spi: s3c64xx: Let spi core handle validating transfer length
[cascardo/linux.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
36
37 #define CREATE_TRACE_POINTS
38 #define TRACE_INCLUDE_PATH ../../include/ras
39 #include <ras/ras_event.h>
40
41 /* lock to memory controller's control array */
42 static DEFINE_MUTEX(mem_ctls_mutex);
43 static LIST_HEAD(mc_devices);
44
45 /*
46  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
47  *      apei/ghes and i7core_edac to be used at the same time.
48  */
49 static void const *edac_mc_owner;
50
51 static struct bus_type mc_bus[EDAC_MAX_MCS];
52
53 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
54                                  unsigned len)
55 {
56         struct mem_ctl_info *mci = dimm->mci;
57         int i, n, count = 0;
58         char *p = buf;
59
60         for (i = 0; i < mci->n_layers; i++) {
61                 n = snprintf(p, len, "%s %d ",
62                               edac_layer_name[mci->layers[i].type],
63                               dimm->location[i]);
64                 p += n;
65                 len -= n;
66                 count += n;
67                 if (!len)
68                         break;
69         }
70
71         return count;
72 }
73
74 #ifdef CONFIG_EDAC_DEBUG
75
76 static void edac_mc_dump_channel(struct rank_info *chan)
77 {
78         edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
79         edac_dbg(4, "    channel = %p\n", chan);
80         edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
81         edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
82 }
83
84 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
85 {
86         char location[80];
87
88         edac_dimm_info_location(dimm, location, sizeof(location));
89
90         edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
91                  dimm->mci->csbased ? "rank" : "dimm",
92                  number, location, dimm->csrow, dimm->cschannel);
93         edac_dbg(4, "  dimm = %p\n", dimm);
94         edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
95         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
96         edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
97         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
98 }
99
100 static void edac_mc_dump_csrow(struct csrow_info *csrow)
101 {
102         edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
103         edac_dbg(4, "  csrow = %p\n", csrow);
104         edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
105         edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
106         edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
107         edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
108         edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
109         edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
110 }
111
112 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
113 {
114         edac_dbg(3, "\tmci = %p\n", mci);
115         edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
116         edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
117         edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
118         edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
119         edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
120                  mci->nr_csrows, mci->csrows);
121         edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
122                  mci->tot_dimms, mci->dimms);
123         edac_dbg(3, "\tdev = %p\n", mci->pdev);
124         edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
125                  mci->mod_name, mci->ctl_name);
126         edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
127 }
128
129 #endif                          /* CONFIG_EDAC_DEBUG */
130
131 /*
132  * keep those in sync with the enum mem_type
133  */
134 const char *edac_mem_types[] = {
135         "Empty csrow",
136         "Reserved csrow type",
137         "Unknown csrow type",
138         "Fast page mode RAM",
139         "Extended data out RAM",
140         "Burst Extended data out RAM",
141         "Single data rate SDRAM",
142         "Registered single data rate SDRAM",
143         "Double data rate SDRAM",
144         "Registered Double data rate SDRAM",
145         "Rambus DRAM",
146         "Unbuffered DDR2 RAM",
147         "Fully buffered DDR2",
148         "Registered DDR2 RAM",
149         "Rambus XDR",
150         "Unbuffered DDR3 RAM",
151         "Registered DDR3 RAM",
152 };
153 EXPORT_SYMBOL_GPL(edac_mem_types);
154
155 /**
156  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
157  * @p:          pointer to a pointer with the memory offset to be used. At
158  *              return, this will be incremented to point to the next offset
159  * @size:       Size of the data structure to be reserved
160  * @n_elems:    Number of elements that should be reserved
161  *
162  * If 'size' is a constant, the compiler will optimize this whole function
163  * down to either a no-op or the addition of a constant to the value of '*p'.
164  *
165  * The 'p' pointer is absolutely needed to keep the proper advancing
166  * further in memory to the proper offsets when allocating the struct along
167  * with its embedded structs, as edac_device_alloc_ctl_info() does it
168  * above, for example.
169  *
170  * At return, the pointer 'p' will be incremented to be used on a next call
171  * to this function.
172  */
173 void *edac_align_ptr(void **p, unsigned size, int n_elems)
174 {
175         unsigned align, r;
176         void *ptr = *p;
177
178         *p += size * n_elems;
179
180         /*
181          * 'p' can possibly be an unaligned item X such that sizeof(X) is
182          * 'size'.  Adjust 'p' so that its alignment is at least as
183          * stringent as what the compiler would provide for X and return
184          * the aligned result.
185          * Here we assume that the alignment of a "long long" is the most
186          * stringent alignment that the compiler will ever provide by default.
187          * As far as I know, this is a reasonable assumption.
188          */
189         if (size > sizeof(long))
190                 align = sizeof(long long);
191         else if (size > sizeof(int))
192                 align = sizeof(long);
193         else if (size > sizeof(short))
194                 align = sizeof(int);
195         else if (size > sizeof(char))
196                 align = sizeof(short);
197         else
198                 return (char *)ptr;
199
200         r = (unsigned long)p % align;
201
202         if (r == 0)
203                 return (char *)ptr;
204
205         *p += align - r;
206
207         return (void *)(((unsigned long)ptr) + align - r);
208 }
209
210 static void _edac_mc_free(struct mem_ctl_info *mci)
211 {
212         int i, chn, row;
213         struct csrow_info *csr;
214         const unsigned int tot_dimms = mci->tot_dimms;
215         const unsigned int tot_channels = mci->num_cschannel;
216         const unsigned int tot_csrows = mci->nr_csrows;
217
218         if (mci->dimms) {
219                 for (i = 0; i < tot_dimms; i++)
220                         kfree(mci->dimms[i]);
221                 kfree(mci->dimms);
222         }
223         if (mci->csrows) {
224                 for (row = 0; row < tot_csrows; row++) {
225                         csr = mci->csrows[row];
226                         if (csr) {
227                                 if (csr->channels) {
228                                         for (chn = 0; chn < tot_channels; chn++)
229                                                 kfree(csr->channels[chn]);
230                                         kfree(csr->channels);
231                                 }
232                                 kfree(csr);
233                         }
234                 }
235                 kfree(mci->csrows);
236         }
237         kfree(mci);
238 }
239
240 /**
241  * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
242  * @mc_num:             Memory controller number
243  * @n_layers:           Number of MC hierarchy layers
244  * layers:              Describes each layer as seen by the Memory Controller
245  * @size_pvt:           size of private storage needed
246  *
247  *
248  * Everything is kmalloc'ed as one big chunk - more efficient.
249  * Only can be used if all structures have the same lifetime - otherwise
250  * you have to allocate and initialize your own structures.
251  *
252  * Use edac_mc_free() to free mc structures allocated by this function.
253  *
254  * NOTE: drivers handle multi-rank memories in different ways: in some
255  * drivers, one multi-rank memory stick is mapped as one entry, while, in
256  * others, a single multi-rank memory stick would be mapped into several
257  * entries. Currently, this function will allocate multiple struct dimm_info
258  * on such scenarios, as grouping the multiple ranks require drivers change.
259  *
260  * Returns:
261  *      On failure: NULL
262  *      On success: struct mem_ctl_info pointer
263  */
264 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
265                                    unsigned n_layers,
266                                    struct edac_mc_layer *layers,
267                                    unsigned sz_pvt)
268 {
269         struct mem_ctl_info *mci;
270         struct edac_mc_layer *layer;
271         struct csrow_info *csr;
272         struct rank_info *chan;
273         struct dimm_info *dimm;
274         u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
275         unsigned pos[EDAC_MAX_LAYERS];
276         unsigned size, tot_dimms = 1, count = 1;
277         unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
278         void *pvt, *p, *ptr = NULL;
279         int i, j, row, chn, n, len, off;
280         bool per_rank = false;
281
282         BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
283         /*
284          * Calculate the total amount of dimms and csrows/cschannels while
285          * in the old API emulation mode
286          */
287         for (i = 0; i < n_layers; i++) {
288                 tot_dimms *= layers[i].size;
289                 if (layers[i].is_virt_csrow)
290                         tot_csrows *= layers[i].size;
291                 else
292                         tot_channels *= layers[i].size;
293
294                 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
295                         per_rank = true;
296         }
297
298         /* Figure out the offsets of the various items from the start of an mc
299          * structure.  We want the alignment of each item to be at least as
300          * stringent as what the compiler would provide if we could simply
301          * hardcode everything into a single struct.
302          */
303         mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
304         layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
305         for (i = 0; i < n_layers; i++) {
306                 count *= layers[i].size;
307                 edac_dbg(4, "errcount layer %d size %d\n", i, count);
308                 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
309                 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
310                 tot_errcount += 2 * count;
311         }
312
313         edac_dbg(4, "allocating %d error counters\n", tot_errcount);
314         pvt = edac_align_ptr(&ptr, sz_pvt, 1);
315         size = ((unsigned long)pvt) + sz_pvt;
316
317         edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
318                  size,
319                  tot_dimms,
320                  per_rank ? "ranks" : "dimms",
321                  tot_csrows * tot_channels);
322
323         mci = kzalloc(size, GFP_KERNEL);
324         if (mci == NULL)
325                 return NULL;
326
327         /* Adjust pointers so they point within the memory we just allocated
328          * rather than an imaginary chunk of memory located at address 0.
329          */
330         layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
331         for (i = 0; i < n_layers; i++) {
332                 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
333                 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
334         }
335         pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
336
337         /* setup index and various internal pointers */
338         mci->mc_idx = mc_num;
339         mci->tot_dimms = tot_dimms;
340         mci->pvt_info = pvt;
341         mci->n_layers = n_layers;
342         mci->layers = layer;
343         memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
344         mci->nr_csrows = tot_csrows;
345         mci->num_cschannel = tot_channels;
346         mci->csbased = per_rank;
347
348         /*
349          * Alocate and fill the csrow/channels structs
350          */
351         mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
352         if (!mci->csrows)
353                 goto error;
354         for (row = 0; row < tot_csrows; row++) {
355                 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
356                 if (!csr)
357                         goto error;
358                 mci->csrows[row] = csr;
359                 csr->csrow_idx = row;
360                 csr->mci = mci;
361                 csr->nr_channels = tot_channels;
362                 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
363                                         GFP_KERNEL);
364                 if (!csr->channels)
365                         goto error;
366
367                 for (chn = 0; chn < tot_channels; chn++) {
368                         chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
369                         if (!chan)
370                                 goto error;
371                         csr->channels[chn] = chan;
372                         chan->chan_idx = chn;
373                         chan->csrow = csr;
374                 }
375         }
376
377         /*
378          * Allocate and fill the dimm structs
379          */
380         mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
381         if (!mci->dimms)
382                 goto error;
383
384         memset(&pos, 0, sizeof(pos));
385         row = 0;
386         chn = 0;
387         for (i = 0; i < tot_dimms; i++) {
388                 chan = mci->csrows[row]->channels[chn];
389                 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
390                 if (off < 0 || off >= tot_dimms) {
391                         edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
392                         goto error;
393                 }
394
395                 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
396                 if (!dimm)
397                         goto error;
398                 mci->dimms[off] = dimm;
399                 dimm->mci = mci;
400
401                 /*
402                  * Copy DIMM location and initialize it.
403                  */
404                 len = sizeof(dimm->label);
405                 p = dimm->label;
406                 n = snprintf(p, len, "mc#%u", mc_num);
407                 p += n;
408                 len -= n;
409                 for (j = 0; j < n_layers; j++) {
410                         n = snprintf(p, len, "%s#%u",
411                                      edac_layer_name[layers[j].type],
412                                      pos[j]);
413                         p += n;
414                         len -= n;
415                         dimm->location[j] = pos[j];
416
417                         if (len <= 0)
418                                 break;
419                 }
420
421                 /* Link it to the csrows old API data */
422                 chan->dimm = dimm;
423                 dimm->csrow = row;
424                 dimm->cschannel = chn;
425
426                 /* Increment csrow location */
427                 if (layers[0].is_virt_csrow) {
428                         chn++;
429                         if (chn == tot_channels) {
430                                 chn = 0;
431                                 row++;
432                         }
433                 } else {
434                         row++;
435                         if (row == tot_csrows) {
436                                 row = 0;
437                                 chn++;
438                         }
439                 }
440
441                 /* Increment dimm location */
442                 for (j = n_layers - 1; j >= 0; j--) {
443                         pos[j]++;
444                         if (pos[j] < layers[j].size)
445                                 break;
446                         pos[j] = 0;
447                 }
448         }
449
450         mci->op_state = OP_ALLOC;
451
452         return mci;
453
454 error:
455         _edac_mc_free(mci);
456
457         return NULL;
458 }
459 EXPORT_SYMBOL_GPL(edac_mc_alloc);
460
461 /**
462  * edac_mc_free
463  *      'Free' a previously allocated 'mci' structure
464  * @mci: pointer to a struct mem_ctl_info structure
465  */
466 void edac_mc_free(struct mem_ctl_info *mci)
467 {
468         edac_dbg(1, "\n");
469
470         /* If we're not yet registered with sysfs free only what was allocated
471          * in edac_mc_alloc().
472          */
473         if (!device_is_registered(&mci->dev)) {
474                 _edac_mc_free(mci);
475                 return;
476         }
477
478         /* the mci instance is freed here, when the sysfs object is dropped */
479         edac_unregister_sysfs(mci);
480 }
481 EXPORT_SYMBOL_GPL(edac_mc_free);
482
483
484 /**
485  * find_mci_by_dev
486  *
487  *      scan list of controllers looking for the one that manages
488  *      the 'dev' device
489  * @dev: pointer to a struct device related with the MCI
490  */
491 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
492 {
493         struct mem_ctl_info *mci;
494         struct list_head *item;
495
496         edac_dbg(3, "\n");
497
498         list_for_each(item, &mc_devices) {
499                 mci = list_entry(item, struct mem_ctl_info, link);
500
501                 if (mci->pdev == dev)
502                         return mci;
503         }
504
505         return NULL;
506 }
507 EXPORT_SYMBOL_GPL(find_mci_by_dev);
508
509 /*
510  * handler for EDAC to check if NMI type handler has asserted interrupt
511  */
512 static int edac_mc_assert_error_check_and_clear(void)
513 {
514         int old_state;
515
516         if (edac_op_state == EDAC_OPSTATE_POLL)
517                 return 1;
518
519         old_state = edac_err_assert;
520         edac_err_assert = 0;
521
522         return old_state;
523 }
524
525 /*
526  * edac_mc_workq_function
527  *      performs the operation scheduled by a workq request
528  */
529 static void edac_mc_workq_function(struct work_struct *work_req)
530 {
531         struct delayed_work *d_work = to_delayed_work(work_req);
532         struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
533
534         mutex_lock(&mem_ctls_mutex);
535
536         /* if this control struct has movd to offline state, we are done */
537         if (mci->op_state == OP_OFFLINE) {
538                 mutex_unlock(&mem_ctls_mutex);
539                 return;
540         }
541
542         /* Only poll controllers that are running polled and have a check */
543         if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
544                 mci->edac_check(mci);
545
546         mutex_unlock(&mem_ctls_mutex);
547
548         /* Reschedule */
549         queue_delayed_work(edac_workqueue, &mci->work,
550                         msecs_to_jiffies(edac_mc_get_poll_msec()));
551 }
552
553 /*
554  * edac_mc_workq_setup
555  *      initialize a workq item for this mci
556  *      passing in the new delay period in msec
557  *
558  *      locking model:
559  *
560  *              called with the mem_ctls_mutex held
561  */
562 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
563 {
564         edac_dbg(0, "\n");
565
566         /* if this instance is not in the POLL state, then simply return */
567         if (mci->op_state != OP_RUNNING_POLL)
568                 return;
569
570         INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
571         mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
572 }
573
574 /*
575  * edac_mc_workq_teardown
576  *      stop the workq processing on this mci
577  *
578  *      locking model:
579  *
580  *              called WITHOUT lock held
581  */
582 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
583 {
584         int status;
585
586         if (mci->op_state != OP_RUNNING_POLL)
587                 return;
588
589         status = cancel_delayed_work(&mci->work);
590         if (status == 0) {
591                 edac_dbg(0, "not canceled, flush the queue\n");
592
593                 /* workq instance might be running, wait for it */
594                 flush_workqueue(edac_workqueue);
595         }
596 }
597
598 /*
599  * edac_mc_reset_delay_period(unsigned long value)
600  *
601  *      user space has updated our poll period value, need to
602  *      reset our workq delays
603  */
604 void edac_mc_reset_delay_period(int value)
605 {
606         struct mem_ctl_info *mci;
607         struct list_head *item;
608
609         mutex_lock(&mem_ctls_mutex);
610
611         list_for_each(item, &mc_devices) {
612                 mci = list_entry(item, struct mem_ctl_info, link);
613
614                 edac_mc_workq_setup(mci, (unsigned long) value);
615         }
616
617         mutex_unlock(&mem_ctls_mutex);
618 }
619
620
621
622 /* Return 0 on success, 1 on failure.
623  * Before calling this function, caller must
624  * assign a unique value to mci->mc_idx.
625  *
626  *      locking model:
627  *
628  *              called with the mem_ctls_mutex lock held
629  */
630 static int add_mc_to_global_list(struct mem_ctl_info *mci)
631 {
632         struct list_head *item, *insert_before;
633         struct mem_ctl_info *p;
634
635         insert_before = &mc_devices;
636
637         p = find_mci_by_dev(mci->pdev);
638         if (unlikely(p != NULL))
639                 goto fail0;
640
641         list_for_each(item, &mc_devices) {
642                 p = list_entry(item, struct mem_ctl_info, link);
643
644                 if (p->mc_idx >= mci->mc_idx) {
645                         if (unlikely(p->mc_idx == mci->mc_idx))
646                                 goto fail1;
647
648                         insert_before = item;
649                         break;
650                 }
651         }
652
653         list_add_tail_rcu(&mci->link, insert_before);
654         atomic_inc(&edac_handlers);
655         return 0;
656
657 fail0:
658         edac_printk(KERN_WARNING, EDAC_MC,
659                 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
660                 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
661         return 1;
662
663 fail1:
664         edac_printk(KERN_WARNING, EDAC_MC,
665                 "bug in low-level driver: attempt to assign\n"
666                 "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
667         return 1;
668 }
669
670 static int del_mc_from_global_list(struct mem_ctl_info *mci)
671 {
672         int handlers = atomic_dec_return(&edac_handlers);
673         list_del_rcu(&mci->link);
674
675         /* these are for safe removal of devices from global list while
676          * NMI handlers may be traversing list
677          */
678         synchronize_rcu();
679         INIT_LIST_HEAD(&mci->link);
680
681         return handlers;
682 }
683
684 /**
685  * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
686  *
687  * If found, return a pointer to the structure.
688  * Else return NULL.
689  *
690  * Caller must hold mem_ctls_mutex.
691  */
692 struct mem_ctl_info *edac_mc_find(int idx)
693 {
694         struct list_head *item;
695         struct mem_ctl_info *mci;
696
697         list_for_each(item, &mc_devices) {
698                 mci = list_entry(item, struct mem_ctl_info, link);
699
700                 if (mci->mc_idx >= idx) {
701                         if (mci->mc_idx == idx)
702                                 return mci;
703
704                         break;
705                 }
706         }
707
708         return NULL;
709 }
710 EXPORT_SYMBOL(edac_mc_find);
711
712 /**
713  * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
714  *                 create sysfs entries associated with mci structure
715  * @mci: pointer to the mci structure to be added to the list
716  *
717  * Return:
718  *      0       Success
719  *      !0      Failure
720  */
721
722 /* FIXME - should a warning be printed if no error detection? correction? */
723 int edac_mc_add_mc(struct mem_ctl_info *mci)
724 {
725         int ret = -EINVAL;
726         edac_dbg(0, "\n");
727
728         if (mci->mc_idx >= EDAC_MAX_MCS) {
729                 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
730                 return -ENODEV;
731         }
732
733 #ifdef CONFIG_EDAC_DEBUG
734         if (edac_debug_level >= 3)
735                 edac_mc_dump_mci(mci);
736
737         if (edac_debug_level >= 4) {
738                 int i;
739
740                 for (i = 0; i < mci->nr_csrows; i++) {
741                         struct csrow_info *csrow = mci->csrows[i];
742                         u32 nr_pages = 0;
743                         int j;
744
745                         for (j = 0; j < csrow->nr_channels; j++)
746                                 nr_pages += csrow->channels[j]->dimm->nr_pages;
747                         if (!nr_pages)
748                                 continue;
749                         edac_mc_dump_csrow(csrow);
750                         for (j = 0; j < csrow->nr_channels; j++)
751                                 if (csrow->channels[j]->dimm->nr_pages)
752                                         edac_mc_dump_channel(csrow->channels[j]);
753                 }
754                 for (i = 0; i < mci->tot_dimms; i++)
755                         if (mci->dimms[i]->nr_pages)
756                                 edac_mc_dump_dimm(mci->dimms[i], i);
757         }
758 #endif
759         mutex_lock(&mem_ctls_mutex);
760
761         if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
762                 ret = -EPERM;
763                 goto fail0;
764         }
765
766         if (add_mc_to_global_list(mci))
767                 goto fail0;
768
769         /* set load time so that error rate can be tracked */
770         mci->start_time = jiffies;
771
772         mci->bus = &mc_bus[mci->mc_idx];
773
774         if (edac_create_sysfs_mci_device(mci)) {
775                 edac_mc_printk(mci, KERN_WARNING,
776                         "failed to create sysfs device\n");
777                 goto fail1;
778         }
779
780         /* If there IS a check routine, then we are running POLLED */
781         if (mci->edac_check != NULL) {
782                 /* This instance is NOW RUNNING */
783                 mci->op_state = OP_RUNNING_POLL;
784
785                 edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
786         } else {
787                 mci->op_state = OP_RUNNING_INTERRUPT;
788         }
789
790         /* Report action taken */
791         edac_mc_printk(mci, KERN_INFO,
792                 "Giving out device to module %s controller %s: DEV %s (%s)\n",
793                 mci->mod_name, mci->ctl_name, mci->dev_name,
794                 edac_op_state_to_string(mci->op_state));
795
796         edac_mc_owner = mci->mod_name;
797
798         mutex_unlock(&mem_ctls_mutex);
799         return 0;
800
801 fail1:
802         del_mc_from_global_list(mci);
803
804 fail0:
805         mutex_unlock(&mem_ctls_mutex);
806         return ret;
807 }
808 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
809
810 /**
811  * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
812  *                 remove mci structure from global list
813  * @pdev: Pointer to 'struct device' representing mci structure to remove.
814  *
815  * Return pointer to removed mci structure, or NULL if device not found.
816  */
817 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
818 {
819         struct mem_ctl_info *mci;
820
821         edac_dbg(0, "\n");
822
823         mutex_lock(&mem_ctls_mutex);
824
825         /* find the requested mci struct in the global list */
826         mci = find_mci_by_dev(dev);
827         if (mci == NULL) {
828                 mutex_unlock(&mem_ctls_mutex);
829                 return NULL;
830         }
831
832         if (!del_mc_from_global_list(mci))
833                 edac_mc_owner = NULL;
834         mutex_unlock(&mem_ctls_mutex);
835
836         /* flush workq processes */
837         edac_mc_workq_teardown(mci);
838
839         /* marking MCI offline */
840         mci->op_state = OP_OFFLINE;
841
842         /* remove from sysfs */
843         edac_remove_sysfs_mci_device(mci);
844
845         edac_printk(KERN_INFO, EDAC_MC,
846                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
847                 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
848
849         return mci;
850 }
851 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
852
853 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
854                                 u32 size)
855 {
856         struct page *pg;
857         void *virt_addr;
858         unsigned long flags = 0;
859
860         edac_dbg(3, "\n");
861
862         /* ECC error page was not in our memory. Ignore it. */
863         if (!pfn_valid(page))
864                 return;
865
866         /* Find the actual page structure then map it and fix */
867         pg = pfn_to_page(page);
868
869         if (PageHighMem(pg))
870                 local_irq_save(flags);
871
872         virt_addr = kmap_atomic(pg);
873
874         /* Perform architecture specific atomic scrub operation */
875         atomic_scrub(virt_addr + offset, size);
876
877         /* Unmap and complete */
878         kunmap_atomic(virt_addr);
879
880         if (PageHighMem(pg))
881                 local_irq_restore(flags);
882 }
883
884 /* FIXME - should return -1 */
885 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
886 {
887         struct csrow_info **csrows = mci->csrows;
888         int row, i, j, n;
889
890         edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
891         row = -1;
892
893         for (i = 0; i < mci->nr_csrows; i++) {
894                 struct csrow_info *csrow = csrows[i];
895                 n = 0;
896                 for (j = 0; j < csrow->nr_channels; j++) {
897                         struct dimm_info *dimm = csrow->channels[j]->dimm;
898                         n += dimm->nr_pages;
899                 }
900                 if (n == 0)
901                         continue;
902
903                 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
904                          mci->mc_idx,
905                          csrow->first_page, page, csrow->last_page,
906                          csrow->page_mask);
907
908                 if ((page >= csrow->first_page) &&
909                     (page <= csrow->last_page) &&
910                     ((page & csrow->page_mask) ==
911                      (csrow->first_page & csrow->page_mask))) {
912                         row = i;
913                         break;
914                 }
915         }
916
917         if (row == -1)
918                 edac_mc_printk(mci, KERN_ERR,
919                         "could not look up page error address %lx\n",
920                         (unsigned long)page);
921
922         return row;
923 }
924 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
925
926 const char *edac_layer_name[] = {
927         [EDAC_MC_LAYER_BRANCH] = "branch",
928         [EDAC_MC_LAYER_CHANNEL] = "channel",
929         [EDAC_MC_LAYER_SLOT] = "slot",
930         [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
931         [EDAC_MC_LAYER_ALL_MEM] = "memory",
932 };
933 EXPORT_SYMBOL_GPL(edac_layer_name);
934
935 static void edac_inc_ce_error(struct mem_ctl_info *mci,
936                               bool enable_per_layer_report,
937                               const int pos[EDAC_MAX_LAYERS],
938                               const u16 count)
939 {
940         int i, index = 0;
941
942         mci->ce_mc += count;
943
944         if (!enable_per_layer_report) {
945                 mci->ce_noinfo_count += count;
946                 return;
947         }
948
949         for (i = 0; i < mci->n_layers; i++) {
950                 if (pos[i] < 0)
951                         break;
952                 index += pos[i];
953                 mci->ce_per_layer[i][index] += count;
954
955                 if (i < mci->n_layers - 1)
956                         index *= mci->layers[i + 1].size;
957         }
958 }
959
960 static void edac_inc_ue_error(struct mem_ctl_info *mci,
961                                     bool enable_per_layer_report,
962                                     const int pos[EDAC_MAX_LAYERS],
963                                     const u16 count)
964 {
965         int i, index = 0;
966
967         mci->ue_mc += count;
968
969         if (!enable_per_layer_report) {
970                 mci->ce_noinfo_count += count;
971                 return;
972         }
973
974         for (i = 0; i < mci->n_layers; i++) {
975                 if (pos[i] < 0)
976                         break;
977                 index += pos[i];
978                 mci->ue_per_layer[i][index] += count;
979
980                 if (i < mci->n_layers - 1)
981                         index *= mci->layers[i + 1].size;
982         }
983 }
984
985 static void edac_ce_error(struct mem_ctl_info *mci,
986                           const u16 error_count,
987                           const int pos[EDAC_MAX_LAYERS],
988                           const char *msg,
989                           const char *location,
990                           const char *label,
991                           const char *detail,
992                           const char *other_detail,
993                           const bool enable_per_layer_report,
994                           const unsigned long page_frame_number,
995                           const unsigned long offset_in_page,
996                           long grain)
997 {
998         unsigned long remapped_page;
999         char *msg_aux = "";
1000
1001         if (*msg)
1002                 msg_aux = " ";
1003
1004         if (edac_mc_get_log_ce()) {
1005                 if (other_detail && *other_detail)
1006                         edac_mc_printk(mci, KERN_WARNING,
1007                                        "%d CE %s%son %s (%s %s - %s)\n",
1008                                        error_count, msg, msg_aux, label,
1009                                        location, detail, other_detail);
1010                 else
1011                         edac_mc_printk(mci, KERN_WARNING,
1012                                        "%d CE %s%son %s (%s %s)\n",
1013                                        error_count, msg, msg_aux, label,
1014                                        location, detail);
1015         }
1016         edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1017
1018         if (mci->scrub_mode & SCRUB_SW_SRC) {
1019                 /*
1020                         * Some memory controllers (called MCs below) can remap
1021                         * memory so that it is still available at a different
1022                         * address when PCI devices map into memory.
1023                         * MC's that can't do this, lose the memory where PCI
1024                         * devices are mapped. This mapping is MC-dependent
1025                         * and so we call back into the MC driver for it to
1026                         * map the MC page to a physical (CPU) page which can
1027                         * then be mapped to a virtual page - which can then
1028                         * be scrubbed.
1029                         */
1030                 remapped_page = mci->ctl_page_to_phys ?
1031                         mci->ctl_page_to_phys(mci, page_frame_number) :
1032                         page_frame_number;
1033
1034                 edac_mc_scrub_block(remapped_page,
1035                                         offset_in_page, grain);
1036         }
1037 }
1038
1039 static void edac_ue_error(struct mem_ctl_info *mci,
1040                           const u16 error_count,
1041                           const int pos[EDAC_MAX_LAYERS],
1042                           const char *msg,
1043                           const char *location,
1044                           const char *label,
1045                           const char *detail,
1046                           const char *other_detail,
1047                           const bool enable_per_layer_report)
1048 {
1049         char *msg_aux = "";
1050
1051         if (*msg)
1052                 msg_aux = " ";
1053
1054         if (edac_mc_get_log_ue()) {
1055                 if (other_detail && *other_detail)
1056                         edac_mc_printk(mci, KERN_WARNING,
1057                                        "%d UE %s%son %s (%s %s - %s)\n",
1058                                        error_count, msg, msg_aux, label,
1059                                        location, detail, other_detail);
1060                 else
1061                         edac_mc_printk(mci, KERN_WARNING,
1062                                        "%d UE %s%son %s (%s %s)\n",
1063                                        error_count, msg, msg_aux, label,
1064                                        location, detail);
1065         }
1066
1067         if (edac_mc_get_panic_on_ue()) {
1068                 if (other_detail && *other_detail)
1069                         panic("UE %s%son %s (%s%s - %s)\n",
1070                               msg, msg_aux, label, location, detail, other_detail);
1071                 else
1072                         panic("UE %s%son %s (%s%s)\n",
1073                               msg, msg_aux, label, location, detail);
1074         }
1075
1076         edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1077 }
1078
1079 /**
1080  * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1081  *                            anything to discover the error location
1082  *
1083  * @type:               severity of the error (CE/UE/Fatal)
1084  * @mci:                a struct mem_ctl_info pointer
1085  * @e:                  error description
1086  *
1087  * This raw function is used internally by edac_mc_handle_error(). It should
1088  * only be called directly when the hardware error come directly from BIOS,
1089  * like in the case of APEI GHES driver.
1090  */
1091 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1092                               struct mem_ctl_info *mci,
1093                               struct edac_raw_error_desc *e)
1094 {
1095         char detail[80];
1096         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1097
1098         /* Memory type dependent details about the error */
1099         if (type == HW_EVENT_ERR_CORRECTED) {
1100                 snprintf(detail, sizeof(detail),
1101                         "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1102                         e->page_frame_number, e->offset_in_page,
1103                         e->grain, e->syndrome);
1104                 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1105                               detail, e->other_detail, e->enable_per_layer_report,
1106                               e->page_frame_number, e->offset_in_page, e->grain);
1107         } else {
1108                 snprintf(detail, sizeof(detail),
1109                         "page:0x%lx offset:0x%lx grain:%ld",
1110                         e->page_frame_number, e->offset_in_page, e->grain);
1111
1112                 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1113                               detail, e->other_detail, e->enable_per_layer_report);
1114         }
1115
1116
1117 }
1118 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1119
1120 /**
1121  * edac_mc_handle_error - reports a memory event to userspace
1122  *
1123  * @type:               severity of the error (CE/UE/Fatal)
1124  * @mci:                a struct mem_ctl_info pointer
1125  * @error_count:        Number of errors of the same type
1126  * @page_frame_number:  mem page where the error occurred
1127  * @offset_in_page:     offset of the error inside the page
1128  * @syndrome:           ECC syndrome
1129  * @top_layer:          Memory layer[0] position
1130  * @mid_layer:          Memory layer[1] position
1131  * @low_layer:          Memory layer[2] position
1132  * @msg:                Message meaningful to the end users that
1133  *                      explains the event
1134  * @other_detail:       Technical details about the event that
1135  *                      may help hardware manufacturers and
1136  *                      EDAC developers to analyse the event
1137  */
1138 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1139                           struct mem_ctl_info *mci,
1140                           const u16 error_count,
1141                           const unsigned long page_frame_number,
1142                           const unsigned long offset_in_page,
1143                           const unsigned long syndrome,
1144                           const int top_layer,
1145                           const int mid_layer,
1146                           const int low_layer,
1147                           const char *msg,
1148                           const char *other_detail)
1149 {
1150         char *p;
1151         int row = -1, chan = -1;
1152         int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1153         int i, n_labels = 0;
1154         u8 grain_bits;
1155         struct edac_raw_error_desc *e = &mci->error_desc;
1156
1157         edac_dbg(3, "MC%d\n", mci->mc_idx);
1158
1159         /* Fills the error report buffer */
1160         memset(e, 0, sizeof (*e));
1161         e->error_count = error_count;
1162         e->top_layer = top_layer;
1163         e->mid_layer = mid_layer;
1164         e->low_layer = low_layer;
1165         e->page_frame_number = page_frame_number;
1166         e->offset_in_page = offset_in_page;
1167         e->syndrome = syndrome;
1168         e->msg = msg;
1169         e->other_detail = other_detail;
1170
1171         /*
1172          * Check if the event report is consistent and if the memory
1173          * location is known. If it is known, enable_per_layer_report will be
1174          * true, the DIMM(s) label info will be filled and the per-layer
1175          * error counters will be incremented.
1176          */
1177         for (i = 0; i < mci->n_layers; i++) {
1178                 if (pos[i] >= (int)mci->layers[i].size) {
1179
1180                         edac_mc_printk(mci, KERN_ERR,
1181                                        "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1182                                        edac_layer_name[mci->layers[i].type],
1183                                        pos[i], mci->layers[i].size);
1184                         /*
1185                          * Instead of just returning it, let's use what's
1186                          * known about the error. The increment routines and
1187                          * the DIMM filter logic will do the right thing by
1188                          * pointing the likely damaged DIMMs.
1189                          */
1190                         pos[i] = -1;
1191                 }
1192                 if (pos[i] >= 0)
1193                         e->enable_per_layer_report = true;
1194         }
1195
1196         /*
1197          * Get the dimm label/grain that applies to the match criteria.
1198          * As the error algorithm may not be able to point to just one memory
1199          * stick, the logic here will get all possible labels that could
1200          * pottentially be affected by the error.
1201          * On FB-DIMM memory controllers, for uncorrected errors, it is common
1202          * to have only the MC channel and the MC dimm (also called "branch")
1203          * but the channel is not known, as the memory is arranged in pairs,
1204          * where each memory belongs to a separate channel within the same
1205          * branch.
1206          */
1207         p = e->label;
1208         *p = '\0';
1209
1210         for (i = 0; i < mci->tot_dimms; i++) {
1211                 struct dimm_info *dimm = mci->dimms[i];
1212
1213                 if (top_layer >= 0 && top_layer != dimm->location[0])
1214                         continue;
1215                 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1216                         continue;
1217                 if (low_layer >= 0 && low_layer != dimm->location[2])
1218                         continue;
1219
1220                 /* get the max grain, over the error match range */
1221                 if (dimm->grain > e->grain)
1222                         e->grain = dimm->grain;
1223
1224                 /*
1225                  * If the error is memory-controller wide, there's no need to
1226                  * seek for the affected DIMMs because the whole
1227                  * channel/memory controller/...  may be affected.
1228                  * Also, don't show errors for empty DIMM slots.
1229                  */
1230                 if (e->enable_per_layer_report && dimm->nr_pages) {
1231                         if (n_labels >= EDAC_MAX_LABELS) {
1232                                 e->enable_per_layer_report = false;
1233                                 break;
1234                         }
1235                         n_labels++;
1236                         if (p != e->label) {
1237                                 strcpy(p, OTHER_LABEL);
1238                                 p += strlen(OTHER_LABEL);
1239                         }
1240                         strcpy(p, dimm->label);
1241                         p += strlen(p);
1242                         *p = '\0';
1243
1244                         /*
1245                          * get csrow/channel of the DIMM, in order to allow
1246                          * incrementing the compat API counters
1247                          */
1248                         edac_dbg(4, "%s csrows map: (%d,%d)\n",
1249                                  mci->csbased ? "rank" : "dimm",
1250                                  dimm->csrow, dimm->cschannel);
1251                         if (row == -1)
1252                                 row = dimm->csrow;
1253                         else if (row >= 0 && row != dimm->csrow)
1254                                 row = -2;
1255
1256                         if (chan == -1)
1257                                 chan = dimm->cschannel;
1258                         else if (chan >= 0 && chan != dimm->cschannel)
1259                                 chan = -2;
1260                 }
1261         }
1262
1263         if (!e->enable_per_layer_report) {
1264                 strcpy(e->label, "any memory");
1265         } else {
1266                 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1267                 if (p == e->label)
1268                         strcpy(e->label, "unknown memory");
1269                 if (type == HW_EVENT_ERR_CORRECTED) {
1270                         if (row >= 0) {
1271                                 mci->csrows[row]->ce_count += error_count;
1272                                 if (chan >= 0)
1273                                         mci->csrows[row]->channels[chan]->ce_count += error_count;
1274                         }
1275                 } else
1276                         if (row >= 0)
1277                                 mci->csrows[row]->ue_count += error_count;
1278         }
1279
1280         /* Fill the RAM location data */
1281         p = e->location;
1282
1283         for (i = 0; i < mci->n_layers; i++) {
1284                 if (pos[i] < 0)
1285                         continue;
1286
1287                 p += sprintf(p, "%s:%d ",
1288                              edac_layer_name[mci->layers[i].type],
1289                              pos[i]);
1290         }
1291         if (p > e->location)
1292                 *(p - 1) = '\0';
1293
1294         /* Report the error via the trace interface */
1295         grain_bits = fls_long(e->grain) + 1;
1296         trace_mc_event(type, e->msg, e->label, e->error_count,
1297                        mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1298                        PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
1299                        grain_bits, e->syndrome, e->other_detail);
1300
1301         edac_raw_mc_handle_error(type, mci, e);
1302 }
1303 EXPORT_SYMBOL_GPL(edac_mc_handle_error);