spi: spidev_fdx: Add support for Dual/Quad SPI Transfers
[cascardo/linux.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
46
47 #include <asm/byteorder.h>
48 #include <asm/page.h>
49
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
53
54 #include "core.h"
55 #include "ohci.h"
56
57 #define ohci_info(ohci, f, args...)     dev_info(ohci->card.device, f, ##args)
58 #define ohci_notice(ohci, f, args...)   dev_notice(ohci->card.device, f, ##args)
59 #define ohci_err(ohci, f, args...)      dev_err(ohci->card.device, f, ##args)
60
61 #define DESCRIPTOR_OUTPUT_MORE          0
62 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
63 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
64 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
65 #define DESCRIPTOR_STATUS               (1 << 11)
66 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
67 #define DESCRIPTOR_PING                 (1 << 7)
68 #define DESCRIPTOR_YY                   (1 << 6)
69 #define DESCRIPTOR_NO_IRQ               (0 << 4)
70 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
71 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
72 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
73 #define DESCRIPTOR_WAIT                 (3 << 0)
74
75 #define DESCRIPTOR_CMD                  (0xf << 12)
76
77 struct descriptor {
78         __le16 req_count;
79         __le16 control;
80         __le32 data_address;
81         __le32 branch_address;
82         __le16 res_count;
83         __le16 transfer_status;
84 } __attribute__((aligned(16)));
85
86 #define CONTROL_SET(regs)       (regs)
87 #define CONTROL_CLEAR(regs)     ((regs) + 4)
88 #define COMMAND_PTR(regs)       ((regs) + 12)
89 #define CONTEXT_MATCH(regs)     ((regs) + 16)
90
91 #define AR_BUFFER_SIZE  (32*1024)
92 #define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
93 /* we need at least two pages for proper list management */
94 #define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
95
96 #define MAX_ASYNC_PAYLOAD       4096
97 #define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
98 #define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
99
100 struct ar_context {
101         struct fw_ohci *ohci;
102         struct page *pages[AR_BUFFERS];
103         void *buffer;
104         struct descriptor *descriptors;
105         dma_addr_t descriptors_bus;
106         void *pointer;
107         unsigned int last_buffer_index;
108         u32 regs;
109         struct tasklet_struct tasklet;
110 };
111
112 struct context;
113
114 typedef int (*descriptor_callback_t)(struct context *ctx,
115                                      struct descriptor *d,
116                                      struct descriptor *last);
117
118 /*
119  * A buffer that contains a block of DMA-able coherent memory used for
120  * storing a portion of a DMA descriptor program.
121  */
122 struct descriptor_buffer {
123         struct list_head list;
124         dma_addr_t buffer_bus;
125         size_t buffer_size;
126         size_t used;
127         struct descriptor buffer[0];
128 };
129
130 struct context {
131         struct fw_ohci *ohci;
132         u32 regs;
133         int total_allocation;
134         u32 current_bus;
135         bool running;
136         bool flushing;
137
138         /*
139          * List of page-sized buffers for storing DMA descriptors.
140          * Head of list contains buffers in use and tail of list contains
141          * free buffers.
142          */
143         struct list_head buffer_list;
144
145         /*
146          * Pointer to a buffer inside buffer_list that contains the tail
147          * end of the current DMA program.
148          */
149         struct descriptor_buffer *buffer_tail;
150
151         /*
152          * The descriptor containing the branch address of the first
153          * descriptor that has not yet been filled by the device.
154          */
155         struct descriptor *last;
156
157         /*
158          * The last descriptor block in the DMA program. It contains the branch
159          * address that must be updated upon appending a new descriptor.
160          */
161         struct descriptor *prev;
162         int prev_z;
163
164         descriptor_callback_t callback;
165
166         struct tasklet_struct tasklet;
167 };
168
169 #define IT_HEADER_SY(v)          ((v) <<  0)
170 #define IT_HEADER_TCODE(v)       ((v) <<  4)
171 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
172 #define IT_HEADER_TAG(v)         ((v) << 14)
173 #define IT_HEADER_SPEED(v)       ((v) << 16)
174 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
175
176 struct iso_context {
177         struct fw_iso_context base;
178         struct context context;
179         void *header;
180         size_t header_length;
181         unsigned long flushing_completions;
182         u32 mc_buffer_bus;
183         u16 mc_completed;
184         u16 last_timestamp;
185         u8 sync;
186         u8 tags;
187 };
188
189 #define CONFIG_ROM_SIZE 1024
190
191 struct fw_ohci {
192         struct fw_card card;
193
194         __iomem char *registers;
195         int node_id;
196         int generation;
197         int request_generation; /* for timestamping incoming requests */
198         unsigned quirks;
199         unsigned int pri_req_max;
200         u32 bus_time;
201         bool bus_time_running;
202         bool is_root;
203         bool csr_state_setclear_abdicate;
204         int n_ir;
205         int n_it;
206         /*
207          * Spinlock for accessing fw_ohci data.  Never call out of
208          * this driver with this lock held.
209          */
210         spinlock_t lock;
211
212         struct mutex phy_reg_mutex;
213
214         void *misc_buffer;
215         dma_addr_t misc_buffer_bus;
216
217         struct ar_context ar_request_ctx;
218         struct ar_context ar_response_ctx;
219         struct context at_request_ctx;
220         struct context at_response_ctx;
221
222         u32 it_context_support;
223         u32 it_context_mask;     /* unoccupied IT contexts */
224         struct iso_context *it_context_list;
225         u64 ir_context_channels; /* unoccupied channels */
226         u32 ir_context_support;
227         u32 ir_context_mask;     /* unoccupied IR contexts */
228         struct iso_context *ir_context_list;
229         u64 mc_channels; /* channels in use by the multichannel IR context */
230         bool mc_allocated;
231
232         __be32    *config_rom;
233         dma_addr_t config_rom_bus;
234         __be32    *next_config_rom;
235         dma_addr_t next_config_rom_bus;
236         __be32     next_header;
237
238         __le32    *self_id;
239         dma_addr_t self_id_bus;
240         struct work_struct bus_reset_work;
241
242         u32 self_id_buffer[512];
243 };
244
245 static struct workqueue_struct *selfid_workqueue;
246
247 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
248 {
249         return container_of(card, struct fw_ohci, card);
250 }
251
252 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
253 #define IR_CONTEXT_BUFFER_FILL          0x80000000
254 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
255 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
256 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
257 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
258
259 #define CONTEXT_RUN     0x8000
260 #define CONTEXT_WAKE    0x1000
261 #define CONTEXT_DEAD    0x0800
262 #define CONTEXT_ACTIVE  0x0400
263
264 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
265 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
266 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
267
268 #define OHCI1394_REGISTER_SIZE          0x800
269 #define OHCI1394_PCI_HCI_Control        0x40
270 #define SELF_ID_BUF_SIZE                0x800
271 #define OHCI_TCODE_PHY_PACKET           0x0e
272 #define OHCI_VERSION_1_1                0x010010
273
274 static char ohci_driver_name[] = KBUILD_MODNAME;
275
276 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
277 #define PCI_DEVICE_ID_AGERE_FW643       0x5901
278 #define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
279 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
280 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
281 #define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
282 #define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
283 #define PCI_DEVICE_ID_VIA_VT630X        0x3044
284 #define PCI_REV_ID_VIA_VT6306           0x46
285
286 #define QUIRK_CYCLE_TIMER               0x1
287 #define QUIRK_RESET_PACKET              0x2
288 #define QUIRK_BE_HEADERS                0x4
289 #define QUIRK_NO_1394A                  0x8
290 #define QUIRK_NO_MSI                    0x10
291 #define QUIRK_TI_SLLZ059                0x20
292 #define QUIRK_IR_WAKE                   0x40
293 #define QUIRK_PHY_LCTRL_TIMEOUT         0x80
294
295 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
296 static const struct {
297         unsigned short vendor, device, revision, flags;
298 } ohci_quirks[] = {
299         {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
300                 QUIRK_CYCLE_TIMER},
301
302         {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
303                 QUIRK_BE_HEADERS},
304
305         {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
306                 QUIRK_PHY_LCTRL_TIMEOUT | QUIRK_NO_MSI},
307
308         {PCI_VENDOR_ID_ATT, PCI_ANY_ID, PCI_ANY_ID,
309                 QUIRK_PHY_LCTRL_TIMEOUT},
310
311         {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
312                 QUIRK_RESET_PACKET},
313
314         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
315                 QUIRK_NO_MSI},
316
317         {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
318                 QUIRK_CYCLE_TIMER},
319
320         {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
321                 QUIRK_NO_MSI},
322
323         {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
324                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
325
326         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
327                 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
328
329         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
330                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
331
332         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
333                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
334
335         {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
336                 QUIRK_RESET_PACKET},
337
338         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
339                 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
340
341         {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
342                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
343 };
344
345 /* This overrides anything that was found in ohci_quirks[]. */
346 static int param_quirks;
347 module_param_named(quirks, param_quirks, int, 0644);
348 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
349         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
350         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
351         ", AR/selfID endianness = "     __stringify(QUIRK_BE_HEADERS)
352         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
353         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
354         ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
355         ", IR wake unreliable = "       __stringify(QUIRK_IR_WAKE)
356         ", phy LCtrl timeout = "        __stringify(QUIRK_PHY_LCTRL_TIMEOUT)
357         ")");
358
359 #define OHCI_PARAM_DEBUG_AT_AR          1
360 #define OHCI_PARAM_DEBUG_SELFIDS        2
361 #define OHCI_PARAM_DEBUG_IRQS           4
362 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
363
364 static int param_debug;
365 module_param_named(debug, param_debug, int, 0644);
366 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
367         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
368         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
369         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
370         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
371         ", or a combination, or all = -1)");
372
373 static bool param_remote_dma;
374 module_param_named(remote_dma, param_remote_dma, bool, 0444);
375 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
376
377 static void log_irqs(struct fw_ohci *ohci, u32 evt)
378 {
379         if (likely(!(param_debug &
380                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
381                 return;
382
383         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
384             !(evt & OHCI1394_busReset))
385                 return;
386
387         ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
388             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
389             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
390             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
391             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
392             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
393             evt & OHCI1394_isochRx              ? " IR"                 : "",
394             evt & OHCI1394_isochTx              ? " IT"                 : "",
395             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
396             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
397             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
398             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
399             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
400             evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
401             evt & OHCI1394_busReset             ? " busReset"           : "",
402             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
403                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
404                     OHCI1394_respTxComplete | OHCI1394_isochRx |
405                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
406                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
407                     OHCI1394_cycleInconsistent |
408                     OHCI1394_regAccessFail | OHCI1394_busReset)
409                                                 ? " ?"                  : "");
410 }
411
412 static const char *speed[] = {
413         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
414 };
415 static const char *power[] = {
416         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
417         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
418 };
419 static const char port[] = { '.', '-', 'p', 'c', };
420
421 static char _p(u32 *s, int shift)
422 {
423         return port[*s >> shift & 3];
424 }
425
426 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
427 {
428         u32 *s;
429
430         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
431                 return;
432
433         ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
434                     self_id_count, generation, ohci->node_id);
435
436         for (s = ohci->self_id_buffer; self_id_count--; ++s)
437                 if ((*s & 1 << 23) == 0)
438                         ohci_notice(ohci,
439                             "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
440                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
441                             speed[*s >> 14 & 3], *s >> 16 & 63,
442                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
443                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
444                 else
445                         ohci_notice(ohci,
446                             "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
447                             *s, *s >> 24 & 63,
448                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
449                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
450 }
451
452 static const char *evts[] = {
453         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
454         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
455         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
456         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
457         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
458         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
459         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
460         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
461         [0x10] = "-reserved-",          [0x11] = "ack_complete",
462         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
463         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
464         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
465         [0x18] = "-reserved-",          [0x19] = "-reserved-",
466         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
467         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
468         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
469         [0x20] = "pending/cancelled",
470 };
471 static const char *tcodes[] = {
472         [0x0] = "QW req",               [0x1] = "BW req",
473         [0x2] = "W resp",               [0x3] = "-reserved-",
474         [0x4] = "QR req",               [0x5] = "BR req",
475         [0x6] = "QR resp",              [0x7] = "BR resp",
476         [0x8] = "cycle start",          [0x9] = "Lk req",
477         [0xa] = "async stream packet",  [0xb] = "Lk resp",
478         [0xc] = "-reserved-",           [0xd] = "-reserved-",
479         [0xe] = "link internal",        [0xf] = "-reserved-",
480 };
481
482 static void log_ar_at_event(struct fw_ohci *ohci,
483                             char dir, int speed, u32 *header, int evt)
484 {
485         int tcode = header[0] >> 4 & 0xf;
486         char specific[12];
487
488         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
489                 return;
490
491         if (unlikely(evt >= ARRAY_SIZE(evts)))
492                         evt = 0x1f;
493
494         if (evt == OHCI1394_evt_bus_reset) {
495                 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
496                             dir, (header[2] >> 16) & 0xff);
497                 return;
498         }
499
500         switch (tcode) {
501         case 0x0: case 0x6: case 0x8:
502                 snprintf(specific, sizeof(specific), " = %08x",
503                          be32_to_cpu((__force __be32)header[3]));
504                 break;
505         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
506                 snprintf(specific, sizeof(specific), " %x,%x",
507                          header[3] >> 16, header[3] & 0xffff);
508                 break;
509         default:
510                 specific[0] = '\0';
511         }
512
513         switch (tcode) {
514         case 0xa:
515                 ohci_notice(ohci, "A%c %s, %s\n",
516                             dir, evts[evt], tcodes[tcode]);
517                 break;
518         case 0xe:
519                 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
520                             dir, evts[evt], header[1], header[2]);
521                 break;
522         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
523                 ohci_notice(ohci,
524                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
525                             dir, speed, header[0] >> 10 & 0x3f,
526                             header[1] >> 16, header[0] >> 16, evts[evt],
527                             tcodes[tcode], header[1] & 0xffff, header[2], specific);
528                 break;
529         default:
530                 ohci_notice(ohci,
531                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
532                             dir, speed, header[0] >> 10 & 0x3f,
533                             header[1] >> 16, header[0] >> 16, evts[evt],
534                             tcodes[tcode], specific);
535         }
536 }
537
538 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
539 {
540         writel(data, ohci->registers + offset);
541 }
542
543 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
544 {
545         return readl(ohci->registers + offset);
546 }
547
548 static inline void flush_writes(const struct fw_ohci *ohci)
549 {
550         /* Do a dummy read to flush writes. */
551         reg_read(ohci, OHCI1394_Version);
552 }
553
554 /*
555  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
556  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
557  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
558  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
559  */
560 static int read_phy_reg(struct fw_ohci *ohci, int addr)
561 {
562         u32 val;
563         int i;
564
565         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
566         for (i = 0; i < 3 + 100; i++) {
567                 val = reg_read(ohci, OHCI1394_PhyControl);
568                 if (!~val)
569                         return -ENODEV; /* Card was ejected. */
570
571                 if (val & OHCI1394_PhyControl_ReadDone)
572                         return OHCI1394_PhyControl_ReadData(val);
573
574                 /*
575                  * Try a few times without waiting.  Sleeping is necessary
576                  * only when the link/PHY interface is busy.
577                  */
578                 if (i >= 3)
579                         msleep(1);
580         }
581         ohci_err(ohci, "failed to read phy reg %d\n", addr);
582         dump_stack();
583
584         return -EBUSY;
585 }
586
587 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
588 {
589         int i;
590
591         reg_write(ohci, OHCI1394_PhyControl,
592                   OHCI1394_PhyControl_Write(addr, val));
593         for (i = 0; i < 3 + 100; i++) {
594                 val = reg_read(ohci, OHCI1394_PhyControl);
595                 if (!~val)
596                         return -ENODEV; /* Card was ejected. */
597
598                 if (!(val & OHCI1394_PhyControl_WritePending))
599                         return 0;
600
601                 if (i >= 3)
602                         msleep(1);
603         }
604         ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
605         dump_stack();
606
607         return -EBUSY;
608 }
609
610 static int update_phy_reg(struct fw_ohci *ohci, int addr,
611                           int clear_bits, int set_bits)
612 {
613         int ret = read_phy_reg(ohci, addr);
614         if (ret < 0)
615                 return ret;
616
617         /*
618          * The interrupt status bits are cleared by writing a one bit.
619          * Avoid clearing them unless explicitly requested in set_bits.
620          */
621         if (addr == 5)
622                 clear_bits |= PHY_INT_STATUS_BITS;
623
624         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
625 }
626
627 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
628 {
629         int ret;
630
631         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
632         if (ret < 0)
633                 return ret;
634
635         return read_phy_reg(ohci, addr);
636 }
637
638 static int ohci_read_phy_reg(struct fw_card *card, int addr)
639 {
640         struct fw_ohci *ohci = fw_ohci(card);
641         int ret;
642
643         mutex_lock(&ohci->phy_reg_mutex);
644         ret = read_phy_reg(ohci, addr);
645         mutex_unlock(&ohci->phy_reg_mutex);
646
647         return ret;
648 }
649
650 static int ohci_update_phy_reg(struct fw_card *card, int addr,
651                                int clear_bits, int set_bits)
652 {
653         struct fw_ohci *ohci = fw_ohci(card);
654         int ret;
655
656         mutex_lock(&ohci->phy_reg_mutex);
657         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
658         mutex_unlock(&ohci->phy_reg_mutex);
659
660         return ret;
661 }
662
663 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
664 {
665         return page_private(ctx->pages[i]);
666 }
667
668 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
669 {
670         struct descriptor *d;
671
672         d = &ctx->descriptors[index];
673         d->branch_address  &= cpu_to_le32(~0xf);
674         d->res_count       =  cpu_to_le16(PAGE_SIZE);
675         d->transfer_status =  0;
676
677         wmb(); /* finish init of new descriptors before branch_address update */
678         d = &ctx->descriptors[ctx->last_buffer_index];
679         d->branch_address  |= cpu_to_le32(1);
680
681         ctx->last_buffer_index = index;
682
683         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
684 }
685
686 static void ar_context_release(struct ar_context *ctx)
687 {
688         unsigned int i;
689
690         if (ctx->buffer)
691                 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
692
693         for (i = 0; i < AR_BUFFERS; i++)
694                 if (ctx->pages[i]) {
695                         dma_unmap_page(ctx->ohci->card.device,
696                                        ar_buffer_bus(ctx, i),
697                                        PAGE_SIZE, DMA_FROM_DEVICE);
698                         __free_page(ctx->pages[i]);
699                 }
700 }
701
702 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
703 {
704         struct fw_ohci *ohci = ctx->ohci;
705
706         if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
707                 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
708                 flush_writes(ohci);
709
710                 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
711         }
712         /* FIXME: restart? */
713 }
714
715 static inline unsigned int ar_next_buffer_index(unsigned int index)
716 {
717         return (index + 1) % AR_BUFFERS;
718 }
719
720 static inline unsigned int ar_prev_buffer_index(unsigned int index)
721 {
722         return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
723 }
724
725 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
726 {
727         return ar_next_buffer_index(ctx->last_buffer_index);
728 }
729
730 /*
731  * We search for the buffer that contains the last AR packet DMA data written
732  * by the controller.
733  */
734 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
735                                                  unsigned int *buffer_offset)
736 {
737         unsigned int i, next_i, last = ctx->last_buffer_index;
738         __le16 res_count, next_res_count;
739
740         i = ar_first_buffer_index(ctx);
741         res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
742
743         /* A buffer that is not yet completely filled must be the last one. */
744         while (i != last && res_count == 0) {
745
746                 /* Peek at the next descriptor. */
747                 next_i = ar_next_buffer_index(i);
748                 rmb(); /* read descriptors in order */
749                 next_res_count = ACCESS_ONCE(
750                                 ctx->descriptors[next_i].res_count);
751                 /*
752                  * If the next descriptor is still empty, we must stop at this
753                  * descriptor.
754                  */
755                 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
756                         /*
757                          * The exception is when the DMA data for one packet is
758                          * split over three buffers; in this case, the middle
759                          * buffer's descriptor might be never updated by the
760                          * controller and look still empty, and we have to peek
761                          * at the third one.
762                          */
763                         if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
764                                 next_i = ar_next_buffer_index(next_i);
765                                 rmb();
766                                 next_res_count = ACCESS_ONCE(
767                                         ctx->descriptors[next_i].res_count);
768                                 if (next_res_count != cpu_to_le16(PAGE_SIZE))
769                                         goto next_buffer_is_active;
770                         }
771
772                         break;
773                 }
774
775 next_buffer_is_active:
776                 i = next_i;
777                 res_count = next_res_count;
778         }
779
780         rmb(); /* read res_count before the DMA data */
781
782         *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
783         if (*buffer_offset > PAGE_SIZE) {
784                 *buffer_offset = 0;
785                 ar_context_abort(ctx, "corrupted descriptor");
786         }
787
788         return i;
789 }
790
791 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
792                                     unsigned int end_buffer_index,
793                                     unsigned int end_buffer_offset)
794 {
795         unsigned int i;
796
797         i = ar_first_buffer_index(ctx);
798         while (i != end_buffer_index) {
799                 dma_sync_single_for_cpu(ctx->ohci->card.device,
800                                         ar_buffer_bus(ctx, i),
801                                         PAGE_SIZE, DMA_FROM_DEVICE);
802                 i = ar_next_buffer_index(i);
803         }
804         if (end_buffer_offset > 0)
805                 dma_sync_single_for_cpu(ctx->ohci->card.device,
806                                         ar_buffer_bus(ctx, i),
807                                         end_buffer_offset, DMA_FROM_DEVICE);
808 }
809
810 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
811 #define cond_le32_to_cpu(v) \
812         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
813 #else
814 #define cond_le32_to_cpu(v) le32_to_cpu(v)
815 #endif
816
817 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
818 {
819         struct fw_ohci *ohci = ctx->ohci;
820         struct fw_packet p;
821         u32 status, length, tcode;
822         int evt;
823
824         p.header[0] = cond_le32_to_cpu(buffer[0]);
825         p.header[1] = cond_le32_to_cpu(buffer[1]);
826         p.header[2] = cond_le32_to_cpu(buffer[2]);
827
828         tcode = (p.header[0] >> 4) & 0x0f;
829         switch (tcode) {
830         case TCODE_WRITE_QUADLET_REQUEST:
831         case TCODE_READ_QUADLET_RESPONSE:
832                 p.header[3] = (__force __u32) buffer[3];
833                 p.header_length = 16;
834                 p.payload_length = 0;
835                 break;
836
837         case TCODE_READ_BLOCK_REQUEST :
838                 p.header[3] = cond_le32_to_cpu(buffer[3]);
839                 p.header_length = 16;
840                 p.payload_length = 0;
841                 break;
842
843         case TCODE_WRITE_BLOCK_REQUEST:
844         case TCODE_READ_BLOCK_RESPONSE:
845         case TCODE_LOCK_REQUEST:
846         case TCODE_LOCK_RESPONSE:
847                 p.header[3] = cond_le32_to_cpu(buffer[3]);
848                 p.header_length = 16;
849                 p.payload_length = p.header[3] >> 16;
850                 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
851                         ar_context_abort(ctx, "invalid packet length");
852                         return NULL;
853                 }
854                 break;
855
856         case TCODE_WRITE_RESPONSE:
857         case TCODE_READ_QUADLET_REQUEST:
858         case OHCI_TCODE_PHY_PACKET:
859                 p.header_length = 12;
860                 p.payload_length = 0;
861                 break;
862
863         default:
864                 ar_context_abort(ctx, "invalid tcode");
865                 return NULL;
866         }
867
868         p.payload = (void *) buffer + p.header_length;
869
870         /* FIXME: What to do about evt_* errors? */
871         length = (p.header_length + p.payload_length + 3) / 4;
872         status = cond_le32_to_cpu(buffer[length]);
873         evt    = (status >> 16) & 0x1f;
874
875         p.ack        = evt - 16;
876         p.speed      = (status >> 21) & 0x7;
877         p.timestamp  = status & 0xffff;
878         p.generation = ohci->request_generation;
879
880         log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
881
882         /*
883          * Several controllers, notably from NEC and VIA, forget to
884          * write ack_complete status at PHY packet reception.
885          */
886         if (evt == OHCI1394_evt_no_status &&
887             (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
888                 p.ack = ACK_COMPLETE;
889
890         /*
891          * The OHCI bus reset handler synthesizes a PHY packet with
892          * the new generation number when a bus reset happens (see
893          * section 8.4.2.3).  This helps us determine when a request
894          * was received and make sure we send the response in the same
895          * generation.  We only need this for requests; for responses
896          * we use the unique tlabel for finding the matching
897          * request.
898          *
899          * Alas some chips sometimes emit bus reset packets with a
900          * wrong generation.  We set the correct generation for these
901          * at a slightly incorrect time (in bus_reset_work).
902          */
903         if (evt == OHCI1394_evt_bus_reset) {
904                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
905                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
906         } else if (ctx == &ohci->ar_request_ctx) {
907                 fw_core_handle_request(&ohci->card, &p);
908         } else {
909                 fw_core_handle_response(&ohci->card, &p);
910         }
911
912         return buffer + length + 1;
913 }
914
915 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
916 {
917         void *next;
918
919         while (p < end) {
920                 next = handle_ar_packet(ctx, p);
921                 if (!next)
922                         return p;
923                 p = next;
924         }
925
926         return p;
927 }
928
929 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
930 {
931         unsigned int i;
932
933         i = ar_first_buffer_index(ctx);
934         while (i != end_buffer) {
935                 dma_sync_single_for_device(ctx->ohci->card.device,
936                                            ar_buffer_bus(ctx, i),
937                                            PAGE_SIZE, DMA_FROM_DEVICE);
938                 ar_context_link_page(ctx, i);
939                 i = ar_next_buffer_index(i);
940         }
941 }
942
943 static void ar_context_tasklet(unsigned long data)
944 {
945         struct ar_context *ctx = (struct ar_context *)data;
946         unsigned int end_buffer_index, end_buffer_offset;
947         void *p, *end;
948
949         p = ctx->pointer;
950         if (!p)
951                 return;
952
953         end_buffer_index = ar_search_last_active_buffer(ctx,
954                                                         &end_buffer_offset);
955         ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
956         end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
957
958         if (end_buffer_index < ar_first_buffer_index(ctx)) {
959                 /*
960                  * The filled part of the overall buffer wraps around; handle
961                  * all packets up to the buffer end here.  If the last packet
962                  * wraps around, its tail will be visible after the buffer end
963                  * because the buffer start pages are mapped there again.
964                  */
965                 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
966                 p = handle_ar_packets(ctx, p, buffer_end);
967                 if (p < buffer_end)
968                         goto error;
969                 /* adjust p to point back into the actual buffer */
970                 p -= AR_BUFFERS * PAGE_SIZE;
971         }
972
973         p = handle_ar_packets(ctx, p, end);
974         if (p != end) {
975                 if (p > end)
976                         ar_context_abort(ctx, "inconsistent descriptor");
977                 goto error;
978         }
979
980         ctx->pointer = p;
981         ar_recycle_buffers(ctx, end_buffer_index);
982
983         return;
984
985 error:
986         ctx->pointer = NULL;
987 }
988
989 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
990                            unsigned int descriptors_offset, u32 regs)
991 {
992         unsigned int i;
993         dma_addr_t dma_addr;
994         struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
995         struct descriptor *d;
996
997         ctx->regs        = regs;
998         ctx->ohci        = ohci;
999         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1000
1001         for (i = 0; i < AR_BUFFERS; i++) {
1002                 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
1003                 if (!ctx->pages[i])
1004                         goto out_of_memory;
1005                 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
1006                                         0, PAGE_SIZE, DMA_FROM_DEVICE);
1007                 if (dma_mapping_error(ohci->card.device, dma_addr)) {
1008                         __free_page(ctx->pages[i]);
1009                         ctx->pages[i] = NULL;
1010                         goto out_of_memory;
1011                 }
1012                 set_page_private(ctx->pages[i], dma_addr);
1013         }
1014
1015         for (i = 0; i < AR_BUFFERS; i++)
1016                 pages[i]              = ctx->pages[i];
1017         for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1018                 pages[AR_BUFFERS + i] = ctx->pages[i];
1019         ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1020                                  -1, PAGE_KERNEL);
1021         if (!ctx->buffer)
1022                 goto out_of_memory;
1023
1024         ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1025         ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1026
1027         for (i = 0; i < AR_BUFFERS; i++) {
1028                 d = &ctx->descriptors[i];
1029                 d->req_count      = cpu_to_le16(PAGE_SIZE);
1030                 d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1031                                                 DESCRIPTOR_STATUS |
1032                                                 DESCRIPTOR_BRANCH_ALWAYS);
1033                 d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1034                 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1035                         ar_next_buffer_index(i) * sizeof(struct descriptor));
1036         }
1037
1038         return 0;
1039
1040 out_of_memory:
1041         ar_context_release(ctx);
1042
1043         return -ENOMEM;
1044 }
1045
1046 static void ar_context_run(struct ar_context *ctx)
1047 {
1048         unsigned int i;
1049
1050         for (i = 0; i < AR_BUFFERS; i++)
1051                 ar_context_link_page(ctx, i);
1052
1053         ctx->pointer = ctx->buffer;
1054
1055         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1056         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1057 }
1058
1059 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1060 {
1061         __le16 branch;
1062
1063         branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1064
1065         /* figure out which descriptor the branch address goes in */
1066         if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1067                 return d;
1068         else
1069                 return d + z - 1;
1070 }
1071
1072 static void context_tasklet(unsigned long data)
1073 {
1074         struct context *ctx = (struct context *) data;
1075         struct descriptor *d, *last;
1076         u32 address;
1077         int z;
1078         struct descriptor_buffer *desc;
1079
1080         desc = list_entry(ctx->buffer_list.next,
1081                         struct descriptor_buffer, list);
1082         last = ctx->last;
1083         while (last->branch_address != 0) {
1084                 struct descriptor_buffer *old_desc = desc;
1085                 address = le32_to_cpu(last->branch_address);
1086                 z = address & 0xf;
1087                 address &= ~0xf;
1088                 ctx->current_bus = address;
1089
1090                 /* If the branch address points to a buffer outside of the
1091                  * current buffer, advance to the next buffer. */
1092                 if (address < desc->buffer_bus ||
1093                                 address >= desc->buffer_bus + desc->used)
1094                         desc = list_entry(desc->list.next,
1095                                         struct descriptor_buffer, list);
1096                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1097                 last = find_branch_descriptor(d, z);
1098
1099                 if (!ctx->callback(ctx, d, last))
1100                         break;
1101
1102                 if (old_desc != desc) {
1103                         /* If we've advanced to the next buffer, move the
1104                          * previous buffer to the free list. */
1105                         unsigned long flags;
1106                         old_desc->used = 0;
1107                         spin_lock_irqsave(&ctx->ohci->lock, flags);
1108                         list_move_tail(&old_desc->list, &ctx->buffer_list);
1109                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1110                 }
1111                 ctx->last = last;
1112         }
1113 }
1114
1115 /*
1116  * Allocate a new buffer and add it to the list of free buffers for this
1117  * context.  Must be called with ohci->lock held.
1118  */
1119 static int context_add_buffer(struct context *ctx)
1120 {
1121         struct descriptor_buffer *desc;
1122         dma_addr_t uninitialized_var(bus_addr);
1123         int offset;
1124
1125         /*
1126          * 16MB of descriptors should be far more than enough for any DMA
1127          * program.  This will catch run-away userspace or DoS attacks.
1128          */
1129         if (ctx->total_allocation >= 16*1024*1024)
1130                 return -ENOMEM;
1131
1132         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1133                         &bus_addr, GFP_ATOMIC);
1134         if (!desc)
1135                 return -ENOMEM;
1136
1137         offset = (void *)&desc->buffer - (void *)desc;
1138         desc->buffer_size = PAGE_SIZE - offset;
1139         desc->buffer_bus = bus_addr + offset;
1140         desc->used = 0;
1141
1142         list_add_tail(&desc->list, &ctx->buffer_list);
1143         ctx->total_allocation += PAGE_SIZE;
1144
1145         return 0;
1146 }
1147
1148 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1149                         u32 regs, descriptor_callback_t callback)
1150 {
1151         ctx->ohci = ohci;
1152         ctx->regs = regs;
1153         ctx->total_allocation = 0;
1154
1155         INIT_LIST_HEAD(&ctx->buffer_list);
1156         if (context_add_buffer(ctx) < 0)
1157                 return -ENOMEM;
1158
1159         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1160                         struct descriptor_buffer, list);
1161
1162         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1163         ctx->callback = callback;
1164
1165         /*
1166          * We put a dummy descriptor in the buffer that has a NULL
1167          * branch address and looks like it's been sent.  That way we
1168          * have a descriptor to append DMA programs to.
1169          */
1170         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1171         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1172         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1173         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1174         ctx->last = ctx->buffer_tail->buffer;
1175         ctx->prev = ctx->buffer_tail->buffer;
1176         ctx->prev_z = 1;
1177
1178         return 0;
1179 }
1180
1181 static void context_release(struct context *ctx)
1182 {
1183         struct fw_card *card = &ctx->ohci->card;
1184         struct descriptor_buffer *desc, *tmp;
1185
1186         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1187                 dma_free_coherent(card->device, PAGE_SIZE, desc,
1188                         desc->buffer_bus -
1189                         ((void *)&desc->buffer - (void *)desc));
1190 }
1191
1192 /* Must be called with ohci->lock held */
1193 static struct descriptor *context_get_descriptors(struct context *ctx,
1194                                                   int z, dma_addr_t *d_bus)
1195 {
1196         struct descriptor *d = NULL;
1197         struct descriptor_buffer *desc = ctx->buffer_tail;
1198
1199         if (z * sizeof(*d) > desc->buffer_size)
1200                 return NULL;
1201
1202         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1203                 /* No room for the descriptor in this buffer, so advance to the
1204                  * next one. */
1205
1206                 if (desc->list.next == &ctx->buffer_list) {
1207                         /* If there is no free buffer next in the list,
1208                          * allocate one. */
1209                         if (context_add_buffer(ctx) < 0)
1210                                 return NULL;
1211                 }
1212                 desc = list_entry(desc->list.next,
1213                                 struct descriptor_buffer, list);
1214                 ctx->buffer_tail = desc;
1215         }
1216
1217         d = desc->buffer + desc->used / sizeof(*d);
1218         memset(d, 0, z * sizeof(*d));
1219         *d_bus = desc->buffer_bus + desc->used;
1220
1221         return d;
1222 }
1223
1224 static void context_run(struct context *ctx, u32 extra)
1225 {
1226         struct fw_ohci *ohci = ctx->ohci;
1227
1228         reg_write(ohci, COMMAND_PTR(ctx->regs),
1229                   le32_to_cpu(ctx->last->branch_address));
1230         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1231         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1232         ctx->running = true;
1233         flush_writes(ohci);
1234 }
1235
1236 static void context_append(struct context *ctx,
1237                            struct descriptor *d, int z, int extra)
1238 {
1239         dma_addr_t d_bus;
1240         struct descriptor_buffer *desc = ctx->buffer_tail;
1241         struct descriptor *d_branch;
1242
1243         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1244
1245         desc->used += (z + extra) * sizeof(*d);
1246
1247         wmb(); /* finish init of new descriptors before branch_address update */
1248
1249         d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1250         d_branch->branch_address = cpu_to_le32(d_bus | z);
1251
1252         /*
1253          * VT6306 incorrectly checks only the single descriptor at the
1254          * CommandPtr when the wake bit is written, so if it's a
1255          * multi-descriptor block starting with an INPUT_MORE, put a copy of
1256          * the branch address in the first descriptor.
1257          *
1258          * Not doing this for transmit contexts since not sure how it interacts
1259          * with skip addresses.
1260          */
1261         if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1262             d_branch != ctx->prev &&
1263             (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1264              cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1265                 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1266         }
1267
1268         ctx->prev = d;
1269         ctx->prev_z = z;
1270 }
1271
1272 static void context_stop(struct context *ctx)
1273 {
1274         struct fw_ohci *ohci = ctx->ohci;
1275         u32 reg;
1276         int i;
1277
1278         reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1279         ctx->running = false;
1280
1281         for (i = 0; i < 1000; i++) {
1282                 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1283                 if ((reg & CONTEXT_ACTIVE) == 0)
1284                         return;
1285
1286                 if (i)
1287                         udelay(10);
1288         }
1289         ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1290 }
1291
1292 struct driver_data {
1293         u8 inline_data[8];
1294         struct fw_packet *packet;
1295 };
1296
1297 /*
1298  * This function apppends a packet to the DMA queue for transmission.
1299  * Must always be called with the ochi->lock held to ensure proper
1300  * generation handling and locking around packet queue manipulation.
1301  */
1302 static int at_context_queue_packet(struct context *ctx,
1303                                    struct fw_packet *packet)
1304 {
1305         struct fw_ohci *ohci = ctx->ohci;
1306         dma_addr_t d_bus, uninitialized_var(payload_bus);
1307         struct driver_data *driver_data;
1308         struct descriptor *d, *last;
1309         __le32 *header;
1310         int z, tcode;
1311
1312         d = context_get_descriptors(ctx, 4, &d_bus);
1313         if (d == NULL) {
1314                 packet->ack = RCODE_SEND_ERROR;
1315                 return -1;
1316         }
1317
1318         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1319         d[0].res_count = cpu_to_le16(packet->timestamp);
1320
1321         /*
1322          * The DMA format for asynchronous link packets is different
1323          * from the IEEE1394 layout, so shift the fields around
1324          * accordingly.
1325          */
1326
1327         tcode = (packet->header[0] >> 4) & 0x0f;
1328         header = (__le32 *) &d[1];
1329         switch (tcode) {
1330         case TCODE_WRITE_QUADLET_REQUEST:
1331         case TCODE_WRITE_BLOCK_REQUEST:
1332         case TCODE_WRITE_RESPONSE:
1333         case TCODE_READ_QUADLET_REQUEST:
1334         case TCODE_READ_BLOCK_REQUEST:
1335         case TCODE_READ_QUADLET_RESPONSE:
1336         case TCODE_READ_BLOCK_RESPONSE:
1337         case TCODE_LOCK_REQUEST:
1338         case TCODE_LOCK_RESPONSE:
1339                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1340                                         (packet->speed << 16));
1341                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1342                                         (packet->header[0] & 0xffff0000));
1343                 header[2] = cpu_to_le32(packet->header[2]);
1344
1345                 if (TCODE_IS_BLOCK_PACKET(tcode))
1346                         header[3] = cpu_to_le32(packet->header[3]);
1347                 else
1348                         header[3] = (__force __le32) packet->header[3];
1349
1350                 d[0].req_count = cpu_to_le16(packet->header_length);
1351                 break;
1352
1353         case TCODE_LINK_INTERNAL:
1354                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1355                                         (packet->speed << 16));
1356                 header[1] = cpu_to_le32(packet->header[1]);
1357                 header[2] = cpu_to_le32(packet->header[2]);
1358                 d[0].req_count = cpu_to_le16(12);
1359
1360                 if (is_ping_packet(&packet->header[1]))
1361                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1362                 break;
1363
1364         case TCODE_STREAM_DATA:
1365                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1366                                         (packet->speed << 16));
1367                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1368                 d[0].req_count = cpu_to_le16(8);
1369                 break;
1370
1371         default:
1372                 /* BUG(); */
1373                 packet->ack = RCODE_SEND_ERROR;
1374                 return -1;
1375         }
1376
1377         BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1378         driver_data = (struct driver_data *) &d[3];
1379         driver_data->packet = packet;
1380         packet->driver_data = driver_data;
1381
1382         if (packet->payload_length > 0) {
1383                 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1384                         payload_bus = dma_map_single(ohci->card.device,
1385                                                      packet->payload,
1386                                                      packet->payload_length,
1387                                                      DMA_TO_DEVICE);
1388                         if (dma_mapping_error(ohci->card.device, payload_bus)) {
1389                                 packet->ack = RCODE_SEND_ERROR;
1390                                 return -1;
1391                         }
1392                         packet->payload_bus     = payload_bus;
1393                         packet->payload_mapped  = true;
1394                 } else {
1395                         memcpy(driver_data->inline_data, packet->payload,
1396                                packet->payload_length);
1397                         payload_bus = d_bus + 3 * sizeof(*d);
1398                 }
1399
1400                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1401                 d[2].data_address = cpu_to_le32(payload_bus);
1402                 last = &d[2];
1403                 z = 3;
1404         } else {
1405                 last = &d[0];
1406                 z = 2;
1407         }
1408
1409         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1410                                      DESCRIPTOR_IRQ_ALWAYS |
1411                                      DESCRIPTOR_BRANCH_ALWAYS);
1412
1413         /* FIXME: Document how the locking works. */
1414         if (ohci->generation != packet->generation) {
1415                 if (packet->payload_mapped)
1416                         dma_unmap_single(ohci->card.device, payload_bus,
1417                                          packet->payload_length, DMA_TO_DEVICE);
1418                 packet->ack = RCODE_GENERATION;
1419                 return -1;
1420         }
1421
1422         context_append(ctx, d, z, 4 - z);
1423
1424         if (ctx->running)
1425                 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1426         else
1427                 context_run(ctx, 0);
1428
1429         return 0;
1430 }
1431
1432 static void at_context_flush(struct context *ctx)
1433 {
1434         tasklet_disable(&ctx->tasklet);
1435
1436         ctx->flushing = true;
1437         context_tasklet((unsigned long)ctx);
1438         ctx->flushing = false;
1439
1440         tasklet_enable(&ctx->tasklet);
1441 }
1442
1443 static int handle_at_packet(struct context *context,
1444                             struct descriptor *d,
1445                             struct descriptor *last)
1446 {
1447         struct driver_data *driver_data;
1448         struct fw_packet *packet;
1449         struct fw_ohci *ohci = context->ohci;
1450         int evt;
1451
1452         if (last->transfer_status == 0 && !context->flushing)
1453                 /* This descriptor isn't done yet, stop iteration. */
1454                 return 0;
1455
1456         driver_data = (struct driver_data *) &d[3];
1457         packet = driver_data->packet;
1458         if (packet == NULL)
1459                 /* This packet was cancelled, just continue. */
1460                 return 1;
1461
1462         if (packet->payload_mapped)
1463                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1464                                  packet->payload_length, DMA_TO_DEVICE);
1465
1466         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1467         packet->timestamp = le16_to_cpu(last->res_count);
1468
1469         log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1470
1471         switch (evt) {
1472         case OHCI1394_evt_timeout:
1473                 /* Async response transmit timed out. */
1474                 packet->ack = RCODE_CANCELLED;
1475                 break;
1476
1477         case OHCI1394_evt_flushed:
1478                 /*
1479                  * The packet was flushed should give same error as
1480                  * when we try to use a stale generation count.
1481                  */
1482                 packet->ack = RCODE_GENERATION;
1483                 break;
1484
1485         case OHCI1394_evt_missing_ack:
1486                 if (context->flushing)
1487                         packet->ack = RCODE_GENERATION;
1488                 else {
1489                         /*
1490                          * Using a valid (current) generation count, but the
1491                          * node is not on the bus or not sending acks.
1492                          */
1493                         packet->ack = RCODE_NO_ACK;
1494                 }
1495                 break;
1496
1497         case ACK_COMPLETE + 0x10:
1498         case ACK_PENDING + 0x10:
1499         case ACK_BUSY_X + 0x10:
1500         case ACK_BUSY_A + 0x10:
1501         case ACK_BUSY_B + 0x10:
1502         case ACK_DATA_ERROR + 0x10:
1503         case ACK_TYPE_ERROR + 0x10:
1504                 packet->ack = evt - 0x10;
1505                 break;
1506
1507         case OHCI1394_evt_no_status:
1508                 if (context->flushing) {
1509                         packet->ack = RCODE_GENERATION;
1510                         break;
1511                 }
1512                 /* fall through */
1513
1514         default:
1515                 packet->ack = RCODE_SEND_ERROR;
1516                 break;
1517         }
1518
1519         packet->callback(packet, &ohci->card, packet->ack);
1520
1521         return 1;
1522 }
1523
1524 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1525 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1526 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1527 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1528 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1529
1530 static void handle_local_rom(struct fw_ohci *ohci,
1531                              struct fw_packet *packet, u32 csr)
1532 {
1533         struct fw_packet response;
1534         int tcode, length, i;
1535
1536         tcode = HEADER_GET_TCODE(packet->header[0]);
1537         if (TCODE_IS_BLOCK_PACKET(tcode))
1538                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1539         else
1540                 length = 4;
1541
1542         i = csr - CSR_CONFIG_ROM;
1543         if (i + length > CONFIG_ROM_SIZE) {
1544                 fw_fill_response(&response, packet->header,
1545                                  RCODE_ADDRESS_ERROR, NULL, 0);
1546         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1547                 fw_fill_response(&response, packet->header,
1548                                  RCODE_TYPE_ERROR, NULL, 0);
1549         } else {
1550                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1551                                  (void *) ohci->config_rom + i, length);
1552         }
1553
1554         fw_core_handle_response(&ohci->card, &response);
1555 }
1556
1557 static void handle_local_lock(struct fw_ohci *ohci,
1558                               struct fw_packet *packet, u32 csr)
1559 {
1560         struct fw_packet response;
1561         int tcode, length, ext_tcode, sel, try;
1562         __be32 *payload, lock_old;
1563         u32 lock_arg, lock_data;
1564
1565         tcode = HEADER_GET_TCODE(packet->header[0]);
1566         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1567         payload = packet->payload;
1568         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1569
1570         if (tcode == TCODE_LOCK_REQUEST &&
1571             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1572                 lock_arg = be32_to_cpu(payload[0]);
1573                 lock_data = be32_to_cpu(payload[1]);
1574         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1575                 lock_arg = 0;
1576                 lock_data = 0;
1577         } else {
1578                 fw_fill_response(&response, packet->header,
1579                                  RCODE_TYPE_ERROR, NULL, 0);
1580                 goto out;
1581         }
1582
1583         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1584         reg_write(ohci, OHCI1394_CSRData, lock_data);
1585         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1586         reg_write(ohci, OHCI1394_CSRControl, sel);
1587
1588         for (try = 0; try < 20; try++)
1589                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1590                         lock_old = cpu_to_be32(reg_read(ohci,
1591                                                         OHCI1394_CSRData));
1592                         fw_fill_response(&response, packet->header,
1593                                          RCODE_COMPLETE,
1594                                          &lock_old, sizeof(lock_old));
1595                         goto out;
1596                 }
1597
1598         ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1599         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1600
1601  out:
1602         fw_core_handle_response(&ohci->card, &response);
1603 }
1604
1605 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1606 {
1607         u64 offset, csr;
1608
1609         if (ctx == &ctx->ohci->at_request_ctx) {
1610                 packet->ack = ACK_PENDING;
1611                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1612         }
1613
1614         offset =
1615                 ((unsigned long long)
1616                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1617                 packet->header[2];
1618         csr = offset - CSR_REGISTER_BASE;
1619
1620         /* Handle config rom reads. */
1621         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1622                 handle_local_rom(ctx->ohci, packet, csr);
1623         else switch (csr) {
1624         case CSR_BUS_MANAGER_ID:
1625         case CSR_BANDWIDTH_AVAILABLE:
1626         case CSR_CHANNELS_AVAILABLE_HI:
1627         case CSR_CHANNELS_AVAILABLE_LO:
1628                 handle_local_lock(ctx->ohci, packet, csr);
1629                 break;
1630         default:
1631                 if (ctx == &ctx->ohci->at_request_ctx)
1632                         fw_core_handle_request(&ctx->ohci->card, packet);
1633                 else
1634                         fw_core_handle_response(&ctx->ohci->card, packet);
1635                 break;
1636         }
1637
1638         if (ctx == &ctx->ohci->at_response_ctx) {
1639                 packet->ack = ACK_COMPLETE;
1640                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1641         }
1642 }
1643
1644 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1645 {
1646         unsigned long flags;
1647         int ret;
1648
1649         spin_lock_irqsave(&ctx->ohci->lock, flags);
1650
1651         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1652             ctx->ohci->generation == packet->generation) {
1653                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1654                 handle_local_request(ctx, packet);
1655                 return;
1656         }
1657
1658         ret = at_context_queue_packet(ctx, packet);
1659         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1660
1661         if (ret < 0)
1662                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1663
1664 }
1665
1666 static void detect_dead_context(struct fw_ohci *ohci,
1667                                 const char *name, unsigned int regs)
1668 {
1669         u32 ctl;
1670
1671         ctl = reg_read(ohci, CONTROL_SET(regs));
1672         if (ctl & CONTEXT_DEAD)
1673                 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1674                         name, evts[ctl & 0x1f]);
1675 }
1676
1677 static void handle_dead_contexts(struct fw_ohci *ohci)
1678 {
1679         unsigned int i;
1680         char name[8];
1681
1682         detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1683         detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1684         detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1685         detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1686         for (i = 0; i < 32; ++i) {
1687                 if (!(ohci->it_context_support & (1 << i)))
1688                         continue;
1689                 sprintf(name, "IT%u", i);
1690                 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1691         }
1692         for (i = 0; i < 32; ++i) {
1693                 if (!(ohci->ir_context_support & (1 << i)))
1694                         continue;
1695                 sprintf(name, "IR%u", i);
1696                 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1697         }
1698         /* TODO: maybe try to flush and restart the dead contexts */
1699 }
1700
1701 static u32 cycle_timer_ticks(u32 cycle_timer)
1702 {
1703         u32 ticks;
1704
1705         ticks = cycle_timer & 0xfff;
1706         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1707         ticks += (3072 * 8000) * (cycle_timer >> 25);
1708
1709         return ticks;
1710 }
1711
1712 /*
1713  * Some controllers exhibit one or more of the following bugs when updating the
1714  * iso cycle timer register:
1715  *  - When the lowest six bits are wrapping around to zero, a read that happens
1716  *    at the same time will return garbage in the lowest ten bits.
1717  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1718  *    not incremented for about 60 ns.
1719  *  - Occasionally, the entire register reads zero.
1720  *
1721  * To catch these, we read the register three times and ensure that the
1722  * difference between each two consecutive reads is approximately the same, i.e.
1723  * less than twice the other.  Furthermore, any negative difference indicates an
1724  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1725  * execute, so we have enough precision to compute the ratio of the differences.)
1726  */
1727 static u32 get_cycle_time(struct fw_ohci *ohci)
1728 {
1729         u32 c0, c1, c2;
1730         u32 t0, t1, t2;
1731         s32 diff01, diff12;
1732         int i;
1733
1734         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1735
1736         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1737                 i = 0;
1738                 c1 = c2;
1739                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1740                 do {
1741                         c0 = c1;
1742                         c1 = c2;
1743                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1744                         t0 = cycle_timer_ticks(c0);
1745                         t1 = cycle_timer_ticks(c1);
1746                         t2 = cycle_timer_ticks(c2);
1747                         diff01 = t1 - t0;
1748                         diff12 = t2 - t1;
1749                 } while ((diff01 <= 0 || diff12 <= 0 ||
1750                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1751                          && i++ < 20);
1752         }
1753
1754         return c2;
1755 }
1756
1757 /*
1758  * This function has to be called at least every 64 seconds.  The bus_time
1759  * field stores not only the upper 25 bits of the BUS_TIME register but also
1760  * the most significant bit of the cycle timer in bit 6 so that we can detect
1761  * changes in this bit.
1762  */
1763 static u32 update_bus_time(struct fw_ohci *ohci)
1764 {
1765         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1766
1767         if (unlikely(!ohci->bus_time_running)) {
1768                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1769                 ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1770                                  (cycle_time_seconds & 0x40);
1771                 ohci->bus_time_running = true;
1772         }
1773
1774         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1775                 ohci->bus_time += 0x40;
1776
1777         return ohci->bus_time | cycle_time_seconds;
1778 }
1779
1780 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1781 {
1782         int reg;
1783
1784         mutex_lock(&ohci->phy_reg_mutex);
1785         reg = write_phy_reg(ohci, 7, port_index);
1786         if (reg >= 0)
1787                 reg = read_phy_reg(ohci, 8);
1788         mutex_unlock(&ohci->phy_reg_mutex);
1789         if (reg < 0)
1790                 return reg;
1791
1792         switch (reg & 0x0f) {
1793         case 0x06:
1794                 return 2;       /* is child node (connected to parent node) */
1795         case 0x0e:
1796                 return 3;       /* is parent node (connected to child node) */
1797         }
1798         return 1;               /* not connected */
1799 }
1800
1801 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1802         int self_id_count)
1803 {
1804         int i;
1805         u32 entry;
1806
1807         for (i = 0; i < self_id_count; i++) {
1808                 entry = ohci->self_id_buffer[i];
1809                 if ((self_id & 0xff000000) == (entry & 0xff000000))
1810                         return -1;
1811                 if ((self_id & 0xff000000) < (entry & 0xff000000))
1812                         return i;
1813         }
1814         return i;
1815 }
1816
1817 static int initiated_reset(struct fw_ohci *ohci)
1818 {
1819         int reg;
1820         int ret = 0;
1821
1822         mutex_lock(&ohci->phy_reg_mutex);
1823         reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1824         if (reg >= 0) {
1825                 reg = read_phy_reg(ohci, 8);
1826                 reg |= 0x40;
1827                 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1828                 if (reg >= 0) {
1829                         reg = read_phy_reg(ohci, 12); /* read register 12 */
1830                         if (reg >= 0) {
1831                                 if ((reg & 0x08) == 0x08) {
1832                                         /* bit 3 indicates "initiated reset" */
1833                                         ret = 0x2;
1834                                 }
1835                         }
1836                 }
1837         }
1838         mutex_unlock(&ohci->phy_reg_mutex);
1839         return ret;
1840 }
1841
1842 /*
1843  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1844  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1845  * Construct the selfID from phy register contents.
1846  */
1847 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1848 {
1849         int reg, i, pos, status;
1850         /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1851         u32 self_id = 0x8040c800;
1852
1853         reg = reg_read(ohci, OHCI1394_NodeID);
1854         if (!(reg & OHCI1394_NodeID_idValid)) {
1855                 ohci_notice(ohci,
1856                             "node ID not valid, new bus reset in progress\n");
1857                 return -EBUSY;
1858         }
1859         self_id |= ((reg & 0x3f) << 24); /* phy ID */
1860
1861         reg = ohci_read_phy_reg(&ohci->card, 4);
1862         if (reg < 0)
1863                 return reg;
1864         self_id |= ((reg & 0x07) << 8); /* power class */
1865
1866         reg = ohci_read_phy_reg(&ohci->card, 1);
1867         if (reg < 0)
1868                 return reg;
1869         self_id |= ((reg & 0x3f) << 16); /* gap count */
1870
1871         for (i = 0; i < 3; i++) {
1872                 status = get_status_for_port(ohci, i);
1873                 if (status < 0)
1874                         return status;
1875                 self_id |= ((status & 0x3) << (6 - (i * 2)));
1876         }
1877
1878         self_id |= initiated_reset(ohci);
1879
1880         pos = get_self_id_pos(ohci, self_id, self_id_count);
1881         if (pos >= 0) {
1882                 memmove(&(ohci->self_id_buffer[pos+1]),
1883                         &(ohci->self_id_buffer[pos]),
1884                         (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1885                 ohci->self_id_buffer[pos] = self_id;
1886                 self_id_count++;
1887         }
1888         return self_id_count;
1889 }
1890
1891 static void bus_reset_work(struct work_struct *work)
1892 {
1893         struct fw_ohci *ohci =
1894                 container_of(work, struct fw_ohci, bus_reset_work);
1895         int self_id_count, generation, new_generation, i, j;
1896         u32 reg;
1897         void *free_rom = NULL;
1898         dma_addr_t free_rom_bus = 0;
1899         bool is_new_root;
1900
1901         reg = reg_read(ohci, OHCI1394_NodeID);
1902         if (!(reg & OHCI1394_NodeID_idValid)) {
1903                 ohci_notice(ohci,
1904                             "node ID not valid, new bus reset in progress\n");
1905                 return;
1906         }
1907         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1908                 ohci_notice(ohci, "malconfigured bus\n");
1909                 return;
1910         }
1911         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1912                                OHCI1394_NodeID_nodeNumber);
1913
1914         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1915         if (!(ohci->is_root && is_new_root))
1916                 reg_write(ohci, OHCI1394_LinkControlSet,
1917                           OHCI1394_LinkControl_cycleMaster);
1918         ohci->is_root = is_new_root;
1919
1920         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1921         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1922                 ohci_notice(ohci, "self ID receive error\n");
1923                 return;
1924         }
1925         /*
1926          * The count in the SelfIDCount register is the number of
1927          * bytes in the self ID receive buffer.  Since we also receive
1928          * the inverted quadlets and a header quadlet, we shift one
1929          * bit extra to get the actual number of self IDs.
1930          */
1931         self_id_count = (reg >> 3) & 0xff;
1932
1933         if (self_id_count > 252) {
1934                 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1935                 return;
1936         }
1937
1938         generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1939         rmb();
1940
1941         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1942                 u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1943                 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1944
1945                 if (id != ~id2) {
1946                         /*
1947                          * If the invalid data looks like a cycle start packet,
1948                          * it's likely to be the result of the cycle master
1949                          * having a wrong gap count.  In this case, the self IDs
1950                          * so far are valid and should be processed so that the
1951                          * bus manager can then correct the gap count.
1952                          */
1953                         if (id == 0xffff008f) {
1954                                 ohci_notice(ohci, "ignoring spurious self IDs\n");
1955                                 self_id_count = j;
1956                                 break;
1957                         }
1958
1959                         ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1960                                     j, self_id_count, id, id2);
1961                         return;
1962                 }
1963                 ohci->self_id_buffer[j] = id;
1964         }
1965
1966         if (ohci->quirks & QUIRK_TI_SLLZ059) {
1967                 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1968                 if (self_id_count < 0) {
1969                         ohci_notice(ohci,
1970                                     "could not construct local self ID\n");
1971                         return;
1972                 }
1973         }
1974
1975         if (self_id_count == 0) {
1976                 ohci_notice(ohci, "no self IDs\n");
1977                 return;
1978         }
1979         rmb();
1980
1981         /*
1982          * Check the consistency of the self IDs we just read.  The
1983          * problem we face is that a new bus reset can start while we
1984          * read out the self IDs from the DMA buffer. If this happens,
1985          * the DMA buffer will be overwritten with new self IDs and we
1986          * will read out inconsistent data.  The OHCI specification
1987          * (section 11.2) recommends a technique similar to
1988          * linux/seqlock.h, where we remember the generation of the
1989          * self IDs in the buffer before reading them out and compare
1990          * it to the current generation after reading them out.  If
1991          * the two generations match we know we have a consistent set
1992          * of self IDs.
1993          */
1994
1995         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1996         if (new_generation != generation) {
1997                 ohci_notice(ohci, "new bus reset, discarding self ids\n");
1998                 return;
1999         }
2000
2001         /* FIXME: Document how the locking works. */
2002         spin_lock_irq(&ohci->lock);
2003
2004         ohci->generation = -1; /* prevent AT packet queueing */
2005         context_stop(&ohci->at_request_ctx);
2006         context_stop(&ohci->at_response_ctx);
2007
2008         spin_unlock_irq(&ohci->lock);
2009
2010         /*
2011          * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2012          * packets in the AT queues and software needs to drain them.
2013          * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2014          */
2015         at_context_flush(&ohci->at_request_ctx);
2016         at_context_flush(&ohci->at_response_ctx);
2017
2018         spin_lock_irq(&ohci->lock);
2019
2020         ohci->generation = generation;
2021         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2022
2023         if (ohci->quirks & QUIRK_RESET_PACKET)
2024                 ohci->request_generation = generation;
2025
2026         /*
2027          * This next bit is unrelated to the AT context stuff but we
2028          * have to do it under the spinlock also.  If a new config rom
2029          * was set up before this reset, the old one is now no longer
2030          * in use and we can free it. Update the config rom pointers
2031          * to point to the current config rom and clear the
2032          * next_config_rom pointer so a new update can take place.
2033          */
2034
2035         if (ohci->next_config_rom != NULL) {
2036                 if (ohci->next_config_rom != ohci->config_rom) {
2037                         free_rom      = ohci->config_rom;
2038                         free_rom_bus  = ohci->config_rom_bus;
2039                 }
2040                 ohci->config_rom      = ohci->next_config_rom;
2041                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
2042                 ohci->next_config_rom = NULL;
2043
2044                 /*
2045                  * Restore config_rom image and manually update
2046                  * config_rom registers.  Writing the header quadlet
2047                  * will indicate that the config rom is ready, so we
2048                  * do that last.
2049                  */
2050                 reg_write(ohci, OHCI1394_BusOptions,
2051                           be32_to_cpu(ohci->config_rom[2]));
2052                 ohci->config_rom[0] = ohci->next_header;
2053                 reg_write(ohci, OHCI1394_ConfigROMhdr,
2054                           be32_to_cpu(ohci->next_header));
2055         }
2056
2057         if (param_remote_dma) {
2058                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2059                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2060         }
2061
2062         spin_unlock_irq(&ohci->lock);
2063
2064         if (free_rom)
2065                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2066                                   free_rom, free_rom_bus);
2067
2068         log_selfids(ohci, generation, self_id_count);
2069
2070         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2071                                  self_id_count, ohci->self_id_buffer,
2072                                  ohci->csr_state_setclear_abdicate);
2073         ohci->csr_state_setclear_abdicate = false;
2074 }
2075
2076 static irqreturn_t irq_handler(int irq, void *data)
2077 {
2078         struct fw_ohci *ohci = data;
2079         u32 event, iso_event;
2080         int i;
2081
2082         event = reg_read(ohci, OHCI1394_IntEventClear);
2083
2084         if (!event || !~event)
2085                 return IRQ_NONE;
2086
2087         /*
2088          * busReset and postedWriteErr must not be cleared yet
2089          * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2090          */
2091         reg_write(ohci, OHCI1394_IntEventClear,
2092                   event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2093         log_irqs(ohci, event);
2094
2095         if (event & OHCI1394_selfIDComplete)
2096                 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2097
2098         if (event & OHCI1394_RQPkt)
2099                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2100
2101         if (event & OHCI1394_RSPkt)
2102                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2103
2104         if (event & OHCI1394_reqTxComplete)
2105                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2106
2107         if (event & OHCI1394_respTxComplete)
2108                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2109
2110         if (event & OHCI1394_isochRx) {
2111                 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2112                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2113
2114                 while (iso_event) {
2115                         i = ffs(iso_event) - 1;
2116                         tasklet_schedule(
2117                                 &ohci->ir_context_list[i].context.tasklet);
2118                         iso_event &= ~(1 << i);
2119                 }
2120         }
2121
2122         if (event & OHCI1394_isochTx) {
2123                 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2124                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2125
2126                 while (iso_event) {
2127                         i = ffs(iso_event) - 1;
2128                         tasklet_schedule(
2129                                 &ohci->it_context_list[i].context.tasklet);
2130                         iso_event &= ~(1 << i);
2131                 }
2132         }
2133
2134         if (unlikely(event & OHCI1394_regAccessFail))
2135                 ohci_err(ohci, "register access failure\n");
2136
2137         if (unlikely(event & OHCI1394_postedWriteErr)) {
2138                 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2139                 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2140                 reg_write(ohci, OHCI1394_IntEventClear,
2141                           OHCI1394_postedWriteErr);
2142                 if (printk_ratelimit())
2143                         ohci_err(ohci, "PCI posted write error\n");
2144         }
2145
2146         if (unlikely(event & OHCI1394_cycleTooLong)) {
2147                 if (printk_ratelimit())
2148                         ohci_notice(ohci, "isochronous cycle too long\n");
2149                 reg_write(ohci, OHCI1394_LinkControlSet,
2150                           OHCI1394_LinkControl_cycleMaster);
2151         }
2152
2153         if (unlikely(event & OHCI1394_cycleInconsistent)) {
2154                 /*
2155                  * We need to clear this event bit in order to make
2156                  * cycleMatch isochronous I/O work.  In theory we should
2157                  * stop active cycleMatch iso contexts now and restart
2158                  * them at least two cycles later.  (FIXME?)
2159                  */
2160                 if (printk_ratelimit())
2161                         ohci_notice(ohci, "isochronous cycle inconsistent\n");
2162         }
2163
2164         if (unlikely(event & OHCI1394_unrecoverableError))
2165                 handle_dead_contexts(ohci);
2166
2167         if (event & OHCI1394_cycle64Seconds) {
2168                 spin_lock(&ohci->lock);
2169                 update_bus_time(ohci);
2170                 spin_unlock(&ohci->lock);
2171         } else
2172                 flush_writes(ohci);
2173
2174         return IRQ_HANDLED;
2175 }
2176
2177 static int software_reset(struct fw_ohci *ohci)
2178 {
2179         u32 val;
2180         int i;
2181
2182         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2183         for (i = 0; i < 500; i++) {
2184                 val = reg_read(ohci, OHCI1394_HCControlSet);
2185                 if (!~val)
2186                         return -ENODEV; /* Card was ejected. */
2187
2188                 if (!(val & OHCI1394_HCControl_softReset))
2189                         return 0;
2190
2191                 msleep(1);
2192         }
2193
2194         return -EBUSY;
2195 }
2196
2197 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2198 {
2199         size_t size = length * 4;
2200
2201         memcpy(dest, src, size);
2202         if (size < CONFIG_ROM_SIZE)
2203                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2204 }
2205
2206 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2207 {
2208         bool enable_1394a;
2209         int ret, clear, set, offset;
2210
2211         /* Check if the driver should configure link and PHY. */
2212         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2213               OHCI1394_HCControl_programPhyEnable))
2214                 return 0;
2215
2216         /* Paranoia: check whether the PHY supports 1394a, too. */
2217         enable_1394a = false;
2218         ret = read_phy_reg(ohci, 2);
2219         if (ret < 0)
2220                 return ret;
2221         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2222                 ret = read_paged_phy_reg(ohci, 1, 8);
2223                 if (ret < 0)
2224                         return ret;
2225                 if (ret >= 1)
2226                         enable_1394a = true;
2227         }
2228
2229         if (ohci->quirks & QUIRK_NO_1394A)
2230                 enable_1394a = false;
2231
2232         /* Configure PHY and link consistently. */
2233         if (enable_1394a) {
2234                 clear = 0;
2235                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2236         } else {
2237                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2238                 set = 0;
2239         }
2240         ret = update_phy_reg(ohci, 5, clear, set);
2241         if (ret < 0)
2242                 return ret;
2243
2244         if (enable_1394a)
2245                 offset = OHCI1394_HCControlSet;
2246         else
2247                 offset = OHCI1394_HCControlClear;
2248         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2249
2250         /* Clean up: configuration has been taken care of. */
2251         reg_write(ohci, OHCI1394_HCControlClear,
2252                   OHCI1394_HCControl_programPhyEnable);
2253
2254         return 0;
2255 }
2256
2257 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2258 {
2259         /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2260         static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2261         int reg, i;
2262
2263         reg = read_phy_reg(ohci, 2);
2264         if (reg < 0)
2265                 return reg;
2266         if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2267                 return 0;
2268
2269         for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2270                 reg = read_paged_phy_reg(ohci, 1, i + 10);
2271                 if (reg < 0)
2272                         return reg;
2273                 if (reg != id[i])
2274                         return 0;
2275         }
2276         return 1;
2277 }
2278
2279 static int ohci_enable(struct fw_card *card,
2280                        const __be32 *config_rom, size_t length)
2281 {
2282         struct fw_ohci *ohci = fw_ohci(card);
2283         u32 lps, version, irqs;
2284         int i, ret;
2285
2286         if (software_reset(ohci)) {
2287                 ohci_err(ohci, "failed to reset ohci card\n");
2288                 return -EBUSY;
2289         }
2290
2291         /*
2292          * Now enable LPS, which we need in order to start accessing
2293          * most of the registers.  In fact, on some cards (ALI M5251),
2294          * accessing registers in the SClk domain without LPS enabled
2295          * will lock up the machine.  Wait 50msec to make sure we have
2296          * full link enabled.  However, with some cards (well, at least
2297          * a JMicron PCIe card), we have to try again sometimes.
2298          *
2299          * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2300          * cannot actually use the phy at that time.  These need tens of
2301          * millisecods pause between LPS write and first phy access too.
2302          *
2303          * But do not wait for 50msec on Agere/LSI cards.  Their phy
2304          * arbitration state machine may time out during such a long wait.
2305          */
2306
2307         reg_write(ohci, OHCI1394_HCControlSet,
2308                   OHCI1394_HCControl_LPS |
2309                   OHCI1394_HCControl_postedWriteEnable);
2310         flush_writes(ohci);
2311
2312         if (!(ohci->quirks & QUIRK_PHY_LCTRL_TIMEOUT))
2313                 msleep(50);
2314
2315         for (lps = 0, i = 0; !lps && i < 150; i++) {
2316                 msleep(1);
2317                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2318                       OHCI1394_HCControl_LPS;
2319         }
2320
2321         if (!lps) {
2322                 ohci_err(ohci, "failed to set Link Power Status\n");
2323                 return -EIO;
2324         }
2325
2326         if (ohci->quirks & QUIRK_TI_SLLZ059) {
2327                 ret = probe_tsb41ba3d(ohci);
2328                 if (ret < 0)
2329                         return ret;
2330                 if (ret)
2331                         ohci_notice(ohci, "local TSB41BA3D phy\n");
2332                 else
2333                         ohci->quirks &= ~QUIRK_TI_SLLZ059;
2334         }
2335
2336         reg_write(ohci, OHCI1394_HCControlClear,
2337                   OHCI1394_HCControl_noByteSwapData);
2338
2339         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2340         reg_write(ohci, OHCI1394_LinkControlSet,
2341                   OHCI1394_LinkControl_cycleTimerEnable |
2342                   OHCI1394_LinkControl_cycleMaster);
2343
2344         reg_write(ohci, OHCI1394_ATRetries,
2345                   OHCI1394_MAX_AT_REQ_RETRIES |
2346                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2347                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2348                   (200 << 16));
2349
2350         ohci->bus_time_running = false;
2351
2352         for (i = 0; i < 32; i++)
2353                 if (ohci->ir_context_support & (1 << i))
2354                         reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2355                                   IR_CONTEXT_MULTI_CHANNEL_MODE);
2356
2357         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2358         if (version >= OHCI_VERSION_1_1) {
2359                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2360                           0xfffffffe);
2361                 card->broadcast_channel_auto_allocated = true;
2362         }
2363
2364         /* Get implemented bits of the priority arbitration request counter. */
2365         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2366         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2367         reg_write(ohci, OHCI1394_FairnessControl, 0);
2368         card->priority_budget_implemented = ohci->pri_req_max != 0;
2369
2370         reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2371         reg_write(ohci, OHCI1394_IntEventClear, ~0);
2372         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2373
2374         ret = configure_1394a_enhancements(ohci);
2375         if (ret < 0)
2376                 return ret;
2377
2378         /* Activate link_on bit and contender bit in our self ID packets.*/
2379         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2380         if (ret < 0)
2381                 return ret;
2382
2383         /*
2384          * When the link is not yet enabled, the atomic config rom
2385          * update mechanism described below in ohci_set_config_rom()
2386          * is not active.  We have to update ConfigRomHeader and
2387          * BusOptions manually, and the write to ConfigROMmap takes
2388          * effect immediately.  We tie this to the enabling of the
2389          * link, so we have a valid config rom before enabling - the
2390          * OHCI requires that ConfigROMhdr and BusOptions have valid
2391          * values before enabling.
2392          *
2393          * However, when the ConfigROMmap is written, some controllers
2394          * always read back quadlets 0 and 2 from the config rom to
2395          * the ConfigRomHeader and BusOptions registers on bus reset.
2396          * They shouldn't do that in this initial case where the link
2397          * isn't enabled.  This means we have to use the same
2398          * workaround here, setting the bus header to 0 and then write
2399          * the right values in the bus reset tasklet.
2400          */
2401
2402         if (config_rom) {
2403                 ohci->next_config_rom =
2404                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2405                                            &ohci->next_config_rom_bus,
2406                                            GFP_KERNEL);
2407                 if (ohci->next_config_rom == NULL)
2408                         return -ENOMEM;
2409
2410                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2411         } else {
2412                 /*
2413                  * In the suspend case, config_rom is NULL, which
2414                  * means that we just reuse the old config rom.
2415                  */
2416                 ohci->next_config_rom = ohci->config_rom;
2417                 ohci->next_config_rom_bus = ohci->config_rom_bus;
2418         }
2419
2420         ohci->next_header = ohci->next_config_rom[0];
2421         ohci->next_config_rom[0] = 0;
2422         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2423         reg_write(ohci, OHCI1394_BusOptions,
2424                   be32_to_cpu(ohci->next_config_rom[2]));
2425         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2426
2427         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2428
2429         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2430                 OHCI1394_RQPkt | OHCI1394_RSPkt |
2431                 OHCI1394_isochTx | OHCI1394_isochRx |
2432                 OHCI1394_postedWriteErr |
2433                 OHCI1394_selfIDComplete |
2434                 OHCI1394_regAccessFail |
2435                 OHCI1394_cycleInconsistent |
2436                 OHCI1394_unrecoverableError |
2437                 OHCI1394_cycleTooLong |
2438                 OHCI1394_masterIntEnable;
2439         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2440                 irqs |= OHCI1394_busReset;
2441         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2442
2443         reg_write(ohci, OHCI1394_HCControlSet,
2444                   OHCI1394_HCControl_linkEnable |
2445                   OHCI1394_HCControl_BIBimageValid);
2446
2447         reg_write(ohci, OHCI1394_LinkControlSet,
2448                   OHCI1394_LinkControl_rcvSelfID |
2449                   OHCI1394_LinkControl_rcvPhyPkt);
2450
2451         ar_context_run(&ohci->ar_request_ctx);
2452         ar_context_run(&ohci->ar_response_ctx);
2453
2454         flush_writes(ohci);
2455
2456         /* We are ready to go, reset bus to finish initialization. */
2457         fw_schedule_bus_reset(&ohci->card, false, true);
2458
2459         return 0;
2460 }
2461
2462 static int ohci_set_config_rom(struct fw_card *card,
2463                                const __be32 *config_rom, size_t length)
2464 {
2465         struct fw_ohci *ohci;
2466         __be32 *next_config_rom;
2467         dma_addr_t uninitialized_var(next_config_rom_bus);
2468
2469         ohci = fw_ohci(card);
2470
2471         /*
2472          * When the OHCI controller is enabled, the config rom update
2473          * mechanism is a bit tricky, but easy enough to use.  See
2474          * section 5.5.6 in the OHCI specification.
2475          *
2476          * The OHCI controller caches the new config rom address in a
2477          * shadow register (ConfigROMmapNext) and needs a bus reset
2478          * for the changes to take place.  When the bus reset is
2479          * detected, the controller loads the new values for the
2480          * ConfigRomHeader and BusOptions registers from the specified
2481          * config rom and loads ConfigROMmap from the ConfigROMmapNext
2482          * shadow register. All automatically and atomically.
2483          *
2484          * Now, there's a twist to this story.  The automatic load of
2485          * ConfigRomHeader and BusOptions doesn't honor the
2486          * noByteSwapData bit, so with a be32 config rom, the
2487          * controller will load be32 values in to these registers
2488          * during the atomic update, even on litte endian
2489          * architectures.  The workaround we use is to put a 0 in the
2490          * header quadlet; 0 is endian agnostic and means that the
2491          * config rom isn't ready yet.  In the bus reset tasklet we
2492          * then set up the real values for the two registers.
2493          *
2494          * We use ohci->lock to avoid racing with the code that sets
2495          * ohci->next_config_rom to NULL (see bus_reset_work).
2496          */
2497
2498         next_config_rom =
2499                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2500                                    &next_config_rom_bus, GFP_KERNEL);
2501         if (next_config_rom == NULL)
2502                 return -ENOMEM;
2503
2504         spin_lock_irq(&ohci->lock);
2505
2506         /*
2507          * If there is not an already pending config_rom update,
2508          * push our new allocation into the ohci->next_config_rom
2509          * and then mark the local variable as null so that we
2510          * won't deallocate the new buffer.
2511          *
2512          * OTOH, if there is a pending config_rom update, just
2513          * use that buffer with the new config_rom data, and
2514          * let this routine free the unused DMA allocation.
2515          */
2516
2517         if (ohci->next_config_rom == NULL) {
2518                 ohci->next_config_rom = next_config_rom;
2519                 ohci->next_config_rom_bus = next_config_rom_bus;
2520                 next_config_rom = NULL;
2521         }
2522
2523         copy_config_rom(ohci->next_config_rom, config_rom, length);
2524
2525         ohci->next_header = config_rom[0];
2526         ohci->next_config_rom[0] = 0;
2527
2528         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2529
2530         spin_unlock_irq(&ohci->lock);
2531
2532         /* If we didn't use the DMA allocation, delete it. */
2533         if (next_config_rom != NULL)
2534                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2535                                   next_config_rom, next_config_rom_bus);
2536
2537         /*
2538          * Now initiate a bus reset to have the changes take
2539          * effect. We clean up the old config rom memory and DMA
2540          * mappings in the bus reset tasklet, since the OHCI
2541          * controller could need to access it before the bus reset
2542          * takes effect.
2543          */
2544
2545         fw_schedule_bus_reset(&ohci->card, true, true);
2546
2547         return 0;
2548 }
2549
2550 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2551 {
2552         struct fw_ohci *ohci = fw_ohci(card);
2553
2554         at_context_transmit(&ohci->at_request_ctx, packet);
2555 }
2556
2557 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2558 {
2559         struct fw_ohci *ohci = fw_ohci(card);
2560
2561         at_context_transmit(&ohci->at_response_ctx, packet);
2562 }
2563
2564 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2565 {
2566         struct fw_ohci *ohci = fw_ohci(card);
2567         struct context *ctx = &ohci->at_request_ctx;
2568         struct driver_data *driver_data = packet->driver_data;
2569         int ret = -ENOENT;
2570
2571         tasklet_disable(&ctx->tasklet);
2572
2573         if (packet->ack != 0)
2574                 goto out;
2575
2576         if (packet->payload_mapped)
2577                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2578                                  packet->payload_length, DMA_TO_DEVICE);
2579
2580         log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2581         driver_data->packet = NULL;
2582         packet->ack = RCODE_CANCELLED;
2583         packet->callback(packet, &ohci->card, packet->ack);
2584         ret = 0;
2585  out:
2586         tasklet_enable(&ctx->tasklet);
2587
2588         return ret;
2589 }
2590
2591 static int ohci_enable_phys_dma(struct fw_card *card,
2592                                 int node_id, int generation)
2593 {
2594         struct fw_ohci *ohci = fw_ohci(card);
2595         unsigned long flags;
2596         int n, ret = 0;
2597
2598         if (param_remote_dma)
2599                 return 0;
2600
2601         /*
2602          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2603          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2604          */
2605
2606         spin_lock_irqsave(&ohci->lock, flags);
2607
2608         if (ohci->generation != generation) {
2609                 ret = -ESTALE;
2610                 goto out;
2611         }
2612
2613         /*
2614          * Note, if the node ID contains a non-local bus ID, physical DMA is
2615          * enabled for _all_ nodes on remote buses.
2616          */
2617
2618         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2619         if (n < 32)
2620                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2621         else
2622                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2623
2624         flush_writes(ohci);
2625  out:
2626         spin_unlock_irqrestore(&ohci->lock, flags);
2627
2628         return ret;
2629 }
2630
2631 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2632 {
2633         struct fw_ohci *ohci = fw_ohci(card);
2634         unsigned long flags;
2635         u32 value;
2636
2637         switch (csr_offset) {
2638         case CSR_STATE_CLEAR:
2639         case CSR_STATE_SET:
2640                 if (ohci->is_root &&
2641                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2642                      OHCI1394_LinkControl_cycleMaster))
2643                         value = CSR_STATE_BIT_CMSTR;
2644                 else
2645                         value = 0;
2646                 if (ohci->csr_state_setclear_abdicate)
2647                         value |= CSR_STATE_BIT_ABDICATE;
2648
2649                 return value;
2650
2651         case CSR_NODE_IDS:
2652                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2653
2654         case CSR_CYCLE_TIME:
2655                 return get_cycle_time(ohci);
2656
2657         case CSR_BUS_TIME:
2658                 /*
2659                  * We might be called just after the cycle timer has wrapped
2660                  * around but just before the cycle64Seconds handler, so we
2661                  * better check here, too, if the bus time needs to be updated.
2662                  */
2663                 spin_lock_irqsave(&ohci->lock, flags);
2664                 value = update_bus_time(ohci);
2665                 spin_unlock_irqrestore(&ohci->lock, flags);
2666                 return value;
2667
2668         case CSR_BUSY_TIMEOUT:
2669                 value = reg_read(ohci, OHCI1394_ATRetries);
2670                 return (value >> 4) & 0x0ffff00f;
2671
2672         case CSR_PRIORITY_BUDGET:
2673                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2674                         (ohci->pri_req_max << 8);
2675
2676         default:
2677                 WARN_ON(1);
2678                 return 0;
2679         }
2680 }
2681
2682 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2683 {
2684         struct fw_ohci *ohci = fw_ohci(card);
2685         unsigned long flags;
2686
2687         switch (csr_offset) {
2688         case CSR_STATE_CLEAR:
2689                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2690                         reg_write(ohci, OHCI1394_LinkControlClear,
2691                                   OHCI1394_LinkControl_cycleMaster);
2692                         flush_writes(ohci);
2693                 }
2694                 if (value & CSR_STATE_BIT_ABDICATE)
2695                         ohci->csr_state_setclear_abdicate = false;
2696                 break;
2697
2698         case CSR_STATE_SET:
2699                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2700                         reg_write(ohci, OHCI1394_LinkControlSet,
2701                                   OHCI1394_LinkControl_cycleMaster);
2702                         flush_writes(ohci);
2703                 }
2704                 if (value & CSR_STATE_BIT_ABDICATE)
2705                         ohci->csr_state_setclear_abdicate = true;
2706                 break;
2707
2708         case CSR_NODE_IDS:
2709                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2710                 flush_writes(ohci);
2711                 break;
2712
2713         case CSR_CYCLE_TIME:
2714                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2715                 reg_write(ohci, OHCI1394_IntEventSet,
2716                           OHCI1394_cycleInconsistent);
2717                 flush_writes(ohci);
2718                 break;
2719
2720         case CSR_BUS_TIME:
2721                 spin_lock_irqsave(&ohci->lock, flags);
2722                 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2723                                  (value & ~0x7f);
2724                 spin_unlock_irqrestore(&ohci->lock, flags);
2725                 break;
2726
2727         case CSR_BUSY_TIMEOUT:
2728                 value = (value & 0xf) | ((value & 0xf) << 4) |
2729                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2730                 reg_write(ohci, OHCI1394_ATRetries, value);
2731                 flush_writes(ohci);
2732                 break;
2733
2734         case CSR_PRIORITY_BUDGET:
2735                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2736                 flush_writes(ohci);
2737                 break;
2738
2739         default:
2740                 WARN_ON(1);
2741                 break;
2742         }
2743 }
2744
2745 static void flush_iso_completions(struct iso_context *ctx)
2746 {
2747         ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2748                               ctx->header_length, ctx->header,
2749                               ctx->base.callback_data);
2750         ctx->header_length = 0;
2751 }
2752
2753 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2754 {
2755         u32 *ctx_hdr;
2756
2757         if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2758                 if (ctx->base.drop_overflow_headers)
2759                         return;
2760                 flush_iso_completions(ctx);
2761         }
2762
2763         ctx_hdr = ctx->header + ctx->header_length;
2764         ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2765
2766         /*
2767          * The two iso header quadlets are byteswapped to little
2768          * endian by the controller, but we want to present them
2769          * as big endian for consistency with the bus endianness.
2770          */
2771         if (ctx->base.header_size > 0)
2772                 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2773         if (ctx->base.header_size > 4)
2774                 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2775         if (ctx->base.header_size > 8)
2776                 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2777         ctx->header_length += ctx->base.header_size;
2778 }
2779
2780 static int handle_ir_packet_per_buffer(struct context *context,
2781                                        struct descriptor *d,
2782                                        struct descriptor *last)
2783 {
2784         struct iso_context *ctx =
2785                 container_of(context, struct iso_context, context);
2786         struct descriptor *pd;
2787         u32 buffer_dma;
2788
2789         for (pd = d; pd <= last; pd++)
2790                 if (pd->transfer_status)
2791                         break;
2792         if (pd > last)
2793                 /* Descriptor(s) not done yet, stop iteration */
2794                 return 0;
2795
2796         while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2797                 d++;
2798                 buffer_dma = le32_to_cpu(d->data_address);
2799                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2800                                               buffer_dma & PAGE_MASK,
2801                                               buffer_dma & ~PAGE_MASK,
2802                                               le16_to_cpu(d->req_count),
2803                                               DMA_FROM_DEVICE);
2804         }
2805
2806         copy_iso_headers(ctx, (u32 *) (last + 1));
2807
2808         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2809                 flush_iso_completions(ctx);
2810
2811         return 1;
2812 }
2813
2814 /* d == last because each descriptor block is only a single descriptor. */
2815 static int handle_ir_buffer_fill(struct context *context,
2816                                  struct descriptor *d,
2817                                  struct descriptor *last)
2818 {
2819         struct iso_context *ctx =
2820                 container_of(context, struct iso_context, context);
2821         unsigned int req_count, res_count, completed;
2822         u32 buffer_dma;
2823
2824         req_count = le16_to_cpu(last->req_count);
2825         res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2826         completed = req_count - res_count;
2827         buffer_dma = le32_to_cpu(last->data_address);
2828
2829         if (completed > 0) {
2830                 ctx->mc_buffer_bus = buffer_dma;
2831                 ctx->mc_completed = completed;
2832         }
2833
2834         if (res_count != 0)
2835                 /* Descriptor(s) not done yet, stop iteration */
2836                 return 0;
2837
2838         dma_sync_single_range_for_cpu(context->ohci->card.device,
2839                                       buffer_dma & PAGE_MASK,
2840                                       buffer_dma & ~PAGE_MASK,
2841                                       completed, DMA_FROM_DEVICE);
2842
2843         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2844                 ctx->base.callback.mc(&ctx->base,
2845                                       buffer_dma + completed,
2846                                       ctx->base.callback_data);
2847                 ctx->mc_completed = 0;
2848         }
2849
2850         return 1;
2851 }
2852
2853 static void flush_ir_buffer_fill(struct iso_context *ctx)
2854 {
2855         dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2856                                       ctx->mc_buffer_bus & PAGE_MASK,
2857                                       ctx->mc_buffer_bus & ~PAGE_MASK,
2858                                       ctx->mc_completed, DMA_FROM_DEVICE);
2859
2860         ctx->base.callback.mc(&ctx->base,
2861                               ctx->mc_buffer_bus + ctx->mc_completed,
2862                               ctx->base.callback_data);
2863         ctx->mc_completed = 0;
2864 }
2865
2866 static inline void sync_it_packet_for_cpu(struct context *context,
2867                                           struct descriptor *pd)
2868 {
2869         __le16 control;
2870         u32 buffer_dma;
2871
2872         /* only packets beginning with OUTPUT_MORE* have data buffers */
2873         if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2874                 return;
2875
2876         /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2877         pd += 2;
2878
2879         /*
2880          * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2881          * data buffer is in the context program's coherent page and must not
2882          * be synced.
2883          */
2884         if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2885             (context->current_bus          & PAGE_MASK)) {
2886                 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2887                         return;
2888                 pd++;
2889         }
2890
2891         do {
2892                 buffer_dma = le32_to_cpu(pd->data_address);
2893                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2894                                               buffer_dma & PAGE_MASK,
2895                                               buffer_dma & ~PAGE_MASK,
2896                                               le16_to_cpu(pd->req_count),
2897                                               DMA_TO_DEVICE);
2898                 control = pd->control;
2899                 pd++;
2900         } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2901 }
2902
2903 static int handle_it_packet(struct context *context,
2904                             struct descriptor *d,
2905                             struct descriptor *last)
2906 {
2907         struct iso_context *ctx =
2908                 container_of(context, struct iso_context, context);
2909         struct descriptor *pd;
2910         __be32 *ctx_hdr;
2911
2912         for (pd = d; pd <= last; pd++)
2913                 if (pd->transfer_status)
2914                         break;
2915         if (pd > last)
2916                 /* Descriptor(s) not done yet, stop iteration */
2917                 return 0;
2918
2919         sync_it_packet_for_cpu(context, d);
2920
2921         if (ctx->header_length + 4 > PAGE_SIZE) {
2922                 if (ctx->base.drop_overflow_headers)
2923                         return 1;
2924                 flush_iso_completions(ctx);
2925         }
2926
2927         ctx_hdr = ctx->header + ctx->header_length;
2928         ctx->last_timestamp = le16_to_cpu(last->res_count);
2929         /* Present this value as big-endian to match the receive code */
2930         *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2931                                le16_to_cpu(pd->res_count));
2932         ctx->header_length += 4;
2933
2934         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2935                 flush_iso_completions(ctx);
2936
2937         return 1;
2938 }
2939
2940 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2941 {
2942         u32 hi = channels >> 32, lo = channels;
2943
2944         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2945         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2946         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2947         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2948         mmiowb();
2949         ohci->mc_channels = channels;
2950 }
2951
2952 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2953                                 int type, int channel, size_t header_size)
2954 {
2955         struct fw_ohci *ohci = fw_ohci(card);
2956         struct iso_context *uninitialized_var(ctx);
2957         descriptor_callback_t uninitialized_var(callback);
2958         u64 *uninitialized_var(channels);
2959         u32 *uninitialized_var(mask), uninitialized_var(regs);
2960         int index, ret = -EBUSY;
2961
2962         spin_lock_irq(&ohci->lock);
2963
2964         switch (type) {
2965         case FW_ISO_CONTEXT_TRANSMIT:
2966                 mask     = &ohci->it_context_mask;
2967                 callback = handle_it_packet;
2968                 index    = ffs(*mask) - 1;
2969                 if (index >= 0) {
2970                         *mask &= ~(1 << index);
2971                         regs = OHCI1394_IsoXmitContextBase(index);
2972                         ctx  = &ohci->it_context_list[index];
2973                 }
2974                 break;
2975
2976         case FW_ISO_CONTEXT_RECEIVE:
2977                 channels = &ohci->ir_context_channels;
2978                 mask     = &ohci->ir_context_mask;
2979                 callback = handle_ir_packet_per_buffer;
2980                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2981                 if (index >= 0) {
2982                         *channels &= ~(1ULL << channel);
2983                         *mask     &= ~(1 << index);
2984                         regs = OHCI1394_IsoRcvContextBase(index);
2985                         ctx  = &ohci->ir_context_list[index];
2986                 }
2987                 break;
2988
2989         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2990                 mask     = &ohci->ir_context_mask;
2991                 callback = handle_ir_buffer_fill;
2992                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2993                 if (index >= 0) {
2994                         ohci->mc_allocated = true;
2995                         *mask &= ~(1 << index);
2996                         regs = OHCI1394_IsoRcvContextBase(index);
2997                         ctx  = &ohci->ir_context_list[index];
2998                 }
2999                 break;
3000
3001         default:
3002                 index = -1;
3003                 ret = -ENOSYS;
3004         }
3005
3006         spin_unlock_irq(&ohci->lock);
3007
3008         if (index < 0)
3009                 return ERR_PTR(ret);
3010
3011         memset(ctx, 0, sizeof(*ctx));
3012         ctx->header_length = 0;
3013         ctx->header = (void *) __get_free_page(GFP_KERNEL);
3014         if (ctx->header == NULL) {
3015                 ret = -ENOMEM;
3016                 goto out;
3017         }
3018         ret = context_init(&ctx->context, ohci, regs, callback);
3019         if (ret < 0)
3020                 goto out_with_header;
3021
3022         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3023                 set_multichannel_mask(ohci, 0);
3024                 ctx->mc_completed = 0;
3025         }
3026
3027         return &ctx->base;
3028
3029  out_with_header:
3030         free_page((unsigned long)ctx->header);
3031  out:
3032         spin_lock_irq(&ohci->lock);
3033
3034         switch (type) {
3035         case FW_ISO_CONTEXT_RECEIVE:
3036                 *channels |= 1ULL << channel;
3037                 break;
3038
3039         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3040                 ohci->mc_allocated = false;
3041                 break;
3042         }
3043         *mask |= 1 << index;
3044
3045         spin_unlock_irq(&ohci->lock);
3046
3047         return ERR_PTR(ret);
3048 }
3049
3050 static int ohci_start_iso(struct fw_iso_context *base,
3051                           s32 cycle, u32 sync, u32 tags)
3052 {
3053         struct iso_context *ctx = container_of(base, struct iso_context, base);
3054         struct fw_ohci *ohci = ctx->context.ohci;
3055         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3056         int index;
3057
3058         /* the controller cannot start without any queued packets */
3059         if (ctx->context.last->branch_address == 0)
3060                 return -ENODATA;
3061
3062         switch (ctx->base.type) {
3063         case FW_ISO_CONTEXT_TRANSMIT:
3064                 index = ctx - ohci->it_context_list;
3065                 match = 0;
3066                 if (cycle >= 0)
3067                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3068                                 (cycle & 0x7fff) << 16;
3069
3070                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3071                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3072                 context_run(&ctx->context, match);
3073                 break;
3074
3075         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3076                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3077                 /* fall through */
3078         case FW_ISO_CONTEXT_RECEIVE:
3079                 index = ctx - ohci->ir_context_list;
3080                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3081                 if (cycle >= 0) {
3082                         match |= (cycle & 0x07fff) << 12;
3083                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3084                 }
3085
3086                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3087                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3088                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3089                 context_run(&ctx->context, control);
3090
3091                 ctx->sync = sync;
3092                 ctx->tags = tags;
3093
3094                 break;
3095         }
3096
3097         return 0;
3098 }
3099
3100 static int ohci_stop_iso(struct fw_iso_context *base)
3101 {
3102         struct fw_ohci *ohci = fw_ohci(base->card);
3103         struct iso_context *ctx = container_of(base, struct iso_context, base);
3104         int index;
3105
3106         switch (ctx->base.type) {
3107         case FW_ISO_CONTEXT_TRANSMIT:
3108                 index = ctx - ohci->it_context_list;
3109                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3110                 break;
3111
3112         case FW_ISO_CONTEXT_RECEIVE:
3113         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3114                 index = ctx - ohci->ir_context_list;
3115                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3116                 break;
3117         }
3118         flush_writes(ohci);
3119         context_stop(&ctx->context);
3120         tasklet_kill(&ctx->context.tasklet);
3121
3122         return 0;
3123 }
3124
3125 static void ohci_free_iso_context(struct fw_iso_context *base)
3126 {
3127         struct fw_ohci *ohci = fw_ohci(base->card);
3128         struct iso_context *ctx = container_of(base, struct iso_context, base);
3129         unsigned long flags;
3130         int index;
3131
3132         ohci_stop_iso(base);
3133         context_release(&ctx->context);
3134         free_page((unsigned long)ctx->header);
3135
3136         spin_lock_irqsave(&ohci->lock, flags);
3137
3138         switch (base->type) {
3139         case FW_ISO_CONTEXT_TRANSMIT:
3140                 index = ctx - ohci->it_context_list;
3141                 ohci->it_context_mask |= 1 << index;
3142                 break;
3143
3144         case FW_ISO_CONTEXT_RECEIVE:
3145                 index = ctx - ohci->ir_context_list;
3146                 ohci->ir_context_mask |= 1 << index;
3147                 ohci->ir_context_channels |= 1ULL << base->channel;
3148                 break;
3149
3150         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3151                 index = ctx - ohci->ir_context_list;
3152                 ohci->ir_context_mask |= 1 << index;
3153                 ohci->ir_context_channels |= ohci->mc_channels;
3154                 ohci->mc_channels = 0;
3155                 ohci->mc_allocated = false;
3156                 break;
3157         }
3158
3159         spin_unlock_irqrestore(&ohci->lock, flags);
3160 }
3161
3162 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3163 {
3164         struct fw_ohci *ohci = fw_ohci(base->card);
3165         unsigned long flags;
3166         int ret;
3167
3168         switch (base->type) {
3169         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3170
3171                 spin_lock_irqsave(&ohci->lock, flags);
3172
3173                 /* Don't allow multichannel to grab other contexts' channels. */
3174                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3175                         *channels = ohci->ir_context_channels;
3176                         ret = -EBUSY;
3177                 } else {
3178                         set_multichannel_mask(ohci, *channels);
3179                         ret = 0;
3180                 }
3181
3182                 spin_unlock_irqrestore(&ohci->lock, flags);
3183
3184                 break;
3185         default:
3186                 ret = -EINVAL;
3187         }
3188
3189         return ret;
3190 }
3191
3192 #ifdef CONFIG_PM
3193 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3194 {
3195         int i;
3196         struct iso_context *ctx;
3197
3198         for (i = 0 ; i < ohci->n_ir ; i++) {
3199                 ctx = &ohci->ir_context_list[i];
3200                 if (ctx->context.running)
3201                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3202         }
3203
3204         for (i = 0 ; i < ohci->n_it ; i++) {
3205                 ctx = &ohci->it_context_list[i];
3206                 if (ctx->context.running)
3207                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3208         }
3209 }
3210 #endif
3211
3212 static int queue_iso_transmit(struct iso_context *ctx,
3213                               struct fw_iso_packet *packet,
3214                               struct fw_iso_buffer *buffer,
3215                               unsigned long payload)
3216 {
3217         struct descriptor *d, *last, *pd;
3218         struct fw_iso_packet *p;
3219         __le32 *header;
3220         dma_addr_t d_bus, page_bus;
3221         u32 z, header_z, payload_z, irq;
3222         u32 payload_index, payload_end_index, next_page_index;
3223         int page, end_page, i, length, offset;
3224
3225         p = packet;
3226         payload_index = payload;
3227
3228         if (p->skip)
3229                 z = 1;
3230         else
3231                 z = 2;
3232         if (p->header_length > 0)
3233                 z++;
3234
3235         /* Determine the first page the payload isn't contained in. */
3236         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3237         if (p->payload_length > 0)
3238                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3239         else
3240                 payload_z = 0;
3241
3242         z += payload_z;
3243
3244         /* Get header size in number of descriptors. */
3245         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3246
3247         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3248         if (d == NULL)
3249                 return -ENOMEM;
3250
3251         if (!p->skip) {
3252                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3253                 d[0].req_count = cpu_to_le16(8);
3254                 /*
3255                  * Link the skip address to this descriptor itself.  This causes
3256                  * a context to skip a cycle whenever lost cycles or FIFO
3257                  * overruns occur, without dropping the data.  The application
3258                  * should then decide whether this is an error condition or not.
3259                  * FIXME:  Make the context's cycle-lost behaviour configurable?
3260                  */
3261                 d[0].branch_address = cpu_to_le32(d_bus | z);
3262
3263                 header = (__le32 *) &d[1];
3264                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3265                                         IT_HEADER_TAG(p->tag) |
3266                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3267                                         IT_HEADER_CHANNEL(ctx->base.channel) |
3268                                         IT_HEADER_SPEED(ctx->base.speed));
3269                 header[1] =
3270                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3271                                                           p->payload_length));
3272         }
3273
3274         if (p->header_length > 0) {
3275                 d[2].req_count    = cpu_to_le16(p->header_length);
3276                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3277                 memcpy(&d[z], p->header, p->header_length);
3278         }
3279
3280         pd = d + z - payload_z;
3281         payload_end_index = payload_index + p->payload_length;
3282         for (i = 0; i < payload_z; i++) {
3283                 page               = payload_index >> PAGE_SHIFT;
3284                 offset             = payload_index & ~PAGE_MASK;
3285                 next_page_index    = (page + 1) << PAGE_SHIFT;
3286                 length             =
3287                         min(next_page_index, payload_end_index) - payload_index;
3288                 pd[i].req_count    = cpu_to_le16(length);
3289
3290                 page_bus = page_private(buffer->pages[page]);
3291                 pd[i].data_address = cpu_to_le32(page_bus + offset);
3292
3293                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3294                                                  page_bus, offset, length,
3295                                                  DMA_TO_DEVICE);
3296
3297                 payload_index += length;
3298         }
3299
3300         if (p->interrupt)
3301                 irq = DESCRIPTOR_IRQ_ALWAYS;
3302         else
3303                 irq = DESCRIPTOR_NO_IRQ;
3304
3305         last = z == 2 ? d : d + z - 1;
3306         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3307                                      DESCRIPTOR_STATUS |
3308                                      DESCRIPTOR_BRANCH_ALWAYS |
3309                                      irq);
3310
3311         context_append(&ctx->context, d, z, header_z);
3312
3313         return 0;
3314 }
3315
3316 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3317                                        struct fw_iso_packet *packet,
3318                                        struct fw_iso_buffer *buffer,
3319                                        unsigned long payload)
3320 {
3321         struct device *device = ctx->context.ohci->card.device;
3322         struct descriptor *d, *pd;
3323         dma_addr_t d_bus, page_bus;
3324         u32 z, header_z, rest;
3325         int i, j, length;
3326         int page, offset, packet_count, header_size, payload_per_buffer;
3327
3328         /*
3329          * The OHCI controller puts the isochronous header and trailer in the
3330          * buffer, so we need at least 8 bytes.
3331          */
3332         packet_count = packet->header_length / ctx->base.header_size;
3333         header_size  = max(ctx->base.header_size, (size_t)8);
3334
3335         /* Get header size in number of descriptors. */
3336         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3337         page     = payload >> PAGE_SHIFT;
3338         offset   = payload & ~PAGE_MASK;
3339         payload_per_buffer = packet->payload_length / packet_count;
3340
3341         for (i = 0; i < packet_count; i++) {
3342                 /* d points to the header descriptor */
3343                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3344                 d = context_get_descriptors(&ctx->context,
3345                                 z + header_z, &d_bus);
3346                 if (d == NULL)
3347                         return -ENOMEM;
3348
3349                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3350                                               DESCRIPTOR_INPUT_MORE);
3351                 if (packet->skip && i == 0)
3352                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3353                 d->req_count    = cpu_to_le16(header_size);
3354                 d->res_count    = d->req_count;
3355                 d->transfer_status = 0;
3356                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3357
3358                 rest = payload_per_buffer;
3359                 pd = d;
3360                 for (j = 1; j < z; j++) {
3361                         pd++;
3362                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3363                                                   DESCRIPTOR_INPUT_MORE);
3364
3365                         if (offset + rest < PAGE_SIZE)
3366                                 length = rest;
3367                         else
3368                                 length = PAGE_SIZE - offset;
3369                         pd->req_count = cpu_to_le16(length);
3370                         pd->res_count = pd->req_count;
3371                         pd->transfer_status = 0;
3372
3373                         page_bus = page_private(buffer->pages[page]);
3374                         pd->data_address = cpu_to_le32(page_bus + offset);
3375
3376                         dma_sync_single_range_for_device(device, page_bus,
3377                                                          offset, length,
3378                                                          DMA_FROM_DEVICE);
3379
3380                         offset = (offset + length) & ~PAGE_MASK;
3381                         rest -= length;
3382                         if (offset == 0)
3383                                 page++;
3384                 }
3385                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3386                                           DESCRIPTOR_INPUT_LAST |
3387                                           DESCRIPTOR_BRANCH_ALWAYS);
3388                 if (packet->interrupt && i == packet_count - 1)
3389                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3390
3391                 context_append(&ctx->context, d, z, header_z);
3392         }
3393
3394         return 0;
3395 }
3396
3397 static int queue_iso_buffer_fill(struct iso_context *ctx,
3398                                  struct fw_iso_packet *packet,
3399                                  struct fw_iso_buffer *buffer,
3400                                  unsigned long payload)
3401 {
3402         struct descriptor *d;
3403         dma_addr_t d_bus, page_bus;
3404         int page, offset, rest, z, i, length;
3405
3406         page   = payload >> PAGE_SHIFT;
3407         offset = payload & ~PAGE_MASK;
3408         rest   = packet->payload_length;
3409
3410         /* We need one descriptor for each page in the buffer. */
3411         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3412
3413         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3414                 return -EFAULT;
3415
3416         for (i = 0; i < z; i++) {
3417                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3418                 if (d == NULL)
3419                         return -ENOMEM;
3420
3421                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3422                                          DESCRIPTOR_BRANCH_ALWAYS);
3423                 if (packet->skip && i == 0)
3424                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3425                 if (packet->interrupt && i == z - 1)
3426                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3427
3428                 if (offset + rest < PAGE_SIZE)
3429                         length = rest;
3430                 else
3431                         length = PAGE_SIZE - offset;
3432                 d->req_count = cpu_to_le16(length);
3433                 d->res_count = d->req_count;
3434                 d->transfer_status = 0;
3435
3436                 page_bus = page_private(buffer->pages[page]);
3437                 d->data_address = cpu_to_le32(page_bus + offset);
3438
3439                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3440                                                  page_bus, offset, length,
3441                                                  DMA_FROM_DEVICE);
3442
3443                 rest -= length;
3444                 offset = 0;
3445                 page++;
3446
3447                 context_append(&ctx->context, d, 1, 0);
3448         }
3449
3450         return 0;
3451 }
3452
3453 static int ohci_queue_iso(struct fw_iso_context *base,
3454                           struct fw_iso_packet *packet,
3455                           struct fw_iso_buffer *buffer,
3456                           unsigned long payload)
3457 {
3458         struct iso_context *ctx = container_of(base, struct iso_context, base);
3459         unsigned long flags;
3460         int ret = -ENOSYS;
3461
3462         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3463         switch (base->type) {
3464         case FW_ISO_CONTEXT_TRANSMIT:
3465                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3466                 break;
3467         case FW_ISO_CONTEXT_RECEIVE:
3468                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3469                 break;
3470         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3471                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3472                 break;
3473         }
3474         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3475
3476         return ret;
3477 }
3478
3479 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3480 {
3481         struct context *ctx =
3482                         &container_of(base, struct iso_context, base)->context;
3483
3484         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3485 }
3486
3487 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3488 {
3489         struct iso_context *ctx = container_of(base, struct iso_context, base);
3490         int ret = 0;
3491
3492         tasklet_disable(&ctx->context.tasklet);
3493
3494         if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3495                 context_tasklet((unsigned long)&ctx->context);
3496
3497                 switch (base->type) {
3498                 case FW_ISO_CONTEXT_TRANSMIT:
3499                 case FW_ISO_CONTEXT_RECEIVE:
3500                         if (ctx->header_length != 0)
3501                                 flush_iso_completions(ctx);
3502                         break;
3503                 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3504                         if (ctx->mc_completed != 0)
3505                                 flush_ir_buffer_fill(ctx);
3506                         break;
3507                 default:
3508                         ret = -ENOSYS;
3509                 }
3510
3511                 clear_bit_unlock(0, &ctx->flushing_completions);
3512                 smp_mb__after_clear_bit();
3513         }
3514
3515         tasklet_enable(&ctx->context.tasklet);
3516
3517         return ret;
3518 }
3519
3520 static const struct fw_card_driver ohci_driver = {
3521         .enable                 = ohci_enable,
3522         .read_phy_reg           = ohci_read_phy_reg,
3523         .update_phy_reg         = ohci_update_phy_reg,
3524         .set_config_rom         = ohci_set_config_rom,
3525         .send_request           = ohci_send_request,
3526         .send_response          = ohci_send_response,
3527         .cancel_packet          = ohci_cancel_packet,
3528         .enable_phys_dma        = ohci_enable_phys_dma,
3529         .read_csr               = ohci_read_csr,
3530         .write_csr              = ohci_write_csr,
3531
3532         .allocate_iso_context   = ohci_allocate_iso_context,
3533         .free_iso_context       = ohci_free_iso_context,
3534         .set_iso_channels       = ohci_set_iso_channels,
3535         .queue_iso              = ohci_queue_iso,
3536         .flush_queue_iso        = ohci_flush_queue_iso,
3537         .flush_iso_completions  = ohci_flush_iso_completions,
3538         .start_iso              = ohci_start_iso,
3539         .stop_iso               = ohci_stop_iso,
3540 };
3541
3542 #ifdef CONFIG_PPC_PMAC
3543 static void pmac_ohci_on(struct pci_dev *dev)
3544 {
3545         if (machine_is(powermac)) {
3546                 struct device_node *ofn = pci_device_to_OF_node(dev);
3547
3548                 if (ofn) {
3549                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3550                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3551                 }
3552         }
3553 }
3554
3555 static void pmac_ohci_off(struct pci_dev *dev)
3556 {
3557         if (machine_is(powermac)) {
3558                 struct device_node *ofn = pci_device_to_OF_node(dev);
3559
3560                 if (ofn) {
3561                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3562                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3563                 }
3564         }
3565 }
3566 #else
3567 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3568 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3569 #endif /* CONFIG_PPC_PMAC */
3570
3571 static int pci_probe(struct pci_dev *dev,
3572                                const struct pci_device_id *ent)
3573 {
3574         struct fw_ohci *ohci;
3575         u32 bus_options, max_receive, link_speed, version;
3576         u64 guid;
3577         int i, err;
3578         size_t size;
3579
3580         if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3581                 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3582                 return -ENOSYS;
3583         }
3584
3585         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3586         if (ohci == NULL) {
3587                 err = -ENOMEM;
3588                 goto fail;
3589         }
3590
3591         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3592
3593         pmac_ohci_on(dev);
3594
3595         err = pci_enable_device(dev);
3596         if (err) {
3597                 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3598                 goto fail_free;
3599         }
3600
3601         pci_set_master(dev);
3602         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3603         pci_set_drvdata(dev, ohci);
3604
3605         spin_lock_init(&ohci->lock);
3606         mutex_init(&ohci->phy_reg_mutex);
3607
3608         INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3609
3610         if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3611             pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3612                 ohci_err(ohci, "invalid MMIO resource\n");
3613                 err = -ENXIO;
3614                 goto fail_disable;
3615         }
3616
3617         err = pci_request_region(dev, 0, ohci_driver_name);
3618         if (err) {
3619                 ohci_err(ohci, "MMIO resource unavailable\n");
3620                 goto fail_disable;
3621         }
3622
3623         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3624         if (ohci->registers == NULL) {
3625                 ohci_err(ohci, "failed to remap registers\n");
3626                 err = -ENXIO;
3627                 goto fail_iomem;
3628         }
3629
3630         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3631                 if ((ohci_quirks[i].vendor == dev->vendor) &&
3632                     (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3633                      ohci_quirks[i].device == dev->device) &&
3634                     (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3635                      ohci_quirks[i].revision >= dev->revision)) {
3636                         ohci->quirks = ohci_quirks[i].flags;
3637                         break;
3638                 }
3639         if (param_quirks)
3640                 ohci->quirks = param_quirks;
3641
3642         /*
3643          * Because dma_alloc_coherent() allocates at least one page,
3644          * we save space by using a common buffer for the AR request/
3645          * response descriptors and the self IDs buffer.
3646          */
3647         BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3648         BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3649         ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3650                                                PAGE_SIZE,
3651                                                &ohci->misc_buffer_bus,
3652                                                GFP_KERNEL);
3653         if (!ohci->misc_buffer) {
3654                 err = -ENOMEM;
3655                 goto fail_iounmap;
3656         }
3657
3658         err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3659                               OHCI1394_AsReqRcvContextControlSet);
3660         if (err < 0)
3661                 goto fail_misc_buf;
3662
3663         err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3664                               OHCI1394_AsRspRcvContextControlSet);
3665         if (err < 0)
3666                 goto fail_arreq_ctx;
3667
3668         err = context_init(&ohci->at_request_ctx, ohci,
3669                            OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3670         if (err < 0)
3671                 goto fail_arrsp_ctx;
3672
3673         err = context_init(&ohci->at_response_ctx, ohci,
3674                            OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3675         if (err < 0)
3676                 goto fail_atreq_ctx;
3677
3678         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3679         ohci->ir_context_channels = ~0ULL;
3680         ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3681         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3682         ohci->ir_context_mask = ohci->ir_context_support;
3683         ohci->n_ir = hweight32(ohci->ir_context_mask);
3684         size = sizeof(struct iso_context) * ohci->n_ir;
3685         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3686
3687         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3688         ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3689         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3690         ohci->it_context_mask = ohci->it_context_support;
3691         ohci->n_it = hweight32(ohci->it_context_mask);
3692         size = sizeof(struct iso_context) * ohci->n_it;
3693         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3694
3695         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3696                 err = -ENOMEM;
3697                 goto fail_contexts;
3698         }
3699
3700         ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3701         ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3702
3703         bus_options = reg_read(ohci, OHCI1394_BusOptions);
3704         max_receive = (bus_options >> 12) & 0xf;
3705         link_speed = bus_options & 0x7;
3706         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3707                 reg_read(ohci, OHCI1394_GUIDLo);
3708
3709         if (!(ohci->quirks & QUIRK_NO_MSI))
3710                 pci_enable_msi(dev);
3711         if (request_irq(dev->irq, irq_handler,
3712                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3713                         ohci_driver_name, ohci)) {
3714                 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3715                 err = -EIO;
3716                 goto fail_msi;
3717         }
3718
3719         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3720         if (err)
3721                 goto fail_irq;
3722
3723         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3724         ohci_notice(ohci,
3725                     "added OHCI v%x.%x device as card %d, "
3726                     "%d IR + %d IT contexts, quirks 0x%x%s\n",
3727                     version >> 16, version & 0xff, ohci->card.index,
3728                     ohci->n_ir, ohci->n_it, ohci->quirks,
3729                     reg_read(ohci, OHCI1394_PhyUpperBound) ?
3730                         ", >4 GB phys DMA" : "");
3731
3732         return 0;
3733
3734  fail_irq:
3735         free_irq(dev->irq, ohci);
3736  fail_msi:
3737         pci_disable_msi(dev);
3738  fail_contexts:
3739         kfree(ohci->ir_context_list);
3740         kfree(ohci->it_context_list);
3741         context_release(&ohci->at_response_ctx);
3742  fail_atreq_ctx:
3743         context_release(&ohci->at_request_ctx);
3744  fail_arrsp_ctx:
3745         ar_context_release(&ohci->ar_response_ctx);
3746  fail_arreq_ctx:
3747         ar_context_release(&ohci->ar_request_ctx);
3748  fail_misc_buf:
3749         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3750                           ohci->misc_buffer, ohci->misc_buffer_bus);
3751  fail_iounmap:
3752         pci_iounmap(dev, ohci->registers);
3753  fail_iomem:
3754         pci_release_region(dev, 0);
3755  fail_disable:
3756         pci_disable_device(dev);
3757  fail_free:
3758         kfree(ohci);
3759         pmac_ohci_off(dev);
3760  fail:
3761         return err;
3762 }
3763
3764 static void pci_remove(struct pci_dev *dev)
3765 {
3766         struct fw_ohci *ohci = pci_get_drvdata(dev);
3767
3768         /*
3769          * If the removal is happening from the suspend state, LPS won't be
3770          * enabled and host registers (eg., IntMaskClear) won't be accessible.
3771          */
3772         if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3773                 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3774                 flush_writes(ohci);
3775         }
3776         cancel_work_sync(&ohci->bus_reset_work);
3777         fw_core_remove_card(&ohci->card);
3778
3779         /*
3780          * FIXME: Fail all pending packets here, now that the upper
3781          * layers can't queue any more.
3782          */
3783
3784         software_reset(ohci);
3785         free_irq(dev->irq, ohci);
3786
3787         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3788                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3789                                   ohci->next_config_rom, ohci->next_config_rom_bus);
3790         if (ohci->config_rom)
3791                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3792                                   ohci->config_rom, ohci->config_rom_bus);
3793         ar_context_release(&ohci->ar_request_ctx);
3794         ar_context_release(&ohci->ar_response_ctx);
3795         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3796                           ohci->misc_buffer, ohci->misc_buffer_bus);
3797         context_release(&ohci->at_request_ctx);
3798         context_release(&ohci->at_response_ctx);
3799         kfree(ohci->it_context_list);
3800         kfree(ohci->ir_context_list);
3801         pci_disable_msi(dev);
3802         pci_iounmap(dev, ohci->registers);
3803         pci_release_region(dev, 0);
3804         pci_disable_device(dev);
3805         kfree(ohci);
3806         pmac_ohci_off(dev);
3807
3808         dev_notice(&dev->dev, "removed fw-ohci device\n");
3809 }
3810
3811 #ifdef CONFIG_PM
3812 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3813 {
3814         struct fw_ohci *ohci = pci_get_drvdata(dev);
3815         int err;
3816
3817         software_reset(ohci);
3818         err = pci_save_state(dev);
3819         if (err) {
3820                 ohci_err(ohci, "pci_save_state failed\n");
3821                 return err;
3822         }
3823         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3824         if (err)
3825                 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3826         pmac_ohci_off(dev);
3827
3828         return 0;
3829 }
3830
3831 static int pci_resume(struct pci_dev *dev)
3832 {
3833         struct fw_ohci *ohci = pci_get_drvdata(dev);
3834         int err;
3835
3836         pmac_ohci_on(dev);
3837         pci_set_power_state(dev, PCI_D0);
3838         pci_restore_state(dev);
3839         err = pci_enable_device(dev);
3840         if (err) {
3841                 ohci_err(ohci, "pci_enable_device failed\n");
3842                 return err;
3843         }
3844
3845         /* Some systems don't setup GUID register on resume from ram  */
3846         if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3847                                         !reg_read(ohci, OHCI1394_GUIDHi)) {
3848                 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3849                 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3850         }
3851
3852         err = ohci_enable(&ohci->card, NULL, 0);
3853         if (err)
3854                 return err;
3855
3856         ohci_resume_iso_dma(ohci);
3857
3858         return 0;
3859 }
3860 #endif
3861
3862 static const struct pci_device_id pci_table[] = {
3863         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3864         { }
3865 };
3866
3867 MODULE_DEVICE_TABLE(pci, pci_table);
3868
3869 static struct pci_driver fw_ohci_pci_driver = {
3870         .name           = ohci_driver_name,
3871         .id_table       = pci_table,
3872         .probe          = pci_probe,
3873         .remove         = pci_remove,
3874 #ifdef CONFIG_PM
3875         .resume         = pci_resume,
3876         .suspend        = pci_suspend,
3877 #endif
3878 };
3879
3880 static int __init fw_ohci_init(void)
3881 {
3882         selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3883         if (!selfid_workqueue)
3884                 return -ENOMEM;
3885
3886         return pci_register_driver(&fw_ohci_pci_driver);
3887 }
3888
3889 static void __exit fw_ohci_cleanup(void)
3890 {
3891         pci_unregister_driver(&fw_ohci_pci_driver);
3892         destroy_workqueue(selfid_workqueue);
3893 }
3894
3895 module_init(fw_ohci_init);
3896 module_exit(fw_ohci_cleanup);
3897
3898 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3899 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3900 MODULE_LICENSE("GPL");
3901
3902 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3903 MODULE_ALIAS("ohci1394");