Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[cascardo/linux.git] / drivers / gpu / drm / amd / amdgpu / sdma_v3_0.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31
32 #include "oss/oss_3_0_d.h"
33 #include "oss/oss_3_0_sh_mask.h"
34
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44
45 #include "tonga_sdma_pkt_open.h"
46
47 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
51
52 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
54 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
56 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
57 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
58 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
59 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
63
64
65 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
66 {
67         SDMA0_REGISTER_OFFSET,
68         SDMA1_REGISTER_OFFSET
69 };
70
71 static const u32 golden_settings_tonga_a11[] =
72 {
73         mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
74         mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
75         mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
76         mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
77         mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
78         mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
79         mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
80         mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
81         mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
82         mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
83 };
84
85 static const u32 tonga_mgcg_cgcg_init[] =
86 {
87         mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
88         mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
89 };
90
91 static const u32 golden_settings_fiji_a10[] =
92 {
93         mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
94         mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
95         mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
96         mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
97         mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
98         mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
99         mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
100         mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
101 };
102
103 static const u32 fiji_mgcg_cgcg_init[] =
104 {
105         mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
106         mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
107 };
108
109 static const u32 golden_settings_polaris11_a11[] =
110 {
111         mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
112         mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
113         mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
114         mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
115         mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
116         mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
117         mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
118         mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
119         mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
120         mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
121 };
122
123 static const u32 golden_settings_polaris10_a11[] =
124 {
125         mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
126         mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
127         mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
128         mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
129         mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
130         mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
131         mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
132         mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
133         mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
134         mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
135 };
136
137 static const u32 cz_golden_settings_a11[] =
138 {
139         mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
140         mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
141         mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
142         mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
143         mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
144         mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
145         mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
146         mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
147         mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
148         mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
149         mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
150         mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
151 };
152
153 static const u32 cz_mgcg_cgcg_init[] =
154 {
155         mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
156         mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
157 };
158
159 static const u32 stoney_golden_settings_a11[] =
160 {
161         mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
162         mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
163         mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
164         mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
165 };
166
167 static const u32 stoney_mgcg_cgcg_init[] =
168 {
169         mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
170 };
171
172 /*
173  * sDMA - System DMA
174  * Starting with CIK, the GPU has new asynchronous
175  * DMA engines.  These engines are used for compute
176  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
177  * and each one supports 1 ring buffer used for gfx
178  * and 2 queues used for compute.
179  *
180  * The programming model is very similar to the CP
181  * (ring buffer, IBs, etc.), but sDMA has it's own
182  * packet format that is different from the PM4 format
183  * used by the CP. sDMA supports copying data, writing
184  * embedded data, solid fills, and a number of other
185  * things.  It also has support for tiling/detiling of
186  * buffers.
187  */
188
189 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
190 {
191         switch (adev->asic_type) {
192         case CHIP_FIJI:
193                 amdgpu_program_register_sequence(adev,
194                                                  fiji_mgcg_cgcg_init,
195                                                  (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
196                 amdgpu_program_register_sequence(adev,
197                                                  golden_settings_fiji_a10,
198                                                  (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
199                 break;
200         case CHIP_TONGA:
201                 amdgpu_program_register_sequence(adev,
202                                                  tonga_mgcg_cgcg_init,
203                                                  (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
204                 amdgpu_program_register_sequence(adev,
205                                                  golden_settings_tonga_a11,
206                                                  (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
207                 break;
208         case CHIP_POLARIS11:
209                 amdgpu_program_register_sequence(adev,
210                                                  golden_settings_polaris11_a11,
211                                                  (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
212                 break;
213         case CHIP_POLARIS10:
214                 amdgpu_program_register_sequence(adev,
215                                                  golden_settings_polaris10_a11,
216                                                  (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
217                 break;
218         case CHIP_CARRIZO:
219                 amdgpu_program_register_sequence(adev,
220                                                  cz_mgcg_cgcg_init,
221                                                  (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
222                 amdgpu_program_register_sequence(adev,
223                                                  cz_golden_settings_a11,
224                                                  (const u32)ARRAY_SIZE(cz_golden_settings_a11));
225                 break;
226         case CHIP_STONEY:
227                 amdgpu_program_register_sequence(adev,
228                                                  stoney_mgcg_cgcg_init,
229                                                  (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
230                 amdgpu_program_register_sequence(adev,
231                                                  stoney_golden_settings_a11,
232                                                  (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
233                 break;
234         default:
235                 break;
236         }
237 }
238
239 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
240 {
241         int i;
242         for (i = 0; i < adev->sdma.num_instances; i++) {
243                 release_firmware(adev->sdma.instance[i].fw);
244                 adev->sdma.instance[i].fw = NULL;
245         }
246 }
247
248 /**
249  * sdma_v3_0_init_microcode - load ucode images from disk
250  *
251  * @adev: amdgpu_device pointer
252  *
253  * Use the firmware interface to load the ucode images into
254  * the driver (not loaded into hw).
255  * Returns 0 on success, error on failure.
256  */
257 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
258 {
259         const char *chip_name;
260         char fw_name[30];
261         int err = 0, i;
262         struct amdgpu_firmware_info *info = NULL;
263         const struct common_firmware_header *header = NULL;
264         const struct sdma_firmware_header_v1_0 *hdr;
265
266         DRM_DEBUG("\n");
267
268         switch (adev->asic_type) {
269         case CHIP_TONGA:
270                 chip_name = "tonga";
271                 break;
272         case CHIP_FIJI:
273                 chip_name = "fiji";
274                 break;
275         case CHIP_POLARIS11:
276                 chip_name = "polaris11";
277                 break;
278         case CHIP_POLARIS10:
279                 chip_name = "polaris10";
280                 break;
281         case CHIP_CARRIZO:
282                 chip_name = "carrizo";
283                 break;
284         case CHIP_STONEY:
285                 chip_name = "stoney";
286                 break;
287         default: BUG();
288         }
289
290         for (i = 0; i < adev->sdma.num_instances; i++) {
291                 if (i == 0)
292                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
293                 else
294                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
295                 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
296                 if (err)
297                         goto out;
298                 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
299                 if (err)
300                         goto out;
301                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
302                 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
303                 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
304                 if (adev->sdma.instance[i].feature_version >= 20)
305                         adev->sdma.instance[i].burst_nop = true;
306
307                 if (adev->firmware.smu_load) {
308                         info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
309                         info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
310                         info->fw = adev->sdma.instance[i].fw;
311                         header = (const struct common_firmware_header *)info->fw->data;
312                         adev->firmware.fw_size +=
313                                 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
314                 }
315         }
316 out:
317         if (err) {
318                 printk(KERN_ERR
319                        "sdma_v3_0: Failed to load firmware \"%s\"\n",
320                        fw_name);
321                 for (i = 0; i < adev->sdma.num_instances; i++) {
322                         release_firmware(adev->sdma.instance[i].fw);
323                         adev->sdma.instance[i].fw = NULL;
324                 }
325         }
326         return err;
327 }
328
329 /**
330  * sdma_v3_0_ring_get_rptr - get the current read pointer
331  *
332  * @ring: amdgpu ring pointer
333  *
334  * Get the current rptr from the hardware (VI+).
335  */
336 static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
337 {
338         u32 rptr;
339
340         /* XXX check if swapping is necessary on BE */
341         rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
342
343         return rptr;
344 }
345
346 /**
347  * sdma_v3_0_ring_get_wptr - get the current write pointer
348  *
349  * @ring: amdgpu ring pointer
350  *
351  * Get the current wptr from the hardware (VI+).
352  */
353 static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
354 {
355         struct amdgpu_device *adev = ring->adev;
356         u32 wptr;
357
358         if (ring->use_doorbell) {
359                 /* XXX check if swapping is necessary on BE */
360                 wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
361         } else {
362                 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
363
364                 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
365         }
366
367         return wptr;
368 }
369
370 /**
371  * sdma_v3_0_ring_set_wptr - commit the write pointer
372  *
373  * @ring: amdgpu ring pointer
374  *
375  * Write the wptr back to the hardware (VI+).
376  */
377 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
378 {
379         struct amdgpu_device *adev = ring->adev;
380
381         if (ring->use_doorbell) {
382                 /* XXX check if swapping is necessary on BE */
383                 adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
384                 WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
385         } else {
386                 int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
387
388                 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
389         }
390 }
391
392 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
393 {
394         struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
395         int i;
396
397         for (i = 0; i < count; i++)
398                 if (sdma && sdma->burst_nop && (i == 0))
399                         amdgpu_ring_write(ring, ring->nop |
400                                 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
401                 else
402                         amdgpu_ring_write(ring, ring->nop);
403 }
404
405 /**
406  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
407  *
408  * @ring: amdgpu ring pointer
409  * @ib: IB object to schedule
410  *
411  * Schedule an IB in the DMA ring (VI).
412  */
413 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
414                                    struct amdgpu_ib *ib,
415                                    unsigned vm_id, bool ctx_switch)
416 {
417         u32 vmid = vm_id & 0xf;
418
419         /* IB packet must end on a 8 DW boundary */
420         sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
421
422         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
423                           SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
424         /* base must be 32 byte aligned */
425         amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
426         amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
427         amdgpu_ring_write(ring, ib->length_dw);
428         amdgpu_ring_write(ring, 0);
429         amdgpu_ring_write(ring, 0);
430
431 }
432
433 /**
434  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
435  *
436  * @ring: amdgpu ring pointer
437  *
438  * Emit an hdp flush packet on the requested DMA ring.
439  */
440 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
441 {
442         u32 ref_and_mask = 0;
443
444         if (ring == &ring->adev->sdma.instance[0].ring)
445                 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
446         else
447                 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
448
449         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
450                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
451                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
452         amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
453         amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
454         amdgpu_ring_write(ring, ref_and_mask); /* reference */
455         amdgpu_ring_write(ring, ref_and_mask); /* mask */
456         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
457                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
458 }
459
460 static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
461 {
462         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
463                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
464         amdgpu_ring_write(ring, mmHDP_DEBUG0);
465         amdgpu_ring_write(ring, 1);
466 }
467
468 /**
469  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
470  *
471  * @ring: amdgpu ring pointer
472  * @fence: amdgpu fence object
473  *
474  * Add a DMA fence packet to the ring to write
475  * the fence seq number and DMA trap packet to generate
476  * an interrupt if needed (VI).
477  */
478 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
479                                       unsigned flags)
480 {
481         bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
482         /* write the fence */
483         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
484         amdgpu_ring_write(ring, lower_32_bits(addr));
485         amdgpu_ring_write(ring, upper_32_bits(addr));
486         amdgpu_ring_write(ring, lower_32_bits(seq));
487
488         /* optionally write high bits as well */
489         if (write64bit) {
490                 addr += 4;
491                 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
492                 amdgpu_ring_write(ring, lower_32_bits(addr));
493                 amdgpu_ring_write(ring, upper_32_bits(addr));
494                 amdgpu_ring_write(ring, upper_32_bits(seq));
495         }
496
497         /* generate an interrupt */
498         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
499         amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
500 }
501
502 unsigned init_cond_exec(struct amdgpu_ring *ring)
503 {
504         unsigned ret;
505         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
506         amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
507         amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
508         amdgpu_ring_write(ring, 1);
509         ret = ring->wptr;/* this is the offset we need patch later */
510         amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
511         return ret;
512 }
513
514 void patch_cond_exec(struct amdgpu_ring *ring, unsigned offset)
515 {
516         unsigned cur;
517         BUG_ON(ring->ring[offset] != 0x55aa55aa);
518
519         cur = ring->wptr - 1;
520         if (likely(cur > offset))
521                 ring->ring[offset] = cur - offset;
522         else
523                 ring->ring[offset] = (ring->ring_size>>2) - offset + cur;
524 }
525
526
527 /**
528  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
529  *
530  * @adev: amdgpu_device pointer
531  *
532  * Stop the gfx async dma ring buffers (VI).
533  */
534 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
535 {
536         struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
537         struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
538         u32 rb_cntl, ib_cntl;
539         int i;
540
541         if ((adev->mman.buffer_funcs_ring == sdma0) ||
542             (adev->mman.buffer_funcs_ring == sdma1))
543                 amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
544
545         for (i = 0; i < adev->sdma.num_instances; i++) {
546                 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
547                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
548                 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
549                 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
550                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
551                 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
552         }
553         sdma0->ready = false;
554         sdma1->ready = false;
555 }
556
557 /**
558  * sdma_v3_0_rlc_stop - stop the compute async dma engines
559  *
560  * @adev: amdgpu_device pointer
561  *
562  * Stop the compute async dma queues (VI).
563  */
564 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
565 {
566         /* XXX todo */
567 }
568
569 /**
570  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
571  *
572  * @adev: amdgpu_device pointer
573  * @enable: enable/disable the DMA MEs context switch.
574  *
575  * Halt or unhalt the async dma engines context switch (VI).
576  */
577 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
578 {
579         u32 f32_cntl;
580         int i;
581
582         for (i = 0; i < adev->sdma.num_instances; i++) {
583                 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
584                 if (enable)
585                         f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
586                                         AUTO_CTXSW_ENABLE, 1);
587                 else
588                         f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
589                                         AUTO_CTXSW_ENABLE, 0);
590                 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
591         }
592 }
593
594 /**
595  * sdma_v3_0_enable - stop the async dma engines
596  *
597  * @adev: amdgpu_device pointer
598  * @enable: enable/disable the DMA MEs.
599  *
600  * Halt or unhalt the async dma engines (VI).
601  */
602 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
603 {
604         u32 f32_cntl;
605         int i;
606
607         if (!enable) {
608                 sdma_v3_0_gfx_stop(adev);
609                 sdma_v3_0_rlc_stop(adev);
610         }
611
612         for (i = 0; i < adev->sdma.num_instances; i++) {
613                 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
614                 if (enable)
615                         f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
616                 else
617                         f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
618                 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
619         }
620 }
621
622 /**
623  * sdma_v3_0_gfx_resume - setup and start the async dma engines
624  *
625  * @adev: amdgpu_device pointer
626  *
627  * Set up the gfx DMA ring buffers and enable them (VI).
628  * Returns 0 for success, error for failure.
629  */
630 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
631 {
632         struct amdgpu_ring *ring;
633         u32 rb_cntl, ib_cntl;
634         u32 rb_bufsz;
635         u32 wb_offset;
636         u32 doorbell;
637         int i, j, r;
638
639         for (i = 0; i < adev->sdma.num_instances; i++) {
640                 ring = &adev->sdma.instance[i].ring;
641                 wb_offset = (ring->rptr_offs * 4);
642
643                 mutex_lock(&adev->srbm_mutex);
644                 for (j = 0; j < 16; j++) {
645                         vi_srbm_select(adev, 0, 0, 0, j);
646                         /* SDMA GFX */
647                         WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
648                         WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
649                 }
650                 vi_srbm_select(adev, 0, 0, 0, 0);
651                 mutex_unlock(&adev->srbm_mutex);
652
653                 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
654                        adev->gfx.config.gb_addr_config & 0x70);
655
656                 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
657
658                 /* Set ring buffer size in dwords */
659                 rb_bufsz = order_base_2(ring->ring_size / 4);
660                 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
661                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
662 #ifdef __BIG_ENDIAN
663                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
664                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
665                                         RPTR_WRITEBACK_SWAP_ENABLE, 1);
666 #endif
667                 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
668
669                 /* Initialize the ring buffer's read and write pointers */
670                 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
671                 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
672                 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
673                 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
674
675                 /* set the wb address whether it's enabled or not */
676                 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
677                        upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
678                 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
679                        lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
680
681                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
682
683                 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
684                 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
685
686                 ring->wptr = 0;
687                 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
688
689                 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
690
691                 if (ring->use_doorbell) {
692                         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
693                                                  OFFSET, ring->doorbell_index);
694                         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
695                 } else {
696                         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
697                 }
698                 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
699
700                 /* enable DMA RB */
701                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
702                 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
703
704                 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
705                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
706 #ifdef __BIG_ENDIAN
707                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
708 #endif
709                 /* enable DMA IBs */
710                 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
711
712                 ring->ready = true;
713         }
714
715         /* unhalt the MEs */
716         sdma_v3_0_enable(adev, true);
717         /* enable sdma ring preemption */
718         sdma_v3_0_ctx_switch_enable(adev, true);
719
720         for (i = 0; i < adev->sdma.num_instances; i++) {
721                 ring = &adev->sdma.instance[i].ring;
722                 r = amdgpu_ring_test_ring(ring);
723                 if (r) {
724                         ring->ready = false;
725                         return r;
726                 }
727
728                 if (adev->mman.buffer_funcs_ring == ring)
729                         amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
730         }
731
732         return 0;
733 }
734
735 /**
736  * sdma_v3_0_rlc_resume - setup and start the async dma engines
737  *
738  * @adev: amdgpu_device pointer
739  *
740  * Set up the compute DMA queues and enable them (VI).
741  * Returns 0 for success, error for failure.
742  */
743 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
744 {
745         /* XXX todo */
746         return 0;
747 }
748
749 /**
750  * sdma_v3_0_load_microcode - load the sDMA ME ucode
751  *
752  * @adev: amdgpu_device pointer
753  *
754  * Loads the sDMA0/1 ucode.
755  * Returns 0 for success, -EINVAL if the ucode is not available.
756  */
757 static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
758 {
759         const struct sdma_firmware_header_v1_0 *hdr;
760         const __le32 *fw_data;
761         u32 fw_size;
762         int i, j;
763
764         /* halt the MEs */
765         sdma_v3_0_enable(adev, false);
766
767         for (i = 0; i < adev->sdma.num_instances; i++) {
768                 if (!adev->sdma.instance[i].fw)
769                         return -EINVAL;
770                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
771                 amdgpu_ucode_print_sdma_hdr(&hdr->header);
772                 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
773                 fw_data = (const __le32 *)
774                         (adev->sdma.instance[i].fw->data +
775                                 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
776                 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
777                 for (j = 0; j < fw_size; j++)
778                         WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
779                 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
780         }
781
782         return 0;
783 }
784
785 /**
786  * sdma_v3_0_start - setup and start the async dma engines
787  *
788  * @adev: amdgpu_device pointer
789  *
790  * Set up the DMA engines and enable them (VI).
791  * Returns 0 for success, error for failure.
792  */
793 static int sdma_v3_0_start(struct amdgpu_device *adev)
794 {
795         int r, i;
796
797         if (!adev->pp_enabled) {
798                 if (!adev->firmware.smu_load) {
799                         r = sdma_v3_0_load_microcode(adev);
800                         if (r)
801                                 return r;
802                 } else {
803                         for (i = 0; i < adev->sdma.num_instances; i++) {
804                                 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
805                                                                                  (i == 0) ?
806                                                                                  AMDGPU_UCODE_ID_SDMA0 :
807                                                                                  AMDGPU_UCODE_ID_SDMA1);
808                                 if (r)
809                                         return -EINVAL;
810                         }
811                 }
812         }
813
814         /* disble sdma engine before programing it */
815         sdma_v3_0_ctx_switch_enable(adev, false);
816         sdma_v3_0_enable(adev, false);
817
818         /* start the gfx rings and rlc compute queues */
819         r = sdma_v3_0_gfx_resume(adev);
820         if (r)
821                 return r;
822         r = sdma_v3_0_rlc_resume(adev);
823         if (r)
824                 return r;
825
826         return 0;
827 }
828
829 /**
830  * sdma_v3_0_ring_test_ring - simple async dma engine test
831  *
832  * @ring: amdgpu_ring structure holding ring information
833  *
834  * Test the DMA engine by writing using it to write an
835  * value to memory. (VI).
836  * Returns 0 for success, error for failure.
837  */
838 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
839 {
840         struct amdgpu_device *adev = ring->adev;
841         unsigned i;
842         unsigned index;
843         int r;
844         u32 tmp;
845         u64 gpu_addr;
846
847         r = amdgpu_wb_get(adev, &index);
848         if (r) {
849                 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
850                 return r;
851         }
852
853         gpu_addr = adev->wb.gpu_addr + (index * 4);
854         tmp = 0xCAFEDEAD;
855         adev->wb.wb[index] = cpu_to_le32(tmp);
856
857         r = amdgpu_ring_alloc(ring, 5);
858         if (r) {
859                 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
860                 amdgpu_wb_free(adev, index);
861                 return r;
862         }
863
864         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
865                           SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
866         amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
867         amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
868         amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
869         amdgpu_ring_write(ring, 0xDEADBEEF);
870         amdgpu_ring_commit(ring);
871
872         for (i = 0; i < adev->usec_timeout; i++) {
873                 tmp = le32_to_cpu(adev->wb.wb[index]);
874                 if (tmp == 0xDEADBEEF)
875                         break;
876                 DRM_UDELAY(1);
877         }
878
879         if (i < adev->usec_timeout) {
880                 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
881         } else {
882                 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
883                           ring->idx, tmp);
884                 r = -EINVAL;
885         }
886         amdgpu_wb_free(adev, index);
887
888         return r;
889 }
890
891 /**
892  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
893  *
894  * @ring: amdgpu_ring structure holding ring information
895  *
896  * Test a simple IB in the DMA ring (VI).
897  * Returns 0 on success, error on failure.
898  */
899 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
900 {
901         struct amdgpu_device *adev = ring->adev;
902         struct amdgpu_ib ib;
903         struct fence *f = NULL;
904         unsigned index;
905         u32 tmp = 0;
906         u64 gpu_addr;
907         long r;
908
909         r = amdgpu_wb_get(adev, &index);
910         if (r) {
911                 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
912                 return r;
913         }
914
915         gpu_addr = adev->wb.gpu_addr + (index * 4);
916         tmp = 0xCAFEDEAD;
917         adev->wb.wb[index] = cpu_to_le32(tmp);
918         memset(&ib, 0, sizeof(ib));
919         r = amdgpu_ib_get(adev, NULL, 256, &ib);
920         if (r) {
921                 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
922                 goto err0;
923         }
924
925         ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
926                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
927         ib.ptr[1] = lower_32_bits(gpu_addr);
928         ib.ptr[2] = upper_32_bits(gpu_addr);
929         ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
930         ib.ptr[4] = 0xDEADBEEF;
931         ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
932         ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
933         ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
934         ib.length_dw = 8;
935
936         r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
937         if (r)
938                 goto err1;
939
940         r = fence_wait_timeout(f, false, timeout);
941         if (r == 0) {
942                 DRM_ERROR("amdgpu: IB test timed out\n");
943                 r = -ETIMEDOUT;
944                 goto err1;
945         } else if (r < 0) {
946                 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
947                 goto err1;
948         }
949         tmp = le32_to_cpu(adev->wb.wb[index]);
950         if (tmp == 0xDEADBEEF) {
951                 DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
952                 r = 0;
953         } else {
954                 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
955                 r = -EINVAL;
956         }
957 err1:
958         amdgpu_ib_free(adev, &ib, NULL);
959         fence_put(f);
960 err0:
961         amdgpu_wb_free(adev, index);
962         return r;
963 }
964
965 /**
966  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
967  *
968  * @ib: indirect buffer to fill with commands
969  * @pe: addr of the page entry
970  * @src: src addr to copy from
971  * @count: number of page entries to update
972  *
973  * Update PTEs by copying them from the GART using sDMA (CIK).
974  */
975 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
976                                   uint64_t pe, uint64_t src,
977                                   unsigned count)
978 {
979         while (count) {
980                 unsigned bytes = count * 8;
981                 if (bytes > 0x1FFFF8)
982                         bytes = 0x1FFFF8;
983
984                 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
985                         SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
986                 ib->ptr[ib->length_dw++] = bytes;
987                 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
988                 ib->ptr[ib->length_dw++] = lower_32_bits(src);
989                 ib->ptr[ib->length_dw++] = upper_32_bits(src);
990                 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
991                 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
992
993                 pe += bytes;
994                 src += bytes;
995                 count -= bytes / 8;
996         }
997 }
998
999 /**
1000  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
1001  *
1002  * @ib: indirect buffer to fill with commands
1003  * @pe: addr of the page entry
1004  * @addr: dst addr to write into pe
1005  * @count: number of page entries to update
1006  * @incr: increase next addr by incr bytes
1007  * @flags: access flags
1008  *
1009  * Update PTEs by writing them manually using sDMA (CIK).
1010  */
1011 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
1012                                    const dma_addr_t *pages_addr, uint64_t pe,
1013                                    uint64_t addr, unsigned count,
1014                                    uint32_t incr, uint32_t flags)
1015 {
1016         uint64_t value;
1017         unsigned ndw;
1018
1019         while (count) {
1020                 ndw = count * 2;
1021                 if (ndw > 0xFFFFE)
1022                         ndw = 0xFFFFE;
1023
1024                 /* for non-physically contiguous pages (system) */
1025                 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1026                         SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1027                 ib->ptr[ib->length_dw++] = pe;
1028                 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1029                 ib->ptr[ib->length_dw++] = ndw;
1030                 for (; ndw > 0; ndw -= 2, --count, pe += 8) {
1031                         value = amdgpu_vm_map_gart(pages_addr, addr);
1032                         addr += incr;
1033                         value |= flags;
1034                         ib->ptr[ib->length_dw++] = value;
1035                         ib->ptr[ib->length_dw++] = upper_32_bits(value);
1036                 }
1037         }
1038 }
1039
1040 /**
1041  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
1042  *
1043  * @ib: indirect buffer to fill with commands
1044  * @pe: addr of the page entry
1045  * @addr: dst addr to write into pe
1046  * @count: number of page entries to update
1047  * @incr: increase next addr by incr bytes
1048  * @flags: access flags
1049  *
1050  * Update the page tables using sDMA (CIK).
1051  */
1052 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1053                                      uint64_t pe,
1054                                      uint64_t addr, unsigned count,
1055                                      uint32_t incr, uint32_t flags)
1056 {
1057         uint64_t value;
1058         unsigned ndw;
1059
1060         while (count) {
1061                 ndw = count;
1062                 if (ndw > 0x7FFFF)
1063                         ndw = 0x7FFFF;
1064
1065                 if (flags & AMDGPU_PTE_VALID)
1066                         value = addr;
1067                 else
1068                         value = 0;
1069
1070                 /* for physically contiguous pages (vram) */
1071                 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1072                 ib->ptr[ib->length_dw++] = pe; /* dst addr */
1073                 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1074                 ib->ptr[ib->length_dw++] = flags; /* mask */
1075                 ib->ptr[ib->length_dw++] = 0;
1076                 ib->ptr[ib->length_dw++] = value; /* value */
1077                 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1078                 ib->ptr[ib->length_dw++] = incr; /* increment size */
1079                 ib->ptr[ib->length_dw++] = 0;
1080                 ib->ptr[ib->length_dw++] = ndw; /* number of entries */
1081
1082                 pe += ndw * 8;
1083                 addr += ndw * incr;
1084                 count -= ndw;
1085         }
1086 }
1087
1088 /**
1089  * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1090  *
1091  * @ib: indirect buffer to fill with padding
1092  *
1093  */
1094 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1095 {
1096         struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1097         u32 pad_count;
1098         int i;
1099
1100         pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1101         for (i = 0; i < pad_count; i++)
1102                 if (sdma && sdma->burst_nop && (i == 0))
1103                         ib->ptr[ib->length_dw++] =
1104                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1105                                 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1106                 else
1107                         ib->ptr[ib->length_dw++] =
1108                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1109 }
1110
1111 /**
1112  * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1113  *
1114  * @ring: amdgpu_ring pointer
1115  *
1116  * Make sure all previous operations are completed (CIK).
1117  */
1118 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1119 {
1120         uint32_t seq = ring->fence_drv.sync_seq;
1121         uint64_t addr = ring->fence_drv.gpu_addr;
1122
1123         /* wait for idle */
1124         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1125                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1126                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1127                           SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1128         amdgpu_ring_write(ring, addr & 0xfffffffc);
1129         amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1130         amdgpu_ring_write(ring, seq); /* reference */
1131         amdgpu_ring_write(ring, 0xfffffff); /* mask */
1132         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1133                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1134 }
1135
1136 /**
1137  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1138  *
1139  * @ring: amdgpu_ring pointer
1140  * @vm: amdgpu_vm pointer
1141  *
1142  * Update the page table base and flush the VM TLB
1143  * using sDMA (VI).
1144  */
1145 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1146                                          unsigned vm_id, uint64_t pd_addr)
1147 {
1148         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1149                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1150         if (vm_id < 8) {
1151                 amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
1152         } else {
1153                 amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
1154         }
1155         amdgpu_ring_write(ring, pd_addr >> 12);
1156
1157         /* flush TLB */
1158         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1159                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1160         amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
1161         amdgpu_ring_write(ring, 1 << vm_id);
1162
1163         /* wait for flush */
1164         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1165                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1166                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1167         amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1168         amdgpu_ring_write(ring, 0);
1169         amdgpu_ring_write(ring, 0); /* reference */
1170         amdgpu_ring_write(ring, 0); /* mask */
1171         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1172                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1173 }
1174
1175 static int sdma_v3_0_early_init(void *handle)
1176 {
1177         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1178
1179         switch (adev->asic_type) {
1180         case CHIP_STONEY:
1181                 adev->sdma.num_instances = 1;
1182                 break;
1183         default:
1184                 adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1185                 break;
1186         }
1187
1188         sdma_v3_0_set_ring_funcs(adev);
1189         sdma_v3_0_set_buffer_funcs(adev);
1190         sdma_v3_0_set_vm_pte_funcs(adev);
1191         sdma_v3_0_set_irq_funcs(adev);
1192
1193         return 0;
1194 }
1195
1196 static int sdma_v3_0_sw_init(void *handle)
1197 {
1198         struct amdgpu_ring *ring;
1199         int r, i;
1200         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1201
1202         /* SDMA trap event */
1203         r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
1204         if (r)
1205                 return r;
1206
1207         /* SDMA Privileged inst */
1208         r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
1209         if (r)
1210                 return r;
1211
1212         /* SDMA Privileged inst */
1213         r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
1214         if (r)
1215                 return r;
1216
1217         r = sdma_v3_0_init_microcode(adev);
1218         if (r) {
1219                 DRM_ERROR("Failed to load sdma firmware!\n");
1220                 return r;
1221         }
1222
1223         for (i = 0; i < adev->sdma.num_instances; i++) {
1224                 ring = &adev->sdma.instance[i].ring;
1225                 ring->ring_obj = NULL;
1226                 ring->use_doorbell = true;
1227                 ring->doorbell_index = (i == 0) ?
1228                         AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
1229
1230                 sprintf(ring->name, "sdma%d", i);
1231                 r = amdgpu_ring_init(adev, ring, 1024,
1232                                      SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
1233                                      &adev->sdma.trap_irq,
1234                                      (i == 0) ?
1235                                      AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
1236                                      AMDGPU_RING_TYPE_SDMA);
1237                 if (r)
1238                         return r;
1239         }
1240
1241         return r;
1242 }
1243
1244 static int sdma_v3_0_sw_fini(void *handle)
1245 {
1246         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1247         int i;
1248
1249         for (i = 0; i < adev->sdma.num_instances; i++)
1250                 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1251
1252         sdma_v3_0_free_microcode(adev);
1253         return 0;
1254 }
1255
1256 static int sdma_v3_0_hw_init(void *handle)
1257 {
1258         int r;
1259         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1260
1261         sdma_v3_0_init_golden_registers(adev);
1262
1263         r = sdma_v3_0_start(adev);
1264         if (r)
1265                 return r;
1266
1267         return r;
1268 }
1269
1270 static int sdma_v3_0_hw_fini(void *handle)
1271 {
1272         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1273
1274         sdma_v3_0_ctx_switch_enable(adev, false);
1275         sdma_v3_0_enable(adev, false);
1276
1277         return 0;
1278 }
1279
1280 static int sdma_v3_0_suspend(void *handle)
1281 {
1282         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1283
1284         return sdma_v3_0_hw_fini(adev);
1285 }
1286
1287 static int sdma_v3_0_resume(void *handle)
1288 {
1289         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1290
1291         return sdma_v3_0_hw_init(adev);
1292 }
1293
1294 static bool sdma_v3_0_is_idle(void *handle)
1295 {
1296         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1297         u32 tmp = RREG32(mmSRBM_STATUS2);
1298
1299         if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1300                    SRBM_STATUS2__SDMA1_BUSY_MASK))
1301             return false;
1302
1303         return true;
1304 }
1305
1306 static int sdma_v3_0_wait_for_idle(void *handle)
1307 {
1308         unsigned i;
1309         u32 tmp;
1310         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1311
1312         for (i = 0; i < adev->usec_timeout; i++) {
1313                 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1314                                 SRBM_STATUS2__SDMA1_BUSY_MASK);
1315
1316                 if (!tmp)
1317                         return 0;
1318                 udelay(1);
1319         }
1320         return -ETIMEDOUT;
1321 }
1322
1323 static int sdma_v3_0_soft_reset(void *handle)
1324 {
1325         u32 srbm_soft_reset = 0;
1326         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1327         u32 tmp = RREG32(mmSRBM_STATUS2);
1328
1329         if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
1330                 /* sdma0 */
1331                 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
1332                 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1333                 WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
1334                 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1335         }
1336         if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
1337                 /* sdma1 */
1338                 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
1339                 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1340                 WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
1341                 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1342         }
1343
1344         if (srbm_soft_reset) {
1345                 tmp = RREG32(mmSRBM_SOFT_RESET);
1346                 tmp |= srbm_soft_reset;
1347                 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1348                 WREG32(mmSRBM_SOFT_RESET, tmp);
1349                 tmp = RREG32(mmSRBM_SOFT_RESET);
1350
1351                 udelay(50);
1352
1353                 tmp &= ~srbm_soft_reset;
1354                 WREG32(mmSRBM_SOFT_RESET, tmp);
1355                 tmp = RREG32(mmSRBM_SOFT_RESET);
1356
1357                 /* Wait a little for things to settle down */
1358                 udelay(50);
1359         }
1360
1361         return 0;
1362 }
1363
1364 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1365                                         struct amdgpu_irq_src *source,
1366                                         unsigned type,
1367                                         enum amdgpu_interrupt_state state)
1368 {
1369         u32 sdma_cntl;
1370
1371         switch (type) {
1372         case AMDGPU_SDMA_IRQ_TRAP0:
1373                 switch (state) {
1374                 case AMDGPU_IRQ_STATE_DISABLE:
1375                         sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1376                         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1377                         WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1378                         break;
1379                 case AMDGPU_IRQ_STATE_ENABLE:
1380                         sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1381                         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1382                         WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1383                         break;
1384                 default:
1385                         break;
1386                 }
1387                 break;
1388         case AMDGPU_SDMA_IRQ_TRAP1:
1389                 switch (state) {
1390                 case AMDGPU_IRQ_STATE_DISABLE:
1391                         sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1392                         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1393                         WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1394                         break;
1395                 case AMDGPU_IRQ_STATE_ENABLE:
1396                         sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1397                         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1398                         WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1399                         break;
1400                 default:
1401                         break;
1402                 }
1403                 break;
1404         default:
1405                 break;
1406         }
1407         return 0;
1408 }
1409
1410 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1411                                       struct amdgpu_irq_src *source,
1412                                       struct amdgpu_iv_entry *entry)
1413 {
1414         u8 instance_id, queue_id;
1415
1416         instance_id = (entry->ring_id & 0x3) >> 0;
1417         queue_id = (entry->ring_id & 0xc) >> 2;
1418         DRM_DEBUG("IH: SDMA trap\n");
1419         switch (instance_id) {
1420         case 0:
1421                 switch (queue_id) {
1422                 case 0:
1423                         amdgpu_fence_process(&adev->sdma.instance[0].ring);
1424                         break;
1425                 case 1:
1426                         /* XXX compute */
1427                         break;
1428                 case 2:
1429                         /* XXX compute */
1430                         break;
1431                 }
1432                 break;
1433         case 1:
1434                 switch (queue_id) {
1435                 case 0:
1436                         amdgpu_fence_process(&adev->sdma.instance[1].ring);
1437                         break;
1438                 case 1:
1439                         /* XXX compute */
1440                         break;
1441                 case 2:
1442                         /* XXX compute */
1443                         break;
1444                 }
1445                 break;
1446         }
1447         return 0;
1448 }
1449
1450 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1451                                               struct amdgpu_irq_src *source,
1452                                               struct amdgpu_iv_entry *entry)
1453 {
1454         DRM_ERROR("Illegal instruction in SDMA command stream\n");
1455         schedule_work(&adev->reset_work);
1456         return 0;
1457 }
1458
1459 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1460                 struct amdgpu_device *adev,
1461                 bool enable)
1462 {
1463         uint32_t temp, data;
1464         int i;
1465
1466         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1467                 for (i = 0; i < adev->sdma.num_instances; i++) {
1468                         temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1469                         data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1470                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1471                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1472                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1473                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1474                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1475                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1476                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1477                         if (data != temp)
1478                                 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1479                 }
1480         } else {
1481                 for (i = 0; i < adev->sdma.num_instances; i++) {
1482                         temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1483                         data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1484                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1485                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1486                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1487                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1488                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1489                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1490                                 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1491
1492                         if (data != temp)
1493                                 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1494                 }
1495         }
1496 }
1497
1498 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1499                 struct amdgpu_device *adev,
1500                 bool enable)
1501 {
1502         uint32_t temp, data;
1503         int i;
1504
1505         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1506                 for (i = 0; i < adev->sdma.num_instances; i++) {
1507                         temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1508                         data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1509
1510                         if (temp != data)
1511                                 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1512                 }
1513         } else {
1514                 for (i = 0; i < adev->sdma.num_instances; i++) {
1515                         temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1516                         data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1517
1518                         if (temp != data)
1519                                 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1520                 }
1521         }
1522 }
1523
1524 static int sdma_v3_0_set_clockgating_state(void *handle,
1525                                           enum amd_clockgating_state state)
1526 {
1527         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1528
1529         switch (adev->asic_type) {
1530         case CHIP_FIJI:
1531         case CHIP_CARRIZO:
1532         case CHIP_STONEY:
1533                 sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1534                                 state == AMD_CG_STATE_GATE ? true : false);
1535                 sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1536                                 state == AMD_CG_STATE_GATE ? true : false);
1537                 break;
1538         default:
1539                 break;
1540         }
1541         return 0;
1542 }
1543
1544 static int sdma_v3_0_set_powergating_state(void *handle,
1545                                           enum amd_powergating_state state)
1546 {
1547         return 0;
1548 }
1549
1550 const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1551         .name = "sdma_v3_0",
1552         .early_init = sdma_v3_0_early_init,
1553         .late_init = NULL,
1554         .sw_init = sdma_v3_0_sw_init,
1555         .sw_fini = sdma_v3_0_sw_fini,
1556         .hw_init = sdma_v3_0_hw_init,
1557         .hw_fini = sdma_v3_0_hw_fini,
1558         .suspend = sdma_v3_0_suspend,
1559         .resume = sdma_v3_0_resume,
1560         .is_idle = sdma_v3_0_is_idle,
1561         .wait_for_idle = sdma_v3_0_wait_for_idle,
1562         .soft_reset = sdma_v3_0_soft_reset,
1563         .set_clockgating_state = sdma_v3_0_set_clockgating_state,
1564         .set_powergating_state = sdma_v3_0_set_powergating_state,
1565 };
1566
1567 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1568         .get_rptr = sdma_v3_0_ring_get_rptr,
1569         .get_wptr = sdma_v3_0_ring_get_wptr,
1570         .set_wptr = sdma_v3_0_ring_set_wptr,
1571         .parse_cs = NULL,
1572         .emit_ib = sdma_v3_0_ring_emit_ib,
1573         .emit_fence = sdma_v3_0_ring_emit_fence,
1574         .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1575         .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1576         .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1577         .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
1578         .test_ring = sdma_v3_0_ring_test_ring,
1579         .test_ib = sdma_v3_0_ring_test_ib,
1580         .insert_nop = sdma_v3_0_ring_insert_nop,
1581         .pad_ib = sdma_v3_0_ring_pad_ib,
1582 };
1583
1584 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1585 {
1586         int i;
1587
1588         for (i = 0; i < adev->sdma.num_instances; i++)
1589                 adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1590 }
1591
1592 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1593         .set = sdma_v3_0_set_trap_irq_state,
1594         .process = sdma_v3_0_process_trap_irq,
1595 };
1596
1597 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1598         .process = sdma_v3_0_process_illegal_inst_irq,
1599 };
1600
1601 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1602 {
1603         adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1604         adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1605         adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1606 }
1607
1608 /**
1609  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1610  *
1611  * @ring: amdgpu_ring structure holding ring information
1612  * @src_offset: src GPU address
1613  * @dst_offset: dst GPU address
1614  * @byte_count: number of bytes to xfer
1615  *
1616  * Copy GPU buffers using the DMA engine (VI).
1617  * Used by the amdgpu ttm implementation to move pages if
1618  * registered as the asic copy callback.
1619  */
1620 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1621                                        uint64_t src_offset,
1622                                        uint64_t dst_offset,
1623                                        uint32_t byte_count)
1624 {
1625         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1626                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1627         ib->ptr[ib->length_dw++] = byte_count;
1628         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1629         ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1630         ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1631         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1632         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1633 }
1634
1635 /**
1636  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1637  *
1638  * @ring: amdgpu_ring structure holding ring information
1639  * @src_data: value to write to buffer
1640  * @dst_offset: dst GPU address
1641  * @byte_count: number of bytes to xfer
1642  *
1643  * Fill GPU buffers using the DMA engine (VI).
1644  */
1645 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1646                                        uint32_t src_data,
1647                                        uint64_t dst_offset,
1648                                        uint32_t byte_count)
1649 {
1650         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1651         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1652         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1653         ib->ptr[ib->length_dw++] = src_data;
1654         ib->ptr[ib->length_dw++] = byte_count;
1655 }
1656
1657 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1658         .copy_max_bytes = 0x1fffff,
1659         .copy_num_dw = 7,
1660         .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1661
1662         .fill_max_bytes = 0x1fffff,
1663         .fill_num_dw = 5,
1664         .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1665 };
1666
1667 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1668 {
1669         if (adev->mman.buffer_funcs == NULL) {
1670                 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1671                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1672         }
1673 }
1674
1675 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1676         .copy_pte = sdma_v3_0_vm_copy_pte,
1677         .write_pte = sdma_v3_0_vm_write_pte,
1678         .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1679 };
1680
1681 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1682 {
1683         unsigned i;
1684
1685         if (adev->vm_manager.vm_pte_funcs == NULL) {
1686                 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1687                 for (i = 0; i < adev->sdma.num_instances; i++)
1688                         adev->vm_manager.vm_pte_rings[i] =
1689                                 &adev->sdma.instance[i].ring;
1690
1691                 adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1692         }
1693 }