ASoC: tegra: Add control for the Mic Jack pin
[cascardo/linux.git] / drivers / gpu / drm / amd / amdkfd / kfd_device_queue_manager.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/slab.h>
25 #include <linux/list.h>
26 #include <linux/types.h>
27 #include <linux/printk.h>
28 #include <linux/bitops.h>
29 #include <linux/sched.h>
30 #include "kfd_priv.h"
31 #include "kfd_device_queue_manager.h"
32 #include "kfd_mqd_manager.h"
33 #include "cik_regs.h"
34 #include "kfd_kernel_queue.h"
35
36 /* Size of the per-pipe EOP queue */
37 #define CIK_HPD_EOP_BYTES_LOG2 11
38 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
39
40 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
41                                         unsigned int pasid, unsigned int vmid);
42
43 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
44                                         struct queue *q,
45                                         struct qcm_process_device *qpd);
46
47 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
48 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock);
49
50 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
51                                         struct queue *q,
52                                         struct qcm_process_device *qpd);
53
54 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
55                                 unsigned int sdma_queue_id);
56
57 static inline
58 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
59 {
60         if (type == KFD_QUEUE_TYPE_SDMA)
61                 return KFD_MQD_TYPE_SDMA;
62         return KFD_MQD_TYPE_CP;
63 }
64
65 static inline unsigned int get_first_pipe(struct device_queue_manager *dqm)
66 {
67         BUG_ON(!dqm);
68         return dqm->dev->shared_resources.first_compute_pipe;
69 }
70
71 static inline unsigned int get_pipes_num_cpsch(void)
72 {
73         return PIPE_PER_ME_CP_SCHEDULING;
74 }
75
76 void program_sh_mem_settings(struct device_queue_manager *dqm,
77                                         struct qcm_process_device *qpd)
78 {
79         return kfd2kgd->program_sh_mem_settings(dqm->dev->kgd, qpd->vmid,
80                                                 qpd->sh_mem_config,
81                                                 qpd->sh_mem_ape1_base,
82                                                 qpd->sh_mem_ape1_limit,
83                                                 qpd->sh_mem_bases);
84 }
85
86 static int allocate_vmid(struct device_queue_manager *dqm,
87                         struct qcm_process_device *qpd,
88                         struct queue *q)
89 {
90         int bit, allocated_vmid;
91
92         if (dqm->vmid_bitmap == 0)
93                 return -ENOMEM;
94
95         bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
96         clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
97
98         /* Kaveri kfd vmid's starts from vmid 8 */
99         allocated_vmid = bit + KFD_VMID_START_OFFSET;
100         pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
101         qpd->vmid = allocated_vmid;
102         q->properties.vmid = allocated_vmid;
103
104         set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
105         program_sh_mem_settings(dqm, qpd);
106
107         return 0;
108 }
109
110 static void deallocate_vmid(struct device_queue_manager *dqm,
111                                 struct qcm_process_device *qpd,
112                                 struct queue *q)
113 {
114         int bit = qpd->vmid - KFD_VMID_START_OFFSET;
115
116         /* Release the vmid mapping */
117         set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
118
119         set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
120         qpd->vmid = 0;
121         q->properties.vmid = 0;
122 }
123
124 static int create_queue_nocpsch(struct device_queue_manager *dqm,
125                                 struct queue *q,
126                                 struct qcm_process_device *qpd,
127                                 int *allocated_vmid)
128 {
129         int retval;
130
131         BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
132
133         pr_debug("kfd: In func %s\n", __func__);
134         print_queue(q);
135
136         mutex_lock(&dqm->lock);
137
138         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
139                 pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
140                                 dqm->total_queue_count);
141                 mutex_unlock(&dqm->lock);
142                 return -EPERM;
143         }
144
145         if (list_empty(&qpd->queues_list)) {
146                 retval = allocate_vmid(dqm, qpd, q);
147                 if (retval != 0) {
148                         mutex_unlock(&dqm->lock);
149                         return retval;
150                 }
151         }
152         *allocated_vmid = qpd->vmid;
153         q->properties.vmid = qpd->vmid;
154
155         if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
156                 retval = create_compute_queue_nocpsch(dqm, q, qpd);
157         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
158                 retval = create_sdma_queue_nocpsch(dqm, q, qpd);
159
160         if (retval != 0) {
161                 if (list_empty(&qpd->queues_list)) {
162                         deallocate_vmid(dqm, qpd, q);
163                         *allocated_vmid = 0;
164                 }
165                 mutex_unlock(&dqm->lock);
166                 return retval;
167         }
168
169         list_add(&q->list, &qpd->queues_list);
170         if (q->properties.is_active)
171                 dqm->queue_count++;
172
173         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
174                 dqm->sdma_queue_count++;
175
176         /*
177          * Unconditionally increment this counter, regardless of the queue's
178          * type or whether the queue is active.
179          */
180         dqm->total_queue_count++;
181         pr_debug("Total of %d queues are accountable so far\n",
182                         dqm->total_queue_count);
183
184         mutex_unlock(&dqm->lock);
185         return 0;
186 }
187
188 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
189 {
190         bool set;
191         int pipe, bit, i;
192
193         set = false;
194
195         for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_num(dqm);
196                         pipe = ((pipe + 1) % get_pipes_num(dqm)), ++i) {
197                 if (dqm->allocated_queues[pipe] != 0) {
198                         bit = find_first_bit(
199                                 (unsigned long *)&dqm->allocated_queues[pipe],
200                                 QUEUES_PER_PIPE);
201
202                         clear_bit(bit,
203                                 (unsigned long *)&dqm->allocated_queues[pipe]);
204                         q->pipe = pipe;
205                         q->queue = bit;
206                         set = true;
207                         break;
208                 }
209         }
210
211         if (set == false)
212                 return -EBUSY;
213
214         pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
215                                 __func__, q->pipe, q->queue);
216         /* horizontal hqd allocation */
217         dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
218
219         return 0;
220 }
221
222 static inline void deallocate_hqd(struct device_queue_manager *dqm,
223                                 struct queue *q)
224 {
225         set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
226 }
227
228 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
229                                         struct queue *q,
230                                         struct qcm_process_device *qpd)
231 {
232         int retval;
233         struct mqd_manager *mqd;
234
235         BUG_ON(!dqm || !q || !qpd);
236
237         mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
238         if (mqd == NULL)
239                 return -ENOMEM;
240
241         retval = allocate_hqd(dqm, q);
242         if (retval != 0)
243                 return retval;
244
245         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
246                                 &q->gart_mqd_addr, &q->properties);
247         if (retval != 0) {
248                 deallocate_hqd(dqm, q);
249                 return retval;
250         }
251
252         pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
253                         q->pipe,
254                         q->queue);
255
256         retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
257                         q->queue, (uint32_t __user *) q->properties.write_ptr);
258         if (retval != 0) {
259                 deallocate_hqd(dqm, q);
260                 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
261                 return retval;
262         }
263
264         return 0;
265 }
266
267 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
268                                 struct qcm_process_device *qpd,
269                                 struct queue *q)
270 {
271         int retval;
272         struct mqd_manager *mqd;
273
274         BUG_ON(!dqm || !q || !q->mqd || !qpd);
275
276         retval = 0;
277
278         pr_debug("kfd: In Func %s\n", __func__);
279
280         mutex_lock(&dqm->lock);
281
282         if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
283                 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
284                 if (mqd == NULL) {
285                         retval = -ENOMEM;
286                         goto out;
287                 }
288                 deallocate_hqd(dqm, q);
289         } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
290                 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
291                 if (mqd == NULL) {
292                         retval = -ENOMEM;
293                         goto out;
294                 }
295                 dqm->sdma_queue_count--;
296                 deallocate_sdma_queue(dqm, q->sdma_id);
297         } else {
298                 pr_debug("q->properties.type is invalid (%d)\n",
299                                 q->properties.type);
300                 retval = -EINVAL;
301                 goto out;
302         }
303
304         retval = mqd->destroy_mqd(mqd, q->mqd,
305                                 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
306                                 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
307                                 q->pipe, q->queue);
308
309         if (retval != 0)
310                 goto out;
311
312         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
313
314         list_del(&q->list);
315         if (list_empty(&qpd->queues_list))
316                 deallocate_vmid(dqm, qpd, q);
317         if (q->properties.is_active)
318                 dqm->queue_count--;
319
320         /*
321          * Unconditionally decrement this counter, regardless of the queue's
322          * type
323          */
324         dqm->total_queue_count--;
325         pr_debug("Total of %d queues are accountable so far\n",
326                         dqm->total_queue_count);
327
328 out:
329         mutex_unlock(&dqm->lock);
330         return retval;
331 }
332
333 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
334 {
335         int retval;
336         struct mqd_manager *mqd;
337         bool prev_active = false;
338
339         BUG_ON(!dqm || !q || !q->mqd);
340
341         mutex_lock(&dqm->lock);
342         mqd = dqm->ops.get_mqd_manager(dqm,
343                         get_mqd_type_from_queue_type(q->properties.type));
344         if (mqd == NULL) {
345                 mutex_unlock(&dqm->lock);
346                 return -ENOMEM;
347         }
348
349         if (q->properties.is_active == true)
350                 prev_active = true;
351
352         /*
353          *
354          * check active state vs. the previous state
355          * and modify counter accordingly
356          */
357         retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
358         if ((q->properties.is_active == true) && (prev_active == false))
359                 dqm->queue_count++;
360         else if ((q->properties.is_active == false) && (prev_active == true))
361                 dqm->queue_count--;
362
363         if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
364                 retval = execute_queues_cpsch(dqm, false);
365
366         mutex_unlock(&dqm->lock);
367         return retval;
368 }
369
370 static struct mqd_manager *get_mqd_manager_nocpsch(
371                 struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
372 {
373         struct mqd_manager *mqd;
374
375         BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
376
377         pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
378
379         mqd = dqm->mqds[type];
380         if (!mqd) {
381                 mqd = mqd_manager_init(type, dqm->dev);
382                 if (mqd == NULL)
383                         pr_err("kfd: mqd manager is NULL");
384                 dqm->mqds[type] = mqd;
385         }
386
387         return mqd;
388 }
389
390 static int register_process_nocpsch(struct device_queue_manager *dqm,
391                                         struct qcm_process_device *qpd)
392 {
393         struct device_process_node *n;
394         int retval;
395
396         BUG_ON(!dqm || !qpd);
397
398         pr_debug("kfd: In func %s\n", __func__);
399
400         n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
401         if (!n)
402                 return -ENOMEM;
403
404         n->qpd = qpd;
405
406         mutex_lock(&dqm->lock);
407         list_add(&n->list, &dqm->queues);
408
409         retval = dqm->ops_asic_specific.register_process(dqm, qpd);
410
411         dqm->processes_count++;
412
413         mutex_unlock(&dqm->lock);
414
415         return retval;
416 }
417
418 static int unregister_process_nocpsch(struct device_queue_manager *dqm,
419                                         struct qcm_process_device *qpd)
420 {
421         int retval;
422         struct device_process_node *cur, *next;
423
424         BUG_ON(!dqm || !qpd);
425
426         BUG_ON(!list_empty(&qpd->queues_list));
427
428         pr_debug("kfd: In func %s\n", __func__);
429
430         retval = 0;
431         mutex_lock(&dqm->lock);
432
433         list_for_each_entry_safe(cur, next, &dqm->queues, list) {
434                 if (qpd == cur->qpd) {
435                         list_del(&cur->list);
436                         kfree(cur);
437                         dqm->processes_count--;
438                         goto out;
439                 }
440         }
441         /* qpd not found in dqm list */
442         retval = 1;
443 out:
444         mutex_unlock(&dqm->lock);
445         return retval;
446 }
447
448 static int
449 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
450                         unsigned int vmid)
451 {
452         uint32_t pasid_mapping;
453
454         pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
455                                                 ATC_VMID_PASID_MAPPING_VALID;
456         return kfd2kgd->set_pasid_vmid_mapping(dqm->dev->kgd, pasid_mapping,
457                                                 vmid);
458 }
459
460 int init_pipelines(struct device_queue_manager *dqm,
461                         unsigned int pipes_num, unsigned int first_pipe)
462 {
463         void *hpdptr;
464         struct mqd_manager *mqd;
465         unsigned int i, err, inx;
466         uint64_t pipe_hpd_addr;
467
468         BUG_ON(!dqm || !dqm->dev);
469
470         pr_debug("kfd: In func %s\n", __func__);
471
472         /*
473          * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
474          * The driver never accesses this memory after zeroing it.
475          * It doesn't even have to be saved/restored on suspend/resume
476          * because it contains no data when there are no active queues.
477          */
478
479         err = kfd_gtt_sa_allocate(dqm->dev, CIK_HPD_EOP_BYTES * pipes_num,
480                                         &dqm->pipeline_mem);
481
482         if (err) {
483                 pr_err("kfd: error allocate vidmem num pipes: %d\n",
484                         pipes_num);
485                 return -ENOMEM;
486         }
487
488         hpdptr = dqm->pipeline_mem->cpu_ptr;
489         dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
490
491         memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
492
493         mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
494         if (mqd == NULL) {
495                 kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
496                 return -ENOMEM;
497         }
498
499         for (i = 0; i < pipes_num; i++) {
500                 inx = i + first_pipe;
501                 /*
502                  * HPD buffer on GTT is allocated by amdkfd, no need to waste
503                  * space in GTT for pipelines we don't initialize
504                  */
505                 pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
506                 pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
507                 /* = log2(bytes/4)-1 */
508                 kfd2kgd->init_pipeline(dqm->dev->kgd, inx,
509                                 CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
510         }
511
512         return 0;
513 }
514
515 static int init_scheduler(struct device_queue_manager *dqm)
516 {
517         int retval;
518
519         BUG_ON(!dqm);
520
521         pr_debug("kfd: In %s\n", __func__);
522
523         retval = init_pipelines(dqm, get_pipes_num(dqm), get_first_pipe(dqm));
524         return retval;
525 }
526
527 static int initialize_nocpsch(struct device_queue_manager *dqm)
528 {
529         int i;
530
531         BUG_ON(!dqm);
532
533         pr_debug("kfd: In func %s num of pipes: %d\n",
534                         __func__, get_pipes_num(dqm));
535
536         mutex_init(&dqm->lock);
537         INIT_LIST_HEAD(&dqm->queues);
538         dqm->queue_count = dqm->next_pipe_to_allocate = 0;
539         dqm->sdma_queue_count = 0;
540         dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
541                                         sizeof(unsigned int), GFP_KERNEL);
542         if (!dqm->allocated_queues) {
543                 mutex_destroy(&dqm->lock);
544                 return -ENOMEM;
545         }
546
547         for (i = 0; i < get_pipes_num(dqm); i++)
548                 dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
549
550         dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
551         dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
552
553         init_scheduler(dqm);
554         return 0;
555 }
556
557 static void uninitialize_nocpsch(struct device_queue_manager *dqm)
558 {
559         int i;
560
561         BUG_ON(!dqm);
562
563         BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
564
565         kfree(dqm->allocated_queues);
566         for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
567                 kfree(dqm->mqds[i]);
568         mutex_destroy(&dqm->lock);
569         kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
570 }
571
572 static int start_nocpsch(struct device_queue_manager *dqm)
573 {
574         return 0;
575 }
576
577 static int stop_nocpsch(struct device_queue_manager *dqm)
578 {
579         return 0;
580 }
581
582 static int allocate_sdma_queue(struct device_queue_manager *dqm,
583                                 unsigned int *sdma_queue_id)
584 {
585         int bit;
586
587         if (dqm->sdma_bitmap == 0)
588                 return -ENOMEM;
589
590         bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
591                                 CIK_SDMA_QUEUES);
592
593         clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
594         *sdma_queue_id = bit;
595
596         return 0;
597 }
598
599 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
600                                 unsigned int sdma_queue_id)
601 {
602         if (sdma_queue_id >= CIK_SDMA_QUEUES)
603                 return;
604         set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
605 }
606
607 static void init_sdma_vm(struct device_queue_manager *dqm, struct queue *q,
608                                 struct qcm_process_device *qpd)
609 {
610         uint32_t value = SDMA_ATC;
611
612         if (q->process->is_32bit_user_mode)
613                 value |= SDMA_VA_PTR32 | get_sh_mem_bases_32(qpd_to_pdd(qpd));
614         else
615                 value |= SDMA_VA_SHARED_BASE(get_sh_mem_bases_nybble_64(
616                                                         qpd_to_pdd(qpd)));
617         q->properties.sdma_vm_addr = value;
618 }
619
620 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
621                                         struct queue *q,
622                                         struct qcm_process_device *qpd)
623 {
624         struct mqd_manager *mqd;
625         int retval;
626
627         mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
628         if (!mqd)
629                 return -ENOMEM;
630
631         retval = allocate_sdma_queue(dqm, &q->sdma_id);
632         if (retval != 0)
633                 return retval;
634
635         q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
636         q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;
637
638         pr_debug("kfd: sdma id is:    %d\n", q->sdma_id);
639         pr_debug("     sdma queue id: %d\n", q->properties.sdma_queue_id);
640         pr_debug("     sdma engine id: %d\n", q->properties.sdma_engine_id);
641
642         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
643                                 &q->gart_mqd_addr, &q->properties);
644         if (retval != 0) {
645                 deallocate_sdma_queue(dqm, q->sdma_id);
646                 return retval;
647         }
648
649         init_sdma_vm(dqm, q, qpd);
650         return 0;
651 }
652
653 /*
654  * Device Queue Manager implementation for cp scheduler
655  */
656
657 static int set_sched_resources(struct device_queue_manager *dqm)
658 {
659         struct scheduling_resources res;
660         unsigned int queue_num, queue_mask;
661
662         BUG_ON(!dqm);
663
664         pr_debug("kfd: In func %s\n", __func__);
665
666         queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
667         queue_mask = (1 << queue_num) - 1;
668         res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
669         res.vmid_mask <<= KFD_VMID_START_OFFSET;
670         res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
671         res.gws_mask = res.oac_mask = res.gds_heap_base =
672                                                 res.gds_heap_size = 0;
673
674         pr_debug("kfd: scheduling resources:\n"
675                         "      vmid mask: 0x%8X\n"
676                         "      queue mask: 0x%8llX\n",
677                         res.vmid_mask, res.queue_mask);
678
679         return pm_send_set_resources(&dqm->packets, &res);
680 }
681
682 static int initialize_cpsch(struct device_queue_manager *dqm)
683 {
684         int retval;
685
686         BUG_ON(!dqm);
687
688         pr_debug("kfd: In func %s num of pipes: %d\n",
689                         __func__, get_pipes_num_cpsch());
690
691         mutex_init(&dqm->lock);
692         INIT_LIST_HEAD(&dqm->queues);
693         dqm->queue_count = dqm->processes_count = 0;
694         dqm->sdma_queue_count = 0;
695         dqm->active_runlist = false;
696         retval = dqm->ops_asic_specific.initialize(dqm);
697         if (retval != 0)
698                 goto fail_init_pipelines;
699
700         return 0;
701
702 fail_init_pipelines:
703         mutex_destroy(&dqm->lock);
704         return retval;
705 }
706
707 static int start_cpsch(struct device_queue_manager *dqm)
708 {
709         struct device_process_node *node;
710         int retval;
711
712         BUG_ON(!dqm);
713
714         retval = 0;
715
716         retval = pm_init(&dqm->packets, dqm);
717         if (retval != 0)
718                 goto fail_packet_manager_init;
719
720         retval = set_sched_resources(dqm);
721         if (retval != 0)
722                 goto fail_set_sched_resources;
723
724         pr_debug("kfd: allocating fence memory\n");
725
726         /* allocate fence memory on the gart */
727         retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
728                                         &dqm->fence_mem);
729
730         if (retval != 0)
731                 goto fail_allocate_vidmem;
732
733         dqm->fence_addr = dqm->fence_mem->cpu_ptr;
734         dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
735         list_for_each_entry(node, &dqm->queues, list)
736                 if (node->qpd->pqm->process && dqm->dev)
737                         kfd_bind_process_to_device(dqm->dev,
738                                                 node->qpd->pqm->process);
739
740         execute_queues_cpsch(dqm, true);
741
742         return 0;
743 fail_allocate_vidmem:
744 fail_set_sched_resources:
745         pm_uninit(&dqm->packets);
746 fail_packet_manager_init:
747         return retval;
748 }
749
750 static int stop_cpsch(struct device_queue_manager *dqm)
751 {
752         struct device_process_node *node;
753         struct kfd_process_device *pdd;
754
755         BUG_ON(!dqm);
756
757         destroy_queues_cpsch(dqm, true);
758
759         list_for_each_entry(node, &dqm->queues, list) {
760                 pdd = qpd_to_pdd(node->qpd);
761                 pdd->bound = false;
762         }
763         kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
764         pm_uninit(&dqm->packets);
765
766         return 0;
767 }
768
769 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
770                                         struct kernel_queue *kq,
771                                         struct qcm_process_device *qpd)
772 {
773         BUG_ON(!dqm || !kq || !qpd);
774
775         pr_debug("kfd: In func %s\n", __func__);
776
777         mutex_lock(&dqm->lock);
778         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
779                 pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n",
780                                 dqm->total_queue_count);
781                 mutex_unlock(&dqm->lock);
782                 return -EPERM;
783         }
784
785         /*
786          * Unconditionally increment this counter, regardless of the queue's
787          * type or whether the queue is active.
788          */
789         dqm->total_queue_count++;
790         pr_debug("Total of %d queues are accountable so far\n",
791                         dqm->total_queue_count);
792
793         list_add(&kq->list, &qpd->priv_queue_list);
794         dqm->queue_count++;
795         qpd->is_debug = true;
796         execute_queues_cpsch(dqm, false);
797         mutex_unlock(&dqm->lock);
798
799         return 0;
800 }
801
802 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
803                                         struct kernel_queue *kq,
804                                         struct qcm_process_device *qpd)
805 {
806         BUG_ON(!dqm || !kq);
807
808         pr_debug("kfd: In %s\n", __func__);
809
810         mutex_lock(&dqm->lock);
811         destroy_queues_cpsch(dqm, false);
812         list_del(&kq->list);
813         dqm->queue_count--;
814         qpd->is_debug = false;
815         execute_queues_cpsch(dqm, false);
816         /*
817          * Unconditionally decrement this counter, regardless of the queue's
818          * type.
819          */
820         dqm->total_queue_count--;
821         pr_debug("Total of %d queues are accountable so far\n",
822                         dqm->total_queue_count);
823         mutex_unlock(&dqm->lock);
824 }
825
826 static void select_sdma_engine_id(struct queue *q)
827 {
828         static int sdma_id;
829
830         q->sdma_id = sdma_id;
831         sdma_id = (sdma_id + 1) % 2;
832 }
833
834 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
835                         struct qcm_process_device *qpd, int *allocate_vmid)
836 {
837         int retval;
838         struct mqd_manager *mqd;
839
840         BUG_ON(!dqm || !q || !qpd);
841
842         retval = 0;
843
844         if (allocate_vmid)
845                 *allocate_vmid = 0;
846
847         mutex_lock(&dqm->lock);
848
849         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
850                 pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
851                                 dqm->total_queue_count);
852                 retval = -EPERM;
853                 goto out;
854         }
855
856         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
857                 select_sdma_engine_id(q);
858
859         mqd = dqm->ops.get_mqd_manager(dqm,
860                         get_mqd_type_from_queue_type(q->properties.type));
861
862         if (mqd == NULL) {
863                 mutex_unlock(&dqm->lock);
864                 return -ENOMEM;
865         }
866
867         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
868                                 &q->gart_mqd_addr, &q->properties);
869         if (retval != 0)
870                 goto out;
871
872         list_add(&q->list, &qpd->queues_list);
873         if (q->properties.is_active) {
874                 dqm->queue_count++;
875                 retval = execute_queues_cpsch(dqm, false);
876         }
877
878         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
879                         dqm->sdma_queue_count++;
880         /*
881          * Unconditionally increment this counter, regardless of the queue's
882          * type or whether the queue is active.
883          */
884         dqm->total_queue_count++;
885
886         pr_debug("Total of %d queues are accountable so far\n",
887                         dqm->total_queue_count);
888
889 out:
890         mutex_unlock(&dqm->lock);
891         return retval;
892 }
893
894 static int fence_wait_timeout(unsigned int *fence_addr,
895                                 unsigned int fence_value,
896                                 unsigned long timeout)
897 {
898         BUG_ON(!fence_addr);
899         timeout += jiffies;
900
901         while (*fence_addr != fence_value) {
902                 if (time_after(jiffies, timeout)) {
903                         pr_err("kfd: qcm fence wait loop timeout expired\n");
904                         return -ETIME;
905                 }
906                 schedule();
907         }
908
909         return 0;
910 }
911
912 static int destroy_sdma_queues(struct device_queue_manager *dqm,
913                                 unsigned int sdma_engine)
914 {
915         return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
916                         KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false,
917                         sdma_engine);
918 }
919
920 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock)
921 {
922         int retval;
923
924         BUG_ON(!dqm);
925
926         retval = 0;
927
928         if (lock)
929                 mutex_lock(&dqm->lock);
930         if (dqm->active_runlist == false)
931                 goto out;
932
933         pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
934                 dqm->sdma_queue_count);
935
936         if (dqm->sdma_queue_count > 0) {
937                 destroy_sdma_queues(dqm, 0);
938                 destroy_sdma_queues(dqm, 1);
939         }
940
941         retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
942                         KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0);
943         if (retval != 0)
944                 goto out;
945
946         *dqm->fence_addr = KFD_FENCE_INIT;
947         pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
948                                 KFD_FENCE_COMPLETED);
949         /* should be timed out */
950         fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
951                                 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
952         pm_release_ib(&dqm->packets);
953         dqm->active_runlist = false;
954
955 out:
956         if (lock)
957                 mutex_unlock(&dqm->lock);
958         return retval;
959 }
960
961 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
962 {
963         int retval;
964
965         BUG_ON(!dqm);
966
967         if (lock)
968                 mutex_lock(&dqm->lock);
969
970         retval = destroy_queues_cpsch(dqm, false);
971         if (retval != 0) {
972                 pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
973                 goto out;
974         }
975
976         if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
977                 retval = 0;
978                 goto out;
979         }
980
981         if (dqm->active_runlist) {
982                 retval = 0;
983                 goto out;
984         }
985
986         retval = pm_send_runlist(&dqm->packets, &dqm->queues);
987         if (retval != 0) {
988                 pr_err("kfd: failed to execute runlist");
989                 goto out;
990         }
991         dqm->active_runlist = true;
992
993 out:
994         if (lock)
995                 mutex_unlock(&dqm->lock);
996         return retval;
997 }
998
999 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1000                                 struct qcm_process_device *qpd,
1001                                 struct queue *q)
1002 {
1003         int retval;
1004         struct mqd_manager *mqd;
1005
1006         BUG_ON(!dqm || !qpd || !q);
1007
1008         retval = 0;
1009
1010         /* remove queue from list to prevent rescheduling after preemption */
1011         mutex_lock(&dqm->lock);
1012         mqd = dqm->ops.get_mqd_manager(dqm,
1013                         get_mqd_type_from_queue_type(q->properties.type));
1014         if (!mqd) {
1015                 retval = -ENOMEM;
1016                 goto failed;
1017         }
1018
1019         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1020                 dqm->sdma_queue_count--;
1021
1022         list_del(&q->list);
1023         if (q->properties.is_active)
1024                 dqm->queue_count--;
1025
1026         execute_queues_cpsch(dqm, false);
1027
1028         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1029
1030         /*
1031          * Unconditionally decrement this counter, regardless of the queue's
1032          * type
1033          */
1034         dqm->total_queue_count--;
1035         pr_debug("Total of %d queues are accountable so far\n",
1036                         dqm->total_queue_count);
1037
1038         mutex_unlock(&dqm->lock);
1039
1040         return 0;
1041
1042 failed:
1043         mutex_unlock(&dqm->lock);
1044         return retval;
1045 }
1046
1047 /*
1048  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1049  * stay in user mode.
1050  */
1051 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1052 /* APE1 limit is inclusive and 64K aligned. */
1053 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1054
1055 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1056                                    struct qcm_process_device *qpd,
1057                                    enum cache_policy default_policy,
1058                                    enum cache_policy alternate_policy,
1059                                    void __user *alternate_aperture_base,
1060                                    uint64_t alternate_aperture_size)
1061 {
1062         bool retval;
1063
1064         pr_debug("kfd: In func %s\n", __func__);
1065
1066         mutex_lock(&dqm->lock);
1067
1068         if (alternate_aperture_size == 0) {
1069                 /* base > limit disables APE1 */
1070                 qpd->sh_mem_ape1_base = 1;
1071                 qpd->sh_mem_ape1_limit = 0;
1072         } else {
1073                 /*
1074                  * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1075                  *                      SH_MEM_APE1_BASE[31:0], 0x0000 }
1076                  * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1077                  *                      SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1078                  * Verify that the base and size parameters can be
1079                  * represented in this format and convert them.
1080                  * Additionally restrict APE1 to user-mode addresses.
1081                  */
1082
1083                 uint64_t base = (uintptr_t)alternate_aperture_base;
1084                 uint64_t limit = base + alternate_aperture_size - 1;
1085
1086                 if (limit <= base)
1087                         goto out;
1088
1089                 if ((base & APE1_FIXED_BITS_MASK) != 0)
1090                         goto out;
1091
1092                 if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
1093                         goto out;
1094
1095                 qpd->sh_mem_ape1_base = base >> 16;
1096                 qpd->sh_mem_ape1_limit = limit >> 16;
1097         }
1098
1099         retval = dqm->ops_asic_specific.set_cache_memory_policy(
1100                         dqm,
1101                         qpd,
1102                         default_policy,
1103                         alternate_policy,
1104                         alternate_aperture_base,
1105                         alternate_aperture_size);
1106
1107         if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1108                 program_sh_mem_settings(dqm, qpd);
1109
1110         pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1111                 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1112                 qpd->sh_mem_ape1_limit);
1113
1114         mutex_unlock(&dqm->lock);
1115         return retval;
1116
1117 out:
1118         mutex_unlock(&dqm->lock);
1119         return false;
1120 }
1121
1122 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1123 {
1124         struct device_queue_manager *dqm;
1125
1126         BUG_ON(!dev);
1127
1128         pr_debug("kfd: loading device queue manager\n");
1129
1130         dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
1131         if (!dqm)
1132                 return NULL;
1133
1134         dqm->dev = dev;
1135         switch (sched_policy) {
1136         case KFD_SCHED_POLICY_HWS:
1137         case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1138                 /* initialize dqm for cp scheduling */
1139                 dqm->ops.create_queue = create_queue_cpsch;
1140                 dqm->ops.initialize = initialize_cpsch;
1141                 dqm->ops.start = start_cpsch;
1142                 dqm->ops.stop = stop_cpsch;
1143                 dqm->ops.destroy_queue = destroy_queue_cpsch;
1144                 dqm->ops.update_queue = update_queue;
1145                 dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1146                 dqm->ops.register_process = register_process_nocpsch;
1147                 dqm->ops.unregister_process = unregister_process_nocpsch;
1148                 dqm->ops.uninitialize = uninitialize_nocpsch;
1149                 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1150                 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1151                 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1152                 break;
1153         case KFD_SCHED_POLICY_NO_HWS:
1154                 /* initialize dqm for no cp scheduling */
1155                 dqm->ops.start = start_nocpsch;
1156                 dqm->ops.stop = stop_nocpsch;
1157                 dqm->ops.create_queue = create_queue_nocpsch;
1158                 dqm->ops.destroy_queue = destroy_queue_nocpsch;
1159                 dqm->ops.update_queue = update_queue;
1160                 dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1161                 dqm->ops.register_process = register_process_nocpsch;
1162                 dqm->ops.unregister_process = unregister_process_nocpsch;
1163                 dqm->ops.initialize = initialize_nocpsch;
1164                 dqm->ops.uninitialize = uninitialize_nocpsch;
1165                 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1166                 break;
1167         default:
1168                 BUG();
1169                 break;
1170         }
1171
1172         switch (dev->device_info->asic_family) {
1173         case CHIP_CARRIZO:
1174                 device_queue_manager_init_vi(&dqm->ops_asic_specific);
1175                 break;
1176
1177         case CHIP_KAVERI:
1178                 device_queue_manager_init_cik(&dqm->ops_asic_specific);
1179                 break;
1180         }
1181
1182         if (dqm->ops.initialize(dqm) != 0) {
1183                 kfree(dqm);
1184                 return NULL;
1185         }
1186
1187         return dqm;
1188 }
1189
1190 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1191 {
1192         BUG_ON(!dqm);
1193
1194         dqm->ops.uninitialize(dqm);
1195         kfree(dqm);
1196 }