned td_desc_seen:1;
111
112         struct list_head node;          /* Node for pending list */
113 };
114
115 struct cppi41_desc {
116         u32 pd0;
117         u32 pd1;
118         u32 pd2;
119         u32 pd3;
120         u32 pd4;
121         u32 pd5;
122         u32 pd6;
123         u32 pd7;
124 } __aligned(32);
125
126 struct chan_queues {
127         u16 submit;
128         u16 complete;
129 };
130
131 struct cppi41_dd {
132         struct dma_device ddev;
133
134         void *qmgr_scratch;
135         dma_addr_t scratch_phys;
136
137         struct cppi41_desc *cd;
138         dma_addr_t descs_phys;
139         u32 first_td_desc;
140         struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
141
142         void __iomem *usbss_mem;
143         void __iomem *ctrl_mem;
144         void __iomem *sched_mem;
145         void __iomem *qmgr_mem;
146         unsigned int irq;
147         const struct chan_queues *queues_rx;
148         const struct chan_queues *queues_tx;
149         struct chan_queues td_queue;
150
151         struct list_head pending;       /* Pending queued transfers */
152         spinlock_t lock;                /* Lock for pending list */
153
154         /* context for suspend/resume */
155         unsigned int dma_tdfdq;
156 };
157
158 #define FIST_COMPLETION_QUEUE   93
159 static struct chan_queues usb_queues_tx[] = {
160         /* USB0 ENDP 1 */
161         [ 0] = { .submit = 32, .complete =  93},
162         [ 1] = { .submit = 34, .complete =  94},
163         [ 2] = { .submit = 36, .complete =  95},
164         [ 3] = { .submit = 38, .complete =  96},
165         [ 4] = { .submit = 40, .complete =  97},
166         [ 5] = { .submit = 42, .complete =  98},
167         [ 6] = { .submit = 44, .complete =  99},
168         [ 7] = { .submit = 46, .complete = 100},
169         [ 8] = { .submit = 48, .complete = 101},
170         [ 9] = { .submit = 50, .complete = 102},
171         [10] = { .submit = 52, .complete = 103},
172         [11] = { .submit = 54, .complete = 104},
173         [12] = { .submit = 56, .complete = 105},
174         [13] = { .submit = 58, .complete = 106},
175         [14] = { .submit = 60, .complete = 107},
176
177         /* USB1 ENDP1 */
178         [15] = { .submit = 62, .complete = 125},
179         [16] = { .submit = 64, .complete = 126},
180         [17] = { .submit = 66, .complete = 127},
181         [18] = { .submit = 68, .complete = 128},
182         [19] = { .submit = 70, .complete = 129},
183         [20] = { .submit = 72, .complete = 130},
184         [21] = { .submit = 74, .complete = 131},
185         [22] = { .submit = 76, .complete = 132},
186         [23] = { .submit = 78, .complete = 133},
187         [24] = { .submit = 80, .complete = 134},
188         [25] = { .submit = 82, .complete = 135},
189         [26] = { .submit = 84, .complete = 136},
190         [27] = { .submit = 86, .complete = 137},
191         [28] = { .submit = 88, .complete = 138},
192         [29] = { .submit = 90, .complete = 139},
193 };
194
195 static const struct chan_queues usb_queues_rx[] = {
196         /* USB0 ENDP 1 */
197         [ 0] = { .submit =  1, .complete = 109},
198         [ 1] = { .submit =  2, .complete = 110},
199         [ 2] = { .submit =  3, .complete = 111},
200         [ 3] = { .submit =  4, .complete = 112},
201         [ 4] = { .submit =  5, .complete = 113},
202         [ 5] = { .submit =  6, .complete = 114},
203         [ 6] = { .submit =  7, .complete = 115},
204         [ 7] = { .submit =  8, .complete = 116},
205         [ 8] = { .submit =  9, .complete = 117},
206         [ 9] = { .submit = 10, .complete = 118},
207         [10] = { .submit = 11, .complete = 119},
208         [11] = { .submit = 12, .complete = 120},
209         [12] = { .submit = 13, .complete = 121},
210         [13] = { .submit = 14, .complete = 122},
211         [14] = { .submit = 15, .complete = 123},
212
213         /* USB1 ENDP 1 */
214         [15] = { .submit = 16, .complete = 141},
215         [16] = { .submit = 17, .complete = 142},
216         [17] = { .submit = 18, .complete = 143},
217         [18] = { .submit = 19, .complete = 144},
218         [19] = { .submit = 20, .complete = 145},
219         [20] = { .submit = 21, .complete = 146},
220         [21] = { .submit = 22, .complete = 147},
221         [22] = { .submit = 23, .complete = 148},
222         [23] = { .submit = 24, .complete = 149},
223         [24] = { .submit = 25, .complete = 150},
224         [25] = { .submit = 26, .complete = 151},
225         [26] = { .submit = 27, .complete = 152},
226         [27] = { .submit = 28, .complete = 153},
227         [28] = { .submit = 29, .complete = 154},
228         [29] = { .submit = 30, .complete = 155},
229 };
230
231 struct cppi_glue_infos {
232         irqreturn_t (*isr)(int irq, void *data);
233         const struct chan_queues *queues_rx;
234         const struct chan_queues *queues_tx;
235         struct chan_queues td_queue;
236 };
237
238 static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
239 {
240         return container_of(c, struct cppi41_channel, chan);
241 }
242
243 static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
244 {
245         struct cppi41_channel *c;
246         u32 descs_size;
247         u32 desc_num;
248
249         descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
250
251         if (!((desc >= cdd->descs_phys) &&
252                         (desc < (cdd->descs_phys + descs_size)))) {
253                 return NULL;
254         }
255
256         desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
257         BUG_ON(desc_num >= ALLOC_DECS_NUM);
258         c = cdd->chan_busy[desc_num];
259         cdd->chan_busy[desc_num] = NULL;
260         return c;
261 }
262
263 static void cppi_writel(u32 val, void *__iomem *mem)
264 {
265         __raw_writel(val, mem);
266 }
267
268 static u32 cppi_readl(void *__iomem *mem)
269 {
270         return __raw_readl(mem);
271 }
272
273 static u32 pd_trans_len(u32 val)
274 {
275         return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
276 }
277
278 static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
279 {
280         u32 desc;
281
282         desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
283         desc &= ~0x1f;
284         return desc;
285 }
286
287 static irqreturn_t cppi41_irq(int irq, void *data)
288 {
289         struct cppi41_dd *cdd = data;
290         struct cppi41_channel *c;
291         u32 status;
292         int i;
293
294         status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
295         if (!(status & USBSS_IRQ_PD_COMP))
296                 return IRQ_NONE;
297         cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
298
299         for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
300                         i++) {
301                 u32 val;
302                 u32 q_num;
303
304                 val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
305                 if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
306                         u32 mask;
307                         /* set corresponding bit for completetion Q 93 */
308                         mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
309                         /* not set all bits for queues less than Q 93 */
310                         mask--;
311                         /* now invert and keep only Q 93+ set */
312                         val &= ~mask;
313                 }
314
315                 if (val)
316                         __iormb();
317
318                 while (val) {
319                         u32 desc, len;
320
321                         q_num = __fls(val);
322                         val &= ~(1 << q_num);
323                         q_num += 32 * i;
324                         desc = cppi41_pop_desc(cdd, q_num);
325                         c = desc_to_chan(cdd, desc);
326                         if (WARN_ON(!c)) {
327                                 pr_err("%s() q %d desc %08x\n", __func__,
328                                                 q_num, desc);
329                                 continue;
330                         }
331
332                         if (c->desc->pd2 & PD2_ZERO_LENGTH)
333                                 len = 0;
334                         else
335                                 len = pd_trans_len(c->desc->pd0);
336
337                         c->residue = pd_trans_len(c->desc->pd6) - len;
338                         dma_cookie_complete(&c->txd);
339                         dmaengine_desc_get_callback_invoke(&c->txd, NULL);
340
341                         /* Paired with cppi41_dma_issue_pending */
342                         pm_runtime_mark_last_busy(cdd->ddev.dev);
343                         pm_runtime_put_autosuspend(cdd->ddev.dev);
344                 }
345         }
346         return IRQ_HANDLED;
347 }
348
349 static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
350 {
351         dma_cookie_t cookie;
352
353         cookie = dma_cookie_assign(tx);
354
355         return cookie;
356 }
357
358 static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
359 {
360         struct cppi41_channel *c = to_cpp41_chan(chan);
361         struct cppi41_dd *cdd = c->cdd;
362         int error;
363
364         error = pm_runtime_get_sync(cdd->ddev.dev);
365         if (error < 0)
366                 return error;
367
368         dma_cookie_init(chan);
369         dma_async_tx_descriptor_init(&c->txd, chan);
370         c->txd.tx_submit = cppi41_tx_submit;
371
372         if (!c->is_tx)
373                 cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
374
375         pm_runtime_mark_last_busy(cdd->ddev.dev);
376         pm_runtime_put_autosuspend(cdd->ddev.dev);
377
378         return 0;
379 }
380
381 static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
382 {
383         struct cppi41_channel *c = to_cpp41_chan(chan);
384         struct cppi41_dd *cdd = c->cdd;
385         int error;
386
387         error = pm_runtime_get_sync(cdd->ddev.dev);
388         if (error < 0)
389                 return;
390
391         WARN_ON(!list_empty(&cdd->pending));
392
393         pm_runtime_mark_last_busy(cdd->ddev.dev);
394         pm_runtime_put_autosuspend(cdd->ddev.dev);
395 }
396
397 static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
398         dma_cookie_t cookie, struct dma_tx_state *txstate)
399 {
400         struct cppi41_channel *c = to_cpp41_chan(chan);
401         enum dma_status ret;
402
403         /* lock */
404         ret = dma_cookie_status(chan, cookie, txstate);
405         if (txstate && ret == DMA_COMPLETE)
406                 txstate->residue = c->residue;
407         /* unlock */
408
409         return ret;
410 }
411
412 static void push_desc_queue(struct cppi41_channel *c)
413 {
414         struct cppi41_dd *cdd = c->cdd;
415         u32 desc_num;
416         u32 desc_phys;
417         u32 reg;
418
419         c->residue = 0;
420
421         reg = GCR_CHAN_ENABLE;
422         if (!c->is_tx) {
423                 reg |= GCR_STARV_RETRY;
424                 reg |= GCR_DESC_TYPE_HOST;
425                 reg |= c->q_comp_num;
426         }
427
428         cppi_writel(reg, c->gcr_reg);
429
430         /*
431          * We don't use writel() but __raw_writel() so we have to make sure
432          * that the DMA descriptor in coherent memory made to the main memory
433          * before starting the dma engine.
434          */
435         __iowmb();
436
437         desc_phys = lower_32_bits(c->desc_phys);
438         desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
439         WARN_ON(cdd->chan_busy[desc_num]);
440         cdd->chan_busy[desc_num] = c;
441
442         reg = (sizeof(struct cppi41_desc) - 24) / 4;
443         reg |= desc_phys;
444         cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
445 }
446
447 static void pending_desc(struct cppi41_channel *c)
448 {
449         struct cppi41_dd *cdd = c->cdd;
450         unsigned long flags;
451
452         spin_lock_irqsave(&cdd->lock, flags);
453         list_add_tail(&c->node, &cdd->pending);
454         spin_unlock_irqrestore(&cdd->lock, flags);
455 }
456
457 static void cppi41_dma_issue_pending(struct dma_chan *chan)
458 {
459         struct cppi41_channel *c = to_cpp41_chan(chan);
460         struct cppi41_dd *cdd = c->cdd;
461         int error;
462
463         /* PM runtime paired with dmaengine_desc_get_callback_invoke */
464         error = pm_runtime_get(cdd->ddev.dev);
465         if ((error != -EINPROGRESS) && error < 0) {
466                 dev_err(cdd->ddev.dev, "Failed to pm_runtime_get: %i\n",
467                         error);
468
469                 return;
470         }
471
472         if (likely(pm_runtime_active(cdd->ddev.dev)))
473                 push_desc_queue(c);
474         else
475                 pending_desc(c);
476 }
477
478 static u32 get_host_pd0(u32 length)
479 {
480         u32 reg;
481
482         reg = DESC_TYPE_HOST << DESC_TYPE;
483         reg |= length;
484
485         return reg;
486 }
487
488 static u32 get_host_pd1(struct cppi41_channel *c)
489 {
490         u32 reg;
491
492         reg = 0;
493
494         return reg;
495 }
496
497 static u32 get_host_pd2(struct cppi41_channel *c)
498 {
499         u32 reg;
500
501         reg = DESC_TYPE_USB;
502         reg |= c->q_comp_num;
503
504         return reg;
505 }
506
507 static u32 get_host_pd3(u32 length)
508 {
509         u32 reg;
510
511         /* PD3 = packet size */
512         reg = length;
513
514         return reg;
515 }
516
517 static u32 get_host_pd6(u32 length)
518 {
519         u32 reg;
520
521         /* PD6 buffer size */
522         reg = DESC_PD_COMPLETE;
523         reg |= length;
524
525         return reg;
526 }
527
528 static u32 get_host_pd4_or_7(u32 addr)
529 {
530         u32 reg;
531
532         reg = addr;
533
534         return reg;
535 }
536
537 static u32 get_host_pd5(void)
538 {
539         u32 reg;
540
541         reg = 0;
542
543         return reg;
544 }
545
546 static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
547         struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
548         enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
549 {
550         struct cppi41_channel *c = to_cpp41_chan(chan);
551         struct cppi41_desc *d;
552         struct scatterlist *sg;
553         unsigned int i;
554
555         d = c->desc;
556         for_each_sg(sgl, sg, sg_len, i) {
557                 u32 addr;
558                 u32 len;
559
560                 /* We need to use more than one desc once musb supports sg */
561                 addr = lower_32_bits(sg_dma_address(sg));
562                 len = sg_dma_len(sg);
563
564                 d->pd0 = get_host_pd0(len);
565                 d->pd1 = get_host_pd1(c);
566                 d->pd2 = get_host_pd2(c);
567                 d->pd3 = get_host_pd3(len);
568                 d->pd4 = get_host_pd4_or_7(addr);
569                 d->pd5 = get_host_pd5();
570                 d->pd6 = get_host_pd6(len);
571                 d->pd7 = get_host_pd4_or_7(addr);
572
573                 d++;
574         }
575
576         return &c->txd;
577 }
578
579 static void cppi41_compute_td_desc(struct cppi41_desc *d)
580 {
581         d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
582 }
583
584 static int cppi41_tear_down_chan(struct cppi41_channel *c)
585 {
586         struct cppi41_dd *cdd = c->cdd;
587         struct cppi41_desc *td;
588         u32 reg;
589         u32 desc_phys;
590         u32 td_desc_phys;
591
592         td = cdd->cd;
593         td += cdd->first_td_desc;
594
595         td_desc_phys = cdd->descs_phys;
596         td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
597
598         if (!c->td_queued) {
599                 cppi41_compute_td_desc(td);
600                 __iowmb();
601
602                 reg = (sizeof(struct cppi41_desc) - 24) / 4;
603                 reg |= td_desc_phys;
604                 cppi_writel(reg, cdd->qmgr_mem +
605                                 QMGR_QUEUE_D(cdd->td_queue.submit));
606
607                 reg = GCR_CHAN_ENABLE;
608                 if (!c->is_tx) {
609                         reg |= GCR_STARV_RETRY;
610                         reg |= GCR_DESC_TYPE_HOST;
611                         reg |= c->q_comp_num;
612                 }
613                 reg |= GCR_TEARDOWN;
614                 cppi_writel(reg, c->gcr_reg);
615                 c->td_queued = 1;
616                 c->td_retry = 500;
617         }
618
619         if (!c->td_seen || !c->td_desc_seen) {
620
621                 desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
622                 if (!desc_phys)
623                         desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
624
625                 if (desc_phys == c->desc_phys) {
626                         c->td_desc_seen = 1;
627
628                 } else if (desc_phys == td_desc_phys) {
629                         u32 pd0;
630
631                         __iormb();
632                         pd0 = td->pd0;
633                         WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
634                         WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
635                         WARN_ON((pd0 & 0x1f) != c->port_num);
636                         c->td_seen = 1;
637                 } else if (desc_phys) {
638                         WARN_ON_ONCE(1);
639                 }
640         }
641         c->td_retry--;
642         /*
643          * If the TX descriptor / channel is in use, the caller needs to poke
644          * his TD bit multiple times. After that he hardware releases the
645          * transfer descriptor followed by TD descriptor. Waiting seems not to
646          * cause any difference.
647          * RX seems to be thrown out right away. However once the TearDown
648          * descriptor gets through we are done. If we have seens the transfer
649          * descriptor before the TD we fetch it from enqueue, it has to be
650          * there waiting for us.
651          */
652         if (!c->td_seen && c->td_retry) {
653                 udelay(1);
654                 return -EAGAIN;
655         }
656         WARN_ON(!c->td_retry);
657
658         if (!c->td_desc_seen) {
659                 desc_phys = cppi41_pop_desc(cdd, c->q_num);
660                 if (!desc_phys)
661                         desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
662                 WARN_ON(!desc_phys);
663         }
664
665         c->td_queued = 0;
666         c->td_seen = 0;
667         c->td_desc_seen = 0;
668         cppi_writel(0, c->gcr_reg);
669         return 0;
670 }
671
672 static int cppi41_stop_chan(struct dma_chan *chan)
673 {
674         struct cppi41_channel *c = to_cpp41_chan(chan);
675         struct cppi41_dd *cdd = c->cdd;
676         u32 desc_num;
677         u32 desc_phys;
678         int ret;
679
680         desc_phys = lower_32_bits(c->desc_phys);
681         desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
682         if (!cdd->chan_busy[desc_num])
683                 return 0;
684
685         ret = cppi41_tear_down_chan(c);
686         if (ret)
687                 return ret;
688
689         WARN_ON(!cdd->chan_busy[desc_num]);
690         cdd->chan_busy[desc_num] = NULL;
691
692         return 0;
693 }
694
695 static void cleanup_chans(struct cppi41_dd *cdd)
696 {
697         while (!list_empty(&cdd->ddev.channels)) {
698                 struct cppi41_channel *cchan;
699
700                 cchan = list_first_entry(&cdd->ddev.channels,
701                                 struct cppi41_channel, chan.device_node);
702                 list_del(&cchan->chan.device_node);
703                 kfree(cchan);
704         }
705 }
706
707 static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
708 {
709         struct cppi41_channel *cchan;
710         int i;
711         int ret;
712         u32 n_chans;
713
714         ret = of_property_read_u32(dev->of_node, "#dma-channels",
715                         &n_chans);
716         if (ret)
717                 return ret;
718         /*
719          * The channels can only be used as TX or as RX. So we add twice
720          * that much dma channels because USB can only do RX or TX.
721          */
722         n_chans *= 2;
723
724         for (i = 0; i < n_chans; i++) {
725                 cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
726                 if (!cchan)
727                         goto err;
728
729                 cchan->cdd = cdd;
730                 if (i & 1) {
731                         cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
732                         cchan->is_tx = 1;
733                 } else {
734                         cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
735                         cchan->is_tx = 0;
736                 }
737                 cchan->port_num = i >> 1;
738                 cchan->desc = &cdd->cd[i];
739                 cchan->desc_phys = cdd->descs_phys;
740                 cchan->desc_phys += i * sizeof(struct cppi41_desc);
741                 cchan->chan.device = &cdd->ddev;
742                 list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
743         }
744         cdd->first_td_desc = n_chans;
745
746         return 0;
747 err:
748         cleanup_chans(cdd);
749         return -ENOMEM;
750 }
751
752 static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
753 {
754         unsigned int mem_decs;
755         int i;
756
757         mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
758
759         for (i = 0; i < DESCS_AREAS; i++) {
760
761                 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
762                 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
763
764                 dma_free_coherent(dev, mem_decs, cdd->cd,
765                                 cdd->descs_phys);
766         }
767 }
768
769 static void disable_sched(struct cppi41_dd *cdd)
770 {
771         cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
772 }
773
774 static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
775 {
776         disable_sched(cdd);
777
778         purge_descs(dev, cdd);
779
780         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
781         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
782         dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
783                         cdd->scratch_phys);
784 }
785
786 static int init_descs(struct device *dev, struct cppi41_dd *cdd)
787 {
788         unsigned int desc_size;
789         unsigned int mem_decs;
790         int i;
791         u32 reg;
792         u32 idx;
793
794         BUILD_BUG_ON(sizeof(struct cppi41_desc) &
795                         (sizeof(struct cppi41_desc) - 1));
796         BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
797         BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
798
799         desc_size = sizeof(struct cppi41_desc);
800         mem_decs = ALLOC_DECS_NUM * desc_size;
801
802         idx = 0;
803         for (i = 0; i < DESCS_AREAS; i++) {
804
805                 reg = idx << QMGR_MEMCTRL_IDX_SH;
806                 reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
807                 reg |= ilog2(ALLOC_DECS_NUM) - 5;
808
809                 BUILD_BUG_ON(DESCS_AREAS != 1);
810                 cdd->cd = dma_alloc_coherent(dev, mem_decs,
811                                 &cdd->descs_phys, GFP_KERNEL);
812                 if (!cdd->cd)
813                         return -ENOMEM;
814
815                 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
816                 cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
817
818                 idx += ALLOC_DECS_NUM;
819         }
820         return 0;
821 }
822
823 static void init_sched(struct cppi41_dd *cdd)
824 {
825         unsigned ch;
826         unsigned word;
827         u32 reg;
828
829         word = 0;
830         cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
831         for (ch = 0; ch < 15 * 2; ch += 2) {
832
833                 reg = SCHED_ENTRY0_CHAN(ch);
834                 reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
835
836                 reg |= SCHED_ENTRY2_CHAN(ch + 1);
837                 reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
838                 cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
839                 word++;
840         }
841         reg = 15 * 2 * 2 - 1;
842         reg |= DMA_SCHED_CTRL_EN;
843         cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
844 }
845
846 static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
847 {
848         int ret;
849
850         BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
851         cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
852                         &cdd->scratch_phys, GFP_KERNEL);
853         if (!cdd->qmgr_scratch)
854                 return -ENOMEM;
855
856         cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
857         cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
858         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
859
860         ret = init_descs(dev, cdd);
861         if (ret)
862                 goto err_td;
863
864         cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
865         init_sched(cdd);
866         return 0;
867 err_td:
868         deinit_cppi41(dev, cdd);
869         return ret;
870 }
871
872 static struct platform_driver cpp41_dma_driver;
873 /*
874  * The param format is:
875  * X Y
876  * X: Port
877  * Y: 0 = RX else TX
878  */
879 #define INFO_PORT       0
880 #define INFO_IS_TX      1
881
882 static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
883 {
884         struct cppi41_channel *cchan;
885         struct cppi41_dd *cdd;
886         const struct chan_queues *queues;
887         u32 *num = param;
888
889         if (chan->device->dev->driver != &cpp41_dma_driver.driver)
890                 return false;
891
892         cchan = to_cpp41_chan(chan);
893
894         if (cchan->port_num != num[INFO_PORT])
895                 return false;
896
897         if (cchan->is_tx && !num[INFO_IS_TX])
898                 return false;
899         cdd = cchan->cdd;
900         if (cchan->is_tx)
901                 queues = cdd->queues_tx;
902         else
903                 queues = cdd->queues_rx;
904
905         BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
906         if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
907                 return false;
908
909         cchan->q_num = queues[cchan->port_num].submit;
910         cchan->q_comp_num = queues[cchan->port_num].complete;
911         return true;
912 }
913
914 static struct of_dma_filter_info cpp41_dma_info = {
915         .filter_fn = cpp41_dma_filter_fn,
916 };
917
918 static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
919                 struct of_dma *ofdma)
920 {
921         int count = dma_spec->args_count;
922         struct of_dma_filter_info *info = ofdma->of_dma_data;
923
924         if (!info || !info->filter_fn)
925                 return NULL;
926
927         if (count != 2)
928                 return NULL;
929
930         return dma_request_channel(info->dma_cap, info->filter_fn,
931                         &dma_spec->args[0]);
932 }
933
934 static const struct cppi_glue_infos usb_infos = {
935         .isr = cppi41_irq,
936         .queues_rx = usb_queues_rx,
937         .queues_tx = usb_queues_tx,
938         .td_queue = { .submit = 31, .complete = 0 },
939 };
940
941 static const struct of_device_id cppi41_dma_ids[] = {
942         { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
943         {},
944 };
945 MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
946
947 static const struct cppi_glue_infos *get_glue_info(struct device *dev)
948 {
949         const struct of_device_id *of_id;
950
951         of_id = of_match_node(cppi41_dma_ids, dev->of_node);
952         if (!of_id)
953                 return NULL;
954         return of_id->data;
955 }
956
957 #define CPPI41_DMA_BUSWIDTHS    (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
958                                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
959                                 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
960                                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
961
962 static int cppi41_dma_probe(struct platform_device *pdev)
963 {
964         struct cppi41_dd *cdd;
965         struct device *dev = &pdev->dev;
966         const struct cppi_glue_infos *glue_info;
967         int irq;
968         int ret;
969
970         glue_info = get_glue_info(dev);
971         if (!glue_info)
972                 return -EINVAL;
973
974         cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
975         if (!cdd)
976                 return -ENOMEM;
977
978         dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
979         cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
980         cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
981         cdd->ddev.device_tx_status = cppi41_dma_tx_status;
982         cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
983         cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
984         cdd->ddev.device_terminate_all = cppi41_stop_chan;
985         cdd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
986         cdd->ddev.src_addr_widths = CPPI41_DMA_BUSWIDTHS;
987         cdd->ddev.dst_addr_widths = CPPI41_DMA_BUSWIDTHS;
988         cdd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
989         cdd->ddev.dev = dev;
990         INIT_LIST_HEAD(&cdd->ddev.channels);
991         cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
992
993         cdd->usbss_mem = of_iomap(dev->of_node, 0);
994         cdd->ctrl_mem = of_iomap(dev->of_node, 1);
995         cdd->sched_mem = of_iomap(dev->of_node, 2);
996         cdd->qmgr_mem = of_iomap(dev->of_node, 3);
997         spin_lock_init(&cdd->lock);
998         INIT_LIST_HEAD(&cdd->pending);
999
1000         platform_set_drvdata(pdev, cdd);
1001
1002         if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
1003                         !cdd->qmgr_mem)
1004                 return -ENXIO;
1005
1006         pm_runtime_enable(dev);
1007         pm_runtime_set_autosuspend_delay(dev, 100);
1008         pm_runtime_use_autosuspend(dev);
1009         ret = pm_runtime_get_sync(dev);
1010         if (ret < 0)
1011                 goto err_get_sync;
1012
1013         cdd->queues_rx = glue_info->queues_rx;
1014         cdd->queues_tx = glue_info->queues_tx;
1015         cdd->td_queue = glue_info->td_queue;
1016
1017         ret = init_cppi41(dev, cdd);
1018         if (ret)
1019                 goto err_init_cppi;
1020
1021         ret = cppi41_add_chans(dev, cdd);
1022         if (ret)
1023                 goto err_chans;
1024
1025         irq = irq_of_parse_and_map(dev->of_node, 0);
1026         if (!irq) {
1027                 ret = -EINVAL;
1028                 goto err_irq;
1029         }
1030
1031         cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1032
1033         ret = devm_request_irq(&pdev->dev, irq, glue_info->isr, IRQF_SHARED,
1034                         dev_name(dev), cdd);
1035         if (ret)
1036                 goto err_irq;
1037         cdd->irq = irq;
1038
1039         ret = dma_async_device_register(&cdd->ddev);
1040         if (ret)
1041                 goto err_dma_reg;
1042
1043         ret = of_dma_controller_register(dev->of_node,
1044                         cppi41_dma_xlate, &cpp41_dma_info);
1045         if (ret)
1046                 goto err_of;
1047
1048         pm_runtime_mark_last_busy(dev);
1049         pm_runtime_put_autosuspend(dev);
1050
1051         return 0;
1052 err_of:
1053         dma_async_device_unregister(&cdd->ddev);
1054 err_dma_reg:
1055 err_irq:
1056         cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1057         cleanup_chans(cdd);
1058 err_chans:
1059         deinit_cppi41(dev, cdd);
1060 err_init_cppi:
1061         pm_runtime_dont_use_autosuspend(dev);
1062         pm_runtime_put_sync(dev);
1063 err_get_sync:
1064         pm_runtime_disable(dev);
1065         iounmap(cdd->usbss_mem);
1066         iounmap(cdd->ctrl_mem);
1067         iounmap(cdd->sched_mem);
1068         iounmap(cdd->qmgr_mem);
1069         return ret;
1070 }
1071
1072 static int cppi41_dma_remove(struct platform_device *pdev)
1073 {
1074         struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1075
1076         of_dma_controller_free(pdev->dev.of_node);
1077         dma_async_device_unregister(&cdd->ddev);
1078
1079         cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1080         devm_free_irq(&pdev->dev, cdd->irq, cdd);
1081         cleanup_chans(cdd);
1082         deinit_cppi41(&pdev->dev, cdd);
1083         iounmap(cdd->usbss_mem);
1084         iounmap(cdd->ctrl_mem);
1085         iounmap(cdd->sched_mem);
1086         iounmap(cdd->qmgr_mem);
1087         pm_runtime_dont_use_autosuspend(&pdev->dev);
1088         pm_runtime_put_sync(&pdev->dev);
1089         pm_runtime_disable(&pdev->dev);
1090         return 0;
1091 }
1092
1093 static int __maybe_unused cppi41_suspend(struct device *dev)
1094 {
1095         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1096
1097         cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
1098         cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1099         disable_sched(cdd);
1100
1101         return 0;
1102 }
1103
1104 static int __maybe_unused cppi41_resume(struct device *dev)
1105 {
1106         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1107         struct cppi41_channel *c;
1108         int i;
1109
1110         for (i = 0; i < DESCS_AREAS; i++)
1111                 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
1112
1113         list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
1114                 if (!c->is_tx)
1115                         cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
1116
1117         init_sched(cdd);
1118
1119         cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
1120         cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
1121         cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
1122         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
1123
1124         cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1125
1126         return 0;
1127 }
1128
1129 static int __maybe_unused cppi41_runtime_suspend(struct device *dev)
1130 {
1131         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1132
1133         WARN_ON(!list_empty(&cdd->pending));
1134
1135         return 0;
1136 }
1137
1138 static int __maybe_unused cppi41_runtime_resume(struct device *dev)
1139 {
1140         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1141         struct cppi41_channel *c, *_c;
1142         unsigned long flags;
1143
1144         spin_lock_irqsave(&cdd->lock, flags);
1145         list_for_each_entry_safe(c, _c, &cdd->pending, node) {
1146                 push_desc_queue(c);
1147                 list_del(&c->node);
1148         }
1149         spin_unlock_irqrestore(&cdd->lock, flags);
1150
1151         return 0;
1152 }
1153
1154 static const struct dev_pm_ops cppi41_pm_ops = {
1155         SET_LATE_SYSTEM_SLEEP_PM_OPS(cppi41_suspend, cppi41_resume)
1156         SET_RUNTIME_PM_OPS(cppi41_runtime_suspend,
1157                            cppi41_runtime_resume,
1158                            NULL)
1159 };
1160
1161 static struct platform_driver cpp41_dma_driver = {
1162         .probe  = cppi41_dma_probe,
1163         .remove = cppi41_dma_remove,
1164         .driver = {
1165                 .name = "cppi41-dma-engine",
1166                 .pm = &cppi41_pm_ops,
1167                 .of_match_table = of_match_ptr(cppi41_dma_ids),
1168         },
1169 };
1170
1171 module_platform_driver(cpp41_dma_driver);
1172 MODULE_LICENSE("GPL");
1173 MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");