Merge branch 'for-linus-dma-masks' of git://git.linaro.org/people/rmk/linux-arm
[cascardo/linux.git] / drivers / dma / edma.c
1 /*
2  * TI EDMA DMA engine driver
3  *
4  * Copyright 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/list.h>
22 #include <linux/module.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26
27 #include <linux/platform_data/edma.h>
28
29 #include "dmaengine.h"
30 #include "virt-dma.h"
31
32 /*
33  * This will go away when the private EDMA API is folded
34  * into this driver and the platform device(s) are
35  * instantiated in the arch code. We can only get away
36  * with this simplification because DA8XX may not be built
37  * in the same kernel image with other DaVinci parts. This
38  * avoids having to sprinkle dmaengine driver platform devices
39  * and data throughout all the existing board files.
40  */
41 #ifdef CONFIG_ARCH_DAVINCI_DA8XX
42 #define EDMA_CTLRS      2
43 #define EDMA_CHANS      32
44 #else
45 #define EDMA_CTLRS      1
46 #define EDMA_CHANS      64
47 #endif /* CONFIG_ARCH_DAVINCI_DA8XX */
48
49 /* Max of 16 segments per channel to conserve PaRAM slots */
50 #define MAX_NR_SG               16
51 #define EDMA_MAX_SLOTS          MAX_NR_SG
52 #define EDMA_DESCRIPTORS        16
53
54 struct edma_desc {
55         struct virt_dma_desc            vdesc;
56         struct list_head                node;
57         int                             absync;
58         int                             pset_nr;
59         int                             processed;
60         struct edmacc_param             pset[0];
61 };
62
63 struct edma_cc;
64
65 struct edma_chan {
66         struct virt_dma_chan            vchan;
67         struct list_head                node;
68         struct edma_desc                *edesc;
69         struct edma_cc                  *ecc;
70         int                             ch_num;
71         bool                            alloced;
72         int                             slot[EDMA_MAX_SLOTS];
73         int                             missed;
74         struct dma_slave_config         cfg;
75 };
76
77 struct edma_cc {
78         int                             ctlr;
79         struct dma_device               dma_slave;
80         struct edma_chan                slave_chans[EDMA_CHANS];
81         int                             num_slave_chans;
82         int                             dummy_slot;
83 };
84
85 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
86 {
87         return container_of(d, struct edma_cc, dma_slave);
88 }
89
90 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
91 {
92         return container_of(c, struct edma_chan, vchan.chan);
93 }
94
95 static inline struct edma_desc
96 *to_edma_desc(struct dma_async_tx_descriptor *tx)
97 {
98         return container_of(tx, struct edma_desc, vdesc.tx);
99 }
100
101 static void edma_desc_free(struct virt_dma_desc *vdesc)
102 {
103         kfree(container_of(vdesc, struct edma_desc, vdesc));
104 }
105
106 /* Dispatch a queued descriptor to the controller (caller holds lock) */
107 static void edma_execute(struct edma_chan *echan)
108 {
109         struct virt_dma_desc *vdesc;
110         struct edma_desc *edesc;
111         struct device *dev = echan->vchan.chan.device->dev;
112         int i, j, left, nslots;
113
114         /* If either we processed all psets or we're still not started */
115         if (!echan->edesc ||
116             echan->edesc->pset_nr == echan->edesc->processed) {
117                 /* Get next vdesc */
118                 vdesc = vchan_next_desc(&echan->vchan);
119                 if (!vdesc) {
120                         echan->edesc = NULL;
121                         return;
122                 }
123                 list_del(&vdesc->node);
124                 echan->edesc = to_edma_desc(&vdesc->tx);
125         }
126
127         edesc = echan->edesc;
128
129         /* Find out how many left */
130         left = edesc->pset_nr - edesc->processed;
131         nslots = min(MAX_NR_SG, left);
132
133         /* Write descriptor PaRAM set(s) */
134         for (i = 0; i < nslots; i++) {
135                 j = i + edesc->processed;
136                 edma_write_slot(echan->slot[i], &edesc->pset[j]);
137                 dev_dbg(echan->vchan.chan.device->dev,
138                         "\n pset[%d]:\n"
139                         "  chnum\t%d\n"
140                         "  slot\t%d\n"
141                         "  opt\t%08x\n"
142                         "  src\t%08x\n"
143                         "  dst\t%08x\n"
144                         "  abcnt\t%08x\n"
145                         "  ccnt\t%08x\n"
146                         "  bidx\t%08x\n"
147                         "  cidx\t%08x\n"
148                         "  lkrld\t%08x\n",
149                         j, echan->ch_num, echan->slot[i],
150                         edesc->pset[j].opt,
151                         edesc->pset[j].src,
152                         edesc->pset[j].dst,
153                         edesc->pset[j].a_b_cnt,
154                         edesc->pset[j].ccnt,
155                         edesc->pset[j].src_dst_bidx,
156                         edesc->pset[j].src_dst_cidx,
157                         edesc->pset[j].link_bcntrld);
158                 /* Link to the previous slot if not the last set */
159                 if (i != (nslots - 1))
160                         edma_link(echan->slot[i], echan->slot[i+1]);
161         }
162
163         edesc->processed += nslots;
164
165         /*
166          * If this is either the last set in a set of SG-list transactions
167          * then setup a link to the dummy slot, this results in all future
168          * events being absorbed and that's OK because we're done
169          */
170         if (edesc->processed == edesc->pset_nr)
171                 edma_link(echan->slot[nslots-1], echan->ecc->dummy_slot);
172
173         edma_resume(echan->ch_num);
174
175         if (edesc->processed <= MAX_NR_SG) {
176                 dev_dbg(dev, "first transfer starting %d\n", echan->ch_num);
177                 edma_start(echan->ch_num);
178         }
179
180         /*
181          * This happens due to setup times between intermediate transfers
182          * in long SG lists which have to be broken up into transfers of
183          * MAX_NR_SG
184          */
185         if (echan->missed) {
186                 dev_dbg(dev, "missed event in execute detected\n");
187                 edma_clean_channel(echan->ch_num);
188                 edma_stop(echan->ch_num);
189                 edma_start(echan->ch_num);
190                 edma_trigger_channel(echan->ch_num);
191                 echan->missed = 0;
192         }
193 }
194
195 static int edma_terminate_all(struct edma_chan *echan)
196 {
197         unsigned long flags;
198         LIST_HEAD(head);
199
200         spin_lock_irqsave(&echan->vchan.lock, flags);
201
202         /*
203          * Stop DMA activity: we assume the callback will not be called
204          * after edma_dma() returns (even if it does, it will see
205          * echan->edesc is NULL and exit.)
206          */
207         if (echan->edesc) {
208                 echan->edesc = NULL;
209                 edma_stop(echan->ch_num);
210         }
211
212         vchan_get_all_descriptors(&echan->vchan, &head);
213         spin_unlock_irqrestore(&echan->vchan.lock, flags);
214         vchan_dma_desc_free_list(&echan->vchan, &head);
215
216         return 0;
217 }
218
219 static int edma_slave_config(struct edma_chan *echan,
220         struct dma_slave_config *cfg)
221 {
222         if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
223             cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
224                 return -EINVAL;
225
226         memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
227
228         return 0;
229 }
230
231 static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
232                         unsigned long arg)
233 {
234         int ret = 0;
235         struct dma_slave_config *config;
236         struct edma_chan *echan = to_edma_chan(chan);
237
238         switch (cmd) {
239         case DMA_TERMINATE_ALL:
240                 edma_terminate_all(echan);
241                 break;
242         case DMA_SLAVE_CONFIG:
243                 config = (struct dma_slave_config *)arg;
244                 ret = edma_slave_config(echan, config);
245                 break;
246         default:
247                 ret = -ENOSYS;
248         }
249
250         return ret;
251 }
252
253 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
254         struct dma_chan *chan, struct scatterlist *sgl,
255         unsigned int sg_len, enum dma_transfer_direction direction,
256         unsigned long tx_flags, void *context)
257 {
258         struct edma_chan *echan = to_edma_chan(chan);
259         struct device *dev = chan->device->dev;
260         struct edma_desc *edesc;
261         dma_addr_t dev_addr;
262         enum dma_slave_buswidth dev_width;
263         u32 burst;
264         struct scatterlist *sg;
265         int acnt, bcnt, ccnt, src, dst, cidx;
266         int src_bidx, dst_bidx, src_cidx, dst_cidx;
267         int i, nslots;
268
269         if (unlikely(!echan || !sgl || !sg_len))
270                 return NULL;
271
272         if (direction == DMA_DEV_TO_MEM) {
273                 dev_addr = echan->cfg.src_addr;
274                 dev_width = echan->cfg.src_addr_width;
275                 burst = echan->cfg.src_maxburst;
276         } else if (direction == DMA_MEM_TO_DEV) {
277                 dev_addr = echan->cfg.dst_addr;
278                 dev_width = echan->cfg.dst_addr_width;
279                 burst = echan->cfg.dst_maxburst;
280         } else {
281                 dev_err(dev, "%s: bad direction?\n", __func__);
282                 return NULL;
283         }
284
285         if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
286                 dev_err(dev, "Undefined slave buswidth\n");
287                 return NULL;
288         }
289
290         edesc = kzalloc(sizeof(*edesc) + sg_len *
291                 sizeof(edesc->pset[0]), GFP_ATOMIC);
292         if (!edesc) {
293                 dev_dbg(dev, "Failed to allocate a descriptor\n");
294                 return NULL;
295         }
296
297         edesc->pset_nr = sg_len;
298
299         /* Allocate a PaRAM slot, if needed */
300         nslots = min_t(unsigned, MAX_NR_SG, sg_len);
301
302         for (i = 0; i < nslots; i++) {
303                 if (echan->slot[i] < 0) {
304                         echan->slot[i] =
305                                 edma_alloc_slot(EDMA_CTLR(echan->ch_num),
306                                                 EDMA_SLOT_ANY);
307                         if (echan->slot[i] < 0) {
308                                 kfree(edesc);
309                                 dev_err(dev, "Failed to allocate slot\n");
310                                 kfree(edesc);
311                                 return NULL;
312                         }
313                 }
314         }
315
316         /* Configure PaRAM sets for each SG */
317         for_each_sg(sgl, sg, sg_len, i) {
318
319                 acnt = dev_width;
320
321                 /*
322                  * If the maxburst is equal to the fifo width, use
323                  * A-synced transfers. This allows for large contiguous
324                  * buffer transfers using only one PaRAM set.
325                  */
326                 if (burst == 1) {
327                         edesc->absync = false;
328                         ccnt = sg_dma_len(sg) / acnt / (SZ_64K - 1);
329                         bcnt = sg_dma_len(sg) / acnt - ccnt * (SZ_64K - 1);
330                         if (bcnt)
331                                 ccnt++;
332                         else
333                                 bcnt = SZ_64K - 1;
334                         cidx = acnt;
335                 /*
336                  * If maxburst is greater than the fifo address_width,
337                  * use AB-synced transfers where A count is the fifo
338                  * address_width and B count is the maxburst. In this
339                  * case, we are limited to transfers of C count frames
340                  * of (address_width * maxburst) where C count is limited
341                  * to SZ_64K-1. This places an upper bound on the length
342                  * of an SG segment that can be handled.
343                  */
344                 } else {
345                         edesc->absync = true;
346                         bcnt = burst;
347                         ccnt = sg_dma_len(sg) / (acnt * bcnt);
348                         if (ccnt > (SZ_64K - 1)) {
349                                 dev_err(dev, "Exceeded max SG segment size\n");
350                                 kfree(edesc);
351                                 return NULL;
352                         }
353                         cidx = acnt * bcnt;
354                 }
355
356                 if (direction == DMA_MEM_TO_DEV) {
357                         src = sg_dma_address(sg);
358                         dst = dev_addr;
359                         src_bidx = acnt;
360                         src_cidx = cidx;
361                         dst_bidx = 0;
362                         dst_cidx = 0;
363                 } else {
364                         src = dev_addr;
365                         dst = sg_dma_address(sg);
366                         src_bidx = 0;
367                         src_cidx = 0;
368                         dst_bidx = acnt;
369                         dst_cidx = cidx;
370                 }
371
372                 edesc->pset[i].opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
373                 /* Configure A or AB synchronized transfers */
374                 if (edesc->absync)
375                         edesc->pset[i].opt |= SYNCDIM;
376
377                 /* If this is the last in a current SG set of transactions,
378                    enable interrupts so that next set is processed */
379                 if (!((i+1) % MAX_NR_SG))
380                         edesc->pset[i].opt |= TCINTEN;
381
382                 /* If this is the last set, enable completion interrupt flag */
383                 if (i == sg_len - 1)
384                         edesc->pset[i].opt |= TCINTEN;
385
386                 edesc->pset[i].src = src;
387                 edesc->pset[i].dst = dst;
388
389                 edesc->pset[i].src_dst_bidx = (dst_bidx << 16) | src_bidx;
390                 edesc->pset[i].src_dst_cidx = (dst_cidx << 16) | src_cidx;
391
392                 edesc->pset[i].a_b_cnt = bcnt << 16 | acnt;
393                 edesc->pset[i].ccnt = ccnt;
394                 edesc->pset[i].link_bcntrld = 0xffffffff;
395
396         }
397
398         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
399 }
400
401 static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
402 {
403         struct edma_chan *echan = data;
404         struct device *dev = echan->vchan.chan.device->dev;
405         struct edma_desc *edesc;
406         unsigned long flags;
407         struct edmacc_param p;
408
409         /* Pause the channel */
410         edma_pause(echan->ch_num);
411
412         switch (ch_status) {
413         case DMA_COMPLETE:
414                 spin_lock_irqsave(&echan->vchan.lock, flags);
415
416                 edesc = echan->edesc;
417                 if (edesc) {
418                         if (edesc->processed == edesc->pset_nr) {
419                                 dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
420                                 edma_stop(echan->ch_num);
421                                 vchan_cookie_complete(&edesc->vdesc);
422                         } else {
423                                 dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
424                         }
425
426                         edma_execute(echan);
427                 }
428
429                 spin_unlock_irqrestore(&echan->vchan.lock, flags);
430
431                 break;
432         case DMA_CC_ERROR:
433                 spin_lock_irqsave(&echan->vchan.lock, flags);
434
435                 edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p);
436
437                 /*
438                  * Issue later based on missed flag which will be sure
439                  * to happen as:
440                  * (1) we finished transmitting an intermediate slot and
441                  *     edma_execute is coming up.
442                  * (2) or we finished current transfer and issue will
443                  *     call edma_execute.
444                  *
445                  * Important note: issuing can be dangerous here and
446                  * lead to some nasty recursion when we are in a NULL
447                  * slot. So we avoid doing so and set the missed flag.
448                  */
449                 if (p.a_b_cnt == 0 && p.ccnt == 0) {
450                         dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n");
451                         echan->missed = 1;
452                 } else {
453                         /*
454                          * The slot is already programmed but the event got
455                          * missed, so its safe to issue it here.
456                          */
457                         dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n");
458                         edma_clean_channel(echan->ch_num);
459                         edma_stop(echan->ch_num);
460                         edma_start(echan->ch_num);
461                         edma_trigger_channel(echan->ch_num);
462                 }
463
464                 spin_unlock_irqrestore(&echan->vchan.lock, flags);
465
466                 break;
467         default:
468                 break;
469         }
470 }
471
472 /* Alloc channel resources */
473 static int edma_alloc_chan_resources(struct dma_chan *chan)
474 {
475         struct edma_chan *echan = to_edma_chan(chan);
476         struct device *dev = chan->device->dev;
477         int ret;
478         int a_ch_num;
479         LIST_HEAD(descs);
480
481         a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
482                                         chan, EVENTQ_DEFAULT);
483
484         if (a_ch_num < 0) {
485                 ret = -ENODEV;
486                 goto err_no_chan;
487         }
488
489         if (a_ch_num != echan->ch_num) {
490                 dev_err(dev, "failed to allocate requested channel %u:%u\n",
491                         EDMA_CTLR(echan->ch_num),
492                         EDMA_CHAN_SLOT(echan->ch_num));
493                 ret = -ENODEV;
494                 goto err_wrong_chan;
495         }
496
497         echan->alloced = true;
498         echan->slot[0] = echan->ch_num;
499
500         dev_info(dev, "allocated channel for %u:%u\n",
501                  EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
502
503         return 0;
504
505 err_wrong_chan:
506         edma_free_channel(a_ch_num);
507 err_no_chan:
508         return ret;
509 }
510
511 /* Free channel resources */
512 static void edma_free_chan_resources(struct dma_chan *chan)
513 {
514         struct edma_chan *echan = to_edma_chan(chan);
515         struct device *dev = chan->device->dev;
516         int i;
517
518         /* Terminate transfers */
519         edma_stop(echan->ch_num);
520
521         vchan_free_chan_resources(&echan->vchan);
522
523         /* Free EDMA PaRAM slots */
524         for (i = 1; i < EDMA_MAX_SLOTS; i++) {
525                 if (echan->slot[i] >= 0) {
526                         edma_free_slot(echan->slot[i]);
527                         echan->slot[i] = -1;
528                 }
529         }
530
531         /* Free EDMA channel */
532         if (echan->alloced) {
533                 edma_free_channel(echan->ch_num);
534                 echan->alloced = false;
535         }
536
537         dev_info(dev, "freeing channel for %u\n", echan->ch_num);
538 }
539
540 /* Send pending descriptor to hardware */
541 static void edma_issue_pending(struct dma_chan *chan)
542 {
543         struct edma_chan *echan = to_edma_chan(chan);
544         unsigned long flags;
545
546         spin_lock_irqsave(&echan->vchan.lock, flags);
547         if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
548                 edma_execute(echan);
549         spin_unlock_irqrestore(&echan->vchan.lock, flags);
550 }
551
552 static size_t edma_desc_size(struct edma_desc *edesc)
553 {
554         int i;
555         size_t size;
556
557         if (edesc->absync)
558                 for (size = i = 0; i < edesc->pset_nr; i++)
559                         size += (edesc->pset[i].a_b_cnt & 0xffff) *
560                                 (edesc->pset[i].a_b_cnt >> 16) *
561                                  edesc->pset[i].ccnt;
562         else
563                 size = (edesc->pset[0].a_b_cnt & 0xffff) *
564                         (edesc->pset[0].a_b_cnt >> 16) +
565                         (edesc->pset[0].a_b_cnt & 0xffff) *
566                         (SZ_64K - 1) * edesc->pset[0].ccnt;
567
568         return size;
569 }
570
571 /* Check request completion status */
572 static enum dma_status edma_tx_status(struct dma_chan *chan,
573                                       dma_cookie_t cookie,
574                                       struct dma_tx_state *txstate)
575 {
576         struct edma_chan *echan = to_edma_chan(chan);
577         struct virt_dma_desc *vdesc;
578         enum dma_status ret;
579         unsigned long flags;
580
581         ret = dma_cookie_status(chan, cookie, txstate);
582         if (ret == DMA_SUCCESS || !txstate)
583                 return ret;
584
585         spin_lock_irqsave(&echan->vchan.lock, flags);
586         vdesc = vchan_find_desc(&echan->vchan, cookie);
587         if (vdesc) {
588                 txstate->residue = edma_desc_size(to_edma_desc(&vdesc->tx));
589         } else if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
590                 struct edma_desc *edesc = echan->edesc;
591                 txstate->residue = edma_desc_size(edesc);
592         }
593         spin_unlock_irqrestore(&echan->vchan.lock, flags);
594
595         return ret;
596 }
597
598 static void __init edma_chan_init(struct edma_cc *ecc,
599                                   struct dma_device *dma,
600                                   struct edma_chan *echans)
601 {
602         int i, j;
603
604         for (i = 0; i < EDMA_CHANS; i++) {
605                 struct edma_chan *echan = &echans[i];
606                 echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
607                 echan->ecc = ecc;
608                 echan->vchan.desc_free = edma_desc_free;
609
610                 vchan_init(&echan->vchan, dma);
611
612                 INIT_LIST_HEAD(&echan->node);
613                 for (j = 0; j < EDMA_MAX_SLOTS; j++)
614                         echan->slot[j] = -1;
615         }
616 }
617
618 static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
619                           struct device *dev)
620 {
621         dma->device_prep_slave_sg = edma_prep_slave_sg;
622         dma->device_alloc_chan_resources = edma_alloc_chan_resources;
623         dma->device_free_chan_resources = edma_free_chan_resources;
624         dma->device_issue_pending = edma_issue_pending;
625         dma->device_tx_status = edma_tx_status;
626         dma->device_control = edma_control;
627         dma->dev = dev;
628
629         INIT_LIST_HEAD(&dma->channels);
630 }
631
632 static int edma_probe(struct platform_device *pdev)
633 {
634         struct edma_cc *ecc;
635         int ret;
636
637         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
638         if (ret)
639                 return ret;
640
641         ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
642         if (!ecc) {
643                 dev_err(&pdev->dev, "Can't allocate controller\n");
644                 return -ENOMEM;
645         }
646
647         ecc->ctlr = pdev->id;
648         ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
649         if (ecc->dummy_slot < 0) {
650                 dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
651                 return -EIO;
652         }
653
654         dma_cap_zero(ecc->dma_slave.cap_mask);
655         dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
656
657         edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);
658
659         edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);
660
661         ret = dma_async_device_register(&ecc->dma_slave);
662         if (ret)
663                 goto err_reg1;
664
665         platform_set_drvdata(pdev, ecc);
666
667         dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");
668
669         return 0;
670
671 err_reg1:
672         edma_free_slot(ecc->dummy_slot);
673         return ret;
674 }
675
676 static int edma_remove(struct platform_device *pdev)
677 {
678         struct device *dev = &pdev->dev;
679         struct edma_cc *ecc = dev_get_drvdata(dev);
680
681         dma_async_device_unregister(&ecc->dma_slave);
682         edma_free_slot(ecc->dummy_slot);
683
684         return 0;
685 }
686
687 static struct platform_driver edma_driver = {
688         .probe          = edma_probe,
689         .remove         = edma_remove,
690         .driver = {
691                 .name = "edma-dma-engine",
692                 .owner = THIS_MODULE,
693         },
694 };
695
696 bool edma_filter_fn(struct dma_chan *chan, void *param)
697 {
698         if (chan->device->dev->driver == &edma_driver.driver) {
699                 struct edma_chan *echan = to_edma_chan(chan);
700                 unsigned ch_req = *(unsigned *)param;
701                 return ch_req == echan->ch_num;
702         }
703         return false;
704 }
705 EXPORT_SYMBOL(edma_filter_fn);
706
707 static struct platform_device *pdev0, *pdev1;
708
709 static const struct platform_device_info edma_dev_info0 = {
710         .name = "edma-dma-engine",
711         .id = 0,
712         .dma_mask = DMA_BIT_MASK(32),
713 };
714
715 static const struct platform_device_info edma_dev_info1 = {
716         .name = "edma-dma-engine",
717         .id = 1,
718         .dma_mask = DMA_BIT_MASK(32),
719 };
720
721 static int edma_init(void)
722 {
723         int ret = platform_driver_register(&edma_driver);
724
725         if (ret == 0) {
726                 pdev0 = platform_device_register_full(&edma_dev_info0);
727                 if (IS_ERR(pdev0)) {
728                         platform_driver_unregister(&edma_driver);
729                         ret = PTR_ERR(pdev0);
730                         goto out;
731                 }
732         }
733
734         if (EDMA_CTLRS == 2) {
735                 pdev1 = platform_device_register_full(&edma_dev_info1);
736                 if (IS_ERR(pdev1)) {
737                         platform_driver_unregister(&edma_driver);
738                         platform_device_unregister(pdev0);
739                         ret = PTR_ERR(pdev1);
740                 }
741         }
742
743 out:
744         return ret;
745 }
746 subsys_initcall(edma_init);
747
748 static void __exit edma_exit(void)
749 {
750         platform_device_unregister(pdev0);
751         if (pdev1)
752                 platform_device_unregister(pdev1);
753         platform_driver_unregister(&edma_driver);
754 }
755 module_exit(edma_exit);
756
757 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
758 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
759 MODULE_LICENSE("GPL v2");