Merge tag 'tegra-for-4.8-i2c' of git://git.kernel.org/pub/scm/linux/kernel/git/tegra...
[cascardo/linux.git] / drivers / fmc / fmc-sdb.c
1 /*
2  * Copyright (C) 2012 CERN (www.cern.ch)
3  * Author: Alessandro Rubini <rubini@gnudd.com>
4  *
5  * Released according to the GNU GPL, version 2 or any later version.
6  *
7  * This work is part of the White Rabbit project, a research effort led
8  * by CERN, the European Institute for Nuclear Research.
9  */
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/fmc.h>
13 #include <linux/sdb.h>
14 #include <linux/err.h>
15 #include <linux/fmc-sdb.h>
16 #include <asm/byteorder.h>
17
18 static uint32_t __sdb_rd(struct fmc_device *fmc, unsigned long address,
19                         int convert)
20 {
21         uint32_t res = fmc_readl(fmc, address);
22         if (convert)
23                 return __be32_to_cpu(res);
24         return res;
25 }
26
27 static struct sdb_array *__fmc_scan_sdb_tree(struct fmc_device *fmc,
28                                              unsigned long sdb_addr,
29                                              unsigned long reg_base, int level)
30 {
31         uint32_t onew;
32         int i, j, n, convert = 0;
33         struct sdb_array *arr, *sub;
34
35         onew = fmc_readl(fmc, sdb_addr);
36         if (onew == SDB_MAGIC) {
37                 /* Uh! If we are little-endian, we must convert */
38                 if (SDB_MAGIC != __be32_to_cpu(SDB_MAGIC))
39                         convert = 1;
40         } else if (onew == __be32_to_cpu(SDB_MAGIC)) {
41                 /* ok, don't convert */
42         } else {
43                 return ERR_PTR(-ENOENT);
44         }
45         /* So, the magic was there: get the count from offset 4*/
46         onew = __sdb_rd(fmc, sdb_addr + 4, convert);
47         n = __be16_to_cpu(*(uint16_t *)&onew);
48         arr = kzalloc(sizeof(*arr), GFP_KERNEL);
49         if (!arr)
50                 return ERR_PTR(-ENOMEM);
51         arr->record = kzalloc(sizeof(arr->record[0]) * n, GFP_KERNEL);
52         arr->subtree = kzalloc(sizeof(arr->subtree[0]) * n, GFP_KERNEL);
53         if (!arr->record || !arr->subtree) {
54                 kfree(arr->record);
55                 kfree(arr->subtree);
56                 kfree(arr);
57                 return ERR_PTR(-ENOMEM);
58         }
59
60         arr->len = n;
61         arr->level = level;
62         arr->fmc = fmc;
63         for (i = 0; i < n; i++) {
64                 union  sdb_record *r;
65
66                 for (j = 0; j < sizeof(arr->record[0]); j += 4) {
67                         *(uint32_t *)((void *)(arr->record + i) + j) =
68                                 __sdb_rd(fmc, sdb_addr + (i * 64) + j, convert);
69                 }
70                 r = &arr->record[i];
71                 arr->subtree[i] = ERR_PTR(-ENODEV);
72                 if (r->empty.record_type == sdb_type_bridge) {
73                         struct sdb_component *c = &r->bridge.sdb_component;
74                         uint64_t subaddr = __be64_to_cpu(r->bridge.sdb_child);
75                         uint64_t newbase = __be64_to_cpu(c->addr_first);
76
77                         subaddr += reg_base;
78                         newbase += reg_base;
79                         sub = __fmc_scan_sdb_tree(fmc, subaddr, newbase,
80                                                   level + 1);
81                         arr->subtree[i] = sub; /* may be error */
82                         if (IS_ERR(sub))
83                                 continue;
84                         sub->parent = arr;
85                         sub->baseaddr = newbase;
86                 }
87         }
88         return arr;
89 }
90
91 int fmc_scan_sdb_tree(struct fmc_device *fmc, unsigned long address)
92 {
93         struct sdb_array *ret;
94         if (fmc->sdb)
95                 return -EBUSY;
96         ret = __fmc_scan_sdb_tree(fmc, address, 0 /* regs */, 0);
97         if (IS_ERR(ret))
98                 return PTR_ERR(ret);
99         fmc->sdb = ret;
100         return 0;
101 }
102 EXPORT_SYMBOL(fmc_scan_sdb_tree);
103
104 static void __fmc_sdb_free(struct sdb_array *arr)
105 {
106         int i, n;
107
108         if (!arr)
109                 return;
110         n = arr->len;
111         for (i = 0; i < n; i++) {
112                 if (IS_ERR(arr->subtree[i]))
113                         continue;
114                 __fmc_sdb_free(arr->subtree[i]);
115         }
116         kfree(arr->record);
117         kfree(arr->subtree);
118         kfree(arr);
119 }
120
121 int fmc_free_sdb_tree(struct fmc_device *fmc)
122 {
123         __fmc_sdb_free(fmc->sdb);
124         fmc->sdb = NULL;
125         return 0;
126 }
127 EXPORT_SYMBOL(fmc_free_sdb_tree);
128
129 /* This helper calls reprogram and inizialized sdb as well */
130 int fmc_reprogram(struct fmc_device *fmc, struct fmc_driver *d, char *gw,
131                          int sdb_entry)
132 {
133         int ret;
134
135         ret = fmc->op->reprogram(fmc, d, gw);
136         if (ret < 0)
137                 return ret;
138         if (sdb_entry < 0)
139                 return ret;
140
141         /* We are required to find SDB at a given offset */
142         ret = fmc_scan_sdb_tree(fmc, sdb_entry);
143         if (ret < 0) {
144                 dev_err(&fmc->dev, "Can't find SDB at address 0x%x\n",
145                         sdb_entry);
146                 return -ENODEV;
147         }
148         fmc_dump_sdb(fmc);
149         return 0;
150 }
151 EXPORT_SYMBOL(fmc_reprogram);
152
153 static char *__strip_trailing_space(char *buf, char *str, int len)
154 {
155         int i = len - 1;
156
157         memcpy(buf, str, len);
158         while(i >= 0 && buf[i] == ' ')
159                 buf[i--] = '\0';
160         return buf;
161 }
162
163 #define __sdb_string(buf, field) ({                     \
164         BUILD_BUG_ON(sizeof(buf) < sizeof(field));      \
165         __strip_trailing_space(buf, (void *)(field), sizeof(field));    \
166                 })
167
168 static void __fmc_show_sdb_tree(const struct fmc_device *fmc,
169                                 const struct sdb_array *arr)
170 {
171         unsigned long base = arr->baseaddr;
172         int i, j, n = arr->len, level = arr->level;
173         char buf[64];
174
175         for (i = 0; i < n; i++) {
176                 union  sdb_record *r;
177                 struct sdb_product *p;
178                 struct sdb_component *c;
179                 r = &arr->record[i];
180                 c = &r->dev.sdb_component;
181                 p = &c->product;
182
183                 dev_info(&fmc->dev, "SDB: ");
184
185                 for (j = 0; j < level; j++)
186                         printk(KERN_CONT "   ");
187                 switch (r->empty.record_type) {
188                 case sdb_type_interconnect:
189                         printk(KERN_CONT "%08llx:%08x %.19s\n",
190                                __be64_to_cpu(p->vendor_id),
191                                __be32_to_cpu(p->device_id),
192                                p->name);
193                         break;
194                 case sdb_type_device:
195                         printk(KERN_CONT "%08llx:%08x %.19s (%08llx-%08llx)\n",
196                                __be64_to_cpu(p->vendor_id),
197                                __be32_to_cpu(p->device_id),
198                                p->name,
199                                __be64_to_cpu(c->addr_first) + base,
200                                __be64_to_cpu(c->addr_last) + base);
201                         break;
202                 case sdb_type_bridge:
203                         printk(KERN_CONT "%08llx:%08x %.19s (bridge: %08llx)\n",
204                                __be64_to_cpu(p->vendor_id),
205                                __be32_to_cpu(p->device_id),
206                                p->name,
207                                __be64_to_cpu(c->addr_first) + base);
208                         if (IS_ERR(arr->subtree[i])) {
209                                 dev_info(&fmc->dev, "SDB: (bridge error %li)\n",
210                                          PTR_ERR(arr->subtree[i]));
211                                 break;
212                         }
213                         __fmc_show_sdb_tree(fmc, arr->subtree[i]);
214                         break;
215                 case sdb_type_integration:
216                         printk(KERN_CONT "integration\n");
217                         break;
218                 case sdb_type_repo_url:
219                         printk(KERN_CONT "Synthesis repository: %s\n",
220                                __sdb_string(buf, r->repo_url.repo_url));
221                         break;
222                 case sdb_type_synthesis:
223                         printk(KERN_CONT "Bitstream '%s' ",
224                                __sdb_string(buf, r->synthesis.syn_name));
225                         printk(KERN_CONT "synthesized %08x by %s ",
226                                __be32_to_cpu(r->synthesis.date),
227                                __sdb_string(buf, r->synthesis.user_name));
228                         printk(KERN_CONT "(%s version %x), ",
229                                __sdb_string(buf, r->synthesis.tool_name),
230                                __be32_to_cpu(r->synthesis.tool_version));
231                         printk(KERN_CONT "commit %pm\n",
232                                r->synthesis.commit_id);
233                         break;
234                 case sdb_type_empty:
235                         printk(KERN_CONT "empty\n");
236                         break;
237                 default:
238                         printk(KERN_CONT "UNKNOWN TYPE 0x%02x\n",
239                                r->empty.record_type);
240                         break;
241                 }
242         }
243 }
244
245 void fmc_show_sdb_tree(const struct fmc_device *fmc)
246 {
247         if (!fmc->sdb)
248                 return;
249         __fmc_show_sdb_tree(fmc, fmc->sdb);
250 }
251 EXPORT_SYMBOL(fmc_show_sdb_tree);
252
253 signed long fmc_find_sdb_device(struct sdb_array *tree,
254                                 uint64_t vid, uint32_t did, unsigned long *sz)
255 {
256         signed long res = -ENODEV;
257         union  sdb_record *r;
258         struct sdb_product *p;
259         struct sdb_component *c;
260         int i, n = tree->len;
261         uint64_t last, first;
262
263         /* FIXME: what if the first interconnect is not at zero? */
264         for (i = 0; i < n; i++) {
265                 r = &tree->record[i];
266                 c = &r->dev.sdb_component;
267                 p = &c->product;
268
269                 if (!IS_ERR(tree->subtree[i]))
270                         res = fmc_find_sdb_device(tree->subtree[i],
271                                                   vid, did, sz);
272                 if (res >= 0)
273                         return res + tree->baseaddr;
274                 if (r->empty.record_type != sdb_type_device)
275                         continue;
276                 if (__be64_to_cpu(p->vendor_id) != vid)
277                         continue;
278                 if (__be32_to_cpu(p->device_id) != did)
279                         continue;
280                 /* found */
281                 last = __be64_to_cpu(c->addr_last);
282                 first = __be64_to_cpu(c->addr_first);
283                 if (sz)
284                         *sz = (typeof(*sz))(last + 1 - first);
285                 return first + tree->baseaddr;
286         }
287         return res;
288 }
289 EXPORT_SYMBOL(fmc_find_sdb_device);