ASoC: twl6040: Select LPPLL during standby
[cascardo/linux.git] / drivers / edac / sb_edac.c
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *       Mauro Carvalho Chehab
11  */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26
27 #include "edac_core.h"
28
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.1.1 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)                      \
44         edac_printk(level, "sbridge", fmt, ##arg)
45
46 #define sbridge_mc_printk(mci, level, fmt, arg...)              \
47         edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi) \
53         (((v) & GENMASK_ULL(hi, lo)) >> (lo))
54
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule[] = {
57         0x80, 0x88, 0x90, 0x98, 0xa0,
58         0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
59 };
60
61 static const u32 ibridge_dram_rule[] = {
62         0x60, 0x68, 0x70, 0x78, 0x80,
63         0x88, 0x90, 0x98, 0xa0, 0xa8,
64         0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65         0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
66 };
67
68 static const u32 knl_dram_rule[] = {
69         0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
70         0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
71         0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
72         0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
73         0x100, 0x108, 0x110, 0x118,   /* 20-23 */
74 };
75
76 #define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
77 #define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
78
79 static char *show_dram_attr(u32 attr)
80 {
81         switch (attr) {
82                 case 0:
83                         return "DRAM";
84                 case 1:
85                         return "MMCFG";
86                 case 2:
87                         return "NXM";
88                 default:
89                         return "unknown";
90         }
91 }
92
93 static const u32 sbridge_interleave_list[] = {
94         0x84, 0x8c, 0x94, 0x9c, 0xa4,
95         0xac, 0xb4, 0xbc, 0xc4, 0xcc,
96 };
97
98 static const u32 ibridge_interleave_list[] = {
99         0x64, 0x6c, 0x74, 0x7c, 0x84,
100         0x8c, 0x94, 0x9c, 0xa4, 0xac,
101         0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
102         0xdc, 0xe4, 0xec, 0xf4, 0xfc,
103 };
104
105 static const u32 knl_interleave_list[] = {
106         0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
107         0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
108         0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
109         0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
110         0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
111 };
112
113 struct interleave_pkg {
114         unsigned char start;
115         unsigned char end;
116 };
117
118 static const struct interleave_pkg sbridge_interleave_pkg[] = {
119         { 0, 2 },
120         { 3, 5 },
121         { 8, 10 },
122         { 11, 13 },
123         { 16, 18 },
124         { 19, 21 },
125         { 24, 26 },
126         { 27, 29 },
127 };
128
129 static const struct interleave_pkg ibridge_interleave_pkg[] = {
130         { 0, 3 },
131         { 4, 7 },
132         { 8, 11 },
133         { 12, 15 },
134         { 16, 19 },
135         { 20, 23 },
136         { 24, 27 },
137         { 28, 31 },
138 };
139
140 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
141                           int interleave)
142 {
143         return GET_BITFIELD(reg, table[interleave].start,
144                             table[interleave].end);
145 }
146
147 /* Devices 12 Function 7 */
148
149 #define TOLM            0x80
150 #define TOHM            0x84
151 #define HASWELL_TOLM    0xd0
152 #define HASWELL_TOHM_0  0xd4
153 #define HASWELL_TOHM_1  0xd8
154 #define KNL_TOLM        0xd0
155 #define KNL_TOHM_0      0xd4
156 #define KNL_TOHM_1      0xd8
157
158 #define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
159 #define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
160
161 /* Device 13 Function 6 */
162
163 #define SAD_TARGET      0xf0
164
165 #define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
166
167 #define SOURCE_ID_KNL(reg)      GET_BITFIELD(reg, 12, 14)
168
169 #define SAD_CONTROL     0xf4
170
171 /* Device 14 function 0 */
172
173 static const u32 tad_dram_rule[] = {
174         0x40, 0x44, 0x48, 0x4c,
175         0x50, 0x54, 0x58, 0x5c,
176         0x60, 0x64, 0x68, 0x6c,
177 };
178 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
179
180 #define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
181 #define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
182 #define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
183 #define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
184 #define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
185 #define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
186 #define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
187
188 /* Device 15, function 0 */
189
190 #define MCMTR                   0x7c
191 #define KNL_MCMTR               0x624
192
193 #define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
194 #define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
195 #define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
196
197 /* Device 15, function 1 */
198
199 #define RASENABLES              0xac
200 #define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
201
202 /* Device 15, functions 2-5 */
203
204 static const int mtr_regs[] = {
205         0x80, 0x84, 0x88,
206 };
207
208 static const int knl_mtr_reg = 0xb60;
209
210 #define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
211 #define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
212 #define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
213 #define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
214 #define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
215
216 static const u32 tad_ch_nilv_offset[] = {
217         0x90, 0x94, 0x98, 0x9c,
218         0xa0, 0xa4, 0xa8, 0xac,
219         0xb0, 0xb4, 0xb8, 0xbc,
220 };
221 #define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
222 #define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
223
224 static const u32 rir_way_limit[] = {
225         0x108, 0x10c, 0x110, 0x114, 0x118,
226 };
227 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
228
229 #define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
230 #define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
231
232 #define MAX_RIR_WAY     8
233
234 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
235         { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
236         { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
237         { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
238         { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
239         { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
240 };
241
242 #define RIR_RNK_TGT(reg)                GET_BITFIELD(reg, 16, 19)
243 #define RIR_OFFSET(reg)         GET_BITFIELD(reg,  2, 14)
244
245 /* Device 16, functions 2-7 */
246
247 /*
248  * FIXME: Implement the error count reads directly
249  */
250
251 static const u32 correrrcnt[] = {
252         0x104, 0x108, 0x10c, 0x110,
253 };
254
255 #define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
256 #define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
257 #define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
258 #define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
259
260 static const u32 correrrthrsld[] = {
261         0x11c, 0x120, 0x124, 0x128,
262 };
263
264 #define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
265 #define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
266
267
268 /* Device 17, function 0 */
269
270 #define SB_RANK_CFG_A           0x0328
271
272 #define IB_RANK_CFG_A           0x0320
273
274 /*
275  * sbridge structs
276  */
277
278 #define NUM_CHANNELS            8       /* 2MC per socket, four chan per MC */
279 #define MAX_DIMMS               3       /* Max DIMMS per channel */
280 #define KNL_MAX_CHAS            38      /* KNL max num. of Cache Home Agents */
281 #define KNL_MAX_CHANNELS        6       /* KNL max num. of PCI channels */
282 #define KNL_MAX_EDCS            8       /* Embedded DRAM controllers */
283 #define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
284
285 enum type {
286         SANDY_BRIDGE,
287         IVY_BRIDGE,
288         HASWELL,
289         BROADWELL,
290         KNIGHTS_LANDING,
291 };
292
293 struct sbridge_pvt;
294 struct sbridge_info {
295         enum type       type;
296         u32             mcmtr;
297         u32             rankcfgr;
298         u64             (*get_tolm)(struct sbridge_pvt *pvt);
299         u64             (*get_tohm)(struct sbridge_pvt *pvt);
300         u64             (*rir_limit)(u32 reg);
301         u64             (*sad_limit)(u32 reg);
302         u32             (*interleave_mode)(u32 reg);
303         char*           (*show_interleave_mode)(u32 reg);
304         u32             (*dram_attr)(u32 reg);
305         const u32       *dram_rule;
306         const u32       *interleave_list;
307         const struct interleave_pkg *interleave_pkg;
308         u8              max_sad;
309         u8              max_interleave;
310         u8              (*get_node_id)(struct sbridge_pvt *pvt);
311         enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
312         enum dev_type   (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
313         struct pci_dev  *pci_vtd;
314 };
315
316 struct sbridge_channel {
317         u32             ranks;
318         u32             dimms;
319 };
320
321 struct pci_id_descr {
322         int                     dev_id;
323         int                     optional;
324 };
325
326 struct pci_id_table {
327         const struct pci_id_descr       *descr;
328         int                             n_devs;
329 };
330
331 struct sbridge_dev {
332         struct list_head        list;
333         u8                      bus, mc;
334         u8                      node_id, source_id;
335         struct pci_dev          **pdev;
336         int                     n_devs;
337         struct mem_ctl_info     *mci;
338 };
339
340 struct knl_pvt {
341         struct pci_dev          *pci_cha[KNL_MAX_CHAS];
342         struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
343         struct pci_dev          *pci_mc0;
344         struct pci_dev          *pci_mc1;
345         struct pci_dev          *pci_mc0_misc;
346         struct pci_dev          *pci_mc1_misc;
347         struct pci_dev          *pci_mc_info; /* tolm, tohm */
348 };
349
350 struct sbridge_pvt {
351         struct pci_dev          *pci_ta, *pci_ddrio, *pci_ras;
352         struct pci_dev          *pci_sad0, *pci_sad1;
353         struct pci_dev          *pci_ha0, *pci_ha1;
354         struct pci_dev          *pci_br0, *pci_br1;
355         struct pci_dev          *pci_ha1_ta;
356         struct pci_dev          *pci_tad[NUM_CHANNELS];
357
358         struct sbridge_dev      *sbridge_dev;
359
360         struct sbridge_info     info;
361         struct sbridge_channel  channel[NUM_CHANNELS];
362
363         /* Memory type detection */
364         bool                    is_mirrored, is_lockstep, is_close_pg;
365
366         /* Fifo double buffers */
367         struct mce              mce_entry[MCE_LOG_LEN];
368         struct mce              mce_outentry[MCE_LOG_LEN];
369
370         /* Fifo in/out counters */
371         unsigned                mce_in, mce_out;
372
373         /* Count indicator to show errors not got */
374         unsigned                mce_overrun;
375
376         /* Memory description */
377         u64                     tolm, tohm;
378         struct knl_pvt knl;
379 };
380
381 #define PCI_DESCR(device_id, opt)       \
382         .dev_id = (device_id),          \
383         .optional = opt
384
385 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
386                 /* Processor Home Agent */
387         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)     },
388
389                 /* Memory controller */
390         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)      },
391         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)     },
392         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)    },
393         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)    },
394         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)    },
395         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)    },
396         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)   },
397
398                 /* System Address Decoder */
399         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)        },
400         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)        },
401
402                 /* Broadcast Registers */
403         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)          },
404 };
405
406 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
407 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
408         PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
409         {0,}                    /* 0 terminated list. */
410 };
411
412 /* This changes depending if 1HA or 2HA:
413  * 1HA:
414  *      0x0eb8 (17.0) is DDRIO0
415  * 2HA:
416  *      0x0ebc (17.4) is DDRIO0
417  */
418 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
419 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
420
421 /* pci ids */
422 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
423 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
424 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
425 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
426 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
427 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
428 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
429 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
430 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
431 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
432 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
433 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
434 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
435 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
436 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
437 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2        0x0e6c
438 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3        0x0e6d
439
440 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
441                 /* Processor Home Agent */
442         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)             },
443
444                 /* Memory controller */
445         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)          },
446         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)         },
447         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)        },
448         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)        },
449         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)        },
450         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)        },
451
452                 /* System Address Decoder */
453         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)                 },
454
455                 /* Broadcast Registers */
456         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)                 },
457         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)                 },
458
459                 /* Optional, mode 2HA */
460         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)             },
461 #if 0
462         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)  },
463         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) },
464 #endif
465         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)        },
466         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)        },
467         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1)        },
468         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1)        },
469
470         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)      },
471         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)      },
472 };
473
474 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
475         PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
476         {0,}                    /* 0 terminated list. */
477 };
478
479 /* Haswell support */
480 /* EN processor:
481  *      - 1 IMC
482  *      - 3 DDR3 channels, 2 DPC per channel
483  * EP processor:
484  *      - 1 or 2 IMC
485  *      - 4 DDR4 channels, 3 DPC per channel
486  * EP 4S processor:
487  *      - 2 IMC
488  *      - 4 DDR4 channels, 3 DPC per channel
489  * EX processor:
490  *      - 2 IMC
491  *      - each IMC interfaces with a SMI 2 channel
492  *      - each SMI channel interfaces with a scalable memory buffer
493  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
494  */
495 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
496 #define HASWELL_HASYSDEFEATURE2 0x84
497 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
498 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
499 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
500 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
501 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
502 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
503 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
504 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
505 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
506 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
507 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
508 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
509 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
510 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
511 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
512 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
513 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
514 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
515 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
516 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
517 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
518 static const struct pci_id_descr pci_dev_descr_haswell[] = {
519         /* first item must be the HA */
520         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)             },
521
522         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)        },
523         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)        },
524
525         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)             },
526
527         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)          },
528         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)     },
529         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)        },
530         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)        },
531         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)        },
532         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)        },
533
534         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)          },
535         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1)          },
536         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1)          },
537         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1)          },
538
539         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)          },
540         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)     },
541         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)        },
542         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)        },
543         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)        },
544         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)        },
545 };
546
547 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
548         PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
549         {0,}                    /* 0 terminated list. */
550 };
551
552 /* Knight's Landing Support */
553 /*
554  * KNL's memory channels are swizzled between memory controllers.
555  * MC0 is mapped to CH3,5,6 and MC1 is mapped to CH0,1,2
556  */
557 #define knl_channel_remap(channel) ((channel + 3) % 6)
558
559 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
560 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
561 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
562 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL  0x7843
563 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
564 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
565 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
566 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
567 /* SAD target - 1-29-1 (1 of these) */
568 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
569 /* Caching / Home Agent */
570 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
571 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
572 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
573
574 /*
575  * KNL differs from SB, IB, and Haswell in that it has multiple
576  * instances of the same device with the same device ID, so we handle that
577  * by creating as many copies in the table as we expect to find.
578  * (Like device ID must be grouped together.)
579  */
580
581 static const struct pci_id_descr pci_dev_descr_knl[] = {
582         [0]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0) },
583         [1]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0) },
584         [2 ... 3]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0)},
585         [4 ... 41]  = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0) },
586         [42 ... 47] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL, 0) },
587         [48]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0) },
588         [49]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0) },
589 };
590
591 static const struct pci_id_table pci_dev_descr_knl_table[] = {
592         PCI_ID_TABLE_ENTRY(pci_dev_descr_knl),
593         {0,}
594 };
595
596 /*
597  * Broadwell support
598  *
599  * DE processor:
600  *      - 1 IMC
601  *      - 2 DDR3 channels, 2 DPC per channel
602  * EP processor:
603  *      - 1 or 2 IMC
604  *      - 4 DDR4 channels, 3 DPC per channel
605  * EP 4S processor:
606  *      - 2 IMC
607  *      - 4 DDR4 channels, 3 DPC per channel
608  * EX processor:
609  *      - 2 IMC
610  *      - each IMC interfaces with a SMI 2 channel
611  *      - each SMI channel interfaces with a scalable memory buffer
612  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
613  */
614 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
615 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
616 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1   0x6f60
617 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
618 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
619 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA        0x6f68
620 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
621 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
622 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
623 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
624 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
625 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
626 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
627 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
628 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
629 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
630 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
631 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
632
633 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
634         /* first item must be the HA */
635         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)           },
636
637         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)      },
638         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)      },
639
640         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1)           },
641
642         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)        },
643         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)   },
644         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)      },
645         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)      },
646         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1)      },
647         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1)      },
648
649         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)        },
650
651         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1)        },
652         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1)   },
653         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1)      },
654         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1)      },
655         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1)      },
656         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1)      },
657 };
658
659 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
660         PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
661         {0,}                    /* 0 terminated list. */
662 };
663
664 /*
665  *      pci_device_id   table for which devices we are looking for
666  */
667 static const struct pci_device_id sbridge_pci_tbl[] = {
668         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
669         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
670         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
671         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
672         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0)},
673         {0,}                    /* 0 terminated list. */
674 };
675
676
677 /****************************************************************************
678                         Ancillary status routines
679  ****************************************************************************/
680
681 static inline int numrank(enum type type, u32 mtr)
682 {
683         int ranks = (1 << RANK_CNT_BITS(mtr));
684         int max = 4;
685
686         if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
687                 max = 8;
688
689         if (ranks > max) {
690                 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
691                          ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
692                 return -EINVAL;
693         }
694
695         return ranks;
696 }
697
698 static inline int numrow(u32 mtr)
699 {
700         int rows = (RANK_WIDTH_BITS(mtr) + 12);
701
702         if (rows < 13 || rows > 18) {
703                 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
704                          rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
705                 return -EINVAL;
706         }
707
708         return 1 << rows;
709 }
710
711 static inline int numcol(u32 mtr)
712 {
713         int cols = (COL_WIDTH_BITS(mtr) + 10);
714
715         if (cols > 12) {
716                 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
717                          cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
718                 return -EINVAL;
719         }
720
721         return 1 << cols;
722 }
723
724 static struct sbridge_dev *get_sbridge_dev(u8 bus, int multi_bus)
725 {
726         struct sbridge_dev *sbridge_dev;
727
728         /*
729          * If we have devices scattered across several busses that pertain
730          * to the same memory controller, we'll lump them all together.
731          */
732         if (multi_bus) {
733                 return list_first_entry_or_null(&sbridge_edac_list,
734                                 struct sbridge_dev, list);
735         }
736
737         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
738                 if (sbridge_dev->bus == bus)
739                         return sbridge_dev;
740         }
741
742         return NULL;
743 }
744
745 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
746                                            const struct pci_id_table *table)
747 {
748         struct sbridge_dev *sbridge_dev;
749
750         sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
751         if (!sbridge_dev)
752                 return NULL;
753
754         sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
755                                    GFP_KERNEL);
756         if (!sbridge_dev->pdev) {
757                 kfree(sbridge_dev);
758                 return NULL;
759         }
760
761         sbridge_dev->bus = bus;
762         sbridge_dev->n_devs = table->n_devs;
763         list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
764
765         return sbridge_dev;
766 }
767
768 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
769 {
770         list_del(&sbridge_dev->list);
771         kfree(sbridge_dev->pdev);
772         kfree(sbridge_dev);
773 }
774
775 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
776 {
777         u32 reg;
778
779         /* Address range is 32:28 */
780         pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
781         return GET_TOLM(reg);
782 }
783
784 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
785 {
786         u32 reg;
787
788         pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
789         return GET_TOHM(reg);
790 }
791
792 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
793 {
794         u32 reg;
795
796         pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
797
798         return GET_TOLM(reg);
799 }
800
801 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
802 {
803         u32 reg;
804
805         pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
806
807         return GET_TOHM(reg);
808 }
809
810 static u64 rir_limit(u32 reg)
811 {
812         return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
813 }
814
815 static u64 sad_limit(u32 reg)
816 {
817         return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
818 }
819
820 static u32 interleave_mode(u32 reg)
821 {
822         return GET_BITFIELD(reg, 1, 1);
823 }
824
825 char *show_interleave_mode(u32 reg)
826 {
827         return interleave_mode(reg) ? "8:6" : "[8:6]XOR[18:16]";
828 }
829
830 static u32 dram_attr(u32 reg)
831 {
832         return GET_BITFIELD(reg, 2, 3);
833 }
834
835 static u64 knl_sad_limit(u32 reg)
836 {
837         return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
838 }
839
840 static u32 knl_interleave_mode(u32 reg)
841 {
842         return GET_BITFIELD(reg, 1, 2);
843 }
844
845 static char *knl_show_interleave_mode(u32 reg)
846 {
847         char *s;
848
849         switch (knl_interleave_mode(reg)) {
850         case 0:
851                 s = "use address bits [8:6]";
852                 break;
853         case 1:
854                 s = "use address bits [10:8]";
855                 break;
856         case 2:
857                 s = "use address bits [14:12]";
858                 break;
859         case 3:
860                 s = "use address bits [32:30]";
861                 break;
862         default:
863                 WARN_ON(1);
864                 break;
865         }
866
867         return s;
868 }
869
870 static u32 dram_attr_knl(u32 reg)
871 {
872         return GET_BITFIELD(reg, 3, 4);
873 }
874
875
876 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
877 {
878         u32 reg;
879         enum mem_type mtype;
880
881         if (pvt->pci_ddrio) {
882                 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
883                                       &reg);
884                 if (GET_BITFIELD(reg, 11, 11))
885                         /* FIXME: Can also be LRDIMM */
886                         mtype = MEM_RDDR3;
887                 else
888                         mtype = MEM_DDR3;
889         } else
890                 mtype = MEM_UNKNOWN;
891
892         return mtype;
893 }
894
895 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
896 {
897         u32 reg;
898         bool registered = false;
899         enum mem_type mtype = MEM_UNKNOWN;
900
901         if (!pvt->pci_ddrio)
902                 goto out;
903
904         pci_read_config_dword(pvt->pci_ddrio,
905                               HASWELL_DDRCRCLKCONTROLS, &reg);
906         /* Is_Rdimm */
907         if (GET_BITFIELD(reg, 16, 16))
908                 registered = true;
909
910         pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
911         if (GET_BITFIELD(reg, 14, 14)) {
912                 if (registered)
913                         mtype = MEM_RDDR4;
914                 else
915                         mtype = MEM_DDR4;
916         } else {
917                 if (registered)
918                         mtype = MEM_RDDR3;
919                 else
920                         mtype = MEM_DDR3;
921         }
922
923 out:
924         return mtype;
925 }
926
927 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
928 {
929         /* for KNL value is fixed */
930         return DEV_X16;
931 }
932
933 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
934 {
935         /* there's no way to figure out */
936         return DEV_UNKNOWN;
937 }
938
939 static enum dev_type __ibridge_get_width(u32 mtr)
940 {
941         enum dev_type type;
942
943         switch (mtr) {
944         case 3:
945                 type = DEV_UNKNOWN;
946                 break;
947         case 2:
948                 type = DEV_X16;
949                 break;
950         case 1:
951                 type = DEV_X8;
952                 break;
953         case 0:
954                 type = DEV_X4;
955                 break;
956         }
957
958         return type;
959 }
960
961 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
962 {
963         /*
964          * ddr3_width on the documentation but also valid for DDR4 on
965          * Haswell
966          */
967         return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
968 }
969
970 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
971 {
972         /* ddr3_width on the documentation but also valid for DDR4 */
973         return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
974 }
975
976 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
977 {
978         /* DDR4 RDIMMS and LRDIMMS are supported */
979         return MEM_RDDR4;
980 }
981
982 static u8 get_node_id(struct sbridge_pvt *pvt)
983 {
984         u32 reg;
985         pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
986         return GET_BITFIELD(reg, 0, 2);
987 }
988
989 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
990 {
991         u32 reg;
992
993         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
994         return GET_BITFIELD(reg, 0, 3);
995 }
996
997 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
998 {
999         u32 reg;
1000
1001         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1002         return GET_BITFIELD(reg, 0, 2);
1003 }
1004
1005
1006 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1007 {
1008         u32 reg;
1009
1010         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1011         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1012 }
1013
1014 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1015 {
1016         u64 rc;
1017         u32 reg;
1018
1019         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1020         rc = GET_BITFIELD(reg, 26, 31);
1021         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1022         rc = ((reg << 6) | rc) << 26;
1023
1024         return rc | 0x1ffffff;
1025 }
1026
1027 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1028 {
1029         u32 reg;
1030
1031         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1032         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1033 }
1034
1035 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1036 {
1037         u64 rc;
1038         u32 reg_lo, reg_hi;
1039
1040         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1041         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1042         rc = ((u64)reg_hi << 32) | reg_lo;
1043         return rc | 0x3ffffff;
1044 }
1045
1046
1047 static u64 haswell_rir_limit(u32 reg)
1048 {
1049         return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1050 }
1051
1052 static inline u8 sad_pkg_socket(u8 pkg)
1053 {
1054         /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1055         return ((pkg >> 3) << 2) | (pkg & 0x3);
1056 }
1057
1058 static inline u8 sad_pkg_ha(u8 pkg)
1059 {
1060         return (pkg >> 2) & 0x1;
1061 }
1062
1063 /****************************************************************************
1064                         Memory check routines
1065  ****************************************************************************/
1066 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
1067 {
1068         struct pci_dev *pdev = NULL;
1069
1070         do {
1071                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
1072                 if (pdev && pdev->bus->number == bus)
1073                         break;
1074         } while (pdev);
1075
1076         return pdev;
1077 }
1078
1079 /**
1080  * check_if_ecc_is_active() - Checks if ECC is active
1081  * @bus:        Device bus
1082  * @type:       Memory controller type
1083  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
1084  *          disabled
1085  */
1086 static int check_if_ecc_is_active(const u8 bus, enum type type)
1087 {
1088         struct pci_dev *pdev = NULL;
1089         u32 mcmtr, id;
1090
1091         switch (type) {
1092         case IVY_BRIDGE:
1093                 id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
1094                 break;
1095         case HASWELL:
1096                 id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
1097                 break;
1098         case SANDY_BRIDGE:
1099                 id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
1100                 break;
1101         case BROADWELL:
1102                 id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
1103                 break;
1104         case KNIGHTS_LANDING:
1105                 /*
1106                  * KNL doesn't group things by bus the same way
1107                  * SB/IB/Haswell does.
1108                  */
1109                 id = PCI_DEVICE_ID_INTEL_KNL_IMC_TA;
1110                 break;
1111         default:
1112                 return -ENODEV;
1113         }
1114
1115         if (type != KNIGHTS_LANDING)
1116                 pdev = get_pdev_same_bus(bus, id);
1117         else
1118                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, 0);
1119
1120         if (!pdev) {
1121                 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
1122                                         "%04x:%04x! on bus %02d\n",
1123                                         PCI_VENDOR_ID_INTEL, id, bus);
1124                 return -ENODEV;
1125         }
1126
1127         pci_read_config_dword(pdev,
1128                         type == KNIGHTS_LANDING ? KNL_MCMTR : MCMTR, &mcmtr);
1129         if (!IS_ECC_ENABLED(mcmtr)) {
1130                 sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
1131                 return -ENODEV;
1132         }
1133         return 0;
1134 }
1135
1136 /* Low bits of TAD limit, and some metadata. */
1137 static const u32 knl_tad_dram_limit_lo[] = {
1138         0x400, 0x500, 0x600, 0x700,
1139         0x800, 0x900, 0xa00, 0xb00,
1140 };
1141
1142 /* Low bits of TAD offset. */
1143 static const u32 knl_tad_dram_offset_lo[] = {
1144         0x404, 0x504, 0x604, 0x704,
1145         0x804, 0x904, 0xa04, 0xb04,
1146 };
1147
1148 /* High 16 bits of TAD limit and offset. */
1149 static const u32 knl_tad_dram_hi[] = {
1150         0x408, 0x508, 0x608, 0x708,
1151         0x808, 0x908, 0xa08, 0xb08,
1152 };
1153
1154 /* Number of ways a tad entry is interleaved. */
1155 static const u32 knl_tad_ways[] = {
1156         8, 6, 4, 3, 2, 1,
1157 };
1158
1159 /*
1160  * Retrieve the n'th Target Address Decode table entry
1161  * from the memory controller's TAD table.
1162  *
1163  * @pvt:        driver private data
1164  * @entry:      which entry you want to retrieve
1165  * @mc:         which memory controller (0 or 1)
1166  * @offset:     output tad range offset
1167  * @limit:      output address of first byte above tad range
1168  * @ways:       output number of interleave ways
1169  *
1170  * The offset value has curious semantics.  It's a sort of running total
1171  * of the sizes of all the memory regions that aren't mapped in this
1172  * tad table.
1173  */
1174 static int knl_get_tad(const struct sbridge_pvt *pvt,
1175                 const int entry,
1176                 const int mc,
1177                 u64 *offset,
1178                 u64 *limit,
1179                 int *ways)
1180 {
1181         u32 reg_limit_lo, reg_offset_lo, reg_hi;
1182         struct pci_dev *pci_mc;
1183         int way_id;
1184
1185         switch (mc) {
1186         case 0:
1187                 pci_mc = pvt->knl.pci_mc0;
1188                 break;
1189         case 1:
1190                 pci_mc = pvt->knl.pci_mc1;
1191                 break;
1192         default:
1193                 WARN_ON(1);
1194                 return -EINVAL;
1195         }
1196
1197         pci_read_config_dword(pci_mc,
1198                         knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1199         pci_read_config_dword(pci_mc,
1200                         knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1201         pci_read_config_dword(pci_mc,
1202                         knl_tad_dram_hi[entry], &reg_hi);
1203
1204         /* Is this TAD entry enabled? */
1205         if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1206                 return -ENODEV;
1207
1208         way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1209
1210         if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1211                 *ways = knl_tad_ways[way_id];
1212         } else {
1213                 *ways = 0;
1214                 sbridge_printk(KERN_ERR,
1215                                 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1216                                 way_id);
1217                 return -ENODEV;
1218         }
1219
1220         /*
1221          * The least significant 6 bits of base and limit are truncated.
1222          * For limit, we fill the missing bits with 1s.
1223          */
1224         *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1225                                 ((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1226         *limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1227                                 ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1228
1229         return 0;
1230 }
1231
1232 /* Determine which memory controller is responsible for a given channel. */
1233 static int knl_channel_mc(int channel)
1234 {
1235         WARN_ON(channel < 0 || channel >= 6);
1236
1237         return channel < 3 ? 1 : 0;
1238 }
1239
1240 /*
1241  * Get the Nth entry from EDC_ROUTE_TABLE register.
1242  * (This is the per-tile mapping of logical interleave targets to
1243  *  physical EDC modules.)
1244  *
1245  * entry 0: 0:2
1246  *       1: 3:5
1247  *       2: 6:8
1248  *       3: 9:11
1249  *       4: 12:14
1250  *       5: 15:17
1251  *       6: 18:20
1252  *       7: 21:23
1253  * reserved: 24:31
1254  */
1255 static u32 knl_get_edc_route(int entry, u32 reg)
1256 {
1257         WARN_ON(entry >= KNL_MAX_EDCS);
1258         return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1259 }
1260
1261 /*
1262  * Get the Nth entry from MC_ROUTE_TABLE register.
1263  * (This is the per-tile mapping of logical interleave targets to
1264  *  physical DRAM channels modules.)
1265  *
1266  * entry 0: mc 0:2   channel 18:19
1267  *       1: mc 3:5   channel 20:21
1268  *       2: mc 6:8   channel 22:23
1269  *       3: mc 9:11  channel 24:25
1270  *       4: mc 12:14 channel 26:27
1271  *       5: mc 15:17 channel 28:29
1272  * reserved: 30:31
1273  *
1274  * Though we have 3 bits to identify the MC, we should only see
1275  * the values 0 or 1.
1276  */
1277
1278 static u32 knl_get_mc_route(int entry, u32 reg)
1279 {
1280         int mc, chan;
1281
1282         WARN_ON(entry >= KNL_MAX_CHANNELS);
1283
1284         mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1285         chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1286
1287         return knl_channel_remap(mc*3 + chan);
1288 }
1289
1290 /*
1291  * Render the EDC_ROUTE register in human-readable form.
1292  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1293  */
1294 static void knl_show_edc_route(u32 reg, char *s)
1295 {
1296         int i;
1297
1298         for (i = 0; i < KNL_MAX_EDCS; i++) {
1299                 s[i*2] = knl_get_edc_route(i, reg) + '0';
1300                 s[i*2+1] = '-';
1301         }
1302
1303         s[KNL_MAX_EDCS*2 - 1] = '\0';
1304 }
1305
1306 /*
1307  * Render the MC_ROUTE register in human-readable form.
1308  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1309  */
1310 static void knl_show_mc_route(u32 reg, char *s)
1311 {
1312         int i;
1313
1314         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1315                 s[i*2] = knl_get_mc_route(i, reg) + '0';
1316                 s[i*2+1] = '-';
1317         }
1318
1319         s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1320 }
1321
1322 #define KNL_EDC_ROUTE 0xb8
1323 #define KNL_MC_ROUTE 0xb4
1324
1325 /* Is this dram rule backed by regular DRAM in flat mode? */
1326 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1327
1328 /* Is this dram rule cached? */
1329 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1330
1331 /* Is this rule backed by edc ? */
1332 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1333
1334 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1335 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1336
1337 /* Is this rule mod3? */
1338 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1339
1340 /*
1341  * Figure out how big our RAM modules are.
1342  *
1343  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1344  * have to figure this out from the SAD rules, interleave lists, route tables,
1345  * and TAD rules.
1346  *
1347  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1348  * inspect the TAD rules to figure out how large the SAD regions really are.
1349  *
1350  * When we know the real size of a SAD region and how many ways it's
1351  * interleaved, we know the individual contribution of each channel to
1352  * TAD is size/ways.
1353  *
1354  * Finally, we have to check whether each channel participates in each SAD
1355  * region.
1356  *
1357  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1358  * much memory the channel uses, we know the DIMM is at least that large.
1359  * (The BIOS might possibly choose not to map all available memory, in which
1360  * case we will underreport the size of the DIMM.)
1361  *
1362  * In theory, we could try to determine the EDC sizes as well, but that would
1363  * only work in flat mode, not in cache mode.
1364  *
1365  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1366  *            elements)
1367  */
1368 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1369 {
1370         u64 sad_base, sad_size, sad_limit = 0;
1371         u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1372         int sad_rule = 0;
1373         int tad_rule = 0;
1374         int intrlv_ways, tad_ways;
1375         u32 first_pkg, pkg;
1376         int i;
1377         u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1378         u32 dram_rule, interleave_reg;
1379         u32 mc_route_reg[KNL_MAX_CHAS];
1380         u32 edc_route_reg[KNL_MAX_CHAS];
1381         int edram_only;
1382         char edc_route_string[KNL_MAX_EDCS*2];
1383         char mc_route_string[KNL_MAX_CHANNELS*2];
1384         int cur_reg_start;
1385         int mc;
1386         int channel;
1387         int way;
1388         int participants[KNL_MAX_CHANNELS];
1389         int participant_count = 0;
1390
1391         for (i = 0; i < KNL_MAX_CHANNELS; i++)
1392                 mc_sizes[i] = 0;
1393
1394         /* Read the EDC route table in each CHA. */
1395         cur_reg_start = 0;
1396         for (i = 0; i < KNL_MAX_CHAS; i++) {
1397                 pci_read_config_dword(pvt->knl.pci_cha[i],
1398                                 KNL_EDC_ROUTE, &edc_route_reg[i]);
1399
1400                 if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1401                         knl_show_edc_route(edc_route_reg[i-1],
1402                                         edc_route_string);
1403                         if (cur_reg_start == i-1)
1404                                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1405                                         cur_reg_start, edc_route_string);
1406                         else
1407                                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1408                                         cur_reg_start, i-1, edc_route_string);
1409                         cur_reg_start = i;
1410                 }
1411         }
1412         knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1413         if (cur_reg_start == i-1)
1414                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1415                         cur_reg_start, edc_route_string);
1416         else
1417                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1418                         cur_reg_start, i-1, edc_route_string);
1419
1420         /* Read the MC route table in each CHA. */
1421         cur_reg_start = 0;
1422         for (i = 0; i < KNL_MAX_CHAS; i++) {
1423                 pci_read_config_dword(pvt->knl.pci_cha[i],
1424                         KNL_MC_ROUTE, &mc_route_reg[i]);
1425
1426                 if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1427                         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1428                         if (cur_reg_start == i-1)
1429                                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1430                                         cur_reg_start, mc_route_string);
1431                         else
1432                                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1433                                         cur_reg_start, i-1, mc_route_string);
1434                         cur_reg_start = i;
1435                 }
1436         }
1437         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1438         if (cur_reg_start == i-1)
1439                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1440                         cur_reg_start, mc_route_string);
1441         else
1442                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1443                         cur_reg_start, i-1, mc_route_string);
1444
1445         /* Process DRAM rules */
1446         for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1447                 /* previous limit becomes the new base */
1448                 sad_base = sad_limit;
1449
1450                 pci_read_config_dword(pvt->pci_sad0,
1451                         pvt->info.dram_rule[sad_rule], &dram_rule);
1452
1453                 if (!DRAM_RULE_ENABLE(dram_rule))
1454                         break;
1455
1456                 edram_only = KNL_EDRAM_ONLY(dram_rule);
1457
1458                 sad_limit = pvt->info.sad_limit(dram_rule)+1;
1459                 sad_size = sad_limit - sad_base;
1460
1461                 pci_read_config_dword(pvt->pci_sad0,
1462                         pvt->info.interleave_list[sad_rule], &interleave_reg);
1463
1464                 /*
1465                  * Find out how many ways this dram rule is interleaved.
1466                  * We stop when we see the first channel again.
1467                  */
1468                 first_pkg = sad_pkg(pvt->info.interleave_pkg,
1469                                                 interleave_reg, 0);
1470                 for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1471                         pkg = sad_pkg(pvt->info.interleave_pkg,
1472                                                 interleave_reg, intrlv_ways);
1473
1474                         if ((pkg & 0x8) == 0) {
1475                                 /*
1476                                  * 0 bit means memory is non-local,
1477                                  * which KNL doesn't support
1478                                  */
1479                                 edac_dbg(0, "Unexpected interleave target %d\n",
1480                                         pkg);
1481                                 return -1;
1482                         }
1483
1484                         if (pkg == first_pkg)
1485                                 break;
1486                 }
1487                 if (KNL_MOD3(dram_rule))
1488                         intrlv_ways *= 3;
1489
1490                 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1491                         sad_rule,
1492                         sad_base,
1493                         sad_limit,
1494                         intrlv_ways,
1495                         edram_only ? ", EDRAM" : "");
1496
1497                 /*
1498                  * Find out how big the SAD region really is by iterating
1499                  * over TAD tables (SAD regions may contain holes).
1500                  * Each memory controller might have a different TAD table, so
1501                  * we have to look at both.
1502                  *
1503                  * Livespace is the memory that's mapped in this TAD table,
1504                  * deadspace is the holes (this could be the MMIO hole, or it
1505                  * could be memory that's mapped by the other TAD table but
1506                  * not this one).
1507                  */
1508                 for (mc = 0; mc < 2; mc++) {
1509                         sad_actual_size[mc] = 0;
1510                         tad_livespace = 0;
1511                         for (tad_rule = 0;
1512                                         tad_rule < ARRAY_SIZE(
1513                                                 knl_tad_dram_limit_lo);
1514                                         tad_rule++) {
1515                                 if (knl_get_tad(pvt,
1516                                                 tad_rule,
1517                                                 mc,
1518                                                 &tad_deadspace,
1519                                                 &tad_limit,
1520                                                 &tad_ways))
1521                                         break;
1522
1523                                 tad_size = (tad_limit+1) -
1524                                         (tad_livespace + tad_deadspace);
1525                                 tad_livespace += tad_size;
1526                                 tad_base = (tad_limit+1) - tad_size;
1527
1528                                 if (tad_base < sad_base) {
1529                                         if (tad_limit > sad_base)
1530                                                 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1531                                 } else if (tad_base < sad_limit) {
1532                                         if (tad_limit+1 > sad_limit) {
1533                                                 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1534                                         } else {
1535                                                 /* TAD region is completely inside SAD region */
1536                                                 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1537                                                         tad_rule, tad_base,
1538                                                         tad_limit, tad_size,
1539                                                         mc);
1540                                                 sad_actual_size[mc] += tad_size;
1541                                         }
1542                                 }
1543                                 tad_base = tad_limit+1;
1544                         }
1545                 }
1546
1547                 for (mc = 0; mc < 2; mc++) {
1548                         edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1549                                 mc, sad_actual_size[mc], sad_actual_size[mc]);
1550                 }
1551
1552                 /* Ignore EDRAM rule */
1553                 if (edram_only)
1554                         continue;
1555
1556                 /* Figure out which channels participate in interleave. */
1557                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1558                         participants[channel] = 0;
1559
1560                 /* For each channel, does at least one CHA have
1561                  * this channel mapped to the given target?
1562                  */
1563                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1564                         for (way = 0; way < intrlv_ways; way++) {
1565                                 int target;
1566                                 int cha;
1567
1568                                 if (KNL_MOD3(dram_rule))
1569                                         target = way;
1570                                 else
1571                                         target = 0x7 & sad_pkg(
1572                                 pvt->info.interleave_pkg, interleave_reg, way);
1573
1574                                 for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1575                                         if (knl_get_mc_route(target,
1576                                                 mc_route_reg[cha]) == channel
1577                                                 && !participants[channel]) {
1578                                                 participant_count++;
1579                                                 participants[channel] = 1;
1580                                                 break;
1581                                         }
1582                                 }
1583                         }
1584                 }
1585
1586                 if (participant_count != intrlv_ways)
1587                         edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1588                                 participant_count, intrlv_ways);
1589
1590                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1591                         mc = knl_channel_mc(channel);
1592                         if (participants[channel]) {
1593                                 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1594                                         channel,
1595                                         sad_actual_size[mc]/intrlv_ways,
1596                                         sad_rule);
1597                                 mc_sizes[channel] +=
1598                                         sad_actual_size[mc]/intrlv_ways;
1599                         }
1600                 }
1601         }
1602
1603         return 0;
1604 }
1605
1606 static int get_dimm_config(struct mem_ctl_info *mci)
1607 {
1608         struct sbridge_pvt *pvt = mci->pvt_info;
1609         struct dimm_info *dimm;
1610         unsigned i, j, banks, ranks, rows, cols, npages;
1611         u64 size;
1612         u32 reg;
1613         enum edac_type mode;
1614         enum mem_type mtype;
1615         int channels = pvt->info.type == KNIGHTS_LANDING ?
1616                 KNL_MAX_CHANNELS : NUM_CHANNELS;
1617         u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1618
1619         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1620                         pvt->info.type == KNIGHTS_LANDING)
1621                 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1622         else
1623                 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1624
1625         if (pvt->info.type == KNIGHTS_LANDING)
1626                 pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1627         else
1628                 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1629
1630         pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1631         edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1632                  pvt->sbridge_dev->mc,
1633                  pvt->sbridge_dev->node_id,
1634                  pvt->sbridge_dev->source_id);
1635
1636         /* KNL doesn't support mirroring or lockstep,
1637          * and is always closed page
1638          */
1639         if (pvt->info.type == KNIGHTS_LANDING) {
1640                 mode = EDAC_S4ECD4ED;
1641                 pvt->is_mirrored = false;
1642
1643                 if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1644                         return -1;
1645         } else {
1646                 pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
1647                 if (IS_MIRROR_ENABLED(reg)) {
1648                         edac_dbg(0, "Memory mirror is enabled\n");
1649                         pvt->is_mirrored = true;
1650                 } else {
1651                         edac_dbg(0, "Memory mirror is disabled\n");
1652                         pvt->is_mirrored = false;
1653                 }
1654
1655                 pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
1656                 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1657                         edac_dbg(0, "Lockstep is enabled\n");
1658                         mode = EDAC_S8ECD8ED;
1659                         pvt->is_lockstep = true;
1660                 } else {
1661                         edac_dbg(0, "Lockstep is disabled\n");
1662                         mode = EDAC_S4ECD4ED;
1663                         pvt->is_lockstep = false;
1664                 }
1665                 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1666                         edac_dbg(0, "address map is on closed page mode\n");
1667                         pvt->is_close_pg = true;
1668                 } else {
1669                         edac_dbg(0, "address map is on open page mode\n");
1670                         pvt->is_close_pg = false;
1671                 }
1672         }
1673
1674         mtype = pvt->info.get_memory_type(pvt);
1675         if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1676                 edac_dbg(0, "Memory is registered\n");
1677         else if (mtype == MEM_UNKNOWN)
1678                 edac_dbg(0, "Cannot determine memory type\n");
1679         else
1680                 edac_dbg(0, "Memory is unregistered\n");
1681
1682         if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1683                 banks = 16;
1684         else
1685                 banks = 8;
1686
1687         for (i = 0; i < channels; i++) {
1688                 u32 mtr;
1689
1690                 int max_dimms_per_channel;
1691
1692                 if (pvt->info.type == KNIGHTS_LANDING) {
1693                         max_dimms_per_channel = 1;
1694                         if (!pvt->knl.pci_channel[i])
1695                                 continue;
1696                 } else {
1697                         max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1698                         if (!pvt->pci_tad[i])
1699                                 continue;
1700                 }
1701
1702                 for (j = 0; j < max_dimms_per_channel; j++) {
1703                         dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1704                                        i, j, 0);
1705                         if (pvt->info.type == KNIGHTS_LANDING) {
1706                                 pci_read_config_dword(pvt->knl.pci_channel[i],
1707                                         knl_mtr_reg, &mtr);
1708                         } else {
1709                                 pci_read_config_dword(pvt->pci_tad[i],
1710                                         mtr_regs[j], &mtr);
1711                         }
1712                         edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1713                         if (IS_DIMM_PRESENT(mtr)) {
1714                                 pvt->channel[i].dimms++;
1715
1716                                 ranks = numrank(pvt->info.type, mtr);
1717
1718                                 if (pvt->info.type == KNIGHTS_LANDING) {
1719                                         /* For DDR4, this is fixed. */
1720                                         cols = 1 << 10;
1721                                         rows = knl_mc_sizes[i] /
1722                                                 ((u64) cols * ranks * banks * 8);
1723                                 } else {
1724                                         rows = numrow(mtr);
1725                                         cols = numcol(mtr);
1726                                 }
1727
1728                                 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1729                                 npages = MiB_TO_PAGES(size);
1730
1731                                 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1732                                          pvt->sbridge_dev->mc, i/4, i%4, j,
1733                                          size, npages,
1734                                          banks, ranks, rows, cols);
1735
1736                                 dimm->nr_pages = npages;
1737                                 dimm->grain = 32;
1738                                 dimm->dtype = pvt->info.get_width(pvt, mtr);
1739                                 dimm->mtype = mtype;
1740                                 dimm->edac_mode = mode;
1741                                 snprintf(dimm->label, sizeof(dimm->label),
1742                                          "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1743                                          pvt->sbridge_dev->source_id, i/4, i%4, j);
1744                         }
1745                 }
1746         }
1747
1748         return 0;
1749 }
1750
1751 static void get_memory_layout(const struct mem_ctl_info *mci)
1752 {
1753         struct sbridge_pvt *pvt = mci->pvt_info;
1754         int i, j, k, n_sads, n_tads, sad_interl;
1755         u32 reg;
1756         u64 limit, prv = 0;
1757         u64 tmp_mb;
1758         u32 gb, mb;
1759         u32 rir_way;
1760
1761         /*
1762          * Step 1) Get TOLM/TOHM ranges
1763          */
1764
1765         pvt->tolm = pvt->info.get_tolm(pvt);
1766         tmp_mb = (1 + pvt->tolm) >> 20;
1767
1768         gb = div_u64_rem(tmp_mb, 1024, &mb);
1769         edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1770                 gb, (mb*1000)/1024, (u64)pvt->tolm);
1771
1772         /* Address range is already 45:25 */
1773         pvt->tohm = pvt->info.get_tohm(pvt);
1774         tmp_mb = (1 + pvt->tohm) >> 20;
1775
1776         gb = div_u64_rem(tmp_mb, 1024, &mb);
1777         edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1778                 gb, (mb*1000)/1024, (u64)pvt->tohm);
1779
1780         /*
1781          * Step 2) Get SAD range and SAD Interleave list
1782          * TAD registers contain the interleave wayness. However, it
1783          * seems simpler to just discover it indirectly, with the
1784          * algorithm bellow.
1785          */
1786         prv = 0;
1787         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1788                 /* SAD_LIMIT Address range is 45:26 */
1789                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1790                                       &reg);
1791                 limit = pvt->info.sad_limit(reg);
1792
1793                 if (!DRAM_RULE_ENABLE(reg))
1794                         continue;
1795
1796                 if (limit <= prv)
1797                         break;
1798
1799                 tmp_mb = (limit + 1) >> 20;
1800                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1801                 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1802                          n_sads,
1803                          show_dram_attr(pvt->info.dram_attr(reg)),
1804                          gb, (mb*1000)/1024,
1805                          ((u64)tmp_mb) << 20L,
1806                          pvt->info.show_interleave_mode(reg),
1807                          reg);
1808                 prv = limit;
1809
1810                 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1811                                       &reg);
1812                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1813                 for (j = 0; j < 8; j++) {
1814                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1815                         if (j > 0 && sad_interl == pkg)
1816                                 break;
1817
1818                         edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1819                                  n_sads, j, pkg);
1820                 }
1821         }
1822
1823         if (pvt->info.type == KNIGHTS_LANDING)
1824                 return;
1825
1826         /*
1827          * Step 3) Get TAD range
1828          */
1829         prv = 0;
1830         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1831                 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1832                                       &reg);
1833                 limit = TAD_LIMIT(reg);
1834                 if (limit <= prv)
1835                         break;
1836                 tmp_mb = (limit + 1) >> 20;
1837
1838                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1839                 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1840                          n_tads, gb, (mb*1000)/1024,
1841                          ((u64)tmp_mb) << 20L,
1842                          (u32)(1 << TAD_SOCK(reg)),
1843                          (u32)TAD_CH(reg) + 1,
1844                          (u32)TAD_TGT0(reg),
1845                          (u32)TAD_TGT1(reg),
1846                          (u32)TAD_TGT2(reg),
1847                          (u32)TAD_TGT3(reg),
1848                          reg);
1849                 prv = limit;
1850         }
1851
1852         /*
1853          * Step 4) Get TAD offsets, per each channel
1854          */
1855         for (i = 0; i < NUM_CHANNELS; i++) {
1856                 if (!pvt->channel[i].dimms)
1857                         continue;
1858                 for (j = 0; j < n_tads; j++) {
1859                         pci_read_config_dword(pvt->pci_tad[i],
1860                                               tad_ch_nilv_offset[j],
1861                                               &reg);
1862                         tmp_mb = TAD_OFFSET(reg) >> 20;
1863                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1864                         edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1865                                  i, j,
1866                                  gb, (mb*1000)/1024,
1867                                  ((u64)tmp_mb) << 20L,
1868                                  reg);
1869                 }
1870         }
1871
1872         /*
1873          * Step 6) Get RIR Wayness/Limit, per each channel
1874          */
1875         for (i = 0; i < NUM_CHANNELS; i++) {
1876                 if (!pvt->channel[i].dimms)
1877                         continue;
1878                 for (j = 0; j < MAX_RIR_RANGES; j++) {
1879                         pci_read_config_dword(pvt->pci_tad[i],
1880                                               rir_way_limit[j],
1881                                               &reg);
1882
1883                         if (!IS_RIR_VALID(reg))
1884                                 continue;
1885
1886                         tmp_mb = pvt->info.rir_limit(reg) >> 20;
1887                         rir_way = 1 << RIR_WAY(reg);
1888                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1889                         edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1890                                  i, j,
1891                                  gb, (mb*1000)/1024,
1892                                  ((u64)tmp_mb) << 20L,
1893                                  rir_way,
1894                                  reg);
1895
1896                         for (k = 0; k < rir_way; k++) {
1897                                 pci_read_config_dword(pvt->pci_tad[i],
1898                                                       rir_offset[j][k],
1899                                                       &reg);
1900                                 tmp_mb = RIR_OFFSET(reg) << 6;
1901
1902                                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1903                                 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1904                                          i, j, k,
1905                                          gb, (mb*1000)/1024,
1906                                          ((u64)tmp_mb) << 20L,
1907                                          (u32)RIR_RNK_TGT(reg),
1908                                          reg);
1909                         }
1910                 }
1911         }
1912 }
1913
1914 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1915 {
1916         struct sbridge_dev *sbridge_dev;
1917
1918         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1919                 if (sbridge_dev->node_id == node_id)
1920                         return sbridge_dev->mci;
1921         }
1922         return NULL;
1923 }
1924
1925 static int get_memory_error_data(struct mem_ctl_info *mci,
1926                                  u64 addr,
1927                                  u8 *socket, u8 *ha,
1928                                  long *channel_mask,
1929                                  u8 *rank,
1930                                  char **area_type, char *msg)
1931 {
1932         struct mem_ctl_info     *new_mci;
1933         struct sbridge_pvt *pvt = mci->pvt_info;
1934         struct pci_dev          *pci_ha;
1935         int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
1936         int                     sad_interl, idx, base_ch;
1937         int                     interleave_mode, shiftup = 0;
1938         unsigned                sad_interleave[pvt->info.max_interleave];
1939         u32                     reg, dram_rule;
1940         u8                      ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0;
1941         u32                     tad_offset;
1942         u32                     rir_way;
1943         u32                     mb, gb;
1944         u64                     ch_addr, offset, limit = 0, prv = 0;
1945
1946
1947         /*
1948          * Step 0) Check if the address is at special memory ranges
1949          * The check bellow is probably enough to fill all cases where
1950          * the error is not inside a memory, except for the legacy
1951          * range (e. g. VGA addresses). It is unlikely, however, that the
1952          * memory controller would generate an error on that range.
1953          */
1954         if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1955                 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1956                 return -EINVAL;
1957         }
1958         if (addr >= (u64)pvt->tohm) {
1959                 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1960                 return -EINVAL;
1961         }
1962
1963         /*
1964          * Step 1) Get socket
1965          */
1966         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1967                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1968                                       &reg);
1969
1970                 if (!DRAM_RULE_ENABLE(reg))
1971                         continue;
1972
1973                 limit = pvt->info.sad_limit(reg);
1974                 if (limit <= prv) {
1975                         sprintf(msg, "Can't discover the memory socket");
1976                         return -EINVAL;
1977                 }
1978                 if  (addr <= limit)
1979                         break;
1980                 prv = limit;
1981         }
1982         if (n_sads == pvt->info.max_sad) {
1983                 sprintf(msg, "Can't discover the memory socket");
1984                 return -EINVAL;
1985         }
1986         dram_rule = reg;
1987         *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1988         interleave_mode = pvt->info.interleave_mode(dram_rule);
1989
1990         pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1991                               &reg);
1992
1993         if (pvt->info.type == SANDY_BRIDGE) {
1994                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1995                 for (sad_way = 0; sad_way < 8; sad_way++) {
1996                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1997                         if (sad_way > 0 && sad_interl == pkg)
1998                                 break;
1999                         sad_interleave[sad_way] = pkg;
2000                         edac_dbg(0, "SAD interleave #%d: %d\n",
2001                                  sad_way, sad_interleave[sad_way]);
2002                 }
2003                 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2004                          pvt->sbridge_dev->mc,
2005                          n_sads,
2006                          addr,
2007                          limit,
2008                          sad_way + 7,
2009                          !interleave_mode ? "" : "XOR[18:16]");
2010                 if (interleave_mode)
2011                         idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2012                 else
2013                         idx = (addr >> 6) & 7;
2014                 switch (sad_way) {
2015                 case 1:
2016                         idx = 0;
2017                         break;
2018                 case 2:
2019                         idx = idx & 1;
2020                         break;
2021                 case 4:
2022                         idx = idx & 3;
2023                         break;
2024                 case 8:
2025                         break;
2026                 default:
2027                         sprintf(msg, "Can't discover socket interleave");
2028                         return -EINVAL;
2029                 }
2030                 *socket = sad_interleave[idx];
2031                 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2032                          idx, sad_way, *socket);
2033         } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2034                 int bits, a7mode = A7MODE(dram_rule);
2035
2036                 if (a7mode) {
2037                         /* A7 mode swaps P9 with P6 */
2038                         bits = GET_BITFIELD(addr, 7, 8) << 1;
2039                         bits |= GET_BITFIELD(addr, 9, 9);
2040                 } else
2041                         bits = GET_BITFIELD(addr, 6, 8);
2042
2043                 if (interleave_mode == 0) {
2044                         /* interleave mode will XOR {8,7,6} with {18,17,16} */
2045                         idx = GET_BITFIELD(addr, 16, 18);
2046                         idx ^= bits;
2047                 } else
2048                         idx = bits;
2049
2050                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2051                 *socket = sad_pkg_socket(pkg);
2052                 sad_ha = sad_pkg_ha(pkg);
2053                 if (sad_ha)
2054                         ch_add = 4;
2055
2056                 if (a7mode) {
2057                         /* MCChanShiftUpEnable */
2058                         pci_read_config_dword(pvt->pci_ha0,
2059                                               HASWELL_HASYSDEFEATURE2, &reg);
2060                         shiftup = GET_BITFIELD(reg, 22, 22);
2061                 }
2062
2063                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2064                          idx, *socket, sad_ha, shiftup);
2065         } else {
2066                 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2067                 idx = (addr >> 6) & 7;
2068                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2069                 *socket = sad_pkg_socket(pkg);
2070                 sad_ha = sad_pkg_ha(pkg);
2071                 if (sad_ha)
2072                         ch_add = 4;
2073                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2074                          idx, *socket, sad_ha);
2075         }
2076
2077         *ha = sad_ha;
2078
2079         /*
2080          * Move to the proper node structure, in order to access the
2081          * right PCI registers
2082          */
2083         new_mci = get_mci_for_node_id(*socket);
2084         if (!new_mci) {
2085                 sprintf(msg, "Struct for socket #%u wasn't initialized",
2086                         *socket);
2087                 return -EINVAL;
2088         }
2089         mci = new_mci;
2090         pvt = mci->pvt_info;
2091
2092         /*
2093          * Step 2) Get memory channel
2094          */
2095         prv = 0;
2096         if (pvt->info.type == SANDY_BRIDGE)
2097                 pci_ha = pvt->pci_ha0;
2098         else {
2099                 if (sad_ha)
2100                         pci_ha = pvt->pci_ha1;
2101                 else
2102                         pci_ha = pvt->pci_ha0;
2103         }
2104         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2105                 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2106                 limit = TAD_LIMIT(reg);
2107                 if (limit <= prv) {
2108                         sprintf(msg, "Can't discover the memory channel");
2109                         return -EINVAL;
2110                 }
2111                 if  (addr <= limit)
2112                         break;
2113                 prv = limit;
2114         }
2115         if (n_tads == MAX_TAD) {
2116                 sprintf(msg, "Can't discover the memory channel");
2117                 return -EINVAL;
2118         }
2119
2120         ch_way = TAD_CH(reg) + 1;
2121         sck_way = 1 << TAD_SOCK(reg);
2122
2123         if (ch_way == 3)
2124                 idx = addr >> 6;
2125         else
2126                 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2127         idx = idx % ch_way;
2128
2129         /*
2130          * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2131          */
2132         switch (idx) {
2133         case 0:
2134                 base_ch = TAD_TGT0(reg);
2135                 break;
2136         case 1:
2137                 base_ch = TAD_TGT1(reg);
2138                 break;
2139         case 2:
2140                 base_ch = TAD_TGT2(reg);
2141                 break;
2142         case 3:
2143                 base_ch = TAD_TGT3(reg);
2144                 break;
2145         default:
2146                 sprintf(msg, "Can't discover the TAD target");
2147                 return -EINVAL;
2148         }
2149         *channel_mask = 1 << base_ch;
2150
2151         pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2152                                 tad_ch_nilv_offset[n_tads],
2153                                 &tad_offset);
2154
2155         if (pvt->is_mirrored) {
2156                 *channel_mask |= 1 << ((base_ch + 2) % 4);
2157                 switch(ch_way) {
2158                 case 2:
2159                 case 4:
2160                         sck_xch = 1 << sck_way * (ch_way >> 1);
2161                         break;
2162                 default:
2163                         sprintf(msg, "Invalid mirror set. Can't decode addr");
2164                         return -EINVAL;
2165                 }
2166         } else
2167                 sck_xch = (1 << sck_way) * ch_way;
2168
2169         if (pvt->is_lockstep)
2170                 *channel_mask |= 1 << ((base_ch + 1) % 4);
2171
2172         offset = TAD_OFFSET(tad_offset);
2173
2174         edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2175                  n_tads,
2176                  addr,
2177                  limit,
2178                  sck_way,
2179                  ch_way,
2180                  offset,
2181                  idx,
2182                  base_ch,
2183                  *channel_mask);
2184
2185         /* Calculate channel address */
2186         /* Remove the TAD offset */
2187
2188         if (offset > addr) {
2189                 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2190                         offset, addr);
2191                 return -EINVAL;
2192         }
2193
2194         ch_addr = addr - offset;
2195         ch_addr >>= (6 + shiftup);
2196         ch_addr /= ch_way * sck_way;
2197         ch_addr <<= (6 + shiftup);
2198         ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2199
2200         /*
2201          * Step 3) Decode rank
2202          */
2203         for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2204                 pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2205                                       rir_way_limit[n_rir],
2206                                       &reg);
2207
2208                 if (!IS_RIR_VALID(reg))
2209                         continue;
2210
2211                 limit = pvt->info.rir_limit(reg);
2212                 gb = div_u64_rem(limit >> 20, 1024, &mb);
2213                 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2214                          n_rir,
2215                          gb, (mb*1000)/1024,
2216                          limit,
2217                          1 << RIR_WAY(reg));
2218                 if  (ch_addr <= limit)
2219                         break;
2220         }
2221         if (n_rir == MAX_RIR_RANGES) {
2222                 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2223                         ch_addr);
2224                 return -EINVAL;
2225         }
2226         rir_way = RIR_WAY(reg);
2227
2228         if (pvt->is_close_pg)
2229                 idx = (ch_addr >> 6);
2230         else
2231                 idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
2232         idx %= 1 << rir_way;
2233
2234         pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2235                               rir_offset[n_rir][idx],
2236                               &reg);
2237         *rank = RIR_RNK_TGT(reg);
2238
2239         edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2240                  n_rir,
2241                  ch_addr,
2242                  limit,
2243                  rir_way,
2244                  idx);
2245
2246         return 0;
2247 }
2248
2249 /****************************************************************************
2250         Device initialization routines: put/get, init/exit
2251  ****************************************************************************/
2252
2253 /*
2254  *      sbridge_put_all_devices 'put' all the devices that we have
2255  *                              reserved via 'get'
2256  */
2257 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2258 {
2259         int i;
2260
2261         edac_dbg(0, "\n");
2262         for (i = 0; i < sbridge_dev->n_devs; i++) {
2263                 struct pci_dev *pdev = sbridge_dev->pdev[i];
2264                 if (!pdev)
2265                         continue;
2266                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2267                          pdev->bus->number,
2268                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2269                 pci_dev_put(pdev);
2270         }
2271 }
2272
2273 static void sbridge_put_all_devices(void)
2274 {
2275         struct sbridge_dev *sbridge_dev, *tmp;
2276
2277         list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2278                 sbridge_put_devices(sbridge_dev);
2279                 free_sbridge_dev(sbridge_dev);
2280         }
2281 }
2282
2283 static int sbridge_get_onedevice(struct pci_dev **prev,
2284                                  u8 *num_mc,
2285                                  const struct pci_id_table *table,
2286                                  const unsigned devno,
2287                                  const int multi_bus)
2288 {
2289         struct sbridge_dev *sbridge_dev;
2290         const struct pci_id_descr *dev_descr = &table->descr[devno];
2291         struct pci_dev *pdev = NULL;
2292         u8 bus = 0;
2293
2294         sbridge_printk(KERN_DEBUG,
2295                 "Seeking for: PCI ID %04x:%04x\n",
2296                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2297
2298         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2299                               dev_descr->dev_id, *prev);
2300
2301         if (!pdev) {
2302                 if (*prev) {
2303                         *prev = pdev;
2304                         return 0;
2305                 }
2306
2307                 if (dev_descr->optional)
2308                         return 0;
2309
2310                 /* if the HA wasn't found */
2311                 if (devno == 0)
2312                         return -ENODEV;
2313
2314                 sbridge_printk(KERN_INFO,
2315                         "Device not found: %04x:%04x\n",
2316                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2317
2318                 /* End of list, leave */
2319                 return -ENODEV;
2320         }
2321         bus = pdev->bus->number;
2322
2323         sbridge_dev = get_sbridge_dev(bus, multi_bus);
2324         if (!sbridge_dev) {
2325                 sbridge_dev = alloc_sbridge_dev(bus, table);
2326                 if (!sbridge_dev) {
2327                         pci_dev_put(pdev);
2328                         return -ENOMEM;
2329                 }
2330                 (*num_mc)++;
2331         }
2332
2333         if (sbridge_dev->pdev[devno]) {
2334                 sbridge_printk(KERN_ERR,
2335                         "Duplicated device for %04x:%04x\n",
2336                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2337                 pci_dev_put(pdev);
2338                 return -ENODEV;
2339         }
2340
2341         sbridge_dev->pdev[devno] = pdev;
2342
2343         /* Be sure that the device is enabled */
2344         if (unlikely(pci_enable_device(pdev) < 0)) {
2345                 sbridge_printk(KERN_ERR,
2346                         "Couldn't enable %04x:%04x\n",
2347                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2348                 return -ENODEV;
2349         }
2350
2351         edac_dbg(0, "Detected %04x:%04x\n",
2352                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2353
2354         /*
2355          * As stated on drivers/pci/search.c, the reference count for
2356          * @from is always decremented if it is not %NULL. So, as we need
2357          * to get all devices up to null, we need to do a get for the device
2358          */
2359         pci_dev_get(pdev);
2360
2361         *prev = pdev;
2362
2363         return 0;
2364 }
2365
2366 /*
2367  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2368  *                           devices we want to reference for this driver.
2369  * @num_mc: pointer to the memory controllers count, to be incremented in case
2370  *          of success.
2371  * @table: model specific table
2372  * @allow_dups: allow for multiple devices to exist with the same device id
2373  *              (as implemented, this isn't expected to work correctly in the
2374  *              multi-socket case).
2375  * @multi_bus: don't assume devices on different buses belong to different
2376  *             memory controllers.
2377  *
2378  * returns 0 in case of success or error code
2379  */
2380 static int sbridge_get_all_devices_full(u8 *num_mc,
2381                                         const struct pci_id_table *table,
2382                                         int allow_dups,
2383                                         int multi_bus)
2384 {
2385         int i, rc;
2386         struct pci_dev *pdev = NULL;
2387
2388         while (table && table->descr) {
2389                 for (i = 0; i < table->n_devs; i++) {
2390                         if (!allow_dups || i == 0 ||
2391                                         table->descr[i].dev_id !=
2392                                                 table->descr[i-1].dev_id) {
2393                                 pdev = NULL;
2394                         }
2395                         do {
2396                                 rc = sbridge_get_onedevice(&pdev, num_mc,
2397                                                            table, i, multi_bus);
2398                                 if (rc < 0) {
2399                                         if (i == 0) {
2400                                                 i = table->n_devs;
2401                                                 break;
2402                                         }
2403                                         sbridge_put_all_devices();
2404                                         return -ENODEV;
2405                                 }
2406                         } while (pdev && !allow_dups);
2407                 }
2408                 table++;
2409         }
2410
2411         return 0;
2412 }
2413
2414 #define sbridge_get_all_devices(num_mc, table) \
2415                 sbridge_get_all_devices_full(num_mc, table, 0, 0)
2416 #define sbridge_get_all_devices_knl(num_mc, table) \
2417                 sbridge_get_all_devices_full(num_mc, table, 1, 1)
2418
2419 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2420                                  struct sbridge_dev *sbridge_dev)
2421 {
2422         struct sbridge_pvt *pvt = mci->pvt_info;
2423         struct pci_dev *pdev;
2424         u8 saw_chan_mask = 0;
2425         int i;
2426
2427         for (i = 0; i < sbridge_dev->n_devs; i++) {
2428                 pdev = sbridge_dev->pdev[i];
2429                 if (!pdev)
2430                         continue;
2431
2432                 switch (pdev->device) {
2433                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2434                         pvt->pci_sad0 = pdev;
2435                         break;
2436                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2437                         pvt->pci_sad1 = pdev;
2438                         break;
2439                 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2440                         pvt->pci_br0 = pdev;
2441                         break;
2442                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2443                         pvt->pci_ha0 = pdev;
2444                         break;
2445                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2446                         pvt->pci_ta = pdev;
2447                         break;
2448                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2449                         pvt->pci_ras = pdev;
2450                         break;
2451                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2452                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2453                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2454                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2455                 {
2456                         int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
2457                         pvt->pci_tad[id] = pdev;
2458                         saw_chan_mask |= 1 << id;
2459                 }
2460                         break;
2461                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2462                         pvt->pci_ddrio = pdev;
2463                         break;
2464                 default:
2465                         goto error;
2466                 }
2467
2468                 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2469                          pdev->vendor, pdev->device,
2470                          sbridge_dev->bus,
2471                          pdev);
2472         }
2473
2474         /* Check if everything were registered */
2475         if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
2476             !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
2477                 goto enodev;
2478
2479         if (saw_chan_mask != 0x0f)
2480                 goto enodev;
2481         return 0;
2482
2483 enodev:
2484         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2485         return -ENODEV;
2486
2487 error:
2488         sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2489                        PCI_VENDOR_ID_INTEL, pdev->device);
2490         return -EINVAL;
2491 }
2492
2493 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2494                                  struct sbridge_dev *sbridge_dev)
2495 {
2496         struct sbridge_pvt *pvt = mci->pvt_info;
2497         struct pci_dev *pdev;
2498         u8 saw_chan_mask = 0;
2499         int i;
2500
2501         for (i = 0; i < sbridge_dev->n_devs; i++) {
2502                 pdev = sbridge_dev->pdev[i];
2503                 if (!pdev)
2504                         continue;
2505
2506                 switch (pdev->device) {
2507                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2508                         pvt->pci_ha0 = pdev;
2509                         break;
2510                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2511                         pvt->pci_ta = pdev;
2512                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2513                         pvt->pci_ras = pdev;
2514                         break;
2515                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2516                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2517                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2518                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2519                 {
2520                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
2521                         pvt->pci_tad[id] = pdev;
2522                         saw_chan_mask |= 1 << id;
2523                 }
2524                         break;
2525                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2526                         pvt->pci_ddrio = pdev;
2527                         break;
2528                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2529                         pvt->pci_ddrio = pdev;
2530                         break;
2531                 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2532                         pvt->pci_sad0 = pdev;
2533                         break;
2534                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2535                         pvt->pci_br0 = pdev;
2536                         break;
2537                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2538                         pvt->pci_br1 = pdev;
2539                         break;
2540                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2541                         pvt->pci_ha1 = pdev;
2542                         break;
2543                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2544                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2545                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2546                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2547                 {
2548                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4;
2549                         pvt->pci_tad[id] = pdev;
2550                         saw_chan_mask |= 1 << id;
2551                 }
2552                         break;
2553                 default:
2554                         goto error;
2555                 }
2556
2557                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2558                          sbridge_dev->bus,
2559                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2560                          pdev);
2561         }
2562
2563         /* Check if everything were registered */
2564         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
2565             !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
2566             !pvt->pci_ta)
2567                 goto enodev;
2568
2569         if (saw_chan_mask != 0x0f && /* -EN */
2570             saw_chan_mask != 0x33 && /* -EP */
2571             saw_chan_mask != 0xff)   /* -EX */
2572                 goto enodev;
2573         return 0;
2574
2575 enodev:
2576         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2577         return -ENODEV;
2578
2579 error:
2580         sbridge_printk(KERN_ERR,
2581                        "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2582                         pdev->device);
2583         return -EINVAL;
2584 }
2585
2586 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2587                                  struct sbridge_dev *sbridge_dev)
2588 {
2589         struct sbridge_pvt *pvt = mci->pvt_info;
2590         struct pci_dev *pdev;
2591         u8 saw_chan_mask = 0;
2592         int i;
2593
2594         /* there's only one device per system; not tied to any bus */
2595         if (pvt->info.pci_vtd == NULL)
2596                 /* result will be checked later */
2597                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2598                                                    PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2599                                                    NULL);
2600
2601         for (i = 0; i < sbridge_dev->n_devs; i++) {
2602                 pdev = sbridge_dev->pdev[i];
2603                 if (!pdev)
2604                         continue;
2605
2606                 switch (pdev->device) {
2607                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2608                         pvt->pci_sad0 = pdev;
2609                         break;
2610                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2611                         pvt->pci_sad1 = pdev;
2612                         break;
2613                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2614                         pvt->pci_ha0 = pdev;
2615                         break;
2616                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2617                         pvt->pci_ta = pdev;
2618                         break;
2619                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
2620                         pvt->pci_ras = pdev;
2621                         break;
2622                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2623                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2624                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2625                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2626                 {
2627                         int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0;
2628
2629                         pvt->pci_tad[id] = pdev;
2630                         saw_chan_mask |= 1 << id;
2631                 }
2632                         break;
2633                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2634                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2635                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2636                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2637                 {
2638                         int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4;
2639
2640                         pvt->pci_tad[id] = pdev;
2641                         saw_chan_mask |= 1 << id;
2642                 }
2643                         break;
2644                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2645                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2646                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2647                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2648                         if (!pvt->pci_ddrio)
2649                                 pvt->pci_ddrio = pdev;
2650                         break;
2651                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2652                         pvt->pci_ha1 = pdev;
2653                         break;
2654                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2655                         pvt->pci_ha1_ta = pdev;
2656                         break;
2657                 default:
2658                         break;
2659                 }
2660
2661                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2662                          sbridge_dev->bus,
2663                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2664                          pdev);
2665         }
2666
2667         /* Check if everything were registered */
2668         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2669             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2670                 goto enodev;
2671
2672         if (saw_chan_mask != 0x0f && /* -EN */
2673             saw_chan_mask != 0x33 && /* -EP */
2674             saw_chan_mask != 0xff)   /* -EX */
2675                 goto enodev;
2676         return 0;
2677
2678 enodev:
2679         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2680         return -ENODEV;
2681 }
2682
2683 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2684                                  struct sbridge_dev *sbridge_dev)
2685 {
2686         struct sbridge_pvt *pvt = mci->pvt_info;
2687         struct pci_dev *pdev;
2688         u8 saw_chan_mask = 0;
2689         int i;
2690
2691         /* there's only one device per system; not tied to any bus */
2692         if (pvt->info.pci_vtd == NULL)
2693                 /* result will be checked later */
2694                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2695                                                    PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2696                                                    NULL);
2697
2698         for (i = 0; i < sbridge_dev->n_devs; i++) {
2699                 pdev = sbridge_dev->pdev[i];
2700                 if (!pdev)
2701                         continue;
2702
2703                 switch (pdev->device) {
2704                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2705                         pvt->pci_sad0 = pdev;
2706                         break;
2707                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2708                         pvt->pci_sad1 = pdev;
2709                         break;
2710                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2711                         pvt->pci_ha0 = pdev;
2712                         break;
2713                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2714                         pvt->pci_ta = pdev;
2715                         break;
2716                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
2717                         pvt->pci_ras = pdev;
2718                         break;
2719                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2720                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2721                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2722                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2723                 {
2724                         int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0;
2725                         pvt->pci_tad[id] = pdev;
2726                         saw_chan_mask |= 1 << id;
2727                 }
2728                         break;
2729                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2730                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2731                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2732                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2733                 {
2734                         int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4;
2735                         pvt->pci_tad[id] = pdev;
2736                         saw_chan_mask |= 1 << id;
2737                 }
2738                         break;
2739                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2740                         pvt->pci_ddrio = pdev;
2741                         break;
2742                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2743                         pvt->pci_ha1 = pdev;
2744                         break;
2745                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2746                         pvt->pci_ha1_ta = pdev;
2747                         break;
2748                 default:
2749                         break;
2750                 }
2751
2752                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2753                          sbridge_dev->bus,
2754                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2755                          pdev);
2756         }
2757
2758         /* Check if everything were registered */
2759         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2760             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2761                 goto enodev;
2762
2763         if (saw_chan_mask != 0x0f && /* -EN */
2764             saw_chan_mask != 0x33 && /* -EP */
2765             saw_chan_mask != 0xff)   /* -EX */
2766                 goto enodev;
2767         return 0;
2768
2769 enodev:
2770         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2771         return -ENODEV;
2772 }
2773
2774 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2775                         struct sbridge_dev *sbridge_dev)
2776 {
2777         struct sbridge_pvt *pvt = mci->pvt_info;
2778         struct pci_dev *pdev;
2779         int dev, func;
2780
2781         int i;
2782         int devidx;
2783
2784         for (i = 0; i < sbridge_dev->n_devs; i++) {
2785                 pdev = sbridge_dev->pdev[i];
2786                 if (!pdev)
2787                         continue;
2788
2789                 /* Extract PCI device and function. */
2790                 dev = (pdev->devfn >> 3) & 0x1f;
2791                 func = pdev->devfn & 0x7;
2792
2793                 switch (pdev->device) {
2794                 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2795                         if (dev == 8)
2796                                 pvt->knl.pci_mc0 = pdev;
2797                         else if (dev == 9)
2798                                 pvt->knl.pci_mc1 = pdev;
2799                         else {
2800                                 sbridge_printk(KERN_ERR,
2801                                         "Memory controller in unexpected place! (dev %d, fn %d)\n",
2802                                         dev, func);
2803                                 continue;
2804                         }
2805                         break;
2806
2807                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2808                         pvt->pci_sad0 = pdev;
2809                         break;
2810
2811                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2812                         pvt->pci_sad1 = pdev;
2813                         break;
2814
2815                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2816                         /* There are one of these per tile, and range from
2817                          * 1.14.0 to 1.18.5.
2818                          */
2819                         devidx = ((dev-14)*8)+func;
2820
2821                         if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2822                                 sbridge_printk(KERN_ERR,
2823                                         "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2824                                         dev, func);
2825                                 continue;
2826                         }
2827
2828                         WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2829
2830                         pvt->knl.pci_cha[devidx] = pdev;
2831                         break;
2832
2833                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL:
2834                         devidx = -1;
2835
2836                         /*
2837                          *  MC0 channels 0-2 are device 9 function 2-4,
2838                          *  MC1 channels 3-5 are device 8 function 2-4.
2839                          */
2840
2841                         if (dev == 9)
2842                                 devidx = func-2;
2843                         else if (dev == 8)
2844                                 devidx = 3 + (func-2);
2845
2846                         if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2847                                 sbridge_printk(KERN_ERR,
2848                                         "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2849                                         dev, func);
2850                                 continue;
2851                         }
2852
2853                         WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2854                         pvt->knl.pci_channel[devidx] = pdev;
2855                         break;
2856
2857                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2858                         pvt->knl.pci_mc_info = pdev;
2859                         break;
2860
2861                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2862                         pvt->pci_ta = pdev;
2863                         break;
2864
2865                 default:
2866                         sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2867                                 pdev->device);
2868                         break;
2869                 }
2870         }
2871
2872         if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2873             !pvt->pci_sad0     || !pvt->pci_sad1    ||
2874             !pvt->pci_ta) {
2875                 goto enodev;
2876         }
2877
2878         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2879                 if (!pvt->knl.pci_channel[i]) {
2880                         sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2881                         goto enodev;
2882                 }
2883         }
2884
2885         for (i = 0; i < KNL_MAX_CHAS; i++) {
2886                 if (!pvt->knl.pci_cha[i]) {
2887                         sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2888                         goto enodev;
2889                 }
2890         }
2891
2892         return 0;
2893
2894 enodev:
2895         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2896         return -ENODEV;
2897 }
2898
2899 /****************************************************************************
2900                         Error check routines
2901  ****************************************************************************/
2902
2903 /*
2904  * While Sandy Bridge has error count registers, SMI BIOS read values from
2905  * and resets the counters. So, they are not reliable for the OS to read
2906  * from them. So, we have no option but to just trust on whatever MCE is
2907  * telling us about the errors.
2908  */
2909 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2910                                     const struct mce *m)
2911 {
2912         struct mem_ctl_info *new_mci;
2913         struct sbridge_pvt *pvt = mci->pvt_info;
2914         enum hw_event_mc_err_type tp_event;
2915         char *type, *optype, msg[256];
2916         bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2917         bool overflow = GET_BITFIELD(m->status, 62, 62);
2918         bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2919         bool recoverable;
2920         u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2921         u32 mscod = GET_BITFIELD(m->status, 16, 31);
2922         u32 errcode = GET_BITFIELD(m->status, 0, 15);
2923         u32 channel = GET_BITFIELD(m->status, 0, 3);
2924         u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2925         long channel_mask, first_channel;
2926         u8  rank, socket, ha;
2927         int rc, dimm;
2928         char *area_type = NULL;
2929
2930         if (pvt->info.type != SANDY_BRIDGE)
2931                 recoverable = true;
2932         else
2933                 recoverable = GET_BITFIELD(m->status, 56, 56);
2934
2935         if (uncorrected_error) {
2936                 if (ripv) {
2937                         type = "FATAL";
2938                         tp_event = HW_EVENT_ERR_FATAL;
2939                 } else {
2940                         type = "NON_FATAL";
2941                         tp_event = HW_EVENT_ERR_UNCORRECTED;
2942                 }
2943         } else {
2944                 type = "CORRECTED";
2945                 tp_event = HW_EVENT_ERR_CORRECTED;
2946         }
2947
2948         /*
2949          * According with Table 15-9 of the Intel Architecture spec vol 3A,
2950          * memory errors should fit in this mask:
2951          *      000f 0000 1mmm cccc (binary)
2952          * where:
2953          *      f = Correction Report Filtering Bit. If 1, subsequent errors
2954          *          won't be shown
2955          *      mmm = error type
2956          *      cccc = channel
2957          * If the mask doesn't match, report an error to the parsing logic
2958          */
2959         if (! ((errcode & 0xef80) == 0x80)) {
2960                 optype = "Can't parse: it is not a mem";
2961         } else {
2962                 switch (optypenum) {
2963                 case 0:
2964                         optype = "generic undef request error";
2965                         break;
2966                 case 1:
2967                         optype = "memory read error";
2968                         break;
2969                 case 2:
2970                         optype = "memory write error";
2971                         break;
2972                 case 3:
2973                         optype = "addr/cmd error";
2974                         break;
2975                 case 4:
2976                         optype = "memory scrubbing error";
2977                         break;
2978                 default:
2979                         optype = "reserved";
2980                         break;
2981                 }
2982         }
2983
2984         /* Only decode errors with an valid address (ADDRV) */
2985         if (!GET_BITFIELD(m->status, 58, 58))
2986                 return;
2987
2988         if (pvt->info.type == KNIGHTS_LANDING) {
2989                 if (channel == 14) {
2990                         edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2991                                 overflow ? " OVERFLOW" : "",
2992                                 (uncorrected_error && recoverable)
2993                                 ? " recoverable" : "",
2994                                 mscod, errcode,
2995                                 m->bank);
2996                 } else {
2997                         char A = *("A");
2998
2999                         channel = knl_channel_remap(channel);
3000                         channel_mask = 1 << channel;
3001                         snprintf(msg, sizeof(msg),
3002                                 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3003                                 overflow ? " OVERFLOW" : "",
3004                                 (uncorrected_error && recoverable)
3005                                 ? " recoverable" : " ",
3006                                 mscod, errcode, channel, A + channel);
3007                         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3008                                 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3009                                 channel, 0, -1,
3010                                 optype, msg);
3011                 }
3012                 return;
3013         } else {
3014                 rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3015                                 &channel_mask, &rank, &area_type, msg);
3016         }
3017
3018         if (rc < 0)
3019                 goto err_parsing;
3020         new_mci = get_mci_for_node_id(socket);
3021         if (!new_mci) {
3022                 strcpy(msg, "Error: socket got corrupted!");
3023                 goto err_parsing;
3024         }
3025         mci = new_mci;
3026         pvt = mci->pvt_info;
3027
3028         first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3029
3030         if (rank < 4)
3031                 dimm = 0;
3032         else if (rank < 8)
3033                 dimm = 1;
3034         else
3035                 dimm = 2;
3036
3037
3038         /*
3039          * FIXME: On some memory configurations (mirror, lockstep), the
3040          * Memory Controller can't point the error to a single DIMM. The
3041          * EDAC core should be handling the channel mask, in order to point
3042          * to the group of dimm's where the error may be happening.
3043          */
3044         if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
3045                 channel = first_channel;
3046
3047         snprintf(msg, sizeof(msg),
3048                  "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3049                  overflow ? " OVERFLOW" : "",
3050                  (uncorrected_error && recoverable) ? " recoverable" : "",
3051                  area_type,
3052                  mscod, errcode,
3053                  socket, ha,
3054                  channel_mask,
3055                  rank);
3056
3057         edac_dbg(0, "%s\n", msg);
3058
3059         /* FIXME: need support for channel mask */
3060
3061         if (channel == CHANNEL_UNSPECIFIED)
3062                 channel = -1;
3063
3064         /* Call the helper to output message */
3065         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3066                              m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3067                              4*ha+channel, dimm, -1,
3068                              optype, msg);
3069         return;
3070 err_parsing:
3071         edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3072                              -1, -1, -1,
3073                              msg, "");
3074
3075 }
3076
3077 /*
3078  *      sbridge_check_error     Retrieve and process errors reported by the
3079  *                              hardware. Called by the Core module.
3080  */
3081 static void sbridge_check_error(struct mem_ctl_info *mci)
3082 {
3083         struct sbridge_pvt *pvt = mci->pvt_info;
3084         int i;
3085         unsigned count = 0;
3086         struct mce *m;
3087
3088         /*
3089          * MCE first step: Copy all mce errors into a temporary buffer
3090          * We use a double buffering here, to reduce the risk of
3091          * loosing an error.
3092          */
3093         smp_rmb();
3094         count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
3095                 % MCE_LOG_LEN;
3096         if (!count)
3097                 return;
3098
3099         m = pvt->mce_outentry;
3100         if (pvt->mce_in + count > MCE_LOG_LEN) {
3101                 unsigned l = MCE_LOG_LEN - pvt->mce_in;
3102
3103                 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
3104                 smp_wmb();
3105                 pvt->mce_in = 0;
3106                 count -= l;
3107                 m += l;
3108         }
3109         memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
3110         smp_wmb();
3111         pvt->mce_in += count;
3112
3113         smp_rmb();
3114         if (pvt->mce_overrun) {
3115                 sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
3116                               pvt->mce_overrun);
3117                 smp_wmb();
3118                 pvt->mce_overrun = 0;
3119         }
3120
3121         /*
3122          * MCE second step: parse errors and display
3123          */
3124         for (i = 0; i < count; i++)
3125                 sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
3126 }
3127
3128 /*
3129  * sbridge_mce_check_error      Replicates mcelog routine to get errors
3130  *                              This routine simply queues mcelog errors, and
3131  *                              return. The error itself should be handled later
3132  *                              by sbridge_check_error.
3133  * WARNING: As this routine should be called at NMI time, extra care should
3134  * be taken to avoid deadlocks, and to be as fast as possible.
3135  */
3136 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3137                                    void *data)
3138 {
3139         struct mce *mce = (struct mce *)data;
3140         struct mem_ctl_info *mci;
3141         struct sbridge_pvt *pvt;
3142         char *type;
3143
3144         if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3145                 return NOTIFY_DONE;
3146
3147         mci = get_mci_for_node_id(mce->socketid);
3148         if (!mci)
3149                 return NOTIFY_BAD;
3150         pvt = mci->pvt_info;
3151
3152         /*
3153          * Just let mcelog handle it if the error is
3154          * outside the memory controller. A memory error
3155          * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3156          * bit 12 has an special meaning.
3157          */
3158         if ((mce->status & 0xefff) >> 7 != 1)
3159                 return NOTIFY_DONE;
3160
3161         if (mce->mcgstatus & MCG_STATUS_MCIP)
3162                 type = "Exception";
3163         else
3164                 type = "Event";
3165
3166         sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3167
3168         sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3169                           "Bank %d: %016Lx\n", mce->extcpu, type,
3170                           mce->mcgstatus, mce->bank, mce->status);
3171         sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3172         sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3173         sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3174
3175         sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3176                           "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3177                           mce->time, mce->socketid, mce->apicid);
3178
3179         smp_rmb();
3180         if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
3181                 smp_wmb();
3182                 pvt->mce_overrun++;
3183                 return NOTIFY_DONE;
3184         }
3185
3186         /* Copy memory error at the ringbuffer */
3187         memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
3188         smp_wmb();
3189         pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
3190
3191         /* Handle fatal errors immediately */
3192         if (mce->mcgstatus & 1)
3193                 sbridge_check_error(mci);
3194
3195         /* Advice mcelog that the error were handled */
3196         return NOTIFY_STOP;
3197 }
3198
3199 static struct notifier_block sbridge_mce_dec = {
3200         .notifier_call      = sbridge_mce_check_error,
3201 };
3202
3203 /****************************************************************************
3204                         EDAC register/unregister logic
3205  ****************************************************************************/
3206
3207 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3208 {
3209         struct mem_ctl_info *mci = sbridge_dev->mci;
3210         struct sbridge_pvt *pvt;
3211
3212         if (unlikely(!mci || !mci->pvt_info)) {
3213                 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3214
3215                 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3216                 return;
3217         }
3218
3219         pvt = mci->pvt_info;
3220
3221         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3222                  mci, &sbridge_dev->pdev[0]->dev);
3223
3224         /* Remove MC sysfs nodes */
3225         edac_mc_del_mc(mci->pdev);
3226
3227         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3228         kfree(mci->ctl_name);
3229         edac_mc_free(mci);
3230         sbridge_dev->mci = NULL;
3231 }
3232
3233 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3234 {
3235         struct mem_ctl_info *mci;
3236         struct edac_mc_layer layers[2];
3237         struct sbridge_pvt *pvt;
3238         struct pci_dev *pdev = sbridge_dev->pdev[0];
3239         int rc;
3240
3241         /* Check the number of active and not disabled channels */
3242         rc = check_if_ecc_is_active(sbridge_dev->bus, type);
3243         if (unlikely(rc < 0))
3244                 return rc;
3245
3246         /* allocate a new MC control structure */
3247         layers[0].type = EDAC_MC_LAYER_CHANNEL;
3248         layers[0].size = type == KNIGHTS_LANDING ?
3249                 KNL_MAX_CHANNELS : NUM_CHANNELS;
3250         layers[0].is_virt_csrow = false;
3251         layers[1].type = EDAC_MC_LAYER_SLOT;
3252         layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3253         layers[1].is_virt_csrow = true;
3254         mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3255                             sizeof(*pvt));
3256
3257         if (unlikely(!mci))
3258                 return -ENOMEM;
3259
3260         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3261                  mci, &pdev->dev);
3262
3263         pvt = mci->pvt_info;
3264         memset(pvt, 0, sizeof(*pvt));
3265
3266         /* Associate sbridge_dev and mci for future usage */
3267         pvt->sbridge_dev = sbridge_dev;
3268         sbridge_dev->mci = mci;
3269
3270         mci->mtype_cap = type == KNIGHTS_LANDING ?
3271                 MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3272         mci->edac_ctl_cap = EDAC_FLAG_NONE;
3273         mci->edac_cap = EDAC_FLAG_NONE;
3274         mci->mod_name = "sbridge_edac.c";
3275         mci->mod_ver = SBRIDGE_REVISION;
3276         mci->dev_name = pci_name(pdev);
3277         mci->ctl_page_to_phys = NULL;
3278
3279         /* Set the function pointer to an actual operation function */
3280         mci->edac_check = sbridge_check_error;
3281
3282         pvt->info.type = type;
3283         switch (type) {
3284         case IVY_BRIDGE:
3285                 pvt->info.rankcfgr = IB_RANK_CFG_A;
3286                 pvt->info.get_tolm = ibridge_get_tolm;
3287                 pvt->info.get_tohm = ibridge_get_tohm;
3288                 pvt->info.dram_rule = ibridge_dram_rule;
3289                 pvt->info.get_memory_type = get_memory_type;
3290                 pvt->info.get_node_id = get_node_id;
3291                 pvt->info.rir_limit = rir_limit;
3292                 pvt->info.sad_limit = sad_limit;
3293                 pvt->info.interleave_mode = interleave_mode;
3294                 pvt->info.show_interleave_mode = show_interleave_mode;
3295                 pvt->info.dram_attr = dram_attr;
3296                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3297                 pvt->info.interleave_list = ibridge_interleave_list;
3298                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3299                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3300                 pvt->info.get_width = ibridge_get_width;
3301                 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
3302
3303                 /* Store pci devices at mci for faster access */
3304                 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3305                 if (unlikely(rc < 0))
3306                         goto fail0;
3307                 break;
3308         case SANDY_BRIDGE:
3309                 pvt->info.rankcfgr = SB_RANK_CFG_A;
3310                 pvt->info.get_tolm = sbridge_get_tolm;
3311                 pvt->info.get_tohm = sbridge_get_tohm;
3312                 pvt->info.dram_rule = sbridge_dram_rule;
3313                 pvt->info.get_memory_type = get_memory_type;
3314                 pvt->info.get_node_id = get_node_id;
3315                 pvt->info.rir_limit = rir_limit;
3316                 pvt->info.sad_limit = sad_limit;
3317                 pvt->info.interleave_mode = interleave_mode;
3318                 pvt->info.show_interleave_mode = show_interleave_mode;
3319                 pvt->info.dram_attr = dram_attr;
3320                 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3321                 pvt->info.interleave_list = sbridge_interleave_list;
3322                 pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
3323                 pvt->info.interleave_pkg = sbridge_interleave_pkg;
3324                 pvt->info.get_width = sbridge_get_width;
3325                 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
3326
3327                 /* Store pci devices at mci for faster access */
3328                 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3329                 if (unlikely(rc < 0))
3330                         goto fail0;
3331                 break;
3332         case HASWELL:
3333                 /* rankcfgr isn't used */
3334                 pvt->info.get_tolm = haswell_get_tolm;
3335                 pvt->info.get_tohm = haswell_get_tohm;
3336                 pvt->info.dram_rule = ibridge_dram_rule;
3337                 pvt->info.get_memory_type = haswell_get_memory_type;
3338                 pvt->info.get_node_id = haswell_get_node_id;
3339                 pvt->info.rir_limit = haswell_rir_limit;
3340                 pvt->info.sad_limit = sad_limit;
3341                 pvt->info.interleave_mode = interleave_mode;
3342                 pvt->info.show_interleave_mode = show_interleave_mode;
3343                 pvt->info.dram_attr = dram_attr;
3344                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3345                 pvt->info.interleave_list = ibridge_interleave_list;
3346                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3347                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3348                 pvt->info.get_width = ibridge_get_width;
3349                 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
3350
3351                 /* Store pci devices at mci for faster access */
3352                 rc = haswell_mci_bind_devs(mci, sbridge_dev);
3353                 if (unlikely(rc < 0))
3354                         goto fail0;
3355                 break;
3356         case BROADWELL:
3357                 /* rankcfgr isn't used */
3358                 pvt->info.get_tolm = haswell_get_tolm;
3359                 pvt->info.get_tohm = haswell_get_tohm;
3360                 pvt->info.dram_rule = ibridge_dram_rule;
3361                 pvt->info.get_memory_type = haswell_get_memory_type;
3362                 pvt->info.get_node_id = haswell_get_node_id;
3363                 pvt->info.rir_limit = haswell_rir_limit;
3364                 pvt->info.sad_limit = sad_limit;
3365                 pvt->info.interleave_mode = interleave_mode;
3366                 pvt->info.show_interleave_mode = show_interleave_mode;
3367                 pvt->info.dram_attr = dram_attr;
3368                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3369                 pvt->info.interleave_list = ibridge_interleave_list;
3370                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3371                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3372                 pvt->info.get_width = broadwell_get_width;
3373                 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
3374
3375                 /* Store pci devices at mci for faster access */
3376                 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3377                 if (unlikely(rc < 0))
3378                         goto fail0;
3379                 break;
3380         case KNIGHTS_LANDING:
3381                 /* pvt->info.rankcfgr == ??? */
3382                 pvt->info.get_tolm = knl_get_tolm;
3383                 pvt->info.get_tohm = knl_get_tohm;
3384                 pvt->info.dram_rule = knl_dram_rule;
3385                 pvt->info.get_memory_type = knl_get_memory_type;
3386                 pvt->info.get_node_id = knl_get_node_id;
3387                 pvt->info.rir_limit = NULL;
3388                 pvt->info.sad_limit = knl_sad_limit;
3389                 pvt->info.interleave_mode = knl_interleave_mode;
3390                 pvt->info.show_interleave_mode = knl_show_interleave_mode;
3391                 pvt->info.dram_attr = dram_attr_knl;
3392                 pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3393                 pvt->info.interleave_list = knl_interleave_list;
3394                 pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
3395                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3396                 pvt->info.get_width = knl_get_width;
3397                 mci->ctl_name = kasprintf(GFP_KERNEL,
3398                         "Knights Landing Socket#%d", mci->mc_idx);
3399
3400                 rc = knl_mci_bind_devs(mci, sbridge_dev);
3401                 if (unlikely(rc < 0))
3402                         goto fail0;
3403                 break;
3404         }
3405
3406         /* Get dimm basic config and the memory layout */
3407         get_dimm_config(mci);
3408         get_memory_layout(mci);
3409
3410         /* record ptr to the generic device */
3411         mci->pdev = &pdev->dev;
3412
3413         /* add this new MC control structure to EDAC's list of MCs */
3414         if (unlikely(edac_mc_add_mc(mci))) {
3415                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3416                 rc = -EINVAL;
3417                 goto fail0;
3418         }
3419
3420         return 0;
3421
3422 fail0:
3423         kfree(mci->ctl_name);
3424         edac_mc_free(mci);
3425         sbridge_dev->mci = NULL;
3426         return rc;
3427 }
3428
3429 /*
3430  *      sbridge_probe   Probe for ONE instance of device to see if it is
3431  *                      present.
3432  *      return:
3433  *              0 for FOUND a device
3434  *              < 0 for error code
3435  */
3436
3437 static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3438 {
3439         int rc = -ENODEV;
3440         u8 mc, num_mc = 0;
3441         struct sbridge_dev *sbridge_dev;
3442         enum type type = SANDY_BRIDGE;
3443
3444         /* get the pci devices we want to reserve for our use */
3445         mutex_lock(&sbridge_edac_lock);
3446
3447         /*
3448          * All memory controllers are allocated at the first pass.
3449          */
3450         if (unlikely(probed >= 1)) {
3451                 mutex_unlock(&sbridge_edac_lock);
3452                 return -ENODEV;
3453         }
3454         probed++;
3455
3456         switch (pdev->device) {
3457         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
3458                 rc = sbridge_get_all_devices(&num_mc,
3459                                         pci_dev_descr_ibridge_table);
3460                 type = IVY_BRIDGE;
3461                 break;
3462         case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
3463                 rc = sbridge_get_all_devices(&num_mc,
3464                                         pci_dev_descr_sbridge_table);
3465                 type = SANDY_BRIDGE;
3466                 break;
3467         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
3468                 rc = sbridge_get_all_devices(&num_mc,
3469                                         pci_dev_descr_haswell_table);
3470                 type = HASWELL;
3471                 break;
3472         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
3473                 rc = sbridge_get_all_devices(&num_mc,
3474                                         pci_dev_descr_broadwell_table);
3475                 type = BROADWELL;
3476             break;
3477         case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
3478                 rc = sbridge_get_all_devices_knl(&num_mc,
3479                                         pci_dev_descr_knl_table);
3480                 type = KNIGHTS_LANDING;
3481                 break;
3482         }
3483         if (unlikely(rc < 0)) {
3484                 edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
3485                 goto fail0;
3486         }
3487
3488         mc = 0;
3489
3490         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3491                 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3492                          mc, mc + 1, num_mc);
3493
3494                 sbridge_dev->mc = mc++;
3495                 rc = sbridge_register_mci(sbridge_dev, type);
3496                 if (unlikely(rc < 0))
3497                         goto fail1;
3498         }
3499
3500         sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3501
3502         mutex_unlock(&sbridge_edac_lock);
3503         return 0;
3504
3505 fail1:
3506         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3507                 sbridge_unregister_mci(sbridge_dev);
3508
3509         sbridge_put_all_devices();
3510 fail0:
3511         mutex_unlock(&sbridge_edac_lock);
3512         return rc;
3513 }
3514
3515 /*
3516  *      sbridge_remove  destructor for one instance of device
3517  *
3518  */
3519 static void sbridge_remove(struct pci_dev *pdev)
3520 {
3521         struct sbridge_dev *sbridge_dev;
3522
3523         edac_dbg(0, "\n");
3524
3525         /*
3526          * we have a trouble here: pdev value for removal will be wrong, since
3527          * it will point to the X58 register used to detect that the machine
3528          * is a Nehalem or upper design. However, due to the way several PCI
3529          * devices are grouped together to provide MC functionality, we need
3530          * to use a different method for releasing the devices
3531          */
3532
3533         mutex_lock(&sbridge_edac_lock);
3534
3535         if (unlikely(!probed)) {
3536                 mutex_unlock(&sbridge_edac_lock);
3537                 return;
3538         }
3539
3540         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3541                 sbridge_unregister_mci(sbridge_dev);
3542
3543         /* Release PCI resources */
3544         sbridge_put_all_devices();
3545
3546         probed--;
3547
3548         mutex_unlock(&sbridge_edac_lock);
3549 }
3550
3551 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
3552
3553 /*
3554  *      sbridge_driver  pci_driver structure for this module
3555  *
3556  */
3557 static struct pci_driver sbridge_driver = {
3558         .name     = "sbridge_edac",
3559         .probe    = sbridge_probe,
3560         .remove   = sbridge_remove,
3561         .id_table = sbridge_pci_tbl,
3562 };
3563
3564 /*
3565  *      sbridge_init            Module entry function
3566  *                      Try to initialize this module for its devices
3567  */
3568 static int __init sbridge_init(void)
3569 {
3570         int pci_rc;
3571
3572         edac_dbg(2, "\n");
3573
3574         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3575         opstate_init();
3576
3577         pci_rc = pci_register_driver(&sbridge_driver);
3578         if (pci_rc >= 0) {
3579                 mce_register_decode_chain(&sbridge_mce_dec);
3580                 if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3581                         sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3582                 return 0;
3583         }
3584
3585         sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3586                       pci_rc);
3587
3588         return pci_rc;
3589 }
3590
3591 /*
3592  *      sbridge_exit()  Module exit function
3593  *                      Unregister the driver
3594  */
3595 static void __exit sbridge_exit(void)
3596 {
3597         edac_dbg(2, "\n");
3598         pci_unregister_driver(&sbridge_driver);
3599         mce_unregister_decode_chain(&sbridge_mce_dec);
3600 }
3601
3602 module_init(sbridge_init);
3603 module_exit(sbridge_exit);
3604
3605 module_param(edac_op_state, int, 0444);
3606 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3607
3608 MODULE_LICENSE("GPL");
3609 MODULE_AUTHOR("Mauro Carvalho Chehab");
3610 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3611 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3612                    SBRIDGE_REVISION);