spi: txx9: Let spi core handle validating transfer length
[cascardo/linux.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/of_dma.h>
40
41 #include <asm/irq.h>
42 #include <linux/platform_data/dma-imx-sdma.h>
43 #include <linux/platform_data/dma-imx.h>
44
45 #include "dmaengine.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR            0x000
49 #define SDMA_H_INTR             0x004
50 #define SDMA_H_STATSTOP         0x008
51 #define SDMA_H_START            0x00c
52 #define SDMA_H_EVTOVR           0x010
53 #define SDMA_H_DSPOVR           0x014
54 #define SDMA_H_HOSTOVR          0x018
55 #define SDMA_H_EVTPEND          0x01c
56 #define SDMA_H_DSPENBL          0x020
57 #define SDMA_H_RESET            0x024
58 #define SDMA_H_EVTERR           0x028
59 #define SDMA_H_INTRMSK          0x02c
60 #define SDMA_H_PSW              0x030
61 #define SDMA_H_EVTERRDBG        0x034
62 #define SDMA_H_CONFIG           0x038
63 #define SDMA_ONCE_ENB           0x040
64 #define SDMA_ONCE_DATA          0x044
65 #define SDMA_ONCE_INSTR         0x048
66 #define SDMA_ONCE_STAT          0x04c
67 #define SDMA_ONCE_CMD           0x050
68 #define SDMA_EVT_MIRROR         0x054
69 #define SDMA_ILLINSTADDR        0x058
70 #define SDMA_CHN0ADDR           0x05c
71 #define SDMA_ONCE_RTB           0x060
72 #define SDMA_XTRIG_CONF1        0x070
73 #define SDMA_XTRIG_CONF2        0x074
74 #define SDMA_CHNENBL0_IMX35     0x200
75 #define SDMA_CHNENBL0_IMX31     0x080
76 #define SDMA_CHNPRI_0           0x100
77
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125
126 /*
127  * Mode/Count of data node descriptors - IPCv2
128  */
129 struct sdma_mode_count {
130         u32 count   : 16; /* size of the buffer pointed by this BD */
131         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
132         u32 command :  8; /* command mostlky used for channel 0 */
133 };
134
135 /*
136  * Buffer descriptor
137  */
138 struct sdma_buffer_descriptor {
139         struct sdma_mode_count  mode;
140         u32 buffer_addr;        /* address of the buffer described */
141         u32 ext_buffer_addr;    /* extended buffer address */
142 } __attribute__ ((packed));
143
144 /**
145  * struct sdma_channel_control - Channel control Block
146  *
147  * @current_bd_ptr      current buffer descriptor processed
148  * @base_bd_ptr         first element of buffer descriptor array
149  * @unused              padding. The SDMA engine expects an array of 128 byte
150  *                      control blocks
151  */
152 struct sdma_channel_control {
153         u32 current_bd_ptr;
154         u32 base_bd_ptr;
155         u32 unused[2];
156 } __attribute__ ((packed));
157
158 /**
159  * struct sdma_state_registers - SDMA context for a channel
160  *
161  * @pc:         program counter
162  * @t:          test bit: status of arithmetic & test instruction
163  * @rpc:        return program counter
164  * @sf:         source fault while loading data
165  * @spc:        loop start program counter
166  * @df:         destination fault while storing data
167  * @epc:        loop end program counter
168  * @lm:         loop mode
169  */
170 struct sdma_state_registers {
171         u32 pc     :14;
172         u32 unused1: 1;
173         u32 t      : 1;
174         u32 rpc    :14;
175         u32 unused0: 1;
176         u32 sf     : 1;
177         u32 spc    :14;
178         u32 unused2: 1;
179         u32 df     : 1;
180         u32 epc    :14;
181         u32 lm     : 2;
182 } __attribute__ ((packed));
183
184 /**
185  * struct sdma_context_data - sdma context specific to a channel
186  *
187  * @channel_state:      channel state bits
188  * @gReg:               general registers
189  * @mda:                burst dma destination address register
190  * @msa:                burst dma source address register
191  * @ms:                 burst dma status register
192  * @md:                 burst dma data register
193  * @pda:                peripheral dma destination address register
194  * @psa:                peripheral dma source address register
195  * @ps:                 peripheral dma status register
196  * @pd:                 peripheral dma data register
197  * @ca:                 CRC polynomial register
198  * @cs:                 CRC accumulator register
199  * @dda:                dedicated core destination address register
200  * @dsa:                dedicated core source address register
201  * @ds:                 dedicated core status register
202  * @dd:                 dedicated core data register
203  */
204 struct sdma_context_data {
205         struct sdma_state_registers  channel_state;
206         u32  gReg[8];
207         u32  mda;
208         u32  msa;
209         u32  ms;
210         u32  md;
211         u32  pda;
212         u32  psa;
213         u32  ps;
214         u32  pd;
215         u32  ca;
216         u32  cs;
217         u32  dda;
218         u32  dsa;
219         u32  ds;
220         u32  dd;
221         u32  scratch0;
222         u32  scratch1;
223         u32  scratch2;
224         u32  scratch3;
225         u32  scratch4;
226         u32  scratch5;
227         u32  scratch6;
228         u32  scratch7;
229 } __attribute__ ((packed));
230
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232
233 struct sdma_engine;
234
235 /**
236  * struct sdma_channel - housekeeping for a SDMA channel
237  *
238  * @sdma                pointer to the SDMA engine for this channel
239  * @channel             the channel number, matches dmaengine chan_id + 1
240  * @direction           transfer type. Needed for setting SDMA script
241  * @peripheral_type     Peripheral type. Needed for setting SDMA script
242  * @event_id0           aka dma request line
243  * @event_id1           for channels that use 2 events
244  * @word_size           peripheral access size
245  * @buf_tail            ID of the buffer that was processed
246  * @num_bd              max NUM_BD. number of descriptors currently handling
247  */
248 struct sdma_channel {
249         struct sdma_engine              *sdma;
250         unsigned int                    channel;
251         enum dma_transfer_direction             direction;
252         enum sdma_peripheral_type       peripheral_type;
253         unsigned int                    event_id0;
254         unsigned int                    event_id1;
255         enum dma_slave_buswidth         word_size;
256         unsigned int                    buf_tail;
257         unsigned int                    num_bd;
258         struct sdma_buffer_descriptor   *bd;
259         dma_addr_t                      bd_phys;
260         unsigned int                    pc_from_device, pc_to_device;
261         unsigned long                   flags;
262         dma_addr_t                      per_address;
263         unsigned long                   event_mask[2];
264         unsigned long                   watermark_level;
265         u32                             shp_addr, per_addr;
266         struct dma_chan                 chan;
267         spinlock_t                      lock;
268         struct dma_async_tx_descriptor  desc;
269         enum dma_status                 status;
270         unsigned int                    chn_count;
271         unsigned int                    chn_real_count;
272         struct tasklet_struct           tasklet;
273 };
274
275 #define IMX_DMA_SG_LOOP         BIT(0)
276
277 #define MAX_DMA_CHANNELS 32
278 #define MXC_SDMA_DEFAULT_PRIORITY 1
279 #define MXC_SDMA_MIN_PRIORITY 1
280 #define MXC_SDMA_MAX_PRIORITY 7
281
282 #define SDMA_FIRMWARE_MAGIC 0x414d4453
283
284 /**
285  * struct sdma_firmware_header - Layout of the firmware image
286  *
287  * @magic               "SDMA"
288  * @version_major       increased whenever layout of struct sdma_script_start_addrs
289  *                      changes.
290  * @version_minor       firmware minor version (for binary compatible changes)
291  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
292  * @num_script_addrs    Number of script addresses in this image
293  * @ram_code_start      offset of SDMA ram image in this firmware image
294  * @ram_code_size       size of SDMA ram image
295  * @script_addrs        Stores the start address of the SDMA scripts
296  *                      (in SDMA memory space)
297  */
298 struct sdma_firmware_header {
299         u32     magic;
300         u32     version_major;
301         u32     version_minor;
302         u32     script_addrs_start;
303         u32     num_script_addrs;
304         u32     ram_code_start;
305         u32     ram_code_size;
306 };
307
308 struct sdma_driver_data {
309         int chnenbl0;
310         int num_events;
311         struct sdma_script_start_addrs  *script_addrs;
312 };
313
314 struct sdma_engine {
315         struct device                   *dev;
316         struct device_dma_parameters    dma_parms;
317         struct sdma_channel             channel[MAX_DMA_CHANNELS];
318         struct sdma_channel_control     *channel_control;
319         void __iomem                    *regs;
320         struct sdma_context_data        *context;
321         dma_addr_t                      context_phys;
322         struct dma_device               dma_device;
323         struct clk                      *clk_ipg;
324         struct clk                      *clk_ahb;
325         spinlock_t                      channel_0_lock;
326         u32                             script_number;
327         struct sdma_script_start_addrs  *script_addrs;
328         const struct sdma_driver_data   *drvdata;
329 };
330
331 static struct sdma_driver_data sdma_imx31 = {
332         .chnenbl0 = SDMA_CHNENBL0_IMX31,
333         .num_events = 32,
334 };
335
336 static struct sdma_script_start_addrs sdma_script_imx25 = {
337         .ap_2_ap_addr = 729,
338         .uart_2_mcu_addr = 904,
339         .per_2_app_addr = 1255,
340         .mcu_2_app_addr = 834,
341         .uartsh_2_mcu_addr = 1120,
342         .per_2_shp_addr = 1329,
343         .mcu_2_shp_addr = 1048,
344         .ata_2_mcu_addr = 1560,
345         .mcu_2_ata_addr = 1479,
346         .app_2_per_addr = 1189,
347         .app_2_mcu_addr = 770,
348         .shp_2_per_addr = 1407,
349         .shp_2_mcu_addr = 979,
350 };
351
352 static struct sdma_driver_data sdma_imx25 = {
353         .chnenbl0 = SDMA_CHNENBL0_IMX35,
354         .num_events = 48,
355         .script_addrs = &sdma_script_imx25,
356 };
357
358 static struct sdma_driver_data sdma_imx35 = {
359         .chnenbl0 = SDMA_CHNENBL0_IMX35,
360         .num_events = 48,
361 };
362
363 static struct sdma_script_start_addrs sdma_script_imx51 = {
364         .ap_2_ap_addr = 642,
365         .uart_2_mcu_addr = 817,
366         .mcu_2_app_addr = 747,
367         .mcu_2_shp_addr = 961,
368         .ata_2_mcu_addr = 1473,
369         .mcu_2_ata_addr = 1392,
370         .app_2_per_addr = 1033,
371         .app_2_mcu_addr = 683,
372         .shp_2_per_addr = 1251,
373         .shp_2_mcu_addr = 892,
374 };
375
376 static struct sdma_driver_data sdma_imx51 = {
377         .chnenbl0 = SDMA_CHNENBL0_IMX35,
378         .num_events = 48,
379         .script_addrs = &sdma_script_imx51,
380 };
381
382 static struct sdma_script_start_addrs sdma_script_imx53 = {
383         .ap_2_ap_addr = 642,
384         .app_2_mcu_addr = 683,
385         .mcu_2_app_addr = 747,
386         .uart_2_mcu_addr = 817,
387         .shp_2_mcu_addr = 891,
388         .mcu_2_shp_addr = 960,
389         .uartsh_2_mcu_addr = 1032,
390         .spdif_2_mcu_addr = 1100,
391         .mcu_2_spdif_addr = 1134,
392         .firi_2_mcu_addr = 1193,
393         .mcu_2_firi_addr = 1290,
394 };
395
396 static struct sdma_driver_data sdma_imx53 = {
397         .chnenbl0 = SDMA_CHNENBL0_IMX35,
398         .num_events = 48,
399         .script_addrs = &sdma_script_imx53,
400 };
401
402 static struct sdma_script_start_addrs sdma_script_imx6q = {
403         .ap_2_ap_addr = 642,
404         .uart_2_mcu_addr = 817,
405         .mcu_2_app_addr = 747,
406         .per_2_per_addr = 6331,
407         .uartsh_2_mcu_addr = 1032,
408         .mcu_2_shp_addr = 960,
409         .app_2_mcu_addr = 683,
410         .shp_2_mcu_addr = 891,
411         .spdif_2_mcu_addr = 1100,
412         .mcu_2_spdif_addr = 1134,
413 };
414
415 static struct sdma_driver_data sdma_imx6q = {
416         .chnenbl0 = SDMA_CHNENBL0_IMX35,
417         .num_events = 48,
418         .script_addrs = &sdma_script_imx6q,
419 };
420
421 static struct platform_device_id sdma_devtypes[] = {
422         {
423                 .name = "imx25-sdma",
424                 .driver_data = (unsigned long)&sdma_imx25,
425         }, {
426                 .name = "imx31-sdma",
427                 .driver_data = (unsigned long)&sdma_imx31,
428         }, {
429                 .name = "imx35-sdma",
430                 .driver_data = (unsigned long)&sdma_imx35,
431         }, {
432                 .name = "imx51-sdma",
433                 .driver_data = (unsigned long)&sdma_imx51,
434         }, {
435                 .name = "imx53-sdma",
436                 .driver_data = (unsigned long)&sdma_imx53,
437         }, {
438                 .name = "imx6q-sdma",
439                 .driver_data = (unsigned long)&sdma_imx6q,
440         }, {
441                 /* sentinel */
442         }
443 };
444 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
445
446 static const struct of_device_id sdma_dt_ids[] = {
447         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
448         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
449         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
450         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
451         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
452         { /* sentinel */ }
453 };
454 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
455
456 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
457 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
458 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
459 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
460
461 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
462 {
463         u32 chnenbl0 = sdma->drvdata->chnenbl0;
464         return chnenbl0 + event * 4;
465 }
466
467 static int sdma_config_ownership(struct sdma_channel *sdmac,
468                 bool event_override, bool mcu_override, bool dsp_override)
469 {
470         struct sdma_engine *sdma = sdmac->sdma;
471         int channel = sdmac->channel;
472         unsigned long evt, mcu, dsp;
473
474         if (event_override && mcu_override && dsp_override)
475                 return -EINVAL;
476
477         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
478         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
479         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
480
481         if (dsp_override)
482                 __clear_bit(channel, &dsp);
483         else
484                 __set_bit(channel, &dsp);
485
486         if (event_override)
487                 __clear_bit(channel, &evt);
488         else
489                 __set_bit(channel, &evt);
490
491         if (mcu_override)
492                 __clear_bit(channel, &mcu);
493         else
494                 __set_bit(channel, &mcu);
495
496         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
497         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
498         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
499
500         return 0;
501 }
502
503 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
504 {
505         writel(BIT(channel), sdma->regs + SDMA_H_START);
506 }
507
508 /*
509  * sdma_run_channel0 - run a channel and wait till it's done
510  */
511 static int sdma_run_channel0(struct sdma_engine *sdma)
512 {
513         int ret;
514         unsigned long timeout = 500;
515
516         sdma_enable_channel(sdma, 0);
517
518         while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
519                 if (timeout-- <= 0)
520                         break;
521                 udelay(1);
522         }
523
524         if (ret) {
525                 /* Clear the interrupt status */
526                 writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
527         } else {
528                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
529         }
530
531         return ret ? 0 : -ETIMEDOUT;
532 }
533
534 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
535                 u32 address)
536 {
537         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
538         void *buf_virt;
539         dma_addr_t buf_phys;
540         int ret;
541         unsigned long flags;
542
543         buf_virt = dma_alloc_coherent(NULL,
544                         size,
545                         &buf_phys, GFP_KERNEL);
546         if (!buf_virt) {
547                 return -ENOMEM;
548         }
549
550         spin_lock_irqsave(&sdma->channel_0_lock, flags);
551
552         bd0->mode.command = C0_SETPM;
553         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
554         bd0->mode.count = size / 2;
555         bd0->buffer_addr = buf_phys;
556         bd0->ext_buffer_addr = address;
557
558         memcpy(buf_virt, buf, size);
559
560         ret = sdma_run_channel0(sdma);
561
562         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
563
564         dma_free_coherent(NULL, size, buf_virt, buf_phys);
565
566         return ret;
567 }
568
569 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
570 {
571         struct sdma_engine *sdma = sdmac->sdma;
572         int channel = sdmac->channel;
573         unsigned long val;
574         u32 chnenbl = chnenbl_ofs(sdma, event);
575
576         val = readl_relaxed(sdma->regs + chnenbl);
577         __set_bit(channel, &val);
578         writel_relaxed(val, sdma->regs + chnenbl);
579 }
580
581 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
582 {
583         struct sdma_engine *sdma = sdmac->sdma;
584         int channel = sdmac->channel;
585         u32 chnenbl = chnenbl_ofs(sdma, event);
586         unsigned long val;
587
588         val = readl_relaxed(sdma->regs + chnenbl);
589         __clear_bit(channel, &val);
590         writel_relaxed(val, sdma->regs + chnenbl);
591 }
592
593 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
594 {
595         struct sdma_buffer_descriptor *bd;
596
597         /*
598          * loop mode. Iterate over descriptors, re-setup them and
599          * call callback function.
600          */
601         while (1) {
602                 bd = &sdmac->bd[sdmac->buf_tail];
603
604                 if (bd->mode.status & BD_DONE)
605                         break;
606
607                 if (bd->mode.status & BD_RROR)
608                         sdmac->status = DMA_ERROR;
609                 else
610                         sdmac->status = DMA_IN_PROGRESS;
611
612                 bd->mode.status |= BD_DONE;
613                 sdmac->buf_tail++;
614                 sdmac->buf_tail %= sdmac->num_bd;
615
616                 if (sdmac->desc.callback)
617                         sdmac->desc.callback(sdmac->desc.callback_param);
618         }
619 }
620
621 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
622 {
623         struct sdma_buffer_descriptor *bd;
624         int i, error = 0;
625
626         sdmac->chn_real_count = 0;
627         /*
628          * non loop mode. Iterate over all descriptors, collect
629          * errors and call callback function
630          */
631         for (i = 0; i < sdmac->num_bd; i++) {
632                 bd = &sdmac->bd[i];
633
634                  if (bd->mode.status & (BD_DONE | BD_RROR))
635                         error = -EIO;
636                  sdmac->chn_real_count += bd->mode.count;
637         }
638
639         if (error)
640                 sdmac->status = DMA_ERROR;
641         else
642                 sdmac->status = DMA_COMPLETE;
643
644         dma_cookie_complete(&sdmac->desc);
645         if (sdmac->desc.callback)
646                 sdmac->desc.callback(sdmac->desc.callback_param);
647 }
648
649 static void sdma_tasklet(unsigned long data)
650 {
651         struct sdma_channel *sdmac = (struct sdma_channel *) data;
652
653         if (sdmac->flags & IMX_DMA_SG_LOOP)
654                 sdma_handle_channel_loop(sdmac);
655         else
656                 mxc_sdma_handle_channel_normal(sdmac);
657 }
658
659 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
660 {
661         struct sdma_engine *sdma = dev_id;
662         unsigned long stat;
663
664         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
665         /* not interested in channel 0 interrupts */
666         stat &= ~1;
667         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
668
669         while (stat) {
670                 int channel = fls(stat) - 1;
671                 struct sdma_channel *sdmac = &sdma->channel[channel];
672
673                 tasklet_schedule(&sdmac->tasklet);
674
675                 __clear_bit(channel, &stat);
676         }
677
678         return IRQ_HANDLED;
679 }
680
681 /*
682  * sets the pc of SDMA script according to the peripheral type
683  */
684 static void sdma_get_pc(struct sdma_channel *sdmac,
685                 enum sdma_peripheral_type peripheral_type)
686 {
687         struct sdma_engine *sdma = sdmac->sdma;
688         int per_2_emi = 0, emi_2_per = 0;
689         /*
690          * These are needed once we start to support transfers between
691          * two peripherals or memory-to-memory transfers
692          */
693         int per_2_per = 0, emi_2_emi = 0;
694
695         sdmac->pc_from_device = 0;
696         sdmac->pc_to_device = 0;
697
698         switch (peripheral_type) {
699         case IMX_DMATYPE_MEMORY:
700                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
701                 break;
702         case IMX_DMATYPE_DSP:
703                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
704                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
705                 break;
706         case IMX_DMATYPE_FIRI:
707                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
708                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
709                 break;
710         case IMX_DMATYPE_UART:
711                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
712                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
713                 break;
714         case IMX_DMATYPE_UART_SP:
715                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
716                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
717                 break;
718         case IMX_DMATYPE_ATA:
719                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
720                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
721                 break;
722         case IMX_DMATYPE_CSPI:
723         case IMX_DMATYPE_EXT:
724         case IMX_DMATYPE_SSI:
725                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
726                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
727                 break;
728         case IMX_DMATYPE_SSI_DUAL:
729                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
730                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
731                 break;
732         case IMX_DMATYPE_SSI_SP:
733         case IMX_DMATYPE_MMC:
734         case IMX_DMATYPE_SDHC:
735         case IMX_DMATYPE_CSPI_SP:
736         case IMX_DMATYPE_ESAI:
737         case IMX_DMATYPE_MSHC_SP:
738                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
739                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
740                 break;
741         case IMX_DMATYPE_ASRC:
742                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
743                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
744                 per_2_per = sdma->script_addrs->per_2_per_addr;
745                 break;
746         case IMX_DMATYPE_MSHC:
747                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
748                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
749                 break;
750         case IMX_DMATYPE_CCM:
751                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
752                 break;
753         case IMX_DMATYPE_SPDIF:
754                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
755                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
756                 break;
757         case IMX_DMATYPE_IPU_MEMORY:
758                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
759                 break;
760         default:
761                 break;
762         }
763
764         sdmac->pc_from_device = per_2_emi;
765         sdmac->pc_to_device = emi_2_per;
766 }
767
768 static int sdma_load_context(struct sdma_channel *sdmac)
769 {
770         struct sdma_engine *sdma = sdmac->sdma;
771         int channel = sdmac->channel;
772         int load_address;
773         struct sdma_context_data *context = sdma->context;
774         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
775         int ret;
776         unsigned long flags;
777
778         if (sdmac->direction == DMA_DEV_TO_MEM) {
779                 load_address = sdmac->pc_from_device;
780         } else {
781                 load_address = sdmac->pc_to_device;
782         }
783
784         if (load_address < 0)
785                 return load_address;
786
787         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
788         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
789         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
790         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
791         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
792         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
793
794         spin_lock_irqsave(&sdma->channel_0_lock, flags);
795
796         memset(context, 0, sizeof(*context));
797         context->channel_state.pc = load_address;
798
799         /* Send by context the event mask,base address for peripheral
800          * and watermark level
801          */
802         context->gReg[0] = sdmac->event_mask[1];
803         context->gReg[1] = sdmac->event_mask[0];
804         context->gReg[2] = sdmac->per_addr;
805         context->gReg[6] = sdmac->shp_addr;
806         context->gReg[7] = sdmac->watermark_level;
807
808         bd0->mode.command = C0_SETDM;
809         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
810         bd0->mode.count = sizeof(*context) / 4;
811         bd0->buffer_addr = sdma->context_phys;
812         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
813         ret = sdma_run_channel0(sdma);
814
815         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
816
817         return ret;
818 }
819
820 static void sdma_disable_channel(struct sdma_channel *sdmac)
821 {
822         struct sdma_engine *sdma = sdmac->sdma;
823         int channel = sdmac->channel;
824
825         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
826         sdmac->status = DMA_ERROR;
827 }
828
829 static int sdma_config_channel(struct sdma_channel *sdmac)
830 {
831         int ret;
832
833         sdma_disable_channel(sdmac);
834
835         sdmac->event_mask[0] = 0;
836         sdmac->event_mask[1] = 0;
837         sdmac->shp_addr = 0;
838         sdmac->per_addr = 0;
839
840         if (sdmac->event_id0) {
841                 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
842                         return -EINVAL;
843                 sdma_event_enable(sdmac, sdmac->event_id0);
844         }
845
846         switch (sdmac->peripheral_type) {
847         case IMX_DMATYPE_DSP:
848                 sdma_config_ownership(sdmac, false, true, true);
849                 break;
850         case IMX_DMATYPE_MEMORY:
851                 sdma_config_ownership(sdmac, false, true, false);
852                 break;
853         default:
854                 sdma_config_ownership(sdmac, true, true, false);
855                 break;
856         }
857
858         sdma_get_pc(sdmac, sdmac->peripheral_type);
859
860         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
861                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
862                 /* Handle multiple event channels differently */
863                 if (sdmac->event_id1) {
864                         sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
865                         if (sdmac->event_id1 > 31)
866                                 __set_bit(31, &sdmac->watermark_level);
867                         sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
868                         if (sdmac->event_id0 > 31)
869                                 __set_bit(30, &sdmac->watermark_level);
870                 } else {
871                         __set_bit(sdmac->event_id0, sdmac->event_mask);
872                 }
873                 /* Watermark Level */
874                 sdmac->watermark_level |= sdmac->watermark_level;
875                 /* Address */
876                 sdmac->shp_addr = sdmac->per_address;
877         } else {
878                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
879         }
880
881         ret = sdma_load_context(sdmac);
882
883         return ret;
884 }
885
886 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
887                 unsigned int priority)
888 {
889         struct sdma_engine *sdma = sdmac->sdma;
890         int channel = sdmac->channel;
891
892         if (priority < MXC_SDMA_MIN_PRIORITY
893             || priority > MXC_SDMA_MAX_PRIORITY) {
894                 return -EINVAL;
895         }
896
897         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
898
899         return 0;
900 }
901
902 static int sdma_request_channel(struct sdma_channel *sdmac)
903 {
904         struct sdma_engine *sdma = sdmac->sdma;
905         int channel = sdmac->channel;
906         int ret = -EBUSY;
907
908         sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
909         if (!sdmac->bd) {
910                 ret = -ENOMEM;
911                 goto out;
912         }
913
914         memset(sdmac->bd, 0, PAGE_SIZE);
915
916         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
917         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
918
919         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
920         return 0;
921 out:
922
923         return ret;
924 }
925
926 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
927 {
928         return container_of(chan, struct sdma_channel, chan);
929 }
930
931 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
932 {
933         unsigned long flags;
934         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
935         dma_cookie_t cookie;
936
937         spin_lock_irqsave(&sdmac->lock, flags);
938
939         cookie = dma_cookie_assign(tx);
940
941         spin_unlock_irqrestore(&sdmac->lock, flags);
942
943         return cookie;
944 }
945
946 static int sdma_alloc_chan_resources(struct dma_chan *chan)
947 {
948         struct sdma_channel *sdmac = to_sdma_chan(chan);
949         struct imx_dma_data *data = chan->private;
950         int prio, ret;
951
952         if (!data)
953                 return -EINVAL;
954
955         switch (data->priority) {
956         case DMA_PRIO_HIGH:
957                 prio = 3;
958                 break;
959         case DMA_PRIO_MEDIUM:
960                 prio = 2;
961                 break;
962         case DMA_PRIO_LOW:
963         default:
964                 prio = 1;
965                 break;
966         }
967
968         sdmac->peripheral_type = data->peripheral_type;
969         sdmac->event_id0 = data->dma_request;
970
971         clk_enable(sdmac->sdma->clk_ipg);
972         clk_enable(sdmac->sdma->clk_ahb);
973
974         ret = sdma_request_channel(sdmac);
975         if (ret)
976                 return ret;
977
978         ret = sdma_set_channel_priority(sdmac, prio);
979         if (ret)
980                 return ret;
981
982         dma_async_tx_descriptor_init(&sdmac->desc, chan);
983         sdmac->desc.tx_submit = sdma_tx_submit;
984         /* txd.flags will be overwritten in prep funcs */
985         sdmac->desc.flags = DMA_CTRL_ACK;
986
987         return 0;
988 }
989
990 static void sdma_free_chan_resources(struct dma_chan *chan)
991 {
992         struct sdma_channel *sdmac = to_sdma_chan(chan);
993         struct sdma_engine *sdma = sdmac->sdma;
994
995         sdma_disable_channel(sdmac);
996
997         if (sdmac->event_id0)
998                 sdma_event_disable(sdmac, sdmac->event_id0);
999         if (sdmac->event_id1)
1000                 sdma_event_disable(sdmac, sdmac->event_id1);
1001
1002         sdmac->event_id0 = 0;
1003         sdmac->event_id1 = 0;
1004
1005         sdma_set_channel_priority(sdmac, 0);
1006
1007         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1008
1009         clk_disable(sdma->clk_ipg);
1010         clk_disable(sdma->clk_ahb);
1011 }
1012
1013 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1014                 struct dma_chan *chan, struct scatterlist *sgl,
1015                 unsigned int sg_len, enum dma_transfer_direction direction,
1016                 unsigned long flags, void *context)
1017 {
1018         struct sdma_channel *sdmac = to_sdma_chan(chan);
1019         struct sdma_engine *sdma = sdmac->sdma;
1020         int ret, i, count;
1021         int channel = sdmac->channel;
1022         struct scatterlist *sg;
1023
1024         if (sdmac->status == DMA_IN_PROGRESS)
1025                 return NULL;
1026         sdmac->status = DMA_IN_PROGRESS;
1027
1028         sdmac->flags = 0;
1029
1030         sdmac->buf_tail = 0;
1031
1032         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1033                         sg_len, channel);
1034
1035         sdmac->direction = direction;
1036         ret = sdma_load_context(sdmac);
1037         if (ret)
1038                 goto err_out;
1039
1040         if (sg_len > NUM_BD) {
1041                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1042                                 channel, sg_len, NUM_BD);
1043                 ret = -EINVAL;
1044                 goto err_out;
1045         }
1046
1047         sdmac->chn_count = 0;
1048         for_each_sg(sgl, sg, sg_len, i) {
1049                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1050                 int param;
1051
1052                 bd->buffer_addr = sg->dma_address;
1053
1054                 count = sg_dma_len(sg);
1055
1056                 if (count > 0xffff) {
1057                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1058                                         channel, count, 0xffff);
1059                         ret = -EINVAL;
1060                         goto err_out;
1061                 }
1062
1063                 bd->mode.count = count;
1064                 sdmac->chn_count += count;
1065
1066                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1067                         ret =  -EINVAL;
1068                         goto err_out;
1069                 }
1070
1071                 switch (sdmac->word_size) {
1072                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1073                         bd->mode.command = 0;
1074                         if (count & 3 || sg->dma_address & 3)
1075                                 return NULL;
1076                         break;
1077                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1078                         bd->mode.command = 2;
1079                         if (count & 1 || sg->dma_address & 1)
1080                                 return NULL;
1081                         break;
1082                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1083                         bd->mode.command = 1;
1084                         break;
1085                 default:
1086                         return NULL;
1087                 }
1088
1089                 param = BD_DONE | BD_EXTD | BD_CONT;
1090
1091                 if (i + 1 == sg_len) {
1092                         param |= BD_INTR;
1093                         param |= BD_LAST;
1094                         param &= ~BD_CONT;
1095                 }
1096
1097                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1098                                 i, count, (u64)sg->dma_address,
1099                                 param & BD_WRAP ? "wrap" : "",
1100                                 param & BD_INTR ? " intr" : "");
1101
1102                 bd->mode.status = param;
1103         }
1104
1105         sdmac->num_bd = sg_len;
1106         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1107
1108         return &sdmac->desc;
1109 err_out:
1110         sdmac->status = DMA_ERROR;
1111         return NULL;
1112 }
1113
1114 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1115                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1116                 size_t period_len, enum dma_transfer_direction direction,
1117                 unsigned long flags, void *context)
1118 {
1119         struct sdma_channel *sdmac = to_sdma_chan(chan);
1120         struct sdma_engine *sdma = sdmac->sdma;
1121         int num_periods = buf_len / period_len;
1122         int channel = sdmac->channel;
1123         int ret, i = 0, buf = 0;
1124
1125         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1126
1127         if (sdmac->status == DMA_IN_PROGRESS)
1128                 return NULL;
1129
1130         sdmac->status = DMA_IN_PROGRESS;
1131
1132         sdmac->buf_tail = 0;
1133
1134         sdmac->flags |= IMX_DMA_SG_LOOP;
1135         sdmac->direction = direction;
1136         ret = sdma_load_context(sdmac);
1137         if (ret)
1138                 goto err_out;
1139
1140         if (num_periods > NUM_BD) {
1141                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1142                                 channel, num_periods, NUM_BD);
1143                 goto err_out;
1144         }
1145
1146         if (period_len > 0xffff) {
1147                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1148                                 channel, period_len, 0xffff);
1149                 goto err_out;
1150         }
1151
1152         while (buf < buf_len) {
1153                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1154                 int param;
1155
1156                 bd->buffer_addr = dma_addr;
1157
1158                 bd->mode.count = period_len;
1159
1160                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1161                         goto err_out;
1162                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1163                         bd->mode.command = 0;
1164                 else
1165                         bd->mode.command = sdmac->word_size;
1166
1167                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1168                 if (i + 1 == num_periods)
1169                         param |= BD_WRAP;
1170
1171                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1172                                 i, period_len, (u64)dma_addr,
1173                                 param & BD_WRAP ? "wrap" : "",
1174                                 param & BD_INTR ? " intr" : "");
1175
1176                 bd->mode.status = param;
1177
1178                 dma_addr += period_len;
1179                 buf += period_len;
1180
1181                 i++;
1182         }
1183
1184         sdmac->num_bd = num_periods;
1185         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1186
1187         return &sdmac->desc;
1188 err_out:
1189         sdmac->status = DMA_ERROR;
1190         return NULL;
1191 }
1192
1193 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1194                 unsigned long arg)
1195 {
1196         struct sdma_channel *sdmac = to_sdma_chan(chan);
1197         struct dma_slave_config *dmaengine_cfg = (void *)arg;
1198
1199         switch (cmd) {
1200         case DMA_TERMINATE_ALL:
1201                 sdma_disable_channel(sdmac);
1202                 return 0;
1203         case DMA_SLAVE_CONFIG:
1204                 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1205                         sdmac->per_address = dmaengine_cfg->src_addr;
1206                         sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1207                                                 dmaengine_cfg->src_addr_width;
1208                         sdmac->word_size = dmaengine_cfg->src_addr_width;
1209                 } else {
1210                         sdmac->per_address = dmaengine_cfg->dst_addr;
1211                         sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1212                                                 dmaengine_cfg->dst_addr_width;
1213                         sdmac->word_size = dmaengine_cfg->dst_addr_width;
1214                 }
1215                 sdmac->direction = dmaengine_cfg->direction;
1216                 return sdma_config_channel(sdmac);
1217         default:
1218                 return -ENOSYS;
1219         }
1220
1221         return -EINVAL;
1222 }
1223
1224 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1225                                       dma_cookie_t cookie,
1226                                       struct dma_tx_state *txstate)
1227 {
1228         struct sdma_channel *sdmac = to_sdma_chan(chan);
1229
1230         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1231                         sdmac->chn_count - sdmac->chn_real_count);
1232
1233         return sdmac->status;
1234 }
1235
1236 static void sdma_issue_pending(struct dma_chan *chan)
1237 {
1238         struct sdma_channel *sdmac = to_sdma_chan(chan);
1239         struct sdma_engine *sdma = sdmac->sdma;
1240
1241         if (sdmac->status == DMA_IN_PROGRESS)
1242                 sdma_enable_channel(sdma, sdmac->channel);
1243 }
1244
1245 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1246 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1247
1248 static void sdma_add_scripts(struct sdma_engine *sdma,
1249                 const struct sdma_script_start_addrs *addr)
1250 {
1251         s32 *addr_arr = (u32 *)addr;
1252         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1253         int i;
1254
1255         /* use the default firmware in ROM if missing external firmware */
1256         if (!sdma->script_number)
1257                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1258
1259         for (i = 0; i < sdma->script_number; i++)
1260                 if (addr_arr[i] > 0)
1261                         saddr_arr[i] = addr_arr[i];
1262 }
1263
1264 static void sdma_load_firmware(const struct firmware *fw, void *context)
1265 {
1266         struct sdma_engine *sdma = context;
1267         const struct sdma_firmware_header *header;
1268         const struct sdma_script_start_addrs *addr;
1269         unsigned short *ram_code;
1270
1271         if (!fw) {
1272                 dev_err(sdma->dev, "firmware not found\n");
1273                 return;
1274         }
1275
1276         if (fw->size < sizeof(*header))
1277                 goto err_firmware;
1278
1279         header = (struct sdma_firmware_header *)fw->data;
1280
1281         if (header->magic != SDMA_FIRMWARE_MAGIC)
1282                 goto err_firmware;
1283         if (header->ram_code_start + header->ram_code_size > fw->size)
1284                 goto err_firmware;
1285         switch (header->version_major) {
1286                 case 1:
1287                         sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1288                         break;
1289                 case 2:
1290                         sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1291                         break;
1292                 default:
1293                         dev_err(sdma->dev, "unknown firmware version\n");
1294                         goto err_firmware;
1295         }
1296
1297         addr = (void *)header + header->script_addrs_start;
1298         ram_code = (void *)header + header->ram_code_start;
1299
1300         clk_enable(sdma->clk_ipg);
1301         clk_enable(sdma->clk_ahb);
1302         /* download the RAM image for SDMA */
1303         sdma_load_script(sdma, ram_code,
1304                         header->ram_code_size,
1305                         addr->ram_code_start_addr);
1306         clk_disable(sdma->clk_ipg);
1307         clk_disable(sdma->clk_ahb);
1308
1309         sdma_add_scripts(sdma, addr);
1310
1311         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1312                         header->version_major,
1313                         header->version_minor);
1314
1315 err_firmware:
1316         release_firmware(fw);
1317 }
1318
1319 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1320                 const char *fw_name)
1321 {
1322         int ret;
1323
1324         ret = request_firmware_nowait(THIS_MODULE,
1325                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1326                         GFP_KERNEL, sdma, sdma_load_firmware);
1327
1328         return ret;
1329 }
1330
1331 static int __init sdma_init(struct sdma_engine *sdma)
1332 {
1333         int i, ret;
1334         dma_addr_t ccb_phys;
1335
1336         clk_enable(sdma->clk_ipg);
1337         clk_enable(sdma->clk_ahb);
1338
1339         /* Be sure SDMA has not started yet */
1340         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1341
1342         sdma->channel_control = dma_alloc_coherent(NULL,
1343                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1344                         sizeof(struct sdma_context_data),
1345                         &ccb_phys, GFP_KERNEL);
1346
1347         if (!sdma->channel_control) {
1348                 ret = -ENOMEM;
1349                 goto err_dma_alloc;
1350         }
1351
1352         sdma->context = (void *)sdma->channel_control +
1353                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1354         sdma->context_phys = ccb_phys +
1355                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1356
1357         /* Zero-out the CCB structures array just allocated */
1358         memset(sdma->channel_control, 0,
1359                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1360
1361         /* disable all channels */
1362         for (i = 0; i < sdma->drvdata->num_events; i++)
1363                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1364
1365         /* All channels have priority 0 */
1366         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1367                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1368
1369         ret = sdma_request_channel(&sdma->channel[0]);
1370         if (ret)
1371                 goto err_dma_alloc;
1372
1373         sdma_config_ownership(&sdma->channel[0], false, true, false);
1374
1375         /* Set Command Channel (Channel Zero) */
1376         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1377
1378         /* Set bits of CONFIG register but with static context switching */
1379         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1380         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1381
1382         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1383
1384         /* Set bits of CONFIG register with given context switching mode */
1385         writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1386
1387         /* Initializes channel's priorities */
1388         sdma_set_channel_priority(&sdma->channel[0], 7);
1389
1390         clk_disable(sdma->clk_ipg);
1391         clk_disable(sdma->clk_ahb);
1392
1393         return 0;
1394
1395 err_dma_alloc:
1396         clk_disable(sdma->clk_ipg);
1397         clk_disable(sdma->clk_ahb);
1398         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1399         return ret;
1400 }
1401
1402 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1403 {
1404         struct imx_dma_data *data = fn_param;
1405
1406         if (!imx_dma_is_general_purpose(chan))
1407                 return false;
1408
1409         chan->private = data;
1410
1411         return true;
1412 }
1413
1414 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1415                                    struct of_dma *ofdma)
1416 {
1417         struct sdma_engine *sdma = ofdma->of_dma_data;
1418         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1419         struct imx_dma_data data;
1420
1421         if (dma_spec->args_count != 3)
1422                 return NULL;
1423
1424         data.dma_request = dma_spec->args[0];
1425         data.peripheral_type = dma_spec->args[1];
1426         data.priority = dma_spec->args[2];
1427
1428         return dma_request_channel(mask, sdma_filter_fn, &data);
1429 }
1430
1431 static int __init sdma_probe(struct platform_device *pdev)
1432 {
1433         const struct of_device_id *of_id =
1434                         of_match_device(sdma_dt_ids, &pdev->dev);
1435         struct device_node *np = pdev->dev.of_node;
1436         const char *fw_name;
1437         int ret;
1438         int irq;
1439         struct resource *iores;
1440         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1441         int i;
1442         struct sdma_engine *sdma;
1443         s32 *saddr_arr;
1444         const struct sdma_driver_data *drvdata = NULL;
1445
1446         if (of_id)
1447                 drvdata = of_id->data;
1448         else if (pdev->id_entry)
1449                 drvdata = (void *)pdev->id_entry->driver_data;
1450
1451         if (!drvdata) {
1452                 dev_err(&pdev->dev, "unable to find driver data\n");
1453                 return -EINVAL;
1454         }
1455
1456         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1457         if (ret)
1458                 return ret;
1459
1460         sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1461         if (!sdma)
1462                 return -ENOMEM;
1463
1464         spin_lock_init(&sdma->channel_0_lock);
1465
1466         sdma->dev = &pdev->dev;
1467         sdma->drvdata = drvdata;
1468
1469         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1470         irq = platform_get_irq(pdev, 0);
1471         if (!iores || irq < 0) {
1472                 ret = -EINVAL;
1473                 goto err_irq;
1474         }
1475
1476         if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1477                 ret = -EBUSY;
1478                 goto err_request_region;
1479         }
1480
1481         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1482         if (IS_ERR(sdma->clk_ipg)) {
1483                 ret = PTR_ERR(sdma->clk_ipg);
1484                 goto err_clk;
1485         }
1486
1487         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1488         if (IS_ERR(sdma->clk_ahb)) {
1489                 ret = PTR_ERR(sdma->clk_ahb);
1490                 goto err_clk;
1491         }
1492
1493         clk_prepare(sdma->clk_ipg);
1494         clk_prepare(sdma->clk_ahb);
1495
1496         sdma->regs = ioremap(iores->start, resource_size(iores));
1497         if (!sdma->regs) {
1498                 ret = -ENOMEM;
1499                 goto err_ioremap;
1500         }
1501
1502         ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1503         if (ret)
1504                 goto err_request_irq;
1505
1506         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1507         if (!sdma->script_addrs) {
1508                 ret = -ENOMEM;
1509                 goto err_alloc;
1510         }
1511
1512         /* initially no scripts available */
1513         saddr_arr = (s32 *)sdma->script_addrs;
1514         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1515                 saddr_arr[i] = -EINVAL;
1516
1517         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1518         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1519
1520         INIT_LIST_HEAD(&sdma->dma_device.channels);
1521         /* Initialize channel parameters */
1522         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1523                 struct sdma_channel *sdmac = &sdma->channel[i];
1524
1525                 sdmac->sdma = sdma;
1526                 spin_lock_init(&sdmac->lock);
1527
1528                 sdmac->chan.device = &sdma->dma_device;
1529                 dma_cookie_init(&sdmac->chan);
1530                 sdmac->channel = i;
1531
1532                 tasklet_init(&sdmac->tasklet, sdma_tasklet,
1533                              (unsigned long) sdmac);
1534                 /*
1535                  * Add the channel to the DMAC list. Do not add channel 0 though
1536                  * because we need it internally in the SDMA driver. This also means
1537                  * that channel 0 in dmaengine counting matches sdma channel 1.
1538                  */
1539                 if (i)
1540                         list_add_tail(&sdmac->chan.device_node,
1541                                         &sdma->dma_device.channels);
1542         }
1543
1544         ret = sdma_init(sdma);
1545         if (ret)
1546                 goto err_init;
1547
1548         if (sdma->drvdata->script_addrs)
1549                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1550         if (pdata && pdata->script_addrs)
1551                 sdma_add_scripts(sdma, pdata->script_addrs);
1552
1553         if (pdata) {
1554                 ret = sdma_get_firmware(sdma, pdata->fw_name);
1555                 if (ret)
1556                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1557         } else {
1558                 /*
1559                  * Because that device tree does not encode ROM script address,
1560                  * the RAM script in firmware is mandatory for device tree
1561                  * probe, otherwise it fails.
1562                  */
1563                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1564                                               &fw_name);
1565                 if (ret)
1566                         dev_warn(&pdev->dev, "failed to get firmware name\n");
1567                 else {
1568                         ret = sdma_get_firmware(sdma, fw_name);
1569                         if (ret)
1570                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1571                 }
1572         }
1573
1574         sdma->dma_device.dev = &pdev->dev;
1575
1576         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1577         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1578         sdma->dma_device.device_tx_status = sdma_tx_status;
1579         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1580         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1581         sdma->dma_device.device_control = sdma_control;
1582         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1583         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1584         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1585
1586         ret = dma_async_device_register(&sdma->dma_device);
1587         if (ret) {
1588                 dev_err(&pdev->dev, "unable to register\n");
1589                 goto err_init;
1590         }
1591
1592         if (np) {
1593                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1594                 if (ret) {
1595                         dev_err(&pdev->dev, "failed to register controller\n");
1596                         goto err_register;
1597                 }
1598         }
1599
1600         dev_info(sdma->dev, "initialized\n");
1601
1602         return 0;
1603
1604 err_register:
1605         dma_async_device_unregister(&sdma->dma_device);
1606 err_init:
1607         kfree(sdma->script_addrs);
1608 err_alloc:
1609         free_irq(irq, sdma);
1610 err_request_irq:
1611         iounmap(sdma->regs);
1612 err_ioremap:
1613 err_clk:
1614         release_mem_region(iores->start, resource_size(iores));
1615 err_request_region:
1616 err_irq:
1617         kfree(sdma);
1618         return ret;
1619 }
1620
1621 static int sdma_remove(struct platform_device *pdev)
1622 {
1623         return -EBUSY;
1624 }
1625
1626 static struct platform_driver sdma_driver = {
1627         .driver         = {
1628                 .name   = "imx-sdma",
1629                 .of_match_table = sdma_dt_ids,
1630         },
1631         .id_table       = sdma_devtypes,
1632         .remove         = sdma_remove,
1633 };
1634
1635 static int __init sdma_module_init(void)
1636 {
1637         return platform_driver_probe(&sdma_driver, sdma_probe);
1638 }
1639 module_init(sdma_module_init);
1640
1641 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1642 MODULE_DESCRIPTION("i.MX SDMA driver");
1643 MODULE_LICENSE("GPL");