ASoC: simple-card: Add pm callbacks to platform driver
[cascardo/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / fiji_hwmgr.c
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26 #include "linux/delay.h"
27
28 #include "hwmgr.h"
29 #include "fiji_smumgr.h"
30 #include "atombios.h"
31 #include "hardwaremanager.h"
32 #include "ppatomctrl.h"
33 #include "atombios.h"
34 #include "cgs_common.h"
35 #include "fiji_dyn_defaults.h"
36 #include "fiji_powertune.h"
37 #include "smu73.h"
38 #include "smu/smu_7_1_3_d.h"
39 #include "smu/smu_7_1_3_sh_mask.h"
40 #include "gmc/gmc_8_1_d.h"
41 #include "gmc/gmc_8_1_sh_mask.h"
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44 #include "dce/dce_10_0_d.h"
45 #include "dce/dce_10_0_sh_mask.h"
46 #include "pppcielanes.h"
47 #include "fiji_hwmgr.h"
48 #include "tonga_processpptables.h"
49 #include "tonga_pptable.h"
50 #include "pp_debug.h"
51 #include "pp_acpi.h"
52 #include "amd_pcie_helpers.h"
53 #include "cgs_linux.h"
54 #include "ppinterrupt.h"
55
56 #include "fiji_clockpowergating.h"
57 #include "fiji_thermal.h"
58
59 #define VOLTAGE_SCALE   4
60 #define SMC_RAM_END             0x40000
61 #define VDDC_VDDCI_DELTA        300
62
63 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
64 #define MC_SEQ_MISC0_GDDR5_MASK  0xf0000000
65 #define MC_SEQ_MISC0_GDDR5_VALUE 5
66
67 #define MC_CG_ARB_FREQ_F0           0x0a /* boot-up default */
68 #define MC_CG_ARB_FREQ_F1           0x0b
69 #define MC_CG_ARB_FREQ_F2           0x0c
70 #define MC_CG_ARB_FREQ_F3           0x0d
71
72 /* From smc_reg.h */
73 #define SMC_CG_IND_START            0xc0030000
74 #define SMC_CG_IND_END              0xc0040000  /* First byte after SMC_CG_IND */
75
76 #define VOLTAGE_SCALE               4
77 #define VOLTAGE_VID_OFFSET_SCALE1   625
78 #define VOLTAGE_VID_OFFSET_SCALE2   100
79
80 #define VDDC_VDDCI_DELTA            300
81
82 #define ixSWRST_COMMAND_1           0x1400103
83 #define MC_SEQ_CNTL__CAC_EN_MASK    0x40000000
84
85 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
86 enum DPM_EVENT_SRC {
87     DPM_EVENT_SRC_ANALOG = 0,               /* Internal analog trip point */
88     DPM_EVENT_SRC_EXTERNAL = 1,             /* External (GPIO 17) signal */
89     DPM_EVENT_SRC_DIGITAL = 2,              /* Internal digital trip point (DIG_THERM_DPM) */
90     DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,   /* Internal analog or external */
91     DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4   /* Internal digital or external */
92 };
93
94
95 /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
96  * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
97  */
98 uint16_t fiji_clock_stretcher_lookup_table[2][4] = { {600, 1050, 3, 0},
99                                                 {600, 1050, 6, 1} };
100
101 /* [FF, SS] type, [] 4 voltage ranges, and
102  * [Floor Freq, Boundary Freq, VID min , VID max]
103  */
104 uint32_t fiji_clock_stretcher_ddt_table[2][4][4] =
105 { { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
106   { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
107
108 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
109  * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
110  */
111 uint8_t fiji_clock_stretch_amount_conversion[2][6] = { {0, 1, 3, 2, 4, 5},
112                                                   {0, 2, 4, 5, 6, 5} };
113
114 const unsigned long PhwFiji_Magic = (unsigned long)(PHM_VIslands_Magic);
115
116 struct fiji_power_state *cast_phw_fiji_power_state(
117                                   struct pp_hw_power_state *hw_ps)
118 {
119         PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
120                                 "Invalid Powerstate Type!",
121                                  return NULL;);
122
123         return (struct fiji_power_state *)hw_ps;
124 }
125
126 const struct fiji_power_state *cast_const_phw_fiji_power_state(
127                                  const struct pp_hw_power_state *hw_ps)
128 {
129         PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
130                                 "Invalid Powerstate Type!",
131                                  return NULL;);
132
133         return (const struct fiji_power_state *)hw_ps;
134 }
135
136 static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
137 {
138         return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
139                         CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
140                         ? true : false;
141 }
142
143 static void fiji_init_dpm_defaults(struct pp_hwmgr *hwmgr)
144 {
145         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
146         struct fiji_ulv_parm *ulv = &data->ulv;
147
148         ulv->cg_ulv_parameter = PPFIJI_CGULVPARAMETER_DFLT;
149         data->voting_rights_clients0 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT0;
150         data->voting_rights_clients1 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT1;
151         data->voting_rights_clients2 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT2;
152         data->voting_rights_clients3 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT3;
153         data->voting_rights_clients4 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT4;
154         data->voting_rights_clients5 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT5;
155         data->voting_rights_clients6 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT6;
156         data->voting_rights_clients7 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT7;
157
158         data->static_screen_threshold_unit =
159                         PPFIJI_STATICSCREENTHRESHOLDUNIT_DFLT;
160         data->static_screen_threshold =
161                         PPFIJI_STATICSCREENTHRESHOLD_DFLT;
162
163         /* Unset ABM cap as it moved to DAL.
164          * Add PHM_PlatformCaps_NonABMSupportInPPLib
165          * for re-direct ABM related request to DAL
166          */
167         phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
168                         PHM_PlatformCaps_ABM);
169         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
170                         PHM_PlatformCaps_NonABMSupportInPPLib);
171
172         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
173                         PHM_PlatformCaps_DynamicACTiming);
174
175         fiji_initialize_power_tune_defaults(hwmgr);
176
177         data->mclk_stutter_mode_threshold = 60000;
178         data->pcie_gen_performance.max = PP_PCIEGen1;
179         data->pcie_gen_performance.min = PP_PCIEGen3;
180         data->pcie_gen_power_saving.max = PP_PCIEGen1;
181         data->pcie_gen_power_saving.min = PP_PCIEGen3;
182         data->pcie_lane_performance.max = 0;
183         data->pcie_lane_performance.min = 16;
184         data->pcie_lane_power_saving.max = 0;
185         data->pcie_lane_power_saving.min = 16;
186
187         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
188                         PHM_PlatformCaps_DynamicUVDState);
189 }
190
191 static int fiji_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
192         phm_ppt_v1_voltage_lookup_table *lookup_table,
193         uint16_t virtual_voltage_id, int32_t *sclk)
194 {
195         uint8_t entryId;
196         uint8_t voltageId;
197         struct phm_ppt_v1_information *table_info =
198                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
199
200         PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
201
202         /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
203         for (entryId = 0; entryId < table_info->vdd_dep_on_sclk->count; entryId++) {
204                 voltageId = table_info->vdd_dep_on_sclk->entries[entryId].vddInd;
205                 if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
206                         break;
207         }
208
209         PP_ASSERT_WITH_CODE(entryId < table_info->vdd_dep_on_sclk->count,
210                         "Can't find requested voltage id in vdd_dep_on_sclk table!",
211                         return -EINVAL;
212                         );
213
214         *sclk = table_info->vdd_dep_on_sclk->entries[entryId].clk;
215
216         return 0;
217 }
218
219 /**
220 * Get Leakage VDDC based on leakage ID.
221 *
222 * @param    hwmgr  the address of the powerplay hardware manager.
223 * @return   always 0
224 */
225 static int fiji_get_evv_voltages(struct pp_hwmgr *hwmgr)
226 {
227         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
228         uint16_t    vv_id;
229         uint16_t    vddc = 0;
230         uint16_t    evv_default = 1150;
231         uint16_t    i, j;
232         uint32_t  sclk = 0;
233         struct phm_ppt_v1_information *table_info =
234                         (struct phm_ppt_v1_information *)hwmgr->pptable;
235         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
236                         table_info->vdd_dep_on_sclk;
237         int result;
238
239         for (i = 0; i < FIJI_MAX_LEAKAGE_COUNT; i++) {
240                 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
241                 if (!fiji_get_sclk_for_voltage_evv(hwmgr,
242                                 table_info->vddc_lookup_table, vv_id, &sclk)) {
243                         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
244                                         PHM_PlatformCaps_ClockStretcher)) {
245                                 for (j = 1; j < sclk_table->count; j++) {
246                                         if (sclk_table->entries[j].clk == sclk &&
247                                                         sclk_table->entries[j].cks_enable == 0) {
248                                                 sclk += 5000;
249                                                 break;
250                                         }
251                                 }
252                         }
253
254                         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
255                                         PHM_PlatformCaps_EnableDriverEVV))
256                                 result = atomctrl_calculate_voltage_evv_on_sclk(hwmgr,
257                                                 VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc, i, true);
258                         else
259                                 result = -EINVAL;
260
261                         if (result)
262                                 result = atomctrl_get_voltage_evv_on_sclk(hwmgr,
263                                                 VOLTAGE_TYPE_VDDC, sclk,vv_id, &vddc);
264
265                         /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
266                         PP_ASSERT_WITH_CODE((vddc < 2000),
267                                         "Invalid VDDC value, greater than 2v!", result = -EINVAL;);
268
269                         if (result)
270                                 /* 1.15V is the default safe value for Fiji */
271                                 vddc = evv_default;
272
273                         /* the voltage should not be zero nor equal to leakage ID */
274                         if (vddc != 0 && vddc != vv_id) {
275                                 data->vddc_leakage.actual_voltage
276                                 [data->vddc_leakage.count] = vddc;
277                                 data->vddc_leakage.leakage_id
278                                 [data->vddc_leakage.count] = vv_id;
279                                 data->vddc_leakage.count++;
280                         }
281                 }
282         }
283         return 0;
284 }
285
286 /**
287  * Change virtual leakage voltage to actual value.
288  *
289  * @param     hwmgr  the address of the powerplay hardware manager.
290  * @param     pointer to changing voltage
291  * @param     pointer to leakage table
292  */
293 static void fiji_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
294                 uint16_t *voltage, struct fiji_leakage_voltage *leakage_table)
295 {
296         uint32_t index;
297
298         /* search for leakage voltage ID 0xff01 ~ 0xff08 */
299         for (index = 0; index < leakage_table->count; index++) {
300                 /* if this voltage matches a leakage voltage ID */
301                 /* patch with actual leakage voltage */
302                 if (leakage_table->leakage_id[index] == *voltage) {
303                         *voltage = leakage_table->actual_voltage[index];
304                         break;
305                 }
306         }
307
308         if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
309                 printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n");
310 }
311
312 /**
313 * Patch voltage lookup table by EVV leakages.
314 *
315 * @param     hwmgr  the address of the powerplay hardware manager.
316 * @param     pointer to voltage lookup table
317 * @param     pointer to leakage table
318 * @return     always 0
319 */
320 static int fiji_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
321                 phm_ppt_v1_voltage_lookup_table *lookup_table,
322                 struct fiji_leakage_voltage *leakage_table)
323 {
324         uint32_t i;
325
326         for (i = 0; i < lookup_table->count; i++)
327                 fiji_patch_with_vdd_leakage(hwmgr,
328                                 &lookup_table->entries[i].us_vdd, leakage_table);
329
330         return 0;
331 }
332
333 static int fiji_patch_clock_voltage_limits_with_vddc_leakage(
334                 struct pp_hwmgr *hwmgr, struct fiji_leakage_voltage *leakage_table,
335                 uint16_t *vddc)
336 {
337         struct phm_ppt_v1_information *table_info =
338                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
339         fiji_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
340         hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
341                         table_info->max_clock_voltage_on_dc.vddc;
342         return 0;
343 }
344
345 static int fiji_patch_voltage_dependency_tables_with_lookup_table(
346                 struct pp_hwmgr *hwmgr)
347 {
348         uint8_t entryId;
349         uint8_t voltageId;
350         struct phm_ppt_v1_information *table_info =
351                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
352
353         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
354                         table_info->vdd_dep_on_sclk;
355         struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
356                         table_info->vdd_dep_on_mclk;
357         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
358                         table_info->mm_dep_table;
359
360         for (entryId = 0; entryId < sclk_table->count; ++entryId) {
361                 voltageId = sclk_table->entries[entryId].vddInd;
362                 sclk_table->entries[entryId].vddc =
363                                 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
364         }
365
366         for (entryId = 0; entryId < mclk_table->count; ++entryId) {
367                 voltageId = mclk_table->entries[entryId].vddInd;
368                 mclk_table->entries[entryId].vddc =
369                         table_info->vddc_lookup_table->entries[voltageId].us_vdd;
370         }
371
372         for (entryId = 0; entryId < mm_table->count; ++entryId) {
373                 voltageId = mm_table->entries[entryId].vddcInd;
374                 mm_table->entries[entryId].vddc =
375                         table_info->vddc_lookup_table->entries[voltageId].us_vdd;
376         }
377
378         return 0;
379
380 }
381
382 static int fiji_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
383 {
384         /* Need to determine if we need calculated voltage. */
385         return 0;
386 }
387
388 static int fiji_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
389 {
390         /* Need to determine if we need calculated voltage from mm table. */
391         return 0;
392 }
393
394 static int fiji_sort_lookup_table(struct pp_hwmgr *hwmgr,
395                 struct phm_ppt_v1_voltage_lookup_table *lookup_table)
396 {
397         uint32_t table_size, i, j;
398         struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
399         table_size = lookup_table->count;
400
401         PP_ASSERT_WITH_CODE(0 != lookup_table->count,
402                 "Lookup table is empty", return -EINVAL);
403
404         /* Sorting voltages */
405         for (i = 0; i < table_size - 1; i++) {
406                 for (j = i + 1; j > 0; j--) {
407                         if (lookup_table->entries[j].us_vdd <
408                                         lookup_table->entries[j - 1].us_vdd) {
409                                 tmp_voltage_lookup_record = lookup_table->entries[j - 1];
410                                 lookup_table->entries[j - 1] = lookup_table->entries[j];
411                                 lookup_table->entries[j] = tmp_voltage_lookup_record;
412                         }
413                 }
414         }
415
416         return 0;
417 }
418
419 static int fiji_complete_dependency_tables(struct pp_hwmgr *hwmgr)
420 {
421         int result = 0;
422         int tmp_result;
423         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
424         struct phm_ppt_v1_information *table_info =
425                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
426
427         tmp_result = fiji_patch_lookup_table_with_leakage(hwmgr,
428                         table_info->vddc_lookup_table, &(data->vddc_leakage));
429         if (tmp_result)
430                 result = tmp_result;
431
432         tmp_result = fiji_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
433                         &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
434         if (tmp_result)
435                 result = tmp_result;
436
437         tmp_result = fiji_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
438         if (tmp_result)
439                 result = tmp_result;
440
441         tmp_result = fiji_calc_voltage_dependency_tables(hwmgr);
442         if (tmp_result)
443                 result = tmp_result;
444
445         tmp_result = fiji_calc_mm_voltage_dependency_table(hwmgr);
446         if (tmp_result)
447                 result = tmp_result;
448
449         tmp_result = fiji_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
450         if(tmp_result)
451                 result = tmp_result;
452
453         return result;
454 }
455
456 static int fiji_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
457 {
458         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
459         struct phm_ppt_v1_information *table_info =
460                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
461
462         struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
463                         table_info->vdd_dep_on_sclk;
464         struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
465                         table_info->vdd_dep_on_mclk;
466
467         PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
468                 "VDD dependency on SCLK table is missing.       \
469                 This table is mandatory", return -EINVAL);
470         PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
471                 "VDD dependency on SCLK table has to have is missing.   \
472                 This table is mandatory", return -EINVAL);
473
474         PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
475                 "VDD dependency on MCLK table is missing.       \
476                 This table is mandatory", return -EINVAL);
477         PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
478                 "VDD dependency on MCLK table has to have is missing.    \
479                 This table is mandatory", return -EINVAL);
480
481         data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
482         data->max_vddc_in_pptable =     (uint16_t)allowed_sclk_vdd_table->
483                         entries[allowed_sclk_vdd_table->count - 1].vddc;
484
485         table_info->max_clock_voltage_on_ac.sclk =
486                 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
487         table_info->max_clock_voltage_on_ac.mclk =
488                 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
489         table_info->max_clock_voltage_on_ac.vddc =
490                 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
491         table_info->max_clock_voltage_on_ac.vddci =
492                 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
493
494         hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
495                 table_info->max_clock_voltage_on_ac.sclk;
496         hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
497                 table_info->max_clock_voltage_on_ac.mclk;
498         hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
499                 table_info->max_clock_voltage_on_ac.vddc;
500         hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
501                 table_info->max_clock_voltage_on_ac.vddci;
502
503         return 0;
504 }
505
506 static uint16_t fiji_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
507 {
508         uint32_t speedCntl = 0;
509
510         /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
511         speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
512                         ixPCIE_LC_SPEED_CNTL);
513         return((uint16_t)PHM_GET_FIELD(speedCntl,
514                         PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
515 }
516
517 static int fiji_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
518 {
519         uint32_t link_width;
520
521         /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
522         link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
523                         PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
524
525         PP_ASSERT_WITH_CODE((7 >= link_width),
526                         "Invalid PCIe lane width!", return 0);
527
528         return decode_pcie_lane_width(link_width);
529 }
530
531 /** Patch the Boot State to match VBIOS boot clocks and voltage.
532 *
533 * @param hwmgr Pointer to the hardware manager.
534 * @param pPowerState The address of the PowerState instance being created.
535 *
536 */
537 static int fiji_patch_boot_state(struct pp_hwmgr *hwmgr,
538                 struct pp_hw_power_state *hw_ps)
539 {
540         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
541         struct fiji_power_state *ps = (struct fiji_power_state *)hw_ps;
542         ATOM_FIRMWARE_INFO_V2_2 *fw_info;
543         uint16_t size;
544         uint8_t frev, crev;
545         int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
546
547         /* First retrieve the Boot clocks and VDDC from the firmware info table.
548          * We assume here that fw_info is unchanged if this call fails.
549          */
550         fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
551                         hwmgr->device, index,
552                         &size, &frev, &crev);
553         if (!fw_info)
554                 /* During a test, there is no firmware info table. */
555                 return 0;
556
557         /* Patch the state. */
558         data->vbios_boot_state.sclk_bootup_value =
559                         le32_to_cpu(fw_info->ulDefaultEngineClock);
560         data->vbios_boot_state.mclk_bootup_value =
561                         le32_to_cpu(fw_info->ulDefaultMemoryClock);
562         data->vbios_boot_state.mvdd_bootup_value =
563                         le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
564         data->vbios_boot_state.vddc_bootup_value =
565                         le16_to_cpu(fw_info->usBootUpVDDCVoltage);
566         data->vbios_boot_state.vddci_bootup_value =
567                         le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
568         data->vbios_boot_state.pcie_gen_bootup_value =
569                         fiji_get_current_pcie_speed(hwmgr);
570         data->vbios_boot_state.pcie_lane_bootup_value =
571                         (uint16_t)fiji_get_current_pcie_lane_number(hwmgr);
572
573         /* set boot power state */
574         ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
575         ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
576         ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
577         ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
578
579         return 0;
580 }
581
582 static int fiji_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
583 {
584         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
585         uint32_t i;
586         struct phm_ppt_v1_information *table_info =
587                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
588         bool stay_in_boot;
589         int result;
590
591         data->dll_default_on = false;
592         data->sram_end = SMC_RAM_END;
593
594         for (i = 0; i < SMU73_MAX_LEVELS_GRAPHICS; i++)
595                 data->activity_target[i] = FIJI_AT_DFLT;
596
597         data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
598
599         data->mclk_activity_target = PPFIJI_MCLK_TARGETACTIVITY_DFLT;
600         data->mclk_dpm0_activity_target = 0xa;
601
602         data->sclk_dpm_key_disabled = 0;
603         data->mclk_dpm_key_disabled = 0;
604         data->pcie_dpm_key_disabled = 0;
605
606         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
607                         PHM_PlatformCaps_UnTabledHardwareInterface);
608         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
609                         PHM_PlatformCaps_TablelessHardwareInterface);
610
611         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
612                         PHM_PlatformCaps_SclkDeepSleep);
613
614         data->gpio_debug = 0;
615
616         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
617                         PHM_PlatformCaps_DynamicPatchPowerState);
618
619         /* need to set voltage control types before EVV patching */
620         data->voltage_control = FIJI_VOLTAGE_CONTROL_NONE;
621         data->vddci_control = FIJI_VOLTAGE_CONTROL_NONE;
622         data->mvdd_control = FIJI_VOLTAGE_CONTROL_NONE;
623
624         if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
625                         VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
626                 data->voltage_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
627
628         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
629                         PHM_PlatformCaps_EnableMVDDControl))
630                 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
631                                 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
632                         data->mvdd_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
633
634         if (data->mvdd_control == FIJI_VOLTAGE_CONTROL_NONE)
635                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
636                         PHM_PlatformCaps_EnableMVDDControl);
637
638         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
639                         PHM_PlatformCaps_ControlVDDCI)) {
640                 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
641                                 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
642                         data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
643                 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
644                                 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
645                         data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
646         }
647
648         if (data->vddci_control == FIJI_VOLTAGE_CONTROL_NONE)
649                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
650                                 PHM_PlatformCaps_ControlVDDCI);
651
652         if (table_info && table_info->cac_dtp_table->usClockStretchAmount)
653                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
654                                 PHM_PlatformCaps_ClockStretcher);
655
656         fiji_init_dpm_defaults(hwmgr);
657
658         /* Get leakage voltage based on leakage ID. */
659         fiji_get_evv_voltages(hwmgr);
660
661         /* Patch our voltage dependency table with actual leakage voltage
662          * We need to perform leakage translation before it's used by other functions
663          */
664         fiji_complete_dependency_tables(hwmgr);
665
666         /* Parse pptable data read from VBIOS */
667         fiji_set_private_data_based_on_pptable(hwmgr);
668
669         /* ULV Support */
670         data->ulv.ulv_supported = true; /* ULV feature is enabled by default */
671
672         /* Initalize Dynamic State Adjustment Rule Settings */
673         result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
674
675         if (!result) {
676                 data->uvd_enabled = false;
677                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
678                                 PHM_PlatformCaps_EnableSMU7ThermalManagement);
679                 data->vddc_phase_shed_control = false;
680         }
681
682         stay_in_boot = phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
683                         PHM_PlatformCaps_StayInBootState);
684
685         if (0 == result) {
686                 struct cgs_system_info sys_info = {0};
687
688                 data->is_tlu_enabled = 0;
689                 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
690                                 FIJI_MAX_HARDWARE_POWERLEVELS;
691                 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
692                 hwmgr->platform_descriptor.minimumClocksReductionPercentage  = 50;
693
694                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
695                                 PHM_PlatformCaps_FanSpeedInTableIsRPM);
696
697                 if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp &&
698                                 hwmgr->thermal_controller.
699                                 advanceFanControlParameters.ucFanControlMode) {
700                         hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
701                                         hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
702                         hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
703                                         hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
704                         hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
705                                         table_info->cac_dtp_table->usOperatingTempMinLimit;
706                         hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
707                                         table_info->cac_dtp_table->usOperatingTempMaxLimit;
708                         hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
709                                         table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
710                         hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
711                                         table_info->cac_dtp_table->usOperatingTempStep;
712                         hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
713                                         table_info->cac_dtp_table->usTargetOperatingTemp;
714
715                         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
716                                         PHM_PlatformCaps_ODFuzzyFanControlSupport);
717                 }
718
719                 sys_info.size = sizeof(struct cgs_system_info);
720                 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
721                 result = cgs_query_system_info(hwmgr->device, &sys_info);
722                 if (result)
723                         data->pcie_gen_cap = 0x30007;
724                 else
725                         data->pcie_gen_cap = (uint32_t)sys_info.value;
726                 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
727                         data->pcie_spc_cap = 20;
728                 sys_info.size = sizeof(struct cgs_system_info);
729                 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
730                 result = cgs_query_system_info(hwmgr->device, &sys_info);
731                 if (result)
732                         data->pcie_lane_cap = 0x2f0000;
733                 else
734                         data->pcie_lane_cap = (uint32_t)sys_info.value;
735         } else {
736                 /* Ignore return value in here, we are cleaning up a mess. */
737                 tonga_hwmgr_backend_fini(hwmgr);
738         }
739
740         return 0;
741 }
742
743 /**
744  * Read clock related registers.
745  *
746  * @param    hwmgr  the address of the powerplay hardware manager.
747  * @return   always 0
748  */
749 static int fiji_read_clock_registers(struct pp_hwmgr *hwmgr)
750 {
751         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
752
753         data->clock_registers.vCG_SPLL_FUNC_CNTL =
754                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
755                                 ixCG_SPLL_FUNC_CNTL);
756         data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
757                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
758                                 ixCG_SPLL_FUNC_CNTL_2);
759         data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
760                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
761                                 ixCG_SPLL_FUNC_CNTL_3);
762         data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
763                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
764                                 ixCG_SPLL_FUNC_CNTL_4);
765         data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
766                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
767                                 ixCG_SPLL_SPREAD_SPECTRUM);
768         data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
769                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
770                                 ixCG_SPLL_SPREAD_SPECTRUM_2);
771
772         return 0;
773 }
774
775 /**
776  * Find out if memory is GDDR5.
777  *
778  * @param    hwmgr  the address of the powerplay hardware manager.
779  * @return   always 0
780  */
781 static int fiji_get_memory_type(struct pp_hwmgr *hwmgr)
782 {
783         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
784         uint32_t temp;
785
786         temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
787
788         data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
789                         ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
790                          MC_SEQ_MISC0_GDDR5_SHIFT));
791
792         return 0;
793 }
794
795 /**
796  * Enables Dynamic Power Management by SMC
797  *
798  * @param    hwmgr  the address of the powerplay hardware manager.
799  * @return   always 0
800  */
801 static int fiji_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
802 {
803         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
804                         GENERAL_PWRMGT, STATIC_PM_EN, 1);
805
806         return 0;
807 }
808
809 /**
810  * Initialize PowerGating States for different engines
811  *
812  * @param    hwmgr  the address of the powerplay hardware manager.
813  * @return   always 0
814  */
815 static int fiji_init_power_gate_state(struct pp_hwmgr *hwmgr)
816 {
817         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
818
819         data->uvd_power_gated = false;
820         data->vce_power_gated = false;
821         data->samu_power_gated = false;
822         data->acp_power_gated = false;
823         data->pg_acp_init = true;
824
825         return 0;
826 }
827
828 static int fiji_init_sclk_threshold(struct pp_hwmgr *hwmgr)
829 {
830         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
831         data->low_sclk_interrupt_threshold = 0;
832
833         return 0;
834 }
835
836 static int fiji_setup_asic_task(struct pp_hwmgr *hwmgr)
837 {
838         int tmp_result, result = 0;
839
840         tmp_result = fiji_read_clock_registers(hwmgr);
841         PP_ASSERT_WITH_CODE((0 == tmp_result),
842                         "Failed to read clock registers!", result = tmp_result);
843
844         tmp_result = fiji_get_memory_type(hwmgr);
845         PP_ASSERT_WITH_CODE((0 == tmp_result),
846                         "Failed to get memory type!", result = tmp_result);
847
848         tmp_result = fiji_enable_acpi_power_management(hwmgr);
849         PP_ASSERT_WITH_CODE((0 == tmp_result),
850                         "Failed to enable ACPI power management!", result = tmp_result);
851
852         tmp_result = fiji_init_power_gate_state(hwmgr);
853         PP_ASSERT_WITH_CODE((0 == tmp_result),
854                         "Failed to init power gate state!", result = tmp_result);
855
856         tmp_result = tonga_get_mc_microcode_version(hwmgr);
857         PP_ASSERT_WITH_CODE((0 == tmp_result),
858                         "Failed to get MC microcode version!", result = tmp_result);
859
860         tmp_result = fiji_init_sclk_threshold(hwmgr);
861         PP_ASSERT_WITH_CODE((0 == tmp_result),
862                         "Failed to init sclk threshold!", result = tmp_result);
863
864         return result;
865 }
866
867 /**
868 * Checks if we want to support voltage control
869 *
870 * @param    hwmgr  the address of the powerplay hardware manager.
871 */
872 static bool fiji_voltage_control(const struct pp_hwmgr *hwmgr)
873 {
874         const struct fiji_hwmgr *data =
875                         (const struct fiji_hwmgr *)(hwmgr->backend);
876
877         return (FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control);
878 }
879
880 /**
881 * Enable voltage control
882 *
883 * @param    hwmgr  the address of the powerplay hardware manager.
884 * @return   always 0
885 */
886 static int fiji_enable_voltage_control(struct pp_hwmgr *hwmgr)
887 {
888         /* enable voltage control */
889         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
890                         GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
891
892         return 0;
893 }
894
895 /**
896 * Remove repeated voltage values and create table with unique values.
897 *
898 * @param    hwmgr  the address of the powerplay hardware manager.
899 * @param    vol_table  the pointer to changing voltage table
900 * @return    0 in success
901 */
902
903 static int fiji_trim_voltage_table(struct pp_hwmgr *hwmgr,
904                 struct pp_atomctrl_voltage_table *vol_table)
905 {
906         uint32_t i, j;
907         uint16_t vvalue;
908         bool found = false;
909         struct pp_atomctrl_voltage_table *table;
910
911         PP_ASSERT_WITH_CODE((NULL != vol_table),
912                         "Voltage Table empty.", return -EINVAL);
913         table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
914                         GFP_KERNEL);
915
916         if (NULL == table)
917                 return -ENOMEM;
918
919         table->mask_low = vol_table->mask_low;
920         table->phase_delay = vol_table->phase_delay;
921
922         for (i = 0; i < vol_table->count; i++) {
923                 vvalue = vol_table->entries[i].value;
924                 found = false;
925
926                 for (j = 0; j < table->count; j++) {
927                         if (vvalue == table->entries[j].value) {
928                                 found = true;
929                                 break;
930                         }
931                 }
932
933                 if (!found) {
934                         table->entries[table->count].value = vvalue;
935                         table->entries[table->count].smio_low =
936                                         vol_table->entries[i].smio_low;
937                         table->count++;
938                 }
939         }
940
941         memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
942         kfree(table);
943
944         return 0;
945 }
946
947 static int fiji_get_svi2_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
948                 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
949 {
950         uint32_t i;
951         int result;
952         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
953         struct pp_atomctrl_voltage_table *vol_table = &(data->mvdd_voltage_table);
954
955         PP_ASSERT_WITH_CODE((0 != dep_table->count),
956                         "Voltage Dependency Table empty.", return -EINVAL);
957
958         vol_table->mask_low = 0;
959         vol_table->phase_delay = 0;
960         vol_table->count = dep_table->count;
961
962         for (i = 0; i < dep_table->count; i++) {
963                 vol_table->entries[i].value = dep_table->entries[i].mvdd;
964                 vol_table->entries[i].smio_low = 0;
965         }
966
967         result = fiji_trim_voltage_table(hwmgr, vol_table);
968         PP_ASSERT_WITH_CODE((0 == result),
969                         "Failed to trim MVDD table.", return result);
970
971         return 0;
972 }
973
974 static int fiji_get_svi2_vddci_voltage_table(struct pp_hwmgr *hwmgr,
975                 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
976 {
977         uint32_t i;
978         int result;
979         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
980         struct pp_atomctrl_voltage_table *vol_table = &(data->vddci_voltage_table);
981
982         PP_ASSERT_WITH_CODE((0 != dep_table->count),
983                         "Voltage Dependency Table empty.", return -EINVAL);
984
985         vol_table->mask_low = 0;
986         vol_table->phase_delay = 0;
987         vol_table->count = dep_table->count;
988
989         for (i = 0; i < dep_table->count; i++) {
990                 vol_table->entries[i].value = dep_table->entries[i].vddci;
991                 vol_table->entries[i].smio_low = 0;
992         }
993
994         result = fiji_trim_voltage_table(hwmgr, vol_table);
995         PP_ASSERT_WITH_CODE((0 == result),
996                         "Failed to trim VDDCI table.", return result);
997
998         return 0;
999 }
1000
1001 static int fiji_get_svi2_vdd_voltage_table(struct pp_hwmgr *hwmgr,
1002                 phm_ppt_v1_voltage_lookup_table *lookup_table)
1003 {
1004         int i = 0;
1005         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1006         struct pp_atomctrl_voltage_table *vol_table = &(data->vddc_voltage_table);
1007
1008         PP_ASSERT_WITH_CODE((0 != lookup_table->count),
1009                         "Voltage Lookup Table empty.", return -EINVAL);
1010
1011         vol_table->mask_low = 0;
1012         vol_table->phase_delay = 0;
1013
1014         vol_table->count = lookup_table->count;
1015
1016         for (i = 0; i < vol_table->count; i++) {
1017                 vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
1018                 vol_table->entries[i].smio_low = 0;
1019         }
1020
1021         return 0;
1022 }
1023
1024 /* ---- Voltage Tables ----
1025  * If the voltage table would be bigger than
1026  * what will fit into the state table on
1027  * the SMC keep only the higher entries.
1028  */
1029 static void fiji_trim_voltage_table_to_fit_state_table(struct pp_hwmgr *hwmgr,
1030                 uint32_t max_vol_steps, struct pp_atomctrl_voltage_table *vol_table)
1031 {
1032         unsigned int i, diff;
1033
1034         if (vol_table->count <= max_vol_steps)
1035                 return;
1036
1037         diff = vol_table->count - max_vol_steps;
1038
1039         for (i = 0; i < max_vol_steps; i++)
1040                 vol_table->entries[i] = vol_table->entries[i + diff];
1041
1042         vol_table->count = max_vol_steps;
1043
1044         return;
1045 }
1046
1047 /**
1048 * Create Voltage Tables.
1049 *
1050 * @param    hwmgr  the address of the powerplay hardware manager.
1051 * @return   always 0
1052 */
1053 static int fiji_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1054 {
1055         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1056         struct phm_ppt_v1_information *table_info =
1057                         (struct phm_ppt_v1_information *)hwmgr->pptable;
1058         int result;
1059
1060         if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1061                 result = atomctrl_get_voltage_table_v3(hwmgr,
1062                                 VOLTAGE_TYPE_MVDDC,     VOLTAGE_OBJ_GPIO_LUT,
1063                                 &(data->mvdd_voltage_table));
1064                 PP_ASSERT_WITH_CODE((0 == result),
1065                                 "Failed to retrieve MVDD table.",
1066                                 return result);
1067         } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1068                 result = fiji_get_svi2_mvdd_voltage_table(hwmgr,
1069                                 table_info->vdd_dep_on_mclk);
1070                 PP_ASSERT_WITH_CODE((0 == result),
1071                                 "Failed to retrieve SVI2 MVDD table from dependancy table.",
1072                                 return result;);
1073         }
1074
1075         if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1076                 result = atomctrl_get_voltage_table_v3(hwmgr,
1077                                 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
1078                                 &(data->vddci_voltage_table));
1079                 PP_ASSERT_WITH_CODE((0 == result),
1080                                 "Failed to retrieve VDDCI table.",
1081                                 return result);
1082         } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1083                 result = fiji_get_svi2_vddci_voltage_table(hwmgr,
1084                                 table_info->vdd_dep_on_mclk);
1085                 PP_ASSERT_WITH_CODE((0 == result),
1086                                 "Failed to retrieve SVI2 VDDCI table from dependancy table.",
1087                                 return result);
1088         }
1089
1090         if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1091                 result = fiji_get_svi2_vdd_voltage_table(hwmgr,
1092                                 table_info->vddc_lookup_table);
1093                 PP_ASSERT_WITH_CODE((0 == result),
1094                                 "Failed to retrieve SVI2 VDDC table from lookup table.",
1095                                 return result);
1096         }
1097
1098         PP_ASSERT_WITH_CODE(
1099                         (data->vddc_voltage_table.count <= (SMU73_MAX_LEVELS_VDDC)),
1100                         "Too many voltage values for VDDC. Trimming to fit state table.",
1101                         fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1102                                         SMU73_MAX_LEVELS_VDDC, &(data->vddc_voltage_table)));
1103
1104         PP_ASSERT_WITH_CODE(
1105                         (data->vddci_voltage_table.count <= (SMU73_MAX_LEVELS_VDDCI)),
1106                         "Too many voltage values for VDDCI. Trimming to fit state table.",
1107                         fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1108                                         SMU73_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table)));
1109
1110         PP_ASSERT_WITH_CODE(
1111                         (data->mvdd_voltage_table.count <= (SMU73_MAX_LEVELS_MVDD)),
1112                         "Too many voltage values for MVDD. Trimming to fit state table.",
1113                         fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1114                                         SMU73_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table)));
1115
1116         return 0;
1117 }
1118
1119 static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
1120 {
1121         /* Program additional LP registers
1122          * that are no longer programmed by VBIOS
1123          */
1124         cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
1125                         cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
1126         cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
1127                         cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
1128         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
1129                         cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
1130         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
1131                         cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
1132         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
1133                         cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
1134         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
1135                         cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
1136         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
1137                         cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
1138
1139         return 0;
1140 }
1141
1142 /**
1143 * Programs static screed detection parameters
1144 *
1145 * @param    hwmgr  the address of the powerplay hardware manager.
1146 * @return   always 0
1147 */
1148 static int fiji_program_static_screen_threshold_parameters(
1149                 struct pp_hwmgr *hwmgr)
1150 {
1151         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1152
1153         /* Set static screen threshold unit */
1154         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1155                         CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
1156                         data->static_screen_threshold_unit);
1157         /* Set static screen threshold */
1158         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1159                         CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
1160                         data->static_screen_threshold);
1161
1162         return 0;
1163 }
1164
1165 /**
1166 * Setup display gap for glitch free memory clock switching.
1167 *
1168 * @param    hwmgr  the address of the powerplay hardware manager.
1169 * @return   always  0
1170 */
1171 static int fiji_enable_display_gap(struct pp_hwmgr *hwmgr)
1172 {
1173         uint32_t displayGap =
1174                         cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1175                                         ixCG_DISPLAY_GAP_CNTL);
1176
1177         displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
1178                         DISP_GAP, DISPLAY_GAP_IGNORE);
1179
1180         displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
1181                         DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
1182
1183         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1184                         ixCG_DISPLAY_GAP_CNTL, displayGap);
1185
1186         return 0;
1187 }
1188
1189 /**
1190 * Programs activity state transition voting clients
1191 *
1192 * @param    hwmgr  the address of the powerplay hardware manager.
1193 * @return   always  0
1194 */
1195 static int fiji_program_voting_clients(struct pp_hwmgr *hwmgr)
1196 {
1197         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1198
1199         /* Clear reset for voting clients before enabling DPM */
1200         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1201                         SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
1202         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1203                         SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
1204
1205         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1206                         ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
1207         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1208                         ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
1209         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1210                         ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
1211         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1212                         ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
1213         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1214                         ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
1215         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1216                         ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
1217         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1218                         ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
1219         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1220                         ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
1221
1222         return 0;
1223 }
1224
1225 /**
1226 * Get the location of various tables inside the FW image.
1227 *
1228 * @param    hwmgr  the address of the powerplay hardware manager.
1229 * @return   always  0
1230 */
1231 static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
1232 {
1233         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1234         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1235         uint32_t tmp;
1236         int result;
1237         bool error = false;
1238
1239         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1240                         SMU7_FIRMWARE_HEADER_LOCATION +
1241                         offsetof(SMU73_Firmware_Header, DpmTable),
1242                         &tmp, data->sram_end);
1243
1244         if (0 == result)
1245                 data->dpm_table_start = tmp;
1246
1247         error |= (0 != result);
1248
1249         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1250                         SMU7_FIRMWARE_HEADER_LOCATION +
1251                         offsetof(SMU73_Firmware_Header, SoftRegisters),
1252                         &tmp, data->sram_end);
1253
1254         if (!result) {
1255                 data->soft_regs_start = tmp;
1256                 smu_data->soft_regs_start = tmp;
1257         }
1258
1259         error |= (0 != result);
1260
1261         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1262                         SMU7_FIRMWARE_HEADER_LOCATION +
1263                         offsetof(SMU73_Firmware_Header, mcRegisterTable),
1264                         &tmp, data->sram_end);
1265
1266         if (!result)
1267                 data->mc_reg_table_start = tmp;
1268
1269         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1270                         SMU7_FIRMWARE_HEADER_LOCATION +
1271                         offsetof(SMU73_Firmware_Header, FanTable),
1272                         &tmp, data->sram_end);
1273
1274         if (!result)
1275                 data->fan_table_start = tmp;
1276
1277         error |= (0 != result);
1278
1279         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1280                         SMU7_FIRMWARE_HEADER_LOCATION +
1281                         offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
1282                         &tmp, data->sram_end);
1283
1284         if (!result)
1285                 data->arb_table_start = tmp;
1286
1287         error |= (0 != result);
1288
1289         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1290                         SMU7_FIRMWARE_HEADER_LOCATION +
1291                         offsetof(SMU73_Firmware_Header, Version),
1292                         &tmp, data->sram_end);
1293
1294         if (!result)
1295                 hwmgr->microcode_version_info.SMC = tmp;
1296
1297         error |= (0 != result);
1298
1299         return error ? -1 : 0;
1300 }
1301
1302 /* Copy one arb setting to another and then switch the active set.
1303  * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
1304  */
1305 static int fiji_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
1306                 uint32_t arb_src, uint32_t arb_dest)
1307 {
1308         uint32_t mc_arb_dram_timing;
1309         uint32_t mc_arb_dram_timing2;
1310         uint32_t burst_time;
1311         uint32_t mc_cg_config;
1312
1313         switch (arb_src) {
1314         case MC_CG_ARB_FREQ_F0:
1315                 mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1316                 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1317                 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1318                 break;
1319         case MC_CG_ARB_FREQ_F1:
1320                 mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
1321                 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
1322                 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
1323                 break;
1324         default:
1325                 return -EINVAL;
1326         }
1327
1328         switch (arb_dest) {
1329         case MC_CG_ARB_FREQ_F0:
1330                 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
1331                 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
1332                 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
1333                 break;
1334         case MC_CG_ARB_FREQ_F1:
1335                 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
1336                 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
1337                 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
1338                 break;
1339         default:
1340                 return -EINVAL;
1341         }
1342
1343         mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
1344         mc_cg_config |= 0x0000000F;
1345         cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
1346         PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
1347
1348         return 0;
1349 }
1350
1351 /**
1352 * Initial switch from ARB F0->F1
1353 *
1354 * @param    hwmgr  the address of the powerplay hardware manager.
1355 * @return   always 0
1356 * This function is to be called from the SetPowerState table.
1357 */
1358 static int fiji_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
1359 {
1360         return fiji_copy_and_switch_arb_sets(hwmgr,
1361                         MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
1362 }
1363
1364 static int fiji_reset_single_dpm_table(struct pp_hwmgr *hwmgr,
1365                 struct fiji_single_dpm_table *dpm_table, uint32_t count)
1366 {
1367         int i;
1368         PP_ASSERT_WITH_CODE(count <= MAX_REGULAR_DPM_NUMBER,
1369                         "Fatal error, can not set up single DPM table entries "
1370                         "to exceed max number!",);
1371
1372         dpm_table->count = count;
1373         for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++)
1374                 dpm_table->dpm_levels[i].enabled = false;
1375
1376         return 0;
1377 }
1378
1379 static void fiji_setup_pcie_table_entry(
1380         struct fiji_single_dpm_table *dpm_table,
1381         uint32_t index, uint32_t pcie_gen,
1382         uint32_t pcie_lanes)
1383 {
1384         dpm_table->dpm_levels[index].value = pcie_gen;
1385         dpm_table->dpm_levels[index].param1 = pcie_lanes;
1386         dpm_table->dpm_levels[index].enabled = 1;
1387 }
1388
1389 static int fiji_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
1390 {
1391         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1392         struct phm_ppt_v1_information *table_info =
1393                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1394         struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1395         uint32_t i, max_entry;
1396
1397         PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
1398                         data->use_pcie_power_saving_levels), "No pcie performance levels!",
1399                         return -EINVAL);
1400
1401         if (data->use_pcie_performance_levels &&
1402                         !data->use_pcie_power_saving_levels) {
1403                 data->pcie_gen_power_saving = data->pcie_gen_performance;
1404                 data->pcie_lane_power_saving = data->pcie_lane_performance;
1405         } else if (!data->use_pcie_performance_levels &&
1406                         data->use_pcie_power_saving_levels) {
1407                 data->pcie_gen_performance = data->pcie_gen_power_saving;
1408                 data->pcie_lane_performance = data->pcie_lane_power_saving;
1409         }
1410
1411         fiji_reset_single_dpm_table(hwmgr,
1412                         &data->dpm_table.pcie_speed_table, SMU73_MAX_LEVELS_LINK);
1413
1414         if (pcie_table != NULL) {
1415                 /* max_entry is used to make sure we reserve one PCIE level
1416                  * for boot level (fix for A+A PSPP issue).
1417                  * If PCIE table from PPTable have ULV entry + 8 entries,
1418                  * then ignore the last entry.*/
1419                 max_entry = (SMU73_MAX_LEVELS_LINK < pcie_table->count) ?
1420                                 SMU73_MAX_LEVELS_LINK : pcie_table->count;
1421                 for (i = 1; i < max_entry; i++) {
1422                         fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
1423                                         get_pcie_gen_support(data->pcie_gen_cap,
1424                                                         pcie_table->entries[i].gen_speed),
1425                                         get_pcie_lane_support(data->pcie_lane_cap,
1426                                                         pcie_table->entries[i].lane_width));
1427                 }
1428                 data->dpm_table.pcie_speed_table.count = max_entry - 1;
1429         } else {
1430                 /* Hardcode Pcie Table */
1431                 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
1432                                 get_pcie_gen_support(data->pcie_gen_cap,
1433                                                 PP_Min_PCIEGen),
1434                                 get_pcie_lane_support(data->pcie_lane_cap,
1435                                                 PP_Max_PCIELane));
1436                 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
1437                                 get_pcie_gen_support(data->pcie_gen_cap,
1438                                                 PP_Min_PCIEGen),
1439                                 get_pcie_lane_support(data->pcie_lane_cap,
1440                                                 PP_Max_PCIELane));
1441                 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
1442                                 get_pcie_gen_support(data->pcie_gen_cap,
1443                                                 PP_Max_PCIEGen),
1444                                 get_pcie_lane_support(data->pcie_lane_cap,
1445                                                 PP_Max_PCIELane));
1446                 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
1447                                 get_pcie_gen_support(data->pcie_gen_cap,
1448                                                 PP_Max_PCIEGen),
1449                                 get_pcie_lane_support(data->pcie_lane_cap,
1450                                                 PP_Max_PCIELane));
1451                 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
1452                                 get_pcie_gen_support(data->pcie_gen_cap,
1453                                                 PP_Max_PCIEGen),
1454                                 get_pcie_lane_support(data->pcie_lane_cap,
1455                                                 PP_Max_PCIELane));
1456                 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
1457                                 get_pcie_gen_support(data->pcie_gen_cap,
1458                                                 PP_Max_PCIEGen),
1459                                 get_pcie_lane_support(data->pcie_lane_cap,
1460                                                 PP_Max_PCIELane));
1461
1462                 data->dpm_table.pcie_speed_table.count = 6;
1463         }
1464         /* Populate last level for boot PCIE level, but do not increment count. */
1465         fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
1466                         data->dpm_table.pcie_speed_table.count,
1467                         get_pcie_gen_support(data->pcie_gen_cap,
1468                                         PP_Min_PCIEGen),
1469                         get_pcie_lane_support(data->pcie_lane_cap,
1470                                         PP_Max_PCIELane));
1471
1472         return 0;
1473 }
1474
1475 /*
1476  * This function is to initalize all DPM state tables
1477  * for SMU7 based on the dependency table.
1478  * Dynamic state patching function will then trim these
1479  * state tables to the allowed range based
1480  * on the power policy or external client requests,
1481  * such as UVD request, etc.
1482  */
1483 static int fiji_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1484 {
1485         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1486         struct phm_ppt_v1_information *table_info =
1487                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1488         uint32_t i;
1489
1490         struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
1491                         table_info->vdd_dep_on_sclk;
1492         struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
1493                         table_info->vdd_dep_on_mclk;
1494
1495         PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
1496                         "SCLK dependency table is missing. This table is mandatory",
1497                         return -EINVAL);
1498         PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
1499                         "SCLK dependency table has to have is missing. "
1500                         "This table is mandatory",
1501                         return -EINVAL);
1502
1503         PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
1504                         "MCLK dependency table is missing. This table is mandatory",
1505                         return -EINVAL);
1506         PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
1507                         "MCLK dependency table has to have is missing. "
1508                         "This table is mandatory",
1509                         return -EINVAL);
1510
1511         /* clear the state table to reset everything to default */
1512         fiji_reset_single_dpm_table(hwmgr,
1513                         &data->dpm_table.sclk_table, SMU73_MAX_LEVELS_GRAPHICS);
1514         fiji_reset_single_dpm_table(hwmgr,
1515                         &data->dpm_table.mclk_table, SMU73_MAX_LEVELS_MEMORY);
1516
1517         /* Initialize Sclk DPM table based on allow Sclk values */
1518         data->dpm_table.sclk_table.count = 0;
1519         for (i = 0; i < dep_sclk_table->count; i++) {
1520                 if (i == 0 || data->dpm_table.sclk_table.dpm_levels
1521                                 [data->dpm_table.sclk_table.count - 1].value !=
1522                                                 dep_sclk_table->entries[i].clk) {
1523                         data->dpm_table.sclk_table.dpm_levels
1524                         [data->dpm_table.sclk_table.count].value =
1525                                         dep_sclk_table->entries[i].clk;
1526                         data->dpm_table.sclk_table.dpm_levels
1527                         [data->dpm_table.sclk_table.count].enabled =
1528                                         (i == 0) ? true : false;
1529                         data->dpm_table.sclk_table.count++;
1530                 }
1531         }
1532
1533         /* Initialize Mclk DPM table based on allow Mclk values */
1534         data->dpm_table.mclk_table.count = 0;
1535         for (i=0; i<dep_mclk_table->count; i++) {
1536                 if ( i==0 || data->dpm_table.mclk_table.dpm_levels
1537                                 [data->dpm_table.mclk_table.count - 1].value !=
1538                                                 dep_mclk_table->entries[i].clk) {
1539                         data->dpm_table.mclk_table.dpm_levels
1540                         [data->dpm_table.mclk_table.count].value =
1541                                         dep_mclk_table->entries[i].clk;
1542                         data->dpm_table.mclk_table.dpm_levels
1543                         [data->dpm_table.mclk_table.count].enabled =
1544                                         (i == 0) ? true : false;
1545                         data->dpm_table.mclk_table.count++;
1546                 }
1547         }
1548
1549         /* setup PCIE gen speed levels */
1550         fiji_setup_default_pcie_table(hwmgr);
1551
1552         /* save a copy of the default DPM table */
1553         memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1554                         sizeof(struct fiji_dpm_table));
1555
1556         return 0;
1557 }
1558
1559 /**
1560  * @brief PhwFiji_GetVoltageOrder
1561  *  Returns index of requested voltage record in lookup(table)
1562  * @param lookup_table - lookup list to search in
1563  * @param voltage - voltage to look for
1564  * @return 0 on success
1565  */
1566 uint8_t fiji_get_voltage_index(
1567                 struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
1568 {
1569         uint8_t count = (uint8_t) (lookup_table->count);
1570         uint8_t i;
1571
1572         PP_ASSERT_WITH_CODE((NULL != lookup_table),
1573                         "Lookup Table empty.", return 0);
1574         PP_ASSERT_WITH_CODE((0 != count),
1575                         "Lookup Table empty.", return 0);
1576
1577         for (i = 0; i < lookup_table->count; i++) {
1578                 /* find first voltage equal or bigger than requested */
1579                 if (lookup_table->entries[i].us_vdd >= voltage)
1580                         return i;
1581         }
1582         /* voltage is bigger than max voltage in the table */
1583         return i - 1;
1584 }
1585
1586 /**
1587 * Preparation of vddc and vddgfx CAC tables for SMC.
1588 *
1589 * @param    hwmgr  the address of the hardware manager
1590 * @param    table  the SMC DPM table structure to be populated
1591 * @return   always 0
1592 */
1593 static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
1594                 struct SMU73_Discrete_DpmTable *table)
1595 {
1596         uint32_t count;
1597         uint8_t index;
1598         int result = 0;
1599         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1600         struct phm_ppt_v1_information *table_info =
1601                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1602         struct phm_ppt_v1_voltage_lookup_table *lookup_table =
1603                         table_info->vddc_lookup_table;
1604         /* tables is already swapped, so in order to use the value from it,
1605          * we need to swap it back.
1606          * We are populating vddc CAC data to BapmVddc table
1607          * in split and merged mode
1608          */
1609         for( count = 0; count<lookup_table->count; count++) {
1610                 index = fiji_get_voltage_index(lookup_table,
1611                                 data->vddc_voltage_table.entries[count].value);
1612                 table->BapmVddcVidLoSidd[count] = (uint8_t) ((6200 -
1613                                 (lookup_table->entries[index].us_cac_low *
1614                                                 VOLTAGE_SCALE)) / 25);
1615                 table->BapmVddcVidHiSidd[count] = (uint8_t) ((6200 -
1616                                 (lookup_table->entries[index].us_cac_high *
1617                                                 VOLTAGE_SCALE)) / 25);
1618         }
1619
1620         return result;
1621 }
1622
1623 /**
1624 * Preparation of voltage tables for SMC.
1625 *
1626 * @param    hwmgr   the address of the hardware manager
1627 * @param    table   the SMC DPM table structure to be populated
1628 * @return   always  0
1629 */
1630
1631 int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
1632                 struct SMU73_Discrete_DpmTable *table)
1633 {
1634         int result;
1635
1636         result = fiji_populate_cac_table(hwmgr, table);
1637         PP_ASSERT_WITH_CODE(0 == result,
1638                         "can not populate CAC voltage tables to SMC",
1639                         return -EINVAL);
1640
1641         return 0;
1642 }
1643
1644 static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
1645                 struct SMU73_Discrete_Ulv *state)
1646 {
1647         int result = 0;
1648         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1649         struct phm_ppt_v1_information *table_info =
1650                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1651
1652         state->CcPwrDynRm = 0;
1653         state->CcPwrDynRm1 = 0;
1654
1655         state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
1656         state->VddcOffsetVid = (uint8_t)( table_info->us_ulv_voltage_offset *
1657                         VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1 );
1658
1659         state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1;
1660
1661         if (!result) {
1662                 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
1663                 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
1664                 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
1665         }
1666         return result;
1667 }
1668
1669 static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
1670                 struct SMU73_Discrete_DpmTable *table)
1671 {
1672         return fiji_populate_ulv_level(hwmgr, &table->Ulv);
1673 }
1674
1675 static int32_t fiji_get_dpm_level_enable_mask_value(
1676                 struct fiji_single_dpm_table* dpm_table)
1677 {
1678         int32_t i;
1679         int32_t mask = 0;
1680
1681         for (i = dpm_table->count; i > 0; i--) {
1682                 mask = mask << 1;
1683                 if (dpm_table->dpm_levels[i - 1].enabled)
1684                         mask |= 0x1;
1685                 else
1686                         mask &= 0xFFFFFFFE;
1687         }
1688         return mask;
1689 }
1690
1691 static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
1692                 struct SMU73_Discrete_DpmTable *table)
1693 {
1694         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1695         struct fiji_dpm_table *dpm_table = &data->dpm_table;
1696         int i;
1697
1698         /* Index (dpm_table->pcie_speed_table.count)
1699          * is reserved for PCIE boot level. */
1700         for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1701                 table->LinkLevel[i].PcieGenSpeed  =
1702                                 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1703                 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
1704                                 dpm_table->pcie_speed_table.dpm_levels[i].param1);
1705                 table->LinkLevel[i].EnabledForActivity = 1;
1706                 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
1707                 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
1708                 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
1709         }
1710
1711         data->smc_state_table.LinkLevelCount =
1712                         (uint8_t)dpm_table->pcie_speed_table.count;
1713         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1714                         fiji_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1715
1716         return 0;
1717 }
1718
1719 /**
1720 * Calculates the SCLK dividers using the provided engine clock
1721 *
1722 * @param    hwmgr  the address of the hardware manager
1723 * @param    clock  the engine clock to use to populate the structure
1724 * @param    sclk   the SMC SCLK structure to be populated
1725 */
1726 static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
1727                 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
1728 {
1729         const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1730         struct pp_atomctrl_clock_dividers_vi dividers;
1731         uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1732         uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1733         uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1734         uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1735         uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1736         uint32_t ref_clock;
1737         uint32_t ref_divider;
1738         uint32_t fbdiv;
1739         int result;
1740
1741         /* get the engine clock dividers for this clock value */
1742         result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
1743
1744         PP_ASSERT_WITH_CODE(result == 0,
1745                         "Error retrieving Engine Clock dividers from VBIOS.",
1746                         return result);
1747
1748         /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
1749         ref_clock = atomctrl_get_reference_clock(hwmgr);
1750         ref_divider = 1 + dividers.uc_pll_ref_div;
1751
1752         /* low 14 bits is fraction and high 12 bits is divider */
1753         fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
1754
1755         /* SPLL_FUNC_CNTL setup */
1756         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1757                         SPLL_REF_DIV, dividers.uc_pll_ref_div);
1758         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1759                         SPLL_PDIV_A,  dividers.uc_pll_post_div);
1760
1761         /* SPLL_FUNC_CNTL_3 setup*/
1762         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
1763                         SPLL_FB_DIV, fbdiv);
1764
1765         /* set to use fractional accumulation*/
1766         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
1767                         SPLL_DITHEN, 1);
1768
1769         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1770                                 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
1771                 struct pp_atomctrl_internal_ss_info ssInfo;
1772
1773                 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
1774                 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
1775                                 vco_freq, &ssInfo)) {
1776                         /*
1777                          * ss_info.speed_spectrum_percentage -- in unit of 0.01%
1778                          * ss_info.speed_spectrum_rate -- in unit of khz
1779                          *
1780                          * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
1781                          */
1782                         uint32_t clk_s = ref_clock * 5 /
1783                                         (ref_divider * ssInfo.speed_spectrum_rate);
1784                         /* clkv = 2 * D * fbdiv / NS */
1785                         uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
1786                                         fbdiv / (clk_s * 10000);
1787
1788                         cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
1789                                         CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
1790                         cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
1791                                         CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
1792                         cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
1793                                         CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
1794                 }
1795         }
1796
1797         sclk->SclkFrequency        = clock;
1798         sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
1799         sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
1800         sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
1801         sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
1802         sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
1803
1804         return 0;
1805 }
1806
1807 static uint16_t fiji_find_closest_vddci(struct pp_hwmgr *hwmgr, uint16_t vddci)
1808 {
1809         uint32_t  i;
1810         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1811         struct pp_atomctrl_voltage_table *vddci_table =
1812                         &(data->vddci_voltage_table);
1813
1814         for (i = 0; i < vddci_table->count; i++) {
1815                 if (vddci_table->entries[i].value >= vddci)
1816                         return vddci_table->entries[i].value;
1817         }
1818
1819         PP_ASSERT_WITH_CODE(false,
1820                         "VDDCI is larger than max VDDCI in VDDCI Voltage Table!",
1821                         return vddci_table->entries[i].value);
1822 }
1823
1824 static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
1825                 struct phm_ppt_v1_clock_voltage_dependency_table* dep_table,
1826                 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
1827 {
1828         uint32_t i;
1829         uint16_t vddci;
1830         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1831
1832         *voltage = *mvdd = 0;
1833
1834         /* clock - voltage dependency table is empty table */
1835         if (dep_table->count == 0)
1836                 return -EINVAL;
1837
1838         for (i = 0; i < dep_table->count; i++) {
1839                 /* find first sclk bigger than request */
1840                 if (dep_table->entries[i].clk >= clock) {
1841                         *voltage |= (dep_table->entries[i].vddc *
1842                                         VOLTAGE_SCALE) << VDDC_SHIFT;
1843                         if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
1844                                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
1845                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
1846                         else if (dep_table->entries[i].vddci)
1847                                 *voltage |= (dep_table->entries[i].vddci *
1848                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
1849                         else {
1850                                 vddci = fiji_find_closest_vddci(hwmgr,
1851                                                 (dep_table->entries[i].vddc -
1852                                                                 (uint16_t)data->vddc_vddci_delta));
1853                                 *voltage |= (vddci * VOLTAGE_SCALE) <<  VDDCI_SHIFT;
1854                         }
1855
1856                         if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1857                                 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
1858                                         VOLTAGE_SCALE;
1859                         else if (dep_table->entries[i].mvdd)
1860                                 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
1861                                         VOLTAGE_SCALE;
1862
1863                         *voltage |= 1 << PHASES_SHIFT;
1864                         return 0;
1865                 }
1866         }
1867
1868         /* sclk is bigger than max sclk in the dependence table */
1869         *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1870
1871         if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
1872                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
1873                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
1874         else if (dep_table->entries[i-1].vddci) {
1875                 vddci = fiji_find_closest_vddci(hwmgr,
1876                                 (dep_table->entries[i].vddc -
1877                                                 (uint16_t)data->vddc_vddci_delta));
1878                 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1879         }
1880
1881         if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1882                 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
1883         else if (dep_table->entries[i].mvdd)
1884                 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
1885
1886         return 0;
1887 }
1888 /**
1889 * Populates single SMC SCLK structure using the provided engine clock
1890 *
1891 * @param    hwmgr      the address of the hardware manager
1892 * @param    clock the engine clock to use to populate the structure
1893 * @param    sclk        the SMC SCLK structure to be populated
1894 */
1895
1896 static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
1897                 uint32_t clock, uint16_t sclk_al_threshold,
1898                 struct SMU73_Discrete_GraphicsLevel *level)
1899 {
1900         int result;
1901         /* PP_Clocks minClocks; */
1902         uint32_t threshold, mvdd;
1903         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1904         struct phm_ppt_v1_information *table_info =
1905                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1906
1907         result = fiji_calculate_sclk_params(hwmgr, clock, level);
1908
1909         /* populate graphics levels */
1910         result = fiji_get_dependency_volt_by_clk(hwmgr,
1911                         table_info->vdd_dep_on_sclk, clock,
1912                         &level->MinVoltage, &mvdd);
1913         PP_ASSERT_WITH_CODE((0 == result),
1914                         "can not find VDDC voltage value for "
1915                         "VDDC engine clock dependency table",
1916                         return result);
1917
1918         level->SclkFrequency = clock;
1919         level->ActivityLevel = sclk_al_threshold;
1920         level->CcPwrDynRm = 0;
1921         level->CcPwrDynRm1 = 0;
1922         level->EnabledForActivity = 0;
1923         level->EnabledForThrottle = 1;
1924         level->UpHyst = 10;
1925         level->DownHyst = 0;
1926         level->VoltageDownHyst = 0;
1927         level->PowerThrottle = 0;
1928
1929         threshold = clock * data->fast_watermark_threshold / 100;
1930
1931         /*
1932         * TODO: get minimum clocks from dal configaration
1933         * PECI_GetMinClockSettings(hwmgr->pPECI, &minClocks);
1934         */
1935         /* data->DisplayTiming.minClockInSR = minClocks.engineClockInSR; */
1936
1937         /* get level->DeepSleepDivId
1938         if (phm_cap_enabled(hwmgr->platformDescriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
1939         {
1940         level->DeepSleepDivId = PhwFiji_GetSleepDividerIdFromClock(hwmgr, clock, minClocks.engineClockInSR);
1941         } */
1942
1943         /* Default to slow, highest DPM level will be
1944          * set to PPSMC_DISPLAY_WATERMARK_LOW later.
1945          */
1946         level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1947
1948         CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
1949         CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
1950         CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
1951         CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
1952         CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
1953         CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
1954         CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
1955         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
1956         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
1957
1958         return 0;
1959 }
1960 /**
1961 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
1962 *
1963 * @param    hwmgr      the address of the hardware manager
1964 */
1965 static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1966 {
1967         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1968         struct fiji_dpm_table *dpm_table = &data->dpm_table;
1969         struct phm_ppt_v1_information *table_info =
1970                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1971         struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1972         uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
1973         int result = 0;
1974         uint32_t array = data->dpm_table_start +
1975                         offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
1976         uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
1977                         SMU73_MAX_LEVELS_GRAPHICS;
1978         struct SMU73_Discrete_GraphicsLevel *levels =
1979                         data->smc_state_table.GraphicsLevel;
1980         uint32_t i, max_entry;
1981         uint8_t hightest_pcie_level_enabled = 0,
1982                         lowest_pcie_level_enabled = 0,
1983                         mid_pcie_level_enabled = 0,
1984                         count = 0;
1985
1986         for (i = 0; i < dpm_table->sclk_table.count; i++) {
1987                 result = fiji_populate_single_graphic_level(hwmgr,
1988                                 dpm_table->sclk_table.dpm_levels[i].value,
1989                                 (uint16_t)data->activity_target[i],
1990                                 &levels[i]);
1991                 if (result)
1992                         return result;
1993
1994                 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
1995                 if (i > 1)
1996                         levels[i].DeepSleepDivId = 0;
1997         }
1998
1999         /* Only enable level 0 for now.*/
2000         levels[0].EnabledForActivity = 1;
2001
2002         /* set highest level watermark to high */
2003         levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
2004                         PPSMC_DISPLAY_WATERMARK_HIGH;
2005
2006         data->smc_state_table.GraphicsDpmLevelCount =
2007                         (uint8_t)dpm_table->sclk_table.count;
2008         data->dpm_level_enable_mask.sclk_dpm_enable_mask =
2009                         fiji_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
2010
2011         if (pcie_table != NULL) {
2012                 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
2013                                 "There must be 1 or more PCIE levels defined in PPTable.",
2014                                 return -EINVAL);
2015                 max_entry = pcie_entry_cnt - 1;
2016                 for (i = 0; i < dpm_table->sclk_table.count; i++)
2017                         levels[i].pcieDpmLevel =
2018                                         (uint8_t) ((i < max_entry)? i : max_entry);
2019         } else {
2020                 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2021                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2022                                                 (1 << (hightest_pcie_level_enabled + 1))) != 0 ))
2023                         hightest_pcie_level_enabled++;
2024
2025                 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2026                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2027                                                 (1 << lowest_pcie_level_enabled)) == 0 ))
2028                         lowest_pcie_level_enabled++;
2029
2030                 while ((count < hightest_pcie_level_enabled) &&
2031                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2032                                                 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0 ))
2033                         count++;
2034
2035                 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1+ count) <
2036                                 hightest_pcie_level_enabled?
2037                                                 (lowest_pcie_level_enabled + 1 + count) :
2038                                                 hightest_pcie_level_enabled;
2039
2040                 /* set pcieDpmLevel to hightest_pcie_level_enabled */
2041                 for(i = 2; i < dpm_table->sclk_table.count; i++)
2042                         levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
2043
2044                 /* set pcieDpmLevel to lowest_pcie_level_enabled */
2045                 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
2046
2047                 /* set pcieDpmLevel to mid_pcie_level_enabled */
2048                 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
2049         }
2050         /* level count will send to smc once at init smc table and never change */
2051         result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
2052                         (uint32_t)array_size, data->sram_end);
2053
2054         return result;
2055 }
2056
2057 /**
2058  * MCLK Frequency Ratio
2059  * SEQ_CG_RESP  Bit[31:24] - 0x0
2060  * Bit[27:24] \96 DDR3 Frequency ratio
2061  * 0x0 <= 100MHz,       450 < 0x8 <= 500MHz
2062  * 100 < 0x1 <= 150MHz,       500 < 0x9 <= 550MHz
2063  * 150 < 0x2 <= 200MHz,       550 < 0xA <= 600MHz
2064  * 200 < 0x3 <= 250MHz,       600 < 0xB <= 650MHz
2065  * 250 < 0x4 <= 300MHz,       650 < 0xC <= 700MHz
2066  * 300 < 0x5 <= 350MHz,       700 < 0xD <= 750MHz
2067  * 350 < 0x6 <= 400MHz,       750 < 0xE <= 800MHz
2068  * 400 < 0x7 <= 450MHz,       800 < 0xF
2069  */
2070 static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
2071 {
2072         if (mem_clock <= 10000) return 0x0;
2073         if (mem_clock <= 15000) return 0x1;
2074         if (mem_clock <= 20000) return 0x2;
2075         if (mem_clock <= 25000) return 0x3;
2076         if (mem_clock <= 30000) return 0x4;
2077         if (mem_clock <= 35000) return 0x5;
2078         if (mem_clock <= 40000) return 0x6;
2079         if (mem_clock <= 45000) return 0x7;
2080         if (mem_clock <= 50000) return 0x8;
2081         if (mem_clock <= 55000) return 0x9;
2082         if (mem_clock <= 60000) return 0xa;
2083         if (mem_clock <= 65000) return 0xb;
2084         if (mem_clock <= 70000) return 0xc;
2085         if (mem_clock <= 75000) return 0xd;
2086         if (mem_clock <= 80000) return 0xe;
2087         /* mem_clock > 800MHz */
2088         return 0xf;
2089 }
2090
2091 /**
2092 * Populates the SMC MCLK structure using the provided memory clock
2093 *
2094 * @param    hwmgr   the address of the hardware manager
2095 * @param    clock   the memory clock to use to populate the structure
2096 * @param    sclk    the SMC SCLK structure to be populated
2097 */
2098 static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
2099     uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
2100 {
2101         struct pp_atomctrl_memory_clock_param mem_param;
2102         int result;
2103
2104         result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
2105         PP_ASSERT_WITH_CODE((0 == result),
2106                         "Failed to get Memory PLL Dividers.",);
2107
2108         /* Save the result data to outpupt memory level structure */
2109         mclk->MclkFrequency   = clock;
2110         mclk->MclkDivider     = (uint8_t)mem_param.mpll_post_divider;
2111         mclk->FreqRange       = fiji_get_mclk_frequency_ratio(clock);
2112
2113         return result;
2114 }
2115
2116 static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
2117                 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
2118 {
2119         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2120         struct phm_ppt_v1_information *table_info =
2121                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2122         int result = 0;
2123
2124         if (table_info->vdd_dep_on_mclk) {
2125                 result = fiji_get_dependency_volt_by_clk(hwmgr,
2126                                 table_info->vdd_dep_on_mclk, clock,
2127                                 &mem_level->MinVoltage, &mem_level->MinMvdd);
2128                 PP_ASSERT_WITH_CODE((0 == result),
2129                                 "can not find MinVddc voltage value from memory "
2130                                 "VDDC voltage dependency table", return result);
2131         }
2132
2133         mem_level->EnabledForThrottle = 1;
2134         mem_level->EnabledForActivity = 0;
2135         mem_level->UpHyst = 0;
2136         mem_level->DownHyst = 100;
2137         mem_level->VoltageDownHyst = 0;
2138         mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
2139         mem_level->StutterEnable = false;
2140
2141         mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2142
2143         /* enable stutter mode if all the follow condition applied
2144          * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
2145          * &(data->DisplayTiming.numExistingDisplays));
2146          */
2147         data->display_timing.num_existing_displays = 1;
2148
2149         if ((data->mclk_stutter_mode_threshold) &&
2150                 (clock <= data->mclk_stutter_mode_threshold) &&
2151                 (!data->is_uvd_enabled) &&
2152                 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
2153                                 STUTTER_ENABLE) & 0x1))
2154                 mem_level->StutterEnable = true;
2155
2156         result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
2157         if (!result) {
2158                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
2159                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
2160                 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
2161                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
2162         }
2163         return result;
2164 }
2165
2166 /**
2167 * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
2168 *
2169 * @param    hwmgr      the address of the hardware manager
2170 */
2171 static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
2172 {
2173         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2174         struct fiji_dpm_table *dpm_table = &data->dpm_table;
2175         int result;
2176         /* populate MCLK dpm table to SMU7 */
2177         uint32_t array = data->dpm_table_start +
2178                         offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
2179         uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
2180                         SMU73_MAX_LEVELS_MEMORY;
2181         struct SMU73_Discrete_MemoryLevel *levels =
2182                         data->smc_state_table.MemoryLevel;
2183         uint32_t i;
2184
2185         for (i = 0; i < dpm_table->mclk_table.count; i++) {
2186                 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
2187                                 "can not populate memory level as memory clock is zero",
2188                                 return -EINVAL);
2189                 result = fiji_populate_single_memory_level(hwmgr,
2190                                 dpm_table->mclk_table.dpm_levels[i].value,
2191                                 &levels[i]);
2192                 if (result)
2193                         return result;
2194         }
2195
2196         /* Only enable level 0 for now. */
2197         levels[0].EnabledForActivity = 1;
2198
2199         /* in order to prevent MC activity from stutter mode to push DPM up.
2200          * the UVD change complements this by putting the MCLK in
2201          * a higher state by default such that we are not effected by
2202          * up threshold or and MCLK DPM latency.
2203          */
2204         levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
2205         CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
2206
2207         data->smc_state_table.MemoryDpmLevelCount =
2208                         (uint8_t)dpm_table->mclk_table.count;
2209         data->dpm_level_enable_mask.mclk_dpm_enable_mask =
2210                         fiji_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
2211         /* set highest level watermark to high */
2212         levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
2213                         PPSMC_DISPLAY_WATERMARK_HIGH;
2214
2215         /* level count will send to smc once at init smc table and never change */
2216         result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
2217                         (uint32_t)array_size, data->sram_end);
2218
2219         return result;
2220 }
2221
2222 /**
2223 * Populates the SMC MVDD structure using the provided memory clock.
2224 *
2225 * @param    hwmgr      the address of the hardware manager
2226 * @param    mclk        the MCLK value to be used in the decision if MVDD should be high or low.
2227 * @param    voltage     the SMC VOLTAGE structure to be populated
2228 */
2229 int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
2230                 uint32_t mclk, SMIO_Pattern *smio_pat)
2231 {
2232         const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2233         struct phm_ppt_v1_information *table_info =
2234                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2235         uint32_t i = 0;
2236
2237         if (FIJI_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
2238                 /* find mvdd value which clock is more than request */
2239                 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
2240                         if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
2241                                 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
2242                                 break;
2243                         }
2244                 }
2245                 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
2246                                 "MVDD Voltage is outside the supported range.",
2247                                 return -EINVAL);
2248         } else
2249                 return -EINVAL;
2250
2251         return 0;
2252 }
2253
2254 static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
2255                 SMU73_Discrete_DpmTable *table)
2256 {
2257         int result = 0;
2258         const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2259         struct phm_ppt_v1_information *table_info =
2260                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2261         struct pp_atomctrl_clock_dividers_vi dividers;
2262         SMIO_Pattern vol_level;
2263         uint32_t mvdd;
2264         uint16_t us_mvdd;
2265         uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2266         uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
2267
2268         table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
2269
2270         if (!data->sclk_dpm_key_disabled) {
2271                 /* Get MinVoltage and Frequency from DPM0,
2272                  * already converted to SMC_UL */
2273                 table->ACPILevel.SclkFrequency =
2274                                 data->dpm_table.sclk_table.dpm_levels[0].value;
2275                 result = fiji_get_dependency_volt_by_clk(hwmgr,
2276                                 table_info->vdd_dep_on_sclk,
2277                                 table->ACPILevel.SclkFrequency,
2278                                 &table->ACPILevel.MinVoltage, &mvdd);
2279                 PP_ASSERT_WITH_CODE((0 == result),
2280                                 "Cannot find ACPI VDDC voltage value "
2281                                 "in Clock Dependency Table",);
2282         } else {
2283                 table->ACPILevel.SclkFrequency =
2284                                 data->vbios_boot_state.sclk_bootup_value;
2285                 table->ACPILevel.MinVoltage =
2286                                 data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
2287         }
2288
2289         /* get the engine clock dividers for this clock value */
2290         result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
2291                         table->ACPILevel.SclkFrequency,  &dividers);
2292         PP_ASSERT_WITH_CODE(result == 0,
2293                         "Error retrieving Engine Clock dividers from VBIOS.",
2294                         return result);
2295
2296         table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
2297         table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2298         table->ACPILevel.DeepSleepDivId = 0;
2299
2300         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
2301                         SPLL_PWRON, 0);
2302         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
2303                         SPLL_RESET, 1);
2304         spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
2305                         SCLK_MUX_SEL, 4);
2306
2307         table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
2308         table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
2309         table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2310         table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2311         table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2312         table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2313         table->ACPILevel.CcPwrDynRm = 0;
2314         table->ACPILevel.CcPwrDynRm1 = 0;
2315
2316         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
2317         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
2318         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
2319         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
2320         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
2321         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
2322         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
2323         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
2324         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
2325         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
2326         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
2327
2328         if (!data->mclk_dpm_key_disabled) {
2329                 /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
2330                 table->MemoryACPILevel.MclkFrequency =
2331                                 data->dpm_table.mclk_table.dpm_levels[0].value;
2332                 result = fiji_get_dependency_volt_by_clk(hwmgr,
2333                                 table_info->vdd_dep_on_mclk,
2334                                 table->MemoryACPILevel.MclkFrequency,
2335                                 &table->MemoryACPILevel.MinVoltage, &mvdd);
2336                 PP_ASSERT_WITH_CODE((0 == result),
2337                                 "Cannot find ACPI VDDCI voltage value "
2338                                 "in Clock Dependency Table",);
2339         } else {
2340                 table->MemoryACPILevel.MclkFrequency =
2341                                 data->vbios_boot_state.mclk_bootup_value;
2342                 table->MemoryACPILevel.MinVoltage =
2343                                 data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
2344         }
2345
2346         us_mvdd = 0;
2347         if ((FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
2348                         (data->mclk_dpm_key_disabled))
2349                 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
2350         else {
2351                 if (!fiji_populate_mvdd_value(hwmgr,
2352                                 data->dpm_table.mclk_table.dpm_levels[0].value,
2353                                 &vol_level))
2354                         us_mvdd = vol_level.Voltage;
2355         }
2356
2357         table->MemoryACPILevel.MinMvdd =
2358                         PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
2359
2360         table->MemoryACPILevel.EnabledForThrottle = 0;
2361         table->MemoryACPILevel.EnabledForActivity = 0;
2362         table->MemoryACPILevel.UpHyst = 0;
2363         table->MemoryACPILevel.DownHyst = 100;
2364         table->MemoryACPILevel.VoltageDownHyst = 0;
2365         table->MemoryACPILevel.ActivityLevel =
2366                         PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
2367
2368         table->MemoryACPILevel.StutterEnable = false;
2369         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
2370         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
2371
2372         return result;
2373 }
2374
2375 static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
2376                 SMU73_Discrete_DpmTable *table)
2377 {
2378         int result = -EINVAL;
2379         uint8_t count;
2380         struct pp_atomctrl_clock_dividers_vi dividers;
2381         struct phm_ppt_v1_information *table_info =
2382                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2383         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2384                         table_info->mm_dep_table;
2385         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2386
2387         table->VceLevelCount = (uint8_t)(mm_table->count);
2388         table->VceBootLevel = 0;
2389
2390         for(count = 0; count < table->VceLevelCount; count++) {
2391                 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
2392                 table->VceLevel[count].MinVoltage |=
2393                                 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
2394                 table->VceLevel[count].MinVoltage |=
2395                                 ((mm_table->entries[count].vddc - data->vddc_vddci_delta) *
2396                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
2397                 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2398
2399                 /*retrieve divider value for VBIOS */
2400                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2401                                 table->VceLevel[count].Frequency, &dividers);
2402                 PP_ASSERT_WITH_CODE((0 == result),
2403                                 "can not find divide id for VCE engine clock",
2404                                 return result);
2405
2406                 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2407
2408                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
2409                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
2410         }
2411         return result;
2412 }
2413
2414 static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
2415                 SMU73_Discrete_DpmTable *table)
2416 {
2417         int result = -EINVAL;
2418         uint8_t count;
2419         struct pp_atomctrl_clock_dividers_vi dividers;
2420         struct phm_ppt_v1_information *table_info =
2421                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2422         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2423                         table_info->mm_dep_table;
2424         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2425
2426         table->AcpLevelCount = (uint8_t)(mm_table->count);
2427         table->AcpBootLevel = 0;
2428
2429         for (count = 0; count < table->AcpLevelCount; count++) {
2430                 table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
2431                 table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2432                                 VOLTAGE_SCALE) << VDDC_SHIFT;
2433                 table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2434                                 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2435                 table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2436
2437                 /* retrieve divider value for VBIOS */
2438                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2439                                 table->AcpLevel[count].Frequency, &dividers);
2440                 PP_ASSERT_WITH_CODE((0 == result),
2441                                 "can not find divide id for engine clock", return result);
2442
2443                 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2444
2445                 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
2446                 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
2447         }
2448         return result;
2449 }
2450
2451 static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
2452                 SMU73_Discrete_DpmTable *table)
2453 {
2454         int result = -EINVAL;
2455         uint8_t count;
2456         struct pp_atomctrl_clock_dividers_vi dividers;
2457         struct phm_ppt_v1_information *table_info =
2458                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2459         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2460                         table_info->mm_dep_table;
2461         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2462
2463         table->SamuBootLevel = 0;
2464         table->SamuLevelCount = (uint8_t)(mm_table->count);
2465
2466         for (count = 0; count < table->SamuLevelCount; count++) {
2467                 /* not sure whether we need evclk or not */
2468                 table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
2469                 table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2470                                 VOLTAGE_SCALE) << VDDC_SHIFT;
2471                 table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2472                                 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2473                 table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2474
2475                 /* retrieve divider value for VBIOS */
2476                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2477                                 table->SamuLevel[count].Frequency, &dividers);
2478                 PP_ASSERT_WITH_CODE((0 == result),
2479                                 "can not find divide id for samu clock", return result);
2480
2481                 table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2482
2483                 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
2484                 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
2485         }
2486         return result;
2487 }
2488
2489 static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
2490                 int32_t eng_clock, int32_t mem_clock,
2491                 struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
2492 {
2493         uint32_t dram_timing;
2494         uint32_t dram_timing2;
2495         uint32_t burstTime;
2496         ULONG state, trrds, trrdl;
2497         int result;
2498
2499         result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
2500                         eng_clock, mem_clock);
2501         PP_ASSERT_WITH_CODE(result == 0,
2502                         "Error calling VBIOS to set DRAM_TIMING.", return result);
2503
2504         dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
2505         dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
2506         burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
2507
2508         state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
2509         trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
2510         trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
2511
2512         arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
2513         arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
2514         arb_regs->McArbBurstTime   = (uint8_t)burstTime;
2515         arb_regs->TRRDS            = (uint8_t)trrds;
2516         arb_regs->TRRDL            = (uint8_t)trrdl;
2517
2518         return 0;
2519 }
2520
2521 static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
2522 {
2523         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2524         struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
2525         uint32_t i, j;
2526         int result = 0;
2527
2528         for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
2529                 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
2530                         result = fiji_populate_memory_timing_parameters(hwmgr,
2531                                         data->dpm_table.sclk_table.dpm_levels[i].value,
2532                                         data->dpm_table.mclk_table.dpm_levels[j].value,
2533                                         &arb_regs.entries[i][j]);
2534                         if (result)
2535                                 break;
2536                 }
2537         }
2538
2539         if (!result)
2540                 result = fiji_copy_bytes_to_smc(
2541                                 hwmgr->smumgr,
2542                                 data->arb_table_start,
2543                                 (uint8_t *)&arb_regs,
2544                                 sizeof(SMU73_Discrete_MCArbDramTimingTable),
2545                                 data->sram_end);
2546         return result;
2547 }
2548
2549 static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
2550                 struct SMU73_Discrete_DpmTable *table)
2551 {
2552         int result = -EINVAL;
2553         uint8_t count;
2554         struct pp_atomctrl_clock_dividers_vi dividers;
2555         struct phm_ppt_v1_information *table_info =
2556                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2557         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2558                         table_info->mm_dep_table;
2559         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2560
2561         table->UvdLevelCount = (uint8_t)(mm_table->count);
2562         table->UvdBootLevel = 0;
2563
2564         for (count = 0; count < table->UvdLevelCount; count++) {
2565                 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
2566                 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
2567                 table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2568                                 VOLTAGE_SCALE) << VDDC_SHIFT;
2569                 table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2570                                 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2571                 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2572
2573                 /* retrieve divider value for VBIOS */
2574                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2575                                 table->UvdLevel[count].VclkFrequency, &dividers);
2576                 PP_ASSERT_WITH_CODE((0 == result),
2577                                 "can not find divide id for Vclk clock", return result);
2578
2579                 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
2580
2581                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2582                                 table->UvdLevel[count].DclkFrequency, &dividers);
2583                 PP_ASSERT_WITH_CODE((0 == result),
2584                                 "can not find divide id for Dclk clock", return result);
2585
2586                 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
2587
2588                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
2589                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
2590                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
2591
2592         }
2593         return result;
2594 }
2595
2596 static int fiji_find_boot_level(struct fiji_single_dpm_table *table,
2597                 uint32_t value, uint32_t *boot_level)
2598 {
2599         int result = -EINVAL;
2600         uint32_t i;
2601
2602         for (i = 0; i < table->count; i++) {
2603                 if (value == table->dpm_levels[i].value) {
2604                         *boot_level = i;
2605                         result = 0;
2606                 }
2607         }
2608         return result;
2609 }
2610
2611 static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
2612                 struct SMU73_Discrete_DpmTable *table)
2613 {
2614         int result = 0;
2615         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2616
2617         table->GraphicsBootLevel = 0;
2618         table->MemoryBootLevel = 0;
2619
2620         /* find boot level from dpm table */
2621         result = fiji_find_boot_level(&(data->dpm_table.sclk_table),
2622                         data->vbios_boot_state.sclk_bootup_value,
2623                         (uint32_t *)&(table->GraphicsBootLevel));
2624
2625         result = fiji_find_boot_level(&(data->dpm_table.mclk_table),
2626                         data->vbios_boot_state.mclk_bootup_value,
2627                         (uint32_t *)&(table->MemoryBootLevel));
2628
2629         table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
2630                         VOLTAGE_SCALE;
2631         table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
2632                         VOLTAGE_SCALE;
2633         table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
2634                         VOLTAGE_SCALE;
2635
2636         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
2637         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
2638         CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
2639
2640         return 0;
2641 }
2642
2643 static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
2644 {
2645         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2646         struct phm_ppt_v1_information *table_info =
2647                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2648         uint8_t count, level;
2649
2650         count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
2651         for (level = 0; level < count; level++) {
2652                 if(table_info->vdd_dep_on_sclk->entries[level].clk >=
2653                                 data->vbios_boot_state.sclk_bootup_value) {
2654                         data->smc_state_table.GraphicsBootLevel = level;
2655                         break;
2656                 }
2657         }
2658
2659         count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
2660         for (level = 0; level < count; level++) {
2661                 if(table_info->vdd_dep_on_mclk->entries[level].clk >=
2662                                 data->vbios_boot_state.mclk_bootup_value) {
2663                         data->smc_state_table.MemoryBootLevel = level;
2664                         break;
2665                 }
2666         }
2667
2668         return 0;
2669 }
2670
2671 static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
2672 {
2673         uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
2674                         volt_with_cks, value;
2675         uint16_t clock_freq_u16;
2676         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2677         uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
2678                         volt_offset = 0;
2679         struct phm_ppt_v1_information *table_info =
2680                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2681         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
2682                         table_info->vdd_dep_on_sclk;
2683
2684         stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
2685
2686         /* Read SMU_Eefuse to read and calculate RO and determine
2687          * if the part is SS or FF. if RO >= 1660MHz, part is FF.
2688          */
2689         efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2690                         ixSMU_EFUSE_0 + (146 * 4));
2691         efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2692                         ixSMU_EFUSE_0 + (148 * 4));
2693         efuse &= 0xFF000000;
2694         efuse = efuse >> 24;
2695         efuse2 &= 0xF;
2696
2697         if (efuse2 == 1)
2698                 ro = (2300 - 1350) * efuse / 255 + 1350;
2699         else
2700                 ro = (2500 - 1000) * efuse / 255 + 1000;
2701
2702         if (ro >= 1660)
2703                 type = 0;
2704         else
2705                 type = 1;
2706
2707         /* Populate Stretch amount */
2708         data->smc_state_table.ClockStretcherAmount = stretch_amount;
2709
2710         /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
2711         for (i = 0; i < sclk_table->count; i++) {
2712                 data->smc_state_table.Sclk_CKS_masterEn0_7 |=
2713                                 sclk_table->entries[i].cks_enable << i;
2714                 volt_without_cks = (uint32_t)((14041 *
2715                         (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
2716                         (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
2717                 volt_with_cks = (uint32_t)((13946 *
2718                         (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
2719                         (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
2720                 if (volt_without_cks >= volt_with_cks)
2721                         volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
2722                                         sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
2723                 data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
2724         }
2725
2726         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2727                         STRETCH_ENABLE, 0x0);
2728         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2729                         masterReset, 0x1);
2730         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2731                         staticEnable, 0x1);
2732         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2733                         masterReset, 0x0);
2734
2735         /* Populate CKS Lookup Table */
2736         if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
2737                 stretch_amount2 = 0;
2738         else if (stretch_amount == 3 || stretch_amount == 4)
2739                 stretch_amount2 = 1;
2740         else {
2741                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2742                                 PHM_PlatformCaps_ClockStretcher);
2743                 PP_ASSERT_WITH_CODE(false,
2744                                 "Stretch Amount in PPTable not supported\n",
2745                                 return -EINVAL);
2746         }
2747
2748         value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2749                         ixPWR_CKS_CNTL);
2750         value &= 0xFFC2FF87;
2751         data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
2752                         fiji_clock_stretcher_lookup_table[stretch_amount2][0];
2753         data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
2754                         fiji_clock_stretcher_lookup_table[stretch_amount2][1];
2755         clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(data->smc_state_table.
2756                         GraphicsLevel[data->smc_state_table.GraphicsDpmLevelCount - 1].
2757                         SclkFrequency) / 100);
2758         if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
2759                         clock_freq_u16 &&
2760             fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
2761                         clock_freq_u16) {
2762                 /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
2763                 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
2764                 /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
2765                 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
2766                 /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
2767                 value |= (fiji_clock_stretch_amount_conversion
2768                                 [fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
2769                                  [stretch_amount]) << 3;
2770         }
2771         CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
2772                         CKS_LOOKUPTableEntry[0].minFreq);
2773         CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
2774                         CKS_LOOKUPTableEntry[0].maxFreq);
2775         data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
2776                         fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
2777         data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
2778                         (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
2779
2780         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2781                         ixPWR_CKS_CNTL, value);
2782
2783         /* Populate DDT Lookup Table */
2784         for (i = 0; i < 4; i++) {
2785                 /* Assign the minimum and maximum VID stored
2786                  * in the last row of Clock Stretcher Voltage Table.
2787                  */
2788                 data->smc_state_table.ClockStretcherDataTable.
2789                 ClockStretcherDataTableEntry[i].minVID =
2790                                 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
2791                 data->smc_state_table.ClockStretcherDataTable.
2792                 ClockStretcherDataTableEntry[i].maxVID =
2793                                 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
2794                 /* Loop through each SCLK and check the frequency
2795                  * to see if it lies within the frequency for clock stretcher.
2796                  */
2797                 for (j = 0; j < data->smc_state_table.GraphicsDpmLevelCount; j++) {
2798                         cks_setting = 0;
2799                         clock_freq = PP_SMC_TO_HOST_UL(
2800                                         data->smc_state_table.GraphicsLevel[j].SclkFrequency);
2801                         /* Check the allowed frequency against the sclk level[j].
2802                          *  Sclk's endianness has already been converted,
2803                          *  and it's in 10Khz unit,
2804                          *  as opposed to Data table, which is in Mhz unit.
2805                          */
2806                         if (clock_freq >=
2807                                         (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
2808                                 cks_setting |= 0x2;
2809                                 if (clock_freq <
2810                                                 (fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
2811                                         cks_setting |= 0x1;
2812                         }
2813                         data->smc_state_table.ClockStretcherDataTable.
2814                         ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
2815                 }
2816                 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.
2817                                 ClockStretcherDataTable.
2818                                 ClockStretcherDataTableEntry[i].setting);
2819         }
2820
2821         value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
2822         value &= 0xFFFFFFFE;
2823         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
2824
2825         return 0;
2826 }
2827
2828 /**
2829 * Populates the SMC VRConfig field in DPM table.
2830 *
2831 * @param    hwmgr   the address of the hardware manager
2832 * @param    table   the SMC DPM table structure to be populated
2833 * @return   always 0
2834 */
2835 static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
2836                 struct SMU73_Discrete_DpmTable *table)
2837 {
2838         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2839         uint16_t config;
2840
2841         config = VR_MERGED_WITH_VDDC;
2842         table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
2843
2844         /* Set Vddc Voltage Controller */
2845         if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
2846                 config = VR_SVI2_PLANE_1;
2847                 table->VRConfig |= config;
2848         } else {
2849                 PP_ASSERT_WITH_CODE(false,
2850                                 "VDDC should be on SVI2 control in merged mode!",);
2851         }
2852         /* Set Vddci Voltage Controller */
2853         if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
2854                 config = VR_SVI2_PLANE_2;  /* only in merged mode */
2855                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2856         } else if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
2857                 config = VR_SMIO_PATTERN_1;
2858                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2859         } else {
2860                 config = VR_STATIC_VOLTAGE;
2861                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2862         }
2863         /* Set Mvdd Voltage Controller */
2864         if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
2865                 config = VR_SVI2_PLANE_2;
2866                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2867         } else if(FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
2868                 config = VR_SMIO_PATTERN_2;
2869                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2870         } else {
2871                 config = VR_STATIC_VOLTAGE;
2872                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2873         }
2874
2875         return 0;
2876 }
2877
2878 /**
2879 * Initializes the SMC table and uploads it
2880 *
2881 * @param    hwmgr  the address of the powerplay hardware manager.
2882 * @param    pInput  the pointer to input data (PowerState)
2883 * @return   always 0
2884 */
2885 static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
2886 {
2887         int result;
2888         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2889         struct phm_ppt_v1_information *table_info =
2890                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2891         struct SMU73_Discrete_DpmTable *table = &(data->smc_state_table);
2892         const struct fiji_ulv_parm *ulv = &(data->ulv);
2893         uint8_t i;
2894         struct pp_atomctrl_gpio_pin_assignment gpio_pin;
2895
2896         result = fiji_setup_default_dpm_tables(hwmgr);
2897         PP_ASSERT_WITH_CODE(0 == result,
2898                         "Failed to setup default DPM tables!", return result);
2899
2900         if(FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control)
2901                 fiji_populate_smc_voltage_tables(hwmgr, table);
2902
2903         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2904                         PHM_PlatformCaps_AutomaticDCTransition))
2905                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2906
2907         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2908                         PHM_PlatformCaps_StepVddc))
2909                 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2910
2911         if (data->is_memory_gddr5)
2912                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2913
2914         if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) {
2915                 result = fiji_populate_ulv_state(hwmgr, table);
2916                 PP_ASSERT_WITH_CODE(0 == result,
2917                                 "Failed to initialize ULV state!", return result);
2918                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2919                                 ixCG_ULV_PARAMETER, ulv->cg_ulv_parameter);
2920         }
2921
2922         result = fiji_populate_smc_link_level(hwmgr, table);
2923         PP_ASSERT_WITH_CODE(0 == result,
2924                         "Failed to initialize Link Level!", return result);
2925
2926         result = fiji_populate_all_graphic_levels(hwmgr);
2927         PP_ASSERT_WITH_CODE(0 == result,
2928                         "Failed to initialize Graphics Level!", return result);
2929
2930         result = fiji_populate_all_memory_levels(hwmgr);
2931         PP_ASSERT_WITH_CODE(0 == result,
2932                         "Failed to initialize Memory Level!", return result);
2933
2934         result = fiji_populate_smc_acpi_level(hwmgr, table);
2935         PP_ASSERT_WITH_CODE(0 == result,
2936                         "Failed to initialize ACPI Level!", return result);
2937
2938         result = fiji_populate_smc_vce_level(hwmgr, table);
2939         PP_ASSERT_WITH_CODE(0 == result,
2940                         "Failed to initialize VCE Level!", return result);
2941
2942         result = fiji_populate_smc_acp_level(hwmgr, table);
2943         PP_ASSERT_WITH_CODE(0 == result,
2944                         "Failed to initialize ACP Level!", return result);
2945
2946         result = fiji_populate_smc_samu_level(hwmgr, table);
2947         PP_ASSERT_WITH_CODE(0 == result,
2948                         "Failed to initialize SAMU Level!", return result);
2949
2950         /* Since only the initial state is completely set up at this point
2951          * (the other states are just copies of the boot state) we only
2952          * need to populate the  ARB settings for the initial state.
2953          */
2954         result = fiji_program_memory_timing_parameters(hwmgr);
2955         PP_ASSERT_WITH_CODE(0 == result,
2956                         "Failed to Write ARB settings for the initial state.", return result);
2957
2958         result = fiji_populate_smc_uvd_level(hwmgr, table);
2959         PP_ASSERT_WITH_CODE(0 == result,
2960                         "Failed to initialize UVD Level!", return result);
2961
2962         result = fiji_populate_smc_boot_level(hwmgr, table);
2963         PP_ASSERT_WITH_CODE(0 == result,
2964                         "Failed to initialize Boot Level!", return result);
2965
2966         result = fiji_populate_smc_initailial_state(hwmgr);
2967         PP_ASSERT_WITH_CODE(0 == result,
2968                         "Failed to initialize Boot State!", return result);
2969
2970         result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
2971         PP_ASSERT_WITH_CODE(0 == result,
2972                         "Failed to populate BAPM Parameters!", return result);
2973
2974         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2975                         PHM_PlatformCaps_ClockStretcher)) {
2976                 result = fiji_populate_clock_stretcher_data_table(hwmgr);
2977                 PP_ASSERT_WITH_CODE(0 == result,
2978                                 "Failed to populate Clock Stretcher Data Table!",
2979                                 return result);
2980         }
2981
2982         table->GraphicsVoltageChangeEnable  = 1;
2983         table->GraphicsThermThrottleEnable  = 1;
2984         table->GraphicsInterval = 1;
2985         table->VoltageInterval  = 1;
2986         table->ThermalInterval  = 1;
2987         table->TemperatureLimitHigh =
2988                         table_info->cac_dtp_table->usTargetOperatingTemp *
2989                         FIJI_Q88_FORMAT_CONVERSION_UNIT;
2990         table->TemperatureLimitLow  =
2991                         (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2992                         FIJI_Q88_FORMAT_CONVERSION_UNIT;
2993         table->MemoryVoltageChangeEnable = 1;
2994         table->MemoryInterval = 1;
2995         table->VoltageResponseTime = 0;
2996         table->PhaseResponseTime = 0;
2997         table->MemoryThermThrottleEnable = 1;
2998         table->PCIeBootLinkLevel = 0;      /* 0:Gen1 1:Gen2 2:Gen3*/
2999         table->PCIeGenInterval = 1;
3000
3001         result = fiji_populate_vr_config(hwmgr, table);
3002         PP_ASSERT_WITH_CODE(0 == result,
3003                         "Failed to populate VRConfig setting!", return result);
3004
3005         table->ThermGpio = 17;
3006         table->SclkStepSize = 0x4000;
3007
3008         if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
3009                 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
3010                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3011                                 PHM_PlatformCaps_RegulatorHot);
3012         } else {
3013                 table->VRHotGpio = FIJI_UNUSED_GPIO_PIN;
3014                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3015                                 PHM_PlatformCaps_RegulatorHot);
3016         }
3017
3018         if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
3019                         &gpio_pin)) {
3020                 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
3021                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3022                                 PHM_PlatformCaps_AutomaticDCTransition);
3023         } else {
3024                 table->AcDcGpio = FIJI_UNUSED_GPIO_PIN;
3025                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3026                                 PHM_PlatformCaps_AutomaticDCTransition);
3027         }
3028
3029         /* Thermal Output GPIO */
3030         if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
3031                         &gpio_pin)) {
3032                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3033                                 PHM_PlatformCaps_ThermalOutGPIO);
3034
3035                 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
3036
3037                 /* For porlarity read GPIOPAD_A with assigned Gpio pin
3038                  * since VBIOS will program this register to set 'inactive state',
3039                  * driver can then determine 'active state' from this and
3040                  * program SMU with correct polarity
3041                  */
3042                 table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
3043                                 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
3044                 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
3045
3046                 /* if required, combine VRHot/PCC with thermal out GPIO */
3047                 if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3048                                 PHM_PlatformCaps_RegulatorHot) &&
3049                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3050                                         PHM_PlatformCaps_CombinePCCWithThermalSignal))
3051                         table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
3052         } else {
3053                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3054                                 PHM_PlatformCaps_ThermalOutGPIO);
3055                 table->ThermOutGpio = 17;
3056                 table->ThermOutPolarity = 1;
3057                 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
3058         }
3059
3060         for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
3061                 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
3062
3063         CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
3064         CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
3065         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
3066         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
3067         CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
3068         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
3069         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
3070         CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
3071         CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
3072
3073         /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
3074         result = fiji_copy_bytes_to_smc(hwmgr->smumgr,
3075                         data->dpm_table_start +
3076                         offsetof(SMU73_Discrete_DpmTable, SystemFlags),
3077                         (uint8_t *)&(table->SystemFlags),
3078                         sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
3079                         data->sram_end);
3080         PP_ASSERT_WITH_CODE(0 == result,
3081                         "Failed to upload dpm data to SMC memory!", return result);
3082
3083         return 0;
3084 }
3085
3086 /**
3087 * Initialize the ARB DRAM timing table's index field.
3088 *
3089 * @param    hwmgr  the address of the powerplay hardware manager.
3090 * @return   always 0
3091 */
3092 static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
3093 {
3094         const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3095         uint32_t tmp;
3096         int result;
3097
3098         /* This is a read-modify-write on the first byte of the ARB table.
3099          * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
3100          * is the field 'current'.
3101          * This solution is ugly, but we never write the whole table only
3102          * individual fields in it.
3103          * In reality this field should not be in that structure
3104          * but in a soft register.
3105          */
3106         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
3107                         data->arb_table_start, &tmp, data->sram_end);
3108
3109         if (result)
3110                 return result;
3111
3112         tmp &= 0x00FFFFFF;
3113         tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
3114
3115         return fiji_write_smc_sram_dword(hwmgr->smumgr,
3116                         data->arb_table_start,  tmp, data->sram_end);
3117 }
3118
3119 static int fiji_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
3120 {
3121         if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3122                         PHM_PlatformCaps_RegulatorHot))
3123                 return smum_send_msg_to_smc(hwmgr->smumgr,
3124                                 PPSMC_MSG_EnableVRHotGPIOInterrupt);
3125
3126         return 0;
3127 }
3128
3129 static int fiji_enable_sclk_control(struct pp_hwmgr *hwmgr)
3130 {
3131         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3132                         SCLK_PWRMGT_OFF, 0);
3133         return 0;
3134 }
3135
3136 static int fiji_enable_ulv(struct pp_hwmgr *hwmgr)
3137 {
3138         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3139         struct fiji_ulv_parm *ulv = &(data->ulv);
3140
3141         if (ulv->ulv_supported)
3142                 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV);
3143
3144         return 0;
3145 }
3146
3147 static int fiji_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
3148 {
3149         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3150                         PHM_PlatformCaps_SclkDeepSleep)) {
3151                 if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON))
3152                         PP_ASSERT_WITH_CODE(false,
3153                                         "Attempt to enable Master Deep Sleep switch failed!",
3154                                         return -1);
3155         } else {
3156                 if (smum_send_msg_to_smc(hwmgr->smumgr,
3157                                 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
3158                         PP_ASSERT_WITH_CODE(false,
3159                                         "Attempt to disable Master Deep Sleep switch failed!",
3160                                         return -1);
3161                 }
3162         }
3163
3164         return 0;
3165 }
3166
3167 static int fiji_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3168 {
3169         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3170         uint32_t   val, val0, val2;
3171         uint32_t   i, cpl_cntl, cpl_threshold, mc_threshold;
3172
3173         /* enable SCLK dpm */
3174         if(!data->sclk_dpm_key_disabled)
3175                 PP_ASSERT_WITH_CODE(
3176                 (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
3177                 "Failed to enable SCLK DPM during DPM Start Function!",
3178                 return -1);
3179
3180         /* enable MCLK dpm */
3181         if(0 == data->mclk_dpm_key_disabled) {
3182                 cpl_threshold = 0;
3183                 mc_threshold = 0;
3184
3185                 /* Read per MCD tile (0 - 7) */
3186                 for (i = 0; i < 8; i++) {
3187                         PHM_WRITE_FIELD(hwmgr->device, MC_CONFIG_MCD, MC_RD_ENABLE, i);
3188                         val = cgs_read_register(hwmgr->device, mmMC_SEQ_RESERVE_0_S) & 0xf0000000;
3189                         if (0xf0000000 != val) {
3190                                 /* count number of MCQ that has channel(s) enabled */
3191                                 cpl_threshold++;
3192                                 /* only harvest 3 or full 4 supported */
3193                                 mc_threshold = val ? 3 : 4;
3194                         }
3195                 }
3196                 PP_ASSERT_WITH_CODE(0 != cpl_threshold,
3197                                 "Number of MCQ is zero!", return -EINVAL;);
3198
3199                 mc_threshold = ((mc_threshold & LCAC_MC0_CNTL__MC0_THRESHOLD_MASK) <<
3200                                 LCAC_MC0_CNTL__MC0_THRESHOLD__SHIFT) |
3201                                                 LCAC_MC0_CNTL__MC0_ENABLE_MASK;
3202                 cpl_cntl = ((cpl_threshold & LCAC_CPL_CNTL__CPL_THRESHOLD_MASK) <<
3203                                 LCAC_CPL_CNTL__CPL_THRESHOLD__SHIFT) |
3204                                                 LCAC_CPL_CNTL__CPL_ENABLE_MASK;
3205                 cpl_cntl = (cpl_cntl | (8 << LCAC_CPL_CNTL__CPL_BLOCK_ID__SHIFT));
3206                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3207                                 ixLCAC_MC0_CNTL, mc_threshold);
3208                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3209                                 ixLCAC_MC1_CNTL, mc_threshold);
3210                 if (8 == cpl_threshold) {
3211                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3212                                         ixLCAC_MC2_CNTL, mc_threshold);
3213                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3214                                         ixLCAC_MC3_CNTL, mc_threshold);
3215                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3216                                         ixLCAC_MC4_CNTL, mc_threshold);
3217                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3218                                         ixLCAC_MC5_CNTL, mc_threshold);
3219                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3220                                         ixLCAC_MC6_CNTL, mc_threshold);
3221                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3222                                         ixLCAC_MC7_CNTL, mc_threshold);
3223                 }
3224                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3225                                 ixLCAC_CPL_CNTL, cpl_cntl);
3226
3227                 udelay(5);
3228
3229                 mc_threshold = mc_threshold |
3230                                 (1 << LCAC_MC0_CNTL__MC0_SIGNAL_ID__SHIFT);
3231                 cpl_cntl = cpl_cntl | (1 << LCAC_CPL_CNTL__CPL_SIGNAL_ID__SHIFT);
3232                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3233                                 ixLCAC_MC0_CNTL, mc_threshold);
3234                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3235                                 ixLCAC_MC1_CNTL, mc_threshold);
3236                 if (8 == cpl_threshold) {
3237                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3238                                         ixLCAC_MC2_CNTL, mc_threshold);
3239                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3240                                         ixLCAC_MC3_CNTL, mc_threshold);
3241                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3242                                         ixLCAC_MC4_CNTL, mc_threshold);
3243                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3244                                         ixLCAC_MC5_CNTL, mc_threshold);
3245                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3246                                         ixLCAC_MC6_CNTL, mc_threshold);
3247                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3248                                         ixLCAC_MC7_CNTL, mc_threshold);
3249                 }
3250                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3251                                 ixLCAC_CPL_CNTL, cpl_cntl);
3252
3253                 /* Program CAC_EN per MCD (0-7) Tile */
3254                 val0 = val = cgs_read_register(hwmgr->device, mmMC_CONFIG_MCD);
3255                 val &= ~(MC_CONFIG_MCD__MCD0_WR_ENABLE_MASK |
3256                                 MC_CONFIG_MCD__MCD1_WR_ENABLE_MASK |
3257                                 MC_CONFIG_MCD__MCD2_WR_ENABLE_MASK |
3258                                 MC_CONFIG_MCD__MCD3_WR_ENABLE_MASK |
3259                                 MC_CONFIG_MCD__MCD4_WR_ENABLE_MASK |
3260                                 MC_CONFIG_MCD__MCD5_WR_ENABLE_MASK |
3261                                 MC_CONFIG_MCD__MCD6_WR_ENABLE_MASK |
3262                                 MC_CONFIG_MCD__MCD7_WR_ENABLE_MASK |
3263                                 MC_CONFIG_MCD__MC_RD_ENABLE_MASK);
3264
3265                 for (i = 0; i < 8; i++) {
3266                         /* Enable MCD i Tile read & write */
3267                         val2  = (val | (i << MC_CONFIG_MCD__MC_RD_ENABLE__SHIFT) |
3268                                         (1 << i));
3269                         cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val2);
3270                         /* Enbale CAC_ON MCD i Tile */
3271                         val2 = cgs_read_register(hwmgr->device, mmMC_SEQ_CNTL);
3272                         val2 |= MC_SEQ_CNTL__CAC_EN_MASK;
3273                         cgs_write_register(hwmgr->device, mmMC_SEQ_CNTL, val2);
3274                 }
3275                 /* Set MC_CONFIG_MCD back to its default setting val0 */
3276                 cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val0);
3277
3278                 PP_ASSERT_WITH_CODE(
3279                                 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3280                                                 PPSMC_MSG_MCLKDPM_Enable)),
3281                                 "Failed to enable MCLK DPM during DPM Start Function!",
3282                                 return -1);
3283         }
3284         return 0;
3285 }
3286
3287 static int fiji_start_dpm(struct pp_hwmgr *hwmgr)
3288 {
3289         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3290
3291         /*enable general power management */
3292         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3293                         GLOBAL_PWRMGT_EN, 1);
3294         /* enable sclk deep sleep */
3295         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3296                         DYNAMIC_PM_EN, 1);
3297         /* prepare for PCIE DPM */
3298         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3299                         data->soft_regs_start + offsetof(SMU73_SoftRegisters,
3300                                         VoltageChangeTimeout), 0x1000);
3301         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
3302                         SWRST_COMMAND_1, RESETLC, 0x0);
3303
3304         PP_ASSERT_WITH_CODE(
3305                         (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3306                                         PPSMC_MSG_Voltage_Cntl_Enable)),
3307                         "Failed to enable voltage DPM during DPM Start Function!",
3308                         return -1);
3309
3310         if (fiji_enable_sclk_mclk_dpm(hwmgr)) {
3311                 printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!");
3312                 return -1;
3313         }
3314
3315         /* enable PCIE dpm */
3316         if(!data->pcie_dpm_key_disabled) {
3317                 PP_ASSERT_WITH_CODE(
3318                                 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3319                                                 PPSMC_MSG_PCIeDPM_Enable)),
3320                                 "Failed to enable pcie DPM during DPM Start Function!",
3321                                 return -1);
3322         }
3323
3324         return 0;
3325 }
3326
3327 static void fiji_set_dpm_event_sources(struct pp_hwmgr *hwmgr,
3328                 uint32_t sources)
3329 {
3330         bool protection;
3331         enum DPM_EVENT_SRC src;
3332
3333         switch (sources) {
3334         default:
3335                 printk(KERN_ERR "Unknown throttling event sources.");
3336                 /* fall through */
3337         case 0:
3338                 protection = false;
3339                 /* src is unused */
3340                 break;
3341         case (1 << PHM_AutoThrottleSource_Thermal):
3342                 protection = true;
3343                 src = DPM_EVENT_SRC_DIGITAL;
3344                 break;
3345         case (1 << PHM_AutoThrottleSource_External):
3346                 protection = true;
3347                 src = DPM_EVENT_SRC_EXTERNAL;
3348                 break;
3349         case (1 << PHM_AutoThrottleSource_External) |
3350                         (1 << PHM_AutoThrottleSource_Thermal):
3351                 protection = true;
3352                 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
3353                 break;
3354         }
3355         /* Order matters - don't enable thermal protection for the wrong source. */
3356         if (protection) {
3357                 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
3358                                 DPM_EVENT_SRC, src);
3359                 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3360                                 THERMAL_PROTECTION_DIS,
3361                                 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3362                                                 PHM_PlatformCaps_ThermalController));
3363         } else
3364                 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3365                                 THERMAL_PROTECTION_DIS, 1);
3366 }
3367
3368 static int fiji_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
3369                 PHM_AutoThrottleSource source)
3370 {
3371         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3372
3373         if (!(data->active_auto_throttle_sources & (1 << source))) {
3374                 data->active_auto_throttle_sources |= 1 << source;
3375                 fiji_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
3376         }
3377         return 0;
3378 }
3379
3380 static int fiji_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
3381 {
3382         return fiji_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
3383 }
3384
3385 static int fiji_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
3386 {
3387         int tmp_result, result = 0;
3388
3389         tmp_result = (!fiji_is_dpm_running(hwmgr))? 0 : -1;
3390         PP_ASSERT_WITH_CODE(result == 0,
3391                         "DPM is already running right now, no need to enable DPM!",
3392                         return 0);
3393
3394         if (fiji_voltage_control(hwmgr)) {
3395                 tmp_result = fiji_enable_voltage_control(hwmgr);
3396                 PP_ASSERT_WITH_CODE(tmp_result == 0,
3397                                 "Failed to enable voltage control!",
3398                                 result = tmp_result);
3399         }
3400
3401         if (fiji_voltage_control(hwmgr)) {
3402                 tmp_result = fiji_construct_voltage_tables(hwmgr);
3403                 PP_ASSERT_WITH_CODE((0 == tmp_result),
3404                                 "Failed to contruct voltage tables!",
3405                                 result = tmp_result);
3406         }
3407
3408         tmp_result = fiji_initialize_mc_reg_table(hwmgr);
3409         PP_ASSERT_WITH_CODE((0 == tmp_result),
3410                         "Failed to initialize MC reg table!", result = tmp_result);
3411
3412         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3413                         PHM_PlatformCaps_EngineSpreadSpectrumSupport))
3414                 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3415                                 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
3416
3417         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3418                         PHM_PlatformCaps_ThermalController))
3419                 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3420                                 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
3421
3422         tmp_result = fiji_program_static_screen_threshold_parameters(hwmgr);
3423         PP_ASSERT_WITH_CODE((0 == tmp_result),
3424                         "Failed to program static screen threshold parameters!",
3425                         result = tmp_result);
3426
3427         tmp_result = fiji_enable_display_gap(hwmgr);
3428         PP_ASSERT_WITH_CODE((0 == tmp_result),
3429                         "Failed to enable display gap!", result = tmp_result);
3430
3431         tmp_result = fiji_program_voting_clients(hwmgr);
3432         PP_ASSERT_WITH_CODE((0 == tmp_result),
3433                         "Failed to program voting clients!", result = tmp_result);
3434
3435         tmp_result = fiji_process_firmware_header(hwmgr);
3436         PP_ASSERT_WITH_CODE((0 == tmp_result),
3437                         "Failed to process firmware header!", result = tmp_result);
3438
3439         tmp_result = fiji_initial_switch_from_arbf0_to_f1(hwmgr);
3440         PP_ASSERT_WITH_CODE((0 == tmp_result),
3441                         "Failed to initialize switch from ArbF0 to F1!",
3442                         result = tmp_result);
3443
3444         tmp_result = fiji_init_smc_table(hwmgr);
3445         PP_ASSERT_WITH_CODE((0 == tmp_result),
3446                         "Failed to initialize SMC table!", result = tmp_result);
3447
3448         tmp_result = fiji_init_arb_table_index(hwmgr);
3449         PP_ASSERT_WITH_CODE((0 == tmp_result),
3450                         "Failed to initialize ARB table index!", result = tmp_result);
3451
3452         tmp_result = fiji_populate_pm_fuses(hwmgr);
3453         PP_ASSERT_WITH_CODE((0 == tmp_result),
3454                         "Failed to populate PM fuses!", result = tmp_result);
3455
3456         tmp_result = fiji_enable_vrhot_gpio_interrupt(hwmgr);
3457         PP_ASSERT_WITH_CODE((0 == tmp_result),
3458                         "Failed to enable VR hot GPIO interrupt!", result = tmp_result);
3459
3460         tmp_result = tonga_notify_smc_display_change(hwmgr, false);
3461         PP_ASSERT_WITH_CODE((0 == tmp_result),
3462                         "Failed to notify no display!", result = tmp_result);
3463
3464         tmp_result = fiji_enable_sclk_control(hwmgr);
3465         PP_ASSERT_WITH_CODE((0 == tmp_result),
3466                         "Failed to enable SCLK control!", result = tmp_result);
3467
3468         tmp_result = fiji_enable_ulv(hwmgr);
3469         PP_ASSERT_WITH_CODE((0 == tmp_result),
3470                         "Failed to enable ULV!", result = tmp_result);
3471
3472         tmp_result = fiji_enable_deep_sleep_master_switch(hwmgr);
3473         PP_ASSERT_WITH_CODE((0 == tmp_result),
3474                         "Failed to enable deep sleep master switch!", result = tmp_result);
3475
3476         tmp_result = fiji_start_dpm(hwmgr);
3477         PP_ASSERT_WITH_CODE((0 == tmp_result),
3478                         "Failed to start DPM!", result = tmp_result);
3479
3480         tmp_result = fiji_enable_smc_cac(hwmgr);
3481         PP_ASSERT_WITH_CODE((0 == tmp_result),
3482                         "Failed to enable SMC CAC!", result = tmp_result);
3483
3484         tmp_result = fiji_enable_power_containment(hwmgr);
3485         PP_ASSERT_WITH_CODE((0 == tmp_result),
3486                         "Failed to enable power containment!", result = tmp_result);
3487
3488         tmp_result = fiji_power_control_set_level(hwmgr);
3489         PP_ASSERT_WITH_CODE((0 == tmp_result),
3490                         "Failed to power control set level!", result = tmp_result);
3491
3492         tmp_result = fiji_enable_thermal_auto_throttle(hwmgr);
3493         PP_ASSERT_WITH_CODE((0 == tmp_result),
3494                         "Failed to enable thermal auto throttle!", result = tmp_result);
3495
3496         return result;
3497 }
3498
3499 static int fiji_force_dpm_highest(struct pp_hwmgr *hwmgr)
3500 {
3501         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3502         uint32_t level, tmp;
3503
3504         if (!data->sclk_dpm_key_disabled) {
3505                 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3506                         level = 0;
3507                         tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3508                         while (tmp >>= 1)
3509                                 level++;
3510                         if (level)
3511                                 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3512                                                 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3513                                                 (1 << level));
3514                 }
3515         }
3516
3517         if (!data->mclk_dpm_key_disabled) {
3518                 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3519                         level = 0;
3520                         tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3521                         while (tmp >>= 1)
3522                                 level++;
3523                         if (level)
3524                                 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3525                                                 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3526                                                 (1 << level));
3527                 }
3528         }
3529
3530         if (!data->pcie_dpm_key_disabled) {
3531                 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3532                         level = 0;
3533                         tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3534                         while (tmp >>= 1)
3535                                 level++;
3536                         if (level)
3537                                 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3538                                                 PPSMC_MSG_PCIeDPM_ForceLevel,
3539                                                 (1 << level));
3540                 }
3541         }
3542         return 0;
3543 }
3544
3545 static void fiji_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr)
3546 {
3547         struct phm_ppt_v1_information *table_info =
3548                         (struct phm_ppt_v1_information *)hwmgr->pptable;
3549         struct phm_clock_voltage_dependency_table *table =
3550                                 table_info->vddc_dep_on_dal_pwrl;
3551         struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table;
3552         enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level;
3553         uint32_t req_vddc = 0, req_volt, i;
3554
3555         if (!table && !(dal_power_level >= PP_DAL_POWERLEVEL_ULTRALOW &&
3556                         dal_power_level <= PP_DAL_POWERLEVEL_PERFORMANCE))
3557                 return;
3558
3559         for (i= 0; i < table->count; i++) {
3560                 if (dal_power_level == table->entries[i].clk) {
3561                         req_vddc = table->entries[i].v;
3562                         break;
3563                 }
3564         }
3565
3566         vddc_table = table_info->vdd_dep_on_sclk;
3567         for (i= 0; i < vddc_table->count; i++) {
3568                 if (req_vddc <= vddc_table->entries[i].vddc) {
3569                         req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE)
3570                                         << VDDC_SHIFT;
3571                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3572                                         PPSMC_MSG_VddC_Request, req_volt);
3573                         return;
3574                 }
3575         }
3576         printk(KERN_ERR "DAL requested level can not"
3577                         " found a available voltage in VDDC DPM Table \n");
3578 }
3579
3580 static int fiji_upload_dpmlevel_enable_mask(struct pp_hwmgr *hwmgr)
3581 {
3582         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3583
3584         fiji_apply_dal_min_voltage_request(hwmgr);
3585
3586         if (!data->sclk_dpm_key_disabled) {
3587                 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
3588                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3589                                         PPSMC_MSG_SCLKDPM_SetEnabledMask,
3590                                         data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3591         }
3592         return 0;
3593 }
3594
3595 static int fiji_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3596 {
3597         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3598
3599         if (!fiji_is_dpm_running(hwmgr))
3600                 return -EINVAL;
3601
3602         if (!data->pcie_dpm_key_disabled) {
3603                 smum_send_msg_to_smc(hwmgr->smumgr,
3604                                 PPSMC_MSG_PCIeDPM_UnForceLevel);
3605         }
3606
3607         return fiji_upload_dpmlevel_enable_mask(hwmgr);
3608 }
3609
3610 static uint32_t fiji_get_lowest_enabled_level(
3611                 struct pp_hwmgr *hwmgr, uint32_t mask)
3612 {
3613         uint32_t level = 0;
3614
3615         while(0 == (mask & (1 << level)))
3616                 level++;
3617
3618         return level;
3619 }
3620
3621 static int fiji_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3622 {
3623         struct fiji_hwmgr *data =
3624                         (struct fiji_hwmgr *)(hwmgr->backend);
3625         uint32_t level;
3626
3627         if (!data->sclk_dpm_key_disabled)
3628                 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3629                         level = fiji_get_lowest_enabled_level(hwmgr,
3630                                                               data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3631                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3632                                                             PPSMC_MSG_SCLKDPM_SetEnabledMask,
3633                                                             (1 << level));
3634
3635         }
3636
3637         if (!data->mclk_dpm_key_disabled) {
3638                 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3639                         level = fiji_get_lowest_enabled_level(hwmgr,
3640                                                               data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3641                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3642                                                             PPSMC_MSG_MCLKDPM_SetEnabledMask,
3643                                                             (1 << level));
3644                 }
3645         }
3646
3647         if (!data->pcie_dpm_key_disabled) {
3648                 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3649                         level = fiji_get_lowest_enabled_level(hwmgr,
3650                                                               data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3651                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3652                                                             PPSMC_MSG_PCIeDPM_ForceLevel,
3653                                                             (1 << level));
3654                 }
3655         }
3656
3657         return 0;
3658
3659 }
3660 static int fiji_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
3661                                 enum amd_dpm_forced_level level)
3662 {
3663         int ret = 0;
3664
3665         switch (level) {
3666         case AMD_DPM_FORCED_LEVEL_HIGH:
3667                 ret = fiji_force_dpm_highest(hwmgr);
3668                 if (ret)
3669                         return ret;
3670                 break;
3671         case AMD_DPM_FORCED_LEVEL_LOW:
3672                 ret = fiji_force_dpm_lowest(hwmgr);
3673                 if (ret)
3674                         return ret;
3675                 break;
3676         case AMD_DPM_FORCED_LEVEL_AUTO:
3677                 ret = fiji_unforce_dpm_levels(hwmgr);
3678                 if (ret)
3679                         return ret;
3680                 break;
3681         default:
3682                 break;
3683         }
3684
3685         hwmgr->dpm_level = level;
3686
3687         return ret;
3688 }
3689
3690 static int fiji_get_power_state_size(struct pp_hwmgr *hwmgr)
3691 {
3692         return sizeof(struct fiji_power_state);
3693 }
3694
3695 static int fiji_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3696                 void *state, struct pp_power_state *power_state,
3697                 void *pp_table, uint32_t classification_flag)
3698 {
3699         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3700         struct fiji_power_state  *fiji_power_state =
3701                         (struct fiji_power_state *)(&(power_state->hardware));
3702         struct fiji_performance_level *performance_level;
3703         ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
3704         ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
3705                         (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3706         ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
3707                         (ATOM_Tonga_SCLK_Dependency_Table *)
3708                         (((unsigned long)powerplay_table) +
3709                                 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3710         ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
3711                         (ATOM_Tonga_MCLK_Dependency_Table *)
3712                         (((unsigned long)powerplay_table) +
3713                                 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3714
3715         /* The following fields are not initialized here: id orderedList allStatesList */
3716         power_state->classification.ui_label =
3717                         (le16_to_cpu(state_entry->usClassification) &
3718                         ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3719                         ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3720         power_state->classification.flags = classification_flag;
3721         /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
3722
3723         power_state->classification.temporary_state = false;
3724         power_state->classification.to_be_deleted = false;
3725
3726         power_state->validation.disallowOnDC =
3727                         (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3728                                         ATOM_Tonga_DISALLOW_ON_DC));
3729
3730         power_state->pcie.lanes = 0;
3731
3732         power_state->display.disableFrameModulation = false;
3733         power_state->display.limitRefreshrate = false;
3734         power_state->display.enableVariBright =
3735                         (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3736                                         ATOM_Tonga_ENABLE_VARIBRIGHT));
3737
3738         power_state->validation.supportedPowerLevels = 0;
3739         power_state->uvd_clocks.VCLK = 0;
3740         power_state->uvd_clocks.DCLK = 0;
3741         power_state->temperatures.min = 0;
3742         power_state->temperatures.max = 0;
3743
3744         performance_level = &(fiji_power_state->performance_levels
3745                         [fiji_power_state->performance_level_count++]);
3746
3747         PP_ASSERT_WITH_CODE(
3748                         (fiji_power_state->performance_level_count < SMU73_MAX_LEVELS_GRAPHICS),
3749                         "Performance levels exceeds SMC limit!",
3750                         return -1);
3751
3752         PP_ASSERT_WITH_CODE(
3753                         (fiji_power_state->performance_level_count <=
3754                                         hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3755                         "Performance levels exceeds Driver limit!",
3756                         return -1);
3757
3758         /* Performance levels are arranged from low to high. */
3759         performance_level->memory_clock = mclk_dep_table->entries
3760                         [state_entry->ucMemoryClockIndexLow].ulMclk;
3761         performance_level->engine_clock = sclk_dep_table->entries
3762                         [state_entry->ucEngineClockIndexLow].ulSclk;
3763         performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3764                         state_entry->ucPCIEGenLow);
3765         performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3766                         state_entry->ucPCIELaneHigh);
3767
3768         performance_level = &(fiji_power_state->performance_levels
3769                         [fiji_power_state->performance_level_count++]);
3770         performance_level->memory_clock = mclk_dep_table->entries
3771                         [state_entry->ucMemoryClockIndexHigh].ulMclk;
3772         performance_level->engine_clock = sclk_dep_table->entries
3773                         [state_entry->ucEngineClockIndexHigh].ulSclk;
3774         performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3775                         state_entry->ucPCIEGenHigh);
3776         performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3777                         state_entry->ucPCIELaneHigh);
3778
3779         return 0;
3780 }
3781
3782 static int fiji_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3783                 unsigned long entry_index, struct pp_power_state *state)
3784 {
3785         int result;
3786         struct fiji_power_state *ps;
3787         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3788         struct phm_ppt_v1_information *table_info =
3789                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
3790         struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
3791                         table_info->vdd_dep_on_mclk;
3792
3793         state->hardware.magic = PHM_VIslands_Magic;
3794
3795         ps = (struct fiji_power_state *)(&state->hardware);
3796
3797         result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state,
3798                         fiji_get_pp_table_entry_callback_func);
3799
3800         /* This is the earliest time we have all the dependency table and the VBIOS boot state
3801          * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
3802          * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
3803          */
3804         if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3805                 if (dep_mclk_table->entries[0].clk !=
3806                                 data->vbios_boot_state.mclk_bootup_value)
3807                         printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
3808                                         "does not match VBIOS boot MCLK level");
3809                 if (dep_mclk_table->entries[0].vddci !=
3810                                 data->vbios_boot_state.vddci_bootup_value)
3811                         printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
3812                                         "does not match VBIOS boot VDDCI level");
3813         }
3814
3815         /* set DC compatible flag if this state supports DC */
3816         if (!state->validation.disallowOnDC)
3817                 ps->dc_compatible = true;
3818
3819         if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3820                 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3821
3822         ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3823         ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3824
3825         if (!result) {
3826                 uint32_t i;
3827
3828                 switch (state->classification.ui_label) {
3829                 case PP_StateUILabel_Performance:
3830                         data->use_pcie_performance_levels = true;
3831
3832                         for (i = 0; i < ps->performance_level_count; i++) {
3833                                 if (data->pcie_gen_performance.max <
3834                                                 ps->performance_levels[i].pcie_gen)
3835                                         data->pcie_gen_performance.max =
3836                                                         ps->performance_levels[i].pcie_gen;
3837
3838                                 if (data->pcie_gen_performance.min >
3839                                                 ps->performance_levels[i].pcie_gen)
3840                                         data->pcie_gen_performance.min =
3841                                                         ps->performance_levels[i].pcie_gen;
3842
3843                                 if (data->pcie_lane_performance.max <
3844                                                 ps->performance_levels[i].pcie_lane)
3845                                         data->pcie_lane_performance.max =
3846                                                         ps->performance_levels[i].pcie_lane;
3847
3848                                 if (data->pcie_lane_performance.min >
3849                                                 ps->performance_levels[i].pcie_lane)
3850                                         data->pcie_lane_performance.min =
3851                                                         ps->performance_levels[i].pcie_lane;
3852                         }
3853                         break;
3854                 case PP_StateUILabel_Battery:
3855                         data->use_pcie_power_saving_levels = true;
3856
3857                         for (i = 0; i < ps->performance_level_count; i++) {
3858                                 if (data->pcie_gen_power_saving.max <
3859                                                 ps->performance_levels[i].pcie_gen)
3860                                         data->pcie_gen_power_saving.max =
3861                                                         ps->performance_levels[i].pcie_gen;
3862
3863                                 if (data->pcie_gen_power_saving.min >
3864                                                 ps->performance_levels[i].pcie_gen)
3865                                         data->pcie_gen_power_saving.min =
3866                                                         ps->performance_levels[i].pcie_gen;
3867
3868                                 if (data->pcie_lane_power_saving.max <
3869                                                 ps->performance_levels[i].pcie_lane)
3870                                         data->pcie_lane_power_saving.max =
3871                                                         ps->performance_levels[i].pcie_lane;
3872
3873                                 if (data->pcie_lane_power_saving.min >
3874                                                 ps->performance_levels[i].pcie_lane)
3875                                         data->pcie_lane_power_saving.min =
3876                                                         ps->performance_levels[i].pcie_lane;
3877                         }
3878                         break;
3879                 default:
3880                         break;
3881                 }
3882         }
3883         return 0;
3884 }
3885
3886 static int fiji_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3887                                 struct pp_power_state  *request_ps,
3888                         const struct pp_power_state *current_ps)
3889 {
3890         struct fiji_power_state *fiji_ps =
3891                                 cast_phw_fiji_power_state(&request_ps->hardware);
3892         uint32_t sclk;
3893         uint32_t mclk;
3894         struct PP_Clocks minimum_clocks = {0};
3895         bool disable_mclk_switching;
3896         bool disable_mclk_switching_for_frame_lock;
3897         struct cgs_display_info info = {0};
3898         const struct phm_clock_and_voltage_limits *max_limits;
3899         uint32_t i;
3900         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3901         struct phm_ppt_v1_information *table_info =
3902                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
3903         int32_t count;
3904         int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3905
3906         data->battery_state = (PP_StateUILabel_Battery ==
3907                         request_ps->classification.ui_label);
3908
3909         PP_ASSERT_WITH_CODE(fiji_ps->performance_level_count == 2,
3910                                  "VI should always have 2 performance levels",);
3911
3912         max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
3913                         &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3914                         &(hwmgr->dyn_state.max_clock_voltage_on_dc);
3915
3916         /* Cap clock DPM tables at DC MAX if it is in DC. */
3917         if (PP_PowerSource_DC == hwmgr->power_source) {
3918                 for (i = 0; i < fiji_ps->performance_level_count; i++) {
3919                         if (fiji_ps->performance_levels[i].memory_clock > max_limits->mclk)
3920                                 fiji_ps->performance_levels[i].memory_clock = max_limits->mclk;
3921                         if (fiji_ps->performance_levels[i].engine_clock > max_limits->sclk)
3922                                 fiji_ps->performance_levels[i].engine_clock = max_limits->sclk;
3923                 }
3924         }
3925
3926         fiji_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
3927         fiji_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
3928
3929         fiji_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
3930
3931         cgs_get_active_displays_info(hwmgr->device, &info);
3932
3933         /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
3934
3935         /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
3936
3937         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3938                         PHM_PlatformCaps_StablePState)) {
3939                 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3940                 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
3941
3942                 for (count = table_info->vdd_dep_on_sclk->count - 1;
3943                                 count >= 0; count--) {
3944                         if (stable_pstate_sclk >=
3945                                         table_info->vdd_dep_on_sclk->entries[count].clk) {
3946                                 stable_pstate_sclk =
3947                                                 table_info->vdd_dep_on_sclk->entries[count].clk;
3948                                 break;
3949                         }
3950                 }
3951
3952                 if (count < 0)
3953                         stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3954
3955                 stable_pstate_mclk = max_limits->mclk;
3956
3957                 minimum_clocks.engineClock = stable_pstate_sclk;
3958                 minimum_clocks.memoryClock = stable_pstate_mclk;
3959         }
3960
3961         if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
3962                 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
3963
3964         if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
3965                 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
3966
3967         fiji_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
3968
3969         if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
3970                 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
3971                                 hwmgr->platform_descriptor.overdriveLimit.engineClock),
3972                                 "Overdrive sclk exceeds limit",
3973                                 hwmgr->gfx_arbiter.sclk_over_drive =
3974                                                 hwmgr->platform_descriptor.overdriveLimit.engineClock);
3975
3976                 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
3977                         fiji_ps->performance_levels[1].engine_clock =
3978                                         hwmgr->gfx_arbiter.sclk_over_drive;
3979         }
3980
3981         if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
3982                 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
3983                                 hwmgr->platform_descriptor.overdriveLimit.memoryClock),
3984                                 "Overdrive mclk exceeds limit",
3985                                 hwmgr->gfx_arbiter.mclk_over_drive =
3986                                                 hwmgr->platform_descriptor.overdriveLimit.memoryClock);
3987
3988                 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
3989                         fiji_ps->performance_levels[1].memory_clock =
3990                                         hwmgr->gfx_arbiter.mclk_over_drive;
3991         }
3992
3993         disable_mclk_switching_for_frame_lock = phm_cap_enabled(
3994                                     hwmgr->platform_descriptor.platformCaps,
3995                                     PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3996
3997         disable_mclk_switching = (1 < info.display_count) ||
3998                                     disable_mclk_switching_for_frame_lock;
3999
4000         sclk = fiji_ps->performance_levels[0].engine_clock;
4001         mclk = fiji_ps->performance_levels[0].memory_clock;
4002
4003         if (disable_mclk_switching)
4004                 mclk = fiji_ps->performance_levels
4005                 [fiji_ps->performance_level_count - 1].memory_clock;
4006
4007         if (sclk < minimum_clocks.engineClock)
4008                 sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
4009                                 max_limits->sclk : minimum_clocks.engineClock;
4010
4011         if (mclk < minimum_clocks.memoryClock)
4012                 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
4013                                 max_limits->mclk : minimum_clocks.memoryClock;
4014
4015         fiji_ps->performance_levels[0].engine_clock = sclk;
4016         fiji_ps->performance_levels[0].memory_clock = mclk;
4017
4018         fiji_ps->performance_levels[1].engine_clock =
4019                 (fiji_ps->performance_levels[1].engine_clock >=
4020                                 fiji_ps->performance_levels[0].engine_clock) ?
4021                                                 fiji_ps->performance_levels[1].engine_clock :
4022                                                 fiji_ps->performance_levels[0].engine_clock;
4023
4024         if (disable_mclk_switching) {
4025                 if (mclk < fiji_ps->performance_levels[1].memory_clock)
4026                         mclk = fiji_ps->performance_levels[1].memory_clock;
4027
4028                 fiji_ps->performance_levels[0].memory_clock = mclk;
4029                 fiji_ps->performance_levels[1].memory_clock = mclk;
4030         } else {
4031                 if (fiji_ps->performance_levels[1].memory_clock <
4032                                 fiji_ps->performance_levels[0].memory_clock)
4033                         fiji_ps->performance_levels[1].memory_clock =
4034                                         fiji_ps->performance_levels[0].memory_clock;
4035         }
4036
4037         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4038                         PHM_PlatformCaps_StablePState)) {
4039                 for (i = 0; i < fiji_ps->performance_level_count; i++) {
4040                         fiji_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
4041                         fiji_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
4042                         fiji_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
4043                         fiji_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
4044                 }
4045         }
4046
4047         return 0;
4048 }
4049
4050 static int fiji_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
4051 {
4052         const struct phm_set_power_state_input *states =
4053                         (const struct phm_set_power_state_input *)input;
4054         const struct fiji_power_state *fiji_ps =
4055                         cast_const_phw_fiji_power_state(states->pnew_state);
4056         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4057         struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4058         uint32_t sclk = fiji_ps->performance_levels
4059                         [fiji_ps->performance_level_count - 1].engine_clock;
4060         struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4061         uint32_t mclk = fiji_ps->performance_levels
4062                         [fiji_ps->performance_level_count - 1].memory_clock;
4063         struct PP_Clocks min_clocks = {0};
4064         uint32_t i;
4065         struct cgs_display_info info = {0};
4066
4067         data->need_update_smu7_dpm_table = 0;
4068
4069         for (i = 0; i < sclk_table->count; i++) {
4070                 if (sclk == sclk_table->dpm_levels[i].value)
4071                         break;
4072         }
4073
4074         if (i >= sclk_table->count)
4075                 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
4076         else {
4077         /* TODO: Check SCLK in DAL's minimum clocks
4078          * in case DeepSleep divider update is required.
4079          */
4080                 if(data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR)
4081                         data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
4082         }
4083
4084         for (i = 0; i < mclk_table->count; i++) {
4085                 if (mclk == mclk_table->dpm_levels[i].value)
4086                         break;
4087         }
4088
4089         if (i >= mclk_table->count)
4090                 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
4091
4092         cgs_get_active_displays_info(hwmgr->device, &info);
4093
4094         if (data->display_timing.num_existing_displays != info.display_count)
4095                 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
4096
4097         return 0;
4098 }
4099
4100 static uint16_t fiji_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
4101                 const struct fiji_power_state *fiji_ps)
4102 {
4103         uint32_t i;
4104         uint32_t sclk, max_sclk = 0;
4105         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4106         struct fiji_dpm_table *dpm_table = &data->dpm_table;
4107
4108         for (i = 0; i < fiji_ps->performance_level_count; i++) {
4109                 sclk = fiji_ps->performance_levels[i].engine_clock;
4110                 if (max_sclk < sclk)
4111                         max_sclk = sclk;
4112         }
4113
4114         for (i = 0; i < dpm_table->sclk_table.count; i++) {
4115                 if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
4116                         return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
4117                                         dpm_table->pcie_speed_table.dpm_levels
4118                                         [dpm_table->pcie_speed_table.count - 1].value :
4119                                         dpm_table->pcie_speed_table.dpm_levels[i].value);
4120         }
4121
4122         return 0;
4123 }
4124
4125 static int fiji_request_link_speed_change_before_state_change(
4126                 struct pp_hwmgr *hwmgr, const void *input)
4127 {
4128         const struct phm_set_power_state_input *states =
4129                         (const struct phm_set_power_state_input *)input;
4130         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4131         const struct fiji_power_state *fiji_nps =
4132                         cast_const_phw_fiji_power_state(states->pnew_state);
4133         const struct fiji_power_state *fiji_cps =
4134                         cast_const_phw_fiji_power_state(states->pcurrent_state);
4135
4136         uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_nps);
4137         uint16_t current_link_speed;
4138
4139         if (data->force_pcie_gen == PP_PCIEGenInvalid)
4140                 current_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_cps);
4141         else
4142                 current_link_speed = data->force_pcie_gen;
4143
4144         data->force_pcie_gen = PP_PCIEGenInvalid;
4145         data->pspp_notify_required = false;
4146         if (target_link_speed > current_link_speed) {
4147                 switch(target_link_speed) {
4148                 case PP_PCIEGen3:
4149                         if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
4150                                 break;
4151                         data->force_pcie_gen = PP_PCIEGen2;
4152                         if (current_link_speed == PP_PCIEGen2)
4153                                 break;
4154                 case PP_PCIEGen2:
4155                         if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
4156                                 break;
4157                 default:
4158                         data->force_pcie_gen = fiji_get_current_pcie_speed(hwmgr);
4159                         break;
4160                 }
4161         } else {
4162                 if (target_link_speed < current_link_speed)
4163                         data->pspp_notify_required = true;
4164         }
4165
4166         return 0;
4167 }
4168
4169 static int fiji_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4170 {
4171         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4172
4173         if (0 == data->need_update_smu7_dpm_table)
4174                 return 0;
4175
4176         if ((0 == data->sclk_dpm_key_disabled) &&
4177                 (data->need_update_smu7_dpm_table &
4178                         (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4179                 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4180                                 "Trying to freeze SCLK DPM when DPM is disabled",);
4181                 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4182                                 PPSMC_MSG_SCLKDPM_FreezeLevel),
4183                                 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
4184                                 return -1);
4185         }
4186
4187         if ((0 == data->mclk_dpm_key_disabled) &&
4188                 (data->need_update_smu7_dpm_table &
4189                  DPMTABLE_OD_UPDATE_MCLK)) {
4190                 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4191                                 "Trying to freeze MCLK DPM when DPM is disabled",);
4192                 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4193                                 PPSMC_MSG_MCLKDPM_FreezeLevel),
4194                                 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
4195                                 return -1);
4196         }
4197
4198         return 0;
4199 }
4200
4201 static int fiji_populate_and_upload_sclk_mclk_dpm_levels(
4202                 struct pp_hwmgr *hwmgr, const void *input)
4203 {
4204         int result = 0;
4205         const struct phm_set_power_state_input *states =
4206                         (const struct phm_set_power_state_input *)input;
4207         const struct fiji_power_state *fiji_ps =
4208                         cast_const_phw_fiji_power_state(states->pnew_state);
4209         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4210         uint32_t sclk = fiji_ps->performance_levels
4211                         [fiji_ps->performance_level_count - 1].engine_clock;
4212         uint32_t mclk = fiji_ps->performance_levels
4213                         [fiji_ps->performance_level_count - 1].memory_clock;
4214         struct fiji_dpm_table *dpm_table = &data->dpm_table;
4215
4216         struct fiji_dpm_table *golden_dpm_table = &data->golden_dpm_table;
4217         uint32_t dpm_count, clock_percent;
4218         uint32_t i;
4219
4220         if (0 == data->need_update_smu7_dpm_table)
4221                 return 0;
4222
4223         if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
4224                 dpm_table->sclk_table.dpm_levels
4225                 [dpm_table->sclk_table.count - 1].value = sclk;
4226
4227                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4228                                 PHM_PlatformCaps_OD6PlusinACSupport) ||
4229                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4230                                         PHM_PlatformCaps_OD6PlusinDCSupport)) {
4231                 /* Need to do calculation based on the golden DPM table
4232                  * as the Heatmap GPU Clock axis is also based on the default values
4233                  */
4234                         PP_ASSERT_WITH_CODE(
4235                                 (golden_dpm_table->sclk_table.dpm_levels
4236                                                 [golden_dpm_table->sclk_table.count - 1].value != 0),
4237                                 "Divide by 0!",
4238                                 return -1);
4239                         dpm_count = dpm_table->sclk_table.count < 2 ?
4240                                         0 : dpm_table->sclk_table.count - 2;
4241                         for (i = dpm_count; i > 1; i--) {
4242                                 if (sclk > golden_dpm_table->sclk_table.dpm_levels
4243                                                 [golden_dpm_table->sclk_table.count-1].value) {
4244                                         clock_percent =
4245                                                 ((sclk - golden_dpm_table->sclk_table.dpm_levels
4246                                                         [golden_dpm_table->sclk_table.count-1].value) * 100) /
4247                                                 golden_dpm_table->sclk_table.dpm_levels
4248                                                         [golden_dpm_table->sclk_table.count-1].value;
4249
4250                                         dpm_table->sclk_table.dpm_levels[i].value =
4251                                                         golden_dpm_table->sclk_table.dpm_levels[i].value +
4252                                                         (golden_dpm_table->sclk_table.dpm_levels[i].value *
4253                                                                 clock_percent)/100;
4254
4255                                 } else if (golden_dpm_table->sclk_table.dpm_levels
4256                                                 [dpm_table->sclk_table.count-1].value > sclk) {
4257                                         clock_percent =
4258                                                 ((golden_dpm_table->sclk_table.dpm_levels
4259                                                 [golden_dpm_table->sclk_table.count - 1].value - sclk) *
4260                                                                 100) /
4261                                                 golden_dpm_table->sclk_table.dpm_levels
4262                                                         [golden_dpm_table->sclk_table.count-1].value;
4263
4264                                         dpm_table->sclk_table.dpm_levels[i].value =
4265                                                         golden_dpm_table->sclk_table.dpm_levels[i].value -
4266                                                         (golden_dpm_table->sclk_table.dpm_levels[i].value *
4267                                                                         clock_percent) / 100;
4268                                 } else
4269                                         dpm_table->sclk_table.dpm_levels[i].value =
4270                                                         golden_dpm_table->sclk_table.dpm_levels[i].value;
4271                         }
4272                 }
4273         }
4274
4275         if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
4276                 dpm_table->mclk_table.dpm_levels
4277                         [dpm_table->mclk_table.count - 1].value = mclk;
4278                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4279                                 PHM_PlatformCaps_OD6PlusinACSupport) ||
4280                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4281                                 PHM_PlatformCaps_OD6PlusinDCSupport)) {
4282
4283                         PP_ASSERT_WITH_CODE(
4284                                         (golden_dpm_table->mclk_table.dpm_levels
4285                                                 [golden_dpm_table->mclk_table.count-1].value != 0),
4286                                         "Divide by 0!",
4287                                         return -1);
4288                         dpm_count = dpm_table->mclk_table.count < 2 ?
4289                                         0 : dpm_table->mclk_table.count - 2;
4290                         for (i = dpm_count; i > 1; i--) {
4291                                 if (mclk > golden_dpm_table->mclk_table.dpm_levels
4292                                                 [golden_dpm_table->mclk_table.count-1].value) {
4293                                         clock_percent = ((mclk -
4294                                                         golden_dpm_table->mclk_table.dpm_levels
4295                                                         [golden_dpm_table->mclk_table.count-1].value) * 100) /
4296                                                         golden_dpm_table->mclk_table.dpm_levels
4297                                                         [golden_dpm_table->mclk_table.count-1].value;
4298
4299                                         dpm_table->mclk_table.dpm_levels[i].value =
4300                                                         golden_dpm_table->mclk_table.dpm_levels[i].value +
4301                                                         (golden_dpm_table->mclk_table.dpm_levels[i].value *
4302                                                                         clock_percent) / 100;
4303
4304                                 } else if (golden_dpm_table->mclk_table.dpm_levels
4305                                                 [dpm_table->mclk_table.count-1].value > mclk) {
4306                                         clock_percent = ((golden_dpm_table->mclk_table.dpm_levels
4307                                                         [golden_dpm_table->mclk_table.count-1].value - mclk) * 100) /
4308                                                                         golden_dpm_table->mclk_table.dpm_levels
4309                                                                         [golden_dpm_table->mclk_table.count-1].value;
4310
4311                                         dpm_table->mclk_table.dpm_levels[i].value =
4312                                                         golden_dpm_table->mclk_table.dpm_levels[i].value -
4313                                                         (golden_dpm_table->mclk_table.dpm_levels[i].value *
4314                                                                         clock_percent) / 100;
4315                                 } else
4316                                         dpm_table->mclk_table.dpm_levels[i].value =
4317                                                         golden_dpm_table->mclk_table.dpm_levels[i].value;
4318                         }
4319                 }
4320         }
4321
4322         if (data->need_update_smu7_dpm_table &
4323                         (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
4324                 result = fiji_populate_all_memory_levels(hwmgr);
4325                 PP_ASSERT_WITH_CODE((0 == result),
4326                                 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
4327                                 return result);
4328         }
4329
4330         if (data->need_update_smu7_dpm_table &
4331                         (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
4332                 /*populate MCLK dpm table to SMU7 */
4333                 result = fiji_populate_all_memory_levels(hwmgr);
4334                 PP_ASSERT_WITH_CODE((0 == result),
4335                                 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
4336                                 return result);
4337         }
4338
4339         return result;
4340 }
4341
4342 static int fiji_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
4343                           struct fiji_single_dpm_table * dpm_table,
4344                              uint32_t low_limit, uint32_t high_limit)
4345 {
4346         uint32_t i;
4347
4348         for (i = 0; i < dpm_table->count; i++) {
4349                 if ((dpm_table->dpm_levels[i].value < low_limit) ||
4350                     (dpm_table->dpm_levels[i].value > high_limit))
4351                         dpm_table->dpm_levels[i].enabled = false;
4352                 else
4353                         dpm_table->dpm_levels[i].enabled = true;
4354         }
4355         return 0;
4356 }
4357
4358 static int fiji_trim_dpm_states(struct pp_hwmgr *hwmgr,
4359                 const struct fiji_power_state *fiji_ps)
4360 {
4361         int result = 0;
4362         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4363         uint32_t high_limit_count;
4364
4365         PP_ASSERT_WITH_CODE((fiji_ps->performance_level_count >= 1),
4366                         "power state did not have any performance level",
4367                         return -1);
4368
4369         high_limit_count = (1 == fiji_ps->performance_level_count) ? 0 : 1;
4370
4371         fiji_trim_single_dpm_states(hwmgr,
4372                         &(data->dpm_table.sclk_table),
4373                         fiji_ps->performance_levels[0].engine_clock,
4374                         fiji_ps->performance_levels[high_limit_count].engine_clock);
4375
4376         fiji_trim_single_dpm_states(hwmgr,
4377                         &(data->dpm_table.mclk_table),
4378                         fiji_ps->performance_levels[0].memory_clock,
4379                         fiji_ps->performance_levels[high_limit_count].memory_clock);
4380
4381         return result;
4382 }
4383
4384 static int fiji_generate_dpm_level_enable_mask(
4385                 struct pp_hwmgr *hwmgr, const void *input)
4386 {
4387         int result;
4388         const struct phm_set_power_state_input *states =
4389                         (const struct phm_set_power_state_input *)input;
4390         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4391         const struct fiji_power_state *fiji_ps =
4392                         cast_const_phw_fiji_power_state(states->pnew_state);
4393
4394         result = fiji_trim_dpm_states(hwmgr, fiji_ps);
4395         if (result)
4396                 return result;
4397
4398         data->dpm_level_enable_mask.sclk_dpm_enable_mask =
4399                         fiji_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
4400         data->dpm_level_enable_mask.mclk_dpm_enable_mask =
4401                         fiji_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
4402         data->last_mclk_dpm_enable_mask =
4403                         data->dpm_level_enable_mask.mclk_dpm_enable_mask;
4404
4405         if (data->uvd_enabled) {
4406                 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask & 1)
4407                         data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
4408         }
4409
4410         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
4411                         fiji_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
4412
4413         return 0;
4414 }
4415
4416 int fiji_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4417 {
4418         return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
4419                                   (PPSMC_Msg)PPSMC_MSG_UVDDPM_Enable :
4420                                   (PPSMC_Msg)PPSMC_MSG_UVDDPM_Disable);
4421 }
4422
4423 int fiji_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
4424 {
4425         return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4426                         PPSMC_MSG_VCEDPM_Enable :
4427                         PPSMC_MSG_VCEDPM_Disable);
4428 }
4429
4430 int fiji_enable_disable_samu_dpm(struct pp_hwmgr *hwmgr, bool enable)
4431 {
4432         return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4433                         PPSMC_MSG_SAMUDPM_Enable :
4434                         PPSMC_MSG_SAMUDPM_Disable);
4435 }
4436
4437 int fiji_enable_disable_acp_dpm(struct pp_hwmgr *hwmgr, bool enable)
4438 {
4439         return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4440                         PPSMC_MSG_ACPDPM_Enable :
4441                         PPSMC_MSG_ACPDPM_Disable);
4442 }
4443
4444 int fiji_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4445 {
4446         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4447         uint32_t mm_boot_level_offset, mm_boot_level_value;
4448         struct phm_ppt_v1_information *table_info =
4449                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
4450
4451         if (!bgate) {
4452                 data->smc_state_table.UvdBootLevel = 0;
4453                 if (table_info->mm_dep_table->count > 0)
4454                         data->smc_state_table.UvdBootLevel =
4455                                         (uint8_t) (table_info->mm_dep_table->count - 1);
4456                 mm_boot_level_offset = data->dpm_table_start +
4457                                 offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
4458                 mm_boot_level_offset /= 4;
4459                 mm_boot_level_offset *= 4;
4460                 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4461                                 CGS_IND_REG__SMC, mm_boot_level_offset);
4462                 mm_boot_level_value &= 0x00FFFFFF;
4463                 mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24;
4464                 cgs_write_ind_register(hwmgr->device,
4465                                 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4466
4467                 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4468                                 PHM_PlatformCaps_UVDDPM) ||
4469                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4470                                 PHM_PlatformCaps_StablePState))
4471                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4472                                         PPSMC_MSG_UVDDPM_SetEnabledMask,
4473                                         (uint32_t)(1 << data->smc_state_table.UvdBootLevel));
4474         }
4475
4476         return fiji_enable_disable_uvd_dpm(hwmgr, !bgate);
4477 }
4478
4479 int fiji_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
4480 {
4481         const struct phm_set_power_state_input *states =
4482                         (const struct phm_set_power_state_input *)input;
4483         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4484         const struct fiji_power_state *fiji_nps =
4485                         cast_const_phw_fiji_power_state(states->pnew_state);
4486         const struct fiji_power_state *fiji_cps =
4487                         cast_const_phw_fiji_power_state(states->pcurrent_state);
4488
4489         uint32_t mm_boot_level_offset, mm_boot_level_value;
4490         struct phm_ppt_v1_information *table_info =
4491                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
4492
4493         if (fiji_nps->vce_clks.evclk >0 &&
4494         (fiji_cps == NULL || fiji_cps->vce_clks.evclk == 0)) {
4495                 data->smc_state_table.VceBootLevel =
4496                                 (uint8_t) (table_info->mm_dep_table->count - 1);
4497
4498                 mm_boot_level_offset = data->dpm_table_start +
4499                                 offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
4500                 mm_boot_level_offset /= 4;
4501                 mm_boot_level_offset *= 4;
4502                 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4503                                 CGS_IND_REG__SMC, mm_boot_level_offset);
4504                 mm_boot_level_value &= 0xFF00FFFF;
4505                 mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
4506                 cgs_write_ind_register(hwmgr->device,
4507                                 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4508
4509                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4510                                 PHM_PlatformCaps_StablePState)) {
4511                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4512                                         PPSMC_MSG_VCEDPM_SetEnabledMask,
4513                                         (uint32_t)1 << data->smc_state_table.VceBootLevel);
4514
4515                         fiji_enable_disable_vce_dpm(hwmgr, true);
4516                 } else if (fiji_nps->vce_clks.evclk == 0 &&
4517                                 fiji_cps != NULL &&
4518                                 fiji_cps->vce_clks.evclk > 0)
4519                         fiji_enable_disable_vce_dpm(hwmgr, false);
4520         }
4521
4522         return 0;
4523 }
4524
4525 int fiji_update_samu_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4526 {
4527         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4528         uint32_t mm_boot_level_offset, mm_boot_level_value;
4529         struct phm_ppt_v1_information *table_info =
4530                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
4531
4532         if (!bgate) {
4533                 data->smc_state_table.SamuBootLevel =
4534                                 (uint8_t) (table_info->mm_dep_table->count - 1);
4535                 mm_boot_level_offset = data->dpm_table_start +
4536                                 offsetof(SMU73_Discrete_DpmTable, SamuBootLevel);
4537                 mm_boot_level_offset /= 4;
4538                 mm_boot_level_offset *= 4;
4539                 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4540                                 CGS_IND_REG__SMC, mm_boot_level_offset);
4541                 mm_boot_level_value &= 0xFFFFFF00;
4542                 mm_boot_level_value |= data->smc_state_table.SamuBootLevel << 0;
4543                 cgs_write_ind_register(hwmgr->device,
4544                                 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4545
4546                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4547                                 PHM_PlatformCaps_StablePState))
4548                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4549                                         PPSMC_MSG_SAMUDPM_SetEnabledMask,
4550                                         (uint32_t)(1 << data->smc_state_table.SamuBootLevel));
4551         }
4552
4553         return fiji_enable_disable_samu_dpm(hwmgr, !bgate);
4554 }
4555
4556 int fiji_update_acp_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4557 {
4558         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4559         uint32_t mm_boot_level_offset, mm_boot_level_value;
4560         struct phm_ppt_v1_information *table_info =
4561                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
4562
4563         if (!bgate) {
4564                 data->smc_state_table.AcpBootLevel =
4565                                 (uint8_t) (table_info->mm_dep_table->count - 1);
4566                 mm_boot_level_offset = data->dpm_table_start +
4567                                 offsetof(SMU73_Discrete_DpmTable, AcpBootLevel);
4568                 mm_boot_level_offset /= 4;
4569                 mm_boot_level_offset *= 4;
4570                 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4571                                 CGS_IND_REG__SMC, mm_boot_level_offset);
4572                 mm_boot_level_value &= 0xFFFF00FF;
4573                 mm_boot_level_value |= data->smc_state_table.AcpBootLevel << 8;
4574                 cgs_write_ind_register(hwmgr->device,
4575                                 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4576
4577                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4578                                 PHM_PlatformCaps_StablePState))
4579                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4580                                                 PPSMC_MSG_ACPDPM_SetEnabledMask,
4581                                                 (uint32_t)(1 << data->smc_state_table.AcpBootLevel));
4582         }
4583
4584         return fiji_enable_disable_acp_dpm(hwmgr, !bgate);
4585 }
4586
4587 static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
4588 {
4589         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4590
4591         int result = 0;
4592         uint32_t low_sclk_interrupt_threshold = 0;
4593
4594         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4595                         PHM_PlatformCaps_SclkThrottleLowNotification)
4596                 && (hwmgr->gfx_arbiter.sclk_threshold !=
4597                                 data->low_sclk_interrupt_threshold)) {
4598                 data->low_sclk_interrupt_threshold =
4599                                 hwmgr->gfx_arbiter.sclk_threshold;
4600                 low_sclk_interrupt_threshold =
4601                                 data->low_sclk_interrupt_threshold;
4602
4603                 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
4604
4605                 result = fiji_copy_bytes_to_smc(
4606                                 hwmgr->smumgr,
4607                                 data->dpm_table_start +
4608                                 offsetof(SMU73_Discrete_DpmTable,
4609                                         LowSclkInterruptThreshold),
4610                                 (uint8_t *)&low_sclk_interrupt_threshold,
4611                                 sizeof(uint32_t),
4612                                 data->sram_end);
4613         }
4614
4615         return result;
4616 }
4617
4618 static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
4619 {
4620         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4621
4622         if (data->need_update_smu7_dpm_table &
4623                 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
4624                 return fiji_program_memory_timing_parameters(hwmgr);
4625
4626         return 0;
4627 }
4628
4629 static int fiji_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4630 {
4631         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4632
4633         if (0 == data->need_update_smu7_dpm_table)
4634                 return 0;
4635
4636         if ((0 == data->sclk_dpm_key_disabled) &&
4637                 (data->need_update_smu7_dpm_table &
4638                 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4639
4640                 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4641                                 "Trying to Unfreeze SCLK DPM when DPM is disabled",);
4642                 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4643                                 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4644                         "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
4645                         return -1);
4646         }
4647
4648         if ((0 == data->mclk_dpm_key_disabled) &&
4649                 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
4650
4651                 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4652                                 "Trying to Unfreeze MCLK DPM when DPM is disabled",);
4653                 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4654                                 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4655                     "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
4656                     return -1);
4657         }
4658
4659         data->need_update_smu7_dpm_table = 0;
4660
4661         return 0;
4662 }
4663
4664 /* Look up the voltaged based on DAL's requested level.
4665  * and then send the requested VDDC voltage to SMC
4666  */
4667 static void fiji_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
4668 {
4669         return;
4670 }
4671
4672 int fiji_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
4673 {
4674         int result;
4675         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4676
4677         /* Apply minimum voltage based on DAL's request level */
4678         fiji_apply_dal_minimum_voltage_request(hwmgr);
4679
4680         if (0 == data->sclk_dpm_key_disabled) {
4681                 /* Checking if DPM is running.  If we discover hang because of this,
4682                  *  we should skip this message.
4683                  */
4684                 if (!fiji_is_dpm_running(hwmgr))
4685                         printk(KERN_ERR "[ powerplay ] "
4686                                         "Trying to set Enable Mask when DPM is disabled \n");
4687
4688                 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
4689                         result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4690                                         PPSMC_MSG_SCLKDPM_SetEnabledMask,
4691                                         data->dpm_level_enable_mask.sclk_dpm_enable_mask);
4692                         PP_ASSERT_WITH_CODE((0 == result),
4693                                 "Set Sclk Dpm enable Mask failed", return -1);
4694                 }
4695         }
4696
4697         if (0 == data->mclk_dpm_key_disabled) {
4698                 /* Checking if DPM is running.  If we discover hang because of this,
4699                  *  we should skip this message.
4700                  */
4701                 if (!fiji_is_dpm_running(hwmgr))
4702                         printk(KERN_ERR "[ powerplay ]"
4703                                         " Trying to set Enable Mask when DPM is disabled \n");
4704
4705                 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
4706                         result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4707                                         PPSMC_MSG_MCLKDPM_SetEnabledMask,
4708                                         data->dpm_level_enable_mask.mclk_dpm_enable_mask);
4709                         PP_ASSERT_WITH_CODE((0 == result),
4710                                 "Set Mclk Dpm enable Mask failed", return -1);
4711                 }
4712         }
4713
4714         return 0;
4715 }
4716
4717 static int fiji_notify_link_speed_change_after_state_change(
4718                 struct pp_hwmgr *hwmgr, const void *input)
4719 {
4720         const struct phm_set_power_state_input *states =
4721                         (const struct phm_set_power_state_input *)input;
4722         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4723         const struct fiji_power_state *fiji_ps =
4724                         cast_const_phw_fiji_power_state(states->pnew_state);
4725         uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_ps);
4726         uint8_t  request;
4727
4728         if (data->pspp_notify_required) {
4729                 if (target_link_speed == PP_PCIEGen3)
4730                         request = PCIE_PERF_REQ_GEN3;
4731                 else if (target_link_speed == PP_PCIEGen2)
4732                         request = PCIE_PERF_REQ_GEN2;
4733                 else
4734                         request = PCIE_PERF_REQ_GEN1;
4735
4736                 if(request == PCIE_PERF_REQ_GEN1 &&
4737                                 fiji_get_current_pcie_speed(hwmgr) > 0)
4738                         return 0;
4739
4740                 if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
4741                         if (PP_PCIEGen2 == target_link_speed)
4742                                 printk("PSPP request to switch to Gen2 from Gen3 Failed!");
4743                         else
4744                                 printk("PSPP request to switch to Gen1 from Gen2 Failed!");
4745                 }
4746         }
4747
4748         return 0;
4749 }
4750
4751 static int fiji_set_power_state_tasks(struct pp_hwmgr *hwmgr,
4752                 const void *input)
4753 {
4754         int tmp_result, result = 0;
4755
4756         tmp_result = fiji_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4757         PP_ASSERT_WITH_CODE((0 == tmp_result),
4758                         "Failed to find DPM states clocks in DPM table!",
4759                         result = tmp_result);
4760
4761         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4762                         PHM_PlatformCaps_PCIEPerformanceRequest)) {
4763                 tmp_result =
4764                         fiji_request_link_speed_change_before_state_change(hwmgr, input);
4765                 PP_ASSERT_WITH_CODE((0 == tmp_result),
4766                                 "Failed to request link speed change before state change!",
4767                                 result = tmp_result);
4768         }
4769
4770         tmp_result = fiji_freeze_sclk_mclk_dpm(hwmgr);
4771         PP_ASSERT_WITH_CODE((0 == tmp_result),
4772                         "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
4773
4774         tmp_result = fiji_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4775         PP_ASSERT_WITH_CODE((0 == tmp_result),
4776                         "Failed to populate and upload SCLK MCLK DPM levels!",
4777                         result = tmp_result);
4778
4779         tmp_result = fiji_generate_dpm_level_enable_mask(hwmgr, input);
4780         PP_ASSERT_WITH_CODE((0 == tmp_result),
4781                         "Failed to generate DPM level enabled mask!",
4782                         result = tmp_result);
4783
4784         tmp_result = fiji_update_vce_dpm(hwmgr, input);
4785         PP_ASSERT_WITH_CODE((0 == tmp_result),
4786                         "Failed to update VCE DPM!",
4787                         result = tmp_result);
4788
4789         tmp_result = fiji_update_sclk_threshold(hwmgr);
4790         PP_ASSERT_WITH_CODE((0 == tmp_result),
4791                         "Failed to update SCLK threshold!",
4792                         result = tmp_result);
4793
4794         tmp_result = fiji_program_mem_timing_parameters(hwmgr);
4795         PP_ASSERT_WITH_CODE((0 == tmp_result),
4796                         "Failed to program memory timing parameters!",
4797                         result = tmp_result);
4798
4799         tmp_result = fiji_unfreeze_sclk_mclk_dpm(hwmgr);
4800         PP_ASSERT_WITH_CODE((0 == tmp_result),
4801                         "Failed to unfreeze SCLK MCLK DPM!",
4802                         result = tmp_result);
4803
4804         tmp_result = fiji_upload_dpm_level_enable_mask(hwmgr);
4805         PP_ASSERT_WITH_CODE((0 == tmp_result),
4806                         "Failed to upload DPM level enabled mask!",
4807                         result = tmp_result);
4808
4809         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4810                         PHM_PlatformCaps_PCIEPerformanceRequest)) {
4811                 tmp_result =
4812                         fiji_notify_link_speed_change_after_state_change(hwmgr, input);
4813                 PP_ASSERT_WITH_CODE((0 == tmp_result),
4814                                 "Failed to notify link speed change after state change!",
4815                                 result = tmp_result);
4816         }
4817
4818         return result;
4819 }
4820
4821 static int fiji_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
4822 {
4823         struct pp_power_state  *ps;
4824         struct fiji_power_state  *fiji_ps;
4825
4826         if (hwmgr == NULL)
4827                 return -EINVAL;
4828
4829         ps = hwmgr->request_ps;
4830
4831         if (ps == NULL)
4832                 return -EINVAL;
4833
4834         fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
4835
4836         if (low)
4837                 return fiji_ps->performance_levels[0].engine_clock;
4838         else
4839                 return fiji_ps->performance_levels
4840                                 [fiji_ps->performance_level_count-1].engine_clock;
4841 }
4842
4843 static int fiji_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
4844 {
4845         struct pp_power_state  *ps;
4846         struct fiji_power_state  *fiji_ps;
4847
4848         if (hwmgr == NULL)
4849                 return -EINVAL;
4850
4851         ps = hwmgr->request_ps;
4852
4853         if (ps == NULL)
4854                 return -EINVAL;
4855
4856         fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
4857
4858         if (low)
4859                 return fiji_ps->performance_levels[0].memory_clock;
4860         else
4861                 return fiji_ps->performance_levels
4862                                 [fiji_ps->performance_level_count-1].memory_clock;
4863 }
4864
4865 static void fiji_print_current_perforce_level(
4866                 struct pp_hwmgr *hwmgr, struct seq_file *m)
4867 {
4868         uint32_t sclk, mclk, activity_percent = 0;
4869         uint32_t offset;
4870         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4871
4872         smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
4873
4874         sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4875
4876         smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
4877
4878         mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4879         seq_printf(m, "\n [  mclk  ]: %u MHz\n\n [  sclk  ]: %u MHz\n",
4880                         mclk / 100, sclk / 100);
4881
4882         offset = data->soft_regs_start + offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
4883         activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
4884         activity_percent += 0x80;
4885         activity_percent >>= 8;
4886
4887         seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent);
4888
4889         seq_printf(m, "uvd    %sabled\n", data->uvd_power_gated ? "dis" : "en");
4890
4891         seq_printf(m, "vce    %sabled\n", data->vce_power_gated ? "dis" : "en");
4892 }
4893
4894 static int fiji_program_display_gap(struct pp_hwmgr *hwmgr)
4895 {
4896         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4897         uint32_t num_active_displays = 0;
4898         uint32_t display_gap = cgs_read_ind_register(hwmgr->device,
4899                         CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
4900         uint32_t display_gap2;
4901         uint32_t pre_vbi_time_in_us;
4902         uint32_t frame_time_in_us;
4903         uint32_t ref_clock;
4904         uint32_t refresh_rate = 0;
4905         struct cgs_display_info info = {0};
4906         struct cgs_mode_info mode_info;
4907
4908         info.mode_info = &mode_info;
4909
4910         cgs_get_active_displays_info(hwmgr->device, &info);
4911         num_active_displays = info.display_count;
4912
4913         display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
4914                         DISP_GAP, (num_active_displays > 0)?
4915                         DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
4916         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4917                         ixCG_DISPLAY_GAP_CNTL, display_gap);
4918
4919         ref_clock = mode_info.ref_clock;
4920         refresh_rate = mode_info.refresh_rate;
4921
4922         if (refresh_rate == 0)
4923                 refresh_rate = 60;
4924
4925         frame_time_in_us = 1000000 / refresh_rate;
4926
4927         pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
4928         display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
4929
4930         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4931                         ixCG_DISPLAY_GAP_CNTL2, display_gap2);
4932
4933         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4934                         data->soft_regs_start +
4935                         offsetof(SMU73_SoftRegisters, PreVBlankGap), 0x64);
4936
4937         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4938                         data->soft_regs_start +
4939                         offsetof(SMU73_SoftRegisters, VBlankTimeout),
4940                         (frame_time_in_us - pre_vbi_time_in_us));
4941
4942         if (num_active_displays == 1)
4943                 tonga_notify_smc_display_change(hwmgr, true);
4944
4945         return 0;
4946 }
4947
4948 int fiji_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4949 {
4950         return fiji_program_display_gap(hwmgr);
4951 }
4952
4953 static int fiji_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr,
4954                 uint16_t us_max_fan_pwm)
4955 {
4956         hwmgr->thermal_controller.
4957         advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
4958
4959         if (phm_is_hw_access_blocked(hwmgr))
4960                 return 0;
4961
4962         return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4963                         PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm);
4964 }
4965
4966 static int fiji_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr,
4967                 uint16_t us_max_fan_rpm)
4968 {
4969         hwmgr->thermal_controller.
4970         advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
4971
4972         if (phm_is_hw_access_blocked(hwmgr))
4973                 return 0;
4974
4975         return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4976                         PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm);
4977 }
4978
4979 int fiji_dpm_set_interrupt_state(void *private_data,
4980                                          unsigned src_id, unsigned type,
4981                                          int enabled)
4982 {
4983         uint32_t cg_thermal_int;
4984         struct pp_hwmgr *hwmgr = ((struct pp_eventmgr *)private_data)->hwmgr;
4985
4986         if (hwmgr == NULL)
4987                 return -EINVAL;
4988
4989         switch (type) {
4990         case AMD_THERMAL_IRQ_LOW_TO_HIGH:
4991                 if (enabled) {
4992                         cg_thermal_int = cgs_read_ind_register(hwmgr->device,
4993                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT);
4994                         cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
4995                         cgs_write_ind_register(hwmgr->device,
4996                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
4997                 } else {
4998                         cg_thermal_int = cgs_read_ind_register(hwmgr->device,
4999                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5000                         cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
5001                         cgs_write_ind_register(hwmgr->device,
5002                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5003                 }
5004                 break;
5005
5006         case AMD_THERMAL_IRQ_HIGH_TO_LOW:
5007                 if (enabled) {
5008                         cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5009                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5010                         cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5011                         cgs_write_ind_register(hwmgr->device,
5012                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5013                 } else {
5014                         cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5015                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5016                         cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5017                         cgs_write_ind_register(hwmgr->device,
5018                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5019                 }
5020                 break;
5021         default:
5022                 break;
5023         }
5024         return 0;
5025 }
5026
5027 int fiji_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
5028                                         const void *thermal_interrupt_info)
5029 {
5030         int result;
5031         const struct pp_interrupt_registration_info *info =
5032                         (const struct pp_interrupt_registration_info *)
5033                         thermal_interrupt_info;
5034
5035         if (info == NULL)
5036                 return -EINVAL;
5037
5038         result = cgs_add_irq_source(hwmgr->device, 230, AMD_THERMAL_IRQ_LAST,
5039                                 fiji_dpm_set_interrupt_state,
5040                                 info->call_back, info->context);
5041
5042         if (result)
5043                 return -EINVAL;
5044
5045         result = cgs_add_irq_source(hwmgr->device, 231, AMD_THERMAL_IRQ_LAST,
5046                                 fiji_dpm_set_interrupt_state,
5047                                 info->call_back, info->context);
5048
5049         if (result)
5050                 return -EINVAL;
5051
5052         return 0;
5053 }
5054
5055 static int fiji_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
5056 {
5057         if (mode) {
5058                 /* stop auto-manage */
5059                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
5060                                 PHM_PlatformCaps_MicrocodeFanControl))
5061                         fiji_fan_ctrl_stop_smc_fan_control(hwmgr);
5062                 fiji_fan_ctrl_set_static_mode(hwmgr, mode);
5063         } else
5064                 /* restart auto-manage */
5065                 fiji_fan_ctrl_reset_fan_speed_to_default(hwmgr);
5066
5067         return 0;
5068 }
5069
5070 static int fiji_get_fan_control_mode(struct pp_hwmgr *hwmgr)
5071 {
5072         if (hwmgr->fan_ctrl_is_in_default_mode)
5073                 return hwmgr->fan_ctrl_default_mode;
5074         else
5075                 return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
5076                                 CG_FDO_CTRL2, FDO_PWM_MODE);
5077 }
5078
5079 static int fiji_get_pp_table(struct pp_hwmgr *hwmgr, char **table)
5080 {
5081         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5082
5083         *table = (char *)&data->smc_state_table;
5084
5085         return sizeof(struct SMU73_Discrete_DpmTable);
5086 }
5087
5088 static int fiji_set_pp_table(struct pp_hwmgr *hwmgr, const char *buf, size_t size)
5089 {
5090         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5091
5092         void *table = (void *)&data->smc_state_table;
5093
5094         memcpy(table, buf, size);
5095
5096         return 0;
5097 }
5098
5099 static int fiji_force_clock_level(struct pp_hwmgr *hwmgr,
5100                 enum pp_clock_type type, int level)
5101 {
5102         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5103
5104         if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
5105                 return -EINVAL;
5106
5107         switch (type) {
5108         case PP_SCLK:
5109                 if (!data->sclk_dpm_key_disabled)
5110                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5111                                         PPSMC_MSG_SCLKDPM_SetEnabledMask,
5112                                         (1 << level));
5113                 break;
5114         case PP_MCLK:
5115                 if (!data->mclk_dpm_key_disabled)
5116                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5117                                         PPSMC_MSG_MCLKDPM_SetEnabledMask,
5118                                         (1 << level));
5119                 break;
5120         case PP_PCIE:
5121                 if (!data->pcie_dpm_key_disabled)
5122                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5123                                         PPSMC_MSG_PCIeDPM_ForceLevel,
5124                                         (1 << level));
5125                 break;
5126         default:
5127                 break;
5128         }
5129
5130         return 0;
5131 }
5132
5133 static int fiji_print_clock_levels(struct pp_hwmgr *hwmgr,
5134                 enum pp_clock_type type, char *buf)
5135 {
5136         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5137         struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5138         struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5139         struct fiji_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
5140         int i, now, size = 0;
5141         uint32_t clock, pcie_speed;
5142
5143         switch (type) {
5144         case PP_SCLK:
5145                 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
5146                 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5147
5148                 for (i = 0; i < sclk_table->count; i++) {
5149                         if (clock > sclk_table->dpm_levels[i].value)
5150                                 continue;
5151                         break;
5152                 }
5153                 now = i;
5154
5155                 for (i = 0; i < sclk_table->count; i++)
5156                         size += sprintf(buf + size, "%d: %uMhz %s\n",
5157                                         i, sclk_table->dpm_levels[i].value / 100,
5158                                         (i == now) ? "*" : "");
5159                 break;
5160         case PP_MCLK:
5161                 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
5162                 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5163
5164                 for (i = 0; i < mclk_table->count; i++) {
5165                         if (clock > mclk_table->dpm_levels[i].value)
5166                                 continue;
5167                         break;
5168                 }
5169                 now = i;
5170
5171                 for (i = 0; i < mclk_table->count; i++)
5172                         size += sprintf(buf + size, "%d: %uMhz %s\n",
5173                                         i, mclk_table->dpm_levels[i].value / 100,
5174                                         (i == now) ? "*" : "");
5175                 break;
5176         case PP_PCIE:
5177                 pcie_speed = fiji_get_current_pcie_speed(hwmgr);
5178                 for (i = 0; i < pcie_table->count; i++) {
5179                         if (pcie_speed != pcie_table->dpm_levels[i].value)
5180                                 continue;
5181                         break;
5182                 }
5183                 now = i;
5184
5185                 for (i = 0; i < pcie_table->count; i++)
5186                         size += sprintf(buf + size, "%d: %s %s\n", i,
5187                                         (pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x1" :
5188                                         (pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" :
5189                                         (pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "",
5190                                         (i == now) ? "*" : "");
5191                 break;
5192         default:
5193                 break;
5194         }
5195         return size;
5196 }
5197
5198 static const struct pp_hwmgr_func fiji_hwmgr_funcs = {
5199         .backend_init = &fiji_hwmgr_backend_init,
5200         .backend_fini = &tonga_hwmgr_backend_fini,
5201         .asic_setup = &fiji_setup_asic_task,
5202         .dynamic_state_management_enable = &fiji_enable_dpm_tasks,
5203         .force_dpm_level = &fiji_dpm_force_dpm_level,
5204         .get_num_of_pp_table_entries = &tonga_get_number_of_powerplay_table_entries,
5205         .get_power_state_size = &fiji_get_power_state_size,
5206         .get_pp_table_entry = &fiji_get_pp_table_entry,
5207         .patch_boot_state = &fiji_patch_boot_state,
5208         .apply_state_adjust_rules = &fiji_apply_state_adjust_rules,
5209         .power_state_set = &fiji_set_power_state_tasks,
5210         .get_sclk = &fiji_dpm_get_sclk,
5211         .get_mclk = &fiji_dpm_get_mclk,
5212         .print_current_perforce_level = &fiji_print_current_perforce_level,
5213         .powergate_uvd = &fiji_phm_powergate_uvd,
5214         .powergate_vce = &fiji_phm_powergate_vce,
5215         .disable_clock_power_gating = &fiji_phm_disable_clock_power_gating,
5216         .notify_smc_display_config_after_ps_adjustment =
5217                         &tonga_notify_smc_display_config_after_ps_adjustment,
5218         .display_config_changed = &fiji_display_configuration_changed_task,
5219         .set_max_fan_pwm_output = fiji_set_max_fan_pwm_output,
5220         .set_max_fan_rpm_output = fiji_set_max_fan_rpm_output,
5221         .get_temperature = fiji_thermal_get_temperature,
5222         .stop_thermal_controller = fiji_thermal_stop_thermal_controller,
5223         .get_fan_speed_info = fiji_fan_ctrl_get_fan_speed_info,
5224         .get_fan_speed_percent = fiji_fan_ctrl_get_fan_speed_percent,
5225         .set_fan_speed_percent = fiji_fan_ctrl_set_fan_speed_percent,
5226         .reset_fan_speed_to_default = fiji_fan_ctrl_reset_fan_speed_to_default,
5227         .get_fan_speed_rpm = fiji_fan_ctrl_get_fan_speed_rpm,
5228         .set_fan_speed_rpm = fiji_fan_ctrl_set_fan_speed_rpm,
5229         .uninitialize_thermal_controller = fiji_thermal_ctrl_uninitialize_thermal_controller,
5230         .register_internal_thermal_interrupt = fiji_register_internal_thermal_interrupt,
5231         .set_fan_control_mode = fiji_set_fan_control_mode,
5232         .get_fan_control_mode = fiji_get_fan_control_mode,
5233         .get_pp_table = fiji_get_pp_table,
5234         .set_pp_table = fiji_set_pp_table,
5235         .force_clock_level = fiji_force_clock_level,
5236         .print_clock_levels = fiji_print_clock_levels,
5237 };
5238
5239 int fiji_hwmgr_init(struct pp_hwmgr *hwmgr)
5240 {
5241         struct fiji_hwmgr  *data;
5242         int ret = 0;
5243
5244         data = kzalloc(sizeof(struct fiji_hwmgr), GFP_KERNEL);
5245         if (data == NULL)
5246                 return -ENOMEM;
5247
5248         hwmgr->backend = data;
5249         hwmgr->hwmgr_func = &fiji_hwmgr_funcs;
5250         hwmgr->pptable_func = &tonga_pptable_funcs;
5251         pp_fiji_thermal_initialize(hwmgr);
5252         return ret;
5253 }