x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / drivers / dma / nbpfaxi.c
1 /*
2  * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
3  * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  */
9
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/clk.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/log2.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25
26 #include <dt-bindings/dma/nbpfaxi.h>
27
28 #include "dmaengine.h"
29
30 #define NBPF_REG_CHAN_OFFSET    0
31 #define NBPF_REG_CHAN_SIZE      0x40
32
33 /* Channel Current Transaction Byte register */
34 #define NBPF_CHAN_CUR_TR_BYTE   0x20
35
36 /* Channel Status register */
37 #define NBPF_CHAN_STAT  0x24
38 #define NBPF_CHAN_STAT_EN       1
39 #define NBPF_CHAN_STAT_TACT     4
40 #define NBPF_CHAN_STAT_ERR      0x10
41 #define NBPF_CHAN_STAT_END      0x20
42 #define NBPF_CHAN_STAT_TC       0x40
43 #define NBPF_CHAN_STAT_DER      0x400
44
45 /* Channel Control register */
46 #define NBPF_CHAN_CTRL  0x28
47 #define NBPF_CHAN_CTRL_SETEN    1
48 #define NBPF_CHAN_CTRL_CLREN    2
49 #define NBPF_CHAN_CTRL_STG      4
50 #define NBPF_CHAN_CTRL_SWRST    8
51 #define NBPF_CHAN_CTRL_CLRRQ    0x10
52 #define NBPF_CHAN_CTRL_CLREND   0x20
53 #define NBPF_CHAN_CTRL_CLRTC    0x40
54 #define NBPF_CHAN_CTRL_SETSUS   0x100
55 #define NBPF_CHAN_CTRL_CLRSUS   0x200
56
57 /* Channel Configuration register */
58 #define NBPF_CHAN_CFG   0x2c
59 #define NBPF_CHAN_CFG_SEL       7               /* terminal SELect: 0..7 */
60 #define NBPF_CHAN_CFG_REQD      8               /* REQuest Direction: DMAREQ is 0: input, 1: output */
61 #define NBPF_CHAN_CFG_LOEN      0x10            /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
62 #define NBPF_CHAN_CFG_HIEN      0x20            /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
63 #define NBPF_CHAN_CFG_LVL       0x40            /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
64 #define NBPF_CHAN_CFG_AM        0x700           /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
65 #define NBPF_CHAN_CFG_SDS       0xf000          /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
66 #define NBPF_CHAN_CFG_DDS       0xf0000         /* Destination Data Size: as above */
67 #define NBPF_CHAN_CFG_SAD       0x100000        /* Source ADdress counting: 0: increment, 1: fixed */
68 #define NBPF_CHAN_CFG_DAD       0x200000        /* Destination ADdress counting: 0: increment, 1: fixed */
69 #define NBPF_CHAN_CFG_TM        0x400000        /* Transfer Mode: 0: single, 1: block TM */
70 #define NBPF_CHAN_CFG_DEM       0x1000000       /* DMAEND interrupt Mask */
71 #define NBPF_CHAN_CFG_TCM       0x2000000       /* DMATCO interrupt Mask */
72 #define NBPF_CHAN_CFG_SBE       0x8000000       /* Sweep Buffer Enable */
73 #define NBPF_CHAN_CFG_RSEL      0x10000000      /* RM: Register Set sELect */
74 #define NBPF_CHAN_CFG_RSW       0x20000000      /* RM: Register Select sWitch */
75 #define NBPF_CHAN_CFG_REN       0x40000000      /* RM: Register Set Enable */
76 #define NBPF_CHAN_CFG_DMS       0x80000000      /* 0: register mode (RM), 1: link mode (LM) */
77
78 #define NBPF_CHAN_NXLA  0x38
79 #define NBPF_CHAN_CRLA  0x3c
80
81 /* Link Header field */
82 #define NBPF_HEADER_LV  1
83 #define NBPF_HEADER_LE  2
84 #define NBPF_HEADER_WBD 4
85 #define NBPF_HEADER_DIM 8
86
87 #define NBPF_CTRL       0x300
88 #define NBPF_CTRL_PR    1               /* 0: fixed priority, 1: round robin */
89 #define NBPF_CTRL_LVINT 2               /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
90
91 #define NBPF_DSTAT_ER   0x314
92 #define NBPF_DSTAT_END  0x318
93
94 #define NBPF_DMA_BUSWIDTHS \
95         (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
96          BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
97          BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
98          BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
99          BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
100
101 struct nbpf_config {
102         int num_channels;
103         int buffer_size;
104 };
105
106 /*
107  * We've got 3 types of objects, used to describe DMA transfers:
108  * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
109  *      in it, used to communicate with the user
110  * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
111  *      queuing, these must be DMAable, using either the streaming DMA API or
112  *      allocated from coherent memory - one per SG segment
113  * 3. one per SG segment descriptors, used to manage HW link descriptors from
114  *      (2). They do not have to be DMAable. They can either be (a) allocated
115  *      together with link descriptors as mixed (DMA / CPU) objects, or (b)
116  *      separately. Even if allocated separately it would be best to link them
117  *      to link descriptors once during channel resource allocation and always
118  *      use them as a single object.
119  * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
120  * treated as a single SG segment descriptor.
121  */
122
123 struct nbpf_link_reg {
124         u32     header;
125         u32     src_addr;
126         u32     dst_addr;
127         u32     transaction_size;
128         u32     config;
129         u32     interval;
130         u32     extension;
131         u32     next;
132 } __packed;
133
134 struct nbpf_device;
135 struct nbpf_channel;
136 struct nbpf_desc;
137
138 struct nbpf_link_desc {
139         struct nbpf_link_reg *hwdesc;
140         dma_addr_t hwdesc_dma_addr;
141         struct nbpf_desc *desc;
142         struct list_head node;
143 };
144
145 /**
146  * struct nbpf_desc - DMA transfer descriptor
147  * @async_tx:   dmaengine object
148  * @user_wait:  waiting for a user ack
149  * @length:     total transfer length
150  * @sg:         list of hardware descriptors, represented by struct nbpf_link_desc
151  * @node:       member in channel descriptor lists
152  */
153 struct nbpf_desc {
154         struct dma_async_tx_descriptor async_tx;
155         bool user_wait;
156         size_t length;
157         struct nbpf_channel *chan;
158         struct list_head sg;
159         struct list_head node;
160 };
161
162 /* Take a wild guess: allocate 4 segments per descriptor */
163 #define NBPF_SEGMENTS_PER_DESC 4
164 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) /   \
165         (sizeof(struct nbpf_desc) +                                     \
166          NBPF_SEGMENTS_PER_DESC *                                       \
167          (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
168 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
169
170 struct nbpf_desc_page {
171         struct list_head node;
172         struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
173         struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
174         struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
175 };
176
177 /**
178  * struct nbpf_channel - one DMAC channel
179  * @dma_chan:   standard dmaengine channel object
180  * @base:       register address base
181  * @nbpf:       DMAC
182  * @name:       IRQ name
183  * @irq:        IRQ number
184  * @slave_addr: address for slave DMA
185  * @slave_width:slave data size in bytes
186  * @slave_burst:maximum slave burst size in bytes
187  * @terminal:   DMA terminal, assigned to this channel
188  * @dmarq_cfg:  DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
189  * @flags:      configuration flags from DT
190  * @lock:       protect descriptor lists
191  * @free_links: list of free link descriptors
192  * @free:       list of free descriptors
193  * @queued:     list of queued descriptors
194  * @active:     list of descriptors, scheduled for processing
195  * @done:       list of completed descriptors, waiting post-processing
196  * @desc_page:  list of additionally allocated descriptor pages - if any
197  */
198 struct nbpf_channel {
199         struct dma_chan dma_chan;
200         struct tasklet_struct tasklet;
201         void __iomem *base;
202         struct nbpf_device *nbpf;
203         char name[16];
204         int irq;
205         dma_addr_t slave_src_addr;
206         size_t slave_src_width;
207         size_t slave_src_burst;
208         dma_addr_t slave_dst_addr;
209         size_t slave_dst_width;
210         size_t slave_dst_burst;
211         unsigned int terminal;
212         u32 dmarq_cfg;
213         unsigned long flags;
214         spinlock_t lock;
215         struct list_head free_links;
216         struct list_head free;
217         struct list_head queued;
218         struct list_head active;
219         struct list_head done;
220         struct list_head desc_page;
221         struct nbpf_desc *running;
222         bool paused;
223 };
224
225 struct nbpf_device {
226         struct dma_device dma_dev;
227         void __iomem *base;
228         struct clk *clk;
229         const struct nbpf_config *config;
230         unsigned int eirq;
231         struct nbpf_channel chan[];
232 };
233
234 enum nbpf_model {
235         NBPF1B4,
236         NBPF1B8,
237         NBPF1B16,
238         NBPF4B4,
239         NBPF4B8,
240         NBPF4B16,
241         NBPF8B4,
242         NBPF8B8,
243         NBPF8B16,
244 };
245
246 static struct nbpf_config nbpf_cfg[] = {
247         [NBPF1B4] = {
248                 .num_channels = 1,
249                 .buffer_size = 4,
250         },
251         [NBPF1B8] = {
252                 .num_channels = 1,
253                 .buffer_size = 8,
254         },
255         [NBPF1B16] = {
256                 .num_channels = 1,
257                 .buffer_size = 16,
258         },
259         [NBPF4B4] = {
260                 .num_channels = 4,
261                 .buffer_size = 4,
262         },
263         [NBPF4B8] = {
264                 .num_channels = 4,
265                 .buffer_size = 8,
266         },
267         [NBPF4B16] = {
268                 .num_channels = 4,
269                 .buffer_size = 16,
270         },
271         [NBPF8B4] = {
272                 .num_channels = 8,
273                 .buffer_size = 4,
274         },
275         [NBPF8B8] = {
276                 .num_channels = 8,
277                 .buffer_size = 8,
278         },
279         [NBPF8B16] = {
280                 .num_channels = 8,
281                 .buffer_size = 16,
282         },
283 };
284
285 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
286
287 /*
288  * dmaengine drivers seem to have a lot in common and instead of sharing more
289  * code, they reimplement those common algorithms independently. In this driver
290  * we try to separate the hardware-specific part from the (largely) generic
291  * part. This improves code readability and makes it possible in the future to
292  * reuse the generic code in form of a helper library. That generic code should
293  * be suitable for various DMA controllers, using transfer descriptors in RAM
294  * and pushing one SG list at a time to the DMA controller.
295  */
296
297 /*              Hardware-specific part          */
298
299 static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
300                                  unsigned int offset)
301 {
302         u32 data = ioread32(chan->base + offset);
303         dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
304                 __func__, chan->base, offset, data);
305         return data;
306 }
307
308 static inline void nbpf_chan_write(struct nbpf_channel *chan,
309                                    unsigned int offset, u32 data)
310 {
311         iowrite32(data, chan->base + offset);
312         dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
313                 __func__, chan->base, offset, data);
314 }
315
316 static inline u32 nbpf_read(struct nbpf_device *nbpf,
317                             unsigned int offset)
318 {
319         u32 data = ioread32(nbpf->base + offset);
320         dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
321                 __func__, nbpf->base, offset, data);
322         return data;
323 }
324
325 static inline void nbpf_write(struct nbpf_device *nbpf,
326                               unsigned int offset, u32 data)
327 {
328         iowrite32(data, nbpf->base + offset);
329         dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
330                 __func__, nbpf->base, offset, data);
331 }
332
333 static void nbpf_chan_halt(struct nbpf_channel *chan)
334 {
335         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
336 }
337
338 static bool nbpf_status_get(struct nbpf_channel *chan)
339 {
340         u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
341
342         return status & BIT(chan - chan->nbpf->chan);
343 }
344
345 static void nbpf_status_ack(struct nbpf_channel *chan)
346 {
347         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
348 }
349
350 static u32 nbpf_error_get(struct nbpf_device *nbpf)
351 {
352         return nbpf_read(nbpf, NBPF_DSTAT_ER);
353 }
354
355 static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
356 {
357         return nbpf->chan + __ffs(error);
358 }
359
360 static void nbpf_error_clear(struct nbpf_channel *chan)
361 {
362         u32 status;
363         int i;
364
365         /* Stop the channel, make sure DMA has been aborted */
366         nbpf_chan_halt(chan);
367
368         for (i = 1000; i; i--) {
369                 status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
370                 if (!(status & NBPF_CHAN_STAT_TACT))
371                         break;
372                 cpu_relax();
373         }
374
375         if (!i)
376                 dev_err(chan->dma_chan.device->dev,
377                         "%s(): abort timeout, channel status 0x%x\n", __func__, status);
378
379         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
380 }
381
382 static int nbpf_start(struct nbpf_desc *desc)
383 {
384         struct nbpf_channel *chan = desc->chan;
385         struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
386
387         nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
388         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
389         chan->paused = false;
390
391         /* Software trigger MEMCPY - only MEMCPY uses the block mode */
392         if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
393                 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
394
395         dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
396                 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
397
398         return 0;
399 }
400
401 static void nbpf_chan_prepare(struct nbpf_channel *chan)
402 {
403         chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
404                 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
405                 (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
406                  NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
407                 chan->terminal;
408 }
409
410 static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
411 {
412         /* Don't output DMAACK */
413         chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
414         chan->terminal = 0;
415         chan->flags = 0;
416 }
417
418 static void nbpf_chan_configure(struct nbpf_channel *chan)
419 {
420         /*
421          * We assume, that only the link mode and DMA request line configuration
422          * have to be set in the configuration register manually. Dynamic
423          * per-transfer configuration will be loaded from transfer descriptors.
424          */
425         nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
426 }
427
428 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size)
429 {
430         /* Maximum supported bursts depend on the buffer size */
431         return min_t(int, __ffs(size), ilog2(nbpf->config->buffer_size * 8));
432 }
433
434 static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
435                              enum dma_slave_buswidth width, u32 burst)
436 {
437         size_t size;
438
439         if (!burst)
440                 burst = 1;
441
442         switch (width) {
443         case DMA_SLAVE_BUSWIDTH_8_BYTES:
444                 size = 8 * burst;
445                 break;
446
447         case DMA_SLAVE_BUSWIDTH_4_BYTES:
448                 size = 4 * burst;
449                 break;
450
451         case DMA_SLAVE_BUSWIDTH_2_BYTES:
452                 size = 2 * burst;
453                 break;
454
455         default:
456                 pr_warn("%s(): invalid bus width %u\n", __func__, width);
457         case DMA_SLAVE_BUSWIDTH_1_BYTE:
458                 size = burst;
459         }
460
461         return nbpf_xfer_ds(nbpf, size);
462 }
463
464 /*
465  * We need a way to recognise slaves, whose data is sent "raw" over the bus,
466  * i.e. it isn't known in advance how many bytes will be received. Therefore
467  * the slave driver has to provide a "large enough" buffer and either read the
468  * buffer, when it is full, or detect, that some data has arrived, then wait for
469  * a timeout, if no more data arrives - receive what's already there. We want to
470  * handle such slaves in a special way to allow an optimised mode for other
471  * users, for whom the amount of data is known in advance. So far there's no way
472  * to recognise such slaves. We use a data-width check to distinguish between
473  * the SD host and the PL011 UART.
474  */
475
476 static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
477                          enum dma_transfer_direction direction,
478                          dma_addr_t src, dma_addr_t dst, size_t size, bool last)
479 {
480         struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
481         struct nbpf_desc *desc = ldesc->desc;
482         struct nbpf_channel *chan = desc->chan;
483         struct device *dev = chan->dma_chan.device->dev;
484         size_t mem_xfer, slave_xfer;
485         bool can_burst;
486
487         hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
488                 (last ? NBPF_HEADER_LE : 0);
489
490         hwdesc->src_addr = src;
491         hwdesc->dst_addr = dst;
492         hwdesc->transaction_size = size;
493
494         /*
495          * set config: SAD, DAD, DDS, SDS, etc.
496          * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
497          * but it is important to have transaction size a multiple of both
498          * receiver and transmitter transfer sizes. It is also possible to use
499          * different RAM and device transfer sizes, and it does work well with
500          * some devices, e.g. with V08R07S01E SD host controllers, which can use
501          * 128 byte transfers. But this doesn't work with other devices,
502          * especially when the transaction size is unknown. This is the case,
503          * e.g. with serial drivers like amba-pl011.c. For reception it sets up
504          * the transaction size of 4K and if fewer bytes are received, it
505          * pauses DMA and reads out data received via DMA as well as those left
506          * in the Rx FIFO. For this to work with the RAM side using burst
507          * transfers we enable the SBE bit and terminate the transfer in our
508          * .device_pause handler.
509          */
510         mem_xfer = nbpf_xfer_ds(chan->nbpf, size);
511
512         switch (direction) {
513         case DMA_DEV_TO_MEM:
514                 can_burst = chan->slave_src_width >= 3;
515                 slave_xfer = min(mem_xfer, can_burst ?
516                                  chan->slave_src_burst : chan->slave_src_width);
517                 /*
518                  * Is the slave narrower than 64 bits, i.e. isn't using the full
519                  * bus width and cannot use bursts?
520                  */
521                 if (mem_xfer > chan->slave_src_burst && !can_burst)
522                         mem_xfer = chan->slave_src_burst;
523                 /* Device-to-RAM DMA is unreliable without REQD set */
524                 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
525                         (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
526                         NBPF_CHAN_CFG_SBE;
527                 break;
528
529         case DMA_MEM_TO_DEV:
530                 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
531                                  chan->slave_dst_burst : chan->slave_dst_width);
532                 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
533                         (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
534                 break;
535
536         case DMA_MEM_TO_MEM:
537                 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
538                         (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
539                         (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
540                 break;
541
542         default:
543                 return -EINVAL;
544         }
545
546         hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
547                 NBPF_CHAN_CFG_DMS;
548
549         dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
550                 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
551                 hwdesc->config, size, &src, &dst);
552
553         dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
554                                    DMA_TO_DEVICE);
555
556         return 0;
557 }
558
559 static size_t nbpf_bytes_left(struct nbpf_channel *chan)
560 {
561         return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
562 }
563
564 static void nbpf_configure(struct nbpf_device *nbpf)
565 {
566         nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
567 }
568
569 /*              Generic part                    */
570
571 /* DMA ENGINE functions */
572 static void nbpf_issue_pending(struct dma_chan *dchan)
573 {
574         struct nbpf_channel *chan = nbpf_to_chan(dchan);
575         unsigned long flags;
576
577         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
578
579         spin_lock_irqsave(&chan->lock, flags);
580         if (list_empty(&chan->queued))
581                 goto unlock;
582
583         list_splice_tail_init(&chan->queued, &chan->active);
584
585         if (!chan->running) {
586                 struct nbpf_desc *desc = list_first_entry(&chan->active,
587                                                 struct nbpf_desc, node);
588                 if (!nbpf_start(desc))
589                         chan->running = desc;
590         }
591
592 unlock:
593         spin_unlock_irqrestore(&chan->lock, flags);
594 }
595
596 static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
597                 dma_cookie_t cookie, struct dma_tx_state *state)
598 {
599         struct nbpf_channel *chan = nbpf_to_chan(dchan);
600         enum dma_status status = dma_cookie_status(dchan, cookie, state);
601
602         if (state) {
603                 dma_cookie_t running;
604                 unsigned long flags;
605
606                 spin_lock_irqsave(&chan->lock, flags);
607                 running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
608
609                 if (cookie == running) {
610                         state->residue = nbpf_bytes_left(chan);
611                         dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
612                                 state->residue);
613                 } else if (status == DMA_IN_PROGRESS) {
614                         struct nbpf_desc *desc;
615                         bool found = false;
616
617                         list_for_each_entry(desc, &chan->active, node)
618                                 if (desc->async_tx.cookie == cookie) {
619                                         found = true;
620                                         break;
621                                 }
622
623                         if (!found)
624                                 list_for_each_entry(desc, &chan->queued, node)
625                                         if (desc->async_tx.cookie == cookie) {
626                                                 found = true;
627                                                 break;
628
629                                         }
630
631                         state->residue = found ? desc->length : 0;
632                 }
633
634                 spin_unlock_irqrestore(&chan->lock, flags);
635         }
636
637         if (chan->paused)
638                 status = DMA_PAUSED;
639
640         return status;
641 }
642
643 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
644 {
645         struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
646         struct nbpf_channel *chan = desc->chan;
647         unsigned long flags;
648         dma_cookie_t cookie;
649
650         spin_lock_irqsave(&chan->lock, flags);
651         cookie = dma_cookie_assign(tx);
652         list_add_tail(&desc->node, &chan->queued);
653         spin_unlock_irqrestore(&chan->lock, flags);
654
655         dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
656
657         return cookie;
658 }
659
660 static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
661 {
662         struct dma_chan *dchan = &chan->dma_chan;
663         struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
664         struct nbpf_link_desc *ldesc;
665         struct nbpf_link_reg *hwdesc;
666         struct nbpf_desc *desc;
667         LIST_HEAD(head);
668         LIST_HEAD(lhead);
669         int i;
670         struct device *dev = dchan->device->dev;
671
672         if (!dpage)
673                 return -ENOMEM;
674
675         dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
676                 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
677
678         for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
679              i < ARRAY_SIZE(dpage->ldesc);
680              i++, ldesc++, hwdesc++) {
681                 ldesc->hwdesc = hwdesc;
682                 list_add_tail(&ldesc->node, &lhead);
683                 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
684                                         hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
685
686                 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
687                         hwdesc, &ldesc->hwdesc_dma_addr);
688         }
689
690         for (i = 0, desc = dpage->desc;
691              i < ARRAY_SIZE(dpage->desc);
692              i++, desc++) {
693                 dma_async_tx_descriptor_init(&desc->async_tx, dchan);
694                 desc->async_tx.tx_submit = nbpf_tx_submit;
695                 desc->chan = chan;
696                 INIT_LIST_HEAD(&desc->sg);
697                 list_add_tail(&desc->node, &head);
698         }
699
700         /*
701          * This function cannot be called from interrupt context, so, no need to
702          * save flags
703          */
704         spin_lock_irq(&chan->lock);
705         list_splice_tail(&lhead, &chan->free_links);
706         list_splice_tail(&head, &chan->free);
707         list_add(&dpage->node, &chan->desc_page);
708         spin_unlock_irq(&chan->lock);
709
710         return ARRAY_SIZE(dpage->desc);
711 }
712
713 static void nbpf_desc_put(struct nbpf_desc *desc)
714 {
715         struct nbpf_channel *chan = desc->chan;
716         struct nbpf_link_desc *ldesc, *tmp;
717         unsigned long flags;
718
719         spin_lock_irqsave(&chan->lock, flags);
720         list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
721                 list_move(&ldesc->node, &chan->free_links);
722
723         list_add(&desc->node, &chan->free);
724         spin_unlock_irqrestore(&chan->lock, flags);
725 }
726
727 static void nbpf_scan_acked(struct nbpf_channel *chan)
728 {
729         struct nbpf_desc *desc, *tmp;
730         unsigned long flags;
731         LIST_HEAD(head);
732
733         spin_lock_irqsave(&chan->lock, flags);
734         list_for_each_entry_safe(desc, tmp, &chan->done, node)
735                 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
736                         list_move(&desc->node, &head);
737                         desc->user_wait = false;
738                 }
739         spin_unlock_irqrestore(&chan->lock, flags);
740
741         list_for_each_entry_safe(desc, tmp, &head, node) {
742                 list_del(&desc->node);
743                 nbpf_desc_put(desc);
744         }
745 }
746
747 /*
748  * We have to allocate descriptors with the channel lock dropped. This means,
749  * before we re-acquire the lock buffers can be taken already, so we have to
750  * re-check after re-acquiring the lock and possibly retry, if buffers are gone
751  * again.
752  */
753 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
754 {
755         struct nbpf_desc *desc = NULL;
756         struct nbpf_link_desc *ldesc, *prev = NULL;
757
758         nbpf_scan_acked(chan);
759
760         spin_lock_irq(&chan->lock);
761
762         do {
763                 int i = 0, ret;
764
765                 if (list_empty(&chan->free)) {
766                         /* No more free descriptors */
767                         spin_unlock_irq(&chan->lock);
768                         ret = nbpf_desc_page_alloc(chan);
769                         if (ret < 0)
770                                 return NULL;
771                         spin_lock_irq(&chan->lock);
772                         continue;
773                 }
774                 desc = list_first_entry(&chan->free, struct nbpf_desc, node);
775                 list_del(&desc->node);
776
777                 do {
778                         if (list_empty(&chan->free_links)) {
779                                 /* No more free link descriptors */
780                                 spin_unlock_irq(&chan->lock);
781                                 ret = nbpf_desc_page_alloc(chan);
782                                 if (ret < 0) {
783                                         nbpf_desc_put(desc);
784                                         return NULL;
785                                 }
786                                 spin_lock_irq(&chan->lock);
787                                 continue;
788                         }
789
790                         ldesc = list_first_entry(&chan->free_links,
791                                                  struct nbpf_link_desc, node);
792                         ldesc->desc = desc;
793                         if (prev)
794                                 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
795
796                         prev = ldesc;
797                         list_move_tail(&ldesc->node, &desc->sg);
798
799                         i++;
800                 } while (i < len);
801         } while (!desc);
802
803         prev->hwdesc->next = 0;
804
805         spin_unlock_irq(&chan->lock);
806
807         return desc;
808 }
809
810 static void nbpf_chan_idle(struct nbpf_channel *chan)
811 {
812         struct nbpf_desc *desc, *tmp;
813         unsigned long flags;
814         LIST_HEAD(head);
815
816         spin_lock_irqsave(&chan->lock, flags);
817
818         list_splice_init(&chan->done, &head);
819         list_splice_init(&chan->active, &head);
820         list_splice_init(&chan->queued, &head);
821
822         chan->running = NULL;
823
824         spin_unlock_irqrestore(&chan->lock, flags);
825
826         list_for_each_entry_safe(desc, tmp, &head, node) {
827                 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
828                         __func__, desc, desc->async_tx.cookie);
829                 list_del(&desc->node);
830                 nbpf_desc_put(desc);
831         }
832 }
833
834 static int nbpf_pause(struct dma_chan *dchan)
835 {
836         struct nbpf_channel *chan = nbpf_to_chan(dchan);
837
838         dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
839
840         chan->paused = true;
841         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
842         /* See comment in nbpf_prep_one() */
843         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
844
845         return 0;
846 }
847
848 static int nbpf_terminate_all(struct dma_chan *dchan)
849 {
850         struct nbpf_channel *chan = nbpf_to_chan(dchan);
851
852         dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
853         dev_dbg(dchan->device->dev, "Terminating\n");
854
855         nbpf_chan_halt(chan);
856         nbpf_chan_idle(chan);
857
858         return 0;
859 }
860
861 static int nbpf_config(struct dma_chan *dchan,
862                        struct dma_slave_config *config)
863 {
864         struct nbpf_channel *chan = nbpf_to_chan(dchan);
865
866         dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
867
868         /*
869          * We could check config->slave_id to match chan->terminal here,
870          * but with DT they would be coming from the same source, so
871          * such a check would be superflous
872          */
873
874         chan->slave_dst_addr = config->dst_addr;
875         chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
876                                                config->dst_addr_width, 1);
877         chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
878                                                config->dst_addr_width,
879                                                config->dst_maxburst);
880         chan->slave_src_addr = config->src_addr;
881         chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
882                                                config->src_addr_width, 1);
883         chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
884                                                config->src_addr_width,
885                                                config->src_maxburst);
886
887         return 0;
888 }
889
890 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
891                 struct scatterlist *src_sg, struct scatterlist *dst_sg,
892                 size_t len, enum dma_transfer_direction direction,
893                 unsigned long flags)
894 {
895         struct nbpf_link_desc *ldesc;
896         struct scatterlist *mem_sg;
897         struct nbpf_desc *desc;
898         bool inc_src, inc_dst;
899         size_t data_len = 0;
900         int i = 0;
901
902         switch (direction) {
903         case DMA_DEV_TO_MEM:
904                 mem_sg = dst_sg;
905                 inc_src = false;
906                 inc_dst = true;
907                 break;
908
909         case DMA_MEM_TO_DEV:
910                 mem_sg = src_sg;
911                 inc_src = true;
912                 inc_dst = false;
913                 break;
914
915         default:
916         case DMA_MEM_TO_MEM:
917                 mem_sg = src_sg;
918                 inc_src = true;
919                 inc_dst = true;
920         }
921
922         desc = nbpf_desc_get(chan, len);
923         if (!desc)
924                 return NULL;
925
926         desc->async_tx.flags = flags;
927         desc->async_tx.cookie = -EBUSY;
928         desc->user_wait = false;
929
930         /*
931          * This is a private descriptor list, and we own the descriptor. No need
932          * to lock.
933          */
934         list_for_each_entry(ldesc, &desc->sg, node) {
935                 int ret = nbpf_prep_one(ldesc, direction,
936                                         sg_dma_address(src_sg),
937                                         sg_dma_address(dst_sg),
938                                         sg_dma_len(mem_sg),
939                                         i == len - 1);
940                 if (ret < 0) {
941                         nbpf_desc_put(desc);
942                         return NULL;
943                 }
944                 data_len += sg_dma_len(mem_sg);
945                 if (inc_src)
946                         src_sg = sg_next(src_sg);
947                 if (inc_dst)
948                         dst_sg = sg_next(dst_sg);
949                 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
950                 i++;
951         }
952
953         desc->length = data_len;
954
955         /* The user has to return the descriptor to us ASAP via .tx_submit() */
956         return &desc->async_tx;
957 }
958
959 static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
960         struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
961         size_t len, unsigned long flags)
962 {
963         struct nbpf_channel *chan = nbpf_to_chan(dchan);
964         struct scatterlist dst_sg;
965         struct scatterlist src_sg;
966
967         sg_init_table(&dst_sg, 1);
968         sg_init_table(&src_sg, 1);
969
970         sg_dma_address(&dst_sg) = dst;
971         sg_dma_address(&src_sg) = src;
972
973         sg_dma_len(&dst_sg) = len;
974         sg_dma_len(&src_sg) = len;
975
976         dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
977                 __func__, len, &src, &dst);
978
979         return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
980                             DMA_MEM_TO_MEM, flags);
981 }
982
983 static struct dma_async_tx_descriptor *nbpf_prep_memcpy_sg(
984         struct dma_chan *dchan,
985         struct scatterlist *dst_sg, unsigned int dst_nents,
986         struct scatterlist *src_sg, unsigned int src_nents,
987         unsigned long flags)
988 {
989         struct nbpf_channel *chan = nbpf_to_chan(dchan);
990
991         if (dst_nents != src_nents)
992                 return NULL;
993
994         return nbpf_prep_sg(chan, src_sg, dst_sg, src_nents,
995                             DMA_MEM_TO_MEM, flags);
996 }
997
998 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
999         struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1000         enum dma_transfer_direction direction, unsigned long flags, void *context)
1001 {
1002         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1003         struct scatterlist slave_sg;
1004
1005         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1006
1007         sg_init_table(&slave_sg, 1);
1008
1009         switch (direction) {
1010         case DMA_MEM_TO_DEV:
1011                 sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1012                 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1013                                     direction, flags);
1014
1015         case DMA_DEV_TO_MEM:
1016                 sg_dma_address(&slave_sg) = chan->slave_src_addr;
1017                 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1018                                     direction, flags);
1019
1020         default:
1021                 return NULL;
1022         }
1023 }
1024
1025 static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1026 {
1027         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1028         int ret;
1029
1030         INIT_LIST_HEAD(&chan->free);
1031         INIT_LIST_HEAD(&chan->free_links);
1032         INIT_LIST_HEAD(&chan->queued);
1033         INIT_LIST_HEAD(&chan->active);
1034         INIT_LIST_HEAD(&chan->done);
1035
1036         ret = nbpf_desc_page_alloc(chan);
1037         if (ret < 0)
1038                 return ret;
1039
1040         dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1041                 chan->terminal);
1042
1043         nbpf_chan_configure(chan);
1044
1045         return ret;
1046 }
1047
1048 static void nbpf_free_chan_resources(struct dma_chan *dchan)
1049 {
1050         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1051         struct nbpf_desc_page *dpage, *tmp;
1052
1053         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1054
1055         nbpf_chan_halt(chan);
1056         nbpf_chan_idle(chan);
1057         /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1058         nbpf_chan_prepare_default(chan);
1059
1060         list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1061                 struct nbpf_link_desc *ldesc;
1062                 int i;
1063                 list_del(&dpage->node);
1064                 for (i = 0, ldesc = dpage->ldesc;
1065                      i < ARRAY_SIZE(dpage->ldesc);
1066                      i++, ldesc++)
1067                         dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1068                                          sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1069                 free_page((unsigned long)dpage);
1070         }
1071 }
1072
1073 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1074                                       struct of_dma *ofdma)
1075 {
1076         struct nbpf_device *nbpf = ofdma->of_dma_data;
1077         struct dma_chan *dchan;
1078         struct nbpf_channel *chan;
1079
1080         if (dma_spec->args_count != 2)
1081                 return NULL;
1082
1083         dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1084         if (!dchan)
1085                 return NULL;
1086
1087         dev_dbg(dchan->device->dev, "Entry %s(%s)\n", __func__,
1088                 dma_spec->np->name);
1089
1090         chan = nbpf_to_chan(dchan);
1091
1092         chan->terminal = dma_spec->args[0];
1093         chan->flags = dma_spec->args[1];
1094
1095         nbpf_chan_prepare(chan);
1096         nbpf_chan_configure(chan);
1097
1098         return dchan;
1099 }
1100
1101 static void nbpf_chan_tasklet(unsigned long data)
1102 {
1103         struct nbpf_channel *chan = (struct nbpf_channel *)data;
1104         struct nbpf_desc *desc, *tmp;
1105         struct dmaengine_desc_callback cb;
1106
1107         while (!list_empty(&chan->done)) {
1108                 bool found = false, must_put, recycling = false;
1109
1110                 spin_lock_irq(&chan->lock);
1111
1112                 list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1113                         if (!desc->user_wait) {
1114                                 /* Newly completed descriptor, have to process */
1115                                 found = true;
1116                                 break;
1117                         } else if (async_tx_test_ack(&desc->async_tx)) {
1118                                 /*
1119                                  * This descriptor was waiting for a user ACK,
1120                                  * it can be recycled now.
1121                                  */
1122                                 list_del(&desc->node);
1123                                 spin_unlock_irq(&chan->lock);
1124                                 nbpf_desc_put(desc);
1125                                 recycling = true;
1126                                 break;
1127                         }
1128                 }
1129
1130                 if (recycling)
1131                         continue;
1132
1133                 if (!found) {
1134                         /* This can happen if TERMINATE_ALL has been called */
1135                         spin_unlock_irq(&chan->lock);
1136                         break;
1137                 }
1138
1139                 dma_cookie_complete(&desc->async_tx);
1140
1141                 /*
1142                  * With released lock we cannot dereference desc, maybe it's
1143                  * still on the "done" list
1144                  */
1145                 if (async_tx_test_ack(&desc->async_tx)) {
1146                         list_del(&desc->node);
1147                         must_put = true;
1148                 } else {
1149                         desc->user_wait = true;
1150                         must_put = false;
1151                 }
1152
1153                 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1154
1155                 /* ack and callback completed descriptor */
1156                 spin_unlock_irq(&chan->lock);
1157
1158                 dmaengine_desc_callback_invoke(&cb, NULL);
1159
1160                 if (must_put)
1161                         nbpf_desc_put(desc);
1162         }
1163 }
1164
1165 static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1166 {
1167         struct nbpf_channel *chan = dev;
1168         bool done = nbpf_status_get(chan);
1169         struct nbpf_desc *desc;
1170         irqreturn_t ret;
1171         bool bh = false;
1172
1173         if (!done)
1174                 return IRQ_NONE;
1175
1176         nbpf_status_ack(chan);
1177
1178         dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1179
1180         spin_lock(&chan->lock);
1181         desc = chan->running;
1182         if (WARN_ON(!desc)) {
1183                 ret = IRQ_NONE;
1184                 goto unlock;
1185         } else {
1186                 ret = IRQ_HANDLED;
1187                 bh = true;
1188         }
1189
1190         list_move_tail(&desc->node, &chan->done);
1191         chan->running = NULL;
1192
1193         if (!list_empty(&chan->active)) {
1194                 desc = list_first_entry(&chan->active,
1195                                         struct nbpf_desc, node);
1196                 if (!nbpf_start(desc))
1197                         chan->running = desc;
1198         }
1199
1200 unlock:
1201         spin_unlock(&chan->lock);
1202
1203         if (bh)
1204                 tasklet_schedule(&chan->tasklet);
1205
1206         return ret;
1207 }
1208
1209 static irqreturn_t nbpf_err_irq(int irq, void *dev)
1210 {
1211         struct nbpf_device *nbpf = dev;
1212         u32 error = nbpf_error_get(nbpf);
1213
1214         dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1215
1216         if (!error)
1217                 return IRQ_NONE;
1218
1219         do {
1220                 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1221                 /* On error: abort all queued transfers, no callback */
1222                 nbpf_error_clear(chan);
1223                 nbpf_chan_idle(chan);
1224                 error = nbpf_error_get(nbpf);
1225         } while (error);
1226
1227         return IRQ_HANDLED;
1228 }
1229
1230 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1231 {
1232         struct dma_device *dma_dev = &nbpf->dma_dev;
1233         struct nbpf_channel *chan = nbpf->chan + n;
1234         int ret;
1235
1236         chan->nbpf = nbpf;
1237         chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1238         INIT_LIST_HEAD(&chan->desc_page);
1239         spin_lock_init(&chan->lock);
1240         chan->dma_chan.device = dma_dev;
1241         dma_cookie_init(&chan->dma_chan);
1242         nbpf_chan_prepare_default(chan);
1243
1244         dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1245
1246         snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1247
1248         tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan);
1249         ret = devm_request_irq(dma_dev->dev, chan->irq,
1250                         nbpf_chan_irq, IRQF_SHARED,
1251                         chan->name, chan);
1252         if (ret < 0)
1253                 return ret;
1254
1255         /* Add the channel to DMA device channel list */
1256         list_add_tail(&chan->dma_chan.device_node,
1257                       &dma_dev->channels);
1258
1259         return 0;
1260 }
1261
1262 static const struct of_device_id nbpf_match[] = {
1263         {.compatible = "renesas,nbpfaxi64dmac1b4",      .data = &nbpf_cfg[NBPF1B4]},
1264         {.compatible = "renesas,nbpfaxi64dmac1b8",      .data = &nbpf_cfg[NBPF1B8]},
1265         {.compatible = "renesas,nbpfaxi64dmac1b16",     .data = &nbpf_cfg[NBPF1B16]},
1266         {.compatible = "renesas,nbpfaxi64dmac4b4",      .data = &nbpf_cfg[NBPF4B4]},
1267         {.compatible = "renesas,nbpfaxi64dmac4b8",      .data = &nbpf_cfg[NBPF4B8]},
1268         {.compatible = "renesas,nbpfaxi64dmac4b16",     .data = &nbpf_cfg[NBPF4B16]},
1269         {.compatible = "renesas,nbpfaxi64dmac8b4",      .data = &nbpf_cfg[NBPF8B4]},
1270         {.compatible = "renesas,nbpfaxi64dmac8b8",      .data = &nbpf_cfg[NBPF8B8]},
1271         {.compatible = "renesas,nbpfaxi64dmac8b16",     .data = &nbpf_cfg[NBPF8B16]},
1272         {}
1273 };
1274 MODULE_DEVICE_TABLE(of, nbpf_match);
1275
1276 static int nbpf_probe(struct platform_device *pdev)
1277 {
1278         struct device *dev = &pdev->dev;
1279         const struct of_device_id *of_id = of_match_device(nbpf_match, dev);
1280         struct device_node *np = dev->of_node;
1281         struct nbpf_device *nbpf;
1282         struct dma_device *dma_dev;
1283         struct resource *iomem, *irq_res;
1284         const struct nbpf_config *cfg;
1285         int num_channels;
1286         int ret, irq, eirq, i;
1287         int irqbuf[9] /* maximum 8 channels + error IRQ */;
1288         unsigned int irqs = 0;
1289
1290         BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1291
1292         /* DT only */
1293         if (!np || !of_id || !of_id->data)
1294                 return -ENODEV;
1295
1296         cfg = of_id->data;
1297         num_channels = cfg->num_channels;
1298
1299         nbpf = devm_kzalloc(dev, sizeof(*nbpf) + num_channels *
1300                             sizeof(nbpf->chan[0]), GFP_KERNEL);
1301         if (!nbpf)
1302                 return -ENOMEM;
1303
1304         dma_dev = &nbpf->dma_dev;
1305         dma_dev->dev = dev;
1306
1307         iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1308         nbpf->base = devm_ioremap_resource(dev, iomem);
1309         if (IS_ERR(nbpf->base))
1310                 return PTR_ERR(nbpf->base);
1311
1312         nbpf->clk = devm_clk_get(dev, NULL);
1313         if (IS_ERR(nbpf->clk))
1314                 return PTR_ERR(nbpf->clk);
1315
1316         nbpf->config = cfg;
1317
1318         for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1319                 irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1320                 if (!irq_res)
1321                         break;
1322
1323                 for (irq = irq_res->start; irq <= irq_res->end;
1324                      irq++, irqs++)
1325                         irqbuf[irqs] = irq;
1326         }
1327
1328         /*
1329          * 3 IRQ resource schemes are supported:
1330          * 1. 1 shared IRQ for error and all channels
1331          * 2. 2 IRQs: one for error and one shared for all channels
1332          * 3. 1 IRQ for error and an own IRQ for each channel
1333          */
1334         if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1335                 return -ENXIO;
1336
1337         if (irqs == 1) {
1338                 eirq = irqbuf[0];
1339
1340                 for (i = 0; i <= num_channels; i++)
1341                         nbpf->chan[i].irq = irqbuf[0];
1342         } else {
1343                 eirq = platform_get_irq_byname(pdev, "error");
1344                 if (eirq < 0)
1345                         return eirq;
1346
1347                 if (irqs == num_channels + 1) {
1348                         struct nbpf_channel *chan;
1349
1350                         for (i = 0, chan = nbpf->chan; i <= num_channels;
1351                              i++, chan++) {
1352                                 /* Skip the error IRQ */
1353                                 if (irqbuf[i] == eirq)
1354                                         i++;
1355                                 chan->irq = irqbuf[i];
1356                         }
1357
1358                         if (chan != nbpf->chan + num_channels)
1359                                 return -EINVAL;
1360                 } else {
1361                         /* 2 IRQs and more than one channel */
1362                         if (irqbuf[0] == eirq)
1363                                 irq = irqbuf[1];
1364                         else
1365                                 irq = irqbuf[0];
1366
1367                         for (i = 0; i <= num_channels; i++)
1368                                 nbpf->chan[i].irq = irq;
1369                 }
1370         }
1371
1372         ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1373                                IRQF_SHARED, "dma error", nbpf);
1374         if (ret < 0)
1375                 return ret;
1376         nbpf->eirq = eirq;
1377
1378         INIT_LIST_HEAD(&dma_dev->channels);
1379
1380         /* Create DMA Channel */
1381         for (i = 0; i < num_channels; i++) {
1382                 ret = nbpf_chan_probe(nbpf, i);
1383                 if (ret < 0)
1384                         return ret;
1385         }
1386
1387         dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1388         dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1389         dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1390         dma_cap_set(DMA_SG, dma_dev->cap_mask);
1391
1392         /* Common and MEMCPY operations */
1393         dma_dev->device_alloc_chan_resources
1394                 = nbpf_alloc_chan_resources;
1395         dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1396         dma_dev->device_prep_dma_sg = nbpf_prep_memcpy_sg;
1397         dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1398         dma_dev->device_tx_status = nbpf_tx_status;
1399         dma_dev->device_issue_pending = nbpf_issue_pending;
1400
1401         /*
1402          * If we drop support for unaligned MEMCPY buffer addresses and / or
1403          * lengths by setting
1404          * dma_dev->copy_align = 4;
1405          * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1406          * DMA_MEM_TO_MEM
1407          */
1408
1409         /* Compulsory for DMA_SLAVE fields */
1410         dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1411         dma_dev->device_config = nbpf_config;
1412         dma_dev->device_pause = nbpf_pause;
1413         dma_dev->device_terminate_all = nbpf_terminate_all;
1414
1415         dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1416         dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
1417         dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1418
1419         platform_set_drvdata(pdev, nbpf);
1420
1421         ret = clk_prepare_enable(nbpf->clk);
1422         if (ret < 0)
1423                 return ret;
1424
1425         nbpf_configure(nbpf);
1426
1427         ret = dma_async_device_register(dma_dev);
1428         if (ret < 0)
1429                 goto e_clk_off;
1430
1431         ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1432         if (ret < 0)
1433                 goto e_dma_dev_unreg;
1434
1435         return 0;
1436
1437 e_dma_dev_unreg:
1438         dma_async_device_unregister(dma_dev);
1439 e_clk_off:
1440         clk_disable_unprepare(nbpf->clk);
1441
1442         return ret;
1443 }
1444
1445 static int nbpf_remove(struct platform_device *pdev)
1446 {
1447         struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1448         int i;
1449
1450         devm_free_irq(&pdev->dev, nbpf->eirq, nbpf);
1451
1452         for (i = 0; i < nbpf->config->num_channels; i++) {
1453                 struct nbpf_channel *chan = nbpf->chan + i;
1454
1455                 devm_free_irq(&pdev->dev, chan->irq, chan);
1456
1457                 tasklet_kill(&chan->tasklet);
1458         }
1459
1460         of_dma_controller_free(pdev->dev.of_node);
1461         dma_async_device_unregister(&nbpf->dma_dev);
1462         clk_disable_unprepare(nbpf->clk);
1463
1464         return 0;
1465 }
1466
1467 static const struct platform_device_id nbpf_ids[] = {
1468         {"nbpfaxi64dmac1b4",    (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1469         {"nbpfaxi64dmac1b8",    (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1470         {"nbpfaxi64dmac1b16",   (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1471         {"nbpfaxi64dmac4b4",    (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1472         {"nbpfaxi64dmac4b8",    (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1473         {"nbpfaxi64dmac4b16",   (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1474         {"nbpfaxi64dmac8b4",    (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1475         {"nbpfaxi64dmac8b8",    (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1476         {"nbpfaxi64dmac8b16",   (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1477         {},
1478 };
1479 MODULE_DEVICE_TABLE(platform, nbpf_ids);
1480
1481 #ifdef CONFIG_PM
1482 static int nbpf_runtime_suspend(struct device *dev)
1483 {
1484         struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1485         clk_disable_unprepare(nbpf->clk);
1486         return 0;
1487 }
1488
1489 static int nbpf_runtime_resume(struct device *dev)
1490 {
1491         struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1492         return clk_prepare_enable(nbpf->clk);
1493 }
1494 #endif
1495
1496 static const struct dev_pm_ops nbpf_pm_ops = {
1497         SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1498 };
1499
1500 static struct platform_driver nbpf_driver = {
1501         .driver = {
1502                 .name = "dma-nbpf",
1503                 .of_match_table = nbpf_match,
1504                 .pm = &nbpf_pm_ops,
1505         },
1506         .id_table = nbpf_ids,
1507         .probe = nbpf_probe,
1508         .remove = nbpf_remove,
1509 };
1510
1511 module_platform_driver(nbpf_driver);
1512
1513 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1514 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1515 MODULE_LICENSE("GPL v2");