Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
46
47 #include <asm/byteorder.h>
48 #include <asm/page.h>
49
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
53
54 #include "core.h"
55 #include "ohci.h"
56
57 #define ohci_info(ohci, f, args...)     dev_info(ohci->card.device, f, ##args)
58 #define ohci_notice(ohci, f, args...)   dev_notice(ohci->card.device, f, ##args)
59 #define ohci_err(ohci, f, args...)      dev_err(ohci->card.device, f, ##args)
60
61 #define DESCRIPTOR_OUTPUT_MORE          0
62 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
63 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
64 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
65 #define DESCRIPTOR_STATUS               (1 << 11)
66 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
67 #define DESCRIPTOR_PING                 (1 << 7)
68 #define DESCRIPTOR_YY                   (1 << 6)
69 #define DESCRIPTOR_NO_IRQ               (0 << 4)
70 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
71 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
72 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
73 #define DESCRIPTOR_WAIT                 (3 << 0)
74
75 #define DESCRIPTOR_CMD                  (0xf << 12)
76
77 struct descriptor {
78         __le16 req_count;
79         __le16 control;
80         __le32 data_address;
81         __le32 branch_address;
82         __le16 res_count;
83         __le16 transfer_status;
84 } __attribute__((aligned(16)));
85
86 #define CONTROL_SET(regs)       (regs)
87 #define CONTROL_CLEAR(regs)     ((regs) + 4)
88 #define COMMAND_PTR(regs)       ((regs) + 12)
89 #define CONTEXT_MATCH(regs)     ((regs) + 16)
90
91 #define AR_BUFFER_SIZE  (32*1024)
92 #define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
93 /* we need at least two pages for proper list management */
94 #define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
95
96 #define MAX_ASYNC_PAYLOAD       4096
97 #define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
98 #define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
99
100 struct ar_context {
101         struct fw_ohci *ohci;
102         struct page *pages[AR_BUFFERS];
103         void *buffer;
104         struct descriptor *descriptors;
105         dma_addr_t descriptors_bus;
106         void *pointer;
107         unsigned int last_buffer_index;
108         u32 regs;
109         struct tasklet_struct tasklet;
110 };
111
112 struct context;
113
114 typedef int (*descriptor_callback_t)(struct context *ctx,
115                                      struct descriptor *d,
116                                      struct descriptor *last);
117
118 /*
119  * A buffer that contains a block of DMA-able coherent memory used for
120  * storing a portion of a DMA descriptor program.
121  */
122 struct descriptor_buffer {
123         struct list_head list;
124         dma_addr_t buffer_bus;
125         size_t buffer_size;
126         size_t used;
127         struct descriptor buffer[0];
128 };
129
130 struct context {
131         struct fw_ohci *ohci;
132         u32 regs;
133         int total_allocation;
134         u32 current_bus;
135         bool running;
136         bool flushing;
137
138         /*
139          * List of page-sized buffers for storing DMA descriptors.
140          * Head of list contains buffers in use and tail of list contains
141          * free buffers.
142          */
143         struct list_head buffer_list;
144
145         /*
146          * Pointer to a buffer inside buffer_list that contains the tail
147          * end of the current DMA program.
148          */
149         struct descriptor_buffer *buffer_tail;
150
151         /*
152          * The descriptor containing the branch address of the first
153          * descriptor that has not yet been filled by the device.
154          */
155         struct descriptor *last;
156
157         /*
158          * The last descriptor block in the DMA program. It contains the branch
159          * address that must be updated upon appending a new descriptor.
160          */
161         struct descriptor *prev;
162         int prev_z;
163
164         descriptor_callback_t callback;
165
166         struct tasklet_struct tasklet;
167 };
168
169 #define IT_HEADER_SY(v)          ((v) <<  0)
170 #define IT_HEADER_TCODE(v)       ((v) <<  4)
171 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
172 #define IT_HEADER_TAG(v)         ((v) << 14)
173 #define IT_HEADER_SPEED(v)       ((v) << 16)
174 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
175
176 struct iso_context {
177         struct fw_iso_context base;
178         struct context context;
179         void *header;
180         size_t header_length;
181         unsigned long flushing_completions;
182         u32 mc_buffer_bus;
183         u16 mc_completed;
184         u16 last_timestamp;
185         u8 sync;
186         u8 tags;
187 };
188
189 #define CONFIG_ROM_SIZE 1024
190
191 struct fw_ohci {
192         struct fw_card card;
193
194         __iomem char *registers;
195         int node_id;
196         int generation;
197         int request_generation; /* for timestamping incoming requests */
198         unsigned quirks;
199         unsigned int pri_req_max;
200         u32 bus_time;
201         bool bus_time_running;
202         bool is_root;
203         bool csr_state_setclear_abdicate;
204         int n_ir;
205         int n_it;
206         /*
207          * Spinlock for accessing fw_ohci data.  Never call out of
208          * this driver with this lock held.
209          */
210         spinlock_t lock;
211
212         struct mutex phy_reg_mutex;
213
214         void *misc_buffer;
215         dma_addr_t misc_buffer_bus;
216
217         struct ar_context ar_request_ctx;
218         struct ar_context ar_response_ctx;
219         struct context at_request_ctx;
220         struct context at_response_ctx;
221
222         u32 it_context_support;
223         u32 it_context_mask;     /* unoccupied IT contexts */
224         struct iso_context *it_context_list;
225         u64 ir_context_channels; /* unoccupied channels */
226         u32 ir_context_support;
227         u32 ir_context_mask;     /* unoccupied IR contexts */
228         struct iso_context *ir_context_list;
229         u64 mc_channels; /* channels in use by the multichannel IR context */
230         bool mc_allocated;
231
232         __be32    *config_rom;
233         dma_addr_t config_rom_bus;
234         __be32    *next_config_rom;
235         dma_addr_t next_config_rom_bus;
236         __be32     next_header;
237
238         __le32    *self_id;
239         dma_addr_t self_id_bus;
240         struct work_struct bus_reset_work;
241
242         u32 self_id_buffer[512];
243 };
244
245 static struct workqueue_struct *selfid_workqueue;
246
247 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
248 {
249         return container_of(card, struct fw_ohci, card);
250 }
251
252 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
253 #define IR_CONTEXT_BUFFER_FILL          0x80000000
254 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
255 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
256 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
257 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
258
259 #define CONTEXT_RUN     0x8000
260 #define CONTEXT_WAKE    0x1000
261 #define CONTEXT_DEAD    0x0800
262 #define CONTEXT_ACTIVE  0x0400
263
264 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
265 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
266 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
267
268 #define OHCI1394_REGISTER_SIZE          0x800
269 #define OHCI1394_PCI_HCI_Control        0x40
270 #define SELF_ID_BUF_SIZE                0x800
271 #define OHCI_TCODE_PHY_PACKET           0x0e
272 #define OHCI_VERSION_1_1                0x010010
273
274 static char ohci_driver_name[] = KBUILD_MODNAME;
275
276 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
277 #define PCI_DEVICE_ID_AGERE_FW643       0x5901
278 #define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
279 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
280 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
281 #define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
282 #define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
283 #define PCI_DEVICE_ID_VIA_VT630X        0x3044
284 #define PCI_REV_ID_VIA_VT6306           0x46
285 #define PCI_DEVICE_ID_VIA_VT6315        0x3403
286
287 #define QUIRK_CYCLE_TIMER               0x1
288 #define QUIRK_RESET_PACKET              0x2
289 #define QUIRK_BE_HEADERS                0x4
290 #define QUIRK_NO_1394A                  0x8
291 #define QUIRK_NO_MSI                    0x10
292 #define QUIRK_TI_SLLZ059                0x20
293 #define QUIRK_IR_WAKE                   0x40
294
295 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
296 static const struct {
297         unsigned short vendor, device, revision, flags;
298 } ohci_quirks[] = {
299         {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
300                 QUIRK_CYCLE_TIMER},
301
302         {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
303                 QUIRK_BE_HEADERS},
304
305         {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
306                 QUIRK_NO_MSI},
307
308         {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
309                 QUIRK_RESET_PACKET},
310
311         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
312                 QUIRK_NO_MSI},
313
314         {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
315                 QUIRK_CYCLE_TIMER},
316
317         {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
318                 QUIRK_NO_MSI},
319
320         {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
321                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
322
323         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
324                 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
325
326         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
327                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
328
329         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
330                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
331
332         {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
333                 QUIRK_RESET_PACKET},
334
335         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
336                 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
337
338         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
339                 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
340
341         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
342                 QUIRK_NO_MSI},
343
344         {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
345                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
346 };
347
348 /* This overrides anything that was found in ohci_quirks[]. */
349 static int param_quirks;
350 module_param_named(quirks, param_quirks, int, 0644);
351 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
352         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
353         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
354         ", AR/selfID endianness = "     __stringify(QUIRK_BE_HEADERS)
355         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
356         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
357         ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
358         ", IR wake unreliable = "       __stringify(QUIRK_IR_WAKE)
359         ")");
360
361 #define OHCI_PARAM_DEBUG_AT_AR          1
362 #define OHCI_PARAM_DEBUG_SELFIDS        2
363 #define OHCI_PARAM_DEBUG_IRQS           4
364 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
365
366 static int param_debug;
367 module_param_named(debug, param_debug, int, 0644);
368 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
369         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
370         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
371         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
372         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
373         ", or a combination, or all = -1)");
374
375 static bool param_remote_dma;
376 module_param_named(remote_dma, param_remote_dma, bool, 0444);
377 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
378
379 static void log_irqs(struct fw_ohci *ohci, u32 evt)
380 {
381         if (likely(!(param_debug &
382                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
383                 return;
384
385         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
386             !(evt & OHCI1394_busReset))
387                 return;
388
389         ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
390             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
391             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
392             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
393             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
394             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
395             evt & OHCI1394_isochRx              ? " IR"                 : "",
396             evt & OHCI1394_isochTx              ? " IT"                 : "",
397             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
398             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
399             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
400             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
401             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
402             evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
403             evt & OHCI1394_busReset             ? " busReset"           : "",
404             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
405                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
406                     OHCI1394_respTxComplete | OHCI1394_isochRx |
407                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
408                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
409                     OHCI1394_cycleInconsistent |
410                     OHCI1394_regAccessFail | OHCI1394_busReset)
411                                                 ? " ?"                  : "");
412 }
413
414 static const char *speed[] = {
415         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
416 };
417 static const char *power[] = {
418         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
419         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
420 };
421 static const char port[] = { '.', '-', 'p', 'c', };
422
423 static char _p(u32 *s, int shift)
424 {
425         return port[*s >> shift & 3];
426 }
427
428 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
429 {
430         u32 *s;
431
432         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
433                 return;
434
435         ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
436                     self_id_count, generation, ohci->node_id);
437
438         for (s = ohci->self_id_buffer; self_id_count--; ++s)
439                 if ((*s & 1 << 23) == 0)
440                         ohci_notice(ohci,
441                             "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
442                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
443                             speed[*s >> 14 & 3], *s >> 16 & 63,
444                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
445                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
446                 else
447                         ohci_notice(ohci,
448                             "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
449                             *s, *s >> 24 & 63,
450                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
451                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
452 }
453
454 static const char *evts[] = {
455         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
456         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
457         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
458         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
459         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
460         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
461         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
462         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
463         [0x10] = "-reserved-",          [0x11] = "ack_complete",
464         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
465         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
466         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
467         [0x18] = "-reserved-",          [0x19] = "-reserved-",
468         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
469         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
470         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
471         [0x20] = "pending/cancelled",
472 };
473 static const char *tcodes[] = {
474         [0x0] = "QW req",               [0x1] = "BW req",
475         [0x2] = "W resp",               [0x3] = "-reserved-",
476         [0x4] = "QR req",               [0x5] = "BR req",
477         [0x6] = "QR resp",              [0x7] = "BR resp",
478         [0x8] = "cycle start",          [0x9] = "Lk req",
479         [0xa] = "async stream packet",  [0xb] = "Lk resp",
480         [0xc] = "-reserved-",           [0xd] = "-reserved-",
481         [0xe] = "link internal",        [0xf] = "-reserved-",
482 };
483
484 static void log_ar_at_event(struct fw_ohci *ohci,
485                             char dir, int speed, u32 *header, int evt)
486 {
487         int tcode = header[0] >> 4 & 0xf;
488         char specific[12];
489
490         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
491                 return;
492
493         if (unlikely(evt >= ARRAY_SIZE(evts)))
494                         evt = 0x1f;
495
496         if (evt == OHCI1394_evt_bus_reset) {
497                 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
498                             dir, (header[2] >> 16) & 0xff);
499                 return;
500         }
501
502         switch (tcode) {
503         case 0x0: case 0x6: case 0x8:
504                 snprintf(specific, sizeof(specific), " = %08x",
505                          be32_to_cpu((__force __be32)header[3]));
506                 break;
507         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
508                 snprintf(specific, sizeof(specific), " %x,%x",
509                          header[3] >> 16, header[3] & 0xffff);
510                 break;
511         default:
512                 specific[0] = '\0';
513         }
514
515         switch (tcode) {
516         case 0xa:
517                 ohci_notice(ohci, "A%c %s, %s\n",
518                             dir, evts[evt], tcodes[tcode]);
519                 break;
520         case 0xe:
521                 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
522                             dir, evts[evt], header[1], header[2]);
523                 break;
524         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
525                 ohci_notice(ohci,
526                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
527                             dir, speed, header[0] >> 10 & 0x3f,
528                             header[1] >> 16, header[0] >> 16, evts[evt],
529                             tcodes[tcode], header[1] & 0xffff, header[2], specific);
530                 break;
531         default:
532                 ohci_notice(ohci,
533                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
534                             dir, speed, header[0] >> 10 & 0x3f,
535                             header[1] >> 16, header[0] >> 16, evts[evt],
536                             tcodes[tcode], specific);
537         }
538 }
539
540 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
541 {
542         writel(data, ohci->registers + offset);
543 }
544
545 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
546 {
547         return readl(ohci->registers + offset);
548 }
549
550 static inline void flush_writes(const struct fw_ohci *ohci)
551 {
552         /* Do a dummy read to flush writes. */
553         reg_read(ohci, OHCI1394_Version);
554 }
555
556 /*
557  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
558  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
559  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
560  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
561  */
562 static int read_phy_reg(struct fw_ohci *ohci, int addr)
563 {
564         u32 val;
565         int i;
566
567         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
568         for (i = 0; i < 3 + 100; i++) {
569                 val = reg_read(ohci, OHCI1394_PhyControl);
570                 if (!~val)
571                         return -ENODEV; /* Card was ejected. */
572
573                 if (val & OHCI1394_PhyControl_ReadDone)
574                         return OHCI1394_PhyControl_ReadData(val);
575
576                 /*
577                  * Try a few times without waiting.  Sleeping is necessary
578                  * only when the link/PHY interface is busy.
579                  */
580                 if (i >= 3)
581                         msleep(1);
582         }
583         ohci_err(ohci, "failed to read phy reg %d\n", addr);
584         dump_stack();
585
586         return -EBUSY;
587 }
588
589 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
590 {
591         int i;
592
593         reg_write(ohci, OHCI1394_PhyControl,
594                   OHCI1394_PhyControl_Write(addr, val));
595         for (i = 0; i < 3 + 100; i++) {
596                 val = reg_read(ohci, OHCI1394_PhyControl);
597                 if (!~val)
598                         return -ENODEV; /* Card was ejected. */
599
600                 if (!(val & OHCI1394_PhyControl_WritePending))
601                         return 0;
602
603                 if (i >= 3)
604                         msleep(1);
605         }
606         ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
607         dump_stack();
608
609         return -EBUSY;
610 }
611
612 static int update_phy_reg(struct fw_ohci *ohci, int addr,
613                           int clear_bits, int set_bits)
614 {
615         int ret = read_phy_reg(ohci, addr);
616         if (ret < 0)
617                 return ret;
618
619         /*
620          * The interrupt status bits are cleared by writing a one bit.
621          * Avoid clearing them unless explicitly requested in set_bits.
622          */
623         if (addr == 5)
624                 clear_bits |= PHY_INT_STATUS_BITS;
625
626         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
627 }
628
629 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
630 {
631         int ret;
632
633         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
634         if (ret < 0)
635                 return ret;
636
637         return read_phy_reg(ohci, addr);
638 }
639
640 static int ohci_read_phy_reg(struct fw_card *card, int addr)
641 {
642         struct fw_ohci *ohci = fw_ohci(card);
643         int ret;
644
645         mutex_lock(&ohci->phy_reg_mutex);
646         ret = read_phy_reg(ohci, addr);
647         mutex_unlock(&ohci->phy_reg_mutex);
648
649         return ret;
650 }
651
652 static int ohci_update_phy_reg(struct fw_card *card, int addr,
653                                int clear_bits, int set_bits)
654 {
655         struct fw_ohci *ohci = fw_ohci(card);
656         int ret;
657
658         mutex_lock(&ohci->phy_reg_mutex);
659         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
660         mutex_unlock(&ohci->phy_reg_mutex);
661
662         return ret;
663 }
664
665 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
666 {
667         return page_private(ctx->pages[i]);
668 }
669
670 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
671 {
672         struct descriptor *d;
673
674         d = &ctx->descriptors[index];
675         d->branch_address  &= cpu_to_le32(~0xf);
676         d->res_count       =  cpu_to_le16(PAGE_SIZE);
677         d->transfer_status =  0;
678
679         wmb(); /* finish init of new descriptors before branch_address update */
680         d = &ctx->descriptors[ctx->last_buffer_index];
681         d->branch_address  |= cpu_to_le32(1);
682
683         ctx->last_buffer_index = index;
684
685         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
686 }
687
688 static void ar_context_release(struct ar_context *ctx)
689 {
690         unsigned int i;
691
692         vunmap(ctx->buffer);
693
694         for (i = 0; i < AR_BUFFERS; i++)
695                 if (ctx->pages[i]) {
696                         dma_unmap_page(ctx->ohci->card.device,
697                                        ar_buffer_bus(ctx, i),
698                                        PAGE_SIZE, DMA_FROM_DEVICE);
699                         __free_page(ctx->pages[i]);
700                 }
701 }
702
703 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
704 {
705         struct fw_ohci *ohci = ctx->ohci;
706
707         if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
708                 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
709                 flush_writes(ohci);
710
711                 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
712         }
713         /* FIXME: restart? */
714 }
715
716 static inline unsigned int ar_next_buffer_index(unsigned int index)
717 {
718         return (index + 1) % AR_BUFFERS;
719 }
720
721 static inline unsigned int ar_prev_buffer_index(unsigned int index)
722 {
723         return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
724 }
725
726 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
727 {
728         return ar_next_buffer_index(ctx->last_buffer_index);
729 }
730
731 /*
732  * We search for the buffer that contains the last AR packet DMA data written
733  * by the controller.
734  */
735 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
736                                                  unsigned int *buffer_offset)
737 {
738         unsigned int i, next_i, last = ctx->last_buffer_index;
739         __le16 res_count, next_res_count;
740
741         i = ar_first_buffer_index(ctx);
742         res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
743
744         /* A buffer that is not yet completely filled must be the last one. */
745         while (i != last && res_count == 0) {
746
747                 /* Peek at the next descriptor. */
748                 next_i = ar_next_buffer_index(i);
749                 rmb(); /* read descriptors in order */
750                 next_res_count = ACCESS_ONCE(
751                                 ctx->descriptors[next_i].res_count);
752                 /*
753                  * If the next descriptor is still empty, we must stop at this
754                  * descriptor.
755                  */
756                 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
757                         /*
758                          * The exception is when the DMA data for one packet is
759                          * split over three buffers; in this case, the middle
760                          * buffer's descriptor might be never updated by the
761                          * controller and look still empty, and we have to peek
762                          * at the third one.
763                          */
764                         if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
765                                 next_i = ar_next_buffer_index(next_i);
766                                 rmb();
767                                 next_res_count = ACCESS_ONCE(
768                                         ctx->descriptors[next_i].res_count);
769                                 if (next_res_count != cpu_to_le16(PAGE_SIZE))
770                                         goto next_buffer_is_active;
771                         }
772
773                         break;
774                 }
775
776 next_buffer_is_active:
777                 i = next_i;
778                 res_count = next_res_count;
779         }
780
781         rmb(); /* read res_count before the DMA data */
782
783         *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
784         if (*buffer_offset > PAGE_SIZE) {
785                 *buffer_offset = 0;
786                 ar_context_abort(ctx, "corrupted descriptor");
787         }
788
789         return i;
790 }
791
792 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
793                                     unsigned int end_buffer_index,
794                                     unsigned int end_buffer_offset)
795 {
796         unsigned int i;
797
798         i = ar_first_buffer_index(ctx);
799         while (i != end_buffer_index) {
800                 dma_sync_single_for_cpu(ctx->ohci->card.device,
801                                         ar_buffer_bus(ctx, i),
802                                         PAGE_SIZE, DMA_FROM_DEVICE);
803                 i = ar_next_buffer_index(i);
804         }
805         if (end_buffer_offset > 0)
806                 dma_sync_single_for_cpu(ctx->ohci->card.device,
807                                         ar_buffer_bus(ctx, i),
808                                         end_buffer_offset, DMA_FROM_DEVICE);
809 }
810
811 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
812 #define cond_le32_to_cpu(v) \
813         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
814 #else
815 #define cond_le32_to_cpu(v) le32_to_cpu(v)
816 #endif
817
818 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
819 {
820         struct fw_ohci *ohci = ctx->ohci;
821         struct fw_packet p;
822         u32 status, length, tcode;
823         int evt;
824
825         p.header[0] = cond_le32_to_cpu(buffer[0]);
826         p.header[1] = cond_le32_to_cpu(buffer[1]);
827         p.header[2] = cond_le32_to_cpu(buffer[2]);
828
829         tcode = (p.header[0] >> 4) & 0x0f;
830         switch (tcode) {
831         case TCODE_WRITE_QUADLET_REQUEST:
832         case TCODE_READ_QUADLET_RESPONSE:
833                 p.header[3] = (__force __u32) buffer[3];
834                 p.header_length = 16;
835                 p.payload_length = 0;
836                 break;
837
838         case TCODE_READ_BLOCK_REQUEST :
839                 p.header[3] = cond_le32_to_cpu(buffer[3]);
840                 p.header_length = 16;
841                 p.payload_length = 0;
842                 break;
843
844         case TCODE_WRITE_BLOCK_REQUEST:
845         case TCODE_READ_BLOCK_RESPONSE:
846         case TCODE_LOCK_REQUEST:
847         case TCODE_LOCK_RESPONSE:
848                 p.header[3] = cond_le32_to_cpu(buffer[3]);
849                 p.header_length = 16;
850                 p.payload_length = p.header[3] >> 16;
851                 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
852                         ar_context_abort(ctx, "invalid packet length");
853                         return NULL;
854                 }
855                 break;
856
857         case TCODE_WRITE_RESPONSE:
858         case TCODE_READ_QUADLET_REQUEST:
859         case OHCI_TCODE_PHY_PACKET:
860                 p.header_length = 12;
861                 p.payload_length = 0;
862                 break;
863
864         default:
865                 ar_context_abort(ctx, "invalid tcode");
866                 return NULL;
867         }
868
869         p.payload = (void *) buffer + p.header_length;
870
871         /* FIXME: What to do about evt_* errors? */
872         length = (p.header_length + p.payload_length + 3) / 4;
873         status = cond_le32_to_cpu(buffer[length]);
874         evt    = (status >> 16) & 0x1f;
875
876         p.ack        = evt - 16;
877         p.speed      = (status >> 21) & 0x7;
878         p.timestamp  = status & 0xffff;
879         p.generation = ohci->request_generation;
880
881         log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
882
883         /*
884          * Several controllers, notably from NEC and VIA, forget to
885          * write ack_complete status at PHY packet reception.
886          */
887         if (evt == OHCI1394_evt_no_status &&
888             (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
889                 p.ack = ACK_COMPLETE;
890
891         /*
892          * The OHCI bus reset handler synthesizes a PHY packet with
893          * the new generation number when a bus reset happens (see
894          * section 8.4.2.3).  This helps us determine when a request
895          * was received and make sure we send the response in the same
896          * generation.  We only need this for requests; for responses
897          * we use the unique tlabel for finding the matching
898          * request.
899          *
900          * Alas some chips sometimes emit bus reset packets with a
901          * wrong generation.  We set the correct generation for these
902          * at a slightly incorrect time (in bus_reset_work).
903          */
904         if (evt == OHCI1394_evt_bus_reset) {
905                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
906                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
907         } else if (ctx == &ohci->ar_request_ctx) {
908                 fw_core_handle_request(&ohci->card, &p);
909         } else {
910                 fw_core_handle_response(&ohci->card, &p);
911         }
912
913         return buffer + length + 1;
914 }
915
916 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
917 {
918         void *next;
919
920         while (p < end) {
921                 next = handle_ar_packet(ctx, p);
922                 if (!next)
923                         return p;
924                 p = next;
925         }
926
927         return p;
928 }
929
930 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
931 {
932         unsigned int i;
933
934         i = ar_first_buffer_index(ctx);
935         while (i != end_buffer) {
936                 dma_sync_single_for_device(ctx->ohci->card.device,
937                                            ar_buffer_bus(ctx, i),
938                                            PAGE_SIZE, DMA_FROM_DEVICE);
939                 ar_context_link_page(ctx, i);
940                 i = ar_next_buffer_index(i);
941         }
942 }
943
944 static void ar_context_tasklet(unsigned long data)
945 {
946         struct ar_context *ctx = (struct ar_context *)data;
947         unsigned int end_buffer_index, end_buffer_offset;
948         void *p, *end;
949
950         p = ctx->pointer;
951         if (!p)
952                 return;
953
954         end_buffer_index = ar_search_last_active_buffer(ctx,
955                                                         &end_buffer_offset);
956         ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
957         end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
958
959         if (end_buffer_index < ar_first_buffer_index(ctx)) {
960                 /*
961                  * The filled part of the overall buffer wraps around; handle
962                  * all packets up to the buffer end here.  If the last packet
963                  * wraps around, its tail will be visible after the buffer end
964                  * because the buffer start pages are mapped there again.
965                  */
966                 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
967                 p = handle_ar_packets(ctx, p, buffer_end);
968                 if (p < buffer_end)
969                         goto error;
970                 /* adjust p to point back into the actual buffer */
971                 p -= AR_BUFFERS * PAGE_SIZE;
972         }
973
974         p = handle_ar_packets(ctx, p, end);
975         if (p != end) {
976                 if (p > end)
977                         ar_context_abort(ctx, "inconsistent descriptor");
978                 goto error;
979         }
980
981         ctx->pointer = p;
982         ar_recycle_buffers(ctx, end_buffer_index);
983
984         return;
985
986 error:
987         ctx->pointer = NULL;
988 }
989
990 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
991                            unsigned int descriptors_offset, u32 regs)
992 {
993         unsigned int i;
994         dma_addr_t dma_addr;
995         struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
996         struct descriptor *d;
997
998         ctx->regs        = regs;
999         ctx->ohci        = ohci;
1000         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1001
1002         for (i = 0; i < AR_BUFFERS; i++) {
1003                 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
1004                 if (!ctx->pages[i])
1005                         goto out_of_memory;
1006                 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
1007                                         0, PAGE_SIZE, DMA_FROM_DEVICE);
1008                 if (dma_mapping_error(ohci->card.device, dma_addr)) {
1009                         __free_page(ctx->pages[i]);
1010                         ctx->pages[i] = NULL;
1011                         goto out_of_memory;
1012                 }
1013                 set_page_private(ctx->pages[i], dma_addr);
1014         }
1015
1016         for (i = 0; i < AR_BUFFERS; i++)
1017                 pages[i]              = ctx->pages[i];
1018         for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1019                 pages[AR_BUFFERS + i] = ctx->pages[i];
1020         ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1021         if (!ctx->buffer)
1022                 goto out_of_memory;
1023
1024         ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1025         ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1026
1027         for (i = 0; i < AR_BUFFERS; i++) {
1028                 d = &ctx->descriptors[i];
1029                 d->req_count      = cpu_to_le16(PAGE_SIZE);
1030                 d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1031                                                 DESCRIPTOR_STATUS |
1032                                                 DESCRIPTOR_BRANCH_ALWAYS);
1033                 d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1034                 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1035                         ar_next_buffer_index(i) * sizeof(struct descriptor));
1036         }
1037
1038         return 0;
1039
1040 out_of_memory:
1041         ar_context_release(ctx);
1042
1043         return -ENOMEM;
1044 }
1045
1046 static void ar_context_run(struct ar_context *ctx)
1047 {
1048         unsigned int i;
1049
1050         for (i = 0; i < AR_BUFFERS; i++)
1051                 ar_context_link_page(ctx, i);
1052
1053         ctx->pointer = ctx->buffer;
1054
1055         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1056         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1057 }
1058
1059 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1060 {
1061         __le16 branch;
1062
1063         branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1064
1065         /* figure out which descriptor the branch address goes in */
1066         if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1067                 return d;
1068         else
1069                 return d + z - 1;
1070 }
1071
1072 static void context_tasklet(unsigned long data)
1073 {
1074         struct context *ctx = (struct context *) data;
1075         struct descriptor *d, *last;
1076         u32 address;
1077         int z;
1078         struct descriptor_buffer *desc;
1079
1080         desc = list_entry(ctx->buffer_list.next,
1081                         struct descriptor_buffer, list);
1082         last = ctx->last;
1083         while (last->branch_address != 0) {
1084                 struct descriptor_buffer *old_desc = desc;
1085                 address = le32_to_cpu(last->branch_address);
1086                 z = address & 0xf;
1087                 address &= ~0xf;
1088                 ctx->current_bus = address;
1089
1090                 /* If the branch address points to a buffer outside of the
1091                  * current buffer, advance to the next buffer. */
1092                 if (address < desc->buffer_bus ||
1093                                 address >= desc->buffer_bus + desc->used)
1094                         desc = list_entry(desc->list.next,
1095                                         struct descriptor_buffer, list);
1096                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1097                 last = find_branch_descriptor(d, z);
1098
1099                 if (!ctx->callback(ctx, d, last))
1100                         break;
1101
1102                 if (old_desc != desc) {
1103                         /* If we've advanced to the next buffer, move the
1104                          * previous buffer to the free list. */
1105                         unsigned long flags;
1106                         old_desc->used = 0;
1107                         spin_lock_irqsave(&ctx->ohci->lock, flags);
1108                         list_move_tail(&old_desc->list, &ctx->buffer_list);
1109                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1110                 }
1111                 ctx->last = last;
1112         }
1113 }
1114
1115 /*
1116  * Allocate a new buffer and add it to the list of free buffers for this
1117  * context.  Must be called with ohci->lock held.
1118  */
1119 static int context_add_buffer(struct context *ctx)
1120 {
1121         struct descriptor_buffer *desc;
1122         dma_addr_t uninitialized_var(bus_addr);
1123         int offset;
1124
1125         /*
1126          * 16MB of descriptors should be far more than enough for any DMA
1127          * program.  This will catch run-away userspace or DoS attacks.
1128          */
1129         if (ctx->total_allocation >= 16*1024*1024)
1130                 return -ENOMEM;
1131
1132         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1133                         &bus_addr, GFP_ATOMIC);
1134         if (!desc)
1135                 return -ENOMEM;
1136
1137         offset = (void *)&desc->buffer - (void *)desc;
1138         desc->buffer_size = PAGE_SIZE - offset;
1139         desc->buffer_bus = bus_addr + offset;
1140         desc->used = 0;
1141
1142         list_add_tail(&desc->list, &ctx->buffer_list);
1143         ctx->total_allocation += PAGE_SIZE;
1144
1145         return 0;
1146 }
1147
1148 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1149                         u32 regs, descriptor_callback_t callback)
1150 {
1151         ctx->ohci = ohci;
1152         ctx->regs = regs;
1153         ctx->total_allocation = 0;
1154
1155         INIT_LIST_HEAD(&ctx->buffer_list);
1156         if (context_add_buffer(ctx) < 0)
1157                 return -ENOMEM;
1158
1159         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1160                         struct descriptor_buffer, list);
1161
1162         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1163         ctx->callback = callback;
1164
1165         /*
1166          * We put a dummy descriptor in the buffer that has a NULL
1167          * branch address and looks like it's been sent.  That way we
1168          * have a descriptor to append DMA programs to.
1169          */
1170         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1171         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1172         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1173         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1174         ctx->last = ctx->buffer_tail->buffer;
1175         ctx->prev = ctx->buffer_tail->buffer;
1176         ctx->prev_z = 1;
1177
1178         return 0;
1179 }
1180
1181 static void context_release(struct context *ctx)
1182 {
1183         struct fw_card *card = &ctx->ohci->card;
1184         struct descriptor_buffer *desc, *tmp;
1185
1186         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1187                 dma_free_coherent(card->device, PAGE_SIZE, desc,
1188                         desc->buffer_bus -
1189                         ((void *)&desc->buffer - (void *)desc));
1190 }
1191
1192 /* Must be called with ohci->lock held */
1193 static struct descriptor *context_get_descriptors(struct context *ctx,
1194                                                   int z, dma_addr_t *d_bus)
1195 {
1196         struct descriptor *d = NULL;
1197         struct descriptor_buffer *desc = ctx->buffer_tail;
1198
1199         if (z * sizeof(*d) > desc->buffer_size)
1200                 return NULL;
1201
1202         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1203                 /* No room for the descriptor in this buffer, so advance to the
1204                  * next one. */
1205
1206                 if (desc->list.next == &ctx->buffer_list) {
1207                         /* If there is no free buffer next in the list,
1208                          * allocate one. */
1209                         if (context_add_buffer(ctx) < 0)
1210                                 return NULL;
1211                 }
1212                 desc = list_entry(desc->list.next,
1213                                 struct descriptor_buffer, list);
1214                 ctx->buffer_tail = desc;
1215         }
1216
1217         d = desc->buffer + desc->used / sizeof(*d);
1218         memset(d, 0, z * sizeof(*d));
1219         *d_bus = desc->buffer_bus + desc->used;
1220
1221         return d;
1222 }
1223
1224 static void context_run(struct context *ctx, u32 extra)
1225 {
1226         struct fw_ohci *ohci = ctx->ohci;
1227
1228         reg_write(ohci, COMMAND_PTR(ctx->regs),
1229                   le32_to_cpu(ctx->last->branch_address));
1230         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1231         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1232         ctx->running = true;
1233         flush_writes(ohci);
1234 }
1235
1236 static void context_append(struct context *ctx,
1237                            struct descriptor *d, int z, int extra)
1238 {
1239         dma_addr_t d_bus;
1240         struct descriptor_buffer *desc = ctx->buffer_tail;
1241         struct descriptor *d_branch;
1242
1243         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1244
1245         desc->used += (z + extra) * sizeof(*d);
1246
1247         wmb(); /* finish init of new descriptors before branch_address update */
1248
1249         d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1250         d_branch->branch_address = cpu_to_le32(d_bus | z);
1251
1252         /*
1253          * VT6306 incorrectly checks only the single descriptor at the
1254          * CommandPtr when the wake bit is written, so if it's a
1255          * multi-descriptor block starting with an INPUT_MORE, put a copy of
1256          * the branch address in the first descriptor.
1257          *
1258          * Not doing this for transmit contexts since not sure how it interacts
1259          * with skip addresses.
1260          */
1261         if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1262             d_branch != ctx->prev &&
1263             (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1264              cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1265                 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1266         }
1267
1268         ctx->prev = d;
1269         ctx->prev_z = z;
1270 }
1271
1272 static void context_stop(struct context *ctx)
1273 {
1274         struct fw_ohci *ohci = ctx->ohci;
1275         u32 reg;
1276         int i;
1277
1278         reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1279         ctx->running = false;
1280
1281         for (i = 0; i < 1000; i++) {
1282                 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1283                 if ((reg & CONTEXT_ACTIVE) == 0)
1284                         return;
1285
1286                 if (i)
1287                         udelay(10);
1288         }
1289         ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1290 }
1291
1292 struct driver_data {
1293         u8 inline_data[8];
1294         struct fw_packet *packet;
1295 };
1296
1297 /*
1298  * This function apppends a packet to the DMA queue for transmission.
1299  * Must always be called with the ochi->lock held to ensure proper
1300  * generation handling and locking around packet queue manipulation.
1301  */
1302 static int at_context_queue_packet(struct context *ctx,
1303                                    struct fw_packet *packet)
1304 {
1305         struct fw_ohci *ohci = ctx->ohci;
1306         dma_addr_t d_bus, uninitialized_var(payload_bus);
1307         struct driver_data *driver_data;
1308         struct descriptor *d, *last;
1309         __le32 *header;
1310         int z, tcode;
1311
1312         d = context_get_descriptors(ctx, 4, &d_bus);
1313         if (d == NULL) {
1314                 packet->ack = RCODE_SEND_ERROR;
1315                 return -1;
1316         }
1317
1318         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1319         d[0].res_count = cpu_to_le16(packet->timestamp);
1320
1321         /*
1322          * The DMA format for asynchronous link packets is different
1323          * from the IEEE1394 layout, so shift the fields around
1324          * accordingly.
1325          */
1326
1327         tcode = (packet->header[0] >> 4) & 0x0f;
1328         header = (__le32 *) &d[1];
1329         switch (tcode) {
1330         case TCODE_WRITE_QUADLET_REQUEST:
1331         case TCODE_WRITE_BLOCK_REQUEST:
1332         case TCODE_WRITE_RESPONSE:
1333         case TCODE_READ_QUADLET_REQUEST:
1334         case TCODE_READ_BLOCK_REQUEST:
1335         case TCODE_READ_QUADLET_RESPONSE:
1336         case TCODE_READ_BLOCK_RESPONSE:
1337         case TCODE_LOCK_REQUEST:
1338         case TCODE_LOCK_RESPONSE:
1339                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1340                                         (packet->speed << 16));
1341                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1342                                         (packet->header[0] & 0xffff0000));
1343                 header[2] = cpu_to_le32(packet->header[2]);
1344
1345                 if (TCODE_IS_BLOCK_PACKET(tcode))
1346                         header[3] = cpu_to_le32(packet->header[3]);
1347                 else
1348                         header[3] = (__force __le32) packet->header[3];
1349
1350                 d[0].req_count = cpu_to_le16(packet->header_length);
1351                 break;
1352
1353         case TCODE_LINK_INTERNAL:
1354                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1355                                         (packet->speed << 16));
1356                 header[1] = cpu_to_le32(packet->header[1]);
1357                 header[2] = cpu_to_le32(packet->header[2]);
1358                 d[0].req_count = cpu_to_le16(12);
1359
1360                 if (is_ping_packet(&packet->header[1]))
1361                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1362                 break;
1363
1364         case TCODE_STREAM_DATA:
1365                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1366                                         (packet->speed << 16));
1367                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1368                 d[0].req_count = cpu_to_le16(8);
1369                 break;
1370
1371         default:
1372                 /* BUG(); */
1373                 packet->ack = RCODE_SEND_ERROR;
1374                 return -1;
1375         }
1376
1377         BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1378         driver_data = (struct driver_data *) &d[3];
1379         driver_data->packet = packet;
1380         packet->driver_data = driver_data;
1381
1382         if (packet->payload_length > 0) {
1383                 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1384                         payload_bus = dma_map_single(ohci->card.device,
1385                                                      packet->payload,
1386                                                      packet->payload_length,
1387                                                      DMA_TO_DEVICE);
1388                         if (dma_mapping_error(ohci->card.device, payload_bus)) {
1389                                 packet->ack = RCODE_SEND_ERROR;
1390                                 return -1;
1391                         }
1392                         packet->payload_bus     = payload_bus;
1393                         packet->payload_mapped  = true;
1394                 } else {
1395                         memcpy(driver_data->inline_data, packet->payload,
1396                                packet->payload_length);
1397                         payload_bus = d_bus + 3 * sizeof(*d);
1398                 }
1399
1400                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1401                 d[2].data_address = cpu_to_le32(payload_bus);
1402                 last = &d[2];
1403                 z = 3;
1404         } else {
1405                 last = &d[0];
1406                 z = 2;
1407         }
1408
1409         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1410                                      DESCRIPTOR_IRQ_ALWAYS |
1411                                      DESCRIPTOR_BRANCH_ALWAYS);
1412
1413         /* FIXME: Document how the locking works. */
1414         if (ohci->generation != packet->generation) {
1415                 if (packet->payload_mapped)
1416                         dma_unmap_single(ohci->card.device, payload_bus,
1417                                          packet->payload_length, DMA_TO_DEVICE);
1418                 packet->ack = RCODE_GENERATION;
1419                 return -1;
1420         }
1421
1422         context_append(ctx, d, z, 4 - z);
1423
1424         if (ctx->running)
1425                 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1426         else
1427                 context_run(ctx, 0);
1428
1429         return 0;
1430 }
1431
1432 static void at_context_flush(struct context *ctx)
1433 {
1434         tasklet_disable(&ctx->tasklet);
1435
1436         ctx->flushing = true;
1437         context_tasklet((unsigned long)ctx);
1438         ctx->flushing = false;
1439
1440         tasklet_enable(&ctx->tasklet);
1441 }
1442
1443 static int handle_at_packet(struct context *context,
1444                             struct descriptor *d,
1445                             struct descriptor *last)
1446 {
1447         struct driver_data *driver_data;
1448         struct fw_packet *packet;
1449         struct fw_ohci *ohci = context->ohci;
1450         int evt;
1451
1452         if (last->transfer_status == 0 && !context->flushing)
1453                 /* This descriptor isn't done yet, stop iteration. */
1454                 return 0;
1455
1456         driver_data = (struct driver_data *) &d[3];
1457         packet = driver_data->packet;
1458         if (packet == NULL)
1459                 /* This packet was cancelled, just continue. */
1460                 return 1;
1461
1462         if (packet->payload_mapped)
1463                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1464                                  packet->payload_length, DMA_TO_DEVICE);
1465
1466         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1467         packet->timestamp = le16_to_cpu(last->res_count);
1468
1469         log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1470
1471         switch (evt) {
1472         case OHCI1394_evt_timeout:
1473                 /* Async response transmit timed out. */
1474                 packet->ack = RCODE_CANCELLED;
1475                 break;
1476
1477         case OHCI1394_evt_flushed:
1478                 /*
1479                  * The packet was flushed should give same error as
1480                  * when we try to use a stale generation count.
1481                  */
1482                 packet->ack = RCODE_GENERATION;
1483                 break;
1484
1485         case OHCI1394_evt_missing_ack:
1486                 if (context->flushing)
1487                         packet->ack = RCODE_GENERATION;
1488                 else {
1489                         /*
1490                          * Using a valid (current) generation count, but the
1491                          * node is not on the bus or not sending acks.
1492                          */
1493                         packet->ack = RCODE_NO_ACK;
1494                 }
1495                 break;
1496
1497         case ACK_COMPLETE + 0x10:
1498         case ACK_PENDING + 0x10:
1499         case ACK_BUSY_X + 0x10:
1500         case ACK_BUSY_A + 0x10:
1501         case ACK_BUSY_B + 0x10:
1502         case ACK_DATA_ERROR + 0x10:
1503         case ACK_TYPE_ERROR + 0x10:
1504                 packet->ack = evt - 0x10;
1505                 break;
1506
1507         case OHCI1394_evt_no_status:
1508                 if (context->flushing) {
1509                         packet->ack = RCODE_GENERATION;
1510                         break;
1511                 }
1512                 /* fall through */
1513
1514         default:
1515                 packet->ack = RCODE_SEND_ERROR;
1516                 break;
1517         }
1518
1519         packet->callback(packet, &ohci->card, packet->ack);
1520
1521         return 1;
1522 }
1523
1524 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1525 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1526 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1527 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1528 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1529
1530 static void handle_local_rom(struct fw_ohci *ohci,
1531                              struct fw_packet *packet, u32 csr)
1532 {
1533         struct fw_packet response;
1534         int tcode, length, i;
1535
1536         tcode = HEADER_GET_TCODE(packet->header[0]);
1537         if (TCODE_IS_BLOCK_PACKET(tcode))
1538                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1539         else
1540                 length = 4;
1541
1542         i = csr - CSR_CONFIG_ROM;
1543         if (i + length > CONFIG_ROM_SIZE) {
1544                 fw_fill_response(&response, packet->header,
1545                                  RCODE_ADDRESS_ERROR, NULL, 0);
1546         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1547                 fw_fill_response(&response, packet->header,
1548                                  RCODE_TYPE_ERROR, NULL, 0);
1549         } else {
1550                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1551                                  (void *) ohci->config_rom + i, length);
1552         }
1553
1554         fw_core_handle_response(&ohci->card, &response);
1555 }
1556
1557 static void handle_local_lock(struct fw_ohci *ohci,
1558                               struct fw_packet *packet, u32 csr)
1559 {
1560         struct fw_packet response;
1561         int tcode, length, ext_tcode, sel, try;
1562         __be32 *payload, lock_old;
1563         u32 lock_arg, lock_data;
1564
1565         tcode = HEADER_GET_TCODE(packet->header[0]);
1566         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1567         payload = packet->payload;
1568         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1569
1570         if (tcode == TCODE_LOCK_REQUEST &&
1571             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1572                 lock_arg = be32_to_cpu(payload[0]);
1573                 lock_data = be32_to_cpu(payload[1]);
1574         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1575                 lock_arg = 0;
1576                 lock_data = 0;
1577         } else {
1578                 fw_fill_response(&response, packet->header,
1579                                  RCODE_TYPE_ERROR, NULL, 0);
1580                 goto out;
1581         }
1582
1583         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1584         reg_write(ohci, OHCI1394_CSRData, lock_data);
1585         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1586         reg_write(ohci, OHCI1394_CSRControl, sel);
1587
1588         for (try = 0; try < 20; try++)
1589                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1590                         lock_old = cpu_to_be32(reg_read(ohci,
1591                                                         OHCI1394_CSRData));
1592                         fw_fill_response(&response, packet->header,
1593                                          RCODE_COMPLETE,
1594                                          &lock_old, sizeof(lock_old));
1595                         goto out;
1596                 }
1597
1598         ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1599         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1600
1601  out:
1602         fw_core_handle_response(&ohci->card, &response);
1603 }
1604
1605 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1606 {
1607         u64 offset, csr;
1608
1609         if (ctx == &ctx->ohci->at_request_ctx) {
1610                 packet->ack = ACK_PENDING;
1611                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1612         }
1613
1614         offset =
1615                 ((unsigned long long)
1616                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1617                 packet->header[2];
1618         csr = offset - CSR_REGISTER_BASE;
1619
1620         /* Handle config rom reads. */
1621         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1622                 handle_local_rom(ctx->ohci, packet, csr);
1623         else switch (csr) {
1624         case CSR_BUS_MANAGER_ID:
1625         case CSR_BANDWIDTH_AVAILABLE:
1626         case CSR_CHANNELS_AVAILABLE_HI:
1627         case CSR_CHANNELS_AVAILABLE_LO:
1628                 handle_local_lock(ctx->ohci, packet, csr);
1629                 break;
1630         default:
1631                 if (ctx == &ctx->ohci->at_request_ctx)
1632                         fw_core_handle_request(&ctx->ohci->card, packet);
1633                 else
1634                         fw_core_handle_response(&ctx->ohci->card, packet);
1635                 break;
1636         }
1637
1638         if (ctx == &ctx->ohci->at_response_ctx) {
1639                 packet->ack = ACK_COMPLETE;
1640                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1641         }
1642 }
1643
1644 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1645 {
1646         unsigned long flags;
1647         int ret;
1648
1649         spin_lock_irqsave(&ctx->ohci->lock, flags);
1650
1651         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1652             ctx->ohci->generation == packet->generation) {
1653                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1654                 handle_local_request(ctx, packet);
1655                 return;
1656         }
1657
1658         ret = at_context_queue_packet(ctx, packet);
1659         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1660
1661         if (ret < 0)
1662                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1663
1664 }
1665
1666 static void detect_dead_context(struct fw_ohci *ohci,
1667                                 const char *name, unsigned int regs)
1668 {
1669         u32 ctl;
1670
1671         ctl = reg_read(ohci, CONTROL_SET(regs));
1672         if (ctl & CONTEXT_DEAD)
1673                 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1674                         name, evts[ctl & 0x1f]);
1675 }
1676
1677 static void handle_dead_contexts(struct fw_ohci *ohci)
1678 {
1679         unsigned int i;
1680         char name[8];
1681
1682         detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1683         detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1684         detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1685         detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1686         for (i = 0; i < 32; ++i) {
1687                 if (!(ohci->it_context_support & (1 << i)))
1688                         continue;
1689                 sprintf(name, "IT%u", i);
1690                 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1691         }
1692         for (i = 0; i < 32; ++i) {
1693                 if (!(ohci->ir_context_support & (1 << i)))
1694                         continue;
1695                 sprintf(name, "IR%u", i);
1696                 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1697         }
1698         /* TODO: maybe try to flush and restart the dead contexts */
1699 }
1700
1701 static u32 cycle_timer_ticks(u32 cycle_timer)
1702 {
1703         u32 ticks;
1704
1705         ticks = cycle_timer & 0xfff;
1706         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1707         ticks += (3072 * 8000) * (cycle_timer >> 25);
1708
1709         return ticks;
1710 }
1711
1712 /*
1713  * Some controllers exhibit one or more of the following bugs when updating the
1714  * iso cycle timer register:
1715  *  - When the lowest six bits are wrapping around to zero, a read that happens
1716  *    at the same time will return garbage in the lowest ten bits.
1717  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1718  *    not incremented for about 60 ns.
1719  *  - Occasionally, the entire register reads zero.
1720  *
1721  * To catch these, we read the register three times and ensure that the
1722  * difference between each two consecutive reads is approximately the same, i.e.
1723  * less than twice the other.  Furthermore, any negative difference indicates an
1724  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1725  * execute, so we have enough precision to compute the ratio of the differences.)
1726  */
1727 static u32 get_cycle_time(struct fw_ohci *ohci)
1728 {
1729         u32 c0, c1, c2;
1730         u32 t0, t1, t2;
1731         s32 diff01, diff12;
1732         int i;
1733
1734         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1735
1736         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1737                 i = 0;
1738                 c1 = c2;
1739                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1740                 do {
1741                         c0 = c1;
1742                         c1 = c2;
1743                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1744                         t0 = cycle_timer_ticks(c0);
1745                         t1 = cycle_timer_ticks(c1);
1746                         t2 = cycle_timer_ticks(c2);
1747                         diff01 = t1 - t0;
1748                         diff12 = t2 - t1;
1749                 } while ((diff01 <= 0 || diff12 <= 0 ||
1750                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1751                          && i++ < 20);
1752         }
1753
1754         return c2;
1755 }
1756
1757 /*
1758  * This function has to be called at least every 64 seconds.  The bus_time
1759  * field stores not only the upper 25 bits of the BUS_TIME register but also
1760  * the most significant bit of the cycle timer in bit 6 so that we can detect
1761  * changes in this bit.
1762  */
1763 static u32 update_bus_time(struct fw_ohci *ohci)
1764 {
1765         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1766
1767         if (unlikely(!ohci->bus_time_running)) {
1768                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1769                 ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1770                                  (cycle_time_seconds & 0x40);
1771                 ohci->bus_time_running = true;
1772         }
1773
1774         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1775                 ohci->bus_time += 0x40;
1776
1777         return ohci->bus_time | cycle_time_seconds;
1778 }
1779
1780 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1781 {
1782         int reg;
1783
1784         mutex_lock(&ohci->phy_reg_mutex);
1785         reg = write_phy_reg(ohci, 7, port_index);
1786         if (reg >= 0)
1787                 reg = read_phy_reg(ohci, 8);
1788         mutex_unlock(&ohci->phy_reg_mutex);
1789         if (reg < 0)
1790                 return reg;
1791
1792         switch (reg & 0x0f) {
1793         case 0x06:
1794                 return 2;       /* is child node (connected to parent node) */
1795         case 0x0e:
1796                 return 3;       /* is parent node (connected to child node) */
1797         }
1798         return 1;               /* not connected */
1799 }
1800
1801 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1802         int self_id_count)
1803 {
1804         int i;
1805         u32 entry;
1806
1807         for (i = 0; i < self_id_count; i++) {
1808                 entry = ohci->self_id_buffer[i];
1809                 if ((self_id & 0xff000000) == (entry & 0xff000000))
1810                         return -1;
1811                 if ((self_id & 0xff000000) < (entry & 0xff000000))
1812                         return i;
1813         }
1814         return i;
1815 }
1816
1817 static int initiated_reset(struct fw_ohci *ohci)
1818 {
1819         int reg;
1820         int ret = 0;
1821
1822         mutex_lock(&ohci->phy_reg_mutex);
1823         reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1824         if (reg >= 0) {
1825                 reg = read_phy_reg(ohci, 8);
1826                 reg |= 0x40;
1827                 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1828                 if (reg >= 0) {
1829                         reg = read_phy_reg(ohci, 12); /* read register 12 */
1830                         if (reg >= 0) {
1831                                 if ((reg & 0x08) == 0x08) {
1832                                         /* bit 3 indicates "initiated reset" */
1833                                         ret = 0x2;
1834                                 }
1835                         }
1836                 }
1837         }
1838         mutex_unlock(&ohci->phy_reg_mutex);
1839         return ret;
1840 }
1841
1842 /*
1843  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1844  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1845  * Construct the selfID from phy register contents.
1846  */
1847 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1848 {
1849         int reg, i, pos, status;
1850         /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1851         u32 self_id = 0x8040c800;
1852
1853         reg = reg_read(ohci, OHCI1394_NodeID);
1854         if (!(reg & OHCI1394_NodeID_idValid)) {
1855                 ohci_notice(ohci,
1856                             "node ID not valid, new bus reset in progress\n");
1857                 return -EBUSY;
1858         }
1859         self_id |= ((reg & 0x3f) << 24); /* phy ID */
1860
1861         reg = ohci_read_phy_reg(&ohci->card, 4);
1862         if (reg < 0)
1863                 return reg;
1864         self_id |= ((reg & 0x07) << 8); /* power class */
1865
1866         reg = ohci_read_phy_reg(&ohci->card, 1);
1867         if (reg < 0)
1868                 return reg;
1869         self_id |= ((reg & 0x3f) << 16); /* gap count */
1870
1871         for (i = 0; i < 3; i++) {
1872                 status = get_status_for_port(ohci, i);
1873                 if (status < 0)
1874                         return status;
1875                 self_id |= ((status & 0x3) << (6 - (i * 2)));
1876         }
1877
1878         self_id |= initiated_reset(ohci);
1879
1880         pos = get_self_id_pos(ohci, self_id, self_id_count);
1881         if (pos >= 0) {
1882                 memmove(&(ohci->self_id_buffer[pos+1]),
1883                         &(ohci->self_id_buffer[pos]),
1884                         (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1885                 ohci->self_id_buffer[pos] = self_id;
1886                 self_id_count++;
1887         }
1888         return self_id_count;
1889 }
1890
1891 static void bus_reset_work(struct work_struct *work)
1892 {
1893         struct fw_ohci *ohci =
1894                 container_of(work, struct fw_ohci, bus_reset_work);
1895         int self_id_count, generation, new_generation, i, j;
1896         u32 reg;
1897         void *free_rom = NULL;
1898         dma_addr_t free_rom_bus = 0;
1899         bool is_new_root;
1900
1901         reg = reg_read(ohci, OHCI1394_NodeID);
1902         if (!(reg & OHCI1394_NodeID_idValid)) {
1903                 ohci_notice(ohci,
1904                             "node ID not valid, new bus reset in progress\n");
1905                 return;
1906         }
1907         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1908                 ohci_notice(ohci, "malconfigured bus\n");
1909                 return;
1910         }
1911         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1912                                OHCI1394_NodeID_nodeNumber);
1913
1914         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1915         if (!(ohci->is_root && is_new_root))
1916                 reg_write(ohci, OHCI1394_LinkControlSet,
1917                           OHCI1394_LinkControl_cycleMaster);
1918         ohci->is_root = is_new_root;
1919
1920         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1921         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1922                 ohci_notice(ohci, "self ID receive error\n");
1923                 return;
1924         }
1925         /*
1926          * The count in the SelfIDCount register is the number of
1927          * bytes in the self ID receive buffer.  Since we also receive
1928          * the inverted quadlets and a header quadlet, we shift one
1929          * bit extra to get the actual number of self IDs.
1930          */
1931         self_id_count = (reg >> 3) & 0xff;
1932
1933         if (self_id_count > 252) {
1934                 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1935                 return;
1936         }
1937
1938         generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1939         rmb();
1940
1941         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1942                 u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1943                 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1944
1945                 if (id != ~id2) {
1946                         /*
1947                          * If the invalid data looks like a cycle start packet,
1948                          * it's likely to be the result of the cycle master
1949                          * having a wrong gap count.  In this case, the self IDs
1950                          * so far are valid and should be processed so that the
1951                          * bus manager can then correct the gap count.
1952                          */
1953                         if (id == 0xffff008f) {
1954                                 ohci_notice(ohci, "ignoring spurious self IDs\n");
1955                                 self_id_count = j;
1956                                 break;
1957                         }
1958
1959                         ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1960                                     j, self_id_count, id, id2);
1961                         return;
1962                 }
1963                 ohci->self_id_buffer[j] = id;
1964         }
1965
1966         if (ohci->quirks & QUIRK_TI_SLLZ059) {
1967                 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1968                 if (self_id_count < 0) {
1969                         ohci_notice(ohci,
1970                                     "could not construct local self ID\n");
1971                         return;
1972                 }
1973         }
1974
1975         if (self_id_count == 0) {
1976                 ohci_notice(ohci, "no self IDs\n");
1977                 return;
1978         }
1979         rmb();
1980
1981         /*
1982          * Check the consistency of the self IDs we just read.  The
1983          * problem we face is that a new bus reset can start while we
1984          * read out the self IDs from the DMA buffer. If this happens,
1985          * the DMA buffer will be overwritten with new self IDs and we
1986          * will read out inconsistent data.  The OHCI specification
1987          * (section 11.2) recommends a technique similar to
1988          * linux/seqlock.h, where we remember the generation of the
1989          * self IDs in the buffer before reading them out and compare
1990          * it to the current generation after reading them out.  If
1991          * the two generations match we know we have a consistent set
1992          * of self IDs.
1993          */
1994
1995         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1996         if (new_generation != generation) {
1997                 ohci_notice(ohci, "new bus reset, discarding self ids\n");
1998                 return;
1999         }
2000
2001         /* FIXME: Document how the locking works. */
2002         spin_lock_irq(&ohci->lock);
2003
2004         ohci->generation = -1; /* prevent AT packet queueing */
2005         context_stop(&ohci->at_request_ctx);
2006         context_stop(&ohci->at_response_ctx);
2007
2008         spin_unlock_irq(&ohci->lock);
2009
2010         /*
2011          * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2012          * packets in the AT queues and software needs to drain them.
2013          * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2014          */
2015         at_context_flush(&ohci->at_request_ctx);
2016         at_context_flush(&ohci->at_response_ctx);
2017
2018         spin_lock_irq(&ohci->lock);
2019
2020         ohci->generation = generation;
2021         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2022
2023         if (ohci->quirks & QUIRK_RESET_PACKET)
2024                 ohci->request_generation = generation;
2025
2026         /*
2027          * This next bit is unrelated to the AT context stuff but we
2028          * have to do it under the spinlock also.  If a new config rom
2029          * was set up before this reset, the old one is now no longer
2030          * in use and we can free it. Update the config rom pointers
2031          * to point to the current config rom and clear the
2032          * next_config_rom pointer so a new update can take place.
2033          */
2034
2035         if (ohci->next_config_rom != NULL) {
2036                 if (ohci->next_config_rom != ohci->config_rom) {
2037                         free_rom      = ohci->config_rom;
2038                         free_rom_bus  = ohci->config_rom_bus;
2039                 }
2040                 ohci->config_rom      = ohci->next_config_rom;
2041                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
2042                 ohci->next_config_rom = NULL;
2043
2044                 /*
2045                  * Restore config_rom image and manually update
2046                  * config_rom registers.  Writing the header quadlet
2047                  * will indicate that the config rom is ready, so we
2048                  * do that last.
2049                  */
2050                 reg_write(ohci, OHCI1394_BusOptions,
2051                           be32_to_cpu(ohci->config_rom[2]));
2052                 ohci->config_rom[0] = ohci->next_header;
2053                 reg_write(ohci, OHCI1394_ConfigROMhdr,
2054                           be32_to_cpu(ohci->next_header));
2055         }
2056
2057         if (param_remote_dma) {
2058                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2059                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2060         }
2061
2062         spin_unlock_irq(&ohci->lock);
2063
2064         if (free_rom)
2065                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2066                                   free_rom, free_rom_bus);
2067
2068         log_selfids(ohci, generation, self_id_count);
2069
2070         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2071                                  self_id_count, ohci->self_id_buffer,
2072                                  ohci->csr_state_setclear_abdicate);
2073         ohci->csr_state_setclear_abdicate = false;
2074 }
2075
2076 static irqreturn_t irq_handler(int irq, void *data)
2077 {
2078         struct fw_ohci *ohci = data;
2079         u32 event, iso_event;
2080         int i;
2081
2082         event = reg_read(ohci, OHCI1394_IntEventClear);
2083
2084         if (!event || !~event)
2085                 return IRQ_NONE;
2086
2087         /*
2088          * busReset and postedWriteErr must not be cleared yet
2089          * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2090          */
2091         reg_write(ohci, OHCI1394_IntEventClear,
2092                   event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2093         log_irqs(ohci, event);
2094
2095         if (event & OHCI1394_selfIDComplete)
2096                 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2097
2098         if (event & OHCI1394_RQPkt)
2099                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2100
2101         if (event & OHCI1394_RSPkt)
2102                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2103
2104         if (event & OHCI1394_reqTxComplete)
2105                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2106
2107         if (event & OHCI1394_respTxComplete)
2108                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2109
2110         if (event & OHCI1394_isochRx) {
2111                 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2112                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2113
2114                 while (iso_event) {
2115                         i = ffs(iso_event) - 1;
2116                         tasklet_schedule(
2117                                 &ohci->ir_context_list[i].context.tasklet);
2118                         iso_event &= ~(1 << i);
2119                 }
2120         }
2121
2122         if (event & OHCI1394_isochTx) {
2123                 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2124                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2125
2126                 while (iso_event) {
2127                         i = ffs(iso_event) - 1;
2128                         tasklet_schedule(
2129                                 &ohci->it_context_list[i].context.tasklet);
2130                         iso_event &= ~(1 << i);
2131                 }
2132         }
2133
2134         if (unlikely(event & OHCI1394_regAccessFail))
2135                 ohci_err(ohci, "register access failure\n");
2136
2137         if (unlikely(event & OHCI1394_postedWriteErr)) {
2138                 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2139                 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2140                 reg_write(ohci, OHCI1394_IntEventClear,
2141                           OHCI1394_postedWriteErr);
2142                 if (printk_ratelimit())
2143                         ohci_err(ohci, "PCI posted write error\n");
2144         }
2145
2146         if (unlikely(event & OHCI1394_cycleTooLong)) {
2147                 if (printk_ratelimit())
2148                         ohci_notice(ohci, "isochronous cycle too long\n");
2149                 reg_write(ohci, OHCI1394_LinkControlSet,
2150                           OHCI1394_LinkControl_cycleMaster);
2151         }
2152
2153         if (unlikely(event & OHCI1394_cycleInconsistent)) {
2154                 /*
2155                  * We need to clear this event bit in order to make
2156                  * cycleMatch isochronous I/O work.  In theory we should
2157                  * stop active cycleMatch iso contexts now and restart
2158                  * them at least two cycles later.  (FIXME?)
2159                  */
2160                 if (printk_ratelimit())
2161                         ohci_notice(ohci, "isochronous cycle inconsistent\n");
2162         }
2163
2164         if (unlikely(event & OHCI1394_unrecoverableError))
2165                 handle_dead_contexts(ohci);
2166
2167         if (event & OHCI1394_cycle64Seconds) {
2168                 spin_lock(&ohci->lock);
2169                 update_bus_time(ohci);
2170                 spin_unlock(&ohci->lock);
2171         } else
2172                 flush_writes(ohci);
2173
2174         return IRQ_HANDLED;
2175 }
2176
2177 static int software_reset(struct fw_ohci *ohci)
2178 {
2179         u32 val;
2180         int i;
2181
2182         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2183         for (i = 0; i < 500; i++) {
2184                 val = reg_read(ohci, OHCI1394_HCControlSet);
2185                 if (!~val)
2186                         return -ENODEV; /* Card was ejected. */
2187
2188                 if (!(val & OHCI1394_HCControl_softReset))
2189                         return 0;
2190
2191                 msleep(1);
2192         }
2193
2194         return -EBUSY;
2195 }
2196
2197 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2198 {
2199         size_t size = length * 4;
2200
2201         memcpy(dest, src, size);
2202         if (size < CONFIG_ROM_SIZE)
2203                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2204 }
2205
2206 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2207 {
2208         bool enable_1394a;
2209         int ret, clear, set, offset;
2210
2211         /* Check if the driver should configure link and PHY. */
2212         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2213               OHCI1394_HCControl_programPhyEnable))
2214                 return 0;
2215
2216         /* Paranoia: check whether the PHY supports 1394a, too. */
2217         enable_1394a = false;
2218         ret = read_phy_reg(ohci, 2);
2219         if (ret < 0)
2220                 return ret;
2221         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2222                 ret = read_paged_phy_reg(ohci, 1, 8);
2223                 if (ret < 0)
2224                         return ret;
2225                 if (ret >= 1)
2226                         enable_1394a = true;
2227         }
2228
2229         if (ohci->quirks & QUIRK_NO_1394A)
2230                 enable_1394a = false;
2231
2232         /* Configure PHY and link consistently. */
2233         if (enable_1394a) {
2234                 clear = 0;
2235                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2236         } else {
2237                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2238                 set = 0;
2239         }
2240         ret = update_phy_reg(ohci, 5, clear, set);
2241         if (ret < 0)
2242                 return ret;
2243
2244         if (enable_1394a)
2245                 offset = OHCI1394_HCControlSet;
2246         else
2247                 offset = OHCI1394_HCControlClear;
2248         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2249
2250         /* Clean up: configuration has been taken care of. */
2251         reg_write(ohci, OHCI1394_HCControlClear,
2252                   OHCI1394_HCControl_programPhyEnable);
2253
2254         return 0;
2255 }
2256
2257 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2258 {
2259         /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2260         static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2261         int reg, i;
2262
2263         reg = read_phy_reg(ohci, 2);
2264         if (reg < 0)
2265                 return reg;
2266         if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2267                 return 0;
2268
2269         for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2270                 reg = read_paged_phy_reg(ohci, 1, i + 10);
2271                 if (reg < 0)
2272                         return reg;
2273                 if (reg != id[i])
2274                         return 0;
2275         }
2276         return 1;
2277 }
2278
2279 static int ohci_enable(struct fw_card *card,
2280                        const __be32 *config_rom, size_t length)
2281 {
2282         struct fw_ohci *ohci = fw_ohci(card);
2283         u32 lps, version, irqs;
2284         int i, ret;
2285
2286         if (software_reset(ohci)) {
2287                 ohci_err(ohci, "failed to reset ohci card\n");
2288                 return -EBUSY;
2289         }
2290
2291         /*
2292          * Now enable LPS, which we need in order to start accessing
2293          * most of the registers.  In fact, on some cards (ALI M5251),
2294          * accessing registers in the SClk domain without LPS enabled
2295          * will lock up the machine.  Wait 50msec to make sure we have
2296          * full link enabled.  However, with some cards (well, at least
2297          * a JMicron PCIe card), we have to try again sometimes.
2298          *
2299          * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2300          * cannot actually use the phy at that time.  These need tens of
2301          * millisecods pause between LPS write and first phy access too.
2302          */
2303
2304         reg_write(ohci, OHCI1394_HCControlSet,
2305                   OHCI1394_HCControl_LPS |
2306                   OHCI1394_HCControl_postedWriteEnable);
2307         flush_writes(ohci);
2308
2309         for (lps = 0, i = 0; !lps && i < 3; i++) {
2310                 msleep(50);
2311                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2312                       OHCI1394_HCControl_LPS;
2313         }
2314
2315         if (!lps) {
2316                 ohci_err(ohci, "failed to set Link Power Status\n");
2317                 return -EIO;
2318         }
2319
2320         if (ohci->quirks & QUIRK_TI_SLLZ059) {
2321                 ret = probe_tsb41ba3d(ohci);
2322                 if (ret < 0)
2323                         return ret;
2324                 if (ret)
2325                         ohci_notice(ohci, "local TSB41BA3D phy\n");
2326                 else
2327                         ohci->quirks &= ~QUIRK_TI_SLLZ059;
2328         }
2329
2330         reg_write(ohci, OHCI1394_HCControlClear,
2331                   OHCI1394_HCControl_noByteSwapData);
2332
2333         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2334         reg_write(ohci, OHCI1394_LinkControlSet,
2335                   OHCI1394_LinkControl_cycleTimerEnable |
2336                   OHCI1394_LinkControl_cycleMaster);
2337
2338         reg_write(ohci, OHCI1394_ATRetries,
2339                   OHCI1394_MAX_AT_REQ_RETRIES |
2340                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2341                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2342                   (200 << 16));
2343
2344         ohci->bus_time_running = false;
2345
2346         for (i = 0; i < 32; i++)
2347                 if (ohci->ir_context_support & (1 << i))
2348                         reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2349                                   IR_CONTEXT_MULTI_CHANNEL_MODE);
2350
2351         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2352         if (version >= OHCI_VERSION_1_1) {
2353                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2354                           0xfffffffe);
2355                 card->broadcast_channel_auto_allocated = true;
2356         }
2357
2358         /* Get implemented bits of the priority arbitration request counter. */
2359         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2360         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2361         reg_write(ohci, OHCI1394_FairnessControl, 0);
2362         card->priority_budget_implemented = ohci->pri_req_max != 0;
2363
2364         reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2365         reg_write(ohci, OHCI1394_IntEventClear, ~0);
2366         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2367
2368         ret = configure_1394a_enhancements(ohci);
2369         if (ret < 0)
2370                 return ret;
2371
2372         /* Activate link_on bit and contender bit in our self ID packets.*/
2373         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2374         if (ret < 0)
2375                 return ret;
2376
2377         /*
2378          * When the link is not yet enabled, the atomic config rom
2379          * update mechanism described below in ohci_set_config_rom()
2380          * is not active.  We have to update ConfigRomHeader and
2381          * BusOptions manually, and the write to ConfigROMmap takes
2382          * effect immediately.  We tie this to the enabling of the
2383          * link, so we have a valid config rom before enabling - the
2384          * OHCI requires that ConfigROMhdr and BusOptions have valid
2385          * values before enabling.
2386          *
2387          * However, when the ConfigROMmap is written, some controllers
2388          * always read back quadlets 0 and 2 from the config rom to
2389          * the ConfigRomHeader and BusOptions registers on bus reset.
2390          * They shouldn't do that in this initial case where the link
2391          * isn't enabled.  This means we have to use the same
2392          * workaround here, setting the bus header to 0 and then write
2393          * the right values in the bus reset tasklet.
2394          */
2395
2396         if (config_rom) {
2397                 ohci->next_config_rom =
2398                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2399                                            &ohci->next_config_rom_bus,
2400                                            GFP_KERNEL);
2401                 if (ohci->next_config_rom == NULL)
2402                         return -ENOMEM;
2403
2404                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2405         } else {
2406                 /*
2407                  * In the suspend case, config_rom is NULL, which
2408                  * means that we just reuse the old config rom.
2409                  */
2410                 ohci->next_config_rom = ohci->config_rom;
2411                 ohci->next_config_rom_bus = ohci->config_rom_bus;
2412         }
2413
2414         ohci->next_header = ohci->next_config_rom[0];
2415         ohci->next_config_rom[0] = 0;
2416         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2417         reg_write(ohci, OHCI1394_BusOptions,
2418                   be32_to_cpu(ohci->next_config_rom[2]));
2419         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2420
2421         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2422
2423         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2424                 OHCI1394_RQPkt | OHCI1394_RSPkt |
2425                 OHCI1394_isochTx | OHCI1394_isochRx |
2426                 OHCI1394_postedWriteErr |
2427                 OHCI1394_selfIDComplete |
2428                 OHCI1394_regAccessFail |
2429                 OHCI1394_cycleInconsistent |
2430                 OHCI1394_unrecoverableError |
2431                 OHCI1394_cycleTooLong |
2432                 OHCI1394_masterIntEnable;
2433         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2434                 irqs |= OHCI1394_busReset;
2435         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2436
2437         reg_write(ohci, OHCI1394_HCControlSet,
2438                   OHCI1394_HCControl_linkEnable |
2439                   OHCI1394_HCControl_BIBimageValid);
2440
2441         reg_write(ohci, OHCI1394_LinkControlSet,
2442                   OHCI1394_LinkControl_rcvSelfID |
2443                   OHCI1394_LinkControl_rcvPhyPkt);
2444
2445         ar_context_run(&ohci->ar_request_ctx);
2446         ar_context_run(&ohci->ar_response_ctx);
2447
2448         flush_writes(ohci);
2449
2450         /* We are ready to go, reset bus to finish initialization. */
2451         fw_schedule_bus_reset(&ohci->card, false, true);
2452
2453         return 0;
2454 }
2455
2456 static int ohci_set_config_rom(struct fw_card *card,
2457                                const __be32 *config_rom, size_t length)
2458 {
2459         struct fw_ohci *ohci;
2460         __be32 *next_config_rom;
2461         dma_addr_t uninitialized_var(next_config_rom_bus);
2462
2463         ohci = fw_ohci(card);
2464
2465         /*
2466          * When the OHCI controller is enabled, the config rom update
2467          * mechanism is a bit tricky, but easy enough to use.  See
2468          * section 5.5.6 in the OHCI specification.
2469          *
2470          * The OHCI controller caches the new config rom address in a
2471          * shadow register (ConfigROMmapNext) and needs a bus reset
2472          * for the changes to take place.  When the bus reset is
2473          * detected, the controller loads the new values for the
2474          * ConfigRomHeader and BusOptions registers from the specified
2475          * config rom and loads ConfigROMmap from the ConfigROMmapNext
2476          * shadow register. All automatically and atomically.
2477          *
2478          * Now, there's a twist to this story.  The automatic load of
2479          * ConfigRomHeader and BusOptions doesn't honor the
2480          * noByteSwapData bit, so with a be32 config rom, the
2481          * controller will load be32 values in to these registers
2482          * during the atomic update, even on litte endian
2483          * architectures.  The workaround we use is to put a 0 in the
2484          * header quadlet; 0 is endian agnostic and means that the
2485          * config rom isn't ready yet.  In the bus reset tasklet we
2486          * then set up the real values for the two registers.
2487          *
2488          * We use ohci->lock to avoid racing with the code that sets
2489          * ohci->next_config_rom to NULL (see bus_reset_work).
2490          */
2491
2492         next_config_rom =
2493                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2494                                    &next_config_rom_bus, GFP_KERNEL);
2495         if (next_config_rom == NULL)
2496                 return -ENOMEM;
2497
2498         spin_lock_irq(&ohci->lock);
2499
2500         /*
2501          * If there is not an already pending config_rom update,
2502          * push our new allocation into the ohci->next_config_rom
2503          * and then mark the local variable as null so that we
2504          * won't deallocate the new buffer.
2505          *
2506          * OTOH, if there is a pending config_rom update, just
2507          * use that buffer with the new config_rom data, and
2508          * let this routine free the unused DMA allocation.
2509          */
2510
2511         if (ohci->next_config_rom == NULL) {
2512                 ohci->next_config_rom = next_config_rom;
2513                 ohci->next_config_rom_bus = next_config_rom_bus;
2514                 next_config_rom = NULL;
2515         }
2516
2517         copy_config_rom(ohci->next_config_rom, config_rom, length);
2518
2519         ohci->next_header = config_rom[0];
2520         ohci->next_config_rom[0] = 0;
2521
2522         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2523
2524         spin_unlock_irq(&ohci->lock);
2525
2526         /* If we didn't use the DMA allocation, delete it. */
2527         if (next_config_rom != NULL)
2528                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2529                                   next_config_rom, next_config_rom_bus);
2530
2531         /*
2532          * Now initiate a bus reset to have the changes take
2533          * effect. We clean up the old config rom memory and DMA
2534          * mappings in the bus reset tasklet, since the OHCI
2535          * controller could need to access it before the bus reset
2536          * takes effect.
2537          */
2538
2539         fw_schedule_bus_reset(&ohci->card, true, true);
2540
2541         return 0;
2542 }
2543
2544 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2545 {
2546         struct fw_ohci *ohci = fw_ohci(card);
2547
2548         at_context_transmit(&ohci->at_request_ctx, packet);
2549 }
2550
2551 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2552 {
2553         struct fw_ohci *ohci = fw_ohci(card);
2554
2555         at_context_transmit(&ohci->at_response_ctx, packet);
2556 }
2557
2558 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2559 {
2560         struct fw_ohci *ohci = fw_ohci(card);
2561         struct context *ctx = &ohci->at_request_ctx;
2562         struct driver_data *driver_data = packet->driver_data;
2563         int ret = -ENOENT;
2564
2565         tasklet_disable(&ctx->tasklet);
2566
2567         if (packet->ack != 0)
2568                 goto out;
2569
2570         if (packet->payload_mapped)
2571                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2572                                  packet->payload_length, DMA_TO_DEVICE);
2573
2574         log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2575         driver_data->packet = NULL;
2576         packet->ack = RCODE_CANCELLED;
2577         packet->callback(packet, &ohci->card, packet->ack);
2578         ret = 0;
2579  out:
2580         tasklet_enable(&ctx->tasklet);
2581
2582         return ret;
2583 }
2584
2585 static int ohci_enable_phys_dma(struct fw_card *card,
2586                                 int node_id, int generation)
2587 {
2588         struct fw_ohci *ohci = fw_ohci(card);
2589         unsigned long flags;
2590         int n, ret = 0;
2591
2592         if (param_remote_dma)
2593                 return 0;
2594
2595         /*
2596          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2597          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2598          */
2599
2600         spin_lock_irqsave(&ohci->lock, flags);
2601
2602         if (ohci->generation != generation) {
2603                 ret = -ESTALE;
2604                 goto out;
2605         }
2606
2607         /*
2608          * Note, if the node ID contains a non-local bus ID, physical DMA is
2609          * enabled for _all_ nodes on remote buses.
2610          */
2611
2612         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2613         if (n < 32)
2614                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2615         else
2616                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2617
2618         flush_writes(ohci);
2619  out:
2620         spin_unlock_irqrestore(&ohci->lock, flags);
2621
2622         return ret;
2623 }
2624
2625 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2626 {
2627         struct fw_ohci *ohci = fw_ohci(card);
2628         unsigned long flags;
2629         u32 value;
2630
2631         switch (csr_offset) {
2632         case CSR_STATE_CLEAR:
2633         case CSR_STATE_SET:
2634                 if (ohci->is_root &&
2635                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2636                      OHCI1394_LinkControl_cycleMaster))
2637                         value = CSR_STATE_BIT_CMSTR;
2638                 else
2639                         value = 0;
2640                 if (ohci->csr_state_setclear_abdicate)
2641                         value |= CSR_STATE_BIT_ABDICATE;
2642
2643                 return value;
2644
2645         case CSR_NODE_IDS:
2646                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2647
2648         case CSR_CYCLE_TIME:
2649                 return get_cycle_time(ohci);
2650
2651         case CSR_BUS_TIME:
2652                 /*
2653                  * We might be called just after the cycle timer has wrapped
2654                  * around but just before the cycle64Seconds handler, so we
2655                  * better check here, too, if the bus time needs to be updated.
2656                  */
2657                 spin_lock_irqsave(&ohci->lock, flags);
2658                 value = update_bus_time(ohci);
2659                 spin_unlock_irqrestore(&ohci->lock, flags);
2660                 return value;
2661
2662         case CSR_BUSY_TIMEOUT:
2663                 value = reg_read(ohci, OHCI1394_ATRetries);
2664                 return (value >> 4) & 0x0ffff00f;
2665
2666         case CSR_PRIORITY_BUDGET:
2667                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2668                         (ohci->pri_req_max << 8);
2669
2670         default:
2671                 WARN_ON(1);
2672                 return 0;
2673         }
2674 }
2675
2676 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2677 {
2678         struct fw_ohci *ohci = fw_ohci(card);
2679         unsigned long flags;
2680
2681         switch (csr_offset) {
2682         case CSR_STATE_CLEAR:
2683                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2684                         reg_write(ohci, OHCI1394_LinkControlClear,
2685                                   OHCI1394_LinkControl_cycleMaster);
2686                         flush_writes(ohci);
2687                 }
2688                 if (value & CSR_STATE_BIT_ABDICATE)
2689                         ohci->csr_state_setclear_abdicate = false;
2690                 break;
2691
2692         case CSR_STATE_SET:
2693                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2694                         reg_write(ohci, OHCI1394_LinkControlSet,
2695                                   OHCI1394_LinkControl_cycleMaster);
2696                         flush_writes(ohci);
2697                 }
2698                 if (value & CSR_STATE_BIT_ABDICATE)
2699                         ohci->csr_state_setclear_abdicate = true;
2700                 break;
2701
2702         case CSR_NODE_IDS:
2703                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2704                 flush_writes(ohci);
2705                 break;
2706
2707         case CSR_CYCLE_TIME:
2708                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2709                 reg_write(ohci, OHCI1394_IntEventSet,
2710                           OHCI1394_cycleInconsistent);
2711                 flush_writes(ohci);
2712                 break;
2713
2714         case CSR_BUS_TIME:
2715                 spin_lock_irqsave(&ohci->lock, flags);
2716                 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2717                                  (value & ~0x7f);
2718                 spin_unlock_irqrestore(&ohci->lock, flags);
2719                 break;
2720
2721         case CSR_BUSY_TIMEOUT:
2722                 value = (value & 0xf) | ((value & 0xf) << 4) |
2723                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2724                 reg_write(ohci, OHCI1394_ATRetries, value);
2725                 flush_writes(ohci);
2726                 break;
2727
2728         case CSR_PRIORITY_BUDGET:
2729                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2730                 flush_writes(ohci);
2731                 break;
2732
2733         default:
2734                 WARN_ON(1);
2735                 break;
2736         }
2737 }
2738
2739 static void flush_iso_completions(struct iso_context *ctx)
2740 {
2741         ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2742                               ctx->header_length, ctx->header,
2743                               ctx->base.callback_data);
2744         ctx->header_length = 0;
2745 }
2746
2747 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2748 {
2749         u32 *ctx_hdr;
2750
2751         if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2752                 if (ctx->base.drop_overflow_headers)
2753                         return;
2754                 flush_iso_completions(ctx);
2755         }
2756
2757         ctx_hdr = ctx->header + ctx->header_length;
2758         ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2759
2760         /*
2761          * The two iso header quadlets are byteswapped to little
2762          * endian by the controller, but we want to present them
2763          * as big endian for consistency with the bus endianness.
2764          */
2765         if (ctx->base.header_size > 0)
2766                 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2767         if (ctx->base.header_size > 4)
2768                 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2769         if (ctx->base.header_size > 8)
2770                 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2771         ctx->header_length += ctx->base.header_size;
2772 }
2773
2774 static int handle_ir_packet_per_buffer(struct context *context,
2775                                        struct descriptor *d,
2776                                        struct descriptor *last)
2777 {
2778         struct iso_context *ctx =
2779                 container_of(context, struct iso_context, context);
2780         struct descriptor *pd;
2781         u32 buffer_dma;
2782
2783         for (pd = d; pd <= last; pd++)
2784                 if (pd->transfer_status)
2785                         break;
2786         if (pd > last)
2787                 /* Descriptor(s) not done yet, stop iteration */
2788                 return 0;
2789
2790         while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2791                 d++;
2792                 buffer_dma = le32_to_cpu(d->data_address);
2793                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2794                                               buffer_dma & PAGE_MASK,
2795                                               buffer_dma & ~PAGE_MASK,
2796                                               le16_to_cpu(d->req_count),
2797                                               DMA_FROM_DEVICE);
2798         }
2799
2800         copy_iso_headers(ctx, (u32 *) (last + 1));
2801
2802         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2803                 flush_iso_completions(ctx);
2804
2805         return 1;
2806 }
2807
2808 /* d == last because each descriptor block is only a single descriptor. */
2809 static int handle_ir_buffer_fill(struct context *context,
2810                                  struct descriptor *d,
2811                                  struct descriptor *last)
2812 {
2813         struct iso_context *ctx =
2814                 container_of(context, struct iso_context, context);
2815         unsigned int req_count, res_count, completed;
2816         u32 buffer_dma;
2817
2818         req_count = le16_to_cpu(last->req_count);
2819         res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2820         completed = req_count - res_count;
2821         buffer_dma = le32_to_cpu(last->data_address);
2822
2823         if (completed > 0) {
2824                 ctx->mc_buffer_bus = buffer_dma;
2825                 ctx->mc_completed = completed;
2826         }
2827
2828         if (res_count != 0)
2829                 /* Descriptor(s) not done yet, stop iteration */
2830                 return 0;
2831
2832         dma_sync_single_range_for_cpu(context->ohci->card.device,
2833                                       buffer_dma & PAGE_MASK,
2834                                       buffer_dma & ~PAGE_MASK,
2835                                       completed, DMA_FROM_DEVICE);
2836
2837         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2838                 ctx->base.callback.mc(&ctx->base,
2839                                       buffer_dma + completed,
2840                                       ctx->base.callback_data);
2841                 ctx->mc_completed = 0;
2842         }
2843
2844         return 1;
2845 }
2846
2847 static void flush_ir_buffer_fill(struct iso_context *ctx)
2848 {
2849         dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2850                                       ctx->mc_buffer_bus & PAGE_MASK,
2851                                       ctx->mc_buffer_bus & ~PAGE_MASK,
2852                                       ctx->mc_completed, DMA_FROM_DEVICE);
2853
2854         ctx->base.callback.mc(&ctx->base,
2855                               ctx->mc_buffer_bus + ctx->mc_completed,
2856                               ctx->base.callback_data);
2857         ctx->mc_completed = 0;
2858 }
2859
2860 static inline void sync_it_packet_for_cpu(struct context *context,
2861                                           struct descriptor *pd)
2862 {
2863         __le16 control;
2864         u32 buffer_dma;
2865
2866         /* only packets beginning with OUTPUT_MORE* have data buffers */
2867         if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2868                 return;
2869
2870         /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2871         pd += 2;
2872
2873         /*
2874          * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2875          * data buffer is in the context program's coherent page and must not
2876          * be synced.
2877          */
2878         if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2879             (context->current_bus          & PAGE_MASK)) {
2880                 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2881                         return;
2882                 pd++;
2883         }
2884
2885         do {
2886                 buffer_dma = le32_to_cpu(pd->data_address);
2887                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2888                                               buffer_dma & PAGE_MASK,
2889                                               buffer_dma & ~PAGE_MASK,
2890                                               le16_to_cpu(pd->req_count),
2891                                               DMA_TO_DEVICE);
2892                 control = pd->control;
2893                 pd++;
2894         } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2895 }
2896
2897 static int handle_it_packet(struct context *context,
2898                             struct descriptor *d,
2899                             struct descriptor *last)
2900 {
2901         struct iso_context *ctx =
2902                 container_of(context, struct iso_context, context);
2903         struct descriptor *pd;
2904         __be32 *ctx_hdr;
2905
2906         for (pd = d; pd <= last; pd++)
2907                 if (pd->transfer_status)
2908                         break;
2909         if (pd > last)
2910                 /* Descriptor(s) not done yet, stop iteration */
2911                 return 0;
2912
2913         sync_it_packet_for_cpu(context, d);
2914
2915         if (ctx->header_length + 4 > PAGE_SIZE) {
2916                 if (ctx->base.drop_overflow_headers)
2917                         return 1;
2918                 flush_iso_completions(ctx);
2919         }
2920
2921         ctx_hdr = ctx->header + ctx->header_length;
2922         ctx->last_timestamp = le16_to_cpu(last->res_count);
2923         /* Present this value as big-endian to match the receive code */
2924         *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2925                                le16_to_cpu(pd->res_count));
2926         ctx->header_length += 4;
2927
2928         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2929                 flush_iso_completions(ctx);
2930
2931         return 1;
2932 }
2933
2934 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2935 {
2936         u32 hi = channels >> 32, lo = channels;
2937
2938         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2939         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2940         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2941         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2942         mmiowb();
2943         ohci->mc_channels = channels;
2944 }
2945
2946 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2947                                 int type, int channel, size_t header_size)
2948 {
2949         struct fw_ohci *ohci = fw_ohci(card);
2950         struct iso_context *uninitialized_var(ctx);
2951         descriptor_callback_t uninitialized_var(callback);
2952         u64 *uninitialized_var(channels);
2953         u32 *uninitialized_var(mask), uninitialized_var(regs);
2954         int index, ret = -EBUSY;
2955
2956         spin_lock_irq(&ohci->lock);
2957
2958         switch (type) {
2959         case FW_ISO_CONTEXT_TRANSMIT:
2960                 mask     = &ohci->it_context_mask;
2961                 callback = handle_it_packet;
2962                 index    = ffs(*mask) - 1;
2963                 if (index >= 0) {
2964                         *mask &= ~(1 << index);
2965                         regs = OHCI1394_IsoXmitContextBase(index);
2966                         ctx  = &ohci->it_context_list[index];
2967                 }
2968                 break;
2969
2970         case FW_ISO_CONTEXT_RECEIVE:
2971                 channels = &ohci->ir_context_channels;
2972                 mask     = &ohci->ir_context_mask;
2973                 callback = handle_ir_packet_per_buffer;
2974                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2975                 if (index >= 0) {
2976                         *channels &= ~(1ULL << channel);
2977                         *mask     &= ~(1 << index);
2978                         regs = OHCI1394_IsoRcvContextBase(index);
2979                         ctx  = &ohci->ir_context_list[index];
2980                 }
2981                 break;
2982
2983         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2984                 mask     = &ohci->ir_context_mask;
2985                 callback = handle_ir_buffer_fill;
2986                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2987                 if (index >= 0) {
2988                         ohci->mc_allocated = true;
2989                         *mask &= ~(1 << index);
2990                         regs = OHCI1394_IsoRcvContextBase(index);
2991                         ctx  = &ohci->ir_context_list[index];
2992                 }
2993                 break;
2994
2995         default:
2996                 index = -1;
2997                 ret = -ENOSYS;
2998         }
2999
3000         spin_unlock_irq(&ohci->lock);
3001
3002         if (index < 0)
3003                 return ERR_PTR(ret);
3004
3005         memset(ctx, 0, sizeof(*ctx));
3006         ctx->header_length = 0;
3007         ctx->header = (void *) __get_free_page(GFP_KERNEL);
3008         if (ctx->header == NULL) {
3009                 ret = -ENOMEM;
3010                 goto out;
3011         }
3012         ret = context_init(&ctx->context, ohci, regs, callback);
3013         if (ret < 0)
3014                 goto out_with_header;
3015
3016         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3017                 set_multichannel_mask(ohci, 0);
3018                 ctx->mc_completed = 0;
3019         }
3020
3021         return &ctx->base;
3022
3023  out_with_header:
3024         free_page((unsigned long)ctx->header);
3025  out:
3026         spin_lock_irq(&ohci->lock);
3027
3028         switch (type) {
3029         case FW_ISO_CONTEXT_RECEIVE:
3030                 *channels |= 1ULL << channel;
3031                 break;
3032
3033         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3034                 ohci->mc_allocated = false;
3035                 break;
3036         }
3037         *mask |= 1 << index;
3038
3039         spin_unlock_irq(&ohci->lock);
3040
3041         return ERR_PTR(ret);
3042 }
3043
3044 static int ohci_start_iso(struct fw_iso_context *base,
3045                           s32 cycle, u32 sync, u32 tags)
3046 {
3047         struct iso_context *ctx = container_of(base, struct iso_context, base);
3048         struct fw_ohci *ohci = ctx->context.ohci;
3049         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3050         int index;
3051
3052         /* the controller cannot start without any queued packets */
3053         if (ctx->context.last->branch_address == 0)
3054                 return -ENODATA;
3055
3056         switch (ctx->base.type) {
3057         case FW_ISO_CONTEXT_TRANSMIT:
3058                 index = ctx - ohci->it_context_list;
3059                 match = 0;
3060                 if (cycle >= 0)
3061                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3062                                 (cycle & 0x7fff) << 16;
3063
3064                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3065                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3066                 context_run(&ctx->context, match);
3067                 break;
3068
3069         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3070                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3071                 /* fall through */
3072         case FW_ISO_CONTEXT_RECEIVE:
3073                 index = ctx - ohci->ir_context_list;
3074                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3075                 if (cycle >= 0) {
3076                         match |= (cycle & 0x07fff) << 12;
3077                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3078                 }
3079
3080                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3081                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3082                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3083                 context_run(&ctx->context, control);
3084
3085                 ctx->sync = sync;
3086                 ctx->tags = tags;
3087
3088                 break;
3089         }
3090
3091         return 0;
3092 }
3093
3094 static int ohci_stop_iso(struct fw_iso_context *base)
3095 {
3096         struct fw_ohci *ohci = fw_ohci(base->card);
3097         struct iso_context *ctx = container_of(base, struct iso_context, base);
3098         int index;
3099
3100         switch (ctx->base.type) {
3101         case FW_ISO_CONTEXT_TRANSMIT:
3102                 index = ctx - ohci->it_context_list;
3103                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3104                 break;
3105
3106         case FW_ISO_CONTEXT_RECEIVE:
3107         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3108                 index = ctx - ohci->ir_context_list;
3109                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3110                 break;
3111         }
3112         flush_writes(ohci);
3113         context_stop(&ctx->context);
3114         tasklet_kill(&ctx->context.tasklet);
3115
3116         return 0;
3117 }
3118
3119 static void ohci_free_iso_context(struct fw_iso_context *base)
3120 {
3121         struct fw_ohci *ohci = fw_ohci(base->card);
3122         struct iso_context *ctx = container_of(base, struct iso_context, base);
3123         unsigned long flags;
3124         int index;
3125
3126         ohci_stop_iso(base);
3127         context_release(&ctx->context);
3128         free_page((unsigned long)ctx->header);
3129
3130         spin_lock_irqsave(&ohci->lock, flags);
3131
3132         switch (base->type) {
3133         case FW_ISO_CONTEXT_TRANSMIT:
3134                 index = ctx - ohci->it_context_list;
3135                 ohci->it_context_mask |= 1 << index;
3136                 break;
3137
3138         case FW_ISO_CONTEXT_RECEIVE:
3139                 index = ctx - ohci->ir_context_list;
3140                 ohci->ir_context_mask |= 1 << index;
3141                 ohci->ir_context_channels |= 1ULL << base->channel;
3142                 break;
3143
3144         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3145                 index = ctx - ohci->ir_context_list;
3146                 ohci->ir_context_mask |= 1 << index;
3147                 ohci->ir_context_channels |= ohci->mc_channels;
3148                 ohci->mc_channels = 0;
3149                 ohci->mc_allocated = false;
3150                 break;
3151         }
3152
3153         spin_unlock_irqrestore(&ohci->lock, flags);
3154 }
3155
3156 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3157 {
3158         struct fw_ohci *ohci = fw_ohci(base->card);
3159         unsigned long flags;
3160         int ret;
3161
3162         switch (base->type) {
3163         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3164
3165                 spin_lock_irqsave(&ohci->lock, flags);
3166
3167                 /* Don't allow multichannel to grab other contexts' channels. */
3168                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3169                         *channels = ohci->ir_context_channels;
3170                         ret = -EBUSY;
3171                 } else {
3172                         set_multichannel_mask(ohci, *channels);
3173                         ret = 0;
3174                 }
3175
3176                 spin_unlock_irqrestore(&ohci->lock, flags);
3177
3178                 break;
3179         default:
3180                 ret = -EINVAL;
3181         }
3182
3183         return ret;
3184 }
3185
3186 #ifdef CONFIG_PM
3187 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3188 {
3189         int i;
3190         struct iso_context *ctx;
3191
3192         for (i = 0 ; i < ohci->n_ir ; i++) {
3193                 ctx = &ohci->ir_context_list[i];
3194                 if (ctx->context.running)
3195                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3196         }
3197
3198         for (i = 0 ; i < ohci->n_it ; i++) {
3199                 ctx = &ohci->it_context_list[i];
3200                 if (ctx->context.running)
3201                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3202         }
3203 }
3204 #endif
3205
3206 static int queue_iso_transmit(struct iso_context *ctx,
3207                               struct fw_iso_packet *packet,
3208                               struct fw_iso_buffer *buffer,
3209                               unsigned long payload)
3210 {
3211         struct descriptor *d, *last, *pd;
3212         struct fw_iso_packet *p;
3213         __le32 *header;
3214         dma_addr_t d_bus, page_bus;
3215         u32 z, header_z, payload_z, irq;
3216         u32 payload_index, payload_end_index, next_page_index;
3217         int page, end_page, i, length, offset;
3218
3219         p = packet;
3220         payload_index = payload;
3221
3222         if (p->skip)
3223                 z = 1;
3224         else
3225                 z = 2;
3226         if (p->header_length > 0)
3227                 z++;
3228
3229         /* Determine the first page the payload isn't contained in. */
3230         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3231         if (p->payload_length > 0)
3232                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3233         else
3234                 payload_z = 0;
3235
3236         z += payload_z;
3237
3238         /* Get header size in number of descriptors. */
3239         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3240
3241         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3242         if (d == NULL)
3243                 return -ENOMEM;
3244
3245         if (!p->skip) {
3246                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3247                 d[0].req_count = cpu_to_le16(8);
3248                 /*
3249                  * Link the skip address to this descriptor itself.  This causes
3250                  * a context to skip a cycle whenever lost cycles or FIFO
3251                  * overruns occur, without dropping the data.  The application
3252                  * should then decide whether this is an error condition or not.
3253                  * FIXME:  Make the context's cycle-lost behaviour configurable?
3254                  */
3255                 d[0].branch_address = cpu_to_le32(d_bus | z);
3256
3257                 header = (__le32 *) &d[1];
3258                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3259                                         IT_HEADER_TAG(p->tag) |
3260                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3261                                         IT_HEADER_CHANNEL(ctx->base.channel) |
3262                                         IT_HEADER_SPEED(ctx->base.speed));
3263                 header[1] =
3264                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3265                                                           p->payload_length));
3266         }
3267
3268         if (p->header_length > 0) {
3269                 d[2].req_count    = cpu_to_le16(p->header_length);
3270                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3271                 memcpy(&d[z], p->header, p->header_length);
3272         }
3273
3274         pd = d + z - payload_z;
3275         payload_end_index = payload_index + p->payload_length;
3276         for (i = 0; i < payload_z; i++) {
3277                 page               = payload_index >> PAGE_SHIFT;
3278                 offset             = payload_index & ~PAGE_MASK;
3279                 next_page_index    = (page + 1) << PAGE_SHIFT;
3280                 length             =
3281                         min(next_page_index, payload_end_index) - payload_index;
3282                 pd[i].req_count    = cpu_to_le16(length);
3283
3284                 page_bus = page_private(buffer->pages[page]);
3285                 pd[i].data_address = cpu_to_le32(page_bus + offset);
3286
3287                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3288                                                  page_bus, offset, length,
3289                                                  DMA_TO_DEVICE);
3290
3291                 payload_index += length;
3292         }
3293
3294         if (p->interrupt)
3295                 irq = DESCRIPTOR_IRQ_ALWAYS;
3296         else
3297                 irq = DESCRIPTOR_NO_IRQ;
3298
3299         last = z == 2 ? d : d + z - 1;
3300         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3301                                      DESCRIPTOR_STATUS |
3302                                      DESCRIPTOR_BRANCH_ALWAYS |
3303                                      irq);
3304
3305         context_append(&ctx->context, d, z, header_z);
3306
3307         return 0;
3308 }
3309
3310 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3311                                        struct fw_iso_packet *packet,
3312                                        struct fw_iso_buffer *buffer,
3313                                        unsigned long payload)
3314 {
3315         struct device *device = ctx->context.ohci->card.device;
3316         struct descriptor *d, *pd;
3317         dma_addr_t d_bus, page_bus;
3318         u32 z, header_z, rest;
3319         int i, j, length;
3320         int page, offset, packet_count, header_size, payload_per_buffer;
3321
3322         /*
3323          * The OHCI controller puts the isochronous header and trailer in the
3324          * buffer, so we need at least 8 bytes.
3325          */
3326         packet_count = packet->header_length / ctx->base.header_size;
3327         header_size  = max(ctx->base.header_size, (size_t)8);
3328
3329         /* Get header size in number of descriptors. */
3330         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3331         page     = payload >> PAGE_SHIFT;
3332         offset   = payload & ~PAGE_MASK;
3333         payload_per_buffer = packet->payload_length / packet_count;
3334
3335         for (i = 0; i < packet_count; i++) {
3336                 /* d points to the header descriptor */
3337                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3338                 d = context_get_descriptors(&ctx->context,
3339                                 z + header_z, &d_bus);
3340                 if (d == NULL)
3341                         return -ENOMEM;
3342
3343                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3344                                               DESCRIPTOR_INPUT_MORE);
3345                 if (packet->skip && i == 0)
3346                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3347                 d->req_count    = cpu_to_le16(header_size);
3348                 d->res_count    = d->req_count;
3349                 d->transfer_status = 0;
3350                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3351
3352                 rest = payload_per_buffer;
3353                 pd = d;
3354                 for (j = 1; j < z; j++) {
3355                         pd++;
3356                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3357                                                   DESCRIPTOR_INPUT_MORE);
3358
3359                         if (offset + rest < PAGE_SIZE)
3360                                 length = rest;
3361                         else
3362                                 length = PAGE_SIZE - offset;
3363                         pd->req_count = cpu_to_le16(length);
3364                         pd->res_count = pd->req_count;
3365                         pd->transfer_status = 0;
3366
3367                         page_bus = page_private(buffer->pages[page]);
3368                         pd->data_address = cpu_to_le32(page_bus + offset);
3369
3370                         dma_sync_single_range_for_device(device, page_bus,
3371                                                          offset, length,
3372                                                          DMA_FROM_DEVICE);
3373
3374                         offset = (offset + length) & ~PAGE_MASK;
3375                         rest -= length;
3376                         if (offset == 0)
3377                                 page++;
3378                 }
3379                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3380                                           DESCRIPTOR_INPUT_LAST |
3381                                           DESCRIPTOR_BRANCH_ALWAYS);
3382                 if (packet->interrupt && i == packet_count - 1)
3383                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3384
3385                 context_append(&ctx->context, d, z, header_z);
3386         }
3387
3388         return 0;
3389 }
3390
3391 static int queue_iso_buffer_fill(struct iso_context *ctx,
3392                                  struct fw_iso_packet *packet,
3393                                  struct fw_iso_buffer *buffer,
3394                                  unsigned long payload)
3395 {
3396         struct descriptor *d;
3397         dma_addr_t d_bus, page_bus;
3398         int page, offset, rest, z, i, length;
3399
3400         page   = payload >> PAGE_SHIFT;
3401         offset = payload & ~PAGE_MASK;
3402         rest   = packet->payload_length;
3403
3404         /* We need one descriptor for each page in the buffer. */
3405         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3406
3407         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3408                 return -EFAULT;
3409
3410         for (i = 0; i < z; i++) {
3411                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3412                 if (d == NULL)
3413                         return -ENOMEM;
3414
3415                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3416                                          DESCRIPTOR_BRANCH_ALWAYS);
3417                 if (packet->skip && i == 0)
3418                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3419                 if (packet->interrupt && i == z - 1)
3420                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3421
3422                 if (offset + rest < PAGE_SIZE)
3423                         length = rest;
3424                 else
3425                         length = PAGE_SIZE - offset;
3426                 d->req_count = cpu_to_le16(length);
3427                 d->res_count = d->req_count;
3428                 d->transfer_status = 0;
3429
3430                 page_bus = page_private(buffer->pages[page]);
3431                 d->data_address = cpu_to_le32(page_bus + offset);
3432
3433                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3434                                                  page_bus, offset, length,
3435                                                  DMA_FROM_DEVICE);
3436
3437                 rest -= length;
3438                 offset = 0;
3439                 page++;
3440
3441                 context_append(&ctx->context, d, 1, 0);
3442         }
3443
3444         return 0;
3445 }
3446
3447 static int ohci_queue_iso(struct fw_iso_context *base,
3448                           struct fw_iso_packet *packet,
3449                           struct fw_iso_buffer *buffer,
3450                           unsigned long payload)
3451 {
3452         struct iso_context *ctx = container_of(base, struct iso_context, base);
3453         unsigned long flags;
3454         int ret = -ENOSYS;
3455
3456         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3457         switch (base->type) {
3458         case FW_ISO_CONTEXT_TRANSMIT:
3459                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3460                 break;
3461         case FW_ISO_CONTEXT_RECEIVE:
3462                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3463                 break;
3464         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3465                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3466                 break;
3467         }
3468         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3469
3470         return ret;
3471 }
3472
3473 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3474 {
3475         struct context *ctx =
3476                         &container_of(base, struct iso_context, base)->context;
3477
3478         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3479 }
3480
3481 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3482 {
3483         struct iso_context *ctx = container_of(base, struct iso_context, base);
3484         int ret = 0;
3485
3486         tasklet_disable(&ctx->context.tasklet);
3487
3488         if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3489                 context_tasklet((unsigned long)&ctx->context);
3490
3491                 switch (base->type) {
3492                 case FW_ISO_CONTEXT_TRANSMIT:
3493                 case FW_ISO_CONTEXT_RECEIVE:
3494                         if (ctx->header_length != 0)
3495                                 flush_iso_completions(ctx);
3496                         break;
3497                 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3498                         if (ctx->mc_completed != 0)
3499                                 flush_ir_buffer_fill(ctx);
3500                         break;
3501                 default:
3502                         ret = -ENOSYS;
3503                 }
3504
3505                 clear_bit_unlock(0, &ctx->flushing_completions);
3506                 smp_mb__after_atomic();
3507         }
3508
3509         tasklet_enable(&ctx->context.tasklet);
3510
3511         return ret;
3512 }
3513
3514 static const struct fw_card_driver ohci_driver = {
3515         .enable                 = ohci_enable,
3516         .read_phy_reg           = ohci_read_phy_reg,
3517         .update_phy_reg         = ohci_update_phy_reg,
3518         .set_config_rom         = ohci_set_config_rom,
3519         .send_request           = ohci_send_request,
3520         .send_response          = ohci_send_response,
3521         .cancel_packet          = ohci_cancel_packet,
3522         .enable_phys_dma        = ohci_enable_phys_dma,
3523         .read_csr               = ohci_read_csr,
3524         .write_csr              = ohci_write_csr,
3525
3526         .allocate_iso_context   = ohci_allocate_iso_context,
3527         .free_iso_context       = ohci_free_iso_context,
3528         .set_iso_channels       = ohci_set_iso_channels,
3529         .queue_iso              = ohci_queue_iso,
3530         .flush_queue_iso        = ohci_flush_queue_iso,
3531         .flush_iso_completions  = ohci_flush_iso_completions,
3532         .start_iso              = ohci_start_iso,
3533         .stop_iso               = ohci_stop_iso,
3534 };
3535
3536 #ifdef CONFIG_PPC_PMAC
3537 static void pmac_ohci_on(struct pci_dev *dev)
3538 {
3539         if (machine_is(powermac)) {
3540                 struct device_node *ofn = pci_device_to_OF_node(dev);
3541
3542                 if (ofn) {
3543                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3544                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3545                 }
3546         }
3547 }
3548
3549 static void pmac_ohci_off(struct pci_dev *dev)
3550 {
3551         if (machine_is(powermac)) {
3552                 struct device_node *ofn = pci_device_to_OF_node(dev);
3553
3554                 if (ofn) {
3555                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3556                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3557                 }
3558         }
3559 }
3560 #else
3561 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3562 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3563 #endif /* CONFIG_PPC_PMAC */
3564
3565 static int pci_probe(struct pci_dev *dev,
3566                                const struct pci_device_id *ent)
3567 {
3568         struct fw_ohci *ohci;
3569         u32 bus_options, max_receive, link_speed, version;
3570         u64 guid;
3571         int i, err;
3572         size_t size;
3573
3574         if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3575                 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3576                 return -ENOSYS;
3577         }
3578
3579         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3580         if (ohci == NULL) {
3581                 err = -ENOMEM;
3582                 goto fail;
3583         }
3584
3585         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3586
3587         pmac_ohci_on(dev);
3588
3589         err = pci_enable_device(dev);
3590         if (err) {
3591                 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3592                 goto fail_free;
3593         }
3594
3595         pci_set_master(dev);
3596         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3597         pci_set_drvdata(dev, ohci);
3598
3599         spin_lock_init(&ohci->lock);
3600         mutex_init(&ohci->phy_reg_mutex);
3601
3602         INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3603
3604         if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3605             pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3606                 ohci_err(ohci, "invalid MMIO resource\n");
3607                 err = -ENXIO;
3608                 goto fail_disable;
3609         }
3610
3611         err = pci_request_region(dev, 0, ohci_driver_name);
3612         if (err) {
3613                 ohci_err(ohci, "MMIO resource unavailable\n");
3614                 goto fail_disable;
3615         }
3616
3617         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3618         if (ohci->registers == NULL) {
3619                 ohci_err(ohci, "failed to remap registers\n");
3620                 err = -ENXIO;
3621                 goto fail_iomem;
3622         }
3623
3624         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3625                 if ((ohci_quirks[i].vendor == dev->vendor) &&
3626                     (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3627                      ohci_quirks[i].device == dev->device) &&
3628                     (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3629                      ohci_quirks[i].revision >= dev->revision)) {
3630                         ohci->quirks = ohci_quirks[i].flags;
3631                         break;
3632                 }
3633         if (param_quirks)
3634                 ohci->quirks = param_quirks;
3635
3636         /*
3637          * Because dma_alloc_coherent() allocates at least one page,
3638          * we save space by using a common buffer for the AR request/
3639          * response descriptors and the self IDs buffer.
3640          */
3641         BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3642         BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3643         ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3644                                                PAGE_SIZE,
3645                                                &ohci->misc_buffer_bus,
3646                                                GFP_KERNEL);
3647         if (!ohci->misc_buffer) {
3648                 err = -ENOMEM;
3649                 goto fail_iounmap;
3650         }
3651
3652         err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3653                               OHCI1394_AsReqRcvContextControlSet);
3654         if (err < 0)
3655                 goto fail_misc_buf;
3656
3657         err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3658                               OHCI1394_AsRspRcvContextControlSet);
3659         if (err < 0)
3660                 goto fail_arreq_ctx;
3661
3662         err = context_init(&ohci->at_request_ctx, ohci,
3663                            OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3664         if (err < 0)
3665                 goto fail_arrsp_ctx;
3666
3667         err = context_init(&ohci->at_response_ctx, ohci,
3668                            OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3669         if (err < 0)
3670                 goto fail_atreq_ctx;
3671
3672         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3673         ohci->ir_context_channels = ~0ULL;
3674         ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3675         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3676         ohci->ir_context_mask = ohci->ir_context_support;
3677         ohci->n_ir = hweight32(ohci->ir_context_mask);
3678         size = sizeof(struct iso_context) * ohci->n_ir;
3679         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3680
3681         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3682         ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3683         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3684         ohci->it_context_mask = ohci->it_context_support;
3685         ohci->n_it = hweight32(ohci->it_context_mask);
3686         size = sizeof(struct iso_context) * ohci->n_it;
3687         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3688
3689         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3690                 err = -ENOMEM;
3691                 goto fail_contexts;
3692         }
3693
3694         ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3695         ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3696
3697         bus_options = reg_read(ohci, OHCI1394_BusOptions);
3698         max_receive = (bus_options >> 12) & 0xf;
3699         link_speed = bus_options & 0x7;
3700         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3701                 reg_read(ohci, OHCI1394_GUIDLo);
3702
3703         if (!(ohci->quirks & QUIRK_NO_MSI))
3704                 pci_enable_msi(dev);
3705         if (request_irq(dev->irq, irq_handler,
3706                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3707                         ohci_driver_name, ohci)) {
3708                 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3709                 err = -EIO;
3710                 goto fail_msi;
3711         }
3712
3713         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3714         if (err)
3715                 goto fail_irq;
3716
3717         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3718         ohci_notice(ohci,
3719                     "added OHCI v%x.%x device as card %d, "
3720                     "%d IR + %d IT contexts, quirks 0x%x%s\n",
3721                     version >> 16, version & 0xff, ohci->card.index,
3722                     ohci->n_ir, ohci->n_it, ohci->quirks,
3723                     reg_read(ohci, OHCI1394_PhyUpperBound) ?
3724                         ", physUB" : "");
3725
3726         return 0;
3727
3728  fail_irq:
3729         free_irq(dev->irq, ohci);
3730  fail_msi:
3731         pci_disable_msi(dev);
3732  fail_contexts:
3733         kfree(ohci->ir_context_list);
3734         kfree(ohci->it_context_list);
3735         context_release(&ohci->at_response_ctx);
3736  fail_atreq_ctx:
3737         context_release(&ohci->at_request_ctx);
3738  fail_arrsp_ctx:
3739         ar_context_release(&ohci->ar_response_ctx);
3740  fail_arreq_ctx:
3741         ar_context_release(&ohci->ar_request_ctx);
3742  fail_misc_buf:
3743         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3744                           ohci->misc_buffer, ohci->misc_buffer_bus);
3745  fail_iounmap:
3746         pci_iounmap(dev, ohci->registers);
3747  fail_iomem:
3748         pci_release_region(dev, 0);
3749  fail_disable:
3750         pci_disable_device(dev);
3751  fail_free:
3752         kfree(ohci);
3753         pmac_ohci_off(dev);
3754  fail:
3755         return err;
3756 }
3757
3758 static void pci_remove(struct pci_dev *dev)
3759 {
3760         struct fw_ohci *ohci = pci_get_drvdata(dev);
3761
3762         /*
3763          * If the removal is happening from the suspend state, LPS won't be
3764          * enabled and host registers (eg., IntMaskClear) won't be accessible.
3765          */
3766         if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3767                 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3768                 flush_writes(ohci);
3769         }
3770         cancel_work_sync(&ohci->bus_reset_work);
3771         fw_core_remove_card(&ohci->card);
3772
3773         /*
3774          * FIXME: Fail all pending packets here, now that the upper
3775          * layers can't queue any more.
3776          */
3777
3778         software_reset(ohci);
3779         free_irq(dev->irq, ohci);
3780
3781         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3782                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3783                                   ohci->next_config_rom, ohci->next_config_rom_bus);
3784         if (ohci->config_rom)
3785                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3786                                   ohci->config_rom, ohci->config_rom_bus);
3787         ar_context_release(&ohci->ar_request_ctx);
3788         ar_context_release(&ohci->ar_response_ctx);
3789         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3790                           ohci->misc_buffer, ohci->misc_buffer_bus);
3791         context_release(&ohci->at_request_ctx);
3792         context_release(&ohci->at_response_ctx);
3793         kfree(ohci->it_context_list);
3794         kfree(ohci->ir_context_list);
3795         pci_disable_msi(dev);
3796         pci_iounmap(dev, ohci->registers);
3797         pci_release_region(dev, 0);
3798         pci_disable_device(dev);
3799         kfree(ohci);
3800         pmac_ohci_off(dev);
3801
3802         dev_notice(&dev->dev, "removed fw-ohci device\n");
3803 }
3804
3805 #ifdef CONFIG_PM
3806 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3807 {
3808         struct fw_ohci *ohci = pci_get_drvdata(dev);
3809         int err;
3810
3811         software_reset(ohci);
3812         err = pci_save_state(dev);
3813         if (err) {
3814                 ohci_err(ohci, "pci_save_state failed\n");
3815                 return err;
3816         }
3817         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3818         if (err)
3819                 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3820         pmac_ohci_off(dev);
3821
3822         return 0;
3823 }
3824
3825 static int pci_resume(struct pci_dev *dev)
3826 {
3827         struct fw_ohci *ohci = pci_get_drvdata(dev);
3828         int err;
3829
3830         pmac_ohci_on(dev);
3831         pci_set_power_state(dev, PCI_D0);
3832         pci_restore_state(dev);
3833         err = pci_enable_device(dev);
3834         if (err) {
3835                 ohci_err(ohci, "pci_enable_device failed\n");
3836                 return err;
3837         }
3838
3839         /* Some systems don't setup GUID register on resume from ram  */
3840         if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3841                                         !reg_read(ohci, OHCI1394_GUIDHi)) {
3842                 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3843                 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3844         }
3845
3846         err = ohci_enable(&ohci->card, NULL, 0);
3847         if (err)
3848                 return err;
3849
3850         ohci_resume_iso_dma(ohci);
3851
3852         return 0;
3853 }
3854 #endif
3855
3856 static const struct pci_device_id pci_table[] = {
3857         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3858         { }
3859 };
3860
3861 MODULE_DEVICE_TABLE(pci, pci_table);
3862
3863 static struct pci_driver fw_ohci_pci_driver = {
3864         .name           = ohci_driver_name,
3865         .id_table       = pci_table,
3866         .probe          = pci_probe,
3867         .remove         = pci_remove,
3868 #ifdef CONFIG_PM
3869         .resume         = pci_resume,
3870         .suspend        = pci_suspend,
3871 #endif
3872 };
3873
3874 static int __init fw_ohci_init(void)
3875 {
3876         selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3877         if (!selfid_workqueue)
3878                 return -ENOMEM;
3879
3880         return pci_register_driver(&fw_ohci_pci_driver);
3881 }
3882
3883 static void __exit fw_ohci_cleanup(void)
3884 {
3885         pci_unregister_driver(&fw_ohci_pci_driver);
3886         destroy_workqueue(selfid_workqueue);
3887 }
3888
3889 module_init(fw_ohci_init);
3890 module_exit(fw_ohci_cleanup);
3891
3892 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3893 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3894 MODULE_LICENSE("GPL");
3895
3896 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3897 MODULE_ALIAS("ohci1394");