x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/iopoll.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/bitops.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/clk.h>
28 #include <linux/delay.h>
29 #include <linux/sched.h>
30 #include <linux/semaphore.h>
31 #include <linux/spinlock.h>
32 #include <linux/device.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/firmware.h>
35 #include <linux/slab.h>
36 #include <linux/platform_device.h>
37 #include <linux/dmaengine.h>
38 #include <linux/of.h>
39 #include <linux/of_address.h>
40 #include <linux/of_device.h>
41 #include <linux/of_dma.h>
42
43 #include <asm/irq.h>
44 #include <linux/platform_data/dma-imx-sdma.h>
45 #include <linux/platform_data/dma-imx.h>
46 #include <linux/regmap.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
49
50 #include "dmaengine.h"
51
52 /* SDMA registers */
53 #define SDMA_H_C0PTR            0x000
54 #define SDMA_H_INTR             0x004
55 #define SDMA_H_STATSTOP         0x008
56 #define SDMA_H_START            0x00c
57 #define SDMA_H_EVTOVR           0x010
58 #define SDMA_H_DSPOVR           0x014
59 #define SDMA_H_HOSTOVR          0x018
60 #define SDMA_H_EVTPEND          0x01c
61 #define SDMA_H_DSPENBL          0x020
62 #define SDMA_H_RESET            0x024
63 #define SDMA_H_EVTERR           0x028
64 #define SDMA_H_INTRMSK          0x02c
65 #define SDMA_H_PSW              0x030
66 #define SDMA_H_EVTERRDBG        0x034
67 #define SDMA_H_CONFIG           0x038
68 #define SDMA_ONCE_ENB           0x040
69 #define SDMA_ONCE_DATA          0x044
70 #define SDMA_ONCE_INSTR         0x048
71 #define SDMA_ONCE_STAT          0x04c
72 #define SDMA_ONCE_CMD           0x050
73 #define SDMA_EVT_MIRROR         0x054
74 #define SDMA_ILLINSTADDR        0x058
75 #define SDMA_CHN0ADDR           0x05c
76 #define SDMA_ONCE_RTB           0x060
77 #define SDMA_XTRIG_CONF1        0x070
78 #define SDMA_XTRIG_CONF2        0x074
79 #define SDMA_CHNENBL0_IMX35     0x200
80 #define SDMA_CHNENBL0_IMX31     0x080
81 #define SDMA_CHNPRI_0           0x100
82
83 /*
84  * Buffer descriptor status values.
85  */
86 #define BD_DONE  0x01
87 #define BD_WRAP  0x02
88 #define BD_CONT  0x04
89 #define BD_INTR  0x08
90 #define BD_RROR  0x10
91 #define BD_LAST  0x20
92 #define BD_EXTD  0x80
93
94 /*
95  * Data Node descriptor status values.
96  */
97 #define DND_END_OF_FRAME  0x80
98 #define DND_END_OF_XFER   0x40
99 #define DND_DONE          0x20
100 #define DND_UNUSED        0x01
101
102 /*
103  * IPCV2 descriptor status values.
104  */
105 #define BD_IPCV2_END_OF_FRAME  0x40
106
107 #define IPCV2_MAX_NODES        50
108 /*
109  * Error bit set in the CCB status field by the SDMA,
110  * in setbd routine, in case of a transfer error
111  */
112 #define DATA_ERROR  0x10000000
113
114 /*
115  * Buffer descriptor commands.
116  */
117 #define C0_ADDR             0x01
118 #define C0_LOAD             0x02
119 #define C0_DUMP             0x03
120 #define C0_SETCTX           0x07
121 #define C0_GETCTX           0x03
122 #define C0_SETDM            0x01
123 #define C0_SETPM            0x04
124 #define C0_GETDM            0x02
125 #define C0_GETPM            0x08
126 /*
127  * Change endianness indicator in the BD command field
128  */
129 #define CHANGE_ENDIANNESS   0x80
130
131 /*
132  *  p_2_p watermark_level description
133  *      Bits            Name                    Description
134  *      0-7             Lower WML               Lower watermark level
135  *      8               PS                      1: Pad Swallowing
136  *                                              0: No Pad Swallowing
137  *      9               PA                      1: Pad Adding
138  *                                              0: No Pad Adding
139  *      10              SPDIF                   If this bit is set both source
140  *                                              and destination are on SPBA
141  *      11              Source Bit(SP)          1: Source on SPBA
142  *                                              0: Source on AIPS
143  *      12              Destination Bit(DP)     1: Destination on SPBA
144  *                                              0: Destination on AIPS
145  *      13-15           ---------               MUST BE 0
146  *      16-23           Higher WML              HWML
147  *      24-27           N                       Total number of samples after
148  *                                              which Pad adding/Swallowing
149  *                                              must be done. It must be odd.
150  *      28              Lower WML Event(LWE)    SDMA events reg to check for
151  *                                              LWML event mask
152  *                                              0: LWE in EVENTS register
153  *                                              1: LWE in EVENTS2 register
154  *      29              Higher WML Event(HWE)   SDMA events reg to check for
155  *                                              HWML event mask
156  *                                              0: HWE in EVENTS register
157  *                                              1: HWE in EVENTS2 register
158  *      30              ---------               MUST BE 0
159  *      31              CONT                    1: Amount of samples to be
160  *                                              transferred is unknown and
161  *                                              script will keep on
162  *                                              transferring samples as long as
163  *                                              both events are detected and
164  *                                              script must be manually stopped
165  *                                              by the application
166  *                                              0: The amount of samples to be
167  *                                              transferred is equal to the
168  *                                              count field of mode word
169  */
170 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
171 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
176 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
177 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
178 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
179 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
180
181 /*
182  * Mode/Count of data node descriptors - IPCv2
183  */
184 struct sdma_mode_count {
185         u32 count   : 16; /* size of the buffer pointed by this BD */
186         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
187         u32 command :  8; /* command mostly used for channel 0 */
188 };
189
190 /*
191  * Buffer descriptor
192  */
193 struct sdma_buffer_descriptor {
194         struct sdma_mode_count  mode;
195         u32 buffer_addr;        /* address of the buffer described */
196         u32 ext_buffer_addr;    /* extended buffer address */
197 } __attribute__ ((packed));
198
199 /**
200  * struct sdma_channel_control - Channel control Block
201  *
202  * @current_bd_ptr      current buffer descriptor processed
203  * @base_bd_ptr         first element of buffer descriptor array
204  * @unused              padding. The SDMA engine expects an array of 128 byte
205  *                      control blocks
206  */
207 struct sdma_channel_control {
208         u32 current_bd_ptr;
209         u32 base_bd_ptr;
210         u32 unused[2];
211 } __attribute__ ((packed));
212
213 /**
214  * struct sdma_state_registers - SDMA context for a channel
215  *
216  * @pc:         program counter
217  * @t:          test bit: status of arithmetic & test instruction
218  * @rpc:        return program counter
219  * @sf:         source fault while loading data
220  * @spc:        loop start program counter
221  * @df:         destination fault while storing data
222  * @epc:        loop end program counter
223  * @lm:         loop mode
224  */
225 struct sdma_state_registers {
226         u32 pc     :14;
227         u32 unused1: 1;
228         u32 t      : 1;
229         u32 rpc    :14;
230         u32 unused0: 1;
231         u32 sf     : 1;
232         u32 spc    :14;
233         u32 unused2: 1;
234         u32 df     : 1;
235         u32 epc    :14;
236         u32 lm     : 2;
237 } __attribute__ ((packed));
238
239 /**
240  * struct sdma_context_data - sdma context specific to a channel
241  *
242  * @channel_state:      channel state bits
243  * @gReg:               general registers
244  * @mda:                burst dma destination address register
245  * @msa:                burst dma source address register
246  * @ms:                 burst dma status register
247  * @md:                 burst dma data register
248  * @pda:                peripheral dma destination address register
249  * @psa:                peripheral dma source address register
250  * @ps:                 peripheral dma status register
251  * @pd:                 peripheral dma data register
252  * @ca:                 CRC polynomial register
253  * @cs:                 CRC accumulator register
254  * @dda:                dedicated core destination address register
255  * @dsa:                dedicated core source address register
256  * @ds:                 dedicated core status register
257  * @dd:                 dedicated core data register
258  */
259 struct sdma_context_data {
260         struct sdma_state_registers  channel_state;
261         u32  gReg[8];
262         u32  mda;
263         u32  msa;
264         u32  ms;
265         u32  md;
266         u32  pda;
267         u32  psa;
268         u32  ps;
269         u32  pd;
270         u32  ca;
271         u32  cs;
272         u32  dda;
273         u32  dsa;
274         u32  ds;
275         u32  dd;
276         u32  scratch0;
277         u32  scratch1;
278         u32  scratch2;
279         u32  scratch3;
280         u32  scratch4;
281         u32  scratch5;
282         u32  scratch6;
283         u32  scratch7;
284 } __attribute__ ((packed));
285
286 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
287
288 struct sdma_engine;
289
290 /**
291  * struct sdma_channel - housekeeping for a SDMA channel
292  *
293  * @sdma                pointer to the SDMA engine for this channel
294  * @channel             the channel number, matches dmaengine chan_id + 1
295  * @direction           transfer type. Needed for setting SDMA script
296  * @peripheral_type     Peripheral type. Needed for setting SDMA script
297  * @event_id0           aka dma request line
298  * @event_id1           for channels that use 2 events
299  * @word_size           peripheral access size
300  * @buf_tail            ID of the buffer that was processed
301  * @num_bd              max NUM_BD. number of descriptors currently handling
302  */
303 struct sdma_channel {
304         struct sdma_engine              *sdma;
305         unsigned int                    channel;
306         enum dma_transfer_direction             direction;
307         enum sdma_peripheral_type       peripheral_type;
308         unsigned int                    event_id0;
309         unsigned int                    event_id1;
310         enum dma_slave_buswidth         word_size;
311         unsigned int                    buf_tail;
312         unsigned int                    num_bd;
313         unsigned int                    period_len;
314         struct sdma_buffer_descriptor   *bd;
315         dma_addr_t                      bd_phys;
316         unsigned int                    pc_from_device, pc_to_device;
317         unsigned int                    device_to_device;
318         unsigned long                   flags;
319         dma_addr_t                      per_address, per_address2;
320         unsigned long                   event_mask[2];
321         unsigned long                   watermark_level;
322         u32                             shp_addr, per_addr;
323         struct dma_chan                 chan;
324         spinlock_t                      lock;
325         struct dma_async_tx_descriptor  desc;
326         enum dma_status                 status;
327         unsigned int                    chn_count;
328         unsigned int                    chn_real_count;
329         struct tasklet_struct           tasklet;
330         struct imx_dma_data             data;
331 };
332
333 #define IMX_DMA_SG_LOOP         BIT(0)
334
335 #define MAX_DMA_CHANNELS 32
336 #define MXC_SDMA_DEFAULT_PRIORITY 1
337 #define MXC_SDMA_MIN_PRIORITY 1
338 #define MXC_SDMA_MAX_PRIORITY 7
339
340 #define SDMA_FIRMWARE_MAGIC 0x414d4453
341
342 /**
343  * struct sdma_firmware_header - Layout of the firmware image
344  *
345  * @magic               "SDMA"
346  * @version_major       increased whenever layout of struct sdma_script_start_addrs
347  *                      changes.
348  * @version_minor       firmware minor version (for binary compatible changes)
349  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
350  * @num_script_addrs    Number of script addresses in this image
351  * @ram_code_start      offset of SDMA ram image in this firmware image
352  * @ram_code_size       size of SDMA ram image
353  * @script_addrs        Stores the start address of the SDMA scripts
354  *                      (in SDMA memory space)
355  */
356 struct sdma_firmware_header {
357         u32     magic;
358         u32     version_major;
359         u32     version_minor;
360         u32     script_addrs_start;
361         u32     num_script_addrs;
362         u32     ram_code_start;
363         u32     ram_code_size;
364 };
365
366 struct sdma_driver_data {
367         int chnenbl0;
368         int num_events;
369         struct sdma_script_start_addrs  *script_addrs;
370 };
371
372 struct sdma_engine {
373         struct device                   *dev;
374         struct device_dma_parameters    dma_parms;
375         struct sdma_channel             channel[MAX_DMA_CHANNELS];
376         struct sdma_channel_control     *channel_control;
377         void __iomem                    *regs;
378         struct sdma_context_data        *context;
379         dma_addr_t                      context_phys;
380         struct dma_device               dma_device;
381         struct clk                      *clk_ipg;
382         struct clk                      *clk_ahb;
383         spinlock_t                      channel_0_lock;
384         u32                             script_number;
385         struct sdma_script_start_addrs  *script_addrs;
386         const struct sdma_driver_data   *drvdata;
387         u32                             spba_start_addr;
388         u32                             spba_end_addr;
389         unsigned int                    irq;
390 };
391
392 static struct sdma_driver_data sdma_imx31 = {
393         .chnenbl0 = SDMA_CHNENBL0_IMX31,
394         .num_events = 32,
395 };
396
397 static struct sdma_script_start_addrs sdma_script_imx25 = {
398         .ap_2_ap_addr = 729,
399         .uart_2_mcu_addr = 904,
400         .per_2_app_addr = 1255,
401         .mcu_2_app_addr = 834,
402         .uartsh_2_mcu_addr = 1120,
403         .per_2_shp_addr = 1329,
404         .mcu_2_shp_addr = 1048,
405         .ata_2_mcu_addr = 1560,
406         .mcu_2_ata_addr = 1479,
407         .app_2_per_addr = 1189,
408         .app_2_mcu_addr = 770,
409         .shp_2_per_addr = 1407,
410         .shp_2_mcu_addr = 979,
411 };
412
413 static struct sdma_driver_data sdma_imx25 = {
414         .chnenbl0 = SDMA_CHNENBL0_IMX35,
415         .num_events = 48,
416         .script_addrs = &sdma_script_imx25,
417 };
418
419 static struct sdma_driver_data sdma_imx35 = {
420         .chnenbl0 = SDMA_CHNENBL0_IMX35,
421         .num_events = 48,
422 };
423
424 static struct sdma_script_start_addrs sdma_script_imx51 = {
425         .ap_2_ap_addr = 642,
426         .uart_2_mcu_addr = 817,
427         .mcu_2_app_addr = 747,
428         .mcu_2_shp_addr = 961,
429         .ata_2_mcu_addr = 1473,
430         .mcu_2_ata_addr = 1392,
431         .app_2_per_addr = 1033,
432         .app_2_mcu_addr = 683,
433         .shp_2_per_addr = 1251,
434         .shp_2_mcu_addr = 892,
435 };
436
437 static struct sdma_driver_data sdma_imx51 = {
438         .chnenbl0 = SDMA_CHNENBL0_IMX35,
439         .num_events = 48,
440         .script_addrs = &sdma_script_imx51,
441 };
442
443 static struct sdma_script_start_addrs sdma_script_imx53 = {
444         .ap_2_ap_addr = 642,
445         .app_2_mcu_addr = 683,
446         .mcu_2_app_addr = 747,
447         .uart_2_mcu_addr = 817,
448         .shp_2_mcu_addr = 891,
449         .mcu_2_shp_addr = 960,
450         .uartsh_2_mcu_addr = 1032,
451         .spdif_2_mcu_addr = 1100,
452         .mcu_2_spdif_addr = 1134,
453         .firi_2_mcu_addr = 1193,
454         .mcu_2_firi_addr = 1290,
455 };
456
457 static struct sdma_driver_data sdma_imx53 = {
458         .chnenbl0 = SDMA_CHNENBL0_IMX35,
459         .num_events = 48,
460         .script_addrs = &sdma_script_imx53,
461 };
462
463 static struct sdma_script_start_addrs sdma_script_imx6q = {
464         .ap_2_ap_addr = 642,
465         .uart_2_mcu_addr = 817,
466         .mcu_2_app_addr = 747,
467         .per_2_per_addr = 6331,
468         .uartsh_2_mcu_addr = 1032,
469         .mcu_2_shp_addr = 960,
470         .app_2_mcu_addr = 683,
471         .shp_2_mcu_addr = 891,
472         .spdif_2_mcu_addr = 1100,
473         .mcu_2_spdif_addr = 1134,
474 };
475
476 static struct sdma_driver_data sdma_imx6q = {
477         .chnenbl0 = SDMA_CHNENBL0_IMX35,
478         .num_events = 48,
479         .script_addrs = &sdma_script_imx6q,
480 };
481
482 static struct sdma_script_start_addrs sdma_script_imx7d = {
483         .ap_2_ap_addr = 644,
484         .uart_2_mcu_addr = 819,
485         .mcu_2_app_addr = 749,
486         .uartsh_2_mcu_addr = 1034,
487         .mcu_2_shp_addr = 962,
488         .app_2_mcu_addr = 685,
489         .shp_2_mcu_addr = 893,
490         .spdif_2_mcu_addr = 1102,
491         .mcu_2_spdif_addr = 1136,
492 };
493
494 static struct sdma_driver_data sdma_imx7d = {
495         .chnenbl0 = SDMA_CHNENBL0_IMX35,
496         .num_events = 48,
497         .script_addrs = &sdma_script_imx7d,
498 };
499
500 static const struct platform_device_id sdma_devtypes[] = {
501         {
502                 .name = "imx25-sdma",
503                 .driver_data = (unsigned long)&sdma_imx25,
504         }, {
505                 .name = "imx31-sdma",
506                 .driver_data = (unsigned long)&sdma_imx31,
507         }, {
508                 .name = "imx35-sdma",
509                 .driver_data = (unsigned long)&sdma_imx35,
510         }, {
511                 .name = "imx51-sdma",
512                 .driver_data = (unsigned long)&sdma_imx51,
513         }, {
514                 .name = "imx53-sdma",
515                 .driver_data = (unsigned long)&sdma_imx53,
516         }, {
517                 .name = "imx6q-sdma",
518                 .driver_data = (unsigned long)&sdma_imx6q,
519         }, {
520                 .name = "imx7d-sdma",
521                 .driver_data = (unsigned long)&sdma_imx7d,
522         }, {
523                 /* sentinel */
524         }
525 };
526 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
527
528 static const struct of_device_id sdma_dt_ids[] = {
529         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
530         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
531         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
532         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
533         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
534         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
535         { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
536         { /* sentinel */ }
537 };
538 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
539
540 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
541 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
542 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
543 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
544
545 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
546 {
547         u32 chnenbl0 = sdma->drvdata->chnenbl0;
548         return chnenbl0 + event * 4;
549 }
550
551 static int sdma_config_ownership(struct sdma_channel *sdmac,
552                 bool event_override, bool mcu_override, bool dsp_override)
553 {
554         struct sdma_engine *sdma = sdmac->sdma;
555         int channel = sdmac->channel;
556         unsigned long evt, mcu, dsp;
557
558         if (event_override && mcu_override && dsp_override)
559                 return -EINVAL;
560
561         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
562         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
563         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
564
565         if (dsp_override)
566                 __clear_bit(channel, &dsp);
567         else
568                 __set_bit(channel, &dsp);
569
570         if (event_override)
571                 __clear_bit(channel, &evt);
572         else
573                 __set_bit(channel, &evt);
574
575         if (mcu_override)
576                 __clear_bit(channel, &mcu);
577         else
578                 __set_bit(channel, &mcu);
579
580         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
581         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
582         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
583
584         return 0;
585 }
586
587 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
588 {
589         writel(BIT(channel), sdma->regs + SDMA_H_START);
590 }
591
592 /*
593  * sdma_run_channel0 - run a channel and wait till it's done
594  */
595 static int sdma_run_channel0(struct sdma_engine *sdma)
596 {
597         int ret;
598         u32 reg;
599
600         sdma_enable_channel(sdma, 0);
601
602         ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
603                                                 reg, !(reg & 1), 1, 500);
604         if (ret)
605                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
606
607         /* Set bits of CONFIG register with dynamic context switching */
608         if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
609                 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
610
611         return ret;
612 }
613
614 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
615                 u32 address)
616 {
617         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
618         void *buf_virt;
619         dma_addr_t buf_phys;
620         int ret;
621         unsigned long flags;
622
623         buf_virt = dma_alloc_coherent(NULL,
624                         size,
625                         &buf_phys, GFP_KERNEL);
626         if (!buf_virt) {
627                 return -ENOMEM;
628         }
629
630         spin_lock_irqsave(&sdma->channel_0_lock, flags);
631
632         bd0->mode.command = C0_SETPM;
633         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
634         bd0->mode.count = size / 2;
635         bd0->buffer_addr = buf_phys;
636         bd0->ext_buffer_addr = address;
637
638         memcpy(buf_virt, buf, size);
639
640         ret = sdma_run_channel0(sdma);
641
642         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
643
644         dma_free_coherent(NULL, size, buf_virt, buf_phys);
645
646         return ret;
647 }
648
649 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
650 {
651         struct sdma_engine *sdma = sdmac->sdma;
652         int channel = sdmac->channel;
653         unsigned long val;
654         u32 chnenbl = chnenbl_ofs(sdma, event);
655
656         val = readl_relaxed(sdma->regs + chnenbl);
657         __set_bit(channel, &val);
658         writel_relaxed(val, sdma->regs + chnenbl);
659 }
660
661 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
662 {
663         struct sdma_engine *sdma = sdmac->sdma;
664         int channel = sdmac->channel;
665         u32 chnenbl = chnenbl_ofs(sdma, event);
666         unsigned long val;
667
668         val = readl_relaxed(sdma->regs + chnenbl);
669         __clear_bit(channel, &val);
670         writel_relaxed(val, sdma->regs + chnenbl);
671 }
672
673 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
674 {
675         struct sdma_buffer_descriptor *bd;
676         int error = 0;
677         enum dma_status old_status = sdmac->status;
678
679         /*
680          * loop mode. Iterate over descriptors, re-setup them and
681          * call callback function.
682          */
683         while (1) {
684                 bd = &sdmac->bd[sdmac->buf_tail];
685
686                 if (bd->mode.status & BD_DONE)
687                         break;
688
689                 if (bd->mode.status & BD_RROR) {
690                         bd->mode.status &= ~BD_RROR;
691                         sdmac->status = DMA_ERROR;
692                         error = -EIO;
693                 }
694
695                /*
696                 * We use bd->mode.count to calculate the residue, since contains
697                 * the number of bytes present in the current buffer descriptor.
698                 */
699
700                 sdmac->chn_real_count = bd->mode.count;
701                 bd->mode.status |= BD_DONE;
702                 bd->mode.count = sdmac->period_len;
703
704                 /*
705                  * The callback is called from the interrupt context in order
706                  * to reduce latency and to avoid the risk of altering the
707                  * SDMA transaction status by the time the client tasklet is
708                  * executed.
709                  */
710
711                 dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
712
713                 sdmac->buf_tail++;
714                 sdmac->buf_tail %= sdmac->num_bd;
715
716                 if (error)
717                         sdmac->status = old_status;
718         }
719 }
720
721 static void mxc_sdma_handle_channel_normal(unsigned long data)
722 {
723         struct sdma_channel *sdmac = (struct sdma_channel *) data;
724         struct sdma_buffer_descriptor *bd;
725         int i, error = 0;
726
727         sdmac->chn_real_count = 0;
728         /*
729          * non loop mode. Iterate over all descriptors, collect
730          * errors and call callback function
731          */
732         for (i = 0; i < sdmac->num_bd; i++) {
733                 bd = &sdmac->bd[i];
734
735                  if (bd->mode.status & (BD_DONE | BD_RROR))
736                         error = -EIO;
737                  sdmac->chn_real_count += bd->mode.count;
738         }
739
740         if (error)
741                 sdmac->status = DMA_ERROR;
742         else
743                 sdmac->status = DMA_COMPLETE;
744
745         dma_cookie_complete(&sdmac->desc);
746
747         dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
748 }
749
750 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
751 {
752         struct sdma_engine *sdma = dev_id;
753         unsigned long stat;
754
755         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
756         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
757         /* channel 0 is special and not handled here, see run_channel0() */
758         stat &= ~1;
759
760         while (stat) {
761                 int channel = fls(stat) - 1;
762                 struct sdma_channel *sdmac = &sdma->channel[channel];
763
764                 if (sdmac->flags & IMX_DMA_SG_LOOP)
765                         sdma_update_channel_loop(sdmac);
766                 else
767                         tasklet_schedule(&sdmac->tasklet);
768
769                 __clear_bit(channel, &stat);
770         }
771
772         return IRQ_HANDLED;
773 }
774
775 /*
776  * sets the pc of SDMA script according to the peripheral type
777  */
778 static void sdma_get_pc(struct sdma_channel *sdmac,
779                 enum sdma_peripheral_type peripheral_type)
780 {
781         struct sdma_engine *sdma = sdmac->sdma;
782         int per_2_emi = 0, emi_2_per = 0;
783         /*
784          * These are needed once we start to support transfers between
785          * two peripherals or memory-to-memory transfers
786          */
787         int per_2_per = 0;
788
789         sdmac->pc_from_device = 0;
790         sdmac->pc_to_device = 0;
791         sdmac->device_to_device = 0;
792
793         switch (peripheral_type) {
794         case IMX_DMATYPE_MEMORY:
795                 break;
796         case IMX_DMATYPE_DSP:
797                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
798                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
799                 break;
800         case IMX_DMATYPE_FIRI:
801                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
802                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
803                 break;
804         case IMX_DMATYPE_UART:
805                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
806                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
807                 break;
808         case IMX_DMATYPE_UART_SP:
809                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
810                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
811                 break;
812         case IMX_DMATYPE_ATA:
813                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
814                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
815                 break;
816         case IMX_DMATYPE_CSPI:
817         case IMX_DMATYPE_EXT:
818         case IMX_DMATYPE_SSI:
819         case IMX_DMATYPE_SAI:
820                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
821                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
822                 break;
823         case IMX_DMATYPE_SSI_DUAL:
824                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
825                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
826                 break;
827         case IMX_DMATYPE_SSI_SP:
828         case IMX_DMATYPE_MMC:
829         case IMX_DMATYPE_SDHC:
830         case IMX_DMATYPE_CSPI_SP:
831         case IMX_DMATYPE_ESAI:
832         case IMX_DMATYPE_MSHC_SP:
833                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
834                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
835                 break;
836         case IMX_DMATYPE_ASRC:
837                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
838                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
839                 per_2_per = sdma->script_addrs->per_2_per_addr;
840                 break;
841         case IMX_DMATYPE_ASRC_SP:
842                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
843                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
844                 per_2_per = sdma->script_addrs->per_2_per_addr;
845                 break;
846         case IMX_DMATYPE_MSHC:
847                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
848                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
849                 break;
850         case IMX_DMATYPE_CCM:
851                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
852                 break;
853         case IMX_DMATYPE_SPDIF:
854                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
855                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
856                 break;
857         case IMX_DMATYPE_IPU_MEMORY:
858                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
859                 break;
860         default:
861                 break;
862         }
863
864         sdmac->pc_from_device = per_2_emi;
865         sdmac->pc_to_device = emi_2_per;
866         sdmac->device_to_device = per_2_per;
867 }
868
869 static int sdma_load_context(struct sdma_channel *sdmac)
870 {
871         struct sdma_engine *sdma = sdmac->sdma;
872         int channel = sdmac->channel;
873         int load_address;
874         struct sdma_context_data *context = sdma->context;
875         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
876         int ret;
877         unsigned long flags;
878
879         if (sdmac->direction == DMA_DEV_TO_MEM)
880                 load_address = sdmac->pc_from_device;
881         else if (sdmac->direction == DMA_DEV_TO_DEV)
882                 load_address = sdmac->device_to_device;
883         else
884                 load_address = sdmac->pc_to_device;
885
886         if (load_address < 0)
887                 return load_address;
888
889         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
890         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
891         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
892         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
893         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
894         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
895
896         spin_lock_irqsave(&sdma->channel_0_lock, flags);
897
898         memset(context, 0, sizeof(*context));
899         context->channel_state.pc = load_address;
900
901         /* Send by context the event mask,base address for peripheral
902          * and watermark level
903          */
904         context->gReg[0] = sdmac->event_mask[1];
905         context->gReg[1] = sdmac->event_mask[0];
906         context->gReg[2] = sdmac->per_addr;
907         context->gReg[6] = sdmac->shp_addr;
908         context->gReg[7] = sdmac->watermark_level;
909
910         bd0->mode.command = C0_SETDM;
911         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
912         bd0->mode.count = sizeof(*context) / 4;
913         bd0->buffer_addr = sdma->context_phys;
914         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
915         ret = sdma_run_channel0(sdma);
916
917         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
918
919         return ret;
920 }
921
922 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
923 {
924         return container_of(chan, struct sdma_channel, chan);
925 }
926
927 static int sdma_disable_channel(struct dma_chan *chan)
928 {
929         struct sdma_channel *sdmac = to_sdma_chan(chan);
930         struct sdma_engine *sdma = sdmac->sdma;
931         int channel = sdmac->channel;
932
933         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
934         sdmac->status = DMA_ERROR;
935
936         return 0;
937 }
938
939 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
940 {
941         struct sdma_engine *sdma = sdmac->sdma;
942
943         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
944         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
945
946         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
947         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
948
949         if (sdmac->event_id0 > 31)
950                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
951
952         if (sdmac->event_id1 > 31)
953                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
954
955         /*
956          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
957          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
958          * r0(event_mask[1]) and r1(event_mask[0]).
959          */
960         if (lwml > hwml) {
961                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
962                                                 SDMA_WATERMARK_LEVEL_HWML);
963                 sdmac->watermark_level |= hwml;
964                 sdmac->watermark_level |= lwml << 16;
965                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
966         }
967
968         if (sdmac->per_address2 >= sdma->spba_start_addr &&
969                         sdmac->per_address2 <= sdma->spba_end_addr)
970                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
971
972         if (sdmac->per_address >= sdma->spba_start_addr &&
973                         sdmac->per_address <= sdma->spba_end_addr)
974                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
975
976         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
977 }
978
979 static int sdma_config_channel(struct dma_chan *chan)
980 {
981         struct sdma_channel *sdmac = to_sdma_chan(chan);
982         int ret;
983
984         sdma_disable_channel(chan);
985
986         sdmac->event_mask[0] = 0;
987         sdmac->event_mask[1] = 0;
988         sdmac->shp_addr = 0;
989         sdmac->per_addr = 0;
990
991         if (sdmac->event_id0) {
992                 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
993                         return -EINVAL;
994                 sdma_event_enable(sdmac, sdmac->event_id0);
995         }
996
997         if (sdmac->event_id1) {
998                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
999                         return -EINVAL;
1000                 sdma_event_enable(sdmac, sdmac->event_id1);
1001         }
1002
1003         switch (sdmac->peripheral_type) {
1004         case IMX_DMATYPE_DSP:
1005                 sdma_config_ownership(sdmac, false, true, true);
1006                 break;
1007         case IMX_DMATYPE_MEMORY:
1008                 sdma_config_ownership(sdmac, false, true, false);
1009                 break;
1010         default:
1011                 sdma_config_ownership(sdmac, true, true, false);
1012                 break;
1013         }
1014
1015         sdma_get_pc(sdmac, sdmac->peripheral_type);
1016
1017         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1018                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1019                 /* Handle multiple event channels differently */
1020                 if (sdmac->event_id1) {
1021                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1022                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1023                                 sdma_set_watermarklevel_for_p2p(sdmac);
1024                 } else
1025                         __set_bit(sdmac->event_id0, sdmac->event_mask);
1026
1027                 /* Address */
1028                 sdmac->shp_addr = sdmac->per_address;
1029                 sdmac->per_addr = sdmac->per_address2;
1030         } else {
1031                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1032         }
1033
1034         ret = sdma_load_context(sdmac);
1035
1036         return ret;
1037 }
1038
1039 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1040                 unsigned int priority)
1041 {
1042         struct sdma_engine *sdma = sdmac->sdma;
1043         int channel = sdmac->channel;
1044
1045         if (priority < MXC_SDMA_MIN_PRIORITY
1046             || priority > MXC_SDMA_MAX_PRIORITY) {
1047                 return -EINVAL;
1048         }
1049
1050         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1051
1052         return 0;
1053 }
1054
1055 static int sdma_request_channel(struct sdma_channel *sdmac)
1056 {
1057         struct sdma_engine *sdma = sdmac->sdma;
1058         int channel = sdmac->channel;
1059         int ret = -EBUSY;
1060
1061         sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1062                                         GFP_KERNEL);
1063         if (!sdmac->bd) {
1064                 ret = -ENOMEM;
1065                 goto out;
1066         }
1067
1068         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1069         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1070
1071         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1072         return 0;
1073 out:
1074
1075         return ret;
1076 }
1077
1078 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1079 {
1080         unsigned long flags;
1081         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1082         dma_cookie_t cookie;
1083
1084         spin_lock_irqsave(&sdmac->lock, flags);
1085
1086         cookie = dma_cookie_assign(tx);
1087
1088         spin_unlock_irqrestore(&sdmac->lock, flags);
1089
1090         return cookie;
1091 }
1092
1093 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1094 {
1095         struct sdma_channel *sdmac = to_sdma_chan(chan);
1096         struct imx_dma_data *data = chan->private;
1097         int prio, ret;
1098
1099         if (!data)
1100                 return -EINVAL;
1101
1102         switch (data->priority) {
1103         case DMA_PRIO_HIGH:
1104                 prio = 3;
1105                 break;
1106         case DMA_PRIO_MEDIUM:
1107                 prio = 2;
1108                 break;
1109         case DMA_PRIO_LOW:
1110         default:
1111                 prio = 1;
1112                 break;
1113         }
1114
1115         sdmac->peripheral_type = data->peripheral_type;
1116         sdmac->event_id0 = data->dma_request;
1117         sdmac->event_id1 = data->dma_request2;
1118
1119         ret = clk_enable(sdmac->sdma->clk_ipg);
1120         if (ret)
1121                 return ret;
1122         ret = clk_enable(sdmac->sdma->clk_ahb);
1123         if (ret)
1124                 goto disable_clk_ipg;
1125
1126         ret = sdma_request_channel(sdmac);
1127         if (ret)
1128                 goto disable_clk_ahb;
1129
1130         ret = sdma_set_channel_priority(sdmac, prio);
1131         if (ret)
1132                 goto disable_clk_ahb;
1133
1134         dma_async_tx_descriptor_init(&sdmac->desc, chan);
1135         sdmac->desc.tx_submit = sdma_tx_submit;
1136         /* txd.flags will be overwritten in prep funcs */
1137         sdmac->desc.flags = DMA_CTRL_ACK;
1138
1139         return 0;
1140
1141 disable_clk_ahb:
1142         clk_disable(sdmac->sdma->clk_ahb);
1143 disable_clk_ipg:
1144         clk_disable(sdmac->sdma->clk_ipg);
1145         return ret;
1146 }
1147
1148 static void sdma_free_chan_resources(struct dma_chan *chan)
1149 {
1150         struct sdma_channel *sdmac = to_sdma_chan(chan);
1151         struct sdma_engine *sdma = sdmac->sdma;
1152
1153         sdma_disable_channel(chan);
1154
1155         if (sdmac->event_id0)
1156                 sdma_event_disable(sdmac, sdmac->event_id0);
1157         if (sdmac->event_id1)
1158                 sdma_event_disable(sdmac, sdmac->event_id1);
1159
1160         sdmac->event_id0 = 0;
1161         sdmac->event_id1 = 0;
1162
1163         sdma_set_channel_priority(sdmac, 0);
1164
1165         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1166
1167         clk_disable(sdma->clk_ipg);
1168         clk_disable(sdma->clk_ahb);
1169 }
1170
1171 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1172                 struct dma_chan *chan, struct scatterlist *sgl,
1173                 unsigned int sg_len, enum dma_transfer_direction direction,
1174                 unsigned long flags, void *context)
1175 {
1176         struct sdma_channel *sdmac = to_sdma_chan(chan);
1177         struct sdma_engine *sdma = sdmac->sdma;
1178         int ret, i, count;
1179         int channel = sdmac->channel;
1180         struct scatterlist *sg;
1181
1182         if (sdmac->status == DMA_IN_PROGRESS)
1183                 return NULL;
1184         sdmac->status = DMA_IN_PROGRESS;
1185
1186         sdmac->flags = 0;
1187
1188         sdmac->buf_tail = 0;
1189
1190         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1191                         sg_len, channel);
1192
1193         sdmac->direction = direction;
1194         ret = sdma_load_context(sdmac);
1195         if (ret)
1196                 goto err_out;
1197
1198         if (sg_len > NUM_BD) {
1199                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1200                                 channel, sg_len, NUM_BD);
1201                 ret = -EINVAL;
1202                 goto err_out;
1203         }
1204
1205         sdmac->chn_count = 0;
1206         for_each_sg(sgl, sg, sg_len, i) {
1207                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1208                 int param;
1209
1210                 bd->buffer_addr = sg->dma_address;
1211
1212                 count = sg_dma_len(sg);
1213
1214                 if (count > 0xffff) {
1215                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1216                                         channel, count, 0xffff);
1217                         ret = -EINVAL;
1218                         goto err_out;
1219                 }
1220
1221                 bd->mode.count = count;
1222                 sdmac->chn_count += count;
1223
1224                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1225                         ret =  -EINVAL;
1226                         goto err_out;
1227                 }
1228
1229                 switch (sdmac->word_size) {
1230                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1231                         bd->mode.command = 0;
1232                         if (count & 3 || sg->dma_address & 3)
1233                                 return NULL;
1234                         break;
1235                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1236                         bd->mode.command = 2;
1237                         if (count & 1 || sg->dma_address & 1)
1238                                 return NULL;
1239                         break;
1240                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1241                         bd->mode.command = 1;
1242                         break;
1243                 default:
1244                         return NULL;
1245                 }
1246
1247                 param = BD_DONE | BD_EXTD | BD_CONT;
1248
1249                 if (i + 1 == sg_len) {
1250                         param |= BD_INTR;
1251                         param |= BD_LAST;
1252                         param &= ~BD_CONT;
1253                 }
1254
1255                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1256                                 i, count, (u64)sg->dma_address,
1257                                 param & BD_WRAP ? "wrap" : "",
1258                                 param & BD_INTR ? " intr" : "");
1259
1260                 bd->mode.status = param;
1261         }
1262
1263         sdmac->num_bd = sg_len;
1264         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1265
1266         return &sdmac->desc;
1267 err_out:
1268         sdmac->status = DMA_ERROR;
1269         return NULL;
1270 }
1271
1272 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1273                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1274                 size_t period_len, enum dma_transfer_direction direction,
1275                 unsigned long flags)
1276 {
1277         struct sdma_channel *sdmac = to_sdma_chan(chan);
1278         struct sdma_engine *sdma = sdmac->sdma;
1279         int num_periods = buf_len / period_len;
1280         int channel = sdmac->channel;
1281         int ret, i = 0, buf = 0;
1282
1283         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1284
1285         if (sdmac->status == DMA_IN_PROGRESS)
1286                 return NULL;
1287
1288         sdmac->status = DMA_IN_PROGRESS;
1289
1290         sdmac->buf_tail = 0;
1291         sdmac->period_len = period_len;
1292
1293         sdmac->flags |= IMX_DMA_SG_LOOP;
1294         sdmac->direction = direction;
1295         ret = sdma_load_context(sdmac);
1296         if (ret)
1297                 goto err_out;
1298
1299         if (num_periods > NUM_BD) {
1300                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1301                                 channel, num_periods, NUM_BD);
1302                 goto err_out;
1303         }
1304
1305         if (period_len > 0xffff) {
1306                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1307                                 channel, period_len, 0xffff);
1308                 goto err_out;
1309         }
1310
1311         while (buf < buf_len) {
1312                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1313                 int param;
1314
1315                 bd->buffer_addr = dma_addr;
1316
1317                 bd->mode.count = period_len;
1318
1319                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1320                         goto err_out;
1321                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1322                         bd->mode.command = 0;
1323                 else
1324                         bd->mode.command = sdmac->word_size;
1325
1326                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1327                 if (i + 1 == num_periods)
1328                         param |= BD_WRAP;
1329
1330                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1331                                 i, period_len, (u64)dma_addr,
1332                                 param & BD_WRAP ? "wrap" : "",
1333                                 param & BD_INTR ? " intr" : "");
1334
1335                 bd->mode.status = param;
1336
1337                 dma_addr += period_len;
1338                 buf += period_len;
1339
1340                 i++;
1341         }
1342
1343         sdmac->num_bd = num_periods;
1344         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1345
1346         return &sdmac->desc;
1347 err_out:
1348         sdmac->status = DMA_ERROR;
1349         return NULL;
1350 }
1351
1352 static int sdma_config(struct dma_chan *chan,
1353                        struct dma_slave_config *dmaengine_cfg)
1354 {
1355         struct sdma_channel *sdmac = to_sdma_chan(chan);
1356
1357         if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1358                 sdmac->per_address = dmaengine_cfg->src_addr;
1359                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1360                         dmaengine_cfg->src_addr_width;
1361                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1362         } else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1363                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1364                 sdmac->per_address = dmaengine_cfg->dst_addr;
1365                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1366                         SDMA_WATERMARK_LEVEL_LWML;
1367                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1368                         SDMA_WATERMARK_LEVEL_HWML;
1369                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1370         } else {
1371                 sdmac->per_address = dmaengine_cfg->dst_addr;
1372                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1373                         dmaengine_cfg->dst_addr_width;
1374                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1375         }
1376         sdmac->direction = dmaengine_cfg->direction;
1377         return sdma_config_channel(chan);
1378 }
1379
1380 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1381                                       dma_cookie_t cookie,
1382                                       struct dma_tx_state *txstate)
1383 {
1384         struct sdma_channel *sdmac = to_sdma_chan(chan);
1385         u32 residue;
1386
1387         if (sdmac->flags & IMX_DMA_SG_LOOP)
1388                 residue = (sdmac->num_bd - sdmac->buf_tail) *
1389                            sdmac->period_len - sdmac->chn_real_count;
1390         else
1391                 residue = sdmac->chn_count - sdmac->chn_real_count;
1392
1393         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1394                          residue);
1395
1396         return sdmac->status;
1397 }
1398
1399 static void sdma_issue_pending(struct dma_chan *chan)
1400 {
1401         struct sdma_channel *sdmac = to_sdma_chan(chan);
1402         struct sdma_engine *sdma = sdmac->sdma;
1403
1404         if (sdmac->status == DMA_IN_PROGRESS)
1405                 sdma_enable_channel(sdma, sdmac->channel);
1406 }
1407
1408 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1409 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1410 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1411 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1412
1413 static void sdma_add_scripts(struct sdma_engine *sdma,
1414                 const struct sdma_script_start_addrs *addr)
1415 {
1416         s32 *addr_arr = (u32 *)addr;
1417         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1418         int i;
1419
1420         /* use the default firmware in ROM if missing external firmware */
1421         if (!sdma->script_number)
1422                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1423
1424         for (i = 0; i < sdma->script_number; i++)
1425                 if (addr_arr[i] > 0)
1426                         saddr_arr[i] = addr_arr[i];
1427 }
1428
1429 static void sdma_load_firmware(const struct firmware *fw, void *context)
1430 {
1431         struct sdma_engine *sdma = context;
1432         const struct sdma_firmware_header *header;
1433         const struct sdma_script_start_addrs *addr;
1434         unsigned short *ram_code;
1435
1436         if (!fw) {
1437                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1438                 /* In this case we just use the ROM firmware. */
1439                 return;
1440         }
1441
1442         if (fw->size < sizeof(*header))
1443                 goto err_firmware;
1444
1445         header = (struct sdma_firmware_header *)fw->data;
1446
1447         if (header->magic != SDMA_FIRMWARE_MAGIC)
1448                 goto err_firmware;
1449         if (header->ram_code_start + header->ram_code_size > fw->size)
1450                 goto err_firmware;
1451         switch (header->version_major) {
1452         case 1:
1453                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1454                 break;
1455         case 2:
1456                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1457                 break;
1458         case 3:
1459                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1460                 break;
1461         case 4:
1462                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1463                 break;
1464         default:
1465                 dev_err(sdma->dev, "unknown firmware version\n");
1466                 goto err_firmware;
1467         }
1468
1469         addr = (void *)header + header->script_addrs_start;
1470         ram_code = (void *)header + header->ram_code_start;
1471
1472         clk_enable(sdma->clk_ipg);
1473         clk_enable(sdma->clk_ahb);
1474         /* download the RAM image for SDMA */
1475         sdma_load_script(sdma, ram_code,
1476                         header->ram_code_size,
1477                         addr->ram_code_start_addr);
1478         clk_disable(sdma->clk_ipg);
1479         clk_disable(sdma->clk_ahb);
1480
1481         sdma_add_scripts(sdma, addr);
1482
1483         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1484                         header->version_major,
1485                         header->version_minor);
1486
1487 err_firmware:
1488         release_firmware(fw);
1489 }
1490
1491 #define EVENT_REMAP_CELLS 3
1492
1493 static int sdma_event_remap(struct sdma_engine *sdma)
1494 {
1495         struct device_node *np = sdma->dev->of_node;
1496         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1497         struct property *event_remap;
1498         struct regmap *gpr;
1499         char propname[] = "fsl,sdma-event-remap";
1500         u32 reg, val, shift, num_map, i;
1501         int ret = 0;
1502
1503         if (IS_ERR(np) || IS_ERR(gpr_np))
1504                 goto out;
1505
1506         event_remap = of_find_property(np, propname, NULL);
1507         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1508         if (!num_map) {
1509                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1510                 goto out;
1511         } else if (num_map % EVENT_REMAP_CELLS) {
1512                 dev_err(sdma->dev, "the property %s must modulo %d\n",
1513                                 propname, EVENT_REMAP_CELLS);
1514                 ret = -EINVAL;
1515                 goto out;
1516         }
1517
1518         gpr = syscon_node_to_regmap(gpr_np);
1519         if (IS_ERR(gpr)) {
1520                 dev_err(sdma->dev, "failed to get gpr regmap\n");
1521                 ret = PTR_ERR(gpr);
1522                 goto out;
1523         }
1524
1525         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1526                 ret = of_property_read_u32_index(np, propname, i, &reg);
1527                 if (ret) {
1528                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1529                                         propname, i);
1530                         goto out;
1531                 }
1532
1533                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1534                 if (ret) {
1535                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1536                                         propname, i + 1);
1537                         goto out;
1538                 }
1539
1540                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1541                 if (ret) {
1542                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1543                                         propname, i + 2);
1544                         goto out;
1545                 }
1546
1547                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1548         }
1549
1550 out:
1551         if (!IS_ERR(gpr_np))
1552                 of_node_put(gpr_np);
1553
1554         return ret;
1555 }
1556
1557 static int sdma_get_firmware(struct sdma_engine *sdma,
1558                 const char *fw_name)
1559 {
1560         int ret;
1561
1562         ret = request_firmware_nowait(THIS_MODULE,
1563                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1564                         GFP_KERNEL, sdma, sdma_load_firmware);
1565
1566         return ret;
1567 }
1568
1569 static int sdma_init(struct sdma_engine *sdma)
1570 {
1571         int i, ret;
1572         dma_addr_t ccb_phys;
1573
1574         ret = clk_enable(sdma->clk_ipg);
1575         if (ret)
1576                 return ret;
1577         ret = clk_enable(sdma->clk_ahb);
1578         if (ret)
1579                 goto disable_clk_ipg;
1580
1581         /* Be sure SDMA has not started yet */
1582         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1583
1584         sdma->channel_control = dma_alloc_coherent(NULL,
1585                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1586                         sizeof(struct sdma_context_data),
1587                         &ccb_phys, GFP_KERNEL);
1588
1589         if (!sdma->channel_control) {
1590                 ret = -ENOMEM;
1591                 goto err_dma_alloc;
1592         }
1593
1594         sdma->context = (void *)sdma->channel_control +
1595                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1596         sdma->context_phys = ccb_phys +
1597                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1598
1599         /* Zero-out the CCB structures array just allocated */
1600         memset(sdma->channel_control, 0,
1601                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1602
1603         /* disable all channels */
1604         for (i = 0; i < sdma->drvdata->num_events; i++)
1605                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1606
1607         /* All channels have priority 0 */
1608         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1609                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1610
1611         ret = sdma_request_channel(&sdma->channel[0]);
1612         if (ret)
1613                 goto err_dma_alloc;
1614
1615         sdma_config_ownership(&sdma->channel[0], false, true, false);
1616
1617         /* Set Command Channel (Channel Zero) */
1618         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1619
1620         /* Set bits of CONFIG register but with static context switching */
1621         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1622         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1623
1624         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1625
1626         /* Initializes channel's priorities */
1627         sdma_set_channel_priority(&sdma->channel[0], 7);
1628
1629         clk_disable(sdma->clk_ipg);
1630         clk_disable(sdma->clk_ahb);
1631
1632         return 0;
1633
1634 err_dma_alloc:
1635         clk_disable(sdma->clk_ahb);
1636 disable_clk_ipg:
1637         clk_disable(sdma->clk_ipg);
1638         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1639         return ret;
1640 }
1641
1642 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1643 {
1644         struct sdma_channel *sdmac = to_sdma_chan(chan);
1645         struct imx_dma_data *data = fn_param;
1646
1647         if (!imx_dma_is_general_purpose(chan))
1648                 return false;
1649
1650         sdmac->data = *data;
1651         chan->private = &sdmac->data;
1652
1653         return true;
1654 }
1655
1656 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1657                                    struct of_dma *ofdma)
1658 {
1659         struct sdma_engine *sdma = ofdma->of_dma_data;
1660         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1661         struct imx_dma_data data;
1662
1663         if (dma_spec->args_count != 3)
1664                 return NULL;
1665
1666         data.dma_request = dma_spec->args[0];
1667         data.peripheral_type = dma_spec->args[1];
1668         data.priority = dma_spec->args[2];
1669         /*
1670          * init dma_request2 to zero, which is not used by the dts.
1671          * For P2P, dma_request2 is init from dma_request_channel(),
1672          * chan->private will point to the imx_dma_data, and in
1673          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1674          * be set to sdmac->event_id1.
1675          */
1676         data.dma_request2 = 0;
1677
1678         return dma_request_channel(mask, sdma_filter_fn, &data);
1679 }
1680
1681 static int sdma_probe(struct platform_device *pdev)
1682 {
1683         const struct of_device_id *of_id =
1684                         of_match_device(sdma_dt_ids, &pdev->dev);
1685         struct device_node *np = pdev->dev.of_node;
1686         struct device_node *spba_bus;
1687         const char *fw_name;
1688         int ret;
1689         int irq;
1690         struct resource *iores;
1691         struct resource spba_res;
1692         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1693         int i;
1694         struct sdma_engine *sdma;
1695         s32 *saddr_arr;
1696         const struct sdma_driver_data *drvdata = NULL;
1697
1698         if (of_id)
1699                 drvdata = of_id->data;
1700         else if (pdev->id_entry)
1701                 drvdata = (void *)pdev->id_entry->driver_data;
1702
1703         if (!drvdata) {
1704                 dev_err(&pdev->dev, "unable to find driver data\n");
1705                 return -EINVAL;
1706         }
1707
1708         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1709         if (ret)
1710                 return ret;
1711
1712         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1713         if (!sdma)
1714                 return -ENOMEM;
1715
1716         spin_lock_init(&sdma->channel_0_lock);
1717
1718         sdma->dev = &pdev->dev;
1719         sdma->drvdata = drvdata;
1720
1721         irq = platform_get_irq(pdev, 0);
1722         if (irq < 0)
1723                 return irq;
1724
1725         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1726         sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1727         if (IS_ERR(sdma->regs))
1728                 return PTR_ERR(sdma->regs);
1729
1730         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1731         if (IS_ERR(sdma->clk_ipg))
1732                 return PTR_ERR(sdma->clk_ipg);
1733
1734         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1735         if (IS_ERR(sdma->clk_ahb))
1736                 return PTR_ERR(sdma->clk_ahb);
1737
1738         clk_prepare(sdma->clk_ipg);
1739         clk_prepare(sdma->clk_ahb);
1740
1741         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1742                                sdma);
1743         if (ret)
1744                 return ret;
1745
1746         sdma->irq = irq;
1747
1748         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1749         if (!sdma->script_addrs)
1750                 return -ENOMEM;
1751
1752         /* initially no scripts available */
1753         saddr_arr = (s32 *)sdma->script_addrs;
1754         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1755                 saddr_arr[i] = -EINVAL;
1756
1757         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1758         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1759
1760         INIT_LIST_HEAD(&sdma->dma_device.channels);
1761         /* Initialize channel parameters */
1762         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1763                 struct sdma_channel *sdmac = &sdma->channel[i];
1764
1765                 sdmac->sdma = sdma;
1766                 spin_lock_init(&sdmac->lock);
1767
1768                 sdmac->chan.device = &sdma->dma_device;
1769                 dma_cookie_init(&sdmac->chan);
1770                 sdmac->channel = i;
1771
1772                 tasklet_init(&sdmac->tasklet, mxc_sdma_handle_channel_normal,
1773                              (unsigned long) sdmac);
1774                 /*
1775                  * Add the channel to the DMAC list. Do not add channel 0 though
1776                  * because we need it internally in the SDMA driver. This also means
1777                  * that channel 0 in dmaengine counting matches sdma channel 1.
1778                  */
1779                 if (i)
1780                         list_add_tail(&sdmac->chan.device_node,
1781                                         &sdma->dma_device.channels);
1782         }
1783
1784         ret = sdma_init(sdma);
1785         if (ret)
1786                 goto err_init;
1787
1788         ret = sdma_event_remap(sdma);
1789         if (ret)
1790                 goto err_init;
1791
1792         if (sdma->drvdata->script_addrs)
1793                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1794         if (pdata && pdata->script_addrs)
1795                 sdma_add_scripts(sdma, pdata->script_addrs);
1796
1797         if (pdata) {
1798                 ret = sdma_get_firmware(sdma, pdata->fw_name);
1799                 if (ret)
1800                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1801         } else {
1802                 /*
1803                  * Because that device tree does not encode ROM script address,
1804                  * the RAM script in firmware is mandatory for device tree
1805                  * probe, otherwise it fails.
1806                  */
1807                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1808                                               &fw_name);
1809                 if (ret)
1810                         dev_warn(&pdev->dev, "failed to get firmware name\n");
1811                 else {
1812                         ret = sdma_get_firmware(sdma, fw_name);
1813                         if (ret)
1814                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1815                 }
1816         }
1817
1818         sdma->dma_device.dev = &pdev->dev;
1819
1820         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1821         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1822         sdma->dma_device.device_tx_status = sdma_tx_status;
1823         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1824         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1825         sdma->dma_device.device_config = sdma_config;
1826         sdma->dma_device.device_terminate_all = sdma_disable_channel;
1827         sdma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1828         sdma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1829         sdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1830         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1831         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1832         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1833         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1834
1835         platform_set_drvdata(pdev, sdma);
1836
1837         ret = dma_async_device_register(&sdma->dma_device);
1838         if (ret) {
1839                 dev_err(&pdev->dev, "unable to register\n");
1840                 goto err_init;
1841         }
1842
1843         if (np) {
1844                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1845                 if (ret) {
1846                         dev_err(&pdev->dev, "failed to register controller\n");
1847                         goto err_register;
1848                 }
1849
1850                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1851                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
1852                 if (!ret) {
1853                         sdma->spba_start_addr = spba_res.start;
1854                         sdma->spba_end_addr = spba_res.end;
1855                 }
1856                 of_node_put(spba_bus);
1857         }
1858
1859         return 0;
1860
1861 err_register:
1862         dma_async_device_unregister(&sdma->dma_device);
1863 err_init:
1864         kfree(sdma->script_addrs);
1865         return ret;
1866 }
1867
1868 static int sdma_remove(struct platform_device *pdev)
1869 {
1870         struct sdma_engine *sdma = platform_get_drvdata(pdev);
1871         int i;
1872
1873         devm_free_irq(&pdev->dev, sdma->irq, sdma);
1874         dma_async_device_unregister(&sdma->dma_device);
1875         kfree(sdma->script_addrs);
1876         /* Kill the tasklet */
1877         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1878                 struct sdma_channel *sdmac = &sdma->channel[i];
1879
1880                 tasklet_kill(&sdmac->tasklet);
1881         }
1882
1883         platform_set_drvdata(pdev, NULL);
1884         return 0;
1885 }
1886
1887 static struct platform_driver sdma_driver = {
1888         .driver         = {
1889                 .name   = "imx-sdma",
1890                 .of_match_table = sdma_dt_ids,
1891         },
1892         .id_table       = sdma_devtypes,
1893         .remove         = sdma_remove,
1894         .probe          = sdma_probe,
1895 };
1896
1897 module_platform_driver(sdma_driver);
1898
1899 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1900 MODULE_DESCRIPTION("i.MX SDMA driver");
1901 MODULE_LICENSE("GPL");