x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / drivers / dma / xgene-dma.c
1 /*
2  * Applied Micro X-Gene SoC DMA engine Driver
3  *
4  * Copyright (c) 2015, Applied Micro Circuits Corporation
5  * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
6  *          Loc Ho <lho@apm.com>
7  *
8  * This program is free software; you can redistribute  it and/or modify it
9  * under  the terms of  the GNU General  Public License as published by the
10  * Free Software Foundation;  either version 2 of the  License, or (at your
11  * option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  *
21  * NOTE: PM support is currently not available.
22  */
23
24 #include <linux/acpi.h>
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dmapool.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/irq.h>
33 #include <linux/module.h>
34 #include <linux/of_device.h>
35
36 #include "dmaengine.h"
37
38 /* X-Gene DMA ring csr registers and bit definations */
39 #define XGENE_DMA_RING_CONFIG                   0x04
40 #define XGENE_DMA_RING_ENABLE                   BIT(31)
41 #define XGENE_DMA_RING_ID                       0x08
42 #define XGENE_DMA_RING_ID_SETUP(v)              ((v) | BIT(31))
43 #define XGENE_DMA_RING_ID_BUF                   0x0C
44 #define XGENE_DMA_RING_ID_BUF_SETUP(v)          (((v) << 9) | BIT(21))
45 #define XGENE_DMA_RING_THRESLD0_SET1            0x30
46 #define XGENE_DMA_RING_THRESLD0_SET1_VAL        0X64
47 #define XGENE_DMA_RING_THRESLD1_SET1            0x34
48 #define XGENE_DMA_RING_THRESLD1_SET1_VAL        0xC8
49 #define XGENE_DMA_RING_HYSTERESIS               0x68
50 #define XGENE_DMA_RING_HYSTERESIS_VAL           0xFFFFFFFF
51 #define XGENE_DMA_RING_STATE                    0x6C
52 #define XGENE_DMA_RING_STATE_WR_BASE            0x70
53 #define XGENE_DMA_RING_NE_INT_MODE              0x017C
54 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v)    \
55         ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
56 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v)  \
57         ((m) &= (~BIT(31 - (v))))
58 #define XGENE_DMA_RING_CLKEN                    0xC208
59 #define XGENE_DMA_RING_SRST                     0xC200
60 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN         0xD070
61 #define XGENE_DMA_RING_BLK_MEM_RDY              0xD074
62 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL          0xFFFFFFFF
63 #define XGENE_DMA_RING_ID_GET(owner, num)       (((owner) << 6) | (num))
64 #define XGENE_DMA_RING_DST_ID(v)                ((1 << 10) | (v))
65 #define XGENE_DMA_RING_CMD_OFFSET               0x2C
66 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v)       ((v) << 6)
67 #define XGENE_DMA_RING_COHERENT_SET(m)          \
68         (((u32 *)(m))[2] |= BIT(4))
69 #define XGENE_DMA_RING_ADDRL_SET(m, v)          \
70         (((u32 *)(m))[2] |= (((v) >> 8) << 5))
71 #define XGENE_DMA_RING_ADDRH_SET(m, v)          \
72         (((u32 *)(m))[3] |= ((v) >> 35))
73 #define XGENE_DMA_RING_ACCEPTLERR_SET(m)        \
74         (((u32 *)(m))[3] |= BIT(19))
75 #define XGENE_DMA_RING_SIZE_SET(m, v)           \
76         (((u32 *)(m))[3] |= ((v) << 23))
77 #define XGENE_DMA_RING_RECOMBBUF_SET(m)         \
78         (((u32 *)(m))[3] |= BIT(27))
79 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m)     \
80         (((u32 *)(m))[3] |= (0x7 << 28))
81 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m)     \
82         (((u32 *)(m))[4] |= 0x3)
83 #define XGENE_DMA_RING_SELTHRSH_SET(m)          \
84         (((u32 *)(m))[4] |= BIT(3))
85 #define XGENE_DMA_RING_TYPE_SET(m, v)           \
86         (((u32 *)(m))[4] |= ((v) << 19))
87
88 /* X-Gene DMA device csr registers and bit definitions */
89 #define XGENE_DMA_IPBRR                         0x0
90 #define XGENE_DMA_DEV_ID_RD(v)                  ((v) & 0x00000FFF)
91 #define XGENE_DMA_BUS_ID_RD(v)                  (((v) >> 12) & 3)
92 #define XGENE_DMA_REV_NO_RD(v)                  (((v) >> 14) & 3)
93 #define XGENE_DMA_GCR                           0x10
94 #define XGENE_DMA_CH_SETUP(v)                   \
95         ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
96 #define XGENE_DMA_ENABLE(v)                     ((v) |= BIT(31))
97 #define XGENE_DMA_DISABLE(v)                    ((v) &= ~BIT(31))
98 #define XGENE_DMA_RAID6_CONT                    0x14
99 #define XGENE_DMA_RAID6_MULTI_CTRL(v)           ((v) << 24)
100 #define XGENE_DMA_INT                           0x70
101 #define XGENE_DMA_INT_MASK                      0x74
102 #define XGENE_DMA_INT_ALL_MASK                  0xFFFFFFFF
103 #define XGENE_DMA_INT_ALL_UNMASK                0x0
104 #define XGENE_DMA_INT_MASK_SHIFT                0x14
105 #define XGENE_DMA_RING_INT0_MASK                0x90A0
106 #define XGENE_DMA_RING_INT1_MASK                0x90A8
107 #define XGENE_DMA_RING_INT2_MASK                0x90B0
108 #define XGENE_DMA_RING_INT3_MASK                0x90B8
109 #define XGENE_DMA_RING_INT4_MASK                0x90C0
110 #define XGENE_DMA_CFG_RING_WQ_ASSOC             0x90E0
111 #define XGENE_DMA_ASSOC_RING_MNGR1              0xFFFFFFFF
112 #define XGENE_DMA_MEM_RAM_SHUTDOWN              0xD070
113 #define XGENE_DMA_BLK_MEM_RDY                   0xD074
114 #define XGENE_DMA_BLK_MEM_RDY_VAL               0xFFFFFFFF
115 #define XGENE_DMA_RING_CMD_SM_OFFSET            0x8000
116
117 /* X-Gene SoC EFUSE csr register and bit defination */
118 #define XGENE_SOC_JTAG1_SHADOW                  0x18
119 #define XGENE_DMA_PQ_DISABLE_MASK               BIT(13)
120
121 /* X-Gene DMA Descriptor format */
122 #define XGENE_DMA_DESC_NV_BIT                   BIT_ULL(50)
123 #define XGENE_DMA_DESC_IN_BIT                   BIT_ULL(55)
124 #define XGENE_DMA_DESC_C_BIT                    BIT_ULL(63)
125 #define XGENE_DMA_DESC_DR_BIT                   BIT_ULL(61)
126 #define XGENE_DMA_DESC_ELERR_POS                46
127 #define XGENE_DMA_DESC_RTYPE_POS                56
128 #define XGENE_DMA_DESC_LERR_POS                 60
129 #define XGENE_DMA_DESC_BUFLEN_POS               48
130 #define XGENE_DMA_DESC_HOENQ_NUM_POS            48
131 #define XGENE_DMA_DESC_ELERR_RD(m)              \
132         (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
133 #define XGENE_DMA_DESC_LERR_RD(m)               \
134         (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
135 #define XGENE_DMA_DESC_STATUS(elerr, lerr)      \
136         (((elerr) << 4) | (lerr))
137
138 /* X-Gene DMA descriptor empty s/w signature */
139 #define XGENE_DMA_DESC_EMPTY_SIGNATURE          ~0ULL
140
141 /* X-Gene DMA configurable parameters defines */
142 #define XGENE_DMA_RING_NUM              512
143 #define XGENE_DMA_BUFNUM                0x0
144 #define XGENE_DMA_CPU_BUFNUM            0x18
145 #define XGENE_DMA_RING_OWNER_DMA        0x03
146 #define XGENE_DMA_RING_OWNER_CPU        0x0F
147 #define XGENE_DMA_RING_TYPE_REGULAR     0x01
148 #define XGENE_DMA_RING_WQ_DESC_SIZE     32      /* 32 Bytes */
149 #define XGENE_DMA_RING_NUM_CONFIG       5
150 #define XGENE_DMA_MAX_CHANNEL           4
151 #define XGENE_DMA_XOR_CHANNEL           0
152 #define XGENE_DMA_PQ_CHANNEL            1
153 #define XGENE_DMA_MAX_BYTE_CNT          0x4000  /* 16 KB */
154 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */
155 #define XGENE_DMA_MAX_XOR_SRC           5
156 #define XGENE_DMA_16K_BUFFER_LEN_CODE   0x0
157 #define XGENE_DMA_INVALID_LEN_CODE      0x7800000000000000ULL
158
159 /* X-Gene DMA descriptor error codes */
160 #define ERR_DESC_AXI                    0x01
161 #define ERR_BAD_DESC                    0x02
162 #define ERR_READ_DATA_AXI               0x03
163 #define ERR_WRITE_DATA_AXI              0x04
164 #define ERR_FBP_TIMEOUT                 0x05
165 #define ERR_ECC                         0x06
166 #define ERR_DIFF_SIZE                   0x08
167 #define ERR_SCT_GAT_LEN                 0x09
168 #define ERR_CRC_ERR                     0x11
169 #define ERR_CHKSUM                      0x12
170 #define ERR_DIF                         0x13
171
172 /* X-Gene DMA error interrupt codes */
173 #define ERR_DIF_SIZE_INT                0x0
174 #define ERR_GS_ERR_INT                  0x1
175 #define ERR_FPB_TIMEO_INT               0x2
176 #define ERR_WFIFO_OVF_INT               0x3
177 #define ERR_RFIFO_OVF_INT               0x4
178 #define ERR_WR_TIMEO_INT                0x5
179 #define ERR_RD_TIMEO_INT                0x6
180 #define ERR_WR_ERR_INT                  0x7
181 #define ERR_RD_ERR_INT                  0x8
182 #define ERR_BAD_DESC_INT                0x9
183 #define ERR_DESC_DST_INT                0xA
184 #define ERR_DESC_SRC_INT                0xB
185
186 /* X-Gene DMA flyby operation code */
187 #define FLYBY_2SRC_XOR                  0x80
188 #define FLYBY_3SRC_XOR                  0x90
189 #define FLYBY_4SRC_XOR                  0xA0
190 #define FLYBY_5SRC_XOR                  0xB0
191
192 /* X-Gene DMA SW descriptor flags */
193 #define XGENE_DMA_FLAG_64B_DESC         BIT(0)
194
195 /* Define to dump X-Gene DMA descriptor */
196 #define XGENE_DMA_DESC_DUMP(desc, m)    \
197         print_hex_dump(KERN_ERR, (m),   \
198                         DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
199
200 #define to_dma_desc_sw(tx)              \
201         container_of(tx, struct xgene_dma_desc_sw, tx)
202 #define to_dma_chan(dchan)              \
203         container_of(dchan, struct xgene_dma_chan, dma_chan)
204
205 #define chan_dbg(chan, fmt, arg...)     \
206         dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
207 #define chan_err(chan, fmt, arg...)     \
208         dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
209
210 struct xgene_dma_desc_hw {
211         __le64 m0;
212         __le64 m1;
213         __le64 m2;
214         __le64 m3;
215 };
216
217 enum xgene_dma_ring_cfgsize {
218         XGENE_DMA_RING_CFG_SIZE_512B,
219         XGENE_DMA_RING_CFG_SIZE_2KB,
220         XGENE_DMA_RING_CFG_SIZE_16KB,
221         XGENE_DMA_RING_CFG_SIZE_64KB,
222         XGENE_DMA_RING_CFG_SIZE_512KB,
223         XGENE_DMA_RING_CFG_SIZE_INVALID
224 };
225
226 struct xgene_dma_ring {
227         struct xgene_dma *pdma;
228         u8 buf_num;
229         u16 id;
230         u16 num;
231         u16 head;
232         u16 owner;
233         u16 slots;
234         u16 dst_ring_num;
235         u32 size;
236         void __iomem *cmd;
237         void __iomem *cmd_base;
238         dma_addr_t desc_paddr;
239         u32 state[XGENE_DMA_RING_NUM_CONFIG];
240         enum xgene_dma_ring_cfgsize cfgsize;
241         union {
242                 void *desc_vaddr;
243                 struct xgene_dma_desc_hw *desc_hw;
244         };
245 };
246
247 struct xgene_dma_desc_sw {
248         struct xgene_dma_desc_hw desc1;
249         struct xgene_dma_desc_hw desc2;
250         u32 flags;
251         struct list_head node;
252         struct list_head tx_list;
253         struct dma_async_tx_descriptor tx;
254 };
255
256 /**
257  * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
258  * @dma_chan: dmaengine channel object member
259  * @pdma: X-Gene DMA device structure reference
260  * @dev: struct device reference for dma mapping api
261  * @id: raw id of this channel
262  * @rx_irq: channel IRQ
263  * @name: name of X-Gene DMA channel
264  * @lock: serializes enqueue/dequeue operations to the descriptor pool
265  * @pending: number of transaction request pushed to DMA controller for
266  *      execution, but still waiting for completion,
267  * @max_outstanding: max number of outstanding request we can push to channel
268  * @ld_pending: descriptors which are queued to run, but have not yet been
269  *      submitted to the hardware for execution
270  * @ld_running: descriptors which are currently being executing by the hardware
271  * @ld_completed: descriptors which have finished execution by the hardware.
272  *      These descriptors have already had their cleanup actions run. They
273  *      are waiting for the ACK bit to be set by the async tx API.
274  * @desc_pool: descriptor pool for DMA operations
275  * @tasklet: bottom half where all completed descriptors cleans
276  * @tx_ring: transmit ring descriptor that we use to prepare actual
277  *      descriptors for further executions
278  * @rx_ring: receive ring descriptor that we use to get completed DMA
279  *      descriptors during cleanup time
280  */
281 struct xgene_dma_chan {
282         struct dma_chan dma_chan;
283         struct xgene_dma *pdma;
284         struct device *dev;
285         int id;
286         int rx_irq;
287         char name[10];
288         spinlock_t lock;
289         int pending;
290         int max_outstanding;
291         struct list_head ld_pending;
292         struct list_head ld_running;
293         struct list_head ld_completed;
294         struct dma_pool *desc_pool;
295         struct tasklet_struct tasklet;
296         struct xgene_dma_ring tx_ring;
297         struct xgene_dma_ring rx_ring;
298 };
299
300 /**
301  * struct xgene_dma - internal representation of an X-Gene DMA device
302  * @err_irq: DMA error irq number
303  * @ring_num: start id number for DMA ring
304  * @csr_dma: base for DMA register access
305  * @csr_ring: base for DMA ring register access
306  * @csr_ring_cmd: base for DMA ring command register access
307  * @csr_efuse: base for efuse register access
308  * @dma_dev: embedded struct dma_device
309  * @chan: reference to X-Gene DMA channels
310  */
311 struct xgene_dma {
312         struct device *dev;
313         struct clk *clk;
314         int err_irq;
315         int ring_num;
316         void __iomem *csr_dma;
317         void __iomem *csr_ring;
318         void __iomem *csr_ring_cmd;
319         void __iomem *csr_efuse;
320         struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
321         struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
322 };
323
324 static const char * const xgene_dma_desc_err[] = {
325         [ERR_DESC_AXI] = "AXI error when reading src/dst link list",
326         [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
327         [ERR_READ_DATA_AXI] = "AXI error when reading data",
328         [ERR_WRITE_DATA_AXI] = "AXI error when writing data",
329         [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
330         [ERR_ECC] = "ECC double bit error",
331         [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
332         [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
333         [ERR_CRC_ERR] = "CRC error",
334         [ERR_CHKSUM] = "Checksum error",
335         [ERR_DIF] = "DIF error",
336 };
337
338 static const char * const xgene_dma_err[] = {
339         [ERR_DIF_SIZE_INT] = "DIF size error",
340         [ERR_GS_ERR_INT] = "Gather scatter not same size error",
341         [ERR_FPB_TIMEO_INT] = "Free pool time out error",
342         [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
343         [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
344         [ERR_WR_TIMEO_INT] = "Write time out error",
345         [ERR_RD_TIMEO_INT] = "Read time out error",
346         [ERR_WR_ERR_INT] = "HBF bus write error",
347         [ERR_RD_ERR_INT] = "HBF bus read error",
348         [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
349         [ERR_DESC_DST_INT] = "HFB reading dst link address error",
350         [ERR_DESC_SRC_INT] = "HFB reading src link address error",
351 };
352
353 static bool is_pq_enabled(struct xgene_dma *pdma)
354 {
355         u32 val;
356
357         val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
358         return !(val & XGENE_DMA_PQ_DISABLE_MASK);
359 }
360
361 static u64 xgene_dma_encode_len(size_t len)
362 {
363         return (len < XGENE_DMA_MAX_BYTE_CNT) ?
364                 ((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
365                 XGENE_DMA_16K_BUFFER_LEN_CODE;
366 }
367
368 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
369 {
370         static u8 flyby_type[] = {
371                 FLYBY_2SRC_XOR, /* Dummy */
372                 FLYBY_2SRC_XOR, /* Dummy */
373                 FLYBY_2SRC_XOR,
374                 FLYBY_3SRC_XOR,
375                 FLYBY_4SRC_XOR,
376                 FLYBY_5SRC_XOR
377         };
378
379         return flyby_type[src_cnt];
380 }
381
382 static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
383                                      dma_addr_t *paddr)
384 {
385         size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
386                         *len : XGENE_DMA_MAX_BYTE_CNT;
387
388         *ext8 |= cpu_to_le64(*paddr);
389         *ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
390         *len -= nbytes;
391         *paddr += nbytes;
392 }
393
394 static void xgene_dma_invalidate_buffer(__le64 *ext8)
395 {
396         *ext8 |= cpu_to_le64(XGENE_DMA_INVALID_LEN_CODE);
397 }
398
399 static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
400 {
401         switch (idx) {
402         case 0:
403                 return &desc->m1;
404         case 1:
405                 return &desc->m0;
406         case 2:
407                 return &desc->m3;
408         case 3:
409                 return &desc->m2;
410         default:
411                 pr_err("Invalid dma descriptor index\n");
412         }
413
414         return NULL;
415 }
416
417 static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
418                                 u16 dst_ring_num)
419 {
420         desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
421         desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
422                                 XGENE_DMA_DESC_RTYPE_POS);
423         desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
424         desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
425                                 XGENE_DMA_DESC_HOENQ_NUM_POS);
426 }
427
428 static void xgene_dma_prep_cpy_desc(struct xgene_dma_chan *chan,
429                                     struct xgene_dma_desc_sw *desc_sw,
430                                     dma_addr_t dst, dma_addr_t src,
431                                     size_t len)
432 {
433         struct xgene_dma_desc_hw *desc1, *desc2;
434         int i;
435
436         /* Get 1st descriptor */
437         desc1 = &desc_sw->desc1;
438         xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
439
440         /* Set destination address */
441         desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
442         desc1->m3 |= cpu_to_le64(dst);
443
444         /* Set 1st source address */
445         xgene_dma_set_src_buffer(&desc1->m1, &len, &src);
446
447         if (!len)
448                 return;
449
450         /*
451          * We need to split this source buffer,
452          * and need to use 2nd descriptor
453          */
454         desc2 = &desc_sw->desc2;
455         desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
456
457         /* Set 2nd to 5th source address */
458         for (i = 0; i < 4 && len; i++)
459                 xgene_dma_set_src_buffer(xgene_dma_lookup_ext8(desc2, i),
460                                          &len, &src);
461
462         /* Invalidate unused source address field */
463         for (; i < 4; i++)
464                 xgene_dma_invalidate_buffer(xgene_dma_lookup_ext8(desc2, i));
465
466         /* Updated flag that we have prepared 64B descriptor */
467         desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
468 }
469
470 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
471                                     struct xgene_dma_desc_sw *desc_sw,
472                                     dma_addr_t *dst, dma_addr_t *src,
473                                     u32 src_cnt, size_t *nbytes,
474                                     const u8 *scf)
475 {
476         struct xgene_dma_desc_hw *desc1, *desc2;
477         size_t len = *nbytes;
478         int i;
479
480         desc1 = &desc_sw->desc1;
481         desc2 = &desc_sw->desc2;
482
483         /* Initialize DMA descriptor */
484         xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
485
486         /* Set destination address */
487         desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
488         desc1->m3 |= cpu_to_le64(*dst);
489
490         /* We have multiple source addresses, so need to set NV bit*/
491         desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
492
493         /* Set flyby opcode */
494         desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
495
496         /* Set 1st to 5th source addresses */
497         for (i = 0; i < src_cnt; i++) {
498                 len = *nbytes;
499                 xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
500                                          xgene_dma_lookup_ext8(desc2, i - 1),
501                                          &len, &src[i]);
502                 desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
503         }
504
505         /* Update meta data */
506         *nbytes = len;
507         *dst += XGENE_DMA_MAX_BYTE_CNT;
508
509         /* We need always 64B descriptor to perform xor or pq operations */
510         desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
511 }
512
513 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
514 {
515         struct xgene_dma_desc_sw *desc;
516         struct xgene_dma_chan *chan;
517         dma_cookie_t cookie;
518
519         if (unlikely(!tx))
520                 return -EINVAL;
521
522         chan = to_dma_chan(tx->chan);
523         desc = to_dma_desc_sw(tx);
524
525         spin_lock_bh(&chan->lock);
526
527         cookie = dma_cookie_assign(tx);
528
529         /* Add this transaction list onto the tail of the pending queue */
530         list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
531
532         spin_unlock_bh(&chan->lock);
533
534         return cookie;
535 }
536
537 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
538                                        struct xgene_dma_desc_sw *desc)
539 {
540         list_del(&desc->node);
541         chan_dbg(chan, "LD %p free\n", desc);
542         dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
543 }
544
545 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
546                                  struct xgene_dma_chan *chan)
547 {
548         struct xgene_dma_desc_sw *desc;
549         dma_addr_t phys;
550
551         desc = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
552         if (!desc) {
553                 chan_err(chan, "Failed to allocate LDs\n");
554                 return NULL;
555         }
556
557         INIT_LIST_HEAD(&desc->tx_list);
558         desc->tx.phys = phys;
559         desc->tx.tx_submit = xgene_dma_tx_submit;
560         dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
561
562         chan_dbg(chan, "LD %p allocated\n", desc);
563
564         return desc;
565 }
566
567 /**
568  * xgene_dma_clean_completed_descriptor - free all descriptors which
569  * has been completed and acked
570  * @chan: X-Gene DMA channel
571  *
572  * This function is used on all completed and acked descriptors.
573  */
574 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
575 {
576         struct xgene_dma_desc_sw *desc, *_desc;
577
578         /* Run the callback for each descriptor, in order */
579         list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
580                 if (async_tx_test_ack(&desc->tx))
581                         xgene_dma_clean_descriptor(chan, desc);
582         }
583 }
584
585 /**
586  * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
587  * @chan: X-Gene DMA channel
588  * @desc: descriptor to cleanup and free
589  *
590  * This function is used on a descriptor which has been executed by the DMA
591  * controller. It will run any callbacks, submit any dependencies.
592  */
593 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
594                                               struct xgene_dma_desc_sw *desc)
595 {
596         struct dma_async_tx_descriptor *tx = &desc->tx;
597
598         /*
599          * If this is not the last transaction in the group,
600          * then no need to complete cookie and run any callback as
601          * this is not the tx_descriptor which had been sent to caller
602          * of this DMA request
603          */
604
605         if (tx->cookie == 0)
606                 return;
607
608         dma_cookie_complete(tx);
609         dma_descriptor_unmap(tx);
610
611         /* Run the link descriptor callback function */
612         dmaengine_desc_get_callback_invoke(tx, NULL);
613
614         /* Run any dependencies */
615         dma_run_dependencies(tx);
616 }
617
618 /**
619  * xgene_dma_clean_running_descriptor - move the completed descriptor from
620  * ld_running to ld_completed
621  * @chan: X-Gene DMA channel
622  * @desc: the descriptor which is completed
623  *
624  * Free the descriptor directly if acked by async_tx api,
625  * else move it to queue ld_completed.
626  */
627 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
628                                                struct xgene_dma_desc_sw *desc)
629 {
630         /* Remove from the list of running transactions */
631         list_del(&desc->node);
632
633         /*
634          * the client is allowed to attach dependent operations
635          * until 'ack' is set
636          */
637         if (!async_tx_test_ack(&desc->tx)) {
638                 /*
639                  * Move this descriptor to the list of descriptors which is
640                  * completed, but still awaiting the 'ack' bit to be set.
641                  */
642                 list_add_tail(&desc->node, &chan->ld_completed);
643                 return;
644         }
645
646         chan_dbg(chan, "LD %p free\n", desc);
647         dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
648 }
649
650 static void xgene_chan_xfer_request(struct xgene_dma_chan *chan,
651                                     struct xgene_dma_desc_sw *desc_sw)
652 {
653         struct xgene_dma_ring *ring = &chan->tx_ring;
654         struct xgene_dma_desc_hw *desc_hw;
655
656         /* Get hw descriptor from DMA tx ring */
657         desc_hw = &ring->desc_hw[ring->head];
658
659         /*
660          * Increment the head count to point next
661          * descriptor for next time
662          */
663         if (++ring->head == ring->slots)
664                 ring->head = 0;
665
666         /* Copy prepared sw descriptor data to hw descriptor */
667         memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
668
669         /*
670          * Check if we have prepared 64B descriptor,
671          * in this case we need one more hw descriptor
672          */
673         if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
674                 desc_hw = &ring->desc_hw[ring->head];
675
676                 if (++ring->head == ring->slots)
677                         ring->head = 0;
678
679                 memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
680         }
681
682         /* Increment the pending transaction count */
683         chan->pending += ((desc_sw->flags &
684                           XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
685
686         /* Notify the hw that we have descriptor ready for execution */
687         iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
688                   2 : 1, ring->cmd);
689 }
690
691 /**
692  * xgene_chan_xfer_ld_pending - push any pending transactions to hw
693  * @chan : X-Gene DMA channel
694  *
695  * LOCKING: must hold chan->lock
696  */
697 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
698 {
699         struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
700
701         /*
702          * If the list of pending descriptors is empty, then we
703          * don't need to do any work at all
704          */
705         if (list_empty(&chan->ld_pending)) {
706                 chan_dbg(chan, "No pending LDs\n");
707                 return;
708         }
709
710         /*
711          * Move elements from the queue of pending transactions onto the list
712          * of running transactions and push it to hw for further executions
713          */
714         list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
715                 /*
716                  * Check if have pushed max number of transactions to hw
717                  * as capable, so let's stop here and will push remaining
718                  * elements from pening ld queue after completing some
719                  * descriptors that we have already pushed
720                  */
721                 if (chan->pending >= chan->max_outstanding)
722                         return;
723
724                 xgene_chan_xfer_request(chan, desc_sw);
725
726                 /*
727                  * Delete this element from ld pending queue and append it to
728                  * ld running queue
729                  */
730                 list_move_tail(&desc_sw->node, &chan->ld_running);
731         }
732 }
733
734 /**
735  * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
736  * and move them to ld_completed to free until flag 'ack' is set
737  * @chan: X-Gene DMA channel
738  *
739  * This function is used on descriptors which have been executed by the DMA
740  * controller. It will run any callbacks, submit any dependencies, then
741  * free these descriptors if flag 'ack' is set.
742  */
743 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
744 {
745         struct xgene_dma_ring *ring = &chan->rx_ring;
746         struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
747         struct xgene_dma_desc_hw *desc_hw;
748         struct list_head ld_completed;
749         u8 status;
750
751         INIT_LIST_HEAD(&ld_completed);
752
753         spin_lock_bh(&chan->lock);
754
755         /* Clean already completed and acked descriptors */
756         xgene_dma_clean_completed_descriptor(chan);
757
758         /* Move all completed descriptors to ld completed queue, in order */
759         list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
760                 /* Get subsequent hw descriptor from DMA rx ring */
761                 desc_hw = &ring->desc_hw[ring->head];
762
763                 /* Check if this descriptor has been completed */
764                 if (unlikely(le64_to_cpu(desc_hw->m0) ==
765                              XGENE_DMA_DESC_EMPTY_SIGNATURE))
766                         break;
767
768                 if (++ring->head == ring->slots)
769                         ring->head = 0;
770
771                 /* Check if we have any error with DMA transactions */
772                 status = XGENE_DMA_DESC_STATUS(
773                                 XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
774                                                         desc_hw->m0)),
775                                 XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
776                                                        desc_hw->m0)));
777                 if (status) {
778                         /* Print the DMA error type */
779                         chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
780
781                         /*
782                          * We have DMA transactions error here. Dump DMA Tx
783                          * and Rx descriptors for this request */
784                         XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
785                                             "X-Gene DMA TX DESC1: ");
786
787                         if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
788                                 XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
789                                                     "X-Gene DMA TX DESC2: ");
790
791                         XGENE_DMA_DESC_DUMP(desc_hw,
792                                             "X-Gene DMA RX ERR DESC: ");
793                 }
794
795                 /* Notify the hw about this completed descriptor */
796                 iowrite32(-1, ring->cmd);
797
798                 /* Mark this hw descriptor as processed */
799                 desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
800
801                 /*
802                  * Decrement the pending transaction count
803                  * as we have processed one
804                  */
805                 chan->pending -= ((desc_sw->flags &
806                                   XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
807
808                 /*
809                  * Delete this node from ld running queue and append it to
810                  * ld completed queue for further processing
811                  */
812                 list_move_tail(&desc_sw->node, &ld_completed);
813         }
814
815         /*
816          * Start any pending transactions automatically
817          * In the ideal case, we keep the DMA controller busy while we go
818          * ahead and free the descriptors below.
819          */
820         xgene_chan_xfer_ld_pending(chan);
821
822         spin_unlock_bh(&chan->lock);
823
824         /* Run the callback for each descriptor, in order */
825         list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) {
826                 xgene_dma_run_tx_complete_actions(chan, desc_sw);
827                 xgene_dma_clean_running_descriptor(chan, desc_sw);
828         }
829 }
830
831 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
832 {
833         struct xgene_dma_chan *chan = to_dma_chan(dchan);
834
835         /* Has this channel already been allocated? */
836         if (chan->desc_pool)
837                 return 1;
838
839         chan->desc_pool = dma_pool_create(chan->name, chan->dev,
840                                           sizeof(struct xgene_dma_desc_sw),
841                                           0, 0);
842         if (!chan->desc_pool) {
843                 chan_err(chan, "Failed to allocate descriptor pool\n");
844                 return -ENOMEM;
845         }
846
847         chan_dbg(chan, "Allocate descripto pool\n");
848
849         return 1;
850 }
851
852 /**
853  * xgene_dma_free_desc_list - Free all descriptors in a queue
854  * @chan: X-Gene DMA channel
855  * @list: the list to free
856  *
857  * LOCKING: must hold chan->lock
858  */
859 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
860                                      struct list_head *list)
861 {
862         struct xgene_dma_desc_sw *desc, *_desc;
863
864         list_for_each_entry_safe(desc, _desc, list, node)
865                 xgene_dma_clean_descriptor(chan, desc);
866 }
867
868 static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
869 {
870         struct xgene_dma_chan *chan = to_dma_chan(dchan);
871
872         chan_dbg(chan, "Free all resources\n");
873
874         if (!chan->desc_pool)
875                 return;
876
877         /* Process all running descriptor */
878         xgene_dma_cleanup_descriptors(chan);
879
880         spin_lock_bh(&chan->lock);
881
882         /* Clean all link descriptor queues */
883         xgene_dma_free_desc_list(chan, &chan->ld_pending);
884         xgene_dma_free_desc_list(chan, &chan->ld_running);
885         xgene_dma_free_desc_list(chan, &chan->ld_completed);
886
887         spin_unlock_bh(&chan->lock);
888
889         /* Delete this channel DMA pool */
890         dma_pool_destroy(chan->desc_pool);
891         chan->desc_pool = NULL;
892 }
893
894 static struct dma_async_tx_descriptor *xgene_dma_prep_sg(
895         struct dma_chan *dchan, struct scatterlist *dst_sg,
896         u32 dst_nents, struct scatterlist *src_sg,
897         u32 src_nents, unsigned long flags)
898 {
899         struct xgene_dma_desc_sw *first = NULL, *new = NULL;
900         struct xgene_dma_chan *chan;
901         size_t dst_avail, src_avail;
902         dma_addr_t dst, src;
903         size_t len;
904
905         if (unlikely(!dchan))
906                 return NULL;
907
908         if (unlikely(!dst_nents || !src_nents))
909                 return NULL;
910
911         if (unlikely(!dst_sg || !src_sg))
912                 return NULL;
913
914         chan = to_dma_chan(dchan);
915
916         /* Get prepared for the loop */
917         dst_avail = sg_dma_len(dst_sg);
918         src_avail = sg_dma_len(src_sg);
919         dst_nents--;
920         src_nents--;
921
922         /* Run until we are out of scatterlist entries */
923         while (true) {
924                 /* Create the largest transaction possible */
925                 len = min_t(size_t, src_avail, dst_avail);
926                 len = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
927                 if (len == 0)
928                         goto fetch;
929
930                 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
931                 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
932
933                 /* Allocate the link descriptor from DMA pool */
934                 new = xgene_dma_alloc_descriptor(chan);
935                 if (!new)
936                         goto fail;
937
938                 /* Prepare DMA descriptor */
939                 xgene_dma_prep_cpy_desc(chan, new, dst, src, len);
940
941                 if (!first)
942                         first = new;
943
944                 new->tx.cookie = 0;
945                 async_tx_ack(&new->tx);
946
947                 /* update metadata */
948                 dst_avail -= len;
949                 src_avail -= len;
950
951                 /* Insert the link descriptor to the LD ring */
952                 list_add_tail(&new->node, &first->tx_list);
953
954 fetch:
955                 /* fetch the next dst scatterlist entry */
956                 if (dst_avail == 0) {
957                         /* no more entries: we're done */
958                         if (dst_nents == 0)
959                                 break;
960
961                         /* fetch the next entry: if there are no more: done */
962                         dst_sg = sg_next(dst_sg);
963                         if (!dst_sg)
964                                 break;
965
966                         dst_nents--;
967                         dst_avail = sg_dma_len(dst_sg);
968                 }
969
970                 /* fetch the next src scatterlist entry */
971                 if (src_avail == 0) {
972                         /* no more entries: we're done */
973                         if (src_nents == 0)
974                                 break;
975
976                         /* fetch the next entry: if there are no more: done */
977                         src_sg = sg_next(src_sg);
978                         if (!src_sg)
979                                 break;
980
981                         src_nents--;
982                         src_avail = sg_dma_len(src_sg);
983                 }
984         }
985
986         if (!new)
987                 return NULL;
988
989         new->tx.flags = flags; /* client is in control of this ack */
990         new->tx.cookie = -EBUSY;
991         list_splice(&first->tx_list, &new->tx_list);
992
993         return &new->tx;
994 fail:
995         if (!first)
996                 return NULL;
997
998         xgene_dma_free_desc_list(chan, &first->tx_list);
999         return NULL;
1000 }
1001
1002 static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
1003         struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src,
1004         u32 src_cnt, size_t len, unsigned long flags)
1005 {
1006         struct xgene_dma_desc_sw *first = NULL, *new;
1007         struct xgene_dma_chan *chan;
1008         static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
1009                                 0x01, 0x01, 0x01, 0x01, 0x01};
1010
1011         if (unlikely(!dchan || !len))
1012                 return NULL;
1013
1014         chan = to_dma_chan(dchan);
1015
1016         do {
1017                 /* Allocate the link descriptor from DMA pool */
1018                 new = xgene_dma_alloc_descriptor(chan);
1019                 if (!new)
1020                         goto fail;
1021
1022                 /* Prepare xor DMA descriptor */
1023                 xgene_dma_prep_xor_desc(chan, new, &dst, src,
1024                                         src_cnt, &len, multi);
1025
1026                 if (!first)
1027                         first = new;
1028
1029                 new->tx.cookie = 0;
1030                 async_tx_ack(&new->tx);
1031
1032                 /* Insert the link descriptor to the LD ring */
1033                 list_add_tail(&new->node, &first->tx_list);
1034         } while (len);
1035
1036         new->tx.flags = flags; /* client is in control of this ack */
1037         new->tx.cookie = -EBUSY;
1038         list_splice(&first->tx_list, &new->tx_list);
1039
1040         return &new->tx;
1041
1042 fail:
1043         if (!first)
1044                 return NULL;
1045
1046         xgene_dma_free_desc_list(chan, &first->tx_list);
1047         return NULL;
1048 }
1049
1050 static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
1051         struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
1052         u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
1053 {
1054         struct xgene_dma_desc_sw *first = NULL, *new;
1055         struct xgene_dma_chan *chan;
1056         size_t _len = len;
1057         dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
1058         static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
1059
1060         if (unlikely(!dchan || !len))
1061                 return NULL;
1062
1063         chan = to_dma_chan(dchan);
1064
1065         /*
1066          * Save source addresses on local variable, may be we have to
1067          * prepare two descriptor to generate P and Q if both enabled
1068          * in the flags by client
1069          */
1070         memcpy(_src, src, sizeof(*src) * src_cnt);
1071
1072         if (flags & DMA_PREP_PQ_DISABLE_P)
1073                 len = 0;
1074
1075         if (flags & DMA_PREP_PQ_DISABLE_Q)
1076                 _len = 0;
1077
1078         do {
1079                 /* Allocate the link descriptor from DMA pool */
1080                 new = xgene_dma_alloc_descriptor(chan);
1081                 if (!new)
1082                         goto fail;
1083
1084                 if (!first)
1085                         first = new;
1086
1087                 new->tx.cookie = 0;
1088                 async_tx_ack(&new->tx);
1089
1090                 /* Insert the link descriptor to the LD ring */
1091                 list_add_tail(&new->node, &first->tx_list);
1092
1093                 /*
1094                  * Prepare DMA descriptor to generate P,
1095                  * if DMA_PREP_PQ_DISABLE_P flag is not set
1096                  */
1097                 if (len) {
1098                         xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
1099                                                 src_cnt, &len, multi);
1100                         continue;
1101                 }
1102
1103                 /*
1104                  * Prepare DMA descriptor to generate Q,
1105                  * if DMA_PREP_PQ_DISABLE_Q flag is not set
1106                  */
1107                 if (_len) {
1108                         xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
1109                                                 src_cnt, &_len, scf);
1110                 }
1111         } while (len || _len);
1112
1113         new->tx.flags = flags; /* client is in control of this ack */
1114         new->tx.cookie = -EBUSY;
1115         list_splice(&first->tx_list, &new->tx_list);
1116
1117         return &new->tx;
1118
1119 fail:
1120         if (!first)
1121                 return NULL;
1122
1123         xgene_dma_free_desc_list(chan, &first->tx_list);
1124         return NULL;
1125 }
1126
1127 static void xgene_dma_issue_pending(struct dma_chan *dchan)
1128 {
1129         struct xgene_dma_chan *chan = to_dma_chan(dchan);
1130
1131         spin_lock_bh(&chan->lock);
1132         xgene_chan_xfer_ld_pending(chan);
1133         spin_unlock_bh(&chan->lock);
1134 }
1135
1136 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
1137                                            dma_cookie_t cookie,
1138                                            struct dma_tx_state *txstate)
1139 {
1140         return dma_cookie_status(dchan, cookie, txstate);
1141 }
1142
1143 static void xgene_dma_tasklet_cb(unsigned long data)
1144 {
1145         struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data;
1146
1147         /* Run all cleanup for descriptors which have been completed */
1148         xgene_dma_cleanup_descriptors(chan);
1149
1150         /* Re-enable DMA channel IRQ */
1151         enable_irq(chan->rx_irq);
1152 }
1153
1154 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
1155 {
1156         struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
1157
1158         BUG_ON(!chan);
1159
1160         /*
1161          * Disable DMA channel IRQ until we process completed
1162          * descriptors
1163          */
1164         disable_irq_nosync(chan->rx_irq);
1165
1166         /*
1167          * Schedule the tasklet to handle all cleanup of the current
1168          * transaction. It will start a new transaction if there is
1169          * one pending.
1170          */
1171         tasklet_schedule(&chan->tasklet);
1172
1173         return IRQ_HANDLED;
1174 }
1175
1176 static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1177 {
1178         struct xgene_dma *pdma = (struct xgene_dma *)id;
1179         unsigned long int_mask;
1180         u32 val, i;
1181
1182         val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1183
1184         /* Clear DMA interrupts */
1185         iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1186
1187         /* Print DMA error info */
1188         int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1189         for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1190                 dev_err(pdma->dev,
1191                         "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1192
1193         return IRQ_HANDLED;
1194 }
1195
1196 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1197 {
1198         int i;
1199
1200         iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1201
1202         for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1203                 iowrite32(ring->state[i], ring->pdma->csr_ring +
1204                           XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1205 }
1206
1207 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1208 {
1209         memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1210         xgene_dma_wr_ring_state(ring);
1211 }
1212
1213 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1214 {
1215         void *ring_cfg = ring->state;
1216         u64 addr = ring->desc_paddr;
1217         u32 i, val;
1218
1219         ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1220
1221         /* Clear DMA ring state */
1222         xgene_dma_clr_ring_state(ring);
1223
1224         /* Set DMA ring type */
1225         XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1226
1227         if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1228                 /* Set recombination buffer and timeout */
1229                 XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1230                 XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1231                 XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1232         }
1233
1234         /* Initialize DMA ring state */
1235         XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1236         XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1237         XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1238         XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1239         XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1240         XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1241
1242         /* Write DMA ring configurations */
1243         xgene_dma_wr_ring_state(ring);
1244
1245         /* Set DMA ring id */
1246         iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1247                   ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1248
1249         /* Set DMA ring buffer */
1250         iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1251                   ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1252
1253         if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1254                 return;
1255
1256         /* Set empty signature to DMA Rx ring descriptors */
1257         for (i = 0; i < ring->slots; i++) {
1258                 struct xgene_dma_desc_hw *desc;
1259
1260                 desc = &ring->desc_hw[i];
1261                 desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1262         }
1263
1264         /* Enable DMA Rx ring interrupt */
1265         val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1266         XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1267         iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1268 }
1269
1270 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1271 {
1272         u32 ring_id, val;
1273
1274         if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1275                 /* Disable DMA Rx ring interrupt */
1276                 val = ioread32(ring->pdma->csr_ring +
1277                                XGENE_DMA_RING_NE_INT_MODE);
1278                 XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1279                 iowrite32(val, ring->pdma->csr_ring +
1280                           XGENE_DMA_RING_NE_INT_MODE);
1281         }
1282
1283         /* Clear DMA ring state */
1284         ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1285         iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1286
1287         iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1288         xgene_dma_clr_ring_state(ring);
1289 }
1290
1291 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1292 {
1293         ring->cmd_base = ring->pdma->csr_ring_cmd +
1294                                 XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1295                                                           XGENE_DMA_RING_NUM));
1296
1297         ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1298 }
1299
1300 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1301                                    enum xgene_dma_ring_cfgsize cfgsize)
1302 {
1303         int size;
1304
1305         switch (cfgsize) {
1306         case XGENE_DMA_RING_CFG_SIZE_512B:
1307                 size = 0x200;
1308                 break;
1309         case XGENE_DMA_RING_CFG_SIZE_2KB:
1310                 size = 0x800;
1311                 break;
1312         case XGENE_DMA_RING_CFG_SIZE_16KB:
1313                 size = 0x4000;
1314                 break;
1315         case XGENE_DMA_RING_CFG_SIZE_64KB:
1316                 size = 0x10000;
1317                 break;
1318         case XGENE_DMA_RING_CFG_SIZE_512KB:
1319                 size = 0x80000;
1320                 break;
1321         default:
1322                 chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1323                 return -EINVAL;
1324         }
1325
1326         return size;
1327 }
1328
1329 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1330 {
1331         /* Clear DMA ring configurations */
1332         xgene_dma_clear_ring(ring);
1333
1334         /* De-allocate DMA ring descriptor */
1335         if (ring->desc_vaddr) {
1336                 dma_free_coherent(ring->pdma->dev, ring->size,
1337                                   ring->desc_vaddr, ring->desc_paddr);
1338                 ring->desc_vaddr = NULL;
1339         }
1340 }
1341
1342 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1343 {
1344         xgene_dma_delete_ring_one(&chan->rx_ring);
1345         xgene_dma_delete_ring_one(&chan->tx_ring);
1346 }
1347
1348 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1349                                      struct xgene_dma_ring *ring,
1350                                      enum xgene_dma_ring_cfgsize cfgsize)
1351 {
1352         int ret;
1353
1354         /* Setup DMA ring descriptor variables */
1355         ring->pdma = chan->pdma;
1356         ring->cfgsize = cfgsize;
1357         ring->num = chan->pdma->ring_num++;
1358         ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1359
1360         ret = xgene_dma_get_ring_size(chan, cfgsize);
1361         if (ret <= 0)
1362                 return ret;
1363         ring->size = ret;
1364
1365         /* Allocate memory for DMA ring descriptor */
1366         ring->desc_vaddr = dma_zalloc_coherent(chan->dev, ring->size,
1367                                                &ring->desc_paddr, GFP_KERNEL);
1368         if (!ring->desc_vaddr) {
1369                 chan_err(chan, "Failed to allocate ring desc\n");
1370                 return -ENOMEM;
1371         }
1372
1373         /* Configure and enable DMA ring */
1374         xgene_dma_set_ring_cmd(ring);
1375         xgene_dma_setup_ring(ring);
1376
1377         return 0;
1378 }
1379
1380 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1381 {
1382         struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1383         struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1384         int ret;
1385
1386         /* Create DMA Rx ring descriptor */
1387         rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1388         rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1389
1390         ret = xgene_dma_create_ring_one(chan, rx_ring,
1391                                         XGENE_DMA_RING_CFG_SIZE_64KB);
1392         if (ret)
1393                 return ret;
1394
1395         chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1396                  rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1397
1398         /* Create DMA Tx ring descriptor */
1399         tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1400         tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1401
1402         ret = xgene_dma_create_ring_one(chan, tx_ring,
1403                                         XGENE_DMA_RING_CFG_SIZE_64KB);
1404         if (ret) {
1405                 xgene_dma_delete_ring_one(rx_ring);
1406                 return ret;
1407         }
1408
1409         tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1410
1411         chan_dbg(chan,
1412                  "Tx ring id 0x%X num %d desc 0x%p\n",
1413                  tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1414
1415         /* Set the max outstanding request possible to this channel */
1416         chan->max_outstanding = tx_ring->slots;
1417
1418         return ret;
1419 }
1420
1421 static int xgene_dma_init_rings(struct xgene_dma *pdma)
1422 {
1423         int ret, i, j;
1424
1425         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1426                 ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1427                 if (ret) {
1428                         for (j = 0; j < i; j++)
1429                                 xgene_dma_delete_chan_rings(&pdma->chan[j]);
1430                         return ret;
1431                 }
1432         }
1433
1434         return ret;
1435 }
1436
1437 static void xgene_dma_enable(struct xgene_dma *pdma)
1438 {
1439         u32 val;
1440
1441         /* Configure and enable DMA engine */
1442         val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1443         XGENE_DMA_CH_SETUP(val);
1444         XGENE_DMA_ENABLE(val);
1445         iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1446 }
1447
1448 static void xgene_dma_disable(struct xgene_dma *pdma)
1449 {
1450         u32 val;
1451
1452         val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1453         XGENE_DMA_DISABLE(val);
1454         iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1455 }
1456
1457 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1458 {
1459         /*
1460          * Mask DMA ring overflow, underflow and
1461          * AXI write/read error interrupts
1462          */
1463         iowrite32(XGENE_DMA_INT_ALL_MASK,
1464                   pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1465         iowrite32(XGENE_DMA_INT_ALL_MASK,
1466                   pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1467         iowrite32(XGENE_DMA_INT_ALL_MASK,
1468                   pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1469         iowrite32(XGENE_DMA_INT_ALL_MASK,
1470                   pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1471         iowrite32(XGENE_DMA_INT_ALL_MASK,
1472                   pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1473
1474         /* Mask DMA error interrupts */
1475         iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1476 }
1477
1478 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1479 {
1480         /*
1481          * Unmask DMA ring overflow, underflow and
1482          * AXI write/read error interrupts
1483          */
1484         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1485                   pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1486         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1487                   pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1488         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1489                   pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1490         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1491                   pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1492         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1493                   pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1494
1495         /* Unmask DMA error interrupts */
1496         iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1497                   pdma->csr_dma + XGENE_DMA_INT_MASK);
1498 }
1499
1500 static void xgene_dma_init_hw(struct xgene_dma *pdma)
1501 {
1502         u32 val;
1503
1504         /* Associate DMA ring to corresponding ring HW */
1505         iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1506                   pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1507
1508         /* Configure RAID6 polynomial control setting */
1509         if (is_pq_enabled(pdma))
1510                 iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1511                           pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1512         else
1513                 dev_info(pdma->dev, "PQ is disabled in HW\n");
1514
1515         xgene_dma_enable(pdma);
1516         xgene_dma_unmask_interrupts(pdma);
1517
1518         /* Get DMA id and version info */
1519         val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1520
1521         /* DMA device info */
1522         dev_info(pdma->dev,
1523                  "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1524                  XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1525                  XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1526 }
1527
1528 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1529 {
1530         if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1531             (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1532                 return 0;
1533
1534         iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1535         iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1536
1537         /* Bring up memory */
1538         iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1539
1540         /* Force a barrier */
1541         ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1542
1543         /* reset may take up to 1ms */
1544         usleep_range(1000, 1100);
1545
1546         if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1547                 != XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1548                 dev_err(pdma->dev,
1549                         "Failed to release ring mngr memory from shutdown\n");
1550                 return -ENODEV;
1551         }
1552
1553         /* program threshold set 1 and all hysteresis */
1554         iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1555                   pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1556         iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1557                   pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1558         iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1559                   pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1560
1561         /* Enable QPcore and assign error queue */
1562         iowrite32(XGENE_DMA_RING_ENABLE,
1563                   pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1564
1565         return 0;
1566 }
1567
1568 static int xgene_dma_init_mem(struct xgene_dma *pdma)
1569 {
1570         int ret;
1571
1572         ret = xgene_dma_init_ring_mngr(pdma);
1573         if (ret)
1574                 return ret;
1575
1576         /* Bring up memory */
1577         iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1578
1579         /* Force a barrier */
1580         ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1581
1582         /* reset may take up to 1ms */
1583         usleep_range(1000, 1100);
1584
1585         if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1586                 != XGENE_DMA_BLK_MEM_RDY_VAL) {
1587                 dev_err(pdma->dev,
1588                         "Failed to release DMA memory from shutdown\n");
1589                 return -ENODEV;
1590         }
1591
1592         return 0;
1593 }
1594
1595 static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1596 {
1597         struct xgene_dma_chan *chan;
1598         int ret, i, j;
1599
1600         /* Register DMA error irq */
1601         ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1602                                0, "dma_error", pdma);
1603         if (ret) {
1604                 dev_err(pdma->dev,
1605                         "Failed to register error IRQ %d\n", pdma->err_irq);
1606                 return ret;
1607         }
1608
1609         /* Register DMA channel rx irq */
1610         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1611                 chan = &pdma->chan[i];
1612                 irq_set_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1613                 ret = devm_request_irq(chan->dev, chan->rx_irq,
1614                                        xgene_dma_chan_ring_isr,
1615                                        0, chan->name, chan);
1616                 if (ret) {
1617                         chan_err(chan, "Failed to register Rx IRQ %d\n",
1618                                  chan->rx_irq);
1619                         devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1620
1621                         for (j = 0; j < i; j++) {
1622                                 chan = &pdma->chan[i];
1623                                 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1624                                 devm_free_irq(chan->dev, chan->rx_irq, chan);
1625                         }
1626
1627                         return ret;
1628                 }
1629         }
1630
1631         return 0;
1632 }
1633
1634 static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1635 {
1636         struct xgene_dma_chan *chan;
1637         int i;
1638
1639         /* Free DMA device error irq */
1640         devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1641
1642         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1643                 chan = &pdma->chan[i];
1644                 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1645                 devm_free_irq(chan->dev, chan->rx_irq, chan);
1646         }
1647 }
1648
1649 static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1650                                struct dma_device *dma_dev)
1651 {
1652         /* Initialize DMA device capability mask */
1653         dma_cap_zero(dma_dev->cap_mask);
1654
1655         /* Set DMA device capability */
1656         dma_cap_set(DMA_SG, dma_dev->cap_mask);
1657
1658         /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1659          * and channel 1 supports XOR, PQ both. First thing here is we have
1660          * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1661          * we can make sure this by reading SoC Efuse register.
1662          * Second thing, we have hw errata that if we run channel 0 and
1663          * channel 1 simultaneously with executing XOR and PQ request,
1664          * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1665          * if XOR and PQ supports on channel 1 is disabled.
1666          */
1667         if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1668             is_pq_enabled(chan->pdma)) {
1669                 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1670                 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1671         } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1672                    !is_pq_enabled(chan->pdma)) {
1673                 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1674         }
1675
1676         /* Set base and prep routines */
1677         dma_dev->dev = chan->dev;
1678         dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1679         dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1680         dma_dev->device_issue_pending = xgene_dma_issue_pending;
1681         dma_dev->device_tx_status = xgene_dma_tx_status;
1682         dma_dev->device_prep_dma_sg = xgene_dma_prep_sg;
1683
1684         if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1685                 dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1686                 dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1687                 dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES;
1688         }
1689
1690         if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1691                 dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1692                 dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1693                 dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES;
1694         }
1695 }
1696
1697 static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1698 {
1699         struct xgene_dma_chan *chan = &pdma->chan[id];
1700         struct dma_device *dma_dev = &pdma->dma_dev[id];
1701         int ret;
1702
1703         chan->dma_chan.device = dma_dev;
1704
1705         spin_lock_init(&chan->lock);
1706         INIT_LIST_HEAD(&chan->ld_pending);
1707         INIT_LIST_HEAD(&chan->ld_running);
1708         INIT_LIST_HEAD(&chan->ld_completed);
1709         tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb,
1710                      (unsigned long)chan);
1711
1712         chan->pending = 0;
1713         chan->desc_pool = NULL;
1714         dma_cookie_init(&chan->dma_chan);
1715
1716         /* Setup dma device capabilities and prep routines */
1717         xgene_dma_set_caps(chan, dma_dev);
1718
1719         /* Initialize DMA device list head */
1720         INIT_LIST_HEAD(&dma_dev->channels);
1721         list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1722
1723         /* Register with Linux async DMA framework*/
1724         ret = dma_async_device_register(dma_dev);
1725         if (ret) {
1726                 chan_err(chan, "Failed to register async device %d", ret);
1727                 tasklet_kill(&chan->tasklet);
1728
1729                 return ret;
1730         }
1731
1732         /* DMA capability info */
1733         dev_info(pdma->dev,
1734                  "%s: CAPABILITY ( %s%s%s)\n", dma_chan_name(&chan->dma_chan),
1735                  dma_has_cap(DMA_SG, dma_dev->cap_mask) ? "SGCPY " : "",
1736                  dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1737                  dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1738
1739         return 0;
1740 }
1741
1742 static int xgene_dma_init_async(struct xgene_dma *pdma)
1743 {
1744         int ret, i, j;
1745
1746         for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1747                 ret = xgene_dma_async_register(pdma, i);
1748                 if (ret) {
1749                         for (j = 0; j < i; j++) {
1750                                 dma_async_device_unregister(&pdma->dma_dev[j]);
1751                                 tasklet_kill(&pdma->chan[j].tasklet);
1752                         }
1753
1754                         return ret;
1755                 }
1756         }
1757
1758         return ret;
1759 }
1760
1761 static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1762 {
1763         int i;
1764
1765         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1766                 dma_async_device_unregister(&pdma->dma_dev[i]);
1767 }
1768
1769 static void xgene_dma_init_channels(struct xgene_dma *pdma)
1770 {
1771         struct xgene_dma_chan *chan;
1772         int i;
1773
1774         pdma->ring_num = XGENE_DMA_RING_NUM;
1775
1776         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1777                 chan = &pdma->chan[i];
1778                 chan->dev = pdma->dev;
1779                 chan->pdma = pdma;
1780                 chan->id = i;
1781                 snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1782         }
1783 }
1784
1785 static int xgene_dma_get_resources(struct platform_device *pdev,
1786                                    struct xgene_dma *pdma)
1787 {
1788         struct resource *res;
1789         int irq, i;
1790
1791         /* Get DMA csr region */
1792         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1793         if (!res) {
1794                 dev_err(&pdev->dev, "Failed to get csr region\n");
1795                 return -ENXIO;
1796         }
1797
1798         pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1799                                      resource_size(res));
1800         if (!pdma->csr_dma) {
1801                 dev_err(&pdev->dev, "Failed to ioremap csr region");
1802                 return -ENOMEM;
1803         }
1804
1805         /* Get DMA ring csr region */
1806         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1807         if (!res) {
1808                 dev_err(&pdev->dev, "Failed to get ring csr region\n");
1809                 return -ENXIO;
1810         }
1811
1812         pdma->csr_ring =  devm_ioremap(&pdev->dev, res->start,
1813                                        resource_size(res));
1814         if (!pdma->csr_ring) {
1815                 dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1816                 return -ENOMEM;
1817         }
1818
1819         /* Get DMA ring cmd csr region */
1820         res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1821         if (!res) {
1822                 dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1823                 return -ENXIO;
1824         }
1825
1826         pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1827                                           resource_size(res));
1828         if (!pdma->csr_ring_cmd) {
1829                 dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1830                 return -ENOMEM;
1831         }
1832
1833         pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;
1834
1835         /* Get efuse csr region */
1836         res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1837         if (!res) {
1838                 dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1839                 return -ENXIO;
1840         }
1841
1842         pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1843                                        resource_size(res));
1844         if (!pdma->csr_efuse) {
1845                 dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1846                 return -ENOMEM;
1847         }
1848
1849         /* Get DMA error interrupt */
1850         irq = platform_get_irq(pdev, 0);
1851         if (irq <= 0) {
1852                 dev_err(&pdev->dev, "Failed to get Error IRQ\n");
1853                 return -ENXIO;
1854         }
1855
1856         pdma->err_irq = irq;
1857
1858         /* Get DMA Rx ring descriptor interrupts for all DMA channels */
1859         for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1860                 irq = platform_get_irq(pdev, i);
1861                 if (irq <= 0) {
1862                         dev_err(&pdev->dev, "Failed to get Rx IRQ\n");
1863                         return -ENXIO;
1864                 }
1865
1866                 pdma->chan[i - 1].rx_irq = irq;
1867         }
1868
1869         return 0;
1870 }
1871
1872 static int xgene_dma_probe(struct platform_device *pdev)
1873 {
1874         struct xgene_dma *pdma;
1875         int ret, i;
1876
1877         pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1878         if (!pdma)
1879                 return -ENOMEM;
1880
1881         pdma->dev = &pdev->dev;
1882         platform_set_drvdata(pdev, pdma);
1883
1884         ret = xgene_dma_get_resources(pdev, pdma);
1885         if (ret)
1886                 return ret;
1887
1888         pdma->clk = devm_clk_get(&pdev->dev, NULL);
1889         if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) {
1890                 dev_err(&pdev->dev, "Failed to get clk\n");
1891                 return PTR_ERR(pdma->clk);
1892         }
1893
1894         /* Enable clk before accessing registers */
1895         if (!IS_ERR(pdma->clk)) {
1896                 ret = clk_prepare_enable(pdma->clk);
1897                 if (ret) {
1898                         dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1899                         return ret;
1900                 }
1901         }
1902
1903         /* Remove DMA RAM out of shutdown */
1904         ret = xgene_dma_init_mem(pdma);
1905         if (ret)
1906                 goto err_clk_enable;
1907
1908         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
1909         if (ret) {
1910                 dev_err(&pdev->dev, "No usable DMA configuration\n");
1911                 goto err_dma_mask;
1912         }
1913
1914         /* Initialize DMA channels software state */
1915         xgene_dma_init_channels(pdma);
1916
1917         /* Configue DMA rings */
1918         ret = xgene_dma_init_rings(pdma);
1919         if (ret)
1920                 goto err_clk_enable;
1921
1922         ret = xgene_dma_request_irqs(pdma);
1923         if (ret)
1924                 goto err_request_irq;
1925
1926         /* Configure and enable DMA engine */
1927         xgene_dma_init_hw(pdma);
1928
1929         /* Register DMA device with linux async framework */
1930         ret = xgene_dma_init_async(pdma);
1931         if (ret)
1932                 goto err_async_init;
1933
1934         return 0;
1935
1936 err_async_init:
1937         xgene_dma_free_irqs(pdma);
1938
1939 err_request_irq:
1940         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1941                 xgene_dma_delete_chan_rings(&pdma->chan[i]);
1942
1943 err_dma_mask:
1944 err_clk_enable:
1945         if (!IS_ERR(pdma->clk))
1946                 clk_disable_unprepare(pdma->clk);
1947
1948         return ret;
1949 }
1950
1951 static int xgene_dma_remove(struct platform_device *pdev)
1952 {
1953         struct xgene_dma *pdma = platform_get_drvdata(pdev);
1954         struct xgene_dma_chan *chan;
1955         int i;
1956
1957         xgene_dma_async_unregister(pdma);
1958
1959         /* Mask interrupts and disable DMA engine */
1960         xgene_dma_mask_interrupts(pdma);
1961         xgene_dma_disable(pdma);
1962         xgene_dma_free_irqs(pdma);
1963
1964         for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1965                 chan = &pdma->chan[i];
1966                 tasklet_kill(&chan->tasklet);
1967                 xgene_dma_delete_chan_rings(chan);
1968         }
1969
1970         if (!IS_ERR(pdma->clk))
1971                 clk_disable_unprepare(pdma->clk);
1972
1973         return 0;
1974 }
1975
1976 #ifdef CONFIG_ACPI
1977 static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = {
1978         {"APMC0D43", 0},
1979         {},
1980 };
1981 MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr);
1982 #endif
1983
1984 static const struct of_device_id xgene_dma_of_match_ptr[] = {
1985         {.compatible = "apm,xgene-storm-dma",},
1986         {},
1987 };
1988 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
1989
1990 static struct platform_driver xgene_dma_driver = {
1991         .probe = xgene_dma_probe,
1992         .remove = xgene_dma_remove,
1993         .driver = {
1994                 .name = "X-Gene-DMA",
1995                 .of_match_table = xgene_dma_of_match_ptr,
1996                 .acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr),
1997         },
1998 };
1999
2000 module_platform_driver(xgene_dma_driver);
2001
2002 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
2003 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
2004 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
2005 MODULE_LICENSE("GPL");
2006 MODULE_VERSION("1.0");