x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / drivers / dma / mxs-dma.c
1 /*
2  * Copyright 2011 Freescale Semiconductor, Inc. All Rights Reserved.
3  *
4  * Refer to drivers/dma/imx-sdma.c
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/mm.h>
14 #include <linux/interrupt.h>
15 #include <linux/clk.h>
16 #include <linux/wait.h>
17 #include <linux/sched.h>
18 #include <linux/semaphore.h>
19 #include <linux/device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/slab.h>
22 #include <linux/platform_device.h>
23 #include <linux/dmaengine.h>
24 #include <linux/delay.h>
25 #include <linux/module.h>
26 #include <linux/stmp_device.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/of_dma.h>
30 #include <linux/list.h>
31
32 #include <asm/irq.h>
33
34 #include "dmaengine.h"
35
36 /*
37  * NOTE: The term "PIO" throughout the mxs-dma implementation means
38  * PIO mode of mxs apbh-dma and apbx-dma.  With this working mode,
39  * dma can program the controller registers of peripheral devices.
40  */
41
42 #define dma_is_apbh(mxs_dma)    ((mxs_dma)->type == MXS_DMA_APBH)
43 #define apbh_is_old(mxs_dma)    ((mxs_dma)->dev_id == IMX23_DMA)
44
45 #define HW_APBHX_CTRL0                          0x000
46 #define BM_APBH_CTRL0_APB_BURST8_EN             (1 << 29)
47 #define BM_APBH_CTRL0_APB_BURST_EN              (1 << 28)
48 #define BP_APBH_CTRL0_RESET_CHANNEL             16
49 #define HW_APBHX_CTRL1                          0x010
50 #define HW_APBHX_CTRL2                          0x020
51 #define HW_APBHX_CHANNEL_CTRL                   0x030
52 #define BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL     16
53 /*
54  * The offset of NXTCMDAR register is different per both dma type and version,
55  * while stride for each channel is all the same 0x70.
56  */
57 #define HW_APBHX_CHn_NXTCMDAR(d, n) \
58         (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x050 : 0x110) + (n) * 0x70)
59 #define HW_APBHX_CHn_SEMA(d, n) \
60         (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x080 : 0x140) + (n) * 0x70)
61 #define HW_APBHX_CHn_BAR(d, n) \
62         (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x070 : 0x130) + (n) * 0x70)
63 #define HW_APBX_CHn_DEBUG1(d, n) (0x150 + (n) * 0x70)
64
65 /*
66  * ccw bits definitions
67  *
68  * COMMAND:             0..1    (2)
69  * CHAIN:               2       (1)
70  * IRQ:                 3       (1)
71  * NAND_LOCK:           4       (1) - not implemented
72  * NAND_WAIT4READY:     5       (1) - not implemented
73  * DEC_SEM:             6       (1)
74  * WAIT4END:            7       (1)
75  * HALT_ON_TERMINATE:   8       (1)
76  * TERMINATE_FLUSH:     9       (1)
77  * RESERVED:            10..11  (2)
78  * PIO_NUM:             12..15  (4)
79  */
80 #define BP_CCW_COMMAND          0
81 #define BM_CCW_COMMAND          (3 << 0)
82 #define CCW_CHAIN               (1 << 2)
83 #define CCW_IRQ                 (1 << 3)
84 #define CCW_DEC_SEM             (1 << 6)
85 #define CCW_WAIT4END            (1 << 7)
86 #define CCW_HALT_ON_TERM        (1 << 8)
87 #define CCW_TERM_FLUSH          (1 << 9)
88 #define BP_CCW_PIO_NUM          12
89 #define BM_CCW_PIO_NUM          (0xf << 12)
90
91 #define BF_CCW(value, field)    (((value) << BP_CCW_##field) & BM_CCW_##field)
92
93 #define MXS_DMA_CMD_NO_XFER     0
94 #define MXS_DMA_CMD_WRITE       1
95 #define MXS_DMA_CMD_READ        2
96 #define MXS_DMA_CMD_DMA_SENSE   3       /* not implemented */
97
98 struct mxs_dma_ccw {
99         u32             next;
100         u16             bits;
101         u16             xfer_bytes;
102 #define MAX_XFER_BYTES  0xff00
103         u32             bufaddr;
104 #define MXS_PIO_WORDS   16
105         u32             pio_words[MXS_PIO_WORDS];
106 };
107
108 #define CCW_BLOCK_SIZE  (4 * PAGE_SIZE)
109 #define NUM_CCW (int)(CCW_BLOCK_SIZE / sizeof(struct mxs_dma_ccw))
110
111 struct mxs_dma_chan {
112         struct mxs_dma_engine           *mxs_dma;
113         struct dma_chan                 chan;
114         struct dma_async_tx_descriptor  desc;
115         struct tasklet_struct           tasklet;
116         unsigned int                    chan_irq;
117         struct mxs_dma_ccw              *ccw;
118         dma_addr_t                      ccw_phys;
119         int                             desc_count;
120         enum dma_status                 status;
121         unsigned int                    flags;
122         bool                            reset;
123 #define MXS_DMA_SG_LOOP                 (1 << 0)
124 #define MXS_DMA_USE_SEMAPHORE           (1 << 1)
125 };
126
127 #define MXS_DMA_CHANNELS                16
128 #define MXS_DMA_CHANNELS_MASK           0xffff
129
130 enum mxs_dma_devtype {
131         MXS_DMA_APBH,
132         MXS_DMA_APBX,
133 };
134
135 enum mxs_dma_id {
136         IMX23_DMA,
137         IMX28_DMA,
138 };
139
140 struct mxs_dma_engine {
141         enum mxs_dma_id                 dev_id;
142         enum mxs_dma_devtype            type;
143         void __iomem                    *base;
144         struct clk                      *clk;
145         struct dma_device               dma_device;
146         struct device_dma_parameters    dma_parms;
147         struct mxs_dma_chan             mxs_chans[MXS_DMA_CHANNELS];
148         struct platform_device          *pdev;
149         unsigned int                    nr_channels;
150 };
151
152 struct mxs_dma_type {
153         enum mxs_dma_id id;
154         enum mxs_dma_devtype type;
155 };
156
157 static struct mxs_dma_type mxs_dma_types[] = {
158         {
159                 .id = IMX23_DMA,
160                 .type = MXS_DMA_APBH,
161         }, {
162                 .id = IMX23_DMA,
163                 .type = MXS_DMA_APBX,
164         }, {
165                 .id = IMX28_DMA,
166                 .type = MXS_DMA_APBH,
167         }, {
168                 .id = IMX28_DMA,
169                 .type = MXS_DMA_APBX,
170         }
171 };
172
173 static const struct platform_device_id mxs_dma_ids[] = {
174         {
175                 .name = "imx23-dma-apbh",
176                 .driver_data = (kernel_ulong_t) &mxs_dma_types[0],
177         }, {
178                 .name = "imx23-dma-apbx",
179                 .driver_data = (kernel_ulong_t) &mxs_dma_types[1],
180         }, {
181                 .name = "imx28-dma-apbh",
182                 .driver_data = (kernel_ulong_t) &mxs_dma_types[2],
183         }, {
184                 .name = "imx28-dma-apbx",
185                 .driver_data = (kernel_ulong_t) &mxs_dma_types[3],
186         }, {
187                 /* end of list */
188         }
189 };
190
191 static const struct of_device_id mxs_dma_dt_ids[] = {
192         { .compatible = "fsl,imx23-dma-apbh", .data = &mxs_dma_ids[0], },
193         { .compatible = "fsl,imx23-dma-apbx", .data = &mxs_dma_ids[1], },
194         { .compatible = "fsl,imx28-dma-apbh", .data = &mxs_dma_ids[2], },
195         { .compatible = "fsl,imx28-dma-apbx", .data = &mxs_dma_ids[3], },
196         { /* sentinel */ }
197 };
198 MODULE_DEVICE_TABLE(of, mxs_dma_dt_ids);
199
200 static struct mxs_dma_chan *to_mxs_dma_chan(struct dma_chan *chan)
201 {
202         return container_of(chan, struct mxs_dma_chan, chan);
203 }
204
205 static void mxs_dma_reset_chan(struct dma_chan *chan)
206 {
207         struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
208         struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
209         int chan_id = mxs_chan->chan.chan_id;
210
211         /*
212          * mxs dma channel resets can cause a channel stall. To recover from a
213          * channel stall, we have to reset the whole DMA engine. To avoid this,
214          * we use cyclic DMA with semaphores, that are enhanced in
215          * mxs_dma_int_handler. To reset the channel, we can simply stop writing
216          * into the semaphore counter.
217          */
218         if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
219                         mxs_chan->flags & MXS_DMA_SG_LOOP) {
220                 mxs_chan->reset = true;
221         } else if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) {
222                 writel(1 << (chan_id + BP_APBH_CTRL0_RESET_CHANNEL),
223                         mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
224         } else {
225                 unsigned long elapsed = 0;
226                 const unsigned long max_wait = 50000; /* 50ms */
227                 void __iomem *reg_dbg1 = mxs_dma->base +
228                                 HW_APBX_CHn_DEBUG1(mxs_dma, chan_id);
229
230                 /*
231                  * On i.MX28 APBX, the DMA channel can stop working if we reset
232                  * the channel while it is in READ_FLUSH (0x08) state.
233                  * We wait here until we leave the state. Then we trigger the
234                  * reset. Waiting a maximum of 50ms, the kernel shouldn't crash
235                  * because of this.
236                  */
237                 while ((readl(reg_dbg1) & 0xf) == 0x8 && elapsed < max_wait) {
238                         udelay(100);
239                         elapsed += 100;
240                 }
241
242                 if (elapsed >= max_wait)
243                         dev_err(&mxs_chan->mxs_dma->pdev->dev,
244                                         "Failed waiting for the DMA channel %d to leave state READ_FLUSH, trying to reset channel in READ_FLUSH state now\n",
245                                         chan_id);
246
247                 writel(1 << (chan_id + BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL),
248                         mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
249         }
250
251         mxs_chan->status = DMA_COMPLETE;
252 }
253
254 static void mxs_dma_enable_chan(struct dma_chan *chan)
255 {
256         struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
257         struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
258         int chan_id = mxs_chan->chan.chan_id;
259
260         /* set cmd_addr up */
261         writel(mxs_chan->ccw_phys,
262                 mxs_dma->base + HW_APBHX_CHn_NXTCMDAR(mxs_dma, chan_id));
263
264         /* write 1 to SEMA to kick off the channel */
265         if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
266                         mxs_chan->flags & MXS_DMA_SG_LOOP) {
267                 /* A cyclic DMA consists of at least 2 segments, so initialize
268                  * the semaphore with 2 so we have enough time to add 1 to the
269                  * semaphore if we need to */
270                 writel(2, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
271         } else {
272                 writel(1, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
273         }
274         mxs_chan->reset = false;
275 }
276
277 static void mxs_dma_disable_chan(struct dma_chan *chan)
278 {
279         struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
280
281         mxs_chan->status = DMA_COMPLETE;
282 }
283
284 static int mxs_dma_pause_chan(struct dma_chan *chan)
285 {
286         struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
287         struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
288         int chan_id = mxs_chan->chan.chan_id;
289
290         /* freeze the channel */
291         if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
292                 writel(1 << chan_id,
293                         mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
294         else
295                 writel(1 << chan_id,
296                         mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
297
298         mxs_chan->status = DMA_PAUSED;
299         return 0;
300 }
301
302 static int mxs_dma_resume_chan(struct dma_chan *chan)
303 {
304         struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
305         struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
306         int chan_id = mxs_chan->chan.chan_id;
307
308         /* unfreeze the channel */
309         if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
310                 writel(1 << chan_id,
311                         mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_CLR);
312         else
313                 writel(1 << chan_id,
314                         mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_CLR);
315
316         mxs_chan->status = DMA_IN_PROGRESS;
317         return 0;
318 }
319
320 static dma_cookie_t mxs_dma_tx_submit(struct dma_async_tx_descriptor *tx)
321 {
322         return dma_cookie_assign(tx);
323 }
324
325 static void mxs_dma_tasklet(unsigned long data)
326 {
327         struct mxs_dma_chan *mxs_chan = (struct mxs_dma_chan *) data;
328
329         dmaengine_desc_get_callback_invoke(&mxs_chan->desc, NULL);
330 }
331
332 static int mxs_dma_irq_to_chan(struct mxs_dma_engine *mxs_dma, int irq)
333 {
334         int i;
335
336         for (i = 0; i != mxs_dma->nr_channels; ++i)
337                 if (mxs_dma->mxs_chans[i].chan_irq == irq)
338                         return i;
339
340         return -EINVAL;
341 }
342
343 static irqreturn_t mxs_dma_int_handler(int irq, void *dev_id)
344 {
345         struct mxs_dma_engine *mxs_dma = dev_id;
346         struct mxs_dma_chan *mxs_chan;
347         u32 completed;
348         u32 err;
349         int chan = mxs_dma_irq_to_chan(mxs_dma, irq);
350
351         if (chan < 0)
352                 return IRQ_NONE;
353
354         /* completion status */
355         completed = readl(mxs_dma->base + HW_APBHX_CTRL1);
356         completed = (completed >> chan) & 0x1;
357
358         /* Clear interrupt */
359         writel((1 << chan),
360                         mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_CLR);
361
362         /* error status */
363         err = readl(mxs_dma->base + HW_APBHX_CTRL2);
364         err &= (1 << (MXS_DMA_CHANNELS + chan)) | (1 << chan);
365
366         /*
367          * error status bit is in the upper 16 bits, error irq bit in the lower
368          * 16 bits. We transform it into a simpler error code:
369          * err: 0x00 = no error, 0x01 = TERMINATION, 0x02 = BUS_ERROR
370          */
371         err = (err >> (MXS_DMA_CHANNELS + chan)) + (err >> chan);
372
373         /* Clear error irq */
374         writel((1 << chan),
375                         mxs_dma->base + HW_APBHX_CTRL2 + STMP_OFFSET_REG_CLR);
376
377         /*
378          * When both completion and error of termination bits set at the
379          * same time, we do not take it as an error.  IOW, it only becomes
380          * an error we need to handle here in case of either it's a bus
381          * error or a termination error with no completion. 0x01 is termination
382          * error, so we can subtract err & completed to get the real error case.
383          */
384         err -= err & completed;
385
386         mxs_chan = &mxs_dma->mxs_chans[chan];
387
388         if (err) {
389                 dev_dbg(mxs_dma->dma_device.dev,
390                         "%s: error in channel %d\n", __func__,
391                         chan);
392                 mxs_chan->status = DMA_ERROR;
393                 mxs_dma_reset_chan(&mxs_chan->chan);
394         } else if (mxs_chan->status != DMA_COMPLETE) {
395                 if (mxs_chan->flags & MXS_DMA_SG_LOOP) {
396                         mxs_chan->status = DMA_IN_PROGRESS;
397                         if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE)
398                                 writel(1, mxs_dma->base +
399                                         HW_APBHX_CHn_SEMA(mxs_dma, chan));
400                 } else {
401                         mxs_chan->status = DMA_COMPLETE;
402                 }
403         }
404
405         if (mxs_chan->status == DMA_COMPLETE) {
406                 if (mxs_chan->reset)
407                         return IRQ_HANDLED;
408                 dma_cookie_complete(&mxs_chan->desc);
409         }
410
411         /* schedule tasklet on this channel */
412         tasklet_schedule(&mxs_chan->tasklet);
413
414         return IRQ_HANDLED;
415 }
416
417 static int mxs_dma_alloc_chan_resources(struct dma_chan *chan)
418 {
419         struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
420         struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
421         int ret;
422
423         mxs_chan->ccw = dma_zalloc_coherent(mxs_dma->dma_device.dev,
424                                             CCW_BLOCK_SIZE,
425                                             &mxs_chan->ccw_phys, GFP_KERNEL);
426         if (!mxs_chan->ccw) {
427                 ret = -ENOMEM;
428                 goto err_alloc;
429         }
430
431         ret = request_irq(mxs_chan->chan_irq, mxs_dma_int_handler,
432                           0, "mxs-dma", mxs_dma);
433         if (ret)
434                 goto err_irq;
435
436         ret = clk_prepare_enable(mxs_dma->clk);
437         if (ret)
438                 goto err_clk;
439
440         mxs_dma_reset_chan(chan);
441
442         dma_async_tx_descriptor_init(&mxs_chan->desc, chan);
443         mxs_chan->desc.tx_submit = mxs_dma_tx_submit;
444
445         /* the descriptor is ready */
446         async_tx_ack(&mxs_chan->desc);
447
448         return 0;
449
450 err_clk:
451         free_irq(mxs_chan->chan_irq, mxs_dma);
452 err_irq:
453         dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
454                         mxs_chan->ccw, mxs_chan->ccw_phys);
455 err_alloc:
456         return ret;
457 }
458
459 static void mxs_dma_free_chan_resources(struct dma_chan *chan)
460 {
461         struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
462         struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
463
464         mxs_dma_disable_chan(chan);
465
466         free_irq(mxs_chan->chan_irq, mxs_dma);
467
468         dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
469                         mxs_chan->ccw, mxs_chan->ccw_phys);
470
471         clk_disable_unprepare(mxs_dma->clk);
472 }
473
474 /*
475  * How to use the flags for ->device_prep_slave_sg() :
476  *    [1] If there is only one DMA command in the DMA chain, the code should be:
477  *            ......
478  *            ->device_prep_slave_sg(DMA_CTRL_ACK);
479  *            ......
480  *    [2] If there are two DMA commands in the DMA chain, the code should be
481  *            ......
482  *            ->device_prep_slave_sg(0);
483  *            ......
484  *            ->device_prep_slave_sg(DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
485  *            ......
486  *    [3] If there are more than two DMA commands in the DMA chain, the code
487  *        should be:
488  *            ......
489  *            ->device_prep_slave_sg(0);                                // First
490  *            ......
491  *            ->device_prep_slave_sg(DMA_PREP_INTERRUPT [| DMA_CTRL_ACK]);
492  *            ......
493  *            ->device_prep_slave_sg(DMA_PREP_INTERRUPT | DMA_CTRL_ACK); // Last
494  *            ......
495  */
496 static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg(
497                 struct dma_chan *chan, struct scatterlist *sgl,
498                 unsigned int sg_len, enum dma_transfer_direction direction,
499                 unsigned long flags, void *context)
500 {
501         struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
502         struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
503         struct mxs_dma_ccw *ccw;
504         struct scatterlist *sg;
505         u32 i, j;
506         u32 *pio;
507         bool append = flags & DMA_PREP_INTERRUPT;
508         int idx = append ? mxs_chan->desc_count : 0;
509
510         if (mxs_chan->status == DMA_IN_PROGRESS && !append)
511                 return NULL;
512
513         if (sg_len + (append ? idx : 0) > NUM_CCW) {
514                 dev_err(mxs_dma->dma_device.dev,
515                                 "maximum number of sg exceeded: %d > %d\n",
516                                 sg_len, NUM_CCW);
517                 goto err_out;
518         }
519
520         mxs_chan->status = DMA_IN_PROGRESS;
521         mxs_chan->flags = 0;
522
523         /*
524          * If the sg is prepared with append flag set, the sg
525          * will be appended to the last prepared sg.
526          */
527         if (append) {
528                 BUG_ON(idx < 1);
529                 ccw = &mxs_chan->ccw[idx - 1];
530                 ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
531                 ccw->bits |= CCW_CHAIN;
532                 ccw->bits &= ~CCW_IRQ;
533                 ccw->bits &= ~CCW_DEC_SEM;
534         } else {
535                 idx = 0;
536         }
537
538         if (direction == DMA_TRANS_NONE) {
539                 ccw = &mxs_chan->ccw[idx++];
540                 pio = (u32 *) sgl;
541
542                 for (j = 0; j < sg_len;)
543                         ccw->pio_words[j++] = *pio++;
544
545                 ccw->bits = 0;
546                 ccw->bits |= CCW_IRQ;
547                 ccw->bits |= CCW_DEC_SEM;
548                 if (flags & DMA_CTRL_ACK)
549                         ccw->bits |= CCW_WAIT4END;
550                 ccw->bits |= CCW_HALT_ON_TERM;
551                 ccw->bits |= CCW_TERM_FLUSH;
552                 ccw->bits |= BF_CCW(sg_len, PIO_NUM);
553                 ccw->bits |= BF_CCW(MXS_DMA_CMD_NO_XFER, COMMAND);
554         } else {
555                 for_each_sg(sgl, sg, sg_len, i) {
556                         if (sg_dma_len(sg) > MAX_XFER_BYTES) {
557                                 dev_err(mxs_dma->dma_device.dev, "maximum bytes for sg entry exceeded: %d > %d\n",
558                                                 sg_dma_len(sg), MAX_XFER_BYTES);
559                                 goto err_out;
560                         }
561
562                         ccw = &mxs_chan->ccw[idx++];
563
564                         ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
565                         ccw->bufaddr = sg->dma_address;
566                         ccw->xfer_bytes = sg_dma_len(sg);
567
568                         ccw->bits = 0;
569                         ccw->bits |= CCW_CHAIN;
570                         ccw->bits |= CCW_HALT_ON_TERM;
571                         ccw->bits |= CCW_TERM_FLUSH;
572                         ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
573                                         MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ,
574                                         COMMAND);
575
576                         if (i + 1 == sg_len) {
577                                 ccw->bits &= ~CCW_CHAIN;
578                                 ccw->bits |= CCW_IRQ;
579                                 ccw->bits |= CCW_DEC_SEM;
580                                 if (flags & DMA_CTRL_ACK)
581                                         ccw->bits |= CCW_WAIT4END;
582                         }
583                 }
584         }
585         mxs_chan->desc_count = idx;
586
587         return &mxs_chan->desc;
588
589 err_out:
590         mxs_chan->status = DMA_ERROR;
591         return NULL;
592 }
593
594 static struct dma_async_tx_descriptor *mxs_dma_prep_dma_cyclic(
595                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
596                 size_t period_len, enum dma_transfer_direction direction,
597                 unsigned long flags)
598 {
599         struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
600         struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
601         u32 num_periods = buf_len / period_len;
602         u32 i = 0, buf = 0;
603
604         if (mxs_chan->status == DMA_IN_PROGRESS)
605                 return NULL;
606
607         mxs_chan->status = DMA_IN_PROGRESS;
608         mxs_chan->flags |= MXS_DMA_SG_LOOP;
609         mxs_chan->flags |= MXS_DMA_USE_SEMAPHORE;
610
611         if (num_periods > NUM_CCW) {
612                 dev_err(mxs_dma->dma_device.dev,
613                                 "maximum number of sg exceeded: %d > %d\n",
614                                 num_periods, NUM_CCW);
615                 goto err_out;
616         }
617
618         if (period_len > MAX_XFER_BYTES) {
619                 dev_err(mxs_dma->dma_device.dev,
620                                 "maximum period size exceeded: %d > %d\n",
621                                 period_len, MAX_XFER_BYTES);
622                 goto err_out;
623         }
624
625         while (buf < buf_len) {
626                 struct mxs_dma_ccw *ccw = &mxs_chan->ccw[i];
627
628                 if (i + 1 == num_periods)
629                         ccw->next = mxs_chan->ccw_phys;
630                 else
631                         ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * (i + 1);
632
633                 ccw->bufaddr = dma_addr;
634                 ccw->xfer_bytes = period_len;
635
636                 ccw->bits = 0;
637                 ccw->bits |= CCW_CHAIN;
638                 ccw->bits |= CCW_IRQ;
639                 ccw->bits |= CCW_HALT_ON_TERM;
640                 ccw->bits |= CCW_TERM_FLUSH;
641                 ccw->bits |= CCW_DEC_SEM;
642                 ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
643                                 MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, COMMAND);
644
645                 dma_addr += period_len;
646                 buf += period_len;
647
648                 i++;
649         }
650         mxs_chan->desc_count = i;
651
652         return &mxs_chan->desc;
653
654 err_out:
655         mxs_chan->status = DMA_ERROR;
656         return NULL;
657 }
658
659 static int mxs_dma_terminate_all(struct dma_chan *chan)
660 {
661         mxs_dma_reset_chan(chan);
662         mxs_dma_disable_chan(chan);
663
664         return 0;
665 }
666
667 static enum dma_status mxs_dma_tx_status(struct dma_chan *chan,
668                         dma_cookie_t cookie, struct dma_tx_state *txstate)
669 {
670         struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
671         struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
672         u32 residue = 0;
673
674         if (mxs_chan->status == DMA_IN_PROGRESS &&
675                         mxs_chan->flags & MXS_DMA_SG_LOOP) {
676                 struct mxs_dma_ccw *last_ccw;
677                 u32 bar;
678
679                 last_ccw = &mxs_chan->ccw[mxs_chan->desc_count - 1];
680                 residue = last_ccw->xfer_bytes + last_ccw->bufaddr;
681
682                 bar = readl(mxs_dma->base +
683                                 HW_APBHX_CHn_BAR(mxs_dma, chan->chan_id));
684                 residue -= bar;
685         }
686
687         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
688                         residue);
689
690         return mxs_chan->status;
691 }
692
693 static int __init mxs_dma_init(struct mxs_dma_engine *mxs_dma)
694 {
695         int ret;
696
697         ret = clk_prepare_enable(mxs_dma->clk);
698         if (ret)
699                 return ret;
700
701         ret = stmp_reset_block(mxs_dma->base);
702         if (ret)
703                 goto err_out;
704
705         /* enable apbh burst */
706         if (dma_is_apbh(mxs_dma)) {
707                 writel(BM_APBH_CTRL0_APB_BURST_EN,
708                         mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
709                 writel(BM_APBH_CTRL0_APB_BURST8_EN,
710                         mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
711         }
712
713         /* enable irq for all the channels */
714         writel(MXS_DMA_CHANNELS_MASK << MXS_DMA_CHANNELS,
715                 mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_SET);
716
717 err_out:
718         clk_disable_unprepare(mxs_dma->clk);
719         return ret;
720 }
721
722 struct mxs_dma_filter_param {
723         struct device_node *of_node;
724         unsigned int chan_id;
725 };
726
727 static bool mxs_dma_filter_fn(struct dma_chan *chan, void *fn_param)
728 {
729         struct mxs_dma_filter_param *param = fn_param;
730         struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
731         struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
732         int chan_irq;
733
734         if (mxs_dma->dma_device.dev->of_node != param->of_node)
735                 return false;
736
737         if (chan->chan_id != param->chan_id)
738                 return false;
739
740         chan_irq = platform_get_irq(mxs_dma->pdev, param->chan_id);
741         if (chan_irq < 0)
742                 return false;
743
744         mxs_chan->chan_irq = chan_irq;
745
746         return true;
747 }
748
749 static struct dma_chan *mxs_dma_xlate(struct of_phandle_args *dma_spec,
750                                struct of_dma *ofdma)
751 {
752         struct mxs_dma_engine *mxs_dma = ofdma->of_dma_data;
753         dma_cap_mask_t mask = mxs_dma->dma_device.cap_mask;
754         struct mxs_dma_filter_param param;
755
756         if (dma_spec->args_count != 1)
757                 return NULL;
758
759         param.of_node = ofdma->of_node;
760         param.chan_id = dma_spec->args[0];
761
762         if (param.chan_id >= mxs_dma->nr_channels)
763                 return NULL;
764
765         return dma_request_channel(mask, mxs_dma_filter_fn, &param);
766 }
767
768 static int __init mxs_dma_probe(struct platform_device *pdev)
769 {
770         struct device_node *np = pdev->dev.of_node;
771         const struct platform_device_id *id_entry;
772         const struct of_device_id *of_id;
773         const struct mxs_dma_type *dma_type;
774         struct mxs_dma_engine *mxs_dma;
775         struct resource *iores;
776         int ret, i;
777
778         mxs_dma = devm_kzalloc(&pdev->dev, sizeof(*mxs_dma), GFP_KERNEL);
779         if (!mxs_dma)
780                 return -ENOMEM;
781
782         ret = of_property_read_u32(np, "dma-channels", &mxs_dma->nr_channels);
783         if (ret) {
784                 dev_err(&pdev->dev, "failed to read dma-channels\n");
785                 return ret;
786         }
787
788         of_id = of_match_device(mxs_dma_dt_ids, &pdev->dev);
789         if (of_id)
790                 id_entry = of_id->data;
791         else
792                 id_entry = platform_get_device_id(pdev);
793
794         dma_type = (struct mxs_dma_type *)id_entry->driver_data;
795         mxs_dma->type = dma_type->type;
796         mxs_dma->dev_id = dma_type->id;
797
798         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
799         mxs_dma->base = devm_ioremap_resource(&pdev->dev, iores);
800         if (IS_ERR(mxs_dma->base))
801                 return PTR_ERR(mxs_dma->base);
802
803         mxs_dma->clk = devm_clk_get(&pdev->dev, NULL);
804         if (IS_ERR(mxs_dma->clk))
805                 return PTR_ERR(mxs_dma->clk);
806
807         dma_cap_set(DMA_SLAVE, mxs_dma->dma_device.cap_mask);
808         dma_cap_set(DMA_CYCLIC, mxs_dma->dma_device.cap_mask);
809
810         INIT_LIST_HEAD(&mxs_dma->dma_device.channels);
811
812         /* Initialize channel parameters */
813         for (i = 0; i < MXS_DMA_CHANNELS; i++) {
814                 struct mxs_dma_chan *mxs_chan = &mxs_dma->mxs_chans[i];
815
816                 mxs_chan->mxs_dma = mxs_dma;
817                 mxs_chan->chan.device = &mxs_dma->dma_device;
818                 dma_cookie_init(&mxs_chan->chan);
819
820                 tasklet_init(&mxs_chan->tasklet, mxs_dma_tasklet,
821                              (unsigned long) mxs_chan);
822
823
824                 /* Add the channel to mxs_chan list */
825                 list_add_tail(&mxs_chan->chan.device_node,
826                         &mxs_dma->dma_device.channels);
827         }
828
829         ret = mxs_dma_init(mxs_dma);
830         if (ret)
831                 return ret;
832
833         mxs_dma->pdev = pdev;
834         mxs_dma->dma_device.dev = &pdev->dev;
835
836         /* mxs_dma gets 65535 bytes maximum sg size */
837         mxs_dma->dma_device.dev->dma_parms = &mxs_dma->dma_parms;
838         dma_set_max_seg_size(mxs_dma->dma_device.dev, MAX_XFER_BYTES);
839
840         mxs_dma->dma_device.device_alloc_chan_resources = mxs_dma_alloc_chan_resources;
841         mxs_dma->dma_device.device_free_chan_resources = mxs_dma_free_chan_resources;
842         mxs_dma->dma_device.device_tx_status = mxs_dma_tx_status;
843         mxs_dma->dma_device.device_prep_slave_sg = mxs_dma_prep_slave_sg;
844         mxs_dma->dma_device.device_prep_dma_cyclic = mxs_dma_prep_dma_cyclic;
845         mxs_dma->dma_device.device_pause = mxs_dma_pause_chan;
846         mxs_dma->dma_device.device_resume = mxs_dma_resume_chan;
847         mxs_dma->dma_device.device_terminate_all = mxs_dma_terminate_all;
848         mxs_dma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
849         mxs_dma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
850         mxs_dma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
851         mxs_dma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
852         mxs_dma->dma_device.device_issue_pending = mxs_dma_enable_chan;
853
854         ret = dma_async_device_register(&mxs_dma->dma_device);
855         if (ret) {
856                 dev_err(mxs_dma->dma_device.dev, "unable to register\n");
857                 return ret;
858         }
859
860         ret = of_dma_controller_register(np, mxs_dma_xlate, mxs_dma);
861         if (ret) {
862                 dev_err(mxs_dma->dma_device.dev,
863                         "failed to register controller\n");
864                 dma_async_device_unregister(&mxs_dma->dma_device);
865         }
866
867         dev_info(mxs_dma->dma_device.dev, "initialized\n");
868
869         return 0;
870 }
871
872 static struct platform_driver mxs_dma_driver = {
873         .driver         = {
874                 .name   = "mxs-dma",
875                 .of_match_table = mxs_dma_dt_ids,
876         },
877         .id_table       = mxs_dma_ids,
878 };
879
880 static int __init mxs_dma_module_init(void)
881 {
882         return platform_driver_probe(&mxs_dma_driver, mxs_dma_probe);
883 }
884 subsys_initcall(mxs_dma_module_init);