ARM: dts: at91: calao: remove leftovers clock definition
[cascardo/linux.git] / drivers / gpu / drm / amd / amdgpu / sdma_v3_0.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44
45 #include "tonga_sdma_pkt_open.h"
46
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
63
64
65 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
66 {
67         SDMA0_REGISTER_OFFSET,
68         SDMA1_REGISTER_OFFSET
69 };
70
71 static const u32 golden_settings_tonga_a11[] =
72 {
73         mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
74         mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
75         mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
76         mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
77         mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
78         mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
79         mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
80         mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
81         mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
82         mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
83 };
84
85 static const u32 tonga_mgcg_cgcg_init[] =
86 {
87         mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
88         mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
89 };
90
91 static const u32 golden_settings_fiji_a10[] =
92 {
93         mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
94         mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
95         mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
96         mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
97         mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
98         mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
99         mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
100         mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
101 };
102
103 static const u32 fiji_mgcg_cgcg_init[] =
104 {
105         mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
106         mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
107 };
108
109 static const u32 golden_settings_polaris11_a11[] =
110 {
111         mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
112         mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
113         mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
114         mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
115         mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
116         mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
117         mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
118         mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
119         mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
120         mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
121 };
122
123 static const u32 golden_settings_polaris10_a11[] =
124 {
125         mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
126         mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
127         mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
128         mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
129         mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
130         mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
131         mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
132         mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
133         mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
134         mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
135 };
136
137 static const u32 cz_golden_settings_a11[] =
138 {
139         mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
140         mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
141         mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
142         mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
143         mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
144         mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
145         mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
146         mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
147         mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
148         mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
149         mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
150         mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
151 };
152
153 static const u32 cz_mgcg_cgcg_init[] =
154 {
155         mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
156         mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
157 };
158
159 static const u32 stoney_golden_settings_a11[] =
160 {
161         mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
162         mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
163         mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
164         mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
165 };
166
167 static const u32 stoney_mgcg_cgcg_init[] =
168 {
169         mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
170 };
171
172 /*
173  * sDMA - System DMA
174  * Starting with CIK, the GPU has new asynchronous
175  * DMA engines.  These engines are used for compute
176  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
177  * and each one supports 1 ring buffer used for gfx
178  * and 2 queues used for compute.
179  *
180  * The programming model is very similar to the CP
181  * (ring buffer, IBs, etc.), but sDMA has it's own
182  * packet format that is different from the PM4 format
183  * used by the CP. sDMA supports copying data, writing
184  * embedded data, solid fills, and a number of other
185  * things.  It also has support for tiling/detiling of
186  * buffers.
187  */
188
189 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
190 {
191         switch (adev->asic_type) {
192         case CHIP_FIJI:
193                 amdgpu_program_register_sequence(adev,
194                                                  fiji_mgcg_cgcg_init,
195                                                  (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
196                 amdgpu_program_register_sequence(adev,
197                                                  golden_settings_fiji_a10,
198                                                  (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
199                 break;
200         case CHIP_TONGA:
201                 amdgpu_program_register_sequence(adev,
202                                                  tonga_mgcg_cgcg_init,
203                                                  (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
204                 amdgpu_program_register_sequence(adev,
205                                                  golden_settings_tonga_a11,
206                                                  (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
207                 break;
208         case CHIP_POLARIS11:
209                 amdgpu_program_register_sequence(adev,
210                                                  golden_settings_polaris11_a11,
211                                                  (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
212                 break;
213         case CHIP_POLARIS10:
214                 amdgpu_program_register_sequence(adev,
215                                                  golden_settings_polaris10_a11,
216                                                  (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
217                 break;
218         case CHIP_CARRIZO:
219                 amdgpu_program_register_sequence(adev,
220                                                  cz_mgcg_cgcg_init,
221                                                  (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
222                 amdgpu_program_register_sequence(adev,
223                                                  cz_golden_settings_a11,
224                                                  (const u32)ARRAY_SIZE(cz_golden_settings_a11));
225                 break;
226         case CHIP_STONEY:
227                 amdgpu_program_register_sequence(adev,
228                                                  stoney_mgcg_cgcg_init,
229                                                  (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
230                 amdgpu_program_register_sequence(adev,
231                                                  stoney_golden_settings_a11,
232                                                  (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
233                 break;
234         default:
235                 break;
236         }
237 }
238
239 /**
240  * sdma_v3_0_init_microcode - load ucode images from disk
241  *
242  * @adev: amdgpu_device pointer
243  *
244  * Use the firmware interface to load the ucode images into
245  * the driver (not loaded into hw).
246  * Returns 0 on success, error on failure.
247  */
248 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
249 {
250         const char *chip_name;
251         char fw_name[30];
252         int err = 0, i;
253         struct amdgpu_firmware_info *info = NULL;
254         const struct common_firmware_header *header = NULL;
255         const struct sdma_firmware_header_v1_0 *hdr;
256
257         DRM_DEBUG("\n");
258
259         switch (adev->asic_type) {
260         case CHIP_TONGA:
261                 chip_name = "tonga";
262                 break;
263         case CHIP_FIJI:
264                 chip_name = "fiji";
265                 break;
266         case CHIP_POLARIS11:
267                 chip_name = "polaris11";
268                 break;
269         case CHIP_POLARIS10:
270                 chip_name = "polaris10";
271                 break;
272         case CHIP_CARRIZO:
273                 chip_name = "carrizo";
274                 break;
275         case CHIP_STONEY:
276                 chip_name = "stoney";
277                 break;
278         default: BUG();
279         }
280
281         for (i = 0; i < adev->sdma.num_instances; i++) {
282                 if (i == 0)
283                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
284                 else
285                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
286                 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
287                 if (err)
288                         goto out;
289                 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
290                 if (err)
291                         goto out;
292                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
293                 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
294                 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
295                 if (adev->sdma.instance[i].feature_version >= 20)
296                         adev->sdma.instance[i].burst_nop = true;
297
298                 if (adev->firmware.smu_load) {
299                         info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
300                         info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
301                         info->fw = adev->sdma.instance[i].fw;
302                         header = (const struct common_firmware_header *)info->fw->data;
303                         adev->firmware.fw_size +=
304                                 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
305                 }
306         }
307 out:
308         if (err) {
309                 printk(KERN_ERR
310                        "sdma_v3_0: Failed to load firmware \"%s\"\n",
311                        fw_name);
312                 for (i = 0; i < adev->sdma.num_instances; i++) {
313                         release_firmware(adev->sdma.instance[i].fw);
314                         adev->sdma.instance[i].fw = NULL;
315                 }
316         }
317         return err;
318 }
319
320 /**
321  * sdma_v3_0_ring_get_rptr - get the current read pointer
322  *
323  * @ring: amdgpu ring pointer
324  *
325  * Get the current rptr from the hardware (VI+).
326  */
327 static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
328 {
329         u32 rptr;
330
331         /* XXX check if swapping is necessary on BE */
332         rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
333
334         return rptr;
335 }
336
337 /**
338  * sdma_v3_0_ring_get_wptr - get the current write pointer
339  *
340  * @ring: amdgpu ring pointer
341  *
342  * Get the current wptr from the hardware (VI+).
343  */
344 static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
345 {
346         struct amdgpu_device *adev = ring->adev;
347         u32 wptr;
348
349         if (ring->use_doorbell) {
350                 /* XXX check if swapping is necessary on BE */
351                 wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
352         } else {
353                 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
354
355                 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
356         }
357
358         return wptr;
359 }
360
361 /**
362  * sdma_v3_0_ring_set_wptr - commit the write pointer
363  *
364  * @ring: amdgpu ring pointer
365  *
366  * Write the wptr back to the hardware (VI+).
367  */
368 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
369 {
370         struct amdgpu_device *adev = ring->adev;
371
372         if (ring->use_doorbell) {
373                 /* XXX check if swapping is necessary on BE */
374                 adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
375                 WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
376         } else {
377                 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
378
379                 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
380         }
381 }
382
383 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
384 {
385         struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
386         int i;
387
388         for (i = 0; i < count; i++)
389                 if (sdma && sdma->burst_nop && (i == 0))
390                         amdgpu_ring_write(ring, ring->nop |
391                                 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
392                 else
393                         amdgpu_ring_write(ring, ring->nop);
394 }
395
396 /**
397  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
398  *
399  * @ring: amdgpu ring pointer
400  * @ib: IB object to schedule
401  *
402  * Schedule an IB in the DMA ring (VI).
403  */
404 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
405                                    struct amdgpu_ib *ib,
406                                    unsigned vm_id, bool ctx_switch)
407 {
408         u32 vmid = vm_id & 0xf;
409         u32 next_rptr = ring->wptr + 5;
410
411         while ((next_rptr & 7) != 2)
412                 next_rptr++;
413         next_rptr += 6;
414
415         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
416                           SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
417         amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
418         amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
419         amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
420         amdgpu_ring_write(ring, next_rptr);
421
422         /* IB packet must end on a 8 DW boundary */
423         sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
424
425         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
426                           SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
427         /* base must be 32 byte aligned */
428         amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
429         amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
430         amdgpu_ring_write(ring, ib->length_dw);
431         amdgpu_ring_write(ring, 0);
432         amdgpu_ring_write(ring, 0);
433
434 }
435
436 /**
437  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
438  *
439  * @ring: amdgpu ring pointer
440  *
441  * Emit an hdp flush packet on the requested DMA ring.
442  */
443 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
444 {
445         u32 ref_and_mask = 0;
446
447         if (ring == &ring->adev->sdma.instance[0].ring)
448                 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
449         else
450                 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
451
452         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
453                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
454                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
455         amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
456         amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
457         amdgpu_ring_write(ring, ref_and_mask); /* reference */
458         amdgpu_ring_write(ring, ref_and_mask); /* mask */
459         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
460                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
461 }
462
463 static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
464 {
465         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
466                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
467         amdgpu_ring_write(ring, mmHDP_DEBUG0);
468         amdgpu_ring_write(ring, 1);
469 }
470
471 /**
472  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
473  *
474  * @ring: amdgpu ring pointer
475  * @fence: amdgpu fence object
476  *
477  * Add a DMA fence packet to the ring to write
478  * the fence seq number and DMA trap packet to generate
479  * an interrupt if needed (VI).
480  */
481 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
482                                       unsigned flags)
483 {
484         bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
485         /* write the fence */
486         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
487         amdgpu_ring_write(ring, lower_32_bits(addr));
488         amdgpu_ring_write(ring, upper_32_bits(addr));
489         amdgpu_ring_write(ring, lower_32_bits(seq));
490
491         /* optionally write high bits as well */
492         if (write64bit) {
493                 addr += 4;
494                 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
495                 amdgpu_ring_write(ring, lower_32_bits(addr));
496                 amdgpu_ring_write(ring, upper_32_bits(addr));
497                 amdgpu_ring_write(ring, upper_32_bits(seq));
498         }
499
500         /* generate an interrupt */
501         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
502         amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
503 }
504
505 unsigned init_cond_exec(struct amdgpu_ring *ring)
506 {
507         unsigned ret;
508         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
509         amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
510         amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
511         amdgpu_ring_write(ring, 1);
512         ret = ring->wptr;/* this is the offset we need patch later */
513         amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
514         return ret;
515 }
516
517 void patch_cond_exec(struct amdgpu_ring *ring, unsigned offset)
518 {
519         unsigned cur;
520         BUG_ON(ring->ring[offset] != 0x55aa55aa);
521
522         cur = ring->wptr - 1;
523         if (likely(cur > offset))
524                 ring->ring[offset] = cur - offset;
525         else
526                 ring->ring[offset] = (ring->ring_size>>2) - offset + cur;
527 }
528
529
530 /**
531  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
532  *
533  * @adev: amdgpu_device pointer
534  *
535  * Stop the gfx async dma ring buffers (VI).
536  */
537 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
538 {
539         struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
540         struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
541         u32 rb_cntl, ib_cntl;
542         int i;
543
544         if ((adev->mman.buffer_funcs_ring == sdma0) ||
545             (adev->mman.buffer_funcs_ring == sdma1))
546                 amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
547
548         for (i = 0; i < adev->sdma.num_instances; i++) {
549                 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
550                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
551                 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
552                 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
553                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
554                 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
555         }
556         sdma0->ready = false;
557         sdma1->ready = false;
558 }
559
560 /**
561  * sdma_v3_0_rlc_stop - stop the compute async dma engines
562  *
563  * @adev: amdgpu_device pointer
564  *
565  * Stop the compute async dma queues (VI).
566  */
567 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
568 {
569         /* XXX todo */
570 }
571
572 /**
573  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
574  *
575  * @adev: amdgpu_device pointer
576  * @enable: enable/disable the DMA MEs context switch.
577  *
578  * Halt or unhalt the async dma engines context switch (VI).
579  */
580 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
581 {
582         u32 f32_cntl;
583         int i;
584
585         for (i = 0; i < adev->sdma.num_instances; i++) {
586                 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
587                 if (enable)
588                         f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
589                                         AUTO_CTXSW_ENABLE, 1);
590                 else
591                         f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
592                                         AUTO_CTXSW_ENABLE, 0);
593                 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
594         }
595 }
596
597 /**
598  * sdma_v3_0_enable - stop the async dma engines
599  *
600  * @adev: amdgpu_device pointer
601  * @enable: enable/disable the DMA MEs.
602  *
603  * Halt or unhalt the async dma engines (VI).
604  */
605 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
606 {
607         u32 f32_cntl;
608         int i;
609
610         if (enable == false) {
611                 sdma_v3_0_gfx_stop(adev);
612                 sdma_v3_0_rlc_stop(adev);
613         }
614
615         for (i = 0; i < adev->sdma.num_instances; i++) {
616                 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
617                 if (enable)
618                         f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
619                 else
620                         f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
621                 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
622         }
623 }
624
625 /**
626  * sdma_v3_0_gfx_resume - setup and start the async dma engines
627  *
628  * @adev: amdgpu_device pointer
629  *
630  * Set up the gfx DMA ring buffers and enable them (VI).
631  * Returns 0 for success, error for failure.
632  */
633 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
634 {
635         struct amdgpu_ring *ring;
636         u32 rb_cntl, ib_cntl;
637         u32 rb_bufsz;
638         u32 wb_offset;
639         u32 doorbell;
640         int i, j, r;
641
642         for (i = 0; i < adev->sdma.num_instances; i++) {
643                 ring = &adev->sdma.instance[i].ring;
644                 wb_offset = (ring->rptr_offs * 4);
645
646                 mutex_lock(&adev->srbm_mutex);
647                 for (j = 0; j < 16; j++) {
648                         vi_srbm_select(adev, 0, 0, 0, j);
649                         /* SDMA GFX */
650                         WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
651                         WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
652                 }
653                 vi_srbm_select(adev, 0, 0, 0, 0);
654                 mutex_unlock(&adev->srbm_mutex);
655
656                 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
657                        adev->gfx.config.gb_addr_config & 0x70);
658
659                 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
660
661                 /* Set ring buffer size in dwords */
662                 rb_bufsz = order_base_2(ring->ring_size / 4);
663                 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
664                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
665 #ifdef __BIG_ENDIAN
666                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
667                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
668                                         RPTR_WRITEBACK_SWAP_ENABLE, 1);
669 #endif
670                 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
671
672                 /* Initialize the ring buffer's read and write pointers */
673                 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
674                 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
675
676                 /* set the wb address whether it's enabled or not */
677                 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
678                        upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
679                 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
680                        lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
681
682                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
683
684                 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
685                 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
686
687                 ring->wptr = 0;
688                 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
689
690                 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
691
692                 if (ring->use_doorbell) {
693                         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
694                                                  OFFSET, ring->doorbell_index);
695                         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
696                 } else {
697                         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
698                 }
699                 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
700
701                 /* enable DMA RB */
702                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
703                 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
704
705                 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
706                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
707 #ifdef __BIG_ENDIAN
708                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
709 #endif
710                 /* enable DMA IBs */
711                 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
712
713                 ring->ready = true;
714
715                 r = amdgpu_ring_test_ring(ring);
716                 if (r) {
717                         ring->ready = false;
718                         return r;
719                 }
720
721                 if (adev->mman.buffer_funcs_ring == ring)
722                         amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
723         }
724
725         return 0;
726 }
727
728 /**
729  * sdma_v3_0_rlc_resume - setup and start the async dma engines
730  *
731  * @adev: amdgpu_device pointer
732  *
733  * Set up the compute DMA queues and enable them (VI).
734  * Returns 0 for success, error for failure.
735  */
736 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
737 {
738         /* XXX todo */
739         return 0;
740 }
741
742 /**
743  * sdma_v3_0_load_microcode - load the sDMA ME ucode
744  *
745  * @adev: amdgpu_device pointer
746  *
747  * Loads the sDMA0/1 ucode.
748  * Returns 0 for success, -EINVAL if the ucode is not available.
749  */
750 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
751 {
752         const struct sdma_firmware_header_v1_0 *hdr;
753         const __le32 *fw_data;
754         u32 fw_size;
755         int i, j;
756
757         /* halt the MEs */
758         sdma_v3_0_enable(adev, false);
759
760         for (i = 0; i < adev->sdma.num_instances; i++) {
761                 if (!adev->sdma.instance[i].fw)
762                         return -EINVAL;
763                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
764                 amdgpu_ucode_print_sdma_hdr(&hdr->header);
765                 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
766                 fw_data = (const __le32 *)
767                         (adev->sdma.instance[i].fw->data +
768                                 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
769                 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
770                 for (j = 0; j < fw_size; j++)
771                         WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
772                 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
773         }
774
775         return 0;
776 }
777
778 /**
779  * sdma_v3_0_start - setup and start the async dma engines
780  *
781  * @adev: amdgpu_device pointer
782  *
783  * Set up the DMA engines and enable them (VI).
784  * Returns 0 for success, error for failure.
785  */
786 static int sdma_v3_0_start(struct amdgpu_device *adev)
787 {
788         int r, i;
789
790         if (!adev->pp_enabled) {
791                 if (!adev->firmware.smu_load) {
792                         r = sdma_v3_0_load_microcode(adev);
793                         if (r)
794                                 return r;
795                 } else {
796                         for (i = 0; i < adev->sdma.num_instances; i++) {
797                                 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
798                                                                                  (i == 0) ?
799                                                                                  AMDGPU_UCODE_ID_SDMA0 :
800                                                                                  AMDGPU_UCODE_ID_SDMA1);
801                                 if (r)
802                                         return -EINVAL;
803                         }
804                 }
805         }
806
807         /* unhalt the MEs */
808         sdma_v3_0_enable(adev, true);
809         /* enable sdma ring preemption */
810         sdma_v3_0_ctx_switch_enable(adev, true);
811
812         /* start the gfx rings and rlc compute queues */
813         r = sdma_v3_0_gfx_resume(adev);
814         if (r)
815                 return r;
816         r = sdma_v3_0_rlc_resume(adev);
817         if (r)
818                 return r;
819
820         return 0;
821 }
822
823 /**
824  * sdma_v3_0_ring_test_ring - simple async dma engine test
825  *
826  * @ring: amdgpu_ring structure holding ring information
827  *
828  * Test the DMA engine by writing using it to write an
829  * value to memory. (VI).
830  * Returns 0 for success, error for failure.
831  */
832 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
833 {
834         struct amdgpu_device *adev = ring->adev;
835         unsigned i;
836         unsigned index;
837         int r;
838         u32 tmp;
839         u64 gpu_addr;
840
841         r = amdgpu_wb_get(adev, &index);
842         if (r) {
843                 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
844                 return r;
845         }
846
847         gpu_addr = adev->wb.gpu_addr + (index * 4);
848         tmp = 0xCAFEDEAD;
849         adev->wb.wb[index] = cpu_to_le32(tmp);
850
851         r = amdgpu_ring_alloc(ring, 5);
852         if (r) {
853                 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
854                 amdgpu_wb_free(adev, index);
855                 return r;
856         }
857
858         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
859                           SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
860         amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
861         amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
862         amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
863         amdgpu_ring_write(ring, 0xDEADBEEF);
864         amdgpu_ring_commit(ring);
865
866         for (i = 0; i < adev->usec_timeout; i++) {
867                 tmp = le32_to_cpu(adev->wb.wb[index]);
868                 if (tmp == 0xDEADBEEF)
869                         break;
870                 DRM_UDELAY(1);
871         }
872
873         if (i < adev->usec_timeout) {
874                 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
875         } else {
876                 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
877                           ring->idx, tmp);
878                 r = -EINVAL;
879         }
880         amdgpu_wb_free(adev, index);
881
882         return r;
883 }
884
885 /**
886  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
887  *
888  * @ring: amdgpu_ring structure holding ring information
889  *
890  * Test a simple IB in the DMA ring (VI).
891  * Returns 0 on success, error on failure.
892  */
893 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
894 {
895         struct amdgpu_device *adev = ring->adev;
896         struct amdgpu_ib ib;
897         struct fence *f = NULL;
898         unsigned i;
899         unsigned index;
900         int r;
901         u32 tmp = 0;
902         u64 gpu_addr;
903
904         r = amdgpu_wb_get(adev, &index);
905         if (r) {
906                 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
907                 return r;
908         }
909
910         gpu_addr = adev->wb.gpu_addr + (index * 4);
911         tmp = 0xCAFEDEAD;
912         adev->wb.wb[index] = cpu_to_le32(tmp);
913         memset(&ib, 0, sizeof(ib));
914         r = amdgpu_ib_get(adev, NULL, 256, &ib);
915         if (r) {
916                 DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
917                 goto err0;
918         }
919
920         ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
921                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
922         ib.ptr[1] = lower_32_bits(gpu_addr);
923         ib.ptr[2] = upper_32_bits(gpu_addr);
924         ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
925         ib.ptr[4] = 0xDEADBEEF;
926         ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
927         ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
928         ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
929         ib.length_dw = 8;
930
931         r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
932         if (r)
933                 goto err1;
934
935         r = fence_wait(f, false);
936         if (r) {
937                 DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
938                 goto err1;
939         }
940         for (i = 0; i < adev->usec_timeout; i++) {
941                 tmp = le32_to_cpu(adev->wb.wb[index]);
942                 if (tmp == 0xDEADBEEF)
943                         break;
944                 DRM_UDELAY(1);
945         }
946         if (i < adev->usec_timeout) {
947                 DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
948                          ring->idx, i);
949                 goto err1;
950         } else {
951                 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
952                 r = -EINVAL;
953         }
954 err1:
955         fence_put(f);
956         amdgpu_ib_free(adev, &ib, NULL);
957         fence_put(f);
958 err0:
959         amdgpu_wb_free(adev, index);
960         return r;
961 }
962
963 /**
964  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
965  *
966  * @ib: indirect buffer to fill with commands
967  * @pe: addr of the page entry
968  * @src: src addr to copy from
969  * @count: number of page entries to update
970  *
971  * Update PTEs by copying them from the GART using sDMA (CIK).
972  */
973 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
974                                   uint64_t pe, uint64_t src,
975                                   unsigned count)
976 {
977         while (count) {
978                 unsigned bytes = count * 8;
979                 if (bytes > 0x1FFFF8)
980                         bytes = 0x1FFFF8;
981
982                 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
983                         SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
984                 ib->ptr[ib->length_dw++] = bytes;
985                 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
986                 ib->ptr[ib->length_dw++] = lower_32_bits(src);
987                 ib->ptr[ib->length_dw++] = upper_32_bits(src);
988                 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
989                 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
990
991                 pe += bytes;
992                 src += bytes;
993                 count -= bytes / 8;
994         }
995 }
996
997 /**
998  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
999  *
1000  * @ib: indirect buffer to fill with commands
1001  * @pe: addr of the page entry
1002  * @addr: dst addr to write into pe
1003  * @count: number of page entries to update
1004  * @incr: increase next addr by incr bytes
1005  * @flags: access flags
1006  *
1007  * Update PTEs by writing them manually using sDMA (CIK).
1008  */
1009 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
1010                                    const dma_addr_t *pages_addr, uint64_t pe,
1011                                    uint64_t addr, unsigned count,
1012                                    uint32_t incr, uint32_t flags)
1013 {
1014         uint64_t value;
1015         unsigned ndw;
1016
1017         while (count) {
1018                 ndw = count * 2;
1019                 if (ndw > 0xFFFFE)
1020                         ndw = 0xFFFFE;
1021
1022                 /* for non-physically contiguous pages (system) */
1023                 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1024                         SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1025                 ib->ptr[ib->length_dw++] = pe;
1026                 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1027                 ib->ptr[ib->length_dw++] = ndw;
1028                 for (; ndw > 0; ndw -= 2, --count, pe += 8) {
1029                         value = amdgpu_vm_map_gart(pages_addr, addr);
1030                         addr += incr;
1031                         value |= flags;
1032                         ib->ptr[ib->length_dw++] = value;
1033                         ib->ptr[ib->length_dw++] = upper_32_bits(value);
1034                 }
1035         }
1036 }
1037
1038 /**
1039  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
1040  *
1041  * @ib: indirect buffer to fill with commands
1042  * @pe: addr of the page entry
1043  * @addr: dst addr to write into pe
1044  * @count: number of page entries to update
1045  * @incr: increase next addr by incr bytes
1046  * @flags: access flags
1047  *
1048  * Update the page tables using sDMA (CIK).
1049  */
1050 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1051                                      uint64_t pe,
1052                                      uint64_t addr, unsigned count,
1053                                      uint32_t incr, uint32_t flags)
1054 {
1055         uint64_t value;
1056         unsigned ndw;
1057
1058         while (count) {
1059                 ndw = count;
1060                 if (ndw > 0x7FFFF)
1061                         ndw = 0x7FFFF;
1062
1063                 if (flags & AMDGPU_PTE_VALID)
1064                         value = addr;
1065                 else
1066                         value = 0;
1067
1068                 /* for physically contiguous pages (vram) */
1069                 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1070                 ib->ptr[ib->length_dw++] = pe; /* dst addr */
1071                 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1072                 ib->ptr[ib->length_dw++] = flags; /* mask */
1073                 ib->ptr[ib->length_dw++] = 0;
1074                 ib->ptr[ib->length_dw++] = value; /* value */
1075                 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1076                 ib->ptr[ib->length_dw++] = incr; /* increment size */
1077                 ib->ptr[ib->length_dw++] = 0;
1078                 ib->ptr[ib->length_dw++] = ndw; /* number of entries */
1079
1080                 pe += ndw * 8;
1081                 addr += ndw * incr;
1082                 count -= ndw;
1083         }
1084 }
1085
1086 /**
1087  * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1088  *
1089  * @ib: indirect buffer to fill with padding
1090  *
1091  */
1092 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1093 {
1094         struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1095         u32 pad_count;
1096         int i;
1097
1098         pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1099         for (i = 0; i < pad_count; i++)
1100                 if (sdma && sdma->burst_nop && (i == 0))
1101                         ib->ptr[ib->length_dw++] =
1102                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1103                                 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1104                 else
1105                         ib->ptr[ib->length_dw++] =
1106                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1107 }
1108
1109 /**
1110  * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1111  *
1112  * @ring: amdgpu_ring pointer
1113  *
1114  * Make sure all previous operations are completed (CIK).
1115  */
1116 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1117 {
1118         uint32_t seq = ring->fence_drv.sync_seq;
1119         uint64_t addr = ring->fence_drv.gpu_addr;
1120
1121         /* wait for idle */
1122         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1123                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1124                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1125                           SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1126         amdgpu_ring_write(ring, addr & 0xfffffffc);
1127         amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1128         amdgpu_ring_write(ring, seq); /* reference */
1129         amdgpu_ring_write(ring, 0xfffffff); /* mask */
1130         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1131                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1132 }
1133
1134 /**
1135  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1136  *
1137  * @ring: amdgpu_ring pointer
1138  * @vm: amdgpu_vm pointer
1139  *
1140  * Update the page table base and flush the VM TLB
1141  * using sDMA (VI).
1142  */
1143 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1144                                          unsigned vm_id, uint64_t pd_addr)
1145 {
1146         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1147                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1148         if (vm_id < 8) {
1149                 amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
1150         } else {
1151                 amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
1152         }
1153         amdgpu_ring_write(ring, pd_addr >> 12);
1154
1155         /* flush TLB */
1156         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1157                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1158         amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1159         amdgpu_ring_write(ring, 1 << vm_id);
1160
1161         /* wait for flush */
1162         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1163                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1164                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1165         amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1166         amdgpu_ring_write(ring, 0);
1167         amdgpu_ring_write(ring, 0); /* reference */
1168         amdgpu_ring_write(ring, 0); /* mask */
1169         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1170                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1171 }
1172
1173 static int sdma_v3_0_early_init(void *handle)
1174 {
1175         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1176
1177         switch (adev->asic_type) {
1178         case CHIP_STONEY:
1179                 adev->sdma.num_instances = 1;
1180                 break;
1181         default:
1182                 adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1183                 break;
1184         }
1185
1186         sdma_v3_0_set_ring_funcs(adev);
1187         sdma_v3_0_set_buffer_funcs(adev);
1188         sdma_v3_0_set_vm_pte_funcs(adev);
1189         sdma_v3_0_set_irq_funcs(adev);
1190
1191         return 0;
1192 }
1193
1194 static int sdma_v3_0_sw_init(void *handle)
1195 {
1196         struct amdgpu_ring *ring;
1197         int r, i;
1198         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1199
1200         /* SDMA trap event */
1201         r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
1202         if (r)
1203                 return r;
1204
1205         /* SDMA Privileged inst */
1206         r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
1207         if (r)
1208                 return r;
1209
1210         /* SDMA Privileged inst */
1211         r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
1212         if (r)
1213                 return r;
1214
1215         r = sdma_v3_0_init_microcode(adev);
1216         if (r) {
1217                 DRM_ERROR("Failed to load sdma firmware!\n");
1218                 return r;
1219         }
1220
1221         for (i = 0; i < adev->sdma.num_instances; i++) {
1222                 ring = &adev->sdma.instance[i].ring;
1223                 ring->ring_obj = NULL;
1224                 ring->use_doorbell = true;
1225                 ring->doorbell_index = (i == 0) ?
1226                         AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1227
1228                 sprintf(ring->name, "sdma%d", i);
1229                 r = amdgpu_ring_init(adev, ring, 1024,
1230                                      SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
1231                                      &adev->sdma.trap_irq,
1232                                      (i == 0) ?
1233                                      AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
1234                                      AMDGPU_RING_TYPE_SDMA);
1235                 if (r)
1236                         return r;
1237         }
1238
1239         return r;
1240 }
1241
1242 static int sdma_v3_0_sw_fini(void *handle)
1243 {
1244         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1245         int i;
1246
1247         for (i = 0; i < adev->sdma.num_instances; i++)
1248                 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1249
1250         return 0;
1251 }
1252
1253 static int sdma_v3_0_hw_init(void *handle)
1254 {
1255         int r;
1256         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1257
1258         sdma_v3_0_init_golden_registers(adev);
1259
1260         r = sdma_v3_0_start(adev);
1261         if (r)
1262                 return r;
1263
1264         return r;
1265 }
1266
1267 static int sdma_v3_0_hw_fini(void *handle)
1268 {
1269         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1270
1271         sdma_v3_0_ctx_switch_enable(adev, false);
1272         sdma_v3_0_enable(adev, false);
1273
1274         return 0;
1275 }
1276
1277 static int sdma_v3_0_suspend(void *handle)
1278 {
1279         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1280
1281         return sdma_v3_0_hw_fini(adev);
1282 }
1283
1284 static int sdma_v3_0_resume(void *handle)
1285 {
1286         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1287
1288         return sdma_v3_0_hw_init(adev);
1289 }
1290
1291 static bool sdma_v3_0_is_idle(void *handle)
1292 {
1293         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1294         u32 tmp = RREG32(mmSRBM_STATUS2);
1295
1296         if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1297                    SRBM_STATUS2__SDMA1_BUSY_MASK))
1298             return false;
1299
1300         return true;
1301 }
1302
1303 static int sdma_v3_0_wait_for_idle(void *handle)
1304 {
1305         unsigned i;
1306         u32 tmp;
1307         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1308
1309         for (i = 0; i < adev->usec_timeout; i++) {
1310                 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1311                                 SRBM_STATUS2__SDMA1_BUSY_MASK);
1312
1313                 if (!tmp)
1314                         return 0;
1315                 udelay(1);
1316         }
1317         return -ETIMEDOUT;
1318 }
1319
1320 static int sdma_v3_0_soft_reset(void *handle)
1321 {
1322         u32 srbm_soft_reset = 0;
1323         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1324         u32 tmp = RREG32(mmSRBM_STATUS2);
1325
1326         if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
1327                 /* sdma0 */
1328                 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
1329                 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1330                 WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
1331                 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1332         }
1333         if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
1334                 /* sdma1 */
1335                 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
1336                 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1337                 WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
1338                 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1339         }
1340
1341         if (srbm_soft_reset) {
1342                 tmp = RREG32(mmSRBM_SOFT_RESET);
1343                 tmp |= srbm_soft_reset;
1344                 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1345                 WREG32(mmSRBM_SOFT_RESET, tmp);
1346                 tmp = RREG32(mmSRBM_SOFT_RESET);
1347
1348                 udelay(50);
1349
1350                 tmp &= ~srbm_soft_reset;
1351                 WREG32(mmSRBM_SOFT_RESET, tmp);
1352                 tmp = RREG32(mmSRBM_SOFT_RESET);
1353
1354                 /* Wait a little for things to settle down */
1355                 udelay(50);
1356         }
1357
1358         return 0;
1359 }
1360
1361 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1362                                         struct amdgpu_irq_src *source,
1363                                         unsigned type,
1364                                         enum amdgpu_interrupt_state state)
1365 {
1366         u32 sdma_cntl;
1367
1368         switch (type) {
1369         case AMDGPU_SDMA_IRQ_TRAP0:
1370                 switch (state) {
1371                 case AMDGPU_IRQ_STATE_DISABLE:
1372                         sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1373                         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1374                         WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1375                         break;
1376                 case AMDGPU_IRQ_STATE_ENABLE:
1377                         sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1378                         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1379                         WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1380                         break;
1381                 default:
1382                         break;
1383                 }
1384                 break;
1385         case AMDGPU_SDMA_IRQ_TRAP1:
1386                 switch (state) {
1387                 case AMDGPU_IRQ_STATE_DISABLE:
1388                         sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1389                         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1390                         WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1391                         break;
1392                 case AMDGPU_IRQ_STATE_ENABLE:
1393                         sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1394                         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1395                         WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1396                         break;
1397                 default:
1398                         break;
1399                 }
1400                 break;
1401         default:
1402                 break;
1403         }
1404         return 0;
1405 }
1406
1407 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1408                                       struct amdgpu_irq_src *source,
1409                                       struct amdgpu_iv_entry *entry)
1410 {
1411         u8 instance_id, queue_id;
1412
1413         instance_id = (entry->ring_id & 0x3) >> 0;
1414         queue_id = (entry->ring_id & 0xc) >> 2;
1415         DRM_DEBUG("IH: SDMA trap\n");
1416         switch (instance_id) {
1417         case 0:
1418                 switch (queue_id) {
1419                 case 0:
1420                         amdgpu_fence_process(&adev->sdma.instance[0].ring);
1421                         break;
1422                 case 1:
1423                         /* XXX compute */
1424                         break;
1425                 case 2:
1426                         /* XXX compute */
1427                         break;
1428                 }
1429                 break;
1430         case 1:
1431                 switch (queue_id) {
1432                 case 0:
1433                         amdgpu_fence_process(&adev->sdma.instance[1].ring);
1434                         break;
1435                 case 1:
1436                         /* XXX compute */
1437                         break;
1438                 case 2:
1439                         /* XXX compute */
1440                         break;
1441                 }
1442                 break;
1443         }
1444         return 0;
1445 }
1446
1447 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1448                                               struct amdgpu_irq_src *source,
1449                                               struct amdgpu_iv_entry *entry)
1450 {
1451         DRM_ERROR("Illegal instruction in SDMA command stream\n");
1452         schedule_work(&adev->reset_work);
1453         return 0;
1454 }
1455
1456 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1457                 struct amdgpu_device *adev,
1458                 bool enable)
1459 {
1460         uint32_t temp, data;
1461         int i;
1462
1463         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1464                 for (i = 0; i < adev->sdma.num_instances; i++) {
1465                         temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1466                         data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1467                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1468                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1469                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1470                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1471                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1472                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1473                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1474                         if (data != temp)
1475                                 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1476                 }
1477         } else {
1478                 for (i = 0; i < adev->sdma.num_instances; i++) {
1479                         temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1480                         data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1481                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1482                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1483                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1484                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1485                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1486                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1487                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1488
1489                         if (data != temp)
1490                                 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1491                 }
1492         }
1493 }
1494
1495 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1496                 struct amdgpu_device *adev,
1497                 bool enable)
1498 {
1499         uint32_t temp, data;
1500         int i;
1501
1502         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1503                 for (i = 0; i < adev->sdma.num_instances; i++) {
1504                         temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1505                         data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1506
1507                         if (temp != data)
1508                                 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1509                 }
1510         } else {
1511                 for (i = 0; i < adev->sdma.num_instances; i++) {
1512                         temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1513                         data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1514
1515                         if (temp != data)
1516                                 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1517                 }
1518         }
1519 }
1520
1521 static int sdma_v3_0_set_clockgating_state(void *handle,
1522                                           enum amd_clockgating_state state)
1523 {
1524         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1525
1526         switch (adev->asic_type) {
1527         case CHIP_FIJI:
1528         case CHIP_CARRIZO:
1529         case CHIP_STONEY:
1530                 sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1531                                 state == AMD_CG_STATE_GATE ? true : false);
1532                 sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1533                                 state == AMD_CG_STATE_GATE ? true : false);
1534                 break;
1535         default:
1536                 break;
1537         }
1538         return 0;
1539 }
1540
1541 static int sdma_v3_0_set_powergating_state(void *handle,
1542                                           enum amd_powergating_state state)
1543 {
1544         return 0;
1545 }
1546
1547 const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1548         .name = "sdma_v3_0",
1549         .early_init = sdma_v3_0_early_init,
1550         .late_init = NULL,
1551         .sw_init = sdma_v3_0_sw_init,
1552         .sw_fini = sdma_v3_0_sw_fini,
1553         .hw_init = sdma_v3_0_hw_init,
1554         .hw_fini = sdma_v3_0_hw_fini,
1555         .suspend = sdma_v3_0_suspend,
1556         .resume = sdma_v3_0_resume,
1557         .is_idle = sdma_v3_0_is_idle,
1558         .wait_for_idle = sdma_v3_0_wait_for_idle,
1559         .soft_reset = sdma_v3_0_soft_reset,
1560         .set_clockgating_state = sdma_v3_0_set_clockgating_state,
1561         .set_powergating_state = sdma_v3_0_set_powergating_state,
1562 };
1563
1564 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1565         .get_rptr = sdma_v3_0_ring_get_rptr,
1566         .get_wptr = sdma_v3_0_ring_get_wptr,
1567         .set_wptr = sdma_v3_0_ring_set_wptr,
1568         .parse_cs = NULL,
1569         .emit_ib = sdma_v3_0_ring_emit_ib,
1570         .emit_fence = sdma_v3_0_ring_emit_fence,
1571         .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1572         .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1573         .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1574         .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
1575         .test_ring = sdma_v3_0_ring_test_ring,
1576         .test_ib = sdma_v3_0_ring_test_ib,
1577         .insert_nop = sdma_v3_0_ring_insert_nop,
1578         .pad_ib = sdma_v3_0_ring_pad_ib,
1579 };
1580
1581 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1582 {
1583         int i;
1584
1585         for (i = 0; i < adev->sdma.num_instances; i++)
1586                 adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1587 }
1588
1589 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1590         .set = sdma_v3_0_set_trap_irq_state,
1591         .process = sdma_v3_0_process_trap_irq,
1592 };
1593
1594 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1595         .process = sdma_v3_0_process_illegal_inst_irq,
1596 };
1597
1598 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1599 {
1600         adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1601         adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1602         adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1603 }
1604
1605 /**
1606  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1607  *
1608  * @ring: amdgpu_ring structure holding ring information
1609  * @src_offset: src GPU address
1610  * @dst_offset: dst GPU address
1611  * @byte_count: number of bytes to xfer
1612  *
1613  * Copy GPU buffers using the DMA engine (VI).
1614  * Used by the amdgpu ttm implementation to move pages if
1615  * registered as the asic copy callback.
1616  */
1617 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1618                                        uint64_t src_offset,
1619                                        uint64_t dst_offset,
1620                                        uint32_t byte_count)
1621 {
1622         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1623                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1624         ib->ptr[ib->length_dw++] = byte_count;
1625         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1626         ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1627         ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1628         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1629         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1630 }
1631
1632 /**
1633  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1634  *
1635  * @ring: amdgpu_ring structure holding ring information
1636  * @src_data: value to write to buffer
1637  * @dst_offset: dst GPU address
1638  * @byte_count: number of bytes to xfer
1639  *
1640  * Fill GPU buffers using the DMA engine (VI).
1641  */
1642 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1643                                        uint32_t src_data,
1644                                        uint64_t dst_offset,
1645                                        uint32_t byte_count)
1646 {
1647         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1648         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1649         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1650         ib->ptr[ib->length_dw++] = src_data;
1651         ib->ptr[ib->length_dw++] = byte_count;
1652 }
1653
1654 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1655         .copy_max_bytes = 0x1fffff,
1656         .copy_num_dw = 7,
1657         .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1658
1659         .fill_max_bytes = 0x1fffff,
1660         .fill_num_dw = 5,
1661         .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1662 };
1663
1664 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1665 {
1666         if (adev->mman.buffer_funcs == NULL) {
1667                 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1668                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1669         }
1670 }
1671
1672 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1673         .copy_pte = sdma_v3_0_vm_copy_pte,
1674         .write_pte = sdma_v3_0_vm_write_pte,
1675         .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1676 };
1677
1678 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1679 {
1680         unsigned i;
1681
1682         if (adev->vm_manager.vm_pte_funcs == NULL) {
1683                 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1684                 for (i = 0; i < adev->sdma.num_instances; i++)
1685                         adev->vm_manager.vm_pte_rings[i] =
1686                                 &adev->sdma.instance[i].ring;
1687
1688                 adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1689         }
1690 }