Merge branch 'topic/pl330' into for-linus
[cascardo/linux.git] / drivers / dma / edma.c
1 /*
2  * TI EDMA DMA engine driver
3  *
4  * Copyright 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
33
34 #include <linux/platform_data/edma.h>
35
36 #include "dmaengine.h"
37 #include "virt-dma.h"
38
39 /* Offsets matching "struct edmacc_param" */
40 #define PARM_OPT                0x00
41 #define PARM_SRC                0x04
42 #define PARM_A_B_CNT            0x08
43 #define PARM_DST                0x0c
44 #define PARM_SRC_DST_BIDX       0x10
45 #define PARM_LINK_BCNTRLD       0x14
46 #define PARM_SRC_DST_CIDX       0x18
47 #define PARM_CCNT               0x1c
48
49 #define PARM_SIZE               0x20
50
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER                   0x00    /* 64 bits */
53 #define SH_ECR                  0x08    /* 64 bits */
54 #define SH_ESR                  0x10    /* 64 bits */
55 #define SH_CER                  0x18    /* 64 bits */
56 #define SH_EER                  0x20    /* 64 bits */
57 #define SH_EECR                 0x28    /* 64 bits */
58 #define SH_EESR                 0x30    /* 64 bits */
59 #define SH_SER                  0x38    /* 64 bits */
60 #define SH_SECR                 0x40    /* 64 bits */
61 #define SH_IER                  0x50    /* 64 bits */
62 #define SH_IECR                 0x58    /* 64 bits */
63 #define SH_IESR                 0x60    /* 64 bits */
64 #define SH_IPR                  0x68    /* 64 bits */
65 #define SH_ICR                  0x70    /* 64 bits */
66 #define SH_IEVAL                0x78
67 #define SH_QER                  0x80
68 #define SH_QEER                 0x84
69 #define SH_QEECR                0x88
70 #define SH_QEESR                0x8c
71 #define SH_QSER                 0x90
72 #define SH_QSECR                0x94
73 #define SH_SIZE                 0x200
74
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV                0x0000
77 #define EDMA_CCCFG              0x0004
78 #define EDMA_QCHMAP             0x0200  /* 8 registers */
79 #define EDMA_DMAQNUM            0x0240  /* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM           0x0260
81 #define EDMA_QUETCMAP           0x0280
82 #define EDMA_QUEPRI             0x0284
83 #define EDMA_EMR                0x0300  /* 64 bits */
84 #define EDMA_EMCR               0x0308  /* 64 bits */
85 #define EDMA_QEMR               0x0310
86 #define EDMA_QEMCR              0x0314
87 #define EDMA_CCERR              0x0318
88 #define EDMA_CCERRCLR           0x031c
89 #define EDMA_EEVAL              0x0320
90 #define EDMA_DRAE               0x0340  /* 4 x 64 bits*/
91 #define EDMA_QRAE               0x0380  /* 4 registers */
92 #define EDMA_QUEEVTENTRY        0x0400  /* 2 x 16 registers */
93 #define EDMA_QSTAT              0x0600  /* 2 registers */
94 #define EDMA_QWMTHRA            0x0620
95 #define EDMA_QWMTHRB            0x0624
96 #define EDMA_CCSTAT             0x0640
97
98 #define EDMA_M                  0x1000  /* global channel registers */
99 #define EDMA_ECR                0x1008
100 #define EDMA_ECRH               0x100C
101 #define EDMA_SHADOW0            0x2000  /* 4 shadow regions */
102 #define EDMA_PARM               0x4000  /* PaRAM entries */
103
104 #define PARM_OFFSET(param_no)   (EDMA_PARM + ((param_no) << 5))
105
106 #define EDMA_DCHMAP             0x0100  /* 64 registers */
107
108 /* CCCFG register */
109 #define GET_NUM_DMACH(x)        (x & 0x7) /* bits 0-2 */
110 #define GET_NUM_QDMACH(x)       ((x & 0x70) >> 4) /* bits 4-6 */
111 #define GET_NUM_PAENTRY(x)      ((x & 0x7000) >> 12) /* bits 12-14 */
112 #define GET_NUM_EVQUE(x)        ((x & 0x70000) >> 16) /* bits 16-18 */
113 #define GET_NUM_REGN(x)         ((x & 0x300000) >> 20) /* bits 20-21 */
114 #define CHMAP_EXIST             BIT(24)
115
116 /*
117  * Max of 20 segments per channel to conserve PaRAM slots
118  * Also note that MAX_NR_SG should be atleast the no.of periods
119  * that are required for ASoC, otherwise DMA prep calls will
120  * fail. Today davinci-pcm is the only user of this driver and
121  * requires atleast 17 slots, so we setup the default to 20.
122  */
123 #define MAX_NR_SG               20
124 #define EDMA_MAX_SLOTS          MAX_NR_SG
125 #define EDMA_DESCRIPTORS        16
126
127 #define EDMA_CHANNEL_ANY                -1      /* for edma_alloc_channel() */
128 #define EDMA_SLOT_ANY                   -1      /* for edma_alloc_slot() */
129 #define EDMA_CONT_PARAMS_ANY             1001
130 #define EDMA_CONT_PARAMS_FIXED_EXACT     1002
131 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
132
133 /* PaRAM slots are laid out like this */
134 struct edmacc_param {
135         u32 opt;
136         u32 src;
137         u32 a_b_cnt;
138         u32 dst;
139         u32 src_dst_bidx;
140         u32 link_bcntrld;
141         u32 src_dst_cidx;
142         u32 ccnt;
143 } __packed;
144
145 /* fields in edmacc_param.opt */
146 #define SAM             BIT(0)
147 #define DAM             BIT(1)
148 #define SYNCDIM         BIT(2)
149 #define STATIC          BIT(3)
150 #define EDMA_FWID       (0x07 << 8)
151 #define TCCMODE         BIT(11)
152 #define EDMA_TCC(t)     ((t) << 12)
153 #define TCINTEN         BIT(20)
154 #define ITCINTEN        BIT(21)
155 #define TCCHEN          BIT(22)
156 #define ITCCHEN         BIT(23)
157
158 struct edma_pset {
159         u32                             len;
160         dma_addr_t                      addr;
161         struct edmacc_param             param;
162 };
163
164 struct edma_desc {
165         struct virt_dma_desc            vdesc;
166         struct list_head                node;
167         enum dma_transfer_direction     direction;
168         int                             cyclic;
169         int                             absync;
170         int                             pset_nr;
171         struct edma_chan                *echan;
172         int                             processed;
173
174         /*
175          * The following 4 elements are used for residue accounting.
176          *
177          * - processed_stat: the number of SG elements we have traversed
178          * so far to cover accounting. This is updated directly to processed
179          * during edma_callback and is always <= processed, because processed
180          * refers to the number of pending transfer (programmed to EDMA
181          * controller), where as processed_stat tracks number of transfers
182          * accounted for so far.
183          *
184          * - residue: The amount of bytes we have left to transfer for this desc
185          *
186          * - residue_stat: The residue in bytes of data we have covered
187          * so far for accounting. This is updated directly to residue
188          * during callbacks to keep it current.
189          *
190          * - sg_len: Tracks the length of the current intermediate transfer,
191          * this is required to update the residue during intermediate transfer
192          * completion callback.
193          */
194         int                             processed_stat;
195         u32                             sg_len;
196         u32                             residue;
197         u32                             residue_stat;
198
199         struct edma_pset                pset[0];
200 };
201
202 struct edma_cc;
203
204 struct edma_tc {
205         struct device_node              *node;
206         u16                             id;
207 };
208
209 struct edma_chan {
210         struct virt_dma_chan            vchan;
211         struct list_head                node;
212         struct edma_desc                *edesc;
213         struct edma_cc                  *ecc;
214         struct edma_tc                  *tc;
215         int                             ch_num;
216         bool                            alloced;
217         bool                            hw_triggered;
218         int                             slot[EDMA_MAX_SLOTS];
219         int                             missed;
220         struct dma_slave_config         cfg;
221 };
222
223 struct edma_cc {
224         struct device                   *dev;
225         struct edma_soc_info            *info;
226         void __iomem                    *base;
227         int                             id;
228         bool                            legacy_mode;
229
230         /* eDMA3 resource information */
231         unsigned                        num_channels;
232         unsigned                        num_qchannels;
233         unsigned                        num_region;
234         unsigned                        num_slots;
235         unsigned                        num_tc;
236         bool                            chmap_exist;
237         enum dma_event_q                default_queue;
238
239         /*
240          * The slot_inuse bit for each PaRAM slot is clear unless the slot is
241          * in use by Linux or if it is allocated to be used by DSP.
242          */
243         unsigned long *slot_inuse;
244
245         struct dma_device               dma_slave;
246         struct dma_device               *dma_memcpy;
247         struct edma_chan                *slave_chans;
248         struct edma_tc                  *tc_list;
249         int                             dummy_slot;
250 };
251
252 /* dummy param set used to (re)initialize parameter RAM slots */
253 static const struct edmacc_param dummy_paramset = {
254         .link_bcntrld = 0xffff,
255         .ccnt = 1,
256 };
257
258 #define EDMA_BINDING_LEGACY     0
259 #define EDMA_BINDING_TPCC       1
260 static const struct of_device_id edma_of_ids[] = {
261         {
262                 .compatible = "ti,edma3",
263                 .data = (void *)EDMA_BINDING_LEGACY,
264         },
265         {
266                 .compatible = "ti,edma3-tpcc",
267                 .data = (void *)EDMA_BINDING_TPCC,
268         },
269         {}
270 };
271
272 static const struct of_device_id edma_tptc_of_ids[] = {
273         { .compatible = "ti,edma3-tptc", },
274         {}
275 };
276
277 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
278 {
279         return (unsigned int)__raw_readl(ecc->base + offset);
280 }
281
282 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
283 {
284         __raw_writel(val, ecc->base + offset);
285 }
286
287 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
288                                unsigned or)
289 {
290         unsigned val = edma_read(ecc, offset);
291
292         val &= and;
293         val |= or;
294         edma_write(ecc, offset, val);
295 }
296
297 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
298 {
299         unsigned val = edma_read(ecc, offset);
300
301         val &= and;
302         edma_write(ecc, offset, val);
303 }
304
305 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
306 {
307         unsigned val = edma_read(ecc, offset);
308
309         val |= or;
310         edma_write(ecc, offset, val);
311 }
312
313 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
314                                            int i)
315 {
316         return edma_read(ecc, offset + (i << 2));
317 }
318
319 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
320                                     unsigned val)
321 {
322         edma_write(ecc, offset + (i << 2), val);
323 }
324
325 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
326                                      unsigned and, unsigned or)
327 {
328         edma_modify(ecc, offset + (i << 2), and, or);
329 }
330
331 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
332                                  unsigned or)
333 {
334         edma_or(ecc, offset + (i << 2), or);
335 }
336
337 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
338                                   unsigned or)
339 {
340         edma_or(ecc, offset + ((i * 2 + j) << 2), or);
341 }
342
343 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
344                                      int j, unsigned val)
345 {
346         edma_write(ecc, offset + ((i * 2 + j) << 2), val);
347 }
348
349 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
350 {
351         return edma_read(ecc, EDMA_SHADOW0 + offset);
352 }
353
354 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
355                                                    int offset, int i)
356 {
357         return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
358 }
359
360 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
361                                       unsigned val)
362 {
363         edma_write(ecc, EDMA_SHADOW0 + offset, val);
364 }
365
366 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
367                                             int i, unsigned val)
368 {
369         edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
370 }
371
372 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
373                                            int param_no)
374 {
375         return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
376 }
377
378 static inline void edma_param_write(struct edma_cc *ecc, int offset,
379                                     int param_no, unsigned val)
380 {
381         edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
382 }
383
384 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
385                                      int param_no, unsigned and, unsigned or)
386 {
387         edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
388 }
389
390 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
391                                   unsigned and)
392 {
393         edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
394 }
395
396 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
397                                  unsigned or)
398 {
399         edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
400 }
401
402 static inline void set_bits(int offset, int len, unsigned long *p)
403 {
404         for (; len > 0; len--)
405                 set_bit(offset + (len - 1), p);
406 }
407
408 static inline void clear_bits(int offset, int len, unsigned long *p)
409 {
410         for (; len > 0; len--)
411                 clear_bit(offset + (len - 1), p);
412 }
413
414 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
415                                           int priority)
416 {
417         int bit = queue_no * 4;
418
419         edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
420 }
421
422 static void edma_set_chmap(struct edma_chan *echan, int slot)
423 {
424         struct edma_cc *ecc = echan->ecc;
425         int channel = EDMA_CHAN_SLOT(echan->ch_num);
426
427         if (ecc->chmap_exist) {
428                 slot = EDMA_CHAN_SLOT(slot);
429                 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
430         }
431 }
432
433 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
434 {
435         struct edma_cc *ecc = echan->ecc;
436         int channel = EDMA_CHAN_SLOT(echan->ch_num);
437
438         if (enable) {
439                 edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
440                                          BIT(channel & 0x1f));
441                 edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
442                                          BIT(channel & 0x1f));
443         } else {
444                 edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
445                                          BIT(channel & 0x1f));
446         }
447 }
448
449 /*
450  * paRAM slot management functions
451  */
452 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
453                             const struct edmacc_param *param)
454 {
455         slot = EDMA_CHAN_SLOT(slot);
456         if (slot >= ecc->num_slots)
457                 return;
458         memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
459 }
460
461 static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
462                            struct edmacc_param *param)
463 {
464         slot = EDMA_CHAN_SLOT(slot);
465         if (slot >= ecc->num_slots)
466                 return;
467         memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
468 }
469
470 /**
471  * edma_alloc_slot - allocate DMA parameter RAM
472  * @ecc: pointer to edma_cc struct
473  * @slot: specific slot to allocate; negative for "any unused slot"
474  *
475  * This allocates a parameter RAM slot, initializing it to hold a
476  * dummy transfer.  Slots allocated using this routine have not been
477  * mapped to a hardware DMA channel, and will normally be used by
478  * linking to them from a slot associated with a DMA channel.
479  *
480  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
481  * slots may be allocated on behalf of DSP firmware.
482  *
483  * Returns the number of the slot, else negative errno.
484  */
485 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
486 {
487         if (slot >= 0) {
488                 slot = EDMA_CHAN_SLOT(slot);
489                 /* Requesting entry paRAM slot for a HW triggered channel. */
490                 if (ecc->chmap_exist && slot < ecc->num_channels)
491                         slot = EDMA_SLOT_ANY;
492         }
493
494         if (slot < 0) {
495                 if (ecc->chmap_exist)
496                         slot = 0;
497                 else
498                         slot = ecc->num_channels;
499                 for (;;) {
500                         slot = find_next_zero_bit(ecc->slot_inuse,
501                                                   ecc->num_slots,
502                                                   slot);
503                         if (slot == ecc->num_slots)
504                                 return -ENOMEM;
505                         if (!test_and_set_bit(slot, ecc->slot_inuse))
506                                 break;
507                 }
508         } else if (slot >= ecc->num_slots) {
509                 return -EINVAL;
510         } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
511                 return -EBUSY;
512         }
513
514         edma_write_slot(ecc, slot, &dummy_paramset);
515
516         return EDMA_CTLR_CHAN(ecc->id, slot);
517 }
518
519 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
520 {
521         slot = EDMA_CHAN_SLOT(slot);
522         if (slot >= ecc->num_slots)
523                 return;
524
525         edma_write_slot(ecc, slot, &dummy_paramset);
526         clear_bit(slot, ecc->slot_inuse);
527 }
528
529 /**
530  * edma_link - link one parameter RAM slot to another
531  * @ecc: pointer to edma_cc struct
532  * @from: parameter RAM slot originating the link
533  * @to: parameter RAM slot which is the link target
534  *
535  * The originating slot should not be part of any active DMA transfer.
536  */
537 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
538 {
539         if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
540                 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
541
542         from = EDMA_CHAN_SLOT(from);
543         to = EDMA_CHAN_SLOT(to);
544         if (from >= ecc->num_slots || to >= ecc->num_slots)
545                 return;
546
547         edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
548                           PARM_OFFSET(to));
549 }
550
551 /**
552  * edma_get_position - returns the current transfer point
553  * @ecc: pointer to edma_cc struct
554  * @slot: parameter RAM slot being examined
555  * @dst:  true selects the dest position, false the source
556  *
557  * Returns the position of the current active slot
558  */
559 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
560                                     bool dst)
561 {
562         u32 offs;
563
564         slot = EDMA_CHAN_SLOT(slot);
565         offs = PARM_OFFSET(slot);
566         offs += dst ? PARM_DST : PARM_SRC;
567
568         return edma_read(ecc, offs);
569 }
570
571 /*
572  * Channels with event associations will be triggered by their hardware
573  * events, and channels without such associations will be triggered by
574  * software.  (At this writing there is no interface for using software
575  * triggers except with channels that don't support hardware triggers.)
576  */
577 static void edma_start(struct edma_chan *echan)
578 {
579         struct edma_cc *ecc = echan->ecc;
580         int channel = EDMA_CHAN_SLOT(echan->ch_num);
581         int j = (channel >> 5);
582         unsigned int mask = BIT(channel & 0x1f);
583
584         if (!echan->hw_triggered) {
585                 /* EDMA channels without event association */
586                 dev_dbg(ecc->dev, "ESR%d %08x\n", j,
587                         edma_shadow0_read_array(ecc, SH_ESR, j));
588                 edma_shadow0_write_array(ecc, SH_ESR, j, mask);
589         } else {
590                 /* EDMA channel with event association */
591                 dev_dbg(ecc->dev, "ER%d %08x\n", j,
592                         edma_shadow0_read_array(ecc, SH_ER, j));
593                 /* Clear any pending event or error */
594                 edma_write_array(ecc, EDMA_ECR, j, mask);
595                 edma_write_array(ecc, EDMA_EMCR, j, mask);
596                 /* Clear any SER */
597                 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
598                 edma_shadow0_write_array(ecc, SH_EESR, j, mask);
599                 dev_dbg(ecc->dev, "EER%d %08x\n", j,
600                         edma_shadow0_read_array(ecc, SH_EER, j));
601         }
602 }
603
604 static void edma_stop(struct edma_chan *echan)
605 {
606         struct edma_cc *ecc = echan->ecc;
607         int channel = EDMA_CHAN_SLOT(echan->ch_num);
608         int j = (channel >> 5);
609         unsigned int mask = BIT(channel & 0x1f);
610
611         edma_shadow0_write_array(ecc, SH_EECR, j, mask);
612         edma_shadow0_write_array(ecc, SH_ECR, j, mask);
613         edma_shadow0_write_array(ecc, SH_SECR, j, mask);
614         edma_write_array(ecc, EDMA_EMCR, j, mask);
615
616         /* clear possibly pending completion interrupt */
617         edma_shadow0_write_array(ecc, SH_ICR, j, mask);
618
619         dev_dbg(ecc->dev, "EER%d %08x\n", j,
620                 edma_shadow0_read_array(ecc, SH_EER, j));
621
622         /* REVISIT:  consider guarding against inappropriate event
623          * chaining by overwriting with dummy_paramset.
624          */
625 }
626
627 /*
628  * Temporarily disable EDMA hardware events on the specified channel,
629  * preventing them from triggering new transfers
630  */
631 static void edma_pause(struct edma_chan *echan)
632 {
633         int channel = EDMA_CHAN_SLOT(echan->ch_num);
634         unsigned int mask = BIT(channel & 0x1f);
635
636         edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
637 }
638
639 /* Re-enable EDMA hardware events on the specified channel.  */
640 static void edma_resume(struct edma_chan *echan)
641 {
642         int channel = EDMA_CHAN_SLOT(echan->ch_num);
643         unsigned int mask = BIT(channel & 0x1f);
644
645         edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
646 }
647
648 static void edma_trigger_channel(struct edma_chan *echan)
649 {
650         struct edma_cc *ecc = echan->ecc;
651         int channel = EDMA_CHAN_SLOT(echan->ch_num);
652         unsigned int mask = BIT(channel & 0x1f);
653
654         edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
655
656         dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
657                 edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
658 }
659
660 static void edma_clean_channel(struct edma_chan *echan)
661 {
662         struct edma_cc *ecc = echan->ecc;
663         int channel = EDMA_CHAN_SLOT(echan->ch_num);
664         int j = (channel >> 5);
665         unsigned int mask = BIT(channel & 0x1f);
666
667         dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
668         edma_shadow0_write_array(ecc, SH_ECR, j, mask);
669         /* Clear the corresponding EMR bits */
670         edma_write_array(ecc, EDMA_EMCR, j, mask);
671         /* Clear any SER */
672         edma_shadow0_write_array(ecc, SH_SECR, j, mask);
673         edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
674 }
675
676 /* Move channel to a specific event queue */
677 static void edma_assign_channel_eventq(struct edma_chan *echan,
678                                        enum dma_event_q eventq_no)
679 {
680         struct edma_cc *ecc = echan->ecc;
681         int channel = EDMA_CHAN_SLOT(echan->ch_num);
682         int bit = (channel & 0x7) * 4;
683
684         /* default to low priority queue */
685         if (eventq_no == EVENTQ_DEFAULT)
686                 eventq_no = ecc->default_queue;
687         if (eventq_no >= ecc->num_tc)
688                 return;
689
690         eventq_no &= 7;
691         edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
692                           eventq_no << bit);
693 }
694
695 static int edma_alloc_channel(struct edma_chan *echan,
696                               enum dma_event_q eventq_no)
697 {
698         struct edma_cc *ecc = echan->ecc;
699         int channel = EDMA_CHAN_SLOT(echan->ch_num);
700
701         /* ensure access through shadow region 0 */
702         edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
703
704         /* ensure no events are pending */
705         edma_stop(echan);
706
707         edma_setup_interrupt(echan, true);
708
709         edma_assign_channel_eventq(echan, eventq_no);
710
711         return 0;
712 }
713
714 static void edma_free_channel(struct edma_chan *echan)
715 {
716         /* ensure no events are pending */
717         edma_stop(echan);
718         /* REVISIT should probably take out of shadow region 0 */
719         edma_setup_interrupt(echan, false);
720 }
721
722 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
723 {
724         return container_of(d, struct edma_cc, dma_slave);
725 }
726
727 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
728 {
729         return container_of(c, struct edma_chan, vchan.chan);
730 }
731
732 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
733 {
734         return container_of(tx, struct edma_desc, vdesc.tx);
735 }
736
737 static void edma_desc_free(struct virt_dma_desc *vdesc)
738 {
739         kfree(container_of(vdesc, struct edma_desc, vdesc));
740 }
741
742 /* Dispatch a queued descriptor to the controller (caller holds lock) */
743 static void edma_execute(struct edma_chan *echan)
744 {
745         struct edma_cc *ecc = echan->ecc;
746         struct virt_dma_desc *vdesc;
747         struct edma_desc *edesc;
748         struct device *dev = echan->vchan.chan.device->dev;
749         int i, j, left, nslots;
750
751         if (!echan->edesc) {
752                 /* Setup is needed for the first transfer */
753                 vdesc = vchan_next_desc(&echan->vchan);
754                 if (!vdesc)
755                         return;
756                 list_del(&vdesc->node);
757                 echan->edesc = to_edma_desc(&vdesc->tx);
758         }
759
760         edesc = echan->edesc;
761
762         /* Find out how many left */
763         left = edesc->pset_nr - edesc->processed;
764         nslots = min(MAX_NR_SG, left);
765         edesc->sg_len = 0;
766
767         /* Write descriptor PaRAM set(s) */
768         for (i = 0; i < nslots; i++) {
769                 j = i + edesc->processed;
770                 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
771                 edesc->sg_len += edesc->pset[j].len;
772                 dev_vdbg(dev,
773                          "\n pset[%d]:\n"
774                          "  chnum\t%d\n"
775                          "  slot\t%d\n"
776                          "  opt\t%08x\n"
777                          "  src\t%08x\n"
778                          "  dst\t%08x\n"
779                          "  abcnt\t%08x\n"
780                          "  ccnt\t%08x\n"
781                          "  bidx\t%08x\n"
782                          "  cidx\t%08x\n"
783                          "  lkrld\t%08x\n",
784                          j, echan->ch_num, echan->slot[i],
785                          edesc->pset[j].param.opt,
786                          edesc->pset[j].param.src,
787                          edesc->pset[j].param.dst,
788                          edesc->pset[j].param.a_b_cnt,
789                          edesc->pset[j].param.ccnt,
790                          edesc->pset[j].param.src_dst_bidx,
791                          edesc->pset[j].param.src_dst_cidx,
792                          edesc->pset[j].param.link_bcntrld);
793                 /* Link to the previous slot if not the last set */
794                 if (i != (nslots - 1))
795                         edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
796         }
797
798         edesc->processed += nslots;
799
800         /*
801          * If this is either the last set in a set of SG-list transactions
802          * then setup a link to the dummy slot, this results in all future
803          * events being absorbed and that's OK because we're done
804          */
805         if (edesc->processed == edesc->pset_nr) {
806                 if (edesc->cyclic)
807                         edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
808                 else
809                         edma_link(ecc, echan->slot[nslots - 1],
810                                   echan->ecc->dummy_slot);
811         }
812
813         if (echan->missed) {
814                 /*
815                  * This happens due to setup times between intermediate
816                  * transfers in long SG lists which have to be broken up into
817                  * transfers of MAX_NR_SG
818                  */
819                 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
820                 edma_clean_channel(echan);
821                 edma_stop(echan);
822                 edma_start(echan);
823                 edma_trigger_channel(echan);
824                 echan->missed = 0;
825         } else if (edesc->processed <= MAX_NR_SG) {
826                 dev_dbg(dev, "first transfer starting on channel %d\n",
827                         echan->ch_num);
828                 edma_start(echan);
829         } else {
830                 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
831                         echan->ch_num, edesc->processed);
832                 edma_resume(echan);
833         }
834 }
835
836 static int edma_terminate_all(struct dma_chan *chan)
837 {
838         struct edma_chan *echan = to_edma_chan(chan);
839         unsigned long flags;
840         LIST_HEAD(head);
841
842         spin_lock_irqsave(&echan->vchan.lock, flags);
843
844         /*
845          * Stop DMA activity: we assume the callback will not be called
846          * after edma_dma() returns (even if it does, it will see
847          * echan->edesc is NULL and exit.)
848          */
849         if (echan->edesc) {
850                 edma_stop(echan);
851                 /* Move the cyclic channel back to default queue */
852                 if (!echan->tc && echan->edesc->cyclic)
853                         edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
854                 /*
855                  * free the running request descriptor
856                  * since it is not in any of the vdesc lists
857                  */
858                 edma_desc_free(&echan->edesc->vdesc);
859                 echan->edesc = NULL;
860         }
861
862         vchan_get_all_descriptors(&echan->vchan, &head);
863         spin_unlock_irqrestore(&echan->vchan.lock, flags);
864         vchan_dma_desc_free_list(&echan->vchan, &head);
865
866         return 0;
867 }
868
869 static void edma_synchronize(struct dma_chan *chan)
870 {
871         struct edma_chan *echan = to_edma_chan(chan);
872
873         vchan_synchronize(&echan->vchan);
874 }
875
876 static int edma_slave_config(struct dma_chan *chan,
877         struct dma_slave_config *cfg)
878 {
879         struct edma_chan *echan = to_edma_chan(chan);
880
881         if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
882             cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
883                 return -EINVAL;
884
885         memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
886
887         return 0;
888 }
889
890 static int edma_dma_pause(struct dma_chan *chan)
891 {
892         struct edma_chan *echan = to_edma_chan(chan);
893
894         if (!echan->edesc)
895                 return -EINVAL;
896
897         edma_pause(echan);
898         return 0;
899 }
900
901 static int edma_dma_resume(struct dma_chan *chan)
902 {
903         struct edma_chan *echan = to_edma_chan(chan);
904
905         edma_resume(echan);
906         return 0;
907 }
908
909 /*
910  * A PaRAM set configuration abstraction used by other modes
911  * @chan: Channel who's PaRAM set we're configuring
912  * @pset: PaRAM set to initialize and setup.
913  * @src_addr: Source address of the DMA
914  * @dst_addr: Destination address of the DMA
915  * @burst: In units of dev_width, how much to send
916  * @dev_width: How much is the dev_width
917  * @dma_length: Total length of the DMA transfer
918  * @direction: Direction of the transfer
919  */
920 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
921                             dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
922                             unsigned int acnt, unsigned int dma_length,
923                             enum dma_transfer_direction direction)
924 {
925         struct edma_chan *echan = to_edma_chan(chan);
926         struct device *dev = chan->device->dev;
927         struct edmacc_param *param = &epset->param;
928         int bcnt, ccnt, cidx;
929         int src_bidx, dst_bidx, src_cidx, dst_cidx;
930         int absync;
931
932         /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
933         if (!burst)
934                 burst = 1;
935         /*
936          * If the maxburst is equal to the fifo width, use
937          * A-synced transfers. This allows for large contiguous
938          * buffer transfers using only one PaRAM set.
939          */
940         if (burst == 1) {
941                 /*
942                  * For the A-sync case, bcnt and ccnt are the remainder
943                  * and quotient respectively of the division of:
944                  * (dma_length / acnt) by (SZ_64K -1). This is so
945                  * that in case bcnt over flows, we have ccnt to use.
946                  * Note: In A-sync tranfer only, bcntrld is used, but it
947                  * only applies for sg_dma_len(sg) >= SZ_64K.
948                  * In this case, the best way adopted is- bccnt for the
949                  * first frame will be the remainder below. Then for
950                  * every successive frame, bcnt will be SZ_64K-1. This
951                  * is assured as bcntrld = 0xffff in end of function.
952                  */
953                 absync = false;
954                 ccnt = dma_length / acnt / (SZ_64K - 1);
955                 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
956                 /*
957                  * If bcnt is non-zero, we have a remainder and hence an
958                  * extra frame to transfer, so increment ccnt.
959                  */
960                 if (bcnt)
961                         ccnt++;
962                 else
963                         bcnt = SZ_64K - 1;
964                 cidx = acnt;
965         } else {
966                 /*
967                  * If maxburst is greater than the fifo address_width,
968                  * use AB-synced transfers where A count is the fifo
969                  * address_width and B count is the maxburst. In this
970                  * case, we are limited to transfers of C count frames
971                  * of (address_width * maxburst) where C count is limited
972                  * to SZ_64K-1. This places an upper bound on the length
973                  * of an SG segment that can be handled.
974                  */
975                 absync = true;
976                 bcnt = burst;
977                 ccnt = dma_length / (acnt * bcnt);
978                 if (ccnt > (SZ_64K - 1)) {
979                         dev_err(dev, "Exceeded max SG segment size\n");
980                         return -EINVAL;
981                 }
982                 cidx = acnt * bcnt;
983         }
984
985         epset->len = dma_length;
986
987         if (direction == DMA_MEM_TO_DEV) {
988                 src_bidx = acnt;
989                 src_cidx = cidx;
990                 dst_bidx = 0;
991                 dst_cidx = 0;
992                 epset->addr = src_addr;
993         } else if (direction == DMA_DEV_TO_MEM)  {
994                 src_bidx = 0;
995                 src_cidx = 0;
996                 dst_bidx = acnt;
997                 dst_cidx = cidx;
998                 epset->addr = dst_addr;
999         } else if (direction == DMA_MEM_TO_MEM)  {
1000                 src_bidx = acnt;
1001                 src_cidx = cidx;
1002                 dst_bidx = acnt;
1003                 dst_cidx = cidx;
1004         } else {
1005                 dev_err(dev, "%s: direction not implemented yet\n", __func__);
1006                 return -EINVAL;
1007         }
1008
1009         param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1010         /* Configure A or AB synchronized transfers */
1011         if (absync)
1012                 param->opt |= SYNCDIM;
1013
1014         param->src = src_addr;
1015         param->dst = dst_addr;
1016
1017         param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1018         param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1019
1020         param->a_b_cnt = bcnt << 16 | acnt;
1021         param->ccnt = ccnt;
1022         /*
1023          * Only time when (bcntrld) auto reload is required is for
1024          * A-sync case, and in this case, a requirement of reload value
1025          * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1026          * and then later will be populated by edma_execute.
1027          */
1028         param->link_bcntrld = 0xffffffff;
1029         return absync;
1030 }
1031
1032 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1033         struct dma_chan *chan, struct scatterlist *sgl,
1034         unsigned int sg_len, enum dma_transfer_direction direction,
1035         unsigned long tx_flags, void *context)
1036 {
1037         struct edma_chan *echan = to_edma_chan(chan);
1038         struct device *dev = chan->device->dev;
1039         struct edma_desc *edesc;
1040         dma_addr_t src_addr = 0, dst_addr = 0;
1041         enum dma_slave_buswidth dev_width;
1042         u32 burst;
1043         struct scatterlist *sg;
1044         int i, nslots, ret;
1045
1046         if (unlikely(!echan || !sgl || !sg_len))
1047                 return NULL;
1048
1049         if (direction == DMA_DEV_TO_MEM) {
1050                 src_addr = echan->cfg.src_addr;
1051                 dev_width = echan->cfg.src_addr_width;
1052                 burst = echan->cfg.src_maxburst;
1053         } else if (direction == DMA_MEM_TO_DEV) {
1054                 dst_addr = echan->cfg.dst_addr;
1055                 dev_width = echan->cfg.dst_addr_width;
1056                 burst = echan->cfg.dst_maxburst;
1057         } else {
1058                 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1059                 return NULL;
1060         }
1061
1062         if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1063                 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1064                 return NULL;
1065         }
1066
1067         edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
1068                         GFP_ATOMIC);
1069         if (!edesc) {
1070                 dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1071                 return NULL;
1072         }
1073
1074         edesc->pset_nr = sg_len;
1075         edesc->residue = 0;
1076         edesc->direction = direction;
1077         edesc->echan = echan;
1078
1079         /* Allocate a PaRAM slot, if needed */
1080         nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1081
1082         for (i = 0; i < nslots; i++) {
1083                 if (echan->slot[i] < 0) {
1084                         echan->slot[i] =
1085                                 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1086                         if (echan->slot[i] < 0) {
1087                                 kfree(edesc);
1088                                 dev_err(dev, "%s: Failed to allocate slot\n",
1089                                         __func__);
1090                                 return NULL;
1091                         }
1092                 }
1093         }
1094
1095         /* Configure PaRAM sets for each SG */
1096         for_each_sg(sgl, sg, sg_len, i) {
1097                 /* Get address for each SG */
1098                 if (direction == DMA_DEV_TO_MEM)
1099                         dst_addr = sg_dma_address(sg);
1100                 else
1101                         src_addr = sg_dma_address(sg);
1102
1103                 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1104                                        dst_addr, burst, dev_width,
1105                                        sg_dma_len(sg), direction);
1106                 if (ret < 0) {
1107                         kfree(edesc);
1108                         return NULL;
1109                 }
1110
1111                 edesc->absync = ret;
1112                 edesc->residue += sg_dma_len(sg);
1113
1114                 /* If this is the last in a current SG set of transactions,
1115                    enable interrupts so that next set is processed */
1116                 if (!((i+1) % MAX_NR_SG))
1117                         edesc->pset[i].param.opt |= TCINTEN;
1118
1119                 /* If this is the last set, enable completion interrupt flag */
1120                 if (i == sg_len - 1)
1121                         edesc->pset[i].param.opt |= TCINTEN;
1122         }
1123         edesc->residue_stat = edesc->residue;
1124
1125         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1126 }
1127
1128 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1129         struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1130         size_t len, unsigned long tx_flags)
1131 {
1132         int ret, nslots;
1133         struct edma_desc *edesc;
1134         struct device *dev = chan->device->dev;
1135         struct edma_chan *echan = to_edma_chan(chan);
1136         unsigned int width, pset_len;
1137
1138         if (unlikely(!echan || !len))
1139                 return NULL;
1140
1141         if (len < SZ_64K) {
1142                 /*
1143                  * Transfer size less than 64K can be handled with one paRAM
1144                  * slot and with one burst.
1145                  * ACNT = length
1146                  */
1147                 width = len;
1148                 pset_len = len;
1149                 nslots = 1;
1150         } else {
1151                 /*
1152                  * Transfer size bigger than 64K will be handled with maximum of
1153                  * two paRAM slots.
1154                  * slot1: (full_length / 32767) times 32767 bytes bursts.
1155                  *        ACNT = 32767, length1: (full_length / 32767) * 32767
1156                  * slot2: the remaining amount of data after slot1.
1157                  *        ACNT = full_length - length1, length2 = ACNT
1158                  *
1159                  * When the full_length is multibple of 32767 one slot can be
1160                  * used to complete the transfer.
1161                  */
1162                 width = SZ_32K - 1;
1163                 pset_len = rounddown(len, width);
1164                 /* One slot is enough for lengths multiple of (SZ_32K -1) */
1165                 if (unlikely(pset_len == len))
1166                         nslots = 1;
1167                 else
1168                         nslots = 2;
1169         }
1170
1171         edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1172                         GFP_ATOMIC);
1173         if (!edesc) {
1174                 dev_dbg(dev, "Failed to allocate a descriptor\n");
1175                 return NULL;
1176         }
1177
1178         edesc->pset_nr = nslots;
1179         edesc->residue = edesc->residue_stat = len;
1180         edesc->direction = DMA_MEM_TO_MEM;
1181         edesc->echan = echan;
1182
1183         ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1184                                width, pset_len, DMA_MEM_TO_MEM);
1185         if (ret < 0) {
1186                 kfree(edesc);
1187                 return NULL;
1188         }
1189
1190         edesc->absync = ret;
1191
1192         edesc->pset[0].param.opt |= ITCCHEN;
1193         if (nslots == 1) {
1194                 /* Enable transfer complete interrupt */
1195                 edesc->pset[0].param.opt |= TCINTEN;
1196         } else {
1197                 /* Enable transfer complete chaining for the first slot */
1198                 edesc->pset[0].param.opt |= TCCHEN;
1199
1200                 if (echan->slot[1] < 0) {
1201                         echan->slot[1] = edma_alloc_slot(echan->ecc,
1202                                                          EDMA_SLOT_ANY);
1203                         if (echan->slot[1] < 0) {
1204                                 kfree(edesc);
1205                                 dev_err(dev, "%s: Failed to allocate slot\n",
1206                                         __func__);
1207                                 return NULL;
1208                         }
1209                 }
1210                 dest += pset_len;
1211                 src += pset_len;
1212                 pset_len = width = len % (SZ_32K - 1);
1213
1214                 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1215                                        width, pset_len, DMA_MEM_TO_MEM);
1216                 if (ret < 0) {
1217                         kfree(edesc);
1218                         return NULL;
1219                 }
1220
1221                 edesc->pset[1].param.opt |= ITCCHEN;
1222                 edesc->pset[1].param.opt |= TCINTEN;
1223         }
1224
1225         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1226 }
1227
1228 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1229         struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1230         size_t period_len, enum dma_transfer_direction direction,
1231         unsigned long tx_flags)
1232 {
1233         struct edma_chan *echan = to_edma_chan(chan);
1234         struct device *dev = chan->device->dev;
1235         struct edma_desc *edesc;
1236         dma_addr_t src_addr, dst_addr;
1237         enum dma_slave_buswidth dev_width;
1238         u32 burst;
1239         int i, ret, nslots;
1240
1241         if (unlikely(!echan || !buf_len || !period_len))
1242                 return NULL;
1243
1244         if (direction == DMA_DEV_TO_MEM) {
1245                 src_addr = echan->cfg.src_addr;
1246                 dst_addr = buf_addr;
1247                 dev_width = echan->cfg.src_addr_width;
1248                 burst = echan->cfg.src_maxburst;
1249         } else if (direction == DMA_MEM_TO_DEV) {
1250                 src_addr = buf_addr;
1251                 dst_addr = echan->cfg.dst_addr;
1252                 dev_width = echan->cfg.dst_addr_width;
1253                 burst = echan->cfg.dst_maxburst;
1254         } else {
1255                 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1256                 return NULL;
1257         }
1258
1259         if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1260                 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1261                 return NULL;
1262         }
1263
1264         if (unlikely(buf_len % period_len)) {
1265                 dev_err(dev, "Period should be multiple of Buffer length\n");
1266                 return NULL;
1267         }
1268
1269         nslots = (buf_len / period_len) + 1;
1270
1271         /*
1272          * Cyclic DMA users such as audio cannot tolerate delays introduced
1273          * by cases where the number of periods is more than the maximum
1274          * number of SGs the EDMA driver can handle at a time. For DMA types
1275          * such as Slave SGs, such delays are tolerable and synchronized,
1276          * but the synchronization is difficult to achieve with Cyclic and
1277          * cannot be guaranteed, so we error out early.
1278          */
1279         if (nslots > MAX_NR_SG)
1280                 return NULL;
1281
1282         edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1283                         GFP_ATOMIC);
1284         if (!edesc) {
1285                 dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1286                 return NULL;
1287         }
1288
1289         edesc->cyclic = 1;
1290         edesc->pset_nr = nslots;
1291         edesc->residue = edesc->residue_stat = buf_len;
1292         edesc->direction = direction;
1293         edesc->echan = echan;
1294
1295         dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1296                 __func__, echan->ch_num, nslots, period_len, buf_len);
1297
1298         for (i = 0; i < nslots; i++) {
1299                 /* Allocate a PaRAM slot, if needed */
1300                 if (echan->slot[i] < 0) {
1301                         echan->slot[i] =
1302                                 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1303                         if (echan->slot[i] < 0) {
1304                                 kfree(edesc);
1305                                 dev_err(dev, "%s: Failed to allocate slot\n",
1306                                         __func__);
1307                                 return NULL;
1308                         }
1309                 }
1310
1311                 if (i == nslots - 1) {
1312                         memcpy(&edesc->pset[i], &edesc->pset[0],
1313                                sizeof(edesc->pset[0]));
1314                         break;
1315                 }
1316
1317                 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1318                                        dst_addr, burst, dev_width, period_len,
1319                                        direction);
1320                 if (ret < 0) {
1321                         kfree(edesc);
1322                         return NULL;
1323                 }
1324
1325                 if (direction == DMA_DEV_TO_MEM)
1326                         dst_addr += period_len;
1327                 else
1328                         src_addr += period_len;
1329
1330                 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1331                 dev_vdbg(dev,
1332                         "\n pset[%d]:\n"
1333                         "  chnum\t%d\n"
1334                         "  slot\t%d\n"
1335                         "  opt\t%08x\n"
1336                         "  src\t%08x\n"
1337                         "  dst\t%08x\n"
1338                         "  abcnt\t%08x\n"
1339                         "  ccnt\t%08x\n"
1340                         "  bidx\t%08x\n"
1341                         "  cidx\t%08x\n"
1342                         "  lkrld\t%08x\n",
1343                         i, echan->ch_num, echan->slot[i],
1344                         edesc->pset[i].param.opt,
1345                         edesc->pset[i].param.src,
1346                         edesc->pset[i].param.dst,
1347                         edesc->pset[i].param.a_b_cnt,
1348                         edesc->pset[i].param.ccnt,
1349                         edesc->pset[i].param.src_dst_bidx,
1350                         edesc->pset[i].param.src_dst_cidx,
1351                         edesc->pset[i].param.link_bcntrld);
1352
1353                 edesc->absync = ret;
1354
1355                 /*
1356                  * Enable period interrupt only if it is requested
1357                  */
1358                 if (tx_flags & DMA_PREP_INTERRUPT)
1359                         edesc->pset[i].param.opt |= TCINTEN;
1360         }
1361
1362         /* Place the cyclic channel to highest priority queue */
1363         if (!echan->tc)
1364                 edma_assign_channel_eventq(echan, EVENTQ_0);
1365
1366         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1367 }
1368
1369 static void edma_completion_handler(struct edma_chan *echan)
1370 {
1371         struct device *dev = echan->vchan.chan.device->dev;
1372         struct edma_desc *edesc;
1373
1374         spin_lock(&echan->vchan.lock);
1375         edesc = echan->edesc;
1376         if (edesc) {
1377                 if (edesc->cyclic) {
1378                         vchan_cyclic_callback(&edesc->vdesc);
1379                         spin_unlock(&echan->vchan.lock);
1380                         return;
1381                 } else if (edesc->processed == edesc->pset_nr) {
1382                         edesc->residue = 0;
1383                         edma_stop(echan);
1384                         vchan_cookie_complete(&edesc->vdesc);
1385                         echan->edesc = NULL;
1386
1387                         dev_dbg(dev, "Transfer completed on channel %d\n",
1388                                 echan->ch_num);
1389                 } else {
1390                         dev_dbg(dev, "Sub transfer completed on channel %d\n",
1391                                 echan->ch_num);
1392
1393                         edma_pause(echan);
1394
1395                         /* Update statistics for tx_status */
1396                         edesc->residue -= edesc->sg_len;
1397                         edesc->residue_stat = edesc->residue;
1398                         edesc->processed_stat = edesc->processed;
1399                 }
1400                 edma_execute(echan);
1401         }
1402
1403         spin_unlock(&echan->vchan.lock);
1404 }
1405
1406 /* eDMA interrupt handler */
1407 static irqreturn_t dma_irq_handler(int irq, void *data)
1408 {
1409         struct edma_cc *ecc = data;
1410         int ctlr;
1411         u32 sh_ier;
1412         u32 sh_ipr;
1413         u32 bank;
1414
1415         ctlr = ecc->id;
1416         if (ctlr < 0)
1417                 return IRQ_NONE;
1418
1419         dev_vdbg(ecc->dev, "dma_irq_handler\n");
1420
1421         sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1422         if (!sh_ipr) {
1423                 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1424                 if (!sh_ipr)
1425                         return IRQ_NONE;
1426                 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1427                 bank = 1;
1428         } else {
1429                 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1430                 bank = 0;
1431         }
1432
1433         do {
1434                 u32 slot;
1435                 u32 channel;
1436
1437                 slot = __ffs(sh_ipr);
1438                 sh_ipr &= ~(BIT(slot));
1439
1440                 if (sh_ier & BIT(slot)) {
1441                         channel = (bank << 5) | slot;
1442                         /* Clear the corresponding IPR bits */
1443                         edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1444                         edma_completion_handler(&ecc->slave_chans[channel]);
1445                 }
1446         } while (sh_ipr);
1447
1448         edma_shadow0_write(ecc, SH_IEVAL, 1);
1449         return IRQ_HANDLED;
1450 }
1451
1452 static void edma_error_handler(struct edma_chan *echan)
1453 {
1454         struct edma_cc *ecc = echan->ecc;
1455         struct device *dev = echan->vchan.chan.device->dev;
1456         struct edmacc_param p;
1457
1458         if (!echan->edesc)
1459                 return;
1460
1461         spin_lock(&echan->vchan.lock);
1462
1463         edma_read_slot(ecc, echan->slot[0], &p);
1464         /*
1465          * Issue later based on missed flag which will be sure
1466          * to happen as:
1467          * (1) we finished transmitting an intermediate slot and
1468          *     edma_execute is coming up.
1469          * (2) or we finished current transfer and issue will
1470          *     call edma_execute.
1471          *
1472          * Important note: issuing can be dangerous here and
1473          * lead to some nasty recursion when we are in a NULL
1474          * slot. So we avoid doing so and set the missed flag.
1475          */
1476         if (p.a_b_cnt == 0 && p.ccnt == 0) {
1477                 dev_dbg(dev, "Error on null slot, setting miss\n");
1478                 echan->missed = 1;
1479         } else {
1480                 /*
1481                  * The slot is already programmed but the event got
1482                  * missed, so its safe to issue it here.
1483                  */
1484                 dev_dbg(dev, "Missed event, TRIGGERING\n");
1485                 edma_clean_channel(echan);
1486                 edma_stop(echan);
1487                 edma_start(echan);
1488                 edma_trigger_channel(echan);
1489         }
1490         spin_unlock(&echan->vchan.lock);
1491 }
1492
1493 static inline bool edma_error_pending(struct edma_cc *ecc)
1494 {
1495         if (edma_read_array(ecc, EDMA_EMR, 0) ||
1496             edma_read_array(ecc, EDMA_EMR, 1) ||
1497             edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1498                 return true;
1499
1500         return false;
1501 }
1502
1503 /* eDMA error interrupt handler */
1504 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1505 {
1506         struct edma_cc *ecc = data;
1507         int i, j;
1508         int ctlr;
1509         unsigned int cnt = 0;
1510         unsigned int val;
1511
1512         ctlr = ecc->id;
1513         if (ctlr < 0)
1514                 return IRQ_NONE;
1515
1516         dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1517
1518         if (!edma_error_pending(ecc))
1519                 return IRQ_NONE;
1520
1521         while (1) {
1522                 /* Event missed register(s) */
1523                 for (j = 0; j < 2; j++) {
1524                         unsigned long emr;
1525
1526                         val = edma_read_array(ecc, EDMA_EMR, j);
1527                         if (!val)
1528                                 continue;
1529
1530                         dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1531                         emr = val;
1532                         for (i = find_next_bit(&emr, 32, 0); i < 32;
1533                              i = find_next_bit(&emr, 32, i + 1)) {
1534                                 int k = (j << 5) + i;
1535
1536                                 /* Clear the corresponding EMR bits */
1537                                 edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1538                                 /* Clear any SER */
1539                                 edma_shadow0_write_array(ecc, SH_SECR, j,
1540                                                          BIT(i));
1541                                 edma_error_handler(&ecc->slave_chans[k]);
1542                         }
1543                 }
1544
1545                 val = edma_read(ecc, EDMA_QEMR);
1546                 if (val) {
1547                         dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1548                         /* Not reported, just clear the interrupt reason. */
1549                         edma_write(ecc, EDMA_QEMCR, val);
1550                         edma_shadow0_write(ecc, SH_QSECR, val);
1551                 }
1552
1553                 val = edma_read(ecc, EDMA_CCERR);
1554                 if (val) {
1555                         dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1556                         /* Not reported, just clear the interrupt reason. */
1557                         edma_write(ecc, EDMA_CCERRCLR, val);
1558                 }
1559
1560                 if (!edma_error_pending(ecc))
1561                         break;
1562                 cnt++;
1563                 if (cnt > 10)
1564                         break;
1565         }
1566         edma_write(ecc, EDMA_EEVAL, 1);
1567         return IRQ_HANDLED;
1568 }
1569
1570 static void edma_tc_set_pm_state(struct edma_tc *tc, bool enable)
1571 {
1572         struct platform_device *tc_pdev;
1573         int ret;
1574
1575         if (!IS_ENABLED(CONFIG_OF) || !tc)
1576                 return;
1577
1578         tc_pdev = of_find_device_by_node(tc->node);
1579         if (!tc_pdev) {
1580                 pr_err("%s: TPTC device is not found\n", __func__);
1581                 return;
1582         }
1583         if (!pm_runtime_enabled(&tc_pdev->dev))
1584                 pm_runtime_enable(&tc_pdev->dev);
1585
1586         if (enable)
1587                 ret = pm_runtime_get_sync(&tc_pdev->dev);
1588         else
1589                 ret = pm_runtime_put_sync(&tc_pdev->dev);
1590
1591         if (ret < 0)
1592                 pr_err("%s: pm_runtime_%s_sync() failed for %s\n", __func__,
1593                        enable ? "get" : "put", dev_name(&tc_pdev->dev));
1594 }
1595
1596 /* Alloc channel resources */
1597 static int edma_alloc_chan_resources(struct dma_chan *chan)
1598 {
1599         struct edma_chan *echan = to_edma_chan(chan);
1600         struct edma_cc *ecc = echan->ecc;
1601         struct device *dev = ecc->dev;
1602         enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1603         int ret;
1604
1605         if (echan->tc) {
1606                 eventq_no = echan->tc->id;
1607         } else if (ecc->tc_list) {
1608                 /* memcpy channel */
1609                 echan->tc = &ecc->tc_list[ecc->info->default_queue];
1610                 eventq_no = echan->tc->id;
1611         }
1612
1613         ret = edma_alloc_channel(echan, eventq_no);
1614         if (ret)
1615                 return ret;
1616
1617         echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1618         if (echan->slot[0] < 0) {
1619                 dev_err(dev, "Entry slot allocation failed for channel %u\n",
1620                         EDMA_CHAN_SLOT(echan->ch_num));
1621                 goto err_slot;
1622         }
1623
1624         /* Set up channel -> slot mapping for the entry slot */
1625         edma_set_chmap(echan, echan->slot[0]);
1626         echan->alloced = true;
1627
1628         dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1629                 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1630                 echan->hw_triggered ? "HW" : "SW");
1631
1632         edma_tc_set_pm_state(echan->tc, true);
1633
1634         return 0;
1635
1636 err_slot:
1637         edma_free_channel(echan);
1638         return ret;
1639 }
1640
1641 /* Free channel resources */
1642 static void edma_free_chan_resources(struct dma_chan *chan)
1643 {
1644         struct edma_chan *echan = to_edma_chan(chan);
1645         struct device *dev = echan->ecc->dev;
1646         int i;
1647
1648         /* Terminate transfers */
1649         edma_stop(echan);
1650
1651         vchan_free_chan_resources(&echan->vchan);
1652
1653         /* Free EDMA PaRAM slots */
1654         for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1655                 if (echan->slot[i] >= 0) {
1656                         edma_free_slot(echan->ecc, echan->slot[i]);
1657                         echan->slot[i] = -1;
1658                 }
1659         }
1660
1661         /* Set entry slot to the dummy slot */
1662         edma_set_chmap(echan, echan->ecc->dummy_slot);
1663
1664         /* Free EDMA channel */
1665         if (echan->alloced) {
1666                 edma_free_channel(echan);
1667                 echan->alloced = false;
1668         }
1669
1670         edma_tc_set_pm_state(echan->tc, false);
1671         echan->tc = NULL;
1672         echan->hw_triggered = false;
1673
1674         dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1675                 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1676 }
1677
1678 /* Send pending descriptor to hardware */
1679 static void edma_issue_pending(struct dma_chan *chan)
1680 {
1681         struct edma_chan *echan = to_edma_chan(chan);
1682         unsigned long flags;
1683
1684         spin_lock_irqsave(&echan->vchan.lock, flags);
1685         if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1686                 edma_execute(echan);
1687         spin_unlock_irqrestore(&echan->vchan.lock, flags);
1688 }
1689
1690 static u32 edma_residue(struct edma_desc *edesc)
1691 {
1692         bool dst = edesc->direction == DMA_DEV_TO_MEM;
1693         struct edma_pset *pset = edesc->pset;
1694         dma_addr_t done, pos;
1695         int i;
1696
1697         /*
1698          * We always read the dst/src position from the first RamPar
1699          * pset. That's the one which is active now.
1700          */
1701         pos = edma_get_position(edesc->echan->ecc, edesc->echan->slot[0], dst);
1702
1703         /*
1704          * Cyclic is simple. Just subtract pset[0].addr from pos.
1705          *
1706          * We never update edesc->residue in the cyclic case, so we
1707          * can tell the remaining room to the end of the circular
1708          * buffer.
1709          */
1710         if (edesc->cyclic) {
1711                 done = pos - pset->addr;
1712                 edesc->residue_stat = edesc->residue - done;
1713                 return edesc->residue_stat;
1714         }
1715
1716         /*
1717          * For SG operation we catch up with the last processed
1718          * status.
1719          */
1720         pset += edesc->processed_stat;
1721
1722         for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1723                 /*
1724                  * If we are inside this pset address range, we know
1725                  * this is the active one. Get the current delta and
1726                  * stop walking the psets.
1727                  */
1728                 if (pos >= pset->addr && pos < pset->addr + pset->len)
1729                         return edesc->residue_stat - (pos - pset->addr);
1730
1731                 /* Otherwise mark it done and update residue_stat. */
1732                 edesc->processed_stat++;
1733                 edesc->residue_stat -= pset->len;
1734         }
1735         return edesc->residue_stat;
1736 }
1737
1738 /* Check request completion status */
1739 static enum dma_status edma_tx_status(struct dma_chan *chan,
1740                                       dma_cookie_t cookie,
1741                                       struct dma_tx_state *txstate)
1742 {
1743         struct edma_chan *echan = to_edma_chan(chan);
1744         struct virt_dma_desc *vdesc;
1745         enum dma_status ret;
1746         unsigned long flags;
1747
1748         ret = dma_cookie_status(chan, cookie, txstate);
1749         if (ret == DMA_COMPLETE || !txstate)
1750                 return ret;
1751
1752         spin_lock_irqsave(&echan->vchan.lock, flags);
1753         if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1754                 txstate->residue = edma_residue(echan->edesc);
1755         else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
1756                 txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1757         spin_unlock_irqrestore(&echan->vchan.lock, flags);
1758
1759         return ret;
1760 }
1761
1762 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1763 {
1764         if (!memcpy_channels)
1765                 return false;
1766         while (*memcpy_channels != -1) {
1767                 if (*memcpy_channels == ch_num)
1768                         return true;
1769                 memcpy_channels++;
1770         }
1771         return false;
1772 }
1773
1774 #define EDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1775                                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1776                                  BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1777                                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1778
1779 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1780 {
1781         struct dma_device *s_ddev = &ecc->dma_slave;
1782         struct dma_device *m_ddev = NULL;
1783         s32 *memcpy_channels = ecc->info->memcpy_channels;
1784         int i, j;
1785
1786         dma_cap_zero(s_ddev->cap_mask);
1787         dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1788         dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1789         if (ecc->legacy_mode && !memcpy_channels) {
1790                 dev_warn(ecc->dev,
1791                          "Legacy memcpy is enabled, things might not work\n");
1792
1793                 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1794                 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1795                 s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1796         }
1797
1798         s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1799         s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1800         s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1801         s_ddev->device_free_chan_resources = edma_free_chan_resources;
1802         s_ddev->device_issue_pending = edma_issue_pending;
1803         s_ddev->device_tx_status = edma_tx_status;
1804         s_ddev->device_config = edma_slave_config;
1805         s_ddev->device_pause = edma_dma_pause;
1806         s_ddev->device_resume = edma_dma_resume;
1807         s_ddev->device_terminate_all = edma_terminate_all;
1808         s_ddev->device_synchronize = edma_synchronize;
1809
1810         s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1811         s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1812         s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1813         s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1814
1815         s_ddev->dev = ecc->dev;
1816         INIT_LIST_HEAD(&s_ddev->channels);
1817
1818         if (memcpy_channels) {
1819                 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1820                 ecc->dma_memcpy = m_ddev;
1821
1822                 dma_cap_zero(m_ddev->cap_mask);
1823                 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1824
1825                 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1826                 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1827                 m_ddev->device_free_chan_resources = edma_free_chan_resources;
1828                 m_ddev->device_issue_pending = edma_issue_pending;
1829                 m_ddev->device_tx_status = edma_tx_status;
1830                 m_ddev->device_config = edma_slave_config;
1831                 m_ddev->device_pause = edma_dma_pause;
1832                 m_ddev->device_resume = edma_dma_resume;
1833                 m_ddev->device_terminate_all = edma_terminate_all;
1834                 m_ddev->device_synchronize = edma_synchronize;
1835
1836                 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1837                 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1838                 m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1839                 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1840
1841                 m_ddev->dev = ecc->dev;
1842                 INIT_LIST_HEAD(&m_ddev->channels);
1843         } else if (!ecc->legacy_mode) {
1844                 dev_info(ecc->dev, "memcpy is disabled\n");
1845         }
1846
1847         for (i = 0; i < ecc->num_channels; i++) {
1848                 struct edma_chan *echan = &ecc->slave_chans[i];
1849                 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1850                 echan->ecc = ecc;
1851                 echan->vchan.desc_free = edma_desc_free;
1852
1853                 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1854                         vchan_init(&echan->vchan, m_ddev);
1855                 else
1856                         vchan_init(&echan->vchan, s_ddev);
1857
1858                 INIT_LIST_HEAD(&echan->node);
1859                 for (j = 0; j < EDMA_MAX_SLOTS; j++)
1860                         echan->slot[j] = -1;
1861         }
1862 }
1863
1864 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1865                               struct edma_cc *ecc)
1866 {
1867         int i;
1868         u32 value, cccfg;
1869         s8 (*queue_priority_map)[2];
1870
1871         /* Decode the eDMA3 configuration from CCCFG register */
1872         cccfg = edma_read(ecc, EDMA_CCCFG);
1873
1874         value = GET_NUM_REGN(cccfg);
1875         ecc->num_region = BIT(value);
1876
1877         value = GET_NUM_DMACH(cccfg);
1878         ecc->num_channels = BIT(value + 1);
1879
1880         value = GET_NUM_QDMACH(cccfg);
1881         ecc->num_qchannels = value * 2;
1882
1883         value = GET_NUM_PAENTRY(cccfg);
1884         ecc->num_slots = BIT(value + 4);
1885
1886         value = GET_NUM_EVQUE(cccfg);
1887         ecc->num_tc = value + 1;
1888
1889         ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
1890
1891         dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
1892         dev_dbg(dev, "num_region: %u\n", ecc->num_region);
1893         dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1894         dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1895         dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
1896         dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1897         dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1898
1899         /* Nothing need to be done if queue priority is provided */
1900         if (pdata->queue_priority_mapping)
1901                 return 0;
1902
1903         /*
1904          * Configure TC/queue priority as follows:
1905          * Q0 - priority 0
1906          * Q1 - priority 1
1907          * Q2 - priority 2
1908          * ...
1909          * The meaning of priority numbers: 0 highest priority, 7 lowest
1910          * priority. So Q0 is the highest priority queue and the last queue has
1911          * the lowest priority.
1912          */
1913         queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1914                                           GFP_KERNEL);
1915         if (!queue_priority_map)
1916                 return -ENOMEM;
1917
1918         for (i = 0; i < ecc->num_tc; i++) {
1919                 queue_priority_map[i][0] = i;
1920                 queue_priority_map[i][1] = i;
1921         }
1922         queue_priority_map[i][0] = -1;
1923         queue_priority_map[i][1] = -1;
1924
1925         pdata->queue_priority_mapping = queue_priority_map;
1926         /* Default queue has the lowest priority */
1927         pdata->default_queue = i - 1;
1928
1929         return 0;
1930 }
1931
1932 #if IS_ENABLED(CONFIG_OF)
1933 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
1934                                size_t sz)
1935 {
1936         const char pname[] = "ti,edma-xbar-event-map";
1937         struct resource res;
1938         void __iomem *xbar;
1939         s16 (*xbar_chans)[2];
1940         size_t nelm = sz / sizeof(s16);
1941         u32 shift, offset, mux;
1942         int ret, i;
1943
1944         xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
1945         if (!xbar_chans)
1946                 return -ENOMEM;
1947
1948         ret = of_address_to_resource(dev->of_node, 1, &res);
1949         if (ret)
1950                 return -ENOMEM;
1951
1952         xbar = devm_ioremap(dev, res.start, resource_size(&res));
1953         if (!xbar)
1954                 return -ENOMEM;
1955
1956         ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
1957                                          nelm);
1958         if (ret)
1959                 return -EIO;
1960
1961         /* Invalidate last entry for the other user of this mess */
1962         nelm >>= 1;
1963         xbar_chans[nelm][0] = -1;
1964         xbar_chans[nelm][1] = -1;
1965
1966         for (i = 0; i < nelm; i++) {
1967                 shift = (xbar_chans[i][1] & 0x03) << 3;
1968                 offset = xbar_chans[i][1] & 0xfffffffc;
1969                 mux = readl(xbar + offset);
1970                 mux &= ~(0xff << shift);
1971                 mux |= xbar_chans[i][0] << shift;
1972                 writel(mux, (xbar + offset));
1973         }
1974
1975         pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
1976         return 0;
1977 }
1978
1979 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1980                                                      bool legacy_mode)
1981 {
1982         struct edma_soc_info *info;
1983         struct property *prop;
1984         size_t sz;
1985         int ret;
1986
1987         info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
1988         if (!info)
1989                 return ERR_PTR(-ENOMEM);
1990
1991         if (legacy_mode) {
1992                 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
1993                                         &sz);
1994                 if (prop) {
1995                         ret = edma_xbar_event_map(dev, info, sz);
1996                         if (ret)
1997                                 return ERR_PTR(ret);
1998                 }
1999                 return info;
2000         }
2001
2002         /* Get the list of channels allocated to be used for memcpy */
2003         prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2004         if (prop) {
2005                 const char pname[] = "ti,edma-memcpy-channels";
2006                 size_t nelm = sz / sizeof(s32);
2007                 s32 *memcpy_ch;
2008
2009                 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2010                                          GFP_KERNEL);
2011                 if (!memcpy_ch)
2012                         return ERR_PTR(-ENOMEM);
2013
2014                 ret = of_property_read_u32_array(dev->of_node, pname,
2015                                                  (u32 *)memcpy_ch, nelm);
2016                 if (ret)
2017                         return ERR_PTR(ret);
2018
2019                 memcpy_ch[nelm] = -1;
2020                 info->memcpy_channels = memcpy_ch;
2021         }
2022
2023         prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2024                                 &sz);
2025         if (prop) {
2026                 const char pname[] = "ti,edma-reserved-slot-ranges";
2027                 u32 (*tmp)[2];
2028                 s16 (*rsv_slots)[2];
2029                 size_t nelm = sz / sizeof(*tmp);
2030                 struct edma_rsv_info *rsv_info;
2031                 int i;
2032
2033                 if (!nelm)
2034                         return info;
2035
2036                 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2037                 if (!tmp)
2038                         return ERR_PTR(-ENOMEM);
2039
2040                 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2041                 if (!rsv_info) {
2042                         kfree(tmp);
2043                         return ERR_PTR(-ENOMEM);
2044                 }
2045
2046                 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2047                                          GFP_KERNEL);
2048                 if (!rsv_slots) {
2049                         kfree(tmp);
2050                         return ERR_PTR(-ENOMEM);
2051                 }
2052
2053                 ret = of_property_read_u32_array(dev->of_node, pname,
2054                                                  (u32 *)tmp, nelm * 2);
2055                 if (ret) {
2056                         kfree(tmp);
2057                         return ERR_PTR(ret);
2058                 }
2059
2060                 for (i = 0; i < nelm; i++) {
2061                         rsv_slots[i][0] = tmp[i][0];
2062                         rsv_slots[i][1] = tmp[i][1];
2063                 }
2064                 rsv_slots[nelm][0] = -1;
2065                 rsv_slots[nelm][1] = -1;
2066
2067                 info->rsv = rsv_info;
2068                 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2069
2070                 kfree(tmp);
2071         }
2072
2073         return info;
2074 }
2075
2076 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2077                                       struct of_dma *ofdma)
2078 {
2079         struct edma_cc *ecc = ofdma->of_dma_data;
2080         struct dma_chan *chan = NULL;
2081         struct edma_chan *echan;
2082         int i;
2083
2084         if (!ecc || dma_spec->args_count < 1)
2085                 return NULL;
2086
2087         for (i = 0; i < ecc->num_channels; i++) {
2088                 echan = &ecc->slave_chans[i];
2089                 if (echan->ch_num == dma_spec->args[0]) {
2090                         chan = &echan->vchan.chan;
2091                         break;
2092                 }
2093         }
2094
2095         if (!chan)
2096                 return NULL;
2097
2098         if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2099                 goto out;
2100
2101         if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2102             dma_spec->args[1] < echan->ecc->num_tc) {
2103                 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2104                 goto out;
2105         }
2106
2107         return NULL;
2108 out:
2109         /* The channel is going to be used as HW synchronized */
2110         echan->hw_triggered = true;
2111         return dma_get_slave_channel(chan);
2112 }
2113 #else
2114 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2115                                                      bool legacy_mode)
2116 {
2117         return ERR_PTR(-EINVAL);
2118 }
2119
2120 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2121                                       struct of_dma *ofdma)
2122 {
2123         return NULL;
2124 }
2125 #endif
2126
2127 static int edma_probe(struct platform_device *pdev)
2128 {
2129         struct edma_soc_info    *info = pdev->dev.platform_data;
2130         s8                      (*queue_priority_mapping)[2];
2131         int                     i, off, ln;
2132         const s16               (*rsv_slots)[2];
2133         const s16               (*xbar_chans)[2];
2134         int                     irq;
2135         char                    *irq_name;
2136         struct resource         *mem;
2137         struct device_node      *node = pdev->dev.of_node;
2138         struct device           *dev = &pdev->dev;
2139         struct edma_cc          *ecc;
2140         bool                    legacy_mode = true;
2141         int ret;
2142
2143         if (node) {
2144                 const struct of_device_id *match;
2145
2146                 match = of_match_node(edma_of_ids, node);
2147                 if (match && (u32)match->data == EDMA_BINDING_TPCC)
2148                         legacy_mode = false;
2149
2150                 info = edma_setup_info_from_dt(dev, legacy_mode);
2151                 if (IS_ERR(info)) {
2152                         dev_err(dev, "failed to get DT data\n");
2153                         return PTR_ERR(info);
2154                 }
2155         }
2156
2157         if (!info)
2158                 return -ENODEV;
2159
2160         pm_runtime_enable(dev);
2161         ret = pm_runtime_get_sync(dev);
2162         if (ret < 0) {
2163                 dev_err(dev, "pm_runtime_get_sync() failed\n");
2164                 return ret;
2165         }
2166
2167         ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2168         if (ret)
2169                 return ret;
2170
2171         ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2172         if (!ecc) {
2173                 dev_err(dev, "Can't allocate controller\n");
2174                 return -ENOMEM;
2175         }
2176
2177         ecc->dev = dev;
2178         ecc->id = pdev->id;
2179         ecc->legacy_mode = legacy_mode;
2180         /* When booting with DT the pdev->id is -1 */
2181         if (ecc->id < 0)
2182                 ecc->id = 0;
2183
2184         mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2185         if (!mem) {
2186                 dev_dbg(dev, "mem resource not found, using index 0\n");
2187                 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2188                 if (!mem) {
2189                         dev_err(dev, "no mem resource?\n");
2190                         return -ENODEV;
2191                 }
2192         }
2193         ecc->base = devm_ioremap_resource(dev, mem);
2194         if (IS_ERR(ecc->base))
2195                 return PTR_ERR(ecc->base);
2196
2197         platform_set_drvdata(pdev, ecc);
2198
2199         /* Get eDMA3 configuration from IP */
2200         ret = edma_setup_from_hw(dev, info, ecc);
2201         if (ret)
2202                 return ret;
2203
2204         /* Allocate memory based on the information we got from the IP */
2205         ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2206                                         sizeof(*ecc->slave_chans), GFP_KERNEL);
2207         if (!ecc->slave_chans)
2208                 return -ENOMEM;
2209
2210         ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2211                                        sizeof(unsigned long), GFP_KERNEL);
2212         if (!ecc->slot_inuse)
2213                 return -ENOMEM;
2214
2215         ecc->default_queue = info->default_queue;
2216
2217         for (i = 0; i < ecc->num_slots; i++)
2218                 edma_write_slot(ecc, i, &dummy_paramset);
2219
2220         if (info->rsv) {
2221                 /* Set the reserved slots in inuse list */
2222                 rsv_slots = info->rsv->rsv_slots;
2223                 if (rsv_slots) {
2224                         for (i = 0; rsv_slots[i][0] != -1; i++) {
2225                                 off = rsv_slots[i][0];
2226                                 ln = rsv_slots[i][1];
2227                                 set_bits(off, ln, ecc->slot_inuse);
2228                         }
2229                 }
2230         }
2231
2232         /* Clear the xbar mapped channels in unused list */
2233         xbar_chans = info->xbar_chans;
2234         if (xbar_chans) {
2235                 for (i = 0; xbar_chans[i][1] != -1; i++) {
2236                         off = xbar_chans[i][1];
2237                 }
2238         }
2239
2240         irq = platform_get_irq_byname(pdev, "edma3_ccint");
2241         if (irq < 0 && node)
2242                 irq = irq_of_parse_and_map(node, 0);
2243
2244         if (irq >= 0) {
2245                 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2246                                           dev_name(dev));
2247                 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2248                                        ecc);
2249                 if (ret) {
2250                         dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2251                         return ret;
2252                 }
2253         }
2254
2255         irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2256         if (irq < 0 && node)
2257                 irq = irq_of_parse_and_map(node, 2);
2258
2259         if (irq >= 0) {
2260                 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2261                                           dev_name(dev));
2262                 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2263                                        ecc);
2264                 if (ret) {
2265                         dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2266                         return ret;
2267                 }
2268         }
2269
2270         ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2271         if (ecc->dummy_slot < 0) {
2272                 dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2273                 return ecc->dummy_slot;
2274         }
2275
2276         queue_priority_mapping = info->queue_priority_mapping;
2277
2278         if (!ecc->legacy_mode) {
2279                 int lowest_priority = 0;
2280                 struct of_phandle_args tc_args;
2281
2282                 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2283                                             sizeof(*ecc->tc_list), GFP_KERNEL);
2284                 if (!ecc->tc_list)
2285                         return -ENOMEM;
2286
2287                 for (i = 0;; i++) {
2288                         ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2289                                                                1, i, &tc_args);
2290                         if (ret || i == ecc->num_tc)
2291                                 break;
2292
2293                         ecc->tc_list[i].node = tc_args.np;
2294                         ecc->tc_list[i].id = i;
2295                         queue_priority_mapping[i][1] = tc_args.args[0];
2296                         if (queue_priority_mapping[i][1] > lowest_priority) {
2297                                 lowest_priority = queue_priority_mapping[i][1];
2298                                 info->default_queue = i;
2299                         }
2300                 }
2301         }
2302
2303         /* Event queue priority mapping */
2304         for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2305                 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2306                                               queue_priority_mapping[i][1]);
2307
2308         for (i = 0; i < ecc->num_region; i++) {
2309                 edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
2310                 edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
2311                 edma_write_array(ecc, EDMA_QRAE, i, 0x0);
2312         }
2313         ecc->info = info;
2314
2315         /* Init the dma device and channels */
2316         edma_dma_init(ecc, legacy_mode);
2317
2318         for (i = 0; i < ecc->num_channels; i++) {
2319                 /* Assign all channels to the default queue */
2320                 edma_assign_channel_eventq(&ecc->slave_chans[i],
2321                                            info->default_queue);
2322                 /* Set entry slot to the dummy slot */
2323                 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2324         }
2325
2326         ecc->dma_slave.filter.map = info->slave_map;
2327         ecc->dma_slave.filter.mapcnt = info->slavecnt;
2328         ecc->dma_slave.filter.fn = edma_filter_fn;
2329
2330         ret = dma_async_device_register(&ecc->dma_slave);
2331         if (ret) {
2332                 dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2333                 goto err_reg1;
2334         }
2335
2336         if (ecc->dma_memcpy) {
2337                 ret = dma_async_device_register(ecc->dma_memcpy);
2338                 if (ret) {
2339                         dev_err(dev, "memcpy ddev registration failed (%d)\n",
2340                                 ret);
2341                         dma_async_device_unregister(&ecc->dma_slave);
2342                         goto err_reg1;
2343                 }
2344         }
2345
2346         if (node)
2347                 of_dma_controller_register(node, of_edma_xlate, ecc);
2348
2349         dev_info(dev, "TI EDMA DMA engine driver\n");
2350
2351         return 0;
2352
2353 err_reg1:
2354         edma_free_slot(ecc, ecc->dummy_slot);
2355         return ret;
2356 }
2357
2358 static int edma_remove(struct platform_device *pdev)
2359 {
2360         struct device *dev = &pdev->dev;
2361         struct edma_cc *ecc = dev_get_drvdata(dev);
2362
2363         if (dev->of_node)
2364                 of_dma_controller_free(dev->of_node);
2365         dma_async_device_unregister(&ecc->dma_slave);
2366         if (ecc->dma_memcpy)
2367                 dma_async_device_unregister(ecc->dma_memcpy);
2368         edma_free_slot(ecc, ecc->dummy_slot);
2369
2370         return 0;
2371 }
2372
2373 #ifdef CONFIG_PM_SLEEP
2374 static int edma_pm_suspend(struct device *dev)
2375 {
2376         struct edma_cc *ecc = dev_get_drvdata(dev);
2377         struct edma_chan *echan = ecc->slave_chans;
2378         int i;
2379
2380         for (i = 0; i < ecc->num_channels; i++) {
2381                 if (echan[i].alloced) {
2382                         edma_setup_interrupt(&echan[i], false);
2383                         edma_tc_set_pm_state(echan[i].tc, false);
2384                 }
2385         }
2386
2387         return 0;
2388 }
2389
2390 static int edma_pm_resume(struct device *dev)
2391 {
2392         struct edma_cc *ecc = dev_get_drvdata(dev);
2393         struct edma_chan *echan = ecc->slave_chans;
2394         int i;
2395         s8 (*queue_priority_mapping)[2];
2396
2397         queue_priority_mapping = ecc->info->queue_priority_mapping;
2398
2399         /* Event queue priority mapping */
2400         for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2401                 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2402                                               queue_priority_mapping[i][1]);
2403
2404         for (i = 0; i < ecc->num_channels; i++) {
2405                 if (echan[i].alloced) {
2406                         /* ensure access through shadow region 0 */
2407                         edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
2408                                        BIT(i & 0x1f));
2409
2410                         edma_setup_interrupt(&echan[i], true);
2411
2412                         /* Set up channel -> slot mapping for the entry slot */
2413                         edma_set_chmap(&echan[i], echan[i].slot[0]);
2414
2415                         edma_tc_set_pm_state(echan[i].tc, true);
2416                 }
2417         }
2418
2419         return 0;
2420 }
2421 #endif
2422
2423 static const struct dev_pm_ops edma_pm_ops = {
2424         SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2425 };
2426
2427 static struct platform_driver edma_driver = {
2428         .probe          = edma_probe,
2429         .remove         = edma_remove,
2430         .driver = {
2431                 .name   = "edma",
2432                 .pm     = &edma_pm_ops,
2433                 .of_match_table = edma_of_ids,
2434         },
2435 };
2436
2437 static int edma_tptc_probe(struct platform_device *pdev)
2438 {
2439         return 0;
2440 }
2441
2442 static struct platform_driver edma_tptc_driver = {
2443         .probe          = edma_tptc_probe,
2444         .driver = {
2445                 .name   = "edma3-tptc",
2446                 .of_match_table = edma_tptc_of_ids,
2447         },
2448 };
2449
2450 bool edma_filter_fn(struct dma_chan *chan, void *param)
2451 {
2452         bool match = false;
2453
2454         if (chan->device->dev->driver == &edma_driver.driver) {
2455                 struct edma_chan *echan = to_edma_chan(chan);
2456                 unsigned ch_req = *(unsigned *)param;
2457                 if (ch_req == echan->ch_num) {
2458                         /* The channel is going to be used as HW synchronized */
2459                         echan->hw_triggered = true;
2460                         match = true;
2461                 }
2462         }
2463         return match;
2464 }
2465 EXPORT_SYMBOL(edma_filter_fn);
2466
2467 static int edma_init(void)
2468 {
2469         int ret;
2470
2471         ret = platform_driver_register(&edma_tptc_driver);
2472         if (ret)
2473                 return ret;
2474
2475         return platform_driver_register(&edma_driver);
2476 }
2477 subsys_initcall(edma_init);
2478
2479 static void __exit edma_exit(void)
2480 {
2481         platform_driver_unregister(&edma_driver);
2482         platform_driver_unregister(&edma_tptc_driver);
2483 }
2484 module_exit(edma_exit);
2485
2486 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2487 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2488 MODULE_LICENSE("GPL v2");