x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / drivers / dma / ep93xx_dma.c
1 /*
2  * Driver for the Cirrus Logic EP93xx DMA Controller
3  *
4  * Copyright (C) 2011 Mika Westerberg
5  *
6  * DMA M2P implementation is based on the original
7  * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
8  *
9  *   Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
10  *   Copyright (C) 2006 Applied Data Systems
11  *   Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
12  *
13  * This driver is based on dw_dmac and amba-pl08x drivers.
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  */
20
21 #include <linux/clk.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28
29 #include <linux/platform_data/dma-ep93xx.h>
30
31 #include "dmaengine.h"
32
33 /* M2P registers */
34 #define M2P_CONTROL                     0x0000
35 #define M2P_CONTROL_STALLINT            BIT(0)
36 #define M2P_CONTROL_NFBINT              BIT(1)
37 #define M2P_CONTROL_CH_ERROR_INT        BIT(3)
38 #define M2P_CONTROL_ENABLE              BIT(4)
39 #define M2P_CONTROL_ICE                 BIT(6)
40
41 #define M2P_INTERRUPT                   0x0004
42 #define M2P_INTERRUPT_STALL             BIT(0)
43 #define M2P_INTERRUPT_NFB               BIT(1)
44 #define M2P_INTERRUPT_ERROR             BIT(3)
45
46 #define M2P_PPALLOC                     0x0008
47 #define M2P_STATUS                      0x000c
48
49 #define M2P_MAXCNT0                     0x0020
50 #define M2P_BASE0                       0x0024
51 #define M2P_MAXCNT1                     0x0030
52 #define M2P_BASE1                       0x0034
53
54 #define M2P_STATE_IDLE                  0
55 #define M2P_STATE_STALL                 1
56 #define M2P_STATE_ON                    2
57 #define M2P_STATE_NEXT                  3
58
59 /* M2M registers */
60 #define M2M_CONTROL                     0x0000
61 #define M2M_CONTROL_DONEINT             BIT(2)
62 #define M2M_CONTROL_ENABLE              BIT(3)
63 #define M2M_CONTROL_START               BIT(4)
64 #define M2M_CONTROL_DAH                 BIT(11)
65 #define M2M_CONTROL_SAH                 BIT(12)
66 #define M2M_CONTROL_PW_SHIFT            9
67 #define M2M_CONTROL_PW_8                (0 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_PW_16               (1 << M2M_CONTROL_PW_SHIFT)
69 #define M2M_CONTROL_PW_32               (2 << M2M_CONTROL_PW_SHIFT)
70 #define M2M_CONTROL_PW_MASK             (3 << M2M_CONTROL_PW_SHIFT)
71 #define M2M_CONTROL_TM_SHIFT            13
72 #define M2M_CONTROL_TM_TX               (1 << M2M_CONTROL_TM_SHIFT)
73 #define M2M_CONTROL_TM_RX               (2 << M2M_CONTROL_TM_SHIFT)
74 #define M2M_CONTROL_NFBINT              BIT(21)
75 #define M2M_CONTROL_RSS_SHIFT           22
76 #define M2M_CONTROL_RSS_SSPRX           (1 << M2M_CONTROL_RSS_SHIFT)
77 #define M2M_CONTROL_RSS_SSPTX           (2 << M2M_CONTROL_RSS_SHIFT)
78 #define M2M_CONTROL_RSS_IDE             (3 << M2M_CONTROL_RSS_SHIFT)
79 #define M2M_CONTROL_NO_HDSK             BIT(24)
80 #define M2M_CONTROL_PWSC_SHIFT          25
81
82 #define M2M_INTERRUPT                   0x0004
83 #define M2M_INTERRUPT_MASK              6
84
85 #define M2M_STATUS                      0x000c
86 #define M2M_STATUS_CTL_SHIFT            1
87 #define M2M_STATUS_CTL_IDLE             (0 << M2M_STATUS_CTL_SHIFT)
88 #define M2M_STATUS_CTL_STALL            (1 << M2M_STATUS_CTL_SHIFT)
89 #define M2M_STATUS_CTL_MEMRD            (2 << M2M_STATUS_CTL_SHIFT)
90 #define M2M_STATUS_CTL_MEMWR            (3 << M2M_STATUS_CTL_SHIFT)
91 #define M2M_STATUS_CTL_BWCWAIT          (4 << M2M_STATUS_CTL_SHIFT)
92 #define M2M_STATUS_CTL_MASK             (7 << M2M_STATUS_CTL_SHIFT)
93 #define M2M_STATUS_BUF_SHIFT            4
94 #define M2M_STATUS_BUF_NO               (0 << M2M_STATUS_BUF_SHIFT)
95 #define M2M_STATUS_BUF_ON               (1 << M2M_STATUS_BUF_SHIFT)
96 #define M2M_STATUS_BUF_NEXT             (2 << M2M_STATUS_BUF_SHIFT)
97 #define M2M_STATUS_BUF_MASK             (3 << M2M_STATUS_BUF_SHIFT)
98 #define M2M_STATUS_DONE                 BIT(6)
99
100 #define M2M_BCR0                        0x0010
101 #define M2M_BCR1                        0x0014
102 #define M2M_SAR_BASE0                   0x0018
103 #define M2M_SAR_BASE1                   0x001c
104 #define M2M_DAR_BASE0                   0x002c
105 #define M2M_DAR_BASE1                   0x0030
106
107 #define DMA_MAX_CHAN_BYTES              0xffff
108 #define DMA_MAX_CHAN_DESCRIPTORS        32
109
110 struct ep93xx_dma_engine;
111
112 /**
113  * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
114  * @src_addr: source address of the transaction
115  * @dst_addr: destination address of the transaction
116  * @size: size of the transaction (in bytes)
117  * @complete: this descriptor is completed
118  * @txd: dmaengine API descriptor
119  * @tx_list: list of linked descriptors
120  * @node: link used for putting this into a channel queue
121  */
122 struct ep93xx_dma_desc {
123         u32                             src_addr;
124         u32                             dst_addr;
125         size_t                          size;
126         bool                            complete;
127         struct dma_async_tx_descriptor  txd;
128         struct list_head                tx_list;
129         struct list_head                node;
130 };
131
132 /**
133  * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
134  * @chan: dmaengine API channel
135  * @edma: pointer to to the engine device
136  * @regs: memory mapped registers
137  * @irq: interrupt number of the channel
138  * @clk: clock used by this channel
139  * @tasklet: channel specific tasklet used for callbacks
140  * @lock: lock protecting the fields following
141  * @flags: flags for the channel
142  * @buffer: which buffer to use next (0/1)
143  * @active: flattened chain of descriptors currently being processed
144  * @queue: pending descriptors which are handled next
145  * @free_list: list of free descriptors which can be used
146  * @runtime_addr: physical address currently used as dest/src (M2M only). This
147  *                is set via .device_config before slave operation is
148  *                prepared
149  * @runtime_ctrl: M2M runtime values for the control register.
150  *
151  * As EP93xx DMA controller doesn't support real chained DMA descriptors we
152  * will have slightly different scheme here: @active points to a head of
153  * flattened DMA descriptor chain.
154  *
155  * @queue holds pending transactions. These are linked through the first
156  * descriptor in the chain. When a descriptor is moved to the @active queue,
157  * the first and chained descriptors are flattened into a single list.
158  *
159  * @chan.private holds pointer to &struct ep93xx_dma_data which contains
160  * necessary channel configuration information. For memcpy channels this must
161  * be %NULL.
162  */
163 struct ep93xx_dma_chan {
164         struct dma_chan                 chan;
165         const struct ep93xx_dma_engine  *edma;
166         void __iomem                    *regs;
167         int                             irq;
168         struct clk                      *clk;
169         struct tasklet_struct           tasklet;
170         /* protects the fields following */
171         spinlock_t                      lock;
172         unsigned long                   flags;
173 /* Channel is configured for cyclic transfers */
174 #define EP93XX_DMA_IS_CYCLIC            0
175
176         int                             buffer;
177         struct list_head                active;
178         struct list_head                queue;
179         struct list_head                free_list;
180         u32                             runtime_addr;
181         u32                             runtime_ctrl;
182 };
183
184 /**
185  * struct ep93xx_dma_engine - the EP93xx DMA engine instance
186  * @dma_dev: holds the dmaengine device
187  * @m2m: is this an M2M or M2P device
188  * @hw_setup: method which sets the channel up for operation
189  * @hw_shutdown: shuts the channel down and flushes whatever is left
190  * @hw_submit: pushes active descriptor(s) to the hardware
191  * @hw_interrupt: handle the interrupt
192  * @num_channels: number of channels for this instance
193  * @channels: array of channels
194  *
195  * There is one instance of this struct for the M2P channels and one for the
196  * M2M channels. hw_xxx() methods are used to perform operations which are
197  * different on M2M and M2P channels. These methods are called with channel
198  * lock held and interrupts disabled so they cannot sleep.
199  */
200 struct ep93xx_dma_engine {
201         struct dma_device       dma_dev;
202         bool                    m2m;
203         int                     (*hw_setup)(struct ep93xx_dma_chan *);
204         void                    (*hw_shutdown)(struct ep93xx_dma_chan *);
205         void                    (*hw_submit)(struct ep93xx_dma_chan *);
206         int                     (*hw_interrupt)(struct ep93xx_dma_chan *);
207 #define INTERRUPT_UNKNOWN       0
208 #define INTERRUPT_DONE          1
209 #define INTERRUPT_NEXT_BUFFER   2
210
211         size_t                  num_channels;
212         struct ep93xx_dma_chan  channels[];
213 };
214
215 static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
216 {
217         return &edmac->chan.dev->device;
218 }
219
220 static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
221 {
222         return container_of(chan, struct ep93xx_dma_chan, chan);
223 }
224
225 /**
226  * ep93xx_dma_set_active - set new active descriptor chain
227  * @edmac: channel
228  * @desc: head of the new active descriptor chain
229  *
230  * Sets @desc to be the head of the new active descriptor chain. This is the
231  * chain which is processed next. The active list must be empty before calling
232  * this function.
233  *
234  * Called with @edmac->lock held and interrupts disabled.
235  */
236 static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
237                                   struct ep93xx_dma_desc *desc)
238 {
239         BUG_ON(!list_empty(&edmac->active));
240
241         list_add_tail(&desc->node, &edmac->active);
242
243         /* Flatten the @desc->tx_list chain into @edmac->active list */
244         while (!list_empty(&desc->tx_list)) {
245                 struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
246                         struct ep93xx_dma_desc, node);
247
248                 /*
249                  * We copy the callback parameters from the first descriptor
250                  * to all the chained descriptors. This way we can call the
251                  * callback without having to find out the first descriptor in
252                  * the chain. Useful for cyclic transfers.
253                  */
254                 d->txd.callback = desc->txd.callback;
255                 d->txd.callback_param = desc->txd.callback_param;
256
257                 list_move_tail(&d->node, &edmac->active);
258         }
259 }
260
261 /* Called with @edmac->lock held and interrupts disabled */
262 static struct ep93xx_dma_desc *
263 ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
264 {
265         return list_first_entry_or_null(&edmac->active,
266                                         struct ep93xx_dma_desc, node);
267 }
268
269 /**
270  * ep93xx_dma_advance_active - advances to the next active descriptor
271  * @edmac: channel
272  *
273  * Function advances active descriptor to the next in the @edmac->active and
274  * returns %true if we still have descriptors in the chain to process.
275  * Otherwise returns %false.
276  *
277  * When the channel is in cyclic mode always returns %true.
278  *
279  * Called with @edmac->lock held and interrupts disabled.
280  */
281 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
282 {
283         struct ep93xx_dma_desc *desc;
284
285         list_rotate_left(&edmac->active);
286
287         if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
288                 return true;
289
290         desc = ep93xx_dma_get_active(edmac);
291         if (!desc)
292                 return false;
293
294         /*
295          * If txd.cookie is set it means that we are back in the first
296          * descriptor in the chain and hence done with it.
297          */
298         return !desc->txd.cookie;
299 }
300
301 /*
302  * M2P DMA implementation
303  */
304
305 static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
306 {
307         writel(control, edmac->regs + M2P_CONTROL);
308         /*
309          * EP93xx User's Guide states that we must perform a dummy read after
310          * write to the control register.
311          */
312         readl(edmac->regs + M2P_CONTROL);
313 }
314
315 static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
316 {
317         struct ep93xx_dma_data *data = edmac->chan.private;
318         u32 control;
319
320         writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
321
322         control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
323                 | M2P_CONTROL_ENABLE;
324         m2p_set_control(edmac, control);
325
326         return 0;
327 }
328
329 static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
330 {
331         return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
332 }
333
334 static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
335 {
336         u32 control;
337
338         control = readl(edmac->regs + M2P_CONTROL);
339         control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
340         m2p_set_control(edmac, control);
341
342         while (m2p_channel_state(edmac) >= M2P_STATE_ON)
343                 cpu_relax();
344
345         m2p_set_control(edmac, 0);
346
347         while (m2p_channel_state(edmac) == M2P_STATE_STALL)
348                 cpu_relax();
349 }
350
351 static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
352 {
353         struct ep93xx_dma_desc *desc;
354         u32 bus_addr;
355
356         desc = ep93xx_dma_get_active(edmac);
357         if (!desc) {
358                 dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
359                 return;
360         }
361
362         if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
363                 bus_addr = desc->src_addr;
364         else
365                 bus_addr = desc->dst_addr;
366
367         if (edmac->buffer == 0) {
368                 writel(desc->size, edmac->regs + M2P_MAXCNT0);
369                 writel(bus_addr, edmac->regs + M2P_BASE0);
370         } else {
371                 writel(desc->size, edmac->regs + M2P_MAXCNT1);
372                 writel(bus_addr, edmac->regs + M2P_BASE1);
373         }
374
375         edmac->buffer ^= 1;
376 }
377
378 static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
379 {
380         u32 control = readl(edmac->regs + M2P_CONTROL);
381
382         m2p_fill_desc(edmac);
383         control |= M2P_CONTROL_STALLINT;
384
385         if (ep93xx_dma_advance_active(edmac)) {
386                 m2p_fill_desc(edmac);
387                 control |= M2P_CONTROL_NFBINT;
388         }
389
390         m2p_set_control(edmac, control);
391 }
392
393 static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
394 {
395         u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
396         u32 control;
397
398         if (irq_status & M2P_INTERRUPT_ERROR) {
399                 struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
400
401                 /* Clear the error interrupt */
402                 writel(1, edmac->regs + M2P_INTERRUPT);
403
404                 /*
405                  * It seems that there is no easy way of reporting errors back
406                  * to client so we just report the error here and continue as
407                  * usual.
408                  *
409                  * Revisit this when there is a mechanism to report back the
410                  * errors.
411                  */
412                 dev_err(chan2dev(edmac),
413                         "DMA transfer failed! Details:\n"
414                         "\tcookie       : %d\n"
415                         "\tsrc_addr     : 0x%08x\n"
416                         "\tdst_addr     : 0x%08x\n"
417                         "\tsize         : %zu\n",
418                         desc->txd.cookie, desc->src_addr, desc->dst_addr,
419                         desc->size);
420         }
421
422         /*
423          * Even latest E2 silicon revision sometimes assert STALL interrupt
424          * instead of NFB. Therefore we treat them equally, basing on the
425          * amount of data we still have to transfer.
426          */
427         if (!(irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)))
428                 return INTERRUPT_UNKNOWN;
429
430         if (ep93xx_dma_advance_active(edmac)) {
431                 m2p_fill_desc(edmac);
432                 return INTERRUPT_NEXT_BUFFER;
433         }
434
435         /* Disable interrupts */
436         control = readl(edmac->regs + M2P_CONTROL);
437         control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
438         m2p_set_control(edmac, control);
439
440         return INTERRUPT_DONE;
441 }
442
443 /*
444  * M2M DMA implementation
445  */
446
447 static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
448 {
449         const struct ep93xx_dma_data *data = edmac->chan.private;
450         u32 control = 0;
451
452         if (!data) {
453                 /* This is memcpy channel, nothing to configure */
454                 writel(control, edmac->regs + M2M_CONTROL);
455                 return 0;
456         }
457
458         switch (data->port) {
459         case EP93XX_DMA_SSP:
460                 /*
461                  * This was found via experimenting - anything less than 5
462                  * causes the channel to perform only a partial transfer which
463                  * leads to problems since we don't get DONE interrupt then.
464                  */
465                 control = (5 << M2M_CONTROL_PWSC_SHIFT);
466                 control |= M2M_CONTROL_NO_HDSK;
467
468                 if (data->direction == DMA_MEM_TO_DEV) {
469                         control |= M2M_CONTROL_DAH;
470                         control |= M2M_CONTROL_TM_TX;
471                         control |= M2M_CONTROL_RSS_SSPTX;
472                 } else {
473                         control |= M2M_CONTROL_SAH;
474                         control |= M2M_CONTROL_TM_RX;
475                         control |= M2M_CONTROL_RSS_SSPRX;
476                 }
477                 break;
478
479         case EP93XX_DMA_IDE:
480                 /*
481                  * This IDE part is totally untested. Values below are taken
482                  * from the EP93xx Users's Guide and might not be correct.
483                  */
484                 if (data->direction == DMA_MEM_TO_DEV) {
485                         /* Worst case from the UG */
486                         control = (3 << M2M_CONTROL_PWSC_SHIFT);
487                         control |= M2M_CONTROL_DAH;
488                         control |= M2M_CONTROL_TM_TX;
489                 } else {
490                         control = (2 << M2M_CONTROL_PWSC_SHIFT);
491                         control |= M2M_CONTROL_SAH;
492                         control |= M2M_CONTROL_TM_RX;
493                 }
494
495                 control |= M2M_CONTROL_NO_HDSK;
496                 control |= M2M_CONTROL_RSS_IDE;
497                 control |= M2M_CONTROL_PW_16;
498                 break;
499
500         default:
501                 return -EINVAL;
502         }
503
504         writel(control, edmac->regs + M2M_CONTROL);
505         return 0;
506 }
507
508 static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
509 {
510         /* Just disable the channel */
511         writel(0, edmac->regs + M2M_CONTROL);
512 }
513
514 static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
515 {
516         struct ep93xx_dma_desc *desc;
517
518         desc = ep93xx_dma_get_active(edmac);
519         if (!desc) {
520                 dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
521                 return;
522         }
523
524         if (edmac->buffer == 0) {
525                 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
526                 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
527                 writel(desc->size, edmac->regs + M2M_BCR0);
528         } else {
529                 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
530                 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
531                 writel(desc->size, edmac->regs + M2M_BCR1);
532         }
533
534         edmac->buffer ^= 1;
535 }
536
537 static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
538 {
539         struct ep93xx_dma_data *data = edmac->chan.private;
540         u32 control = readl(edmac->regs + M2M_CONTROL);
541
542         /*
543          * Since we allow clients to configure PW (peripheral width) we always
544          * clear PW bits here and then set them according what is given in
545          * the runtime configuration.
546          */
547         control &= ~M2M_CONTROL_PW_MASK;
548         control |= edmac->runtime_ctrl;
549
550         m2m_fill_desc(edmac);
551         control |= M2M_CONTROL_DONEINT;
552
553         if (ep93xx_dma_advance_active(edmac)) {
554                 m2m_fill_desc(edmac);
555                 control |= M2M_CONTROL_NFBINT;
556         }
557
558         /*
559          * Now we can finally enable the channel. For M2M channel this must be
560          * done _after_ the BCRx registers are programmed.
561          */
562         control |= M2M_CONTROL_ENABLE;
563         writel(control, edmac->regs + M2M_CONTROL);
564
565         if (!data) {
566                 /*
567                  * For memcpy channels the software trigger must be asserted
568                  * in order to start the memcpy operation.
569                  */
570                 control |= M2M_CONTROL_START;
571                 writel(control, edmac->regs + M2M_CONTROL);
572         }
573 }
574
575 /*
576  * According to EP93xx User's Guide, we should receive DONE interrupt when all
577  * M2M DMA controller transactions complete normally. This is not always the
578  * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
579  * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
580  * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
581  * In effect, disabling the channel when only DONE bit is set could stop
582  * currently running DMA transfer. To avoid this, we use Buffer FSM and
583  * Control FSM to check current state of DMA channel.
584  */
585 static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
586 {
587         u32 status = readl(edmac->regs + M2M_STATUS);
588         u32 ctl_fsm = status & M2M_STATUS_CTL_MASK;
589         u32 buf_fsm = status & M2M_STATUS_BUF_MASK;
590         bool done = status & M2M_STATUS_DONE;
591         bool last_done;
592         u32 control;
593         struct ep93xx_dma_desc *desc;
594
595         /* Accept only DONE and NFB interrupts */
596         if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK))
597                 return INTERRUPT_UNKNOWN;
598
599         if (done) {
600                 /* Clear the DONE bit */
601                 writel(0, edmac->regs + M2M_INTERRUPT);
602         }
603
604         /*
605          * Check whether we are done with descriptors or not. This, together
606          * with DMA channel state, determines action to take in interrupt.
607          */
608         desc = ep93xx_dma_get_active(edmac);
609         last_done = !desc || desc->txd.cookie;
610
611         /*
612          * Use M2M DMA Buffer FSM and Control FSM to check current state of
613          * DMA channel. Using DONE and NFB bits from channel status register
614          * or bits from channel interrupt register is not reliable.
615          */
616         if (!last_done &&
617             (buf_fsm == M2M_STATUS_BUF_NO ||
618              buf_fsm == M2M_STATUS_BUF_ON)) {
619                 /*
620                  * Two buffers are ready for update when Buffer FSM is in
621                  * DMA_NO_BUF state. Only one buffer can be prepared without
622                  * disabling the channel or polling the DONE bit.
623                  * To simplify things, always prepare only one buffer.
624                  */
625                 if (ep93xx_dma_advance_active(edmac)) {
626                         m2m_fill_desc(edmac);
627                         if (done && !edmac->chan.private) {
628                                 /* Software trigger for memcpy channel */
629                                 control = readl(edmac->regs + M2M_CONTROL);
630                                 control |= M2M_CONTROL_START;
631                                 writel(control, edmac->regs + M2M_CONTROL);
632                         }
633                         return INTERRUPT_NEXT_BUFFER;
634                 } else {
635                         last_done = true;
636                 }
637         }
638
639         /*
640          * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
641          * and Control FSM is in DMA_STALL state.
642          */
643         if (last_done &&
644             buf_fsm == M2M_STATUS_BUF_NO &&
645             ctl_fsm == M2M_STATUS_CTL_STALL) {
646                 /* Disable interrupts and the channel */
647                 control = readl(edmac->regs + M2M_CONTROL);
648                 control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT
649                             | M2M_CONTROL_ENABLE);
650                 writel(control, edmac->regs + M2M_CONTROL);
651                 return INTERRUPT_DONE;
652         }
653
654         /*
655          * Nothing to do this time.
656          */
657         return INTERRUPT_NEXT_BUFFER;
658 }
659
660 /*
661  * DMA engine API implementation
662  */
663
664 static struct ep93xx_dma_desc *
665 ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
666 {
667         struct ep93xx_dma_desc *desc, *_desc;
668         struct ep93xx_dma_desc *ret = NULL;
669         unsigned long flags;
670
671         spin_lock_irqsave(&edmac->lock, flags);
672         list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
673                 if (async_tx_test_ack(&desc->txd)) {
674                         list_del_init(&desc->node);
675
676                         /* Re-initialize the descriptor */
677                         desc->src_addr = 0;
678                         desc->dst_addr = 0;
679                         desc->size = 0;
680                         desc->complete = false;
681                         desc->txd.cookie = 0;
682                         desc->txd.callback = NULL;
683                         desc->txd.callback_param = NULL;
684
685                         ret = desc;
686                         break;
687                 }
688         }
689         spin_unlock_irqrestore(&edmac->lock, flags);
690         return ret;
691 }
692
693 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
694                                 struct ep93xx_dma_desc *desc)
695 {
696         if (desc) {
697                 unsigned long flags;
698
699                 spin_lock_irqsave(&edmac->lock, flags);
700                 list_splice_init(&desc->tx_list, &edmac->free_list);
701                 list_add(&desc->node, &edmac->free_list);
702                 spin_unlock_irqrestore(&edmac->lock, flags);
703         }
704 }
705
706 /**
707  * ep93xx_dma_advance_work - start processing the next pending transaction
708  * @edmac: channel
709  *
710  * If we have pending transactions queued and we are currently idling, this
711  * function takes the next queued transaction from the @edmac->queue and
712  * pushes it to the hardware for execution.
713  */
714 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
715 {
716         struct ep93xx_dma_desc *new;
717         unsigned long flags;
718
719         spin_lock_irqsave(&edmac->lock, flags);
720         if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
721                 spin_unlock_irqrestore(&edmac->lock, flags);
722                 return;
723         }
724
725         /* Take the next descriptor from the pending queue */
726         new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
727         list_del_init(&new->node);
728
729         ep93xx_dma_set_active(edmac, new);
730
731         /* Push it to the hardware */
732         edmac->edma->hw_submit(edmac);
733         spin_unlock_irqrestore(&edmac->lock, flags);
734 }
735
736 static void ep93xx_dma_tasklet(unsigned long data)
737 {
738         struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
739         struct ep93xx_dma_desc *desc, *d;
740         struct dmaengine_desc_callback cb;
741         LIST_HEAD(list);
742
743         memset(&cb, 0, sizeof(cb));
744         spin_lock_irq(&edmac->lock);
745         /*
746          * If dma_terminate_all() was called before we get to run, the active
747          * list has become empty. If that happens we aren't supposed to do
748          * anything more than call ep93xx_dma_advance_work().
749          */
750         desc = ep93xx_dma_get_active(edmac);
751         if (desc) {
752                 if (desc->complete) {
753                         /* mark descriptor complete for non cyclic case only */
754                         if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
755                                 dma_cookie_complete(&desc->txd);
756                         list_splice_init(&edmac->active, &list);
757                 }
758                 dmaengine_desc_get_callback(&desc->txd, &cb);
759         }
760         spin_unlock_irq(&edmac->lock);
761
762         /* Pick up the next descriptor from the queue */
763         ep93xx_dma_advance_work(edmac);
764
765         /* Now we can release all the chained descriptors */
766         list_for_each_entry_safe(desc, d, &list, node) {
767                 dma_descriptor_unmap(&desc->txd);
768                 ep93xx_dma_desc_put(edmac, desc);
769         }
770
771         dmaengine_desc_callback_invoke(&cb, NULL);
772 }
773
774 static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
775 {
776         struct ep93xx_dma_chan *edmac = dev_id;
777         struct ep93xx_dma_desc *desc;
778         irqreturn_t ret = IRQ_HANDLED;
779
780         spin_lock(&edmac->lock);
781
782         desc = ep93xx_dma_get_active(edmac);
783         if (!desc) {
784                 dev_warn(chan2dev(edmac),
785                          "got interrupt while active list is empty\n");
786                 spin_unlock(&edmac->lock);
787                 return IRQ_NONE;
788         }
789
790         switch (edmac->edma->hw_interrupt(edmac)) {
791         case INTERRUPT_DONE:
792                 desc->complete = true;
793                 tasklet_schedule(&edmac->tasklet);
794                 break;
795
796         case INTERRUPT_NEXT_BUFFER:
797                 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
798                         tasklet_schedule(&edmac->tasklet);
799                 break;
800
801         default:
802                 dev_warn(chan2dev(edmac), "unknown interrupt!\n");
803                 ret = IRQ_NONE;
804                 break;
805         }
806
807         spin_unlock(&edmac->lock);
808         return ret;
809 }
810
811 /**
812  * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
813  * @tx: descriptor to be executed
814  *
815  * Function will execute given descriptor on the hardware or if the hardware
816  * is busy, queue the descriptor to be executed later on. Returns cookie which
817  * can be used to poll the status of the descriptor.
818  */
819 static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
820 {
821         struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
822         struct ep93xx_dma_desc *desc;
823         dma_cookie_t cookie;
824         unsigned long flags;
825
826         spin_lock_irqsave(&edmac->lock, flags);
827         cookie = dma_cookie_assign(tx);
828
829         desc = container_of(tx, struct ep93xx_dma_desc, txd);
830
831         /*
832          * If nothing is currently prosessed, we push this descriptor
833          * directly to the hardware. Otherwise we put the descriptor
834          * to the pending queue.
835          */
836         if (list_empty(&edmac->active)) {
837                 ep93xx_dma_set_active(edmac, desc);
838                 edmac->edma->hw_submit(edmac);
839         } else {
840                 list_add_tail(&desc->node, &edmac->queue);
841         }
842
843         spin_unlock_irqrestore(&edmac->lock, flags);
844         return cookie;
845 }
846
847 /**
848  * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
849  * @chan: channel to allocate resources
850  *
851  * Function allocates necessary resources for the given DMA channel and
852  * returns number of allocated descriptors for the channel. Negative errno
853  * is returned in case of failure.
854  */
855 static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
856 {
857         struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
858         struct ep93xx_dma_data *data = chan->private;
859         const char *name = dma_chan_name(chan);
860         int ret, i;
861
862         /* Sanity check the channel parameters */
863         if (!edmac->edma->m2m) {
864                 if (!data)
865                         return -EINVAL;
866                 if (data->port < EP93XX_DMA_I2S1 ||
867                     data->port > EP93XX_DMA_IRDA)
868                         return -EINVAL;
869                 if (data->direction != ep93xx_dma_chan_direction(chan))
870                         return -EINVAL;
871         } else {
872                 if (data) {
873                         switch (data->port) {
874                         case EP93XX_DMA_SSP:
875                         case EP93XX_DMA_IDE:
876                                 if (!is_slave_direction(data->direction))
877                                         return -EINVAL;
878                                 break;
879                         default:
880                                 return -EINVAL;
881                         }
882                 }
883         }
884
885         if (data && data->name)
886                 name = data->name;
887
888         ret = clk_enable(edmac->clk);
889         if (ret)
890                 return ret;
891
892         ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
893         if (ret)
894                 goto fail_clk_disable;
895
896         spin_lock_irq(&edmac->lock);
897         dma_cookie_init(&edmac->chan);
898         ret = edmac->edma->hw_setup(edmac);
899         spin_unlock_irq(&edmac->lock);
900
901         if (ret)
902                 goto fail_free_irq;
903
904         for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
905                 struct ep93xx_dma_desc *desc;
906
907                 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
908                 if (!desc) {
909                         dev_warn(chan2dev(edmac), "not enough descriptors\n");
910                         break;
911                 }
912
913                 INIT_LIST_HEAD(&desc->tx_list);
914
915                 dma_async_tx_descriptor_init(&desc->txd, chan);
916                 desc->txd.flags = DMA_CTRL_ACK;
917                 desc->txd.tx_submit = ep93xx_dma_tx_submit;
918
919                 ep93xx_dma_desc_put(edmac, desc);
920         }
921
922         return i;
923
924 fail_free_irq:
925         free_irq(edmac->irq, edmac);
926 fail_clk_disable:
927         clk_disable(edmac->clk);
928
929         return ret;
930 }
931
932 /**
933  * ep93xx_dma_free_chan_resources - release resources for the channel
934  * @chan: channel
935  *
936  * Function releases all the resources allocated for the given channel.
937  * The channel must be idle when this is called.
938  */
939 static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
940 {
941         struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
942         struct ep93xx_dma_desc *desc, *d;
943         unsigned long flags;
944         LIST_HEAD(list);
945
946         BUG_ON(!list_empty(&edmac->active));
947         BUG_ON(!list_empty(&edmac->queue));
948
949         spin_lock_irqsave(&edmac->lock, flags);
950         edmac->edma->hw_shutdown(edmac);
951         edmac->runtime_addr = 0;
952         edmac->runtime_ctrl = 0;
953         edmac->buffer = 0;
954         list_splice_init(&edmac->free_list, &list);
955         spin_unlock_irqrestore(&edmac->lock, flags);
956
957         list_for_each_entry_safe(desc, d, &list, node)
958                 kfree(desc);
959
960         clk_disable(edmac->clk);
961         free_irq(edmac->irq, edmac);
962 }
963
964 /**
965  * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
966  * @chan: channel
967  * @dest: destination bus address
968  * @src: source bus address
969  * @len: size of the transaction
970  * @flags: flags for the descriptor
971  *
972  * Returns a valid DMA descriptor or %NULL in case of failure.
973  */
974 static struct dma_async_tx_descriptor *
975 ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
976                            dma_addr_t src, size_t len, unsigned long flags)
977 {
978         struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
979         struct ep93xx_dma_desc *desc, *first;
980         size_t bytes, offset;
981
982         first = NULL;
983         for (offset = 0; offset < len; offset += bytes) {
984                 desc = ep93xx_dma_desc_get(edmac);
985                 if (!desc) {
986                         dev_warn(chan2dev(edmac), "couln't get descriptor\n");
987                         goto fail;
988                 }
989
990                 bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
991
992                 desc->src_addr = src + offset;
993                 desc->dst_addr = dest + offset;
994                 desc->size = bytes;
995
996                 if (!first)
997                         first = desc;
998                 else
999                         list_add_tail(&desc->node, &first->tx_list);
1000         }
1001
1002         first->txd.cookie = -EBUSY;
1003         first->txd.flags = flags;
1004
1005         return &first->txd;
1006 fail:
1007         ep93xx_dma_desc_put(edmac, first);
1008         return NULL;
1009 }
1010
1011 /**
1012  * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
1013  * @chan: channel
1014  * @sgl: list of buffers to transfer
1015  * @sg_len: number of entries in @sgl
1016  * @dir: direction of tha DMA transfer
1017  * @flags: flags for the descriptor
1018  * @context: operation context (ignored)
1019  *
1020  * Returns a valid DMA descriptor or %NULL in case of failure.
1021  */
1022 static struct dma_async_tx_descriptor *
1023 ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1024                          unsigned int sg_len, enum dma_transfer_direction dir,
1025                          unsigned long flags, void *context)
1026 {
1027         struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1028         struct ep93xx_dma_desc *desc, *first;
1029         struct scatterlist *sg;
1030         int i;
1031
1032         if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1033                 dev_warn(chan2dev(edmac),
1034                          "channel was configured with different direction\n");
1035                 return NULL;
1036         }
1037
1038         if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1039                 dev_warn(chan2dev(edmac),
1040                          "channel is already used for cyclic transfers\n");
1041                 return NULL;
1042         }
1043
1044         first = NULL;
1045         for_each_sg(sgl, sg, sg_len, i) {
1046                 size_t len = sg_dma_len(sg);
1047
1048                 if (len > DMA_MAX_CHAN_BYTES) {
1049                         dev_warn(chan2dev(edmac), "too big transfer size %zu\n",
1050                                  len);
1051                         goto fail;
1052                 }
1053
1054                 desc = ep93xx_dma_desc_get(edmac);
1055                 if (!desc) {
1056                         dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1057                         goto fail;
1058                 }
1059
1060                 if (dir == DMA_MEM_TO_DEV) {
1061                         desc->src_addr = sg_dma_address(sg);
1062                         desc->dst_addr = edmac->runtime_addr;
1063                 } else {
1064                         desc->src_addr = edmac->runtime_addr;
1065                         desc->dst_addr = sg_dma_address(sg);
1066                 }
1067                 desc->size = len;
1068
1069                 if (!first)
1070                         first = desc;
1071                 else
1072                         list_add_tail(&desc->node, &first->tx_list);
1073         }
1074
1075         first->txd.cookie = -EBUSY;
1076         first->txd.flags = flags;
1077
1078         return &first->txd;
1079
1080 fail:
1081         ep93xx_dma_desc_put(edmac, first);
1082         return NULL;
1083 }
1084
1085 /**
1086  * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1087  * @chan: channel
1088  * @dma_addr: DMA mapped address of the buffer
1089  * @buf_len: length of the buffer (in bytes)
1090  * @period_len: length of a single period
1091  * @dir: direction of the operation
1092  * @flags: tx descriptor status flags
1093  *
1094  * Prepares a descriptor for cyclic DMA operation. This means that once the
1095  * descriptor is submitted, we will be submitting in a @period_len sized
1096  * buffers and calling callback once the period has been elapsed. Transfer
1097  * terminates only when client calls dmaengine_terminate_all() for this
1098  * channel.
1099  *
1100  * Returns a valid DMA descriptor or %NULL in case of failure.
1101  */
1102 static struct dma_async_tx_descriptor *
1103 ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1104                            size_t buf_len, size_t period_len,
1105                            enum dma_transfer_direction dir, unsigned long flags)
1106 {
1107         struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1108         struct ep93xx_dma_desc *desc, *first;
1109         size_t offset = 0;
1110
1111         if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1112                 dev_warn(chan2dev(edmac),
1113                          "channel was configured with different direction\n");
1114                 return NULL;
1115         }
1116
1117         if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1118                 dev_warn(chan2dev(edmac),
1119                          "channel is already used for cyclic transfers\n");
1120                 return NULL;
1121         }
1122
1123         if (period_len > DMA_MAX_CHAN_BYTES) {
1124                 dev_warn(chan2dev(edmac), "too big period length %zu\n",
1125                          period_len);
1126                 return NULL;
1127         }
1128
1129         /* Split the buffer into period size chunks */
1130         first = NULL;
1131         for (offset = 0; offset < buf_len; offset += period_len) {
1132                 desc = ep93xx_dma_desc_get(edmac);
1133                 if (!desc) {
1134                         dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1135                         goto fail;
1136                 }
1137
1138                 if (dir == DMA_MEM_TO_DEV) {
1139                         desc->src_addr = dma_addr + offset;
1140                         desc->dst_addr = edmac->runtime_addr;
1141                 } else {
1142                         desc->src_addr = edmac->runtime_addr;
1143                         desc->dst_addr = dma_addr + offset;
1144                 }
1145
1146                 desc->size = period_len;
1147
1148                 if (!first)
1149                         first = desc;
1150                 else
1151                         list_add_tail(&desc->node, &first->tx_list);
1152         }
1153
1154         first->txd.cookie = -EBUSY;
1155
1156         return &first->txd;
1157
1158 fail:
1159         ep93xx_dma_desc_put(edmac, first);
1160         return NULL;
1161 }
1162
1163 /**
1164  * ep93xx_dma_terminate_all - terminate all transactions
1165  * @chan: channel
1166  *
1167  * Stops all DMA transactions. All descriptors are put back to the
1168  * @edmac->free_list and callbacks are _not_ called.
1169  */
1170 static int ep93xx_dma_terminate_all(struct dma_chan *chan)
1171 {
1172         struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1173         struct ep93xx_dma_desc *desc, *_d;
1174         unsigned long flags;
1175         LIST_HEAD(list);
1176
1177         spin_lock_irqsave(&edmac->lock, flags);
1178         /* First we disable and flush the DMA channel */
1179         edmac->edma->hw_shutdown(edmac);
1180         clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1181         list_splice_init(&edmac->active, &list);
1182         list_splice_init(&edmac->queue, &list);
1183         /*
1184          * We then re-enable the channel. This way we can continue submitting
1185          * the descriptors by just calling ->hw_submit() again.
1186          */
1187         edmac->edma->hw_setup(edmac);
1188         spin_unlock_irqrestore(&edmac->lock, flags);
1189
1190         list_for_each_entry_safe(desc, _d, &list, node)
1191                 ep93xx_dma_desc_put(edmac, desc);
1192
1193         return 0;
1194 }
1195
1196 static int ep93xx_dma_slave_config(struct dma_chan *chan,
1197                                    struct dma_slave_config *config)
1198 {
1199         struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1200         enum dma_slave_buswidth width;
1201         unsigned long flags;
1202         u32 addr, ctrl;
1203
1204         if (!edmac->edma->m2m)
1205                 return -EINVAL;
1206
1207         switch (config->direction) {
1208         case DMA_DEV_TO_MEM:
1209                 width = config->src_addr_width;
1210                 addr = config->src_addr;
1211                 break;
1212
1213         case DMA_MEM_TO_DEV:
1214                 width = config->dst_addr_width;
1215                 addr = config->dst_addr;
1216                 break;
1217
1218         default:
1219                 return -EINVAL;
1220         }
1221
1222         switch (width) {
1223         case DMA_SLAVE_BUSWIDTH_1_BYTE:
1224                 ctrl = 0;
1225                 break;
1226         case DMA_SLAVE_BUSWIDTH_2_BYTES:
1227                 ctrl = M2M_CONTROL_PW_16;
1228                 break;
1229         case DMA_SLAVE_BUSWIDTH_4_BYTES:
1230                 ctrl = M2M_CONTROL_PW_32;
1231                 break;
1232         default:
1233                 return -EINVAL;
1234         }
1235
1236         spin_lock_irqsave(&edmac->lock, flags);
1237         edmac->runtime_addr = addr;
1238         edmac->runtime_ctrl = ctrl;
1239         spin_unlock_irqrestore(&edmac->lock, flags);
1240
1241         return 0;
1242 }
1243
1244 /**
1245  * ep93xx_dma_tx_status - check if a transaction is completed
1246  * @chan: channel
1247  * @cookie: transaction specific cookie
1248  * @state: state of the transaction is stored here if given
1249  *
1250  * This function can be used to query state of a given transaction.
1251  */
1252 static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1253                                             dma_cookie_t cookie,
1254                                             struct dma_tx_state *state)
1255 {
1256         return dma_cookie_status(chan, cookie, state);
1257 }
1258
1259 /**
1260  * ep93xx_dma_issue_pending - push pending transactions to the hardware
1261  * @chan: channel
1262  *
1263  * When this function is called, all pending transactions are pushed to the
1264  * hardware and executed.
1265  */
1266 static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1267 {
1268         ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1269 }
1270
1271 static int __init ep93xx_dma_probe(struct platform_device *pdev)
1272 {
1273         struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1274         struct ep93xx_dma_engine *edma;
1275         struct dma_device *dma_dev;
1276         size_t edma_size;
1277         int ret, i;
1278
1279         edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1280         edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1281         if (!edma)
1282                 return -ENOMEM;
1283
1284         dma_dev = &edma->dma_dev;
1285         edma->m2m = platform_get_device_id(pdev)->driver_data;
1286         edma->num_channels = pdata->num_channels;
1287
1288         INIT_LIST_HEAD(&dma_dev->channels);
1289         for (i = 0; i < pdata->num_channels; i++) {
1290                 const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1291                 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1292
1293                 edmac->chan.device = dma_dev;
1294                 edmac->regs = cdata->base;
1295                 edmac->irq = cdata->irq;
1296                 edmac->edma = edma;
1297
1298                 edmac->clk = clk_get(NULL, cdata->name);
1299                 if (IS_ERR(edmac->clk)) {
1300                         dev_warn(&pdev->dev, "failed to get clock for %s\n",
1301                                  cdata->name);
1302                         continue;
1303                 }
1304
1305                 spin_lock_init(&edmac->lock);
1306                 INIT_LIST_HEAD(&edmac->active);
1307                 INIT_LIST_HEAD(&edmac->queue);
1308                 INIT_LIST_HEAD(&edmac->free_list);
1309                 tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
1310                              (unsigned long)edmac);
1311
1312                 list_add_tail(&edmac->chan.device_node,
1313                               &dma_dev->channels);
1314         }
1315
1316         dma_cap_zero(dma_dev->cap_mask);
1317         dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1318         dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1319
1320         dma_dev->dev = &pdev->dev;
1321         dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1322         dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1323         dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1324         dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1325         dma_dev->device_config = ep93xx_dma_slave_config;
1326         dma_dev->device_terminate_all = ep93xx_dma_terminate_all;
1327         dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1328         dma_dev->device_tx_status = ep93xx_dma_tx_status;
1329
1330         dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1331
1332         if (edma->m2m) {
1333                 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1334                 dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1335
1336                 edma->hw_setup = m2m_hw_setup;
1337                 edma->hw_shutdown = m2m_hw_shutdown;
1338                 edma->hw_submit = m2m_hw_submit;
1339                 edma->hw_interrupt = m2m_hw_interrupt;
1340         } else {
1341                 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1342
1343                 edma->hw_setup = m2p_hw_setup;
1344                 edma->hw_shutdown = m2p_hw_shutdown;
1345                 edma->hw_submit = m2p_hw_submit;
1346                 edma->hw_interrupt = m2p_hw_interrupt;
1347         }
1348
1349         ret = dma_async_device_register(dma_dev);
1350         if (unlikely(ret)) {
1351                 for (i = 0; i < edma->num_channels; i++) {
1352                         struct ep93xx_dma_chan *edmac = &edma->channels[i];
1353                         if (!IS_ERR_OR_NULL(edmac->clk))
1354                                 clk_put(edmac->clk);
1355                 }
1356                 kfree(edma);
1357         } else {
1358                 dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1359                          edma->m2m ? "M" : "P");
1360         }
1361
1362         return ret;
1363 }
1364
1365 static const struct platform_device_id ep93xx_dma_driver_ids[] = {
1366         { "ep93xx-dma-m2p", 0 },
1367         { "ep93xx-dma-m2m", 1 },
1368         { },
1369 };
1370
1371 static struct platform_driver ep93xx_dma_driver = {
1372         .driver         = {
1373                 .name   = "ep93xx-dma",
1374         },
1375         .id_table       = ep93xx_dma_driver_ids,
1376 };
1377
1378 static int __init ep93xx_dma_module_init(void)
1379 {
1380         return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1381 }
1382 subsys_initcall(ep93xx_dma_module_init);
1383
1384 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1385 MODULE_DESCRIPTION("EP93xx DMA driver");
1386 MODULE_LICENSE("GPL");