Merge tag 'mac80211-for-john-2014-11-18' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / drivers / edac / sb_edac.c
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *       Mauro Carvalho Chehab
11  */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26
27 #include "edac_core.h"
28
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.1.0 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)                      \
44         edac_printk(level, "sbridge", fmt, ##arg)
45
46 #define sbridge_mc_printk(mci, level, fmt, arg...)              \
47         edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi) \
53         (((v) & GENMASK_ULL(hi, lo)) >> (lo))
54
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule[] = {
57         0x80, 0x88, 0x90, 0x98, 0xa0,
58         0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
59 };
60
61 static const u32 ibridge_dram_rule[] = {
62         0x60, 0x68, 0x70, 0x78, 0x80,
63         0x88, 0x90, 0x98, 0xa0, 0xa8,
64         0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65         0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
66 };
67
68 #define SAD_LIMIT(reg)          ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
69 #define DRAM_ATTR(reg)          GET_BITFIELD(reg, 2,  3)
70 #define INTERLEAVE_MODE(reg)    GET_BITFIELD(reg, 1,  1)
71 #define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
72 #define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
73
74 static char *get_dram_attr(u32 reg)
75 {
76         switch(DRAM_ATTR(reg)) {
77                 case 0:
78                         return "DRAM";
79                 case 1:
80                         return "MMCFG";
81                 case 2:
82                         return "NXM";
83                 default:
84                         return "unknown";
85         }
86 }
87
88 static const u32 sbridge_interleave_list[] = {
89         0x84, 0x8c, 0x94, 0x9c, 0xa4,
90         0xac, 0xb4, 0xbc, 0xc4, 0xcc,
91 };
92
93 static const u32 ibridge_interleave_list[] = {
94         0x64, 0x6c, 0x74, 0x7c, 0x84,
95         0x8c, 0x94, 0x9c, 0xa4, 0xac,
96         0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
97         0xdc, 0xe4, 0xec, 0xf4, 0xfc,
98 };
99
100 struct interleave_pkg {
101         unsigned char start;
102         unsigned char end;
103 };
104
105 static const struct interleave_pkg sbridge_interleave_pkg[] = {
106         { 0, 2 },
107         { 3, 5 },
108         { 8, 10 },
109         { 11, 13 },
110         { 16, 18 },
111         { 19, 21 },
112         { 24, 26 },
113         { 27, 29 },
114 };
115
116 static const struct interleave_pkg ibridge_interleave_pkg[] = {
117         { 0, 3 },
118         { 4, 7 },
119         { 8, 11 },
120         { 12, 15 },
121         { 16, 19 },
122         { 20, 23 },
123         { 24, 27 },
124         { 28, 31 },
125 };
126
127 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
128                           int interleave)
129 {
130         return GET_BITFIELD(reg, table[interleave].start,
131                             table[interleave].end);
132 }
133
134 /* Devices 12 Function 7 */
135
136 #define TOLM            0x80
137 #define TOHM            0x84
138 #define HASWELL_TOHM_0  0xd4
139 #define HASWELL_TOHM_1  0xd8
140
141 #define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
142 #define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
143
144 /* Device 13 Function 6 */
145
146 #define SAD_TARGET      0xf0
147
148 #define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
149
150 #define SAD_CONTROL     0xf4
151
152 /* Device 14 function 0 */
153
154 static const u32 tad_dram_rule[] = {
155         0x40, 0x44, 0x48, 0x4c,
156         0x50, 0x54, 0x58, 0x5c,
157         0x60, 0x64, 0x68, 0x6c,
158 };
159 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
160
161 #define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
162 #define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
163 #define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
164 #define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
165 #define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
166 #define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
167 #define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
168
169 /* Device 15, function 0 */
170
171 #define MCMTR                   0x7c
172
173 #define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
174 #define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
175 #define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
176
177 /* Device 15, function 1 */
178
179 #define RASENABLES              0xac
180 #define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
181
182 /* Device 15, functions 2-5 */
183
184 static const int mtr_regs[] = {
185         0x80, 0x84, 0x88,
186 };
187
188 #define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
189 #define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
190 #define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
191 #define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
192 #define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
193
194 static const u32 tad_ch_nilv_offset[] = {
195         0x90, 0x94, 0x98, 0x9c,
196         0xa0, 0xa4, 0xa8, 0xac,
197         0xb0, 0xb4, 0xb8, 0xbc,
198 };
199 #define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
200 #define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
201
202 static const u32 rir_way_limit[] = {
203         0x108, 0x10c, 0x110, 0x114, 0x118,
204 };
205 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
206
207 #define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
208 #define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
209
210 #define MAX_RIR_WAY     8
211
212 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
213         { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
214         { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
215         { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
216         { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
217         { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
218 };
219
220 #define RIR_RNK_TGT(reg)                GET_BITFIELD(reg, 16, 19)
221 #define RIR_OFFSET(reg)         GET_BITFIELD(reg,  2, 14)
222
223 /* Device 16, functions 2-7 */
224
225 /*
226  * FIXME: Implement the error count reads directly
227  */
228
229 static const u32 correrrcnt[] = {
230         0x104, 0x108, 0x10c, 0x110,
231 };
232
233 #define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
234 #define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
235 #define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
236 #define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
237
238 static const u32 correrrthrsld[] = {
239         0x11c, 0x120, 0x124, 0x128,
240 };
241
242 #define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
243 #define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
244
245
246 /* Device 17, function 0 */
247
248 #define SB_RANK_CFG_A           0x0328
249
250 #define IB_RANK_CFG_A           0x0320
251
252 /*
253  * sbridge structs
254  */
255
256 #define NUM_CHANNELS            4
257 #define MAX_DIMMS               3       /* Max DIMMS per channel */
258 #define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
259
260 enum type {
261         SANDY_BRIDGE,
262         IVY_BRIDGE,
263         HASWELL,
264 };
265
266 struct sbridge_pvt;
267 struct sbridge_info {
268         enum type       type;
269         u32             mcmtr;
270         u32             rankcfgr;
271         u64             (*get_tolm)(struct sbridge_pvt *pvt);
272         u64             (*get_tohm)(struct sbridge_pvt *pvt);
273         u64             (*rir_limit)(u32 reg);
274         const u32       *dram_rule;
275         const u32       *interleave_list;
276         const struct interleave_pkg *interleave_pkg;
277         u8              max_sad;
278         u8              max_interleave;
279         u8              (*get_node_id)(struct sbridge_pvt *pvt);
280         enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
281         struct pci_dev  *pci_vtd;
282 };
283
284 struct sbridge_channel {
285         u32             ranks;
286         u32             dimms;
287 };
288
289 struct pci_id_descr {
290         int                     dev_id;
291         int                     optional;
292 };
293
294 struct pci_id_table {
295         const struct pci_id_descr       *descr;
296         int                             n_devs;
297 };
298
299 struct sbridge_dev {
300         struct list_head        list;
301         u8                      bus, mc;
302         u8                      node_id, source_id;
303         struct pci_dev          **pdev;
304         int                     n_devs;
305         struct mem_ctl_info     *mci;
306 };
307
308 struct sbridge_pvt {
309         struct pci_dev          *pci_ta, *pci_ddrio, *pci_ras;
310         struct pci_dev          *pci_sad0, *pci_sad1;
311         struct pci_dev          *pci_ha0, *pci_ha1;
312         struct pci_dev          *pci_br0, *pci_br1;
313         struct pci_dev          *pci_ha1_ta;
314         struct pci_dev          *pci_tad[NUM_CHANNELS];
315
316         struct sbridge_dev      *sbridge_dev;
317
318         struct sbridge_info     info;
319         struct sbridge_channel  channel[NUM_CHANNELS];
320
321         /* Memory type detection */
322         bool                    is_mirrored, is_lockstep, is_close_pg;
323
324         /* Fifo double buffers */
325         struct mce              mce_entry[MCE_LOG_LEN];
326         struct mce              mce_outentry[MCE_LOG_LEN];
327
328         /* Fifo in/out counters */
329         unsigned                mce_in, mce_out;
330
331         /* Count indicator to show errors not got */
332         unsigned                mce_overrun;
333
334         /* Memory description */
335         u64                     tolm, tohm;
336 };
337
338 #define PCI_DESCR(device_id, opt)       \
339         .dev_id = (device_id),          \
340         .optional = opt
341
342 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
343                 /* Processor Home Agent */
344         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)     },
345
346                 /* Memory controller */
347         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)      },
348         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)     },
349         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)    },
350         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)    },
351         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)    },
352         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)    },
353         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)   },
354
355                 /* System Address Decoder */
356         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)        },
357         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)        },
358
359                 /* Broadcast Registers */
360         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)          },
361 };
362
363 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
364 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
365         PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
366         {0,}                    /* 0 terminated list. */
367 };
368
369 /* This changes depending if 1HA or 2HA:
370  * 1HA:
371  *      0x0eb8 (17.0) is DDRIO0
372  * 2HA:
373  *      0x0ebc (17.4) is DDRIO0
374  */
375 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
376 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
377
378 /* pci ids */
379 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
380 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
381 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
382 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
383 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
384 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
385 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
386 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
387 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
388 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
389 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
390 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
391 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
392 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
393 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
394
395 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
396                 /* Processor Home Agent */
397         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)             },
398
399                 /* Memory controller */
400         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)          },
401         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)         },
402         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)        },
403         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)        },
404         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)        },
405         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)        },
406
407                 /* System Address Decoder */
408         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)                 },
409
410                 /* Broadcast Registers */
411         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)                 },
412         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)                 },
413
414                 /* Optional, mode 2HA */
415         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)             },
416 #if 0
417         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)  },
418         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) },
419 #endif
420         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)        },
421         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)        },
422
423         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)      },
424         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)      },
425 };
426
427 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
428         PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
429         {0,}                    /* 0 terminated list. */
430 };
431
432 /* Haswell support */
433 /* EN processor:
434  *      - 1 IMC
435  *      - 3 DDR3 channels, 2 DPC per channel
436  * EP processor:
437  *      - 1 or 2 IMC
438  *      - 4 DDR4 channels, 3 DPC per channel
439  * EP 4S processor:
440  *      - 2 IMC
441  *      - 4 DDR4 channels, 3 DPC per channel
442  * EX processor:
443  *      - 2 IMC
444  *      - each IMC interfaces with a SMI 2 channel
445  *      - each SMI channel interfaces with a scalable memory buffer
446  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
447  */
448 #define HASWELL_DDRCRCLKCONTROLS 0xa10
449 #define HASWELL_HASYSDEFEATURE2 0x84
450 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
451 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
452 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
453 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
454 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
455 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
456 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
457 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
458 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
459 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
460 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
461 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
462 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
463 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
464 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
465 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
466 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
467 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
468 static const struct pci_id_descr pci_dev_descr_haswell[] = {
469         /* first item must be the HA */
470         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)             },
471
472         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)        },
473         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)        },
474
475         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)             },
476
477         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)          },
478         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)     },
479         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)        },
480         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)        },
481         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)        },
482         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)        },
483
484         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)          },
485
486         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)          },
487         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)     },
488         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)        },
489         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)        },
490         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)        },
491         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)        },
492 };
493
494 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
495         PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
496         {0,}                    /* 0 terminated list. */
497 };
498
499 /*
500  *      pci_device_id   table for which devices we are looking for
501  */
502 static const struct pci_device_id sbridge_pci_tbl[] = {
503         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
504         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
505         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
506         {0,}                    /* 0 terminated list. */
507 };
508
509
510 /****************************************************************************
511                         Ancillary status routines
512  ****************************************************************************/
513
514 static inline int numrank(enum type type, u32 mtr)
515 {
516         int ranks = (1 << RANK_CNT_BITS(mtr));
517         int max = 4;
518
519         if (type == HASWELL)
520                 max = 8;
521
522         if (ranks > max) {
523                 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
524                          ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
525                 return -EINVAL;
526         }
527
528         return ranks;
529 }
530
531 static inline int numrow(u32 mtr)
532 {
533         int rows = (RANK_WIDTH_BITS(mtr) + 12);
534
535         if (rows < 13 || rows > 18) {
536                 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
537                          rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
538                 return -EINVAL;
539         }
540
541         return 1 << rows;
542 }
543
544 static inline int numcol(u32 mtr)
545 {
546         int cols = (COL_WIDTH_BITS(mtr) + 10);
547
548         if (cols > 12) {
549                 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
550                          cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
551                 return -EINVAL;
552         }
553
554         return 1 << cols;
555 }
556
557 static struct sbridge_dev *get_sbridge_dev(u8 bus)
558 {
559         struct sbridge_dev *sbridge_dev;
560
561         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
562                 if (sbridge_dev->bus == bus)
563                         return sbridge_dev;
564         }
565
566         return NULL;
567 }
568
569 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
570                                            const struct pci_id_table *table)
571 {
572         struct sbridge_dev *sbridge_dev;
573
574         sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
575         if (!sbridge_dev)
576                 return NULL;
577
578         sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
579                                    GFP_KERNEL);
580         if (!sbridge_dev->pdev) {
581                 kfree(sbridge_dev);
582                 return NULL;
583         }
584
585         sbridge_dev->bus = bus;
586         sbridge_dev->n_devs = table->n_devs;
587         list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
588
589         return sbridge_dev;
590 }
591
592 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
593 {
594         list_del(&sbridge_dev->list);
595         kfree(sbridge_dev->pdev);
596         kfree(sbridge_dev);
597 }
598
599 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
600 {
601         u32 reg;
602
603         /* Address range is 32:28 */
604         pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
605         return GET_TOLM(reg);
606 }
607
608 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
609 {
610         u32 reg;
611
612         pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
613         return GET_TOHM(reg);
614 }
615
616 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
617 {
618         u32 reg;
619
620         pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
621
622         return GET_TOLM(reg);
623 }
624
625 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
626 {
627         u32 reg;
628
629         pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
630
631         return GET_TOHM(reg);
632 }
633
634 static u64 rir_limit(u32 reg)
635 {
636         return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
637 }
638
639 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
640 {
641         u32 reg;
642         enum mem_type mtype;
643
644         if (pvt->pci_ddrio) {
645                 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
646                                       &reg);
647                 if (GET_BITFIELD(reg, 11, 11))
648                         /* FIXME: Can also be LRDIMM */
649                         mtype = MEM_RDDR3;
650                 else
651                         mtype = MEM_DDR3;
652         } else
653                 mtype = MEM_UNKNOWN;
654
655         return mtype;
656 }
657
658 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
659 {
660         u32 reg;
661         bool registered = false;
662         enum mem_type mtype = MEM_UNKNOWN;
663
664         if (!pvt->pci_ddrio)
665                 goto out;
666
667         pci_read_config_dword(pvt->pci_ddrio,
668                               HASWELL_DDRCRCLKCONTROLS, &reg);
669         /* Is_Rdimm */
670         if (GET_BITFIELD(reg, 16, 16))
671                 registered = true;
672
673         pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
674         if (GET_BITFIELD(reg, 14, 14)) {
675                 if (registered)
676                         mtype = MEM_RDDR4;
677                 else
678                         mtype = MEM_DDR4;
679         } else {
680                 if (registered)
681                         mtype = MEM_RDDR3;
682                 else
683                         mtype = MEM_DDR3;
684         }
685
686 out:
687         return mtype;
688 }
689
690 static u8 get_node_id(struct sbridge_pvt *pvt)
691 {
692         u32 reg;
693         pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
694         return GET_BITFIELD(reg, 0, 2);
695 }
696
697 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
698 {
699         u32 reg;
700
701         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
702         return GET_BITFIELD(reg, 0, 3);
703 }
704
705 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
706 {
707         u32 reg;
708
709         pci_read_config_dword(pvt->info.pci_vtd, TOLM, &reg);
710         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x1ffffff;
711 }
712
713 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
714 {
715         u64 rc;
716         u32 reg;
717
718         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
719         rc = GET_BITFIELD(reg, 26, 31);
720         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
721         rc = ((reg << 6) | rc) << 26;
722
723         return rc | 0x1ffffff;
724 }
725
726 static u64 haswell_rir_limit(u32 reg)
727 {
728         return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
729 }
730
731 static inline u8 sad_pkg_socket(u8 pkg)
732 {
733         /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
734         return ((pkg >> 3) << 2) | (pkg & 0x3);
735 }
736
737 static inline u8 sad_pkg_ha(u8 pkg)
738 {
739         return (pkg >> 2) & 0x1;
740 }
741
742 /****************************************************************************
743                         Memory check routines
744  ****************************************************************************/
745 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
746 {
747         struct pci_dev *pdev = NULL;
748
749         do {
750                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
751                 if (pdev && pdev->bus->number == bus)
752                         break;
753         } while (pdev);
754
755         return pdev;
756 }
757
758 /**
759  * check_if_ecc_is_active() - Checks if ECC is active
760  * @bus:        Device bus
761  * @type:       Memory controller type
762  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
763  *          disabled
764  */
765 static int check_if_ecc_is_active(const u8 bus, enum type type)
766 {
767         struct pci_dev *pdev = NULL;
768         u32 mcmtr, id;
769
770         if (type == IVY_BRIDGE)
771                 id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
772         else if (type == HASWELL)
773                 id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
774         else
775                 id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
776
777         pdev = get_pdev_same_bus(bus, id);
778         if (!pdev) {
779                 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
780                                         "%04x:%04x! on bus %02d\n",
781                                         PCI_VENDOR_ID_INTEL, id, bus);
782                 return -ENODEV;
783         }
784
785         pci_read_config_dword(pdev, MCMTR, &mcmtr);
786         if (!IS_ECC_ENABLED(mcmtr)) {
787                 sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
788                 return -ENODEV;
789         }
790         return 0;
791 }
792
793 static int get_dimm_config(struct mem_ctl_info *mci)
794 {
795         struct sbridge_pvt *pvt = mci->pvt_info;
796         struct dimm_info *dimm;
797         unsigned i, j, banks, ranks, rows, cols, npages;
798         u64 size;
799         u32 reg;
800         enum edac_type mode;
801         enum mem_type mtype;
802
803         if (pvt->info.type == HASWELL)
804                 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
805         else
806                 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
807
808         pvt->sbridge_dev->source_id = SOURCE_ID(reg);
809
810         pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
811         edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
812                  pvt->sbridge_dev->mc,
813                  pvt->sbridge_dev->node_id,
814                  pvt->sbridge_dev->source_id);
815
816         pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
817         if (IS_MIRROR_ENABLED(reg)) {
818                 edac_dbg(0, "Memory mirror is enabled\n");
819                 pvt->is_mirrored = true;
820         } else {
821                 edac_dbg(0, "Memory mirror is disabled\n");
822                 pvt->is_mirrored = false;
823         }
824
825         pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
826         if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
827                 edac_dbg(0, "Lockstep is enabled\n");
828                 mode = EDAC_S8ECD8ED;
829                 pvt->is_lockstep = true;
830         } else {
831                 edac_dbg(0, "Lockstep is disabled\n");
832                 mode = EDAC_S4ECD4ED;
833                 pvt->is_lockstep = false;
834         }
835         if (IS_CLOSE_PG(pvt->info.mcmtr)) {
836                 edac_dbg(0, "address map is on closed page mode\n");
837                 pvt->is_close_pg = true;
838         } else {
839                 edac_dbg(0, "address map is on open page mode\n");
840                 pvt->is_close_pg = false;
841         }
842
843         mtype = pvt->info.get_memory_type(pvt);
844         if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
845                 edac_dbg(0, "Memory is registered\n");
846         else if (mtype == MEM_UNKNOWN)
847                 edac_dbg(0, "Cannot determine memory type\n");
848         else
849                 edac_dbg(0, "Memory is unregistered\n");
850
851         if (mtype == MEM_DDR4 || MEM_RDDR4)
852                 banks = 16;
853         else
854                 banks = 8;
855
856         for (i = 0; i < NUM_CHANNELS; i++) {
857                 u32 mtr;
858
859                 for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
860                         dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
861                                        i, j, 0);
862                         pci_read_config_dword(pvt->pci_tad[i],
863                                               mtr_regs[j], &mtr);
864                         edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
865                         if (IS_DIMM_PRESENT(mtr)) {
866                                 pvt->channel[i].dimms++;
867
868                                 ranks = numrank(pvt->info.type, mtr);
869                                 rows = numrow(mtr);
870                                 cols = numcol(mtr);
871
872                                 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
873                                 npages = MiB_TO_PAGES(size);
874
875                                 edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
876                                          pvt->sbridge_dev->mc, i, j,
877                                          size, npages,
878                                          banks, ranks, rows, cols);
879
880                                 dimm->nr_pages = npages;
881                                 dimm->grain = 32;
882                                 switch (banks) {
883                                 case 16:
884                                         dimm->dtype = DEV_X16;
885                                         break;
886                                 case 8:
887                                         dimm->dtype = DEV_X8;
888                                         break;
889                                 case 4:
890                                         dimm->dtype = DEV_X4;
891                                         break;
892                                 }
893                                 dimm->mtype = mtype;
894                                 dimm->edac_mode = mode;
895                                 snprintf(dimm->label, sizeof(dimm->label),
896                                          "CPU_SrcID#%u_Channel#%u_DIMM#%u",
897                                          pvt->sbridge_dev->source_id, i, j);
898                         }
899                 }
900         }
901
902         return 0;
903 }
904
905 static void get_memory_layout(const struct mem_ctl_info *mci)
906 {
907         struct sbridge_pvt *pvt = mci->pvt_info;
908         int i, j, k, n_sads, n_tads, sad_interl;
909         u32 reg;
910         u64 limit, prv = 0;
911         u64 tmp_mb;
912         u32 mb, kb;
913         u32 rir_way;
914
915         /*
916          * Step 1) Get TOLM/TOHM ranges
917          */
918
919         pvt->tolm = pvt->info.get_tolm(pvt);
920         tmp_mb = (1 + pvt->tolm) >> 20;
921
922         mb = div_u64_rem(tmp_mb, 1000, &kb);
923         edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
924
925         /* Address range is already 45:25 */
926         pvt->tohm = pvt->info.get_tohm(pvt);
927         tmp_mb = (1 + pvt->tohm) >> 20;
928
929         mb = div_u64_rem(tmp_mb, 1000, &kb);
930         edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tohm);
931
932         /*
933          * Step 2) Get SAD range and SAD Interleave list
934          * TAD registers contain the interleave wayness. However, it
935          * seems simpler to just discover it indirectly, with the
936          * algorithm bellow.
937          */
938         prv = 0;
939         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
940                 /* SAD_LIMIT Address range is 45:26 */
941                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
942                                       &reg);
943                 limit = SAD_LIMIT(reg);
944
945                 if (!DRAM_RULE_ENABLE(reg))
946                         continue;
947
948                 if (limit <= prv)
949                         break;
950
951                 tmp_mb = (limit + 1) >> 20;
952                 mb = div_u64_rem(tmp_mb, 1000, &kb);
953                 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
954                          n_sads,
955                          get_dram_attr(reg),
956                          mb, kb,
957                          ((u64)tmp_mb) << 20L,
958                          INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
959                          reg);
960                 prv = limit;
961
962                 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
963                                       &reg);
964                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
965                 for (j = 0; j < 8; j++) {
966                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
967                         if (j > 0 && sad_interl == pkg)
968                                 break;
969
970                         edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
971                                  n_sads, j, pkg);
972                 }
973         }
974
975         /*
976          * Step 3) Get TAD range
977          */
978         prv = 0;
979         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
980                 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
981                                       &reg);
982                 limit = TAD_LIMIT(reg);
983                 if (limit <= prv)
984                         break;
985                 tmp_mb = (limit + 1) >> 20;
986
987                 mb = div_u64_rem(tmp_mb, 1000, &kb);
988                 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
989                          n_tads, mb, kb,
990                          ((u64)tmp_mb) << 20L,
991                          (u32)TAD_SOCK(reg),
992                          (u32)TAD_CH(reg),
993                          (u32)TAD_TGT0(reg),
994                          (u32)TAD_TGT1(reg),
995                          (u32)TAD_TGT2(reg),
996                          (u32)TAD_TGT3(reg),
997                          reg);
998                 prv = limit;
999         }
1000
1001         /*
1002          * Step 4) Get TAD offsets, per each channel
1003          */
1004         for (i = 0; i < NUM_CHANNELS; i++) {
1005                 if (!pvt->channel[i].dimms)
1006                         continue;
1007                 for (j = 0; j < n_tads; j++) {
1008                         pci_read_config_dword(pvt->pci_tad[i],
1009                                               tad_ch_nilv_offset[j],
1010                                               &reg);
1011                         tmp_mb = TAD_OFFSET(reg) >> 20;
1012                         mb = div_u64_rem(tmp_mb, 1000, &kb);
1013                         edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1014                                  i, j,
1015                                  mb, kb,
1016                                  ((u64)tmp_mb) << 20L,
1017                                  reg);
1018                 }
1019         }
1020
1021         /*
1022          * Step 6) Get RIR Wayness/Limit, per each channel
1023          */
1024         for (i = 0; i < NUM_CHANNELS; i++) {
1025                 if (!pvt->channel[i].dimms)
1026                         continue;
1027                 for (j = 0; j < MAX_RIR_RANGES; j++) {
1028                         pci_read_config_dword(pvt->pci_tad[i],
1029                                               rir_way_limit[j],
1030                                               &reg);
1031
1032                         if (!IS_RIR_VALID(reg))
1033                                 continue;
1034
1035                         tmp_mb = pvt->info.rir_limit(reg) >> 20;
1036                         rir_way = 1 << RIR_WAY(reg);
1037                         mb = div_u64_rem(tmp_mb, 1000, &kb);
1038                         edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1039                                  i, j,
1040                                  mb, kb,
1041                                  ((u64)tmp_mb) << 20L,
1042                                  rir_way,
1043                                  reg);
1044
1045                         for (k = 0; k < rir_way; k++) {
1046                                 pci_read_config_dword(pvt->pci_tad[i],
1047                                                       rir_offset[j][k],
1048                                                       &reg);
1049                                 tmp_mb = RIR_OFFSET(reg) << 6;
1050
1051                                 mb = div_u64_rem(tmp_mb, 1000, &kb);
1052                                 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1053                                          i, j, k,
1054                                          mb, kb,
1055                                          ((u64)tmp_mb) << 20L,
1056                                          (u32)RIR_RNK_TGT(reg),
1057                                          reg);
1058                         }
1059                 }
1060         }
1061 }
1062
1063 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1064 {
1065         struct sbridge_dev *sbridge_dev;
1066
1067         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1068                 if (sbridge_dev->node_id == node_id)
1069                         return sbridge_dev->mci;
1070         }
1071         return NULL;
1072 }
1073
1074 static int get_memory_error_data(struct mem_ctl_info *mci,
1075                                  u64 addr,
1076                                  u8 *socket,
1077                                  long *channel_mask,
1078                                  u8 *rank,
1079                                  char **area_type, char *msg)
1080 {
1081         struct mem_ctl_info     *new_mci;
1082         struct sbridge_pvt *pvt = mci->pvt_info;
1083         struct pci_dev          *pci_ha;
1084         int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
1085         int                     sad_interl, idx, base_ch;
1086         int                     interleave_mode, shiftup = 0;
1087         unsigned                sad_interleave[pvt->info.max_interleave];
1088         u32                     reg, dram_rule;
1089         u8                      ch_way, sck_way, pkg, sad_ha = 0;
1090         u32                     tad_offset;
1091         u32                     rir_way;
1092         u32                     mb, kb;
1093         u64                     ch_addr, offset, limit = 0, prv = 0;
1094
1095
1096         /*
1097          * Step 0) Check if the address is at special memory ranges
1098          * The check bellow is probably enough to fill all cases where
1099          * the error is not inside a memory, except for the legacy
1100          * range (e. g. VGA addresses). It is unlikely, however, that the
1101          * memory controller would generate an error on that range.
1102          */
1103         if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1104                 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1105                 return -EINVAL;
1106         }
1107         if (addr >= (u64)pvt->tohm) {
1108                 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1109                 return -EINVAL;
1110         }
1111
1112         /*
1113          * Step 1) Get socket
1114          */
1115         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1116                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1117                                       &reg);
1118
1119                 if (!DRAM_RULE_ENABLE(reg))
1120                         continue;
1121
1122                 limit = SAD_LIMIT(reg);
1123                 if (limit <= prv) {
1124                         sprintf(msg, "Can't discover the memory socket");
1125                         return -EINVAL;
1126                 }
1127                 if  (addr <= limit)
1128                         break;
1129                 prv = limit;
1130         }
1131         if (n_sads == pvt->info.max_sad) {
1132                 sprintf(msg, "Can't discover the memory socket");
1133                 return -EINVAL;
1134         }
1135         dram_rule = reg;
1136         *area_type = get_dram_attr(dram_rule);
1137         interleave_mode = INTERLEAVE_MODE(dram_rule);
1138
1139         pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1140                               &reg);
1141
1142         if (pvt->info.type == SANDY_BRIDGE) {
1143                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1144                 for (sad_way = 0; sad_way < 8; sad_way++) {
1145                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1146                         if (sad_way > 0 && sad_interl == pkg)
1147                                 break;
1148                         sad_interleave[sad_way] = pkg;
1149                         edac_dbg(0, "SAD interleave #%d: %d\n",
1150                                  sad_way, sad_interleave[sad_way]);
1151                 }
1152                 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1153                          pvt->sbridge_dev->mc,
1154                          n_sads,
1155                          addr,
1156                          limit,
1157                          sad_way + 7,
1158                          !interleave_mode ? "" : "XOR[18:16]");
1159                 if (interleave_mode)
1160                         idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1161                 else
1162                         idx = (addr >> 6) & 7;
1163                 switch (sad_way) {
1164                 case 1:
1165                         idx = 0;
1166                         break;
1167                 case 2:
1168                         idx = idx & 1;
1169                         break;
1170                 case 4:
1171                         idx = idx & 3;
1172                         break;
1173                 case 8:
1174                         break;
1175                 default:
1176                         sprintf(msg, "Can't discover socket interleave");
1177                         return -EINVAL;
1178                 }
1179                 *socket = sad_interleave[idx];
1180                 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1181                          idx, sad_way, *socket);
1182         } else if (pvt->info.type == HASWELL) {
1183                 int bits, a7mode = A7MODE(dram_rule);
1184
1185                 if (a7mode) {
1186                         /* A7 mode swaps P9 with P6 */
1187                         bits = GET_BITFIELD(addr, 7, 8) << 1;
1188                         bits |= GET_BITFIELD(addr, 9, 9);
1189                 } else
1190                         bits = GET_BITFIELD(addr, 7, 9);
1191
1192                 if (interleave_mode) {
1193                         /* interleave mode will XOR {8,7,6} with {18,17,16} */
1194                         idx = GET_BITFIELD(addr, 16, 18);
1195                         idx ^= bits;
1196                 } else
1197                         idx = bits;
1198
1199                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1200                 *socket = sad_pkg_socket(pkg);
1201                 sad_ha = sad_pkg_ha(pkg);
1202
1203                 if (a7mode) {
1204                         /* MCChanShiftUpEnable */
1205                         pci_read_config_dword(pvt->pci_ha0,
1206                                               HASWELL_HASYSDEFEATURE2, &reg);
1207                         shiftup = GET_BITFIELD(reg, 22, 22);
1208                 }
1209
1210                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
1211                          idx, *socket, sad_ha, shiftup);
1212         } else {
1213                 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1214                 idx = (addr >> 6) & 7;
1215                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1216                 *socket = sad_pkg_socket(pkg);
1217                 sad_ha = sad_pkg_ha(pkg);
1218                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
1219                          idx, *socket, sad_ha);
1220         }
1221
1222         /*
1223          * Move to the proper node structure, in order to access the
1224          * right PCI registers
1225          */
1226         new_mci = get_mci_for_node_id(*socket);
1227         if (!new_mci) {
1228                 sprintf(msg, "Struct for socket #%u wasn't initialized",
1229                         *socket);
1230                 return -EINVAL;
1231         }
1232         mci = new_mci;
1233         pvt = mci->pvt_info;
1234
1235         /*
1236          * Step 2) Get memory channel
1237          */
1238         prv = 0;
1239         if (pvt->info.type == SANDY_BRIDGE)
1240                 pci_ha = pvt->pci_ha0;
1241         else {
1242                 if (sad_ha)
1243                         pci_ha = pvt->pci_ha1;
1244                 else
1245                         pci_ha = pvt->pci_ha0;
1246         }
1247         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1248                 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
1249                 limit = TAD_LIMIT(reg);
1250                 if (limit <= prv) {
1251                         sprintf(msg, "Can't discover the memory channel");
1252                         return -EINVAL;
1253                 }
1254                 if  (addr <= limit)
1255                         break;
1256                 prv = limit;
1257         }
1258         if (n_tads == MAX_TAD) {
1259                 sprintf(msg, "Can't discover the memory channel");
1260                 return -EINVAL;
1261         }
1262
1263         ch_way = TAD_CH(reg) + 1;
1264         sck_way = TAD_SOCK(reg) + 1;
1265
1266         if (ch_way == 3)
1267                 idx = addr >> 6;
1268         else
1269                 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
1270         idx = idx % ch_way;
1271
1272         /*
1273          * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1274          */
1275         switch (idx) {
1276         case 0:
1277                 base_ch = TAD_TGT0(reg);
1278                 break;
1279         case 1:
1280                 base_ch = TAD_TGT1(reg);
1281                 break;
1282         case 2:
1283                 base_ch = TAD_TGT2(reg);
1284                 break;
1285         case 3:
1286                 base_ch = TAD_TGT3(reg);
1287                 break;
1288         default:
1289                 sprintf(msg, "Can't discover the TAD target");
1290                 return -EINVAL;
1291         }
1292         *channel_mask = 1 << base_ch;
1293
1294         pci_read_config_dword(pvt->pci_tad[base_ch],
1295                                 tad_ch_nilv_offset[n_tads],
1296                                 &tad_offset);
1297
1298         if (pvt->is_mirrored) {
1299                 *channel_mask |= 1 << ((base_ch + 2) % 4);
1300                 switch(ch_way) {
1301                 case 2:
1302                 case 4:
1303                         sck_xch = 1 << sck_way * (ch_way >> 1);
1304                         break;
1305                 default:
1306                         sprintf(msg, "Invalid mirror set. Can't decode addr");
1307                         return -EINVAL;
1308                 }
1309         } else
1310                 sck_xch = (1 << sck_way) * ch_way;
1311
1312         if (pvt->is_lockstep)
1313                 *channel_mask |= 1 << ((base_ch + 1) % 4);
1314
1315         offset = TAD_OFFSET(tad_offset);
1316
1317         edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1318                  n_tads,
1319                  addr,
1320                  limit,
1321                  (u32)TAD_SOCK(reg),
1322                  ch_way,
1323                  offset,
1324                  idx,
1325                  base_ch,
1326                  *channel_mask);
1327
1328         /* Calculate channel address */
1329         /* Remove the TAD offset */
1330
1331         if (offset > addr) {
1332                 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1333                         offset, addr);
1334                 return -EINVAL;
1335         }
1336         addr -= offset;
1337         /* Store the low bits [0:6] of the addr */
1338         ch_addr = addr & 0x7f;
1339         /* Remove socket wayness and remove 6 bits */
1340         addr >>= 6;
1341         addr = div_u64(addr, sck_xch);
1342 #if 0
1343         /* Divide by channel way */
1344         addr = addr / ch_way;
1345 #endif
1346         /* Recover the last 6 bits */
1347         ch_addr |= addr << 6;
1348
1349         /*
1350          * Step 3) Decode rank
1351          */
1352         for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1353                 pci_read_config_dword(pvt->pci_tad[base_ch],
1354                                       rir_way_limit[n_rir],
1355                                       &reg);
1356
1357                 if (!IS_RIR_VALID(reg))
1358                         continue;
1359
1360                 limit = pvt->info.rir_limit(reg);
1361                 mb = div_u64_rem(limit >> 20, 1000, &kb);
1362                 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1363                          n_rir,
1364                          mb, kb,
1365                          limit,
1366                          1 << RIR_WAY(reg));
1367                 if  (ch_addr <= limit)
1368                         break;
1369         }
1370         if (n_rir == MAX_RIR_RANGES) {
1371                 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1372                         ch_addr);
1373                 return -EINVAL;
1374         }
1375         rir_way = RIR_WAY(reg);
1376
1377         if (pvt->is_close_pg)
1378                 idx = (ch_addr >> 6);
1379         else
1380                 idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
1381         idx %= 1 << rir_way;
1382
1383         pci_read_config_dword(pvt->pci_tad[base_ch],
1384                               rir_offset[n_rir][idx],
1385                               &reg);
1386         *rank = RIR_RNK_TGT(reg);
1387
1388         edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1389                  n_rir,
1390                  ch_addr,
1391                  limit,
1392                  rir_way,
1393                  idx);
1394
1395         return 0;
1396 }
1397
1398 /****************************************************************************
1399         Device initialization routines: put/get, init/exit
1400  ****************************************************************************/
1401
1402 /*
1403  *      sbridge_put_all_devices 'put' all the devices that we have
1404  *                              reserved via 'get'
1405  */
1406 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1407 {
1408         int i;
1409
1410         edac_dbg(0, "\n");
1411         for (i = 0; i < sbridge_dev->n_devs; i++) {
1412                 struct pci_dev *pdev = sbridge_dev->pdev[i];
1413                 if (!pdev)
1414                         continue;
1415                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1416                          pdev->bus->number,
1417                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1418                 pci_dev_put(pdev);
1419         }
1420 }
1421
1422 static void sbridge_put_all_devices(void)
1423 {
1424         struct sbridge_dev *sbridge_dev, *tmp;
1425
1426         list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1427                 sbridge_put_devices(sbridge_dev);
1428                 free_sbridge_dev(sbridge_dev);
1429         }
1430 }
1431
1432 static int sbridge_get_onedevice(struct pci_dev **prev,
1433                                  u8 *num_mc,
1434                                  const struct pci_id_table *table,
1435                                  const unsigned devno)
1436 {
1437         struct sbridge_dev *sbridge_dev;
1438         const struct pci_id_descr *dev_descr = &table->descr[devno];
1439         struct pci_dev *pdev = NULL;
1440         u8 bus = 0;
1441
1442         sbridge_printk(KERN_DEBUG,
1443                 "Seeking for: PCI ID %04x:%04x\n",
1444                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1445
1446         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1447                               dev_descr->dev_id, *prev);
1448
1449         if (!pdev) {
1450                 if (*prev) {
1451                         *prev = pdev;
1452                         return 0;
1453                 }
1454
1455                 if (dev_descr->optional)
1456                         return 0;
1457
1458                 /* if the HA wasn't found */
1459                 if (devno == 0)
1460                         return -ENODEV;
1461
1462                 sbridge_printk(KERN_INFO,
1463                         "Device not found: %04x:%04x\n",
1464                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1465
1466                 /* End of list, leave */
1467                 return -ENODEV;
1468         }
1469         bus = pdev->bus->number;
1470
1471         sbridge_dev = get_sbridge_dev(bus);
1472         if (!sbridge_dev) {
1473                 sbridge_dev = alloc_sbridge_dev(bus, table);
1474                 if (!sbridge_dev) {
1475                         pci_dev_put(pdev);
1476                         return -ENOMEM;
1477                 }
1478                 (*num_mc)++;
1479         }
1480
1481         if (sbridge_dev->pdev[devno]) {
1482                 sbridge_printk(KERN_ERR,
1483                         "Duplicated device for %04x:%04x\n",
1484                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1485                 pci_dev_put(pdev);
1486                 return -ENODEV;
1487         }
1488
1489         sbridge_dev->pdev[devno] = pdev;
1490
1491         /* Be sure that the device is enabled */
1492         if (unlikely(pci_enable_device(pdev) < 0)) {
1493                 sbridge_printk(KERN_ERR,
1494                         "Couldn't enable %04x:%04x\n",
1495                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1496                 return -ENODEV;
1497         }
1498
1499         edac_dbg(0, "Detected %04x:%04x\n",
1500                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1501
1502         /*
1503          * As stated on drivers/pci/search.c, the reference count for
1504          * @from is always decremented if it is not %NULL. So, as we need
1505          * to get all devices up to null, we need to do a get for the device
1506          */
1507         pci_dev_get(pdev);
1508
1509         *prev = pdev;
1510
1511         return 0;
1512 }
1513
1514 /*
1515  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1516  *                           devices we want to reference for this driver.
1517  * @num_mc: pointer to the memory controllers count, to be incremented in case
1518  *          of success.
1519  * @table: model specific table
1520  *
1521  * returns 0 in case of success or error code
1522  */
1523 static int sbridge_get_all_devices(u8 *num_mc,
1524                                    const struct pci_id_table *table)
1525 {
1526         int i, rc;
1527         struct pci_dev *pdev = NULL;
1528
1529         while (table && table->descr) {
1530                 for (i = 0; i < table->n_devs; i++) {
1531                         pdev = NULL;
1532                         do {
1533                                 rc = sbridge_get_onedevice(&pdev, num_mc,
1534                                                            table, i);
1535                                 if (rc < 0) {
1536                                         if (i == 0) {
1537                                                 i = table->n_devs;
1538                                                 break;
1539                                         }
1540                                         sbridge_put_all_devices();
1541                                         return -ENODEV;
1542                                 }
1543                         } while (pdev);
1544                 }
1545                 table++;
1546         }
1547
1548         return 0;
1549 }
1550
1551 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
1552                                  struct sbridge_dev *sbridge_dev)
1553 {
1554         struct sbridge_pvt *pvt = mci->pvt_info;
1555         struct pci_dev *pdev;
1556         int i;
1557
1558         for (i = 0; i < sbridge_dev->n_devs; i++) {
1559                 pdev = sbridge_dev->pdev[i];
1560                 if (!pdev)
1561                         continue;
1562
1563                 switch (pdev->device) {
1564                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
1565                         pvt->pci_sad0 = pdev;
1566                         break;
1567                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
1568                         pvt->pci_sad1 = pdev;
1569                         break;
1570                 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
1571                         pvt->pci_br0 = pdev;
1572                         break;
1573                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
1574                         pvt->pci_ha0 = pdev;
1575                         break;
1576                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
1577                         pvt->pci_ta = pdev;
1578                         break;
1579                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
1580                         pvt->pci_ras = pdev;
1581                         break;
1582                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
1583                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
1584                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
1585                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
1586                 {
1587                         int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
1588                         pvt->pci_tad[id] = pdev;
1589                 }
1590                         break;
1591                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
1592                         pvt->pci_ddrio = pdev;
1593                         break;
1594                 default:
1595                         goto error;
1596                 }
1597
1598                 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
1599                          pdev->vendor, pdev->device,
1600                          sbridge_dev->bus,
1601                          pdev);
1602         }
1603
1604         /* Check if everything were registered */
1605         if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1606             !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
1607                 goto enodev;
1608
1609         for (i = 0; i < NUM_CHANNELS; i++) {
1610                 if (!pvt->pci_tad[i])
1611                         goto enodev;
1612         }
1613         return 0;
1614
1615 enodev:
1616         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1617         return -ENODEV;
1618
1619 error:
1620         sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
1621                        PCI_VENDOR_ID_INTEL, pdev->device);
1622         return -EINVAL;
1623 }
1624
1625 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
1626                                  struct sbridge_dev *sbridge_dev)
1627 {
1628         struct sbridge_pvt *pvt = mci->pvt_info;
1629         struct pci_dev *pdev, *tmp;
1630         int i;
1631         bool mode_2ha = false;
1632
1633         tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
1634                              PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, NULL);
1635         if (tmp) {
1636                 mode_2ha = true;
1637                 pci_dev_put(tmp);
1638         }
1639
1640         for (i = 0; i < sbridge_dev->n_devs; i++) {
1641                 pdev = sbridge_dev->pdev[i];
1642                 if (!pdev)
1643                         continue;
1644
1645                 switch (pdev->device) {
1646                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
1647                         pvt->pci_ha0 = pdev;
1648                         break;
1649                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
1650                         pvt->pci_ta = pdev;
1651                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
1652                         pvt->pci_ras = pdev;
1653                         break;
1654                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
1655                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
1656                         /* if we have 2 HAs active, channels 2 and 3
1657                          * are in other device */
1658                         if (mode_2ha)
1659                                 break;
1660                         /* fall through */
1661                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
1662                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
1663                 {
1664                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
1665                         pvt->pci_tad[id] = pdev;
1666                 }
1667                         break;
1668                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
1669                         pvt->pci_ddrio = pdev;
1670                         break;
1671                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
1672                         if (!mode_2ha)
1673                                 pvt->pci_ddrio = pdev;
1674                         break;
1675                 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
1676                         pvt->pci_sad0 = pdev;
1677                         break;
1678                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
1679                         pvt->pci_br0 = pdev;
1680                         break;
1681                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
1682                         pvt->pci_br1 = pdev;
1683                         break;
1684                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
1685                         pvt->pci_ha1 = pdev;
1686                         break;
1687                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
1688                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
1689                 {
1690                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 2;
1691
1692                         /* we shouldn't have this device if we have just one
1693                          * HA present */
1694                         WARN_ON(!mode_2ha);
1695                         pvt->pci_tad[id] = pdev;
1696                 }
1697                         break;
1698                 default:
1699                         goto error;
1700                 }
1701
1702                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1703                          sbridge_dev->bus,
1704                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1705                          pdev);
1706         }
1707
1708         /* Check if everything were registered */
1709         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
1710             !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
1711             !pvt->pci_ta)
1712                 goto enodev;
1713
1714         for (i = 0; i < NUM_CHANNELS; i++) {
1715                 if (!pvt->pci_tad[i])
1716                         goto enodev;
1717         }
1718         return 0;
1719
1720 enodev:
1721         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1722         return -ENODEV;
1723
1724 error:
1725         sbridge_printk(KERN_ERR,
1726                        "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
1727                         pdev->device);
1728         return -EINVAL;
1729 }
1730
1731 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
1732                                  struct sbridge_dev *sbridge_dev)
1733 {
1734         struct sbridge_pvt *pvt = mci->pvt_info;
1735         struct pci_dev *pdev, *tmp;
1736         int i;
1737         bool mode_2ha = false;
1738
1739         tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
1740                              PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, NULL);
1741         if (tmp) {
1742                 mode_2ha = true;
1743                 pci_dev_put(tmp);
1744         }
1745
1746         /* there's only one device per system; not tied to any bus */
1747         if (pvt->info.pci_vtd == NULL)
1748                 /* result will be checked later */
1749                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
1750                                                    PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
1751                                                    NULL);
1752
1753         for (i = 0; i < sbridge_dev->n_devs; i++) {
1754                 pdev = sbridge_dev->pdev[i];
1755                 if (!pdev)
1756                         continue;
1757
1758                 switch (pdev->device) {
1759                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
1760                         pvt->pci_sad0 = pdev;
1761                         break;
1762                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
1763                         pvt->pci_sad1 = pdev;
1764                         break;
1765                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
1766                         pvt->pci_ha0 = pdev;
1767                         break;
1768                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
1769                         pvt->pci_ta = pdev;
1770                         break;
1771                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
1772                         pvt->pci_ras = pdev;
1773                         break;
1774                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
1775                         pvt->pci_tad[0] = pdev;
1776                         break;
1777                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
1778                         pvt->pci_tad[1] = pdev;
1779                         break;
1780                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
1781                         if (!mode_2ha)
1782                                 pvt->pci_tad[2] = pdev;
1783                         break;
1784                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
1785                         if (!mode_2ha)
1786                                 pvt->pci_tad[3] = pdev;
1787                         break;
1788                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
1789                         pvt->pci_ddrio = pdev;
1790                         break;
1791                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
1792                         pvt->pci_ha1 = pdev;
1793                         break;
1794                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
1795                         pvt->pci_ha1_ta = pdev;
1796                         break;
1797                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
1798                         if (mode_2ha)
1799                                 pvt->pci_tad[2] = pdev;
1800                         break;
1801                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
1802                         if (mode_2ha)
1803                                 pvt->pci_tad[3] = pdev;
1804                         break;
1805                 default:
1806                         break;
1807                 }
1808
1809                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1810                          sbridge_dev->bus,
1811                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1812                          pdev);
1813         }
1814
1815         /* Check if everything were registered */
1816         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
1817             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
1818                 goto enodev;
1819
1820         for (i = 0; i < NUM_CHANNELS; i++) {
1821                 if (!pvt->pci_tad[i])
1822                         goto enodev;
1823         }
1824         return 0;
1825
1826 enodev:
1827         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1828         return -ENODEV;
1829 }
1830
1831 /****************************************************************************
1832                         Error check routines
1833  ****************************************************************************/
1834
1835 /*
1836  * While Sandy Bridge has error count registers, SMI BIOS read values from
1837  * and resets the counters. So, they are not reliable for the OS to read
1838  * from them. So, we have no option but to just trust on whatever MCE is
1839  * telling us about the errors.
1840  */
1841 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1842                                     const struct mce *m)
1843 {
1844         struct mem_ctl_info *new_mci;
1845         struct sbridge_pvt *pvt = mci->pvt_info;
1846         enum hw_event_mc_err_type tp_event;
1847         char *type, *optype, msg[256];
1848         bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1849         bool overflow = GET_BITFIELD(m->status, 62, 62);
1850         bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1851         bool recoverable;
1852         u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1853         u32 mscod = GET_BITFIELD(m->status, 16, 31);
1854         u32 errcode = GET_BITFIELD(m->status, 0, 15);
1855         u32 channel = GET_BITFIELD(m->status, 0, 3);
1856         u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1857         long channel_mask, first_channel;
1858         u8  rank, socket;
1859         int rc, dimm;
1860         char *area_type = NULL;
1861
1862         if (pvt->info.type == IVY_BRIDGE)
1863                 recoverable = true;
1864         else
1865                 recoverable = GET_BITFIELD(m->status, 56, 56);
1866
1867         if (uncorrected_error) {
1868                 if (ripv) {
1869                         type = "FATAL";
1870                         tp_event = HW_EVENT_ERR_FATAL;
1871                 } else {
1872                         type = "NON_FATAL";
1873                         tp_event = HW_EVENT_ERR_UNCORRECTED;
1874                 }
1875         } else {
1876                 type = "CORRECTED";
1877                 tp_event = HW_EVENT_ERR_CORRECTED;
1878         }
1879
1880         /*
1881          * According with Table 15-9 of the Intel Architecture spec vol 3A,
1882          * memory errors should fit in this mask:
1883          *      000f 0000 1mmm cccc (binary)
1884          * where:
1885          *      f = Correction Report Filtering Bit. If 1, subsequent errors
1886          *          won't be shown
1887          *      mmm = error type
1888          *      cccc = channel
1889          * If the mask doesn't match, report an error to the parsing logic
1890          */
1891         if (! ((errcode & 0xef80) == 0x80)) {
1892                 optype = "Can't parse: it is not a mem";
1893         } else {
1894                 switch (optypenum) {
1895                 case 0:
1896                         optype = "generic undef request error";
1897                         break;
1898                 case 1:
1899                         optype = "memory read error";
1900                         break;
1901                 case 2:
1902                         optype = "memory write error";
1903                         break;
1904                 case 3:
1905                         optype = "addr/cmd error";
1906                         break;
1907                 case 4:
1908                         optype = "memory scrubbing error";
1909                         break;
1910                 default:
1911                         optype = "reserved";
1912                         break;
1913                 }
1914         }
1915
1916         /* Only decode errors with an valid address (ADDRV) */
1917         if (!GET_BITFIELD(m->status, 58, 58))
1918                 return;
1919
1920         rc = get_memory_error_data(mci, m->addr, &socket,
1921                                    &channel_mask, &rank, &area_type, msg);
1922         if (rc < 0)
1923                 goto err_parsing;
1924         new_mci = get_mci_for_node_id(socket);
1925         if (!new_mci) {
1926                 strcpy(msg, "Error: socket got corrupted!");
1927                 goto err_parsing;
1928         }
1929         mci = new_mci;
1930         pvt = mci->pvt_info;
1931
1932         first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
1933
1934         if (rank < 4)
1935                 dimm = 0;
1936         else if (rank < 8)
1937                 dimm = 1;
1938         else
1939                 dimm = 2;
1940
1941
1942         /*
1943          * FIXME: On some memory configurations (mirror, lockstep), the
1944          * Memory Controller can't point the error to a single DIMM. The
1945          * EDAC core should be handling the channel mask, in order to point
1946          * to the group of dimm's where the error may be happening.
1947          */
1948         if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
1949                 channel = first_channel;
1950
1951         snprintf(msg, sizeof(msg),
1952                  "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
1953                  overflow ? " OVERFLOW" : "",
1954                  (uncorrected_error && recoverable) ? " recoverable" : "",
1955                  area_type,
1956                  mscod, errcode,
1957                  socket,
1958                  channel_mask,
1959                  rank);
1960
1961         edac_dbg(0, "%s\n", msg);
1962
1963         /* FIXME: need support for channel mask */
1964
1965         if (channel == CHANNEL_UNSPECIFIED)
1966                 channel = -1;
1967
1968         /* Call the helper to output message */
1969         edac_mc_handle_error(tp_event, mci, core_err_cnt,
1970                              m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
1971                              channel, dimm, -1,
1972                              optype, msg);
1973         return;
1974 err_parsing:
1975         edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
1976                              -1, -1, -1,
1977                              msg, "");
1978
1979 }
1980
1981 /*
1982  *      sbridge_check_error     Retrieve and process errors reported by the
1983  *                              hardware. Called by the Core module.
1984  */
1985 static void sbridge_check_error(struct mem_ctl_info *mci)
1986 {
1987         struct sbridge_pvt *pvt = mci->pvt_info;
1988         int i;
1989         unsigned count = 0;
1990         struct mce *m;
1991
1992         /*
1993          * MCE first step: Copy all mce errors into a temporary buffer
1994          * We use a double buffering here, to reduce the risk of
1995          * loosing an error.
1996          */
1997         smp_rmb();
1998         count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1999                 % MCE_LOG_LEN;
2000         if (!count)
2001                 return;
2002
2003         m = pvt->mce_outentry;
2004         if (pvt->mce_in + count > MCE_LOG_LEN) {
2005                 unsigned l = MCE_LOG_LEN - pvt->mce_in;
2006
2007                 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
2008                 smp_wmb();
2009                 pvt->mce_in = 0;
2010                 count -= l;
2011                 m += l;
2012         }
2013         memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
2014         smp_wmb();
2015         pvt->mce_in += count;
2016
2017         smp_rmb();
2018         if (pvt->mce_overrun) {
2019                 sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
2020                               pvt->mce_overrun);
2021                 smp_wmb();
2022                 pvt->mce_overrun = 0;
2023         }
2024
2025         /*
2026          * MCE second step: parse errors and display
2027          */
2028         for (i = 0; i < count; i++)
2029                 sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
2030 }
2031
2032 /*
2033  * sbridge_mce_check_error      Replicates mcelog routine to get errors
2034  *                              This routine simply queues mcelog errors, and
2035  *                              return. The error itself should be handled later
2036  *                              by sbridge_check_error.
2037  * WARNING: As this routine should be called at NMI time, extra care should
2038  * be taken to avoid deadlocks, and to be as fast as possible.
2039  */
2040 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
2041                                    void *data)
2042 {
2043         struct mce *mce = (struct mce *)data;
2044         struct mem_ctl_info *mci;
2045         struct sbridge_pvt *pvt;
2046         char *type;
2047
2048         if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2049                 return NOTIFY_DONE;
2050
2051         mci = get_mci_for_node_id(mce->socketid);
2052         if (!mci)
2053                 return NOTIFY_BAD;
2054         pvt = mci->pvt_info;
2055
2056         /*
2057          * Just let mcelog handle it if the error is
2058          * outside the memory controller. A memory error
2059          * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
2060          * bit 12 has an special meaning.
2061          */
2062         if ((mce->status & 0xefff) >> 7 != 1)
2063                 return NOTIFY_DONE;
2064
2065         if (mce->mcgstatus & MCG_STATUS_MCIP)
2066                 type = "Exception";
2067         else
2068                 type = "Event";
2069
2070         sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
2071
2072         sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
2073                           "Bank %d: %016Lx\n", mce->extcpu, type,
2074                           mce->mcgstatus, mce->bank, mce->status);
2075         sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
2076         sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
2077         sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
2078
2079         sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
2080                           "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
2081                           mce->time, mce->socketid, mce->apicid);
2082
2083         smp_rmb();
2084         if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
2085                 smp_wmb();
2086                 pvt->mce_overrun++;
2087                 return NOTIFY_DONE;
2088         }
2089
2090         /* Copy memory error at the ringbuffer */
2091         memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
2092         smp_wmb();
2093         pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
2094
2095         /* Handle fatal errors immediately */
2096         if (mce->mcgstatus & 1)
2097                 sbridge_check_error(mci);
2098
2099         /* Advice mcelog that the error were handled */
2100         return NOTIFY_STOP;
2101 }
2102
2103 static struct notifier_block sbridge_mce_dec = {
2104         .notifier_call      = sbridge_mce_check_error,
2105 };
2106
2107 /****************************************************************************
2108                         EDAC register/unregister logic
2109  ****************************************************************************/
2110
2111 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
2112 {
2113         struct mem_ctl_info *mci = sbridge_dev->mci;
2114         struct sbridge_pvt *pvt;
2115
2116         if (unlikely(!mci || !mci->pvt_info)) {
2117                 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
2118
2119                 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
2120                 return;
2121         }
2122
2123         pvt = mci->pvt_info;
2124
2125         edac_dbg(0, "MC: mci = %p, dev = %p\n",
2126                  mci, &sbridge_dev->pdev[0]->dev);
2127
2128         /* Remove MC sysfs nodes */
2129         edac_mc_del_mc(mci->pdev);
2130
2131         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2132         kfree(mci->ctl_name);
2133         edac_mc_free(mci);
2134         sbridge_dev->mci = NULL;
2135 }
2136
2137 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
2138 {
2139         struct mem_ctl_info *mci;
2140         struct edac_mc_layer layers[2];
2141         struct sbridge_pvt *pvt;
2142         struct pci_dev *pdev = sbridge_dev->pdev[0];
2143         int rc;
2144
2145         /* Check the number of active and not disabled channels */
2146         rc = check_if_ecc_is_active(sbridge_dev->bus, type);
2147         if (unlikely(rc < 0))
2148                 return rc;
2149
2150         /* allocate a new MC control structure */
2151         layers[0].type = EDAC_MC_LAYER_CHANNEL;
2152         layers[0].size = NUM_CHANNELS;
2153         layers[0].is_virt_csrow = false;
2154         layers[1].type = EDAC_MC_LAYER_SLOT;
2155         layers[1].size = MAX_DIMMS;
2156         layers[1].is_virt_csrow = true;
2157         mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
2158                             sizeof(*pvt));
2159
2160         if (unlikely(!mci))
2161                 return -ENOMEM;
2162
2163         edac_dbg(0, "MC: mci = %p, dev = %p\n",
2164                  mci, &pdev->dev);
2165
2166         pvt = mci->pvt_info;
2167         memset(pvt, 0, sizeof(*pvt));
2168
2169         /* Associate sbridge_dev and mci for future usage */
2170         pvt->sbridge_dev = sbridge_dev;
2171         sbridge_dev->mci = mci;
2172
2173         mci->mtype_cap = MEM_FLAG_DDR3;
2174         mci->edac_ctl_cap = EDAC_FLAG_NONE;
2175         mci->edac_cap = EDAC_FLAG_NONE;
2176         mci->mod_name = "sbridge_edac.c";
2177         mci->mod_ver = SBRIDGE_REVISION;
2178         mci->dev_name = pci_name(pdev);
2179         mci->ctl_page_to_phys = NULL;
2180
2181         /* Set the function pointer to an actual operation function */
2182         mci->edac_check = sbridge_check_error;
2183
2184         pvt->info.type = type;
2185         switch (type) {
2186         case IVY_BRIDGE:
2187                 pvt->info.rankcfgr = IB_RANK_CFG_A;
2188                 pvt->info.get_tolm = ibridge_get_tolm;
2189                 pvt->info.get_tohm = ibridge_get_tohm;
2190                 pvt->info.dram_rule = ibridge_dram_rule;
2191                 pvt->info.get_memory_type = get_memory_type;
2192                 pvt->info.get_node_id = get_node_id;
2193                 pvt->info.rir_limit = rir_limit;
2194                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2195                 pvt->info.interleave_list = ibridge_interleave_list;
2196                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2197                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
2198                 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
2199
2200                 /* Store pci devices at mci for faster access */
2201                 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
2202                 if (unlikely(rc < 0))
2203                         goto fail0;
2204                 break;
2205         case SANDY_BRIDGE:
2206                 pvt->info.rankcfgr = SB_RANK_CFG_A;
2207                 pvt->info.get_tolm = sbridge_get_tolm;
2208                 pvt->info.get_tohm = sbridge_get_tohm;
2209                 pvt->info.dram_rule = sbridge_dram_rule;
2210                 pvt->info.get_memory_type = get_memory_type;
2211                 pvt->info.get_node_id = get_node_id;
2212                 pvt->info.rir_limit = rir_limit;
2213                 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
2214                 pvt->info.interleave_list = sbridge_interleave_list;
2215                 pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
2216                 pvt->info.interleave_pkg = sbridge_interleave_pkg;
2217                 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
2218
2219                 /* Store pci devices at mci for faster access */
2220                 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
2221                 if (unlikely(rc < 0))
2222                         goto fail0;
2223                 break;
2224         case HASWELL:
2225                 /* rankcfgr isn't used */
2226                 pvt->info.get_tolm = haswell_get_tolm;
2227                 pvt->info.get_tohm = haswell_get_tohm;
2228                 pvt->info.dram_rule = ibridge_dram_rule;
2229                 pvt->info.get_memory_type = haswell_get_memory_type;
2230                 pvt->info.get_node_id = haswell_get_node_id;
2231                 pvt->info.rir_limit = haswell_rir_limit;
2232                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2233                 pvt->info.interleave_list = ibridge_interleave_list;
2234                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2235                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
2236                 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
2237
2238                 /* Store pci devices at mci for faster access */
2239                 rc = haswell_mci_bind_devs(mci, sbridge_dev);
2240                 if (unlikely(rc < 0))
2241                         goto fail0;
2242                 break;
2243         }
2244
2245         /* Get dimm basic config and the memory layout */
2246         get_dimm_config(mci);
2247         get_memory_layout(mci);
2248
2249         /* record ptr to the generic device */
2250         mci->pdev = &pdev->dev;
2251
2252         /* add this new MC control structure to EDAC's list of MCs */
2253         if (unlikely(edac_mc_add_mc(mci))) {
2254                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2255                 rc = -EINVAL;
2256                 goto fail0;
2257         }
2258
2259         return 0;
2260
2261 fail0:
2262         kfree(mci->ctl_name);
2263         edac_mc_free(mci);
2264         sbridge_dev->mci = NULL;
2265         return rc;
2266 }
2267
2268 /*
2269  *      sbridge_probe   Probe for ONE instance of device to see if it is
2270  *                      present.
2271  *      return:
2272  *              0 for FOUND a device
2273  *              < 0 for error code
2274  */
2275
2276 static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2277 {
2278         int rc = -ENODEV;
2279         u8 mc, num_mc = 0;
2280         struct sbridge_dev *sbridge_dev;
2281         enum type type = SANDY_BRIDGE;
2282
2283         /* get the pci devices we want to reserve for our use */
2284         mutex_lock(&sbridge_edac_lock);
2285
2286         /*
2287          * All memory controllers are allocated at the first pass.
2288          */
2289         if (unlikely(probed >= 1)) {
2290                 mutex_unlock(&sbridge_edac_lock);
2291                 return -ENODEV;
2292         }
2293         probed++;
2294
2295         switch (pdev->device) {
2296         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2297                 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
2298                 type = IVY_BRIDGE;
2299                 break;
2300         case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2301                 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
2302                 type = SANDY_BRIDGE;
2303                 break;
2304         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2305                 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table);
2306                 type = HASWELL;
2307                 break;
2308         }
2309         if (unlikely(rc < 0))
2310                 goto fail0;
2311         mc = 0;
2312
2313         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
2314                 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
2315                          mc, mc + 1, num_mc);
2316
2317                 sbridge_dev->mc = mc++;
2318                 rc = sbridge_register_mci(sbridge_dev, type);
2319                 if (unlikely(rc < 0))
2320                         goto fail1;
2321         }
2322
2323         sbridge_printk(KERN_INFO, "Driver loaded.\n");
2324
2325         mutex_unlock(&sbridge_edac_lock);
2326         return 0;
2327
2328 fail1:
2329         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2330                 sbridge_unregister_mci(sbridge_dev);
2331
2332         sbridge_put_all_devices();
2333 fail0:
2334         mutex_unlock(&sbridge_edac_lock);
2335         return rc;
2336 }
2337
2338 /*
2339  *      sbridge_remove  destructor for one instance of device
2340  *
2341  */
2342 static void sbridge_remove(struct pci_dev *pdev)
2343 {
2344         struct sbridge_dev *sbridge_dev;
2345
2346         edac_dbg(0, "\n");
2347
2348         /*
2349          * we have a trouble here: pdev value for removal will be wrong, since
2350          * it will point to the X58 register used to detect that the machine
2351          * is a Nehalem or upper design. However, due to the way several PCI
2352          * devices are grouped together to provide MC functionality, we need
2353          * to use a different method for releasing the devices
2354          */
2355
2356         mutex_lock(&sbridge_edac_lock);
2357
2358         if (unlikely(!probed)) {
2359                 mutex_unlock(&sbridge_edac_lock);
2360                 return;
2361         }
2362
2363         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2364                 sbridge_unregister_mci(sbridge_dev);
2365
2366         /* Release PCI resources */
2367         sbridge_put_all_devices();
2368
2369         probed--;
2370
2371         mutex_unlock(&sbridge_edac_lock);
2372 }
2373
2374 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
2375
2376 /*
2377  *      sbridge_driver  pci_driver structure for this module
2378  *
2379  */
2380 static struct pci_driver sbridge_driver = {
2381         .name     = "sbridge_edac",
2382         .probe    = sbridge_probe,
2383         .remove   = sbridge_remove,
2384         .id_table = sbridge_pci_tbl,
2385 };
2386
2387 /*
2388  *      sbridge_init            Module entry function
2389  *                      Try to initialize this module for its devices
2390  */
2391 static int __init sbridge_init(void)
2392 {
2393         int pci_rc;
2394
2395         edac_dbg(2, "\n");
2396
2397         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2398         opstate_init();
2399
2400         pci_rc = pci_register_driver(&sbridge_driver);
2401         if (pci_rc >= 0) {
2402                 mce_register_decode_chain(&sbridge_mce_dec);
2403                 if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2404                         sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
2405                 return 0;
2406         }
2407
2408         sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
2409                       pci_rc);
2410
2411         return pci_rc;
2412 }
2413
2414 /*
2415  *      sbridge_exit()  Module exit function
2416  *                      Unregister the driver
2417  */
2418 static void __exit sbridge_exit(void)
2419 {
2420         edac_dbg(2, "\n");
2421         pci_unregister_driver(&sbridge_driver);
2422         mce_unregister_decode_chain(&sbridge_mce_dec);
2423 }
2424
2425 module_init(sbridge_init);
2426 module_exit(sbridge_exit);
2427
2428 module_param(edac_op_state, int, 0444);
2429 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2430
2431 MODULE_LICENSE("GPL");
2432 MODULE_AUTHOR("Mauro Carvalho Chehab");
2433 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2434 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
2435                    SBRIDGE_REVISION);