Merge remote-tracking branch 'asoc/fix/dapm' into asoc-linus
[cascardo/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / fiji_hwmgr.c
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26 #include "linux/delay.h"
27
28 #include "hwmgr.h"
29 #include "fiji_smumgr.h"
30 #include "atombios.h"
31 #include "hardwaremanager.h"
32 #include "ppatomctrl.h"
33 #include "atombios.h"
34 #include "cgs_common.h"
35 #include "fiji_dyn_defaults.h"
36 #include "fiji_powertune.h"
37 #include "smu73.h"
38 #include "smu/smu_7_1_3_d.h"
39 #include "smu/smu_7_1_3_sh_mask.h"
40 #include "gmc/gmc_8_1_d.h"
41 #include "gmc/gmc_8_1_sh_mask.h"
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44 #include "dce/dce_10_0_d.h"
45 #include "dce/dce_10_0_sh_mask.h"
46 #include "pppcielanes.h"
47 #include "fiji_hwmgr.h"
48 #include "tonga_processpptables.h"
49 #include "tonga_pptable.h"
50 #include "pp_debug.h"
51 #include "pp_acpi.h"
52 #include "amd_pcie_helpers.h"
53 #include "cgs_linux.h"
54 #include "ppinterrupt.h"
55
56 #include "fiji_clockpowergating.h"
57 #include "fiji_thermal.h"
58
59 #define VOLTAGE_SCALE   4
60 #define SMC_RAM_END             0x40000
61 #define VDDC_VDDCI_DELTA        300
62
63 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
64 #define MC_SEQ_MISC0_GDDR5_MASK  0xf0000000
65 #define MC_SEQ_MISC0_GDDR5_VALUE 5
66
67 #define MC_CG_ARB_FREQ_F0           0x0a /* boot-up default */
68 #define MC_CG_ARB_FREQ_F1           0x0b
69 #define MC_CG_ARB_FREQ_F2           0x0c
70 #define MC_CG_ARB_FREQ_F3           0x0d
71
72 /* From smc_reg.h */
73 #define SMC_CG_IND_START            0xc0030000
74 #define SMC_CG_IND_END              0xc0040000  /* First byte after SMC_CG_IND */
75
76 #define VOLTAGE_SCALE               4
77 #define VOLTAGE_VID_OFFSET_SCALE1   625
78 #define VOLTAGE_VID_OFFSET_SCALE2   100
79
80 #define VDDC_VDDCI_DELTA            300
81
82 #define ixSWRST_COMMAND_1           0x1400103
83 #define MC_SEQ_CNTL__CAC_EN_MASK    0x40000000
84
85 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
86 enum DPM_EVENT_SRC {
87     DPM_EVENT_SRC_ANALOG = 0,               /* Internal analog trip point */
88     DPM_EVENT_SRC_EXTERNAL = 1,             /* External (GPIO 17) signal */
89     DPM_EVENT_SRC_DIGITAL = 2,              /* Internal digital trip point (DIG_THERM_DPM) */
90     DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,   /* Internal analog or external */
91     DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4   /* Internal digital or external */
92 };
93
94
95 /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
96  * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
97  */
98 static const uint16_t fiji_clock_stretcher_lookup_table[2][4] =
99 { {600, 1050, 3, 0}, {600, 1050, 6, 1} };
100
101 /* [FF, SS] type, [] 4 voltage ranges, and
102  * [Floor Freq, Boundary Freq, VID min , VID max]
103  */
104 static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] =
105 { { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
106   { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
107
108 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
109  * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
110  */
111 static const uint8_t fiji_clock_stretch_amount_conversion[2][6] =
112 { {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
113
114 static const unsigned long PhwFiji_Magic = (unsigned long)(PHM_VIslands_Magic);
115
116 struct fiji_power_state *cast_phw_fiji_power_state(
117                                   struct pp_hw_power_state *hw_ps)
118 {
119         PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
120                                 "Invalid Powerstate Type!",
121                                  return NULL;);
122
123         return (struct fiji_power_state *)hw_ps;
124 }
125
126 const struct fiji_power_state *cast_const_phw_fiji_power_state(
127                                  const struct pp_hw_power_state *hw_ps)
128 {
129         PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
130                                 "Invalid Powerstate Type!",
131                                  return NULL;);
132
133         return (const struct fiji_power_state *)hw_ps;
134 }
135
136 static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
137 {
138         return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
139                         CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
140                         ? true : false;
141 }
142
143 static void fiji_init_dpm_defaults(struct pp_hwmgr *hwmgr)
144 {
145         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
146         struct fiji_ulv_parm *ulv = &data->ulv;
147
148         ulv->cg_ulv_parameter = PPFIJI_CGULVPARAMETER_DFLT;
149         data->voting_rights_clients0 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT0;
150         data->voting_rights_clients1 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT1;
151         data->voting_rights_clients2 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT2;
152         data->voting_rights_clients3 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT3;
153         data->voting_rights_clients4 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT4;
154         data->voting_rights_clients5 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT5;
155         data->voting_rights_clients6 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT6;
156         data->voting_rights_clients7 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT7;
157
158         data->static_screen_threshold_unit =
159                         PPFIJI_STATICSCREENTHRESHOLDUNIT_DFLT;
160         data->static_screen_threshold =
161                         PPFIJI_STATICSCREENTHRESHOLD_DFLT;
162
163         /* Unset ABM cap as it moved to DAL.
164          * Add PHM_PlatformCaps_NonABMSupportInPPLib
165          * for re-direct ABM related request to DAL
166          */
167         phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
168                         PHM_PlatformCaps_ABM);
169         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
170                         PHM_PlatformCaps_NonABMSupportInPPLib);
171
172         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
173                         PHM_PlatformCaps_DynamicACTiming);
174
175         fiji_initialize_power_tune_defaults(hwmgr);
176
177         data->mclk_stutter_mode_threshold = 60000;
178         data->pcie_gen_performance.max = PP_PCIEGen1;
179         data->pcie_gen_performance.min = PP_PCIEGen3;
180         data->pcie_gen_power_saving.max = PP_PCIEGen1;
181         data->pcie_gen_power_saving.min = PP_PCIEGen3;
182         data->pcie_lane_performance.max = 0;
183         data->pcie_lane_performance.min = 16;
184         data->pcie_lane_power_saving.max = 0;
185         data->pcie_lane_power_saving.min = 16;
186
187         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
188                         PHM_PlatformCaps_DynamicUVDState);
189 }
190
191 static int fiji_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
192         phm_ppt_v1_voltage_lookup_table *lookup_table,
193         uint16_t virtual_voltage_id, int32_t *sclk)
194 {
195         uint8_t entryId;
196         uint8_t voltageId;
197         struct phm_ppt_v1_information *table_info =
198                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
199
200         PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
201
202         /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
203         for (entryId = 0; entryId < table_info->vdd_dep_on_sclk->count; entryId++) {
204                 voltageId = table_info->vdd_dep_on_sclk->entries[entryId].vddInd;
205                 if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
206                         break;
207         }
208
209         PP_ASSERT_WITH_CODE(entryId < table_info->vdd_dep_on_sclk->count,
210                         "Can't find requested voltage id in vdd_dep_on_sclk table!",
211                         return -EINVAL;
212                         );
213
214         *sclk = table_info->vdd_dep_on_sclk->entries[entryId].clk;
215
216         return 0;
217 }
218
219 /**
220 * Get Leakage VDDC based on leakage ID.
221 *
222 * @param    hwmgr  the address of the powerplay hardware manager.
223 * @return   always 0
224 */
225 static int fiji_get_evv_voltages(struct pp_hwmgr *hwmgr)
226 {
227         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
228         uint16_t    vv_id;
229         uint16_t    vddc = 0;
230         uint16_t    evv_default = 1150;
231         uint16_t    i, j;
232         uint32_t  sclk = 0;
233         struct phm_ppt_v1_information *table_info =
234                         (struct phm_ppt_v1_information *)hwmgr->pptable;
235         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
236                         table_info->vdd_dep_on_sclk;
237         int result;
238
239         for (i = 0; i < FIJI_MAX_LEAKAGE_COUNT; i++) {
240                 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
241                 if (!fiji_get_sclk_for_voltage_evv(hwmgr,
242                                 table_info->vddc_lookup_table, vv_id, &sclk)) {
243                         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
244                                         PHM_PlatformCaps_ClockStretcher)) {
245                                 for (j = 1; j < sclk_table->count; j++) {
246                                         if (sclk_table->entries[j].clk == sclk &&
247                                                         sclk_table->entries[j].cks_enable == 0) {
248                                                 sclk += 5000;
249                                                 break;
250                                         }
251                                 }
252                         }
253
254                         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
255                                         PHM_PlatformCaps_EnableDriverEVV))
256                                 result = atomctrl_calculate_voltage_evv_on_sclk(hwmgr,
257                                                 VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc, i, true);
258                         else
259                                 result = -EINVAL;
260
261                         if (result)
262                                 result = atomctrl_get_voltage_evv_on_sclk(hwmgr,
263                                                 VOLTAGE_TYPE_VDDC, sclk,vv_id, &vddc);
264
265                         /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
266                         PP_ASSERT_WITH_CODE((vddc < 2000),
267                                         "Invalid VDDC value, greater than 2v!", result = -EINVAL;);
268
269                         if (result)
270                                 /* 1.15V is the default safe value for Fiji */
271                                 vddc = evv_default;
272
273                         /* the voltage should not be zero nor equal to leakage ID */
274                         if (vddc != 0 && vddc != vv_id) {
275                                 data->vddc_leakage.actual_voltage
276                                 [data->vddc_leakage.count] = vddc;
277                                 data->vddc_leakage.leakage_id
278                                 [data->vddc_leakage.count] = vv_id;
279                                 data->vddc_leakage.count++;
280                         }
281                 }
282         }
283         return 0;
284 }
285
286 /**
287  * Change virtual leakage voltage to actual value.
288  *
289  * @param     hwmgr  the address of the powerplay hardware manager.
290  * @param     pointer to changing voltage
291  * @param     pointer to leakage table
292  */
293 static void fiji_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
294                 uint16_t *voltage, struct fiji_leakage_voltage *leakage_table)
295 {
296         uint32_t index;
297
298         /* search for leakage voltage ID 0xff01 ~ 0xff08 */
299         for (index = 0; index < leakage_table->count; index++) {
300                 /* if this voltage matches a leakage voltage ID */
301                 /* patch with actual leakage voltage */
302                 if (leakage_table->leakage_id[index] == *voltage) {
303                         *voltage = leakage_table->actual_voltage[index];
304                         break;
305                 }
306         }
307
308         if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
309                 printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n");
310 }
311
312 /**
313 * Patch voltage lookup table by EVV leakages.
314 *
315 * @param     hwmgr  the address of the powerplay hardware manager.
316 * @param     pointer to voltage lookup table
317 * @param     pointer to leakage table
318 * @return     always 0
319 */
320 static int fiji_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
321                 phm_ppt_v1_voltage_lookup_table *lookup_table,
322                 struct fiji_leakage_voltage *leakage_table)
323 {
324         uint32_t i;
325
326         for (i = 0; i < lookup_table->count; i++)
327                 fiji_patch_with_vdd_leakage(hwmgr,
328                                 &lookup_table->entries[i].us_vdd, leakage_table);
329
330         return 0;
331 }
332
333 static int fiji_patch_clock_voltage_limits_with_vddc_leakage(
334                 struct pp_hwmgr *hwmgr, struct fiji_leakage_voltage *leakage_table,
335                 uint16_t *vddc)
336 {
337         struct phm_ppt_v1_information *table_info =
338                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
339         fiji_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
340         hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
341                         table_info->max_clock_voltage_on_dc.vddc;
342         return 0;
343 }
344
345 static int fiji_patch_voltage_dependency_tables_with_lookup_table(
346                 struct pp_hwmgr *hwmgr)
347 {
348         uint8_t entryId;
349         uint8_t voltageId;
350         struct phm_ppt_v1_information *table_info =
351                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
352
353         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
354                         table_info->vdd_dep_on_sclk;
355         struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
356                         table_info->vdd_dep_on_mclk;
357         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
358                         table_info->mm_dep_table;
359
360         for (entryId = 0; entryId < sclk_table->count; ++entryId) {
361                 voltageId = sclk_table->entries[entryId].vddInd;
362                 sclk_table->entries[entryId].vddc =
363                                 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
364         }
365
366         for (entryId = 0; entryId < mclk_table->count; ++entryId) {
367                 voltageId = mclk_table->entries[entryId].vddInd;
368                 mclk_table->entries[entryId].vddc =
369                         table_info->vddc_lookup_table->entries[voltageId].us_vdd;
370         }
371
372         for (entryId = 0; entryId < mm_table->count; ++entryId) {
373                 voltageId = mm_table->entries[entryId].vddcInd;
374                 mm_table->entries[entryId].vddc =
375                         table_info->vddc_lookup_table->entries[voltageId].us_vdd;
376         }
377
378         return 0;
379
380 }
381
382 static int fiji_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
383 {
384         /* Need to determine if we need calculated voltage. */
385         return 0;
386 }
387
388 static int fiji_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
389 {
390         /* Need to determine if we need calculated voltage from mm table. */
391         return 0;
392 }
393
394 static int fiji_sort_lookup_table(struct pp_hwmgr *hwmgr,
395                 struct phm_ppt_v1_voltage_lookup_table *lookup_table)
396 {
397         uint32_t table_size, i, j;
398         struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
399         table_size = lookup_table->count;
400
401         PP_ASSERT_WITH_CODE(0 != lookup_table->count,
402                 "Lookup table is empty", return -EINVAL);
403
404         /* Sorting voltages */
405         for (i = 0; i < table_size - 1; i++) {
406                 for (j = i + 1; j > 0; j--) {
407                         if (lookup_table->entries[j].us_vdd <
408                                         lookup_table->entries[j - 1].us_vdd) {
409                                 tmp_voltage_lookup_record = lookup_table->entries[j - 1];
410                                 lookup_table->entries[j - 1] = lookup_table->entries[j];
411                                 lookup_table->entries[j] = tmp_voltage_lookup_record;
412                         }
413                 }
414         }
415
416         return 0;
417 }
418
419 static int fiji_complete_dependency_tables(struct pp_hwmgr *hwmgr)
420 {
421         int result = 0;
422         int tmp_result;
423         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
424         struct phm_ppt_v1_information *table_info =
425                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
426
427         tmp_result = fiji_patch_lookup_table_with_leakage(hwmgr,
428                         table_info->vddc_lookup_table, &(data->vddc_leakage));
429         if (tmp_result)
430                 result = tmp_result;
431
432         tmp_result = fiji_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
433                         &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
434         if (tmp_result)
435                 result = tmp_result;
436
437         tmp_result = fiji_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
438         if (tmp_result)
439                 result = tmp_result;
440
441         tmp_result = fiji_calc_voltage_dependency_tables(hwmgr);
442         if (tmp_result)
443                 result = tmp_result;
444
445         tmp_result = fiji_calc_mm_voltage_dependency_table(hwmgr);
446         if (tmp_result)
447                 result = tmp_result;
448
449         tmp_result = fiji_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
450         if(tmp_result)
451                 result = tmp_result;
452
453         return result;
454 }
455
456 static int fiji_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
457 {
458         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
459         struct phm_ppt_v1_information *table_info =
460                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
461
462         struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
463                         table_info->vdd_dep_on_sclk;
464         struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
465                         table_info->vdd_dep_on_mclk;
466
467         PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
468                 "VDD dependency on SCLK table is missing.       \
469                 This table is mandatory", return -EINVAL);
470         PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
471                 "VDD dependency on SCLK table has to have is missing.   \
472                 This table is mandatory", return -EINVAL);
473
474         PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
475                 "VDD dependency on MCLK table is missing.       \
476                 This table is mandatory", return -EINVAL);
477         PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
478                 "VDD dependency on MCLK table has to have is missing.    \
479                 This table is mandatory", return -EINVAL);
480
481         data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
482         data->max_vddc_in_pptable =     (uint16_t)allowed_sclk_vdd_table->
483                         entries[allowed_sclk_vdd_table->count - 1].vddc;
484
485         table_info->max_clock_voltage_on_ac.sclk =
486                 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
487         table_info->max_clock_voltage_on_ac.mclk =
488                 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
489         table_info->max_clock_voltage_on_ac.vddc =
490                 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
491         table_info->max_clock_voltage_on_ac.vddci =
492                 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
493
494         hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
495                 table_info->max_clock_voltage_on_ac.sclk;
496         hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
497                 table_info->max_clock_voltage_on_ac.mclk;
498         hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
499                 table_info->max_clock_voltage_on_ac.vddc;
500         hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
501                 table_info->max_clock_voltage_on_ac.vddci;
502
503         return 0;
504 }
505
506 static uint16_t fiji_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
507 {
508         uint32_t speedCntl = 0;
509
510         /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
511         speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
512                         ixPCIE_LC_SPEED_CNTL);
513         return((uint16_t)PHM_GET_FIELD(speedCntl,
514                         PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
515 }
516
517 static int fiji_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
518 {
519         uint32_t link_width;
520
521         /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
522         link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
523                         PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
524
525         PP_ASSERT_WITH_CODE((7 >= link_width),
526                         "Invalid PCIe lane width!", return 0);
527
528         return decode_pcie_lane_width(link_width);
529 }
530
531 /** Patch the Boot State to match VBIOS boot clocks and voltage.
532 *
533 * @param hwmgr Pointer to the hardware manager.
534 * @param pPowerState The address of the PowerState instance being created.
535 *
536 */
537 static int fiji_patch_boot_state(struct pp_hwmgr *hwmgr,
538                 struct pp_hw_power_state *hw_ps)
539 {
540         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
541         struct fiji_power_state *ps = (struct fiji_power_state *)hw_ps;
542         ATOM_FIRMWARE_INFO_V2_2 *fw_info;
543         uint16_t size;
544         uint8_t frev, crev;
545         int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
546
547         /* First retrieve the Boot clocks and VDDC from the firmware info table.
548          * We assume here that fw_info is unchanged if this call fails.
549          */
550         fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
551                         hwmgr->device, index,
552                         &size, &frev, &crev);
553         if (!fw_info)
554                 /* During a test, there is no firmware info table. */
555                 return 0;
556
557         /* Patch the state. */
558         data->vbios_boot_state.sclk_bootup_value =
559                         le32_to_cpu(fw_info->ulDefaultEngineClock);
560         data->vbios_boot_state.mclk_bootup_value =
561                         le32_to_cpu(fw_info->ulDefaultMemoryClock);
562         data->vbios_boot_state.mvdd_bootup_value =
563                         le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
564         data->vbios_boot_state.vddc_bootup_value =
565                         le16_to_cpu(fw_info->usBootUpVDDCVoltage);
566         data->vbios_boot_state.vddci_bootup_value =
567                         le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
568         data->vbios_boot_state.pcie_gen_bootup_value =
569                         fiji_get_current_pcie_speed(hwmgr);
570         data->vbios_boot_state.pcie_lane_bootup_value =
571                         (uint16_t)fiji_get_current_pcie_lane_number(hwmgr);
572
573         /* set boot power state */
574         ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
575         ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
576         ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
577         ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
578
579         return 0;
580 }
581
582 static int fiji_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
583 {
584         return phm_hwmgr_backend_fini(hwmgr);
585 }
586
587 static int fiji_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
588 {
589         struct fiji_hwmgr *data;
590         uint32_t i;
591         struct phm_ppt_v1_information *table_info =
592                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
593         bool stay_in_boot;
594         int result;
595
596         data = kzalloc(sizeof(struct fiji_hwmgr), GFP_KERNEL);
597         if (data == NULL)
598                 return -ENOMEM;
599
600         hwmgr->backend = data;
601
602         data->dll_default_on = false;
603         data->sram_end = SMC_RAM_END;
604
605         for (i = 0; i < SMU73_MAX_LEVELS_GRAPHICS; i++)
606                 data->activity_target[i] = FIJI_AT_DFLT;
607
608         data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
609
610         data->mclk_activity_target = PPFIJI_MCLK_TARGETACTIVITY_DFLT;
611         data->mclk_dpm0_activity_target = 0xa;
612
613         data->sclk_dpm_key_disabled = 0;
614         data->mclk_dpm_key_disabled = 0;
615         data->pcie_dpm_key_disabled = 0;
616
617         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
618                         PHM_PlatformCaps_UnTabledHardwareInterface);
619         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
620                         PHM_PlatformCaps_TablelessHardwareInterface);
621
622         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
623                         PHM_PlatformCaps_SclkDeepSleep);
624
625         data->gpio_debug = 0;
626
627         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
628                         PHM_PlatformCaps_DynamicPatchPowerState);
629
630         /* need to set voltage control types before EVV patching */
631         data->voltage_control = FIJI_VOLTAGE_CONTROL_NONE;
632         data->vddci_control = FIJI_VOLTAGE_CONTROL_NONE;
633         data->mvdd_control = FIJI_VOLTAGE_CONTROL_NONE;
634
635         data->force_pcie_gen = PP_PCIEGenInvalid;
636
637         if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
638                         VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
639                 data->voltage_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
640
641         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
642                         PHM_PlatformCaps_EnableMVDDControl))
643                 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
644                                 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
645                         data->mvdd_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
646
647         if (data->mvdd_control == FIJI_VOLTAGE_CONTROL_NONE)
648                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
649                         PHM_PlatformCaps_EnableMVDDControl);
650
651         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
652                         PHM_PlatformCaps_ControlVDDCI)) {
653                 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
654                                 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
655                         data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
656                 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
657                                 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
658                         data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
659         }
660
661         if (data->vddci_control == FIJI_VOLTAGE_CONTROL_NONE)
662                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
663                                 PHM_PlatformCaps_ControlVDDCI);
664
665         if (table_info && table_info->cac_dtp_table->usClockStretchAmount)
666                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
667                                 PHM_PlatformCaps_ClockStretcher);
668
669         fiji_init_dpm_defaults(hwmgr);
670
671         /* Get leakage voltage based on leakage ID. */
672         fiji_get_evv_voltages(hwmgr);
673
674         /* Patch our voltage dependency table with actual leakage voltage
675          * We need to perform leakage translation before it's used by other functions
676          */
677         fiji_complete_dependency_tables(hwmgr);
678
679         /* Parse pptable data read from VBIOS */
680         fiji_set_private_data_based_on_pptable(hwmgr);
681
682         /* ULV Support */
683         data->ulv.ulv_supported = true; /* ULV feature is enabled by default */
684
685         /* Initalize Dynamic State Adjustment Rule Settings */
686         result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
687
688         if (!result) {
689                 data->uvd_enabled = false;
690                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
691                                 PHM_PlatformCaps_EnableSMU7ThermalManagement);
692                 data->vddc_phase_shed_control = false;
693         }
694
695         stay_in_boot = phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
696                         PHM_PlatformCaps_StayInBootState);
697
698         if (0 == result) {
699                 struct cgs_system_info sys_info = {0};
700
701                 data->is_tlu_enabled = false;
702                 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
703                                 FIJI_MAX_HARDWARE_POWERLEVELS;
704                 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
705                 hwmgr->platform_descriptor.minimumClocksReductionPercentage  = 50;
706
707                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
708                                 PHM_PlatformCaps_FanSpeedInTableIsRPM);
709
710                 if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp &&
711                                 hwmgr->thermal_controller.
712                                 advanceFanControlParameters.ucFanControlMode) {
713                         hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
714                                         hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
715                         hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
716                                         hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
717                         hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
718                                         table_info->cac_dtp_table->usOperatingTempMinLimit;
719                         hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
720                                         table_info->cac_dtp_table->usOperatingTempMaxLimit;
721                         hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
722                                         table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
723                         hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
724                                         table_info->cac_dtp_table->usOperatingTempStep;
725                         hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
726                                         table_info->cac_dtp_table->usTargetOperatingTemp;
727
728                         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
729                                         PHM_PlatformCaps_ODFuzzyFanControlSupport);
730                 }
731
732                 sys_info.size = sizeof(struct cgs_system_info);
733                 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
734                 result = cgs_query_system_info(hwmgr->device, &sys_info);
735                 if (result)
736                         data->pcie_gen_cap = AMDGPU_DEFAULT_PCIE_GEN_MASK;
737                 else
738                         data->pcie_gen_cap = (uint32_t)sys_info.value;
739                 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
740                         data->pcie_spc_cap = 20;
741                 sys_info.size = sizeof(struct cgs_system_info);
742                 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
743                 result = cgs_query_system_info(hwmgr->device, &sys_info);
744                 if (result)
745                         data->pcie_lane_cap = AMDGPU_DEFAULT_PCIE_MLW_MASK;
746                 else
747                         data->pcie_lane_cap = (uint32_t)sys_info.value;
748         } else {
749                 /* Ignore return value in here, we are cleaning up a mess. */
750                 fiji_hwmgr_backend_fini(hwmgr);
751         }
752
753         return 0;
754 }
755
756 /**
757  * Read clock related registers.
758  *
759  * @param    hwmgr  the address of the powerplay hardware manager.
760  * @return   always 0
761  */
762 static int fiji_read_clock_registers(struct pp_hwmgr *hwmgr)
763 {
764         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
765
766         data->clock_registers.vCG_SPLL_FUNC_CNTL =
767                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
768                                 ixCG_SPLL_FUNC_CNTL);
769         data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
770                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
771                                 ixCG_SPLL_FUNC_CNTL_2);
772         data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
773                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
774                                 ixCG_SPLL_FUNC_CNTL_3);
775         data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
776                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
777                                 ixCG_SPLL_FUNC_CNTL_4);
778         data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
779                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
780                                 ixCG_SPLL_SPREAD_SPECTRUM);
781         data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
782                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
783                                 ixCG_SPLL_SPREAD_SPECTRUM_2);
784
785         return 0;
786 }
787
788 /**
789  * Find out if memory is GDDR5.
790  *
791  * @param    hwmgr  the address of the powerplay hardware manager.
792  * @return   always 0
793  */
794 static int fiji_get_memory_type(struct pp_hwmgr *hwmgr)
795 {
796         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
797         uint32_t temp;
798
799         temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
800
801         data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
802                         ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
803                          MC_SEQ_MISC0_GDDR5_SHIFT));
804
805         return 0;
806 }
807
808 /**
809  * Enables Dynamic Power Management by SMC
810  *
811  * @param    hwmgr  the address of the powerplay hardware manager.
812  * @return   always 0
813  */
814 static int fiji_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
815 {
816         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
817                         GENERAL_PWRMGT, STATIC_PM_EN, 1);
818
819         return 0;
820 }
821
822 /**
823  * Initialize PowerGating States for different engines
824  *
825  * @param    hwmgr  the address of the powerplay hardware manager.
826  * @return   always 0
827  */
828 static int fiji_init_power_gate_state(struct pp_hwmgr *hwmgr)
829 {
830         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
831
832         data->uvd_power_gated = false;
833         data->vce_power_gated = false;
834         data->samu_power_gated = false;
835         data->acp_power_gated = false;
836         data->pg_acp_init = true;
837
838         return 0;
839 }
840
841 static int fiji_init_sclk_threshold(struct pp_hwmgr *hwmgr)
842 {
843         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
844         data->low_sclk_interrupt_threshold = 0;
845
846         return 0;
847 }
848
849 static int fiji_setup_asic_task(struct pp_hwmgr *hwmgr)
850 {
851         int tmp_result, result = 0;
852
853         tmp_result = fiji_read_clock_registers(hwmgr);
854         PP_ASSERT_WITH_CODE((0 == tmp_result),
855                         "Failed to read clock registers!", result = tmp_result);
856
857         tmp_result = fiji_get_memory_type(hwmgr);
858         PP_ASSERT_WITH_CODE((0 == tmp_result),
859                         "Failed to get memory type!", result = tmp_result);
860
861         tmp_result = fiji_enable_acpi_power_management(hwmgr);
862         PP_ASSERT_WITH_CODE((0 == tmp_result),
863                         "Failed to enable ACPI power management!", result = tmp_result);
864
865         tmp_result = fiji_init_power_gate_state(hwmgr);
866         PP_ASSERT_WITH_CODE((0 == tmp_result),
867                         "Failed to init power gate state!", result = tmp_result);
868
869         tmp_result = tonga_get_mc_microcode_version(hwmgr);
870         PP_ASSERT_WITH_CODE((0 == tmp_result),
871                         "Failed to get MC microcode version!", result = tmp_result);
872
873         tmp_result = fiji_init_sclk_threshold(hwmgr);
874         PP_ASSERT_WITH_CODE((0 == tmp_result),
875                         "Failed to init sclk threshold!", result = tmp_result);
876
877         return result;
878 }
879
880 /**
881 * Checks if we want to support voltage control
882 *
883 * @param    hwmgr  the address of the powerplay hardware manager.
884 */
885 static bool fiji_voltage_control(const struct pp_hwmgr *hwmgr)
886 {
887         const struct fiji_hwmgr *data =
888                         (const struct fiji_hwmgr *)(hwmgr->backend);
889
890         return (FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control);
891 }
892
893 /**
894 * Enable voltage control
895 *
896 * @param    hwmgr  the address of the powerplay hardware manager.
897 * @return   always 0
898 */
899 static int fiji_enable_voltage_control(struct pp_hwmgr *hwmgr)
900 {
901         /* enable voltage control */
902         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
903                         GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
904
905         return 0;
906 }
907
908 /**
909 * Remove repeated voltage values and create table with unique values.
910 *
911 * @param    hwmgr  the address of the powerplay hardware manager.
912 * @param    vol_table  the pointer to changing voltage table
913 * @return    0 in success
914 */
915
916 static int fiji_trim_voltage_table(struct pp_hwmgr *hwmgr,
917                 struct pp_atomctrl_voltage_table *vol_table)
918 {
919         uint32_t i, j;
920         uint16_t vvalue;
921         bool found = false;
922         struct pp_atomctrl_voltage_table *table;
923
924         PP_ASSERT_WITH_CODE((NULL != vol_table),
925                         "Voltage Table empty.", return -EINVAL);
926         table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
927                         GFP_KERNEL);
928
929         if (NULL == table)
930                 return -ENOMEM;
931
932         table->mask_low = vol_table->mask_low;
933         table->phase_delay = vol_table->phase_delay;
934
935         for (i = 0; i < vol_table->count; i++) {
936                 vvalue = vol_table->entries[i].value;
937                 found = false;
938
939                 for (j = 0; j < table->count; j++) {
940                         if (vvalue == table->entries[j].value) {
941                                 found = true;
942                                 break;
943                         }
944                 }
945
946                 if (!found) {
947                         table->entries[table->count].value = vvalue;
948                         table->entries[table->count].smio_low =
949                                         vol_table->entries[i].smio_low;
950                         table->count++;
951                 }
952         }
953
954         memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
955         kfree(table);
956
957         return 0;
958 }
959
960 static int fiji_get_svi2_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
961                 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
962 {
963         uint32_t i;
964         int result;
965         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
966         struct pp_atomctrl_voltage_table *vol_table = &(data->mvdd_voltage_table);
967
968         PP_ASSERT_WITH_CODE((0 != dep_table->count),
969                         "Voltage Dependency Table empty.", return -EINVAL);
970
971         vol_table->mask_low = 0;
972         vol_table->phase_delay = 0;
973         vol_table->count = dep_table->count;
974
975         for (i = 0; i < dep_table->count; i++) {
976                 vol_table->entries[i].value = dep_table->entries[i].mvdd;
977                 vol_table->entries[i].smio_low = 0;
978         }
979
980         result = fiji_trim_voltage_table(hwmgr, vol_table);
981         PP_ASSERT_WITH_CODE((0 == result),
982                         "Failed to trim MVDD table.", return result);
983
984         return 0;
985 }
986
987 static int fiji_get_svi2_vddci_voltage_table(struct pp_hwmgr *hwmgr,
988                 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
989 {
990         uint32_t i;
991         int result;
992         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
993         struct pp_atomctrl_voltage_table *vol_table = &(data->vddci_voltage_table);
994
995         PP_ASSERT_WITH_CODE((0 != dep_table->count),
996                         "Voltage Dependency Table empty.", return -EINVAL);
997
998         vol_table->mask_low = 0;
999         vol_table->phase_delay = 0;
1000         vol_table->count = dep_table->count;
1001
1002         for (i = 0; i < dep_table->count; i++) {
1003                 vol_table->entries[i].value = dep_table->entries[i].vddci;
1004                 vol_table->entries[i].smio_low = 0;
1005         }
1006
1007         result = fiji_trim_voltage_table(hwmgr, vol_table);
1008         PP_ASSERT_WITH_CODE((0 == result),
1009                         "Failed to trim VDDCI table.", return result);
1010
1011         return 0;
1012 }
1013
1014 static int fiji_get_svi2_vdd_voltage_table(struct pp_hwmgr *hwmgr,
1015                 phm_ppt_v1_voltage_lookup_table *lookup_table)
1016 {
1017         int i = 0;
1018         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1019         struct pp_atomctrl_voltage_table *vol_table = &(data->vddc_voltage_table);
1020
1021         PP_ASSERT_WITH_CODE((0 != lookup_table->count),
1022                         "Voltage Lookup Table empty.", return -EINVAL);
1023
1024         vol_table->mask_low = 0;
1025         vol_table->phase_delay = 0;
1026
1027         vol_table->count = lookup_table->count;
1028
1029         for (i = 0; i < vol_table->count; i++) {
1030                 vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
1031                 vol_table->entries[i].smio_low = 0;
1032         }
1033
1034         return 0;
1035 }
1036
1037 /* ---- Voltage Tables ----
1038  * If the voltage table would be bigger than
1039  * what will fit into the state table on
1040  * the SMC keep only the higher entries.
1041  */
1042 static void fiji_trim_voltage_table_to_fit_state_table(struct pp_hwmgr *hwmgr,
1043                 uint32_t max_vol_steps, struct pp_atomctrl_voltage_table *vol_table)
1044 {
1045         unsigned int i, diff;
1046
1047         if (vol_table->count <= max_vol_steps)
1048                 return;
1049
1050         diff = vol_table->count - max_vol_steps;
1051
1052         for (i = 0; i < max_vol_steps; i++)
1053                 vol_table->entries[i] = vol_table->entries[i + diff];
1054
1055         vol_table->count = max_vol_steps;
1056
1057         return;
1058 }
1059
1060 /**
1061 * Create Voltage Tables.
1062 *
1063 * @param    hwmgr  the address of the powerplay hardware manager.
1064 * @return   always 0
1065 */
1066 static int fiji_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1067 {
1068         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1069         struct phm_ppt_v1_information *table_info =
1070                         (struct phm_ppt_v1_information *)hwmgr->pptable;
1071         int result;
1072
1073         if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1074                 result = atomctrl_get_voltage_table_v3(hwmgr,
1075                                 VOLTAGE_TYPE_MVDDC,     VOLTAGE_OBJ_GPIO_LUT,
1076                                 &(data->mvdd_voltage_table));
1077                 PP_ASSERT_WITH_CODE((0 == result),
1078                                 "Failed to retrieve MVDD table.",
1079                                 return result);
1080         } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1081                 result = fiji_get_svi2_mvdd_voltage_table(hwmgr,
1082                                 table_info->vdd_dep_on_mclk);
1083                 PP_ASSERT_WITH_CODE((0 == result),
1084                                 "Failed to retrieve SVI2 MVDD table from dependancy table.",
1085                                 return result;);
1086         }
1087
1088         if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1089                 result = atomctrl_get_voltage_table_v3(hwmgr,
1090                                 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
1091                                 &(data->vddci_voltage_table));
1092                 PP_ASSERT_WITH_CODE((0 == result),
1093                                 "Failed to retrieve VDDCI table.",
1094                                 return result);
1095         } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1096                 result = fiji_get_svi2_vddci_voltage_table(hwmgr,
1097                                 table_info->vdd_dep_on_mclk);
1098                 PP_ASSERT_WITH_CODE((0 == result),
1099                                 "Failed to retrieve SVI2 VDDCI table from dependancy table.",
1100                                 return result);
1101         }
1102
1103         if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1104                 result = fiji_get_svi2_vdd_voltage_table(hwmgr,
1105                                 table_info->vddc_lookup_table);
1106                 PP_ASSERT_WITH_CODE((0 == result),
1107                                 "Failed to retrieve SVI2 VDDC table from lookup table.",
1108                                 return result);
1109         }
1110
1111         PP_ASSERT_WITH_CODE(
1112                         (data->vddc_voltage_table.count <= (SMU73_MAX_LEVELS_VDDC)),
1113                         "Too many voltage values for VDDC. Trimming to fit state table.",
1114                         fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1115                                         SMU73_MAX_LEVELS_VDDC, &(data->vddc_voltage_table)));
1116
1117         PP_ASSERT_WITH_CODE(
1118                         (data->vddci_voltage_table.count <= (SMU73_MAX_LEVELS_VDDCI)),
1119                         "Too many voltage values for VDDCI. Trimming to fit state table.",
1120                         fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1121                                         SMU73_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table)));
1122
1123         PP_ASSERT_WITH_CODE(
1124                         (data->mvdd_voltage_table.count <= (SMU73_MAX_LEVELS_MVDD)),
1125                         "Too many voltage values for MVDD. Trimming to fit state table.",
1126                         fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1127                                         SMU73_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table)));
1128
1129         return 0;
1130 }
1131
1132 static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
1133 {
1134         /* Program additional LP registers
1135          * that are no longer programmed by VBIOS
1136          */
1137         cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
1138                         cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
1139         cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
1140                         cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
1141         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
1142                         cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
1143         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
1144                         cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
1145         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
1146                         cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
1147         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
1148                         cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
1149         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
1150                         cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
1151
1152         return 0;
1153 }
1154
1155 /**
1156 * Programs static screed detection parameters
1157 *
1158 * @param    hwmgr  the address of the powerplay hardware manager.
1159 * @return   always 0
1160 */
1161 static int fiji_program_static_screen_threshold_parameters(
1162                 struct pp_hwmgr *hwmgr)
1163 {
1164         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1165
1166         /* Set static screen threshold unit */
1167         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1168                         CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
1169                         data->static_screen_threshold_unit);
1170         /* Set static screen threshold */
1171         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1172                         CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
1173                         data->static_screen_threshold);
1174
1175         return 0;
1176 }
1177
1178 /**
1179 * Setup display gap for glitch free memory clock switching.
1180 *
1181 * @param    hwmgr  the address of the powerplay hardware manager.
1182 * @return   always  0
1183 */
1184 static int fiji_enable_display_gap(struct pp_hwmgr *hwmgr)
1185 {
1186         uint32_t displayGap =
1187                         cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1188                                         ixCG_DISPLAY_GAP_CNTL);
1189
1190         displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
1191                         DISP_GAP, DISPLAY_GAP_IGNORE);
1192
1193         displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
1194                         DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
1195
1196         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1197                         ixCG_DISPLAY_GAP_CNTL, displayGap);
1198
1199         return 0;
1200 }
1201
1202 /**
1203 * Programs activity state transition voting clients
1204 *
1205 * @param    hwmgr  the address of the powerplay hardware manager.
1206 * @return   always  0
1207 */
1208 static int fiji_program_voting_clients(struct pp_hwmgr *hwmgr)
1209 {
1210         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1211
1212         /* Clear reset for voting clients before enabling DPM */
1213         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1214                         SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
1215         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1216                         SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
1217
1218         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1219                         ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
1220         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1221                         ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
1222         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1223                         ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
1224         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1225                         ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
1226         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1227                         ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
1228         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1229                         ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
1230         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1231                         ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
1232         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1233                         ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
1234
1235         return 0;
1236 }
1237
1238 static int fiji_clear_voting_clients(struct pp_hwmgr *hwmgr)
1239 {
1240         /* Reset voting clients before disabling DPM */
1241         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1242                         SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1);
1243         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1244                         SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1);
1245
1246         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1247                         ixCG_FREQ_TRAN_VOTING_0, 0);
1248         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1249                         ixCG_FREQ_TRAN_VOTING_1, 0);
1250         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1251                         ixCG_FREQ_TRAN_VOTING_2, 0);
1252         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1253                         ixCG_FREQ_TRAN_VOTING_3, 0);
1254         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1255                         ixCG_FREQ_TRAN_VOTING_4, 0);
1256         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1257                         ixCG_FREQ_TRAN_VOTING_5, 0);
1258         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1259                         ixCG_FREQ_TRAN_VOTING_6, 0);
1260         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1261                         ixCG_FREQ_TRAN_VOTING_7, 0);
1262
1263         return 0;
1264 }
1265
1266 /**
1267 * Get the location of various tables inside the FW image.
1268 *
1269 * @param    hwmgr  the address of the powerplay hardware manager.
1270 * @return   always  0
1271 */
1272 static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
1273 {
1274         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1275         struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1276         uint32_t tmp;
1277         int result;
1278         bool error = false;
1279
1280         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1281                         SMU7_FIRMWARE_HEADER_LOCATION +
1282                         offsetof(SMU73_Firmware_Header, DpmTable),
1283                         &tmp, data->sram_end);
1284
1285         if (0 == result)
1286                 data->dpm_table_start = tmp;
1287
1288         error |= (0 != result);
1289
1290         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1291                         SMU7_FIRMWARE_HEADER_LOCATION +
1292                         offsetof(SMU73_Firmware_Header, SoftRegisters),
1293                         &tmp, data->sram_end);
1294
1295         if (!result) {
1296                 data->soft_regs_start = tmp;
1297                 smu_data->soft_regs_start = tmp;
1298         }
1299
1300         error |= (0 != result);
1301
1302         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1303                         SMU7_FIRMWARE_HEADER_LOCATION +
1304                         offsetof(SMU73_Firmware_Header, mcRegisterTable),
1305                         &tmp, data->sram_end);
1306
1307         if (!result)
1308                 data->mc_reg_table_start = tmp;
1309
1310         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1311                         SMU7_FIRMWARE_HEADER_LOCATION +
1312                         offsetof(SMU73_Firmware_Header, FanTable),
1313                         &tmp, data->sram_end);
1314
1315         if (!result)
1316                 data->fan_table_start = tmp;
1317
1318         error |= (0 != result);
1319
1320         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1321                         SMU7_FIRMWARE_HEADER_LOCATION +
1322                         offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
1323                         &tmp, data->sram_end);
1324
1325         if (!result)
1326                 data->arb_table_start = tmp;
1327
1328         error |= (0 != result);
1329
1330         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1331                         SMU7_FIRMWARE_HEADER_LOCATION +
1332                         offsetof(SMU73_Firmware_Header, Version),
1333                         &tmp, data->sram_end);
1334
1335         if (!result)
1336                 hwmgr->microcode_version_info.SMC = tmp;
1337
1338         error |= (0 != result);
1339
1340         return error ? -1 : 0;
1341 }
1342
1343 /* Copy one arb setting to another and then switch the active set.
1344  * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
1345  */
1346 static int fiji_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
1347                 uint32_t arb_src, uint32_t arb_dest)
1348 {
1349         uint32_t mc_arb_dram_timing;
1350         uint32_t mc_arb_dram_timing2;
1351         uint32_t burst_time;
1352         uint32_t mc_cg_config;
1353
1354         switch (arb_src) {
1355         case MC_CG_ARB_FREQ_F0:
1356                 mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1357                 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1358                 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1359                 break;
1360         case MC_CG_ARB_FREQ_F1:
1361                 mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
1362                 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
1363                 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
1364                 break;
1365         default:
1366                 return -EINVAL;
1367         }
1368
1369         switch (arb_dest) {
1370         case MC_CG_ARB_FREQ_F0:
1371                 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
1372                 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
1373                 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
1374                 break;
1375         case MC_CG_ARB_FREQ_F1:
1376                 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
1377                 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
1378                 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
1379                 break;
1380         default:
1381                 return -EINVAL;
1382         }
1383
1384         mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
1385         mc_cg_config |= 0x0000000F;
1386         cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
1387         PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
1388
1389         return 0;
1390 }
1391
1392 /**
1393 * Call SMC to reset S0/S1 to S1 and Reset SMIO to initial value
1394 *
1395 * @param    hwmgr  the address of the powerplay hardware manager.
1396 * @return   if success then 0;
1397 */
1398 static int fiji_reset_to_default(struct pp_hwmgr *hwmgr)
1399 {
1400         return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_ResetToDefaults);
1401 }
1402
1403 /**
1404 * Initial switch from ARB F0->F1
1405 *
1406 * @param    hwmgr  the address of the powerplay hardware manager.
1407 * @return   always 0
1408 * This function is to be called from the SetPowerState table.
1409 */
1410 static int fiji_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
1411 {
1412         return fiji_copy_and_switch_arb_sets(hwmgr,
1413                         MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
1414 }
1415
1416 static int fiji_force_switch_to_arbf0(struct pp_hwmgr *hwmgr)
1417 {
1418         uint32_t tmp;
1419
1420         tmp = (cgs_read_ind_register(hwmgr->device,
1421                         CGS_IND_REG__SMC, ixSMC_SCRATCH9) &
1422                         0x0000ff00) >> 8;
1423
1424         if (tmp == MC_CG_ARB_FREQ_F0)
1425                 return 0;
1426
1427         return fiji_copy_and_switch_arb_sets(hwmgr,
1428                         tmp, MC_CG_ARB_FREQ_F0);
1429 }
1430
1431 static int fiji_reset_single_dpm_table(struct pp_hwmgr *hwmgr,
1432                 struct fiji_single_dpm_table *dpm_table, uint32_t count)
1433 {
1434         int i;
1435         PP_ASSERT_WITH_CODE(count <= MAX_REGULAR_DPM_NUMBER,
1436                         "Fatal error, can not set up single DPM table entries "
1437                         "to exceed max number!",);
1438
1439         dpm_table->count = count;
1440         for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++)
1441                 dpm_table->dpm_levels[i].enabled = false;
1442
1443         return 0;
1444 }
1445
1446 static void fiji_setup_pcie_table_entry(
1447         struct fiji_single_dpm_table *dpm_table,
1448         uint32_t index, uint32_t pcie_gen,
1449         uint32_t pcie_lanes)
1450 {
1451         dpm_table->dpm_levels[index].value = pcie_gen;
1452         dpm_table->dpm_levels[index].param1 = pcie_lanes;
1453         dpm_table->dpm_levels[index].enabled = true;
1454 }
1455
1456 static int fiji_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
1457 {
1458         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1459         struct phm_ppt_v1_information *table_info =
1460                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1461         struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1462         uint32_t i, max_entry;
1463
1464         PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
1465                         data->use_pcie_power_saving_levels), "No pcie performance levels!",
1466                         return -EINVAL);
1467
1468         if (data->use_pcie_performance_levels &&
1469                         !data->use_pcie_power_saving_levels) {
1470                 data->pcie_gen_power_saving = data->pcie_gen_performance;
1471                 data->pcie_lane_power_saving = data->pcie_lane_performance;
1472         } else if (!data->use_pcie_performance_levels &&
1473                         data->use_pcie_power_saving_levels) {
1474                 data->pcie_gen_performance = data->pcie_gen_power_saving;
1475                 data->pcie_lane_performance = data->pcie_lane_power_saving;
1476         }
1477
1478         fiji_reset_single_dpm_table(hwmgr,
1479                         &data->dpm_table.pcie_speed_table, SMU73_MAX_LEVELS_LINK);
1480
1481         if (pcie_table != NULL) {
1482                 /* max_entry is used to make sure we reserve one PCIE level
1483                  * for boot level (fix for A+A PSPP issue).
1484                  * If PCIE table from PPTable have ULV entry + 8 entries,
1485                  * then ignore the last entry.*/
1486                 max_entry = (SMU73_MAX_LEVELS_LINK < pcie_table->count) ?
1487                                 SMU73_MAX_LEVELS_LINK : pcie_table->count;
1488                 for (i = 1; i < max_entry; i++) {
1489                         fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
1490                                         get_pcie_gen_support(data->pcie_gen_cap,
1491                                                         pcie_table->entries[i].gen_speed),
1492                                         get_pcie_lane_support(data->pcie_lane_cap,
1493                                                         pcie_table->entries[i].lane_width));
1494                 }
1495                 data->dpm_table.pcie_speed_table.count = max_entry - 1;
1496         } else {
1497                 /* Hardcode Pcie Table */
1498                 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
1499                                 get_pcie_gen_support(data->pcie_gen_cap,
1500                                                 PP_Min_PCIEGen),
1501                                 get_pcie_lane_support(data->pcie_lane_cap,
1502                                                 PP_Max_PCIELane));
1503                 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
1504                                 get_pcie_gen_support(data->pcie_gen_cap,
1505                                                 PP_Min_PCIEGen),
1506                                 get_pcie_lane_support(data->pcie_lane_cap,
1507                                                 PP_Max_PCIELane));
1508                 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
1509                                 get_pcie_gen_support(data->pcie_gen_cap,
1510                                                 PP_Max_PCIEGen),
1511                                 get_pcie_lane_support(data->pcie_lane_cap,
1512                                                 PP_Max_PCIELane));
1513                 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
1514                                 get_pcie_gen_support(data->pcie_gen_cap,
1515                                                 PP_Max_PCIEGen),
1516                                 get_pcie_lane_support(data->pcie_lane_cap,
1517                                                 PP_Max_PCIELane));
1518                 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
1519                                 get_pcie_gen_support(data->pcie_gen_cap,
1520                                                 PP_Max_PCIEGen),
1521                                 get_pcie_lane_support(data->pcie_lane_cap,
1522                                                 PP_Max_PCIELane));
1523                 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
1524                                 get_pcie_gen_support(data->pcie_gen_cap,
1525                                                 PP_Max_PCIEGen),
1526                                 get_pcie_lane_support(data->pcie_lane_cap,
1527                                                 PP_Max_PCIELane));
1528
1529                 data->dpm_table.pcie_speed_table.count = 6;
1530         }
1531         /* Populate last level for boot PCIE level, but do not increment count. */
1532         fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
1533                         data->dpm_table.pcie_speed_table.count,
1534                         get_pcie_gen_support(data->pcie_gen_cap,
1535                                         PP_Min_PCIEGen),
1536                         get_pcie_lane_support(data->pcie_lane_cap,
1537                                         PP_Max_PCIELane));
1538
1539         return 0;
1540 }
1541
1542 /*
1543  * This function is to initalize all DPM state tables
1544  * for SMU7 based on the dependency table.
1545  * Dynamic state patching function will then trim these
1546  * state tables to the allowed range based
1547  * on the power policy or external client requests,
1548  * such as UVD request, etc.
1549  */
1550 static int fiji_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1551 {
1552         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1553         struct phm_ppt_v1_information *table_info =
1554                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1555         uint32_t i;
1556
1557         struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
1558                         table_info->vdd_dep_on_sclk;
1559         struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
1560                         table_info->vdd_dep_on_mclk;
1561
1562         PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
1563                         "SCLK dependency table is missing. This table is mandatory",
1564                         return -EINVAL);
1565         PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
1566                         "SCLK dependency table has to have is missing. "
1567                         "This table is mandatory",
1568                         return -EINVAL);
1569
1570         PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
1571                         "MCLK dependency table is missing. This table is mandatory",
1572                         return -EINVAL);
1573         PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
1574                         "MCLK dependency table has to have is missing. "
1575                         "This table is mandatory",
1576                         return -EINVAL);
1577
1578         /* clear the state table to reset everything to default */
1579         fiji_reset_single_dpm_table(hwmgr,
1580                         &data->dpm_table.sclk_table, SMU73_MAX_LEVELS_GRAPHICS);
1581         fiji_reset_single_dpm_table(hwmgr,
1582                         &data->dpm_table.mclk_table, SMU73_MAX_LEVELS_MEMORY);
1583
1584         /* Initialize Sclk DPM table based on allow Sclk values */
1585         data->dpm_table.sclk_table.count = 0;
1586         for (i = 0; i < dep_sclk_table->count; i++) {
1587                 if (i == 0 || data->dpm_table.sclk_table.dpm_levels
1588                                 [data->dpm_table.sclk_table.count - 1].value !=
1589                                                 dep_sclk_table->entries[i].clk) {
1590                         data->dpm_table.sclk_table.dpm_levels
1591                         [data->dpm_table.sclk_table.count].value =
1592                                         dep_sclk_table->entries[i].clk;
1593                         data->dpm_table.sclk_table.dpm_levels
1594                         [data->dpm_table.sclk_table.count].enabled =
1595                                         (i == 0) ? true : false;
1596                         data->dpm_table.sclk_table.count++;
1597                 }
1598         }
1599
1600         /* Initialize Mclk DPM table based on allow Mclk values */
1601         data->dpm_table.mclk_table.count = 0;
1602         for (i=0; i<dep_mclk_table->count; i++) {
1603                 if ( i==0 || data->dpm_table.mclk_table.dpm_levels
1604                                 [data->dpm_table.mclk_table.count - 1].value !=
1605                                                 dep_mclk_table->entries[i].clk) {
1606                         data->dpm_table.mclk_table.dpm_levels
1607                         [data->dpm_table.mclk_table.count].value =
1608                                         dep_mclk_table->entries[i].clk;
1609                         data->dpm_table.mclk_table.dpm_levels
1610                         [data->dpm_table.mclk_table.count].enabled =
1611                                         (i == 0) ? true : false;
1612                         data->dpm_table.mclk_table.count++;
1613                 }
1614         }
1615
1616         /* setup PCIE gen speed levels */
1617         fiji_setup_default_pcie_table(hwmgr);
1618
1619         /* save a copy of the default DPM table */
1620         memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1621                         sizeof(struct fiji_dpm_table));
1622
1623         return 0;
1624 }
1625
1626 /**
1627  * @brief PhwFiji_GetVoltageOrder
1628  *  Returns index of requested voltage record in lookup(table)
1629  * @param lookup_table - lookup list to search in
1630  * @param voltage - voltage to look for
1631  * @return 0 on success
1632  */
1633 uint8_t fiji_get_voltage_index(
1634                 struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
1635 {
1636         uint8_t count = (uint8_t) (lookup_table->count);
1637         uint8_t i;
1638
1639         PP_ASSERT_WITH_CODE((NULL != lookup_table),
1640                         "Lookup Table empty.", return 0);
1641         PP_ASSERT_WITH_CODE((0 != count),
1642                         "Lookup Table empty.", return 0);
1643
1644         for (i = 0; i < lookup_table->count; i++) {
1645                 /* find first voltage equal or bigger than requested */
1646                 if (lookup_table->entries[i].us_vdd >= voltage)
1647                         return i;
1648         }
1649         /* voltage is bigger than max voltage in the table */
1650         return i - 1;
1651 }
1652
1653 /**
1654 * Preparation of vddc and vddgfx CAC tables for SMC.
1655 *
1656 * @param    hwmgr  the address of the hardware manager
1657 * @param    table  the SMC DPM table structure to be populated
1658 * @return   always 0
1659 */
1660 static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
1661                 struct SMU73_Discrete_DpmTable *table)
1662 {
1663         uint32_t count;
1664         uint8_t index;
1665         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1666         struct phm_ppt_v1_information *table_info =
1667                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1668         struct phm_ppt_v1_voltage_lookup_table *lookup_table =
1669                         table_info->vddc_lookup_table;
1670         /* tables is already swapped, so in order to use the value from it,
1671          * we need to swap it back.
1672          * We are populating vddc CAC data to BapmVddc table
1673          * in split and merged mode
1674          */
1675         for( count = 0; count<lookup_table->count; count++) {
1676                 index = fiji_get_voltage_index(lookup_table,
1677                                 data->vddc_voltage_table.entries[count].value);
1678                 table->BapmVddcVidLoSidd[count] = (uint8_t) ((6200 -
1679                                 (lookup_table->entries[index].us_cac_low *
1680                                                 VOLTAGE_SCALE)) / 25);
1681                 table->BapmVddcVidHiSidd[count] = (uint8_t) ((6200 -
1682                                 (lookup_table->entries[index].us_cac_high *
1683                                                 VOLTAGE_SCALE)) / 25);
1684         }
1685
1686         return 0;
1687 }
1688
1689 /**
1690 * Preparation of voltage tables for SMC.
1691 *
1692 * @param    hwmgr   the address of the hardware manager
1693 * @param    table   the SMC DPM table structure to be populated
1694 * @return   always  0
1695 */
1696
1697 int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
1698                 struct SMU73_Discrete_DpmTable *table)
1699 {
1700         int result;
1701
1702         result = fiji_populate_cac_table(hwmgr, table);
1703         PP_ASSERT_WITH_CODE(0 == result,
1704                         "can not populate CAC voltage tables to SMC",
1705                         return -EINVAL);
1706
1707         return 0;
1708 }
1709
1710 static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
1711                 struct SMU73_Discrete_Ulv *state)
1712 {
1713         int result = 0;
1714         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1715         struct phm_ppt_v1_information *table_info =
1716                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1717
1718         state->CcPwrDynRm = 0;
1719         state->CcPwrDynRm1 = 0;
1720
1721         state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
1722         state->VddcOffsetVid = (uint8_t)( table_info->us_ulv_voltage_offset *
1723                         VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1 );
1724
1725         state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1;
1726
1727         if (!result) {
1728                 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
1729                 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
1730                 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
1731         }
1732         return result;
1733 }
1734
1735 static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
1736                 struct SMU73_Discrete_DpmTable *table)
1737 {
1738         return fiji_populate_ulv_level(hwmgr, &table->Ulv);
1739 }
1740
1741 static int32_t fiji_get_dpm_level_enable_mask_value(
1742                 struct fiji_single_dpm_table* dpm_table)
1743 {
1744         int32_t i;
1745         int32_t mask = 0;
1746
1747         for (i = dpm_table->count; i > 0; i--) {
1748                 mask = mask << 1;
1749                 if (dpm_table->dpm_levels[i - 1].enabled)
1750                         mask |= 0x1;
1751                 else
1752                         mask &= 0xFFFFFFFE;
1753         }
1754         return mask;
1755 }
1756
1757 static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
1758                 struct SMU73_Discrete_DpmTable *table)
1759 {
1760         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1761         struct fiji_dpm_table *dpm_table = &data->dpm_table;
1762         int i;
1763
1764         /* Index (dpm_table->pcie_speed_table.count)
1765          * is reserved for PCIE boot level. */
1766         for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1767                 table->LinkLevel[i].PcieGenSpeed  =
1768                                 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1769                 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
1770                                 dpm_table->pcie_speed_table.dpm_levels[i].param1);
1771                 table->LinkLevel[i].EnabledForActivity = 1;
1772                 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
1773                 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
1774                 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
1775         }
1776
1777         data->smc_state_table.LinkLevelCount =
1778                         (uint8_t)dpm_table->pcie_speed_table.count;
1779         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1780                         fiji_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1781
1782         return 0;
1783 }
1784
1785 /**
1786 * Calculates the SCLK dividers using the provided engine clock
1787 *
1788 * @param    hwmgr  the address of the hardware manager
1789 * @param    clock  the engine clock to use to populate the structure
1790 * @param    sclk   the SMC SCLK structure to be populated
1791 */
1792 static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
1793                 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
1794 {
1795         const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1796         struct pp_atomctrl_clock_dividers_vi dividers;
1797         uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1798         uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1799         uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1800         uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1801         uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1802         uint32_t ref_clock;
1803         uint32_t ref_divider;
1804         uint32_t fbdiv;
1805         int result;
1806
1807         /* get the engine clock dividers for this clock value */
1808         result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
1809
1810         PP_ASSERT_WITH_CODE(result == 0,
1811                         "Error retrieving Engine Clock dividers from VBIOS.",
1812                         return result);
1813
1814         /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
1815         ref_clock = atomctrl_get_reference_clock(hwmgr);
1816         ref_divider = 1 + dividers.uc_pll_ref_div;
1817
1818         /* low 14 bits is fraction and high 12 bits is divider */
1819         fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
1820
1821         /* SPLL_FUNC_CNTL setup */
1822         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1823                         SPLL_REF_DIV, dividers.uc_pll_ref_div);
1824         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1825                         SPLL_PDIV_A,  dividers.uc_pll_post_div);
1826
1827         /* SPLL_FUNC_CNTL_3 setup*/
1828         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
1829                         SPLL_FB_DIV, fbdiv);
1830
1831         /* set to use fractional accumulation*/
1832         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
1833                         SPLL_DITHEN, 1);
1834
1835         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1836                                 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
1837                 struct pp_atomctrl_internal_ss_info ssInfo;
1838
1839                 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
1840                 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
1841                                 vco_freq, &ssInfo)) {
1842                         /*
1843                          * ss_info.speed_spectrum_percentage -- in unit of 0.01%
1844                          * ss_info.speed_spectrum_rate -- in unit of khz
1845                          *
1846                          * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
1847                          */
1848                         uint32_t clk_s = ref_clock * 5 /
1849                                         (ref_divider * ssInfo.speed_spectrum_rate);
1850                         /* clkv = 2 * D * fbdiv / NS */
1851                         uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
1852                                         fbdiv / (clk_s * 10000);
1853
1854                         cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
1855                                         CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
1856                         cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
1857                                         CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
1858                         cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
1859                                         CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
1860                 }
1861         }
1862
1863         sclk->SclkFrequency        = clock;
1864         sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
1865         sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
1866         sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
1867         sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
1868         sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
1869
1870         return 0;
1871 }
1872
1873 static uint16_t fiji_find_closest_vddci(struct pp_hwmgr *hwmgr, uint16_t vddci)
1874 {
1875         uint32_t  i;
1876         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1877         struct pp_atomctrl_voltage_table *vddci_table =
1878                         &(data->vddci_voltage_table);
1879
1880         for (i = 0; i < vddci_table->count; i++) {
1881                 if (vddci_table->entries[i].value >= vddci)
1882                         return vddci_table->entries[i].value;
1883         }
1884
1885         PP_ASSERT_WITH_CODE(false,
1886                         "VDDCI is larger than max VDDCI in VDDCI Voltage Table!",
1887                         return vddci_table->entries[i-1].value);
1888 }
1889
1890 static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
1891                 struct phm_ppt_v1_clock_voltage_dependency_table* dep_table,
1892                 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
1893 {
1894         uint32_t i;
1895         uint16_t vddci;
1896         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1897
1898         *voltage = *mvdd = 0;
1899
1900         /* clock - voltage dependency table is empty table */
1901         if (dep_table->count == 0)
1902                 return -EINVAL;
1903
1904         for (i = 0; i < dep_table->count; i++) {
1905                 /* find first sclk bigger than request */
1906                 if (dep_table->entries[i].clk >= clock) {
1907                         *voltage |= (dep_table->entries[i].vddc *
1908                                         VOLTAGE_SCALE) << VDDC_SHIFT;
1909                         if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
1910                                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
1911                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
1912                         else if (dep_table->entries[i].vddci)
1913                                 *voltage |= (dep_table->entries[i].vddci *
1914                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
1915                         else {
1916                                 vddci = fiji_find_closest_vddci(hwmgr,
1917                                                 (dep_table->entries[i].vddc -
1918                                                                 (uint16_t)data->vddc_vddci_delta));
1919                                 *voltage |= (vddci * VOLTAGE_SCALE) <<  VDDCI_SHIFT;
1920                         }
1921
1922                         if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1923                                 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
1924                                         VOLTAGE_SCALE;
1925                         else if (dep_table->entries[i].mvdd)
1926                                 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
1927                                         VOLTAGE_SCALE;
1928
1929                         *voltage |= 1 << PHASES_SHIFT;
1930                         return 0;
1931                 }
1932         }
1933
1934         /* sclk is bigger than max sclk in the dependence table */
1935         *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1936
1937         if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
1938                 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
1939                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
1940         else if (dep_table->entries[i-1].vddci) {
1941                 vddci = fiji_find_closest_vddci(hwmgr,
1942                                 (dep_table->entries[i].vddc -
1943                                                 (uint16_t)data->vddc_vddci_delta));
1944                 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1945         }
1946
1947         if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1948                 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
1949         else if (dep_table->entries[i].mvdd)
1950                 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
1951
1952         return 0;
1953 }
1954
1955 static uint8_t fiji_get_sleep_divider_id_from_clock(uint32_t clock,
1956                 uint32_t clock_insr)
1957 {
1958         uint8_t i;
1959         uint32_t temp;
1960         uint32_t min = max(clock_insr, (uint32_t)FIJI_MINIMUM_ENGINE_CLOCK);
1961
1962         PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0);
1963         for (i = FIJI_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
1964                 temp = clock >> i;
1965
1966                 if (temp >= min || i == 0)
1967                         break;
1968         }
1969         return i;
1970 }
1971 /**
1972 * Populates single SMC SCLK structure using the provided engine clock
1973 *
1974 * @param    hwmgr      the address of the hardware manager
1975 * @param    clock the engine clock to use to populate the structure
1976 * @param    sclk        the SMC SCLK structure to be populated
1977 */
1978
1979 static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
1980                 uint32_t clock, uint16_t sclk_al_threshold,
1981                 struct SMU73_Discrete_GraphicsLevel *level)
1982 {
1983         int result;
1984         /* PP_Clocks minClocks; */
1985         uint32_t threshold, mvdd;
1986         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1987         struct phm_ppt_v1_information *table_info =
1988                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
1989
1990         result = fiji_calculate_sclk_params(hwmgr, clock, level);
1991
1992         /* populate graphics levels */
1993         result = fiji_get_dependency_volt_by_clk(hwmgr,
1994                         table_info->vdd_dep_on_sclk, clock,
1995                         &level->MinVoltage, &mvdd);
1996         PP_ASSERT_WITH_CODE((0 == result),
1997                         "can not find VDDC voltage value for "
1998                         "VDDC engine clock dependency table",
1999                         return result);
2000
2001         level->SclkFrequency = clock;
2002         level->ActivityLevel = sclk_al_threshold;
2003         level->CcPwrDynRm = 0;
2004         level->CcPwrDynRm1 = 0;
2005         level->EnabledForActivity = 0;
2006         level->EnabledForThrottle = 1;
2007         level->UpHyst = 10;
2008         level->DownHyst = 0;
2009         level->VoltageDownHyst = 0;
2010         level->PowerThrottle = 0;
2011
2012         threshold = clock * data->fast_watermark_threshold / 100;
2013
2014
2015         data->display_timing.min_clock_in_sr = hwmgr->display_config.min_core_set_clock_in_sr;
2016
2017         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
2018                 level->DeepSleepDivId = fiji_get_sleep_divider_id_from_clock(clock,
2019                                                                 hwmgr->display_config.min_core_set_clock_in_sr);
2020
2021
2022         /* Default to slow, highest DPM level will be
2023          * set to PPSMC_DISPLAY_WATERMARK_LOW later.
2024          */
2025         level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2026
2027         CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
2028         CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
2029         CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
2030         CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
2031         CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
2032         CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
2033         CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
2034         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
2035         CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
2036
2037         return 0;
2038 }
2039 /**
2040 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
2041 *
2042 * @param    hwmgr      the address of the hardware manager
2043 */
2044 static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
2045 {
2046         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2047         struct fiji_dpm_table *dpm_table = &data->dpm_table;
2048         struct phm_ppt_v1_information *table_info =
2049                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2050         struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
2051         uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
2052         int result = 0;
2053         uint32_t array = data->dpm_table_start +
2054                         offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
2055         uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
2056                         SMU73_MAX_LEVELS_GRAPHICS;
2057         struct SMU73_Discrete_GraphicsLevel *levels =
2058                         data->smc_state_table.GraphicsLevel;
2059         uint32_t i, max_entry;
2060         uint8_t hightest_pcie_level_enabled = 0,
2061                         lowest_pcie_level_enabled = 0,
2062                         mid_pcie_level_enabled = 0,
2063                         count = 0;
2064
2065         for (i = 0; i < dpm_table->sclk_table.count; i++) {
2066                 result = fiji_populate_single_graphic_level(hwmgr,
2067                                 dpm_table->sclk_table.dpm_levels[i].value,
2068                                 (uint16_t)data->activity_target[i],
2069                                 &levels[i]);
2070                 if (result)
2071                         return result;
2072
2073                 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
2074                 if (i > 1)
2075                         levels[i].DeepSleepDivId = 0;
2076         }
2077
2078         /* Only enable level 0 for now.*/
2079         levels[0].EnabledForActivity = 1;
2080
2081         /* set highest level watermark to high */
2082         levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
2083                         PPSMC_DISPLAY_WATERMARK_HIGH;
2084
2085         data->smc_state_table.GraphicsDpmLevelCount =
2086                         (uint8_t)dpm_table->sclk_table.count;
2087         data->dpm_level_enable_mask.sclk_dpm_enable_mask =
2088                         fiji_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
2089
2090         if (pcie_table != NULL) {
2091                 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
2092                                 "There must be 1 or more PCIE levels defined in PPTable.",
2093                                 return -EINVAL);
2094                 max_entry = pcie_entry_cnt - 1;
2095                 for (i = 0; i < dpm_table->sclk_table.count; i++)
2096                         levels[i].pcieDpmLevel =
2097                                         (uint8_t) ((i < max_entry)? i : max_entry);
2098         } else {
2099                 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2100                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2101                                                 (1 << (hightest_pcie_level_enabled + 1))) != 0 ))
2102                         hightest_pcie_level_enabled++;
2103
2104                 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2105                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2106                                                 (1 << lowest_pcie_level_enabled)) == 0 ))
2107                         lowest_pcie_level_enabled++;
2108
2109                 while ((count < hightest_pcie_level_enabled) &&
2110                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2111                                                 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0 ))
2112                         count++;
2113
2114                 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1+ count) <
2115                                 hightest_pcie_level_enabled?
2116                                                 (lowest_pcie_level_enabled + 1 + count) :
2117                                                 hightest_pcie_level_enabled;
2118
2119                 /* set pcieDpmLevel to hightest_pcie_level_enabled */
2120                 for(i = 2; i < dpm_table->sclk_table.count; i++)
2121                         levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
2122
2123                 /* set pcieDpmLevel to lowest_pcie_level_enabled */
2124                 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
2125
2126                 /* set pcieDpmLevel to mid_pcie_level_enabled */
2127                 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
2128         }
2129         /* level count will send to smc once at init smc table and never change */
2130         result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
2131                         (uint32_t)array_size, data->sram_end);
2132
2133         return result;
2134 }
2135
2136 /**
2137  * MCLK Frequency Ratio
2138  * SEQ_CG_RESP  Bit[31:24] - 0x0
2139  * Bit[27:24] \96 DDR3 Frequency ratio
2140  * 0x0 <= 100MHz,       450 < 0x8 <= 500MHz
2141  * 100 < 0x1 <= 150MHz,       500 < 0x9 <= 550MHz
2142  * 150 < 0x2 <= 200MHz,       550 < 0xA <= 600MHz
2143  * 200 < 0x3 <= 250MHz,       600 < 0xB <= 650MHz
2144  * 250 < 0x4 <= 300MHz,       650 < 0xC <= 700MHz
2145  * 300 < 0x5 <= 350MHz,       700 < 0xD <= 750MHz
2146  * 350 < 0x6 <= 400MHz,       750 < 0xE <= 800MHz
2147  * 400 < 0x7 <= 450MHz,       800 < 0xF
2148  */
2149 static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
2150 {
2151         if (mem_clock <= 10000) return 0x0;
2152         if (mem_clock <= 15000) return 0x1;
2153         if (mem_clock <= 20000) return 0x2;
2154         if (mem_clock <= 25000) return 0x3;
2155         if (mem_clock <= 30000) return 0x4;
2156         if (mem_clock <= 35000) return 0x5;
2157         if (mem_clock <= 40000) return 0x6;
2158         if (mem_clock <= 45000) return 0x7;
2159         if (mem_clock <= 50000) return 0x8;
2160         if (mem_clock <= 55000) return 0x9;
2161         if (mem_clock <= 60000) return 0xa;
2162         if (mem_clock <= 65000) return 0xb;
2163         if (mem_clock <= 70000) return 0xc;
2164         if (mem_clock <= 75000) return 0xd;
2165         if (mem_clock <= 80000) return 0xe;
2166         /* mem_clock > 800MHz */
2167         return 0xf;
2168 }
2169
2170 /**
2171 * Populates the SMC MCLK structure using the provided memory clock
2172 *
2173 * @param    hwmgr   the address of the hardware manager
2174 * @param    clock   the memory clock to use to populate the structure
2175 * @param    sclk    the SMC SCLK structure to be populated
2176 */
2177 static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
2178     uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
2179 {
2180         struct pp_atomctrl_memory_clock_param mem_param;
2181         int result;
2182
2183         result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
2184         PP_ASSERT_WITH_CODE((0 == result),
2185                         "Failed to get Memory PLL Dividers.",);
2186
2187         /* Save the result data to outpupt memory level structure */
2188         mclk->MclkFrequency   = clock;
2189         mclk->MclkDivider     = (uint8_t)mem_param.mpll_post_divider;
2190         mclk->FreqRange       = fiji_get_mclk_frequency_ratio(clock);
2191
2192         return result;
2193 }
2194
2195 static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
2196                 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
2197 {
2198         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2199         struct phm_ppt_v1_information *table_info =
2200                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2201         int result = 0;
2202
2203         if (table_info->vdd_dep_on_mclk) {
2204                 result = fiji_get_dependency_volt_by_clk(hwmgr,
2205                                 table_info->vdd_dep_on_mclk, clock,
2206                                 &mem_level->MinVoltage, &mem_level->MinMvdd);
2207                 PP_ASSERT_WITH_CODE((0 == result),
2208                                 "can not find MinVddc voltage value from memory "
2209                                 "VDDC voltage dependency table", return result);
2210         }
2211
2212         mem_level->EnabledForThrottle = 1;
2213         mem_level->EnabledForActivity = 0;
2214         mem_level->UpHyst = 0;
2215         mem_level->DownHyst = 100;
2216         mem_level->VoltageDownHyst = 0;
2217         mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
2218         mem_level->StutterEnable = false;
2219
2220         mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2221
2222         /* enable stutter mode if all the follow condition applied
2223          * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
2224          * &(data->DisplayTiming.numExistingDisplays));
2225          */
2226         data->display_timing.num_existing_displays = 1;
2227
2228         if ((data->mclk_stutter_mode_threshold) &&
2229                 (clock <= data->mclk_stutter_mode_threshold) &&
2230                 (!data->is_uvd_enabled) &&
2231                 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
2232                                 STUTTER_ENABLE) & 0x1))
2233                 mem_level->StutterEnable = true;
2234
2235         result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
2236         if (!result) {
2237                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
2238                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
2239                 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
2240                 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
2241         }
2242         return result;
2243 }
2244
2245 /**
2246 * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
2247 *
2248 * @param    hwmgr      the address of the hardware manager
2249 */
2250 static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
2251 {
2252         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2253         struct fiji_dpm_table *dpm_table = &data->dpm_table;
2254         int result;
2255         /* populate MCLK dpm table to SMU7 */
2256         uint32_t array = data->dpm_table_start +
2257                         offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
2258         uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
2259                         SMU73_MAX_LEVELS_MEMORY;
2260         struct SMU73_Discrete_MemoryLevel *levels =
2261                         data->smc_state_table.MemoryLevel;
2262         uint32_t i;
2263
2264         for (i = 0; i < dpm_table->mclk_table.count; i++) {
2265                 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
2266                                 "can not populate memory level as memory clock is zero",
2267                                 return -EINVAL);
2268                 result = fiji_populate_single_memory_level(hwmgr,
2269                                 dpm_table->mclk_table.dpm_levels[i].value,
2270                                 &levels[i]);
2271                 if (result)
2272                         return result;
2273         }
2274
2275         /* Only enable level 0 for now. */
2276         levels[0].EnabledForActivity = 1;
2277
2278         /* in order to prevent MC activity from stutter mode to push DPM up.
2279          * the UVD change complements this by putting the MCLK in
2280          * a higher state by default such that we are not effected by
2281          * up threshold or and MCLK DPM latency.
2282          */
2283         levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
2284         CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
2285
2286         data->smc_state_table.MemoryDpmLevelCount =
2287                         (uint8_t)dpm_table->mclk_table.count;
2288         data->dpm_level_enable_mask.mclk_dpm_enable_mask =
2289                         fiji_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
2290         /* set highest level watermark to high */
2291         levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
2292                         PPSMC_DISPLAY_WATERMARK_HIGH;
2293
2294         /* level count will send to smc once at init smc table and never change */
2295         result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
2296                         (uint32_t)array_size, data->sram_end);
2297
2298         return result;
2299 }
2300
2301 /**
2302 * Populates the SMC MVDD structure using the provided memory clock.
2303 *
2304 * @param    hwmgr      the address of the hardware manager
2305 * @param    mclk        the MCLK value to be used in the decision if MVDD should be high or low.
2306 * @param    voltage     the SMC VOLTAGE structure to be populated
2307 */
2308 int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
2309                 uint32_t mclk, SMIO_Pattern *smio_pat)
2310 {
2311         const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2312         struct phm_ppt_v1_information *table_info =
2313                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2314         uint32_t i = 0;
2315
2316         if (FIJI_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
2317                 /* find mvdd value which clock is more than request */
2318                 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
2319                         if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
2320                                 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
2321                                 break;
2322                         }
2323                 }
2324                 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
2325                                 "MVDD Voltage is outside the supported range.",
2326                                 return -EINVAL);
2327         } else
2328                 return -EINVAL;
2329
2330         return 0;
2331 }
2332
2333 static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
2334                 SMU73_Discrete_DpmTable *table)
2335 {
2336         int result = 0;
2337         const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2338         struct phm_ppt_v1_information *table_info =
2339                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2340         struct pp_atomctrl_clock_dividers_vi dividers;
2341         SMIO_Pattern vol_level;
2342         uint32_t mvdd;
2343         uint16_t us_mvdd;
2344         uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2345         uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
2346
2347         table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
2348
2349         if (!data->sclk_dpm_key_disabled) {
2350                 /* Get MinVoltage and Frequency from DPM0,
2351                  * already converted to SMC_UL */
2352                 table->ACPILevel.SclkFrequency =
2353                                 data->dpm_table.sclk_table.dpm_levels[0].value;
2354                 result = fiji_get_dependency_volt_by_clk(hwmgr,
2355                                 table_info->vdd_dep_on_sclk,
2356                                 table->ACPILevel.SclkFrequency,
2357                                 &table->ACPILevel.MinVoltage, &mvdd);
2358                 PP_ASSERT_WITH_CODE((0 == result),
2359                                 "Cannot find ACPI VDDC voltage value "
2360                                 "in Clock Dependency Table",);
2361         } else {
2362                 table->ACPILevel.SclkFrequency =
2363                                 data->vbios_boot_state.sclk_bootup_value;
2364                 table->ACPILevel.MinVoltage =
2365                                 data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
2366         }
2367
2368         /* get the engine clock dividers for this clock value */
2369         result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
2370                         table->ACPILevel.SclkFrequency,  &dividers);
2371         PP_ASSERT_WITH_CODE(result == 0,
2372                         "Error retrieving Engine Clock dividers from VBIOS.",
2373                         return result);
2374
2375         table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
2376         table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2377         table->ACPILevel.DeepSleepDivId = 0;
2378
2379         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
2380                         SPLL_PWRON, 0);
2381         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
2382                         SPLL_RESET, 1);
2383         spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
2384                         SCLK_MUX_SEL, 4);
2385
2386         table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
2387         table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
2388         table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2389         table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2390         table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2391         table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2392         table->ACPILevel.CcPwrDynRm = 0;
2393         table->ACPILevel.CcPwrDynRm1 = 0;
2394
2395         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
2396         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
2397         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
2398         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
2399         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
2400         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
2401         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
2402         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
2403         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
2404         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
2405         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
2406
2407         if (!data->mclk_dpm_key_disabled) {
2408                 /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
2409                 table->MemoryACPILevel.MclkFrequency =
2410                                 data->dpm_table.mclk_table.dpm_levels[0].value;
2411                 result = fiji_get_dependency_volt_by_clk(hwmgr,
2412                                 table_info->vdd_dep_on_mclk,
2413                                 table->MemoryACPILevel.MclkFrequency,
2414                                 &table->MemoryACPILevel.MinVoltage, &mvdd);
2415                 PP_ASSERT_WITH_CODE((0 == result),
2416                                 "Cannot find ACPI VDDCI voltage value "
2417                                 "in Clock Dependency Table",);
2418         } else {
2419                 table->MemoryACPILevel.MclkFrequency =
2420                                 data->vbios_boot_state.mclk_bootup_value;
2421                 table->MemoryACPILevel.MinVoltage =
2422                                 data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
2423         }
2424
2425         us_mvdd = 0;
2426         if ((FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
2427                         (data->mclk_dpm_key_disabled))
2428                 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
2429         else {
2430                 if (!fiji_populate_mvdd_value(hwmgr,
2431                                 data->dpm_table.mclk_table.dpm_levels[0].value,
2432                                 &vol_level))
2433                         us_mvdd = vol_level.Voltage;
2434         }
2435
2436         table->MemoryACPILevel.MinMvdd =
2437                         PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
2438
2439         table->MemoryACPILevel.EnabledForThrottle = 0;
2440         table->MemoryACPILevel.EnabledForActivity = 0;
2441         table->MemoryACPILevel.UpHyst = 0;
2442         table->MemoryACPILevel.DownHyst = 100;
2443         table->MemoryACPILevel.VoltageDownHyst = 0;
2444         table->MemoryACPILevel.ActivityLevel =
2445                         PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
2446
2447         table->MemoryACPILevel.StutterEnable = false;
2448         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
2449         CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
2450
2451         return result;
2452 }
2453
2454 static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
2455                 SMU73_Discrete_DpmTable *table)
2456 {
2457         int result = -EINVAL;
2458         uint8_t count;
2459         struct pp_atomctrl_clock_dividers_vi dividers;
2460         struct phm_ppt_v1_information *table_info =
2461                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2462         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2463                         table_info->mm_dep_table;
2464         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2465
2466         table->VceLevelCount = (uint8_t)(mm_table->count);
2467         table->VceBootLevel = 0;
2468
2469         for(count = 0; count < table->VceLevelCount; count++) {
2470                 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
2471                 table->VceLevel[count].MinVoltage = 0;
2472                 table->VceLevel[count].MinVoltage |=
2473                                 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
2474                 table->VceLevel[count].MinVoltage |=
2475                                 ((mm_table->entries[count].vddc - data->vddc_vddci_delta) *
2476                                                 VOLTAGE_SCALE) << VDDCI_SHIFT;
2477                 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2478
2479                 /*retrieve divider value for VBIOS */
2480                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2481                                 table->VceLevel[count].Frequency, &dividers);
2482                 PP_ASSERT_WITH_CODE((0 == result),
2483                                 "can not find divide id for VCE engine clock",
2484                                 return result);
2485
2486                 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2487
2488                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
2489                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
2490         }
2491         return result;
2492 }
2493
2494 static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
2495                 SMU73_Discrete_DpmTable *table)
2496 {
2497         int result = -EINVAL;
2498         uint8_t count;
2499         struct pp_atomctrl_clock_dividers_vi dividers;
2500         struct phm_ppt_v1_information *table_info =
2501                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2502         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2503                         table_info->mm_dep_table;
2504         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2505
2506         table->AcpLevelCount = (uint8_t)(mm_table->count);
2507         table->AcpBootLevel = 0;
2508
2509         for (count = 0; count < table->AcpLevelCount; count++) {
2510                 table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
2511                 table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2512                                 VOLTAGE_SCALE) << VDDC_SHIFT;
2513                 table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2514                                 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2515                 table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2516
2517                 /* retrieve divider value for VBIOS */
2518                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2519                                 table->AcpLevel[count].Frequency, &dividers);
2520                 PP_ASSERT_WITH_CODE((0 == result),
2521                                 "can not find divide id for engine clock", return result);
2522
2523                 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2524
2525                 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
2526                 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
2527         }
2528         return result;
2529 }
2530
2531 static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
2532                 SMU73_Discrete_DpmTable *table)
2533 {
2534         int result = -EINVAL;
2535         uint8_t count;
2536         struct pp_atomctrl_clock_dividers_vi dividers;
2537         struct phm_ppt_v1_information *table_info =
2538                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2539         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2540                         table_info->mm_dep_table;
2541         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2542
2543         table->SamuBootLevel = 0;
2544         table->SamuLevelCount = (uint8_t)(mm_table->count);
2545
2546         for (count = 0; count < table->SamuLevelCount; count++) {
2547                 /* not sure whether we need evclk or not */
2548                 table->SamuLevel[count].MinVoltage = 0;
2549                 table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
2550                 table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2551                                 VOLTAGE_SCALE) << VDDC_SHIFT;
2552                 table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2553                                 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2554                 table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2555
2556                 /* retrieve divider value for VBIOS */
2557                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2558                                 table->SamuLevel[count].Frequency, &dividers);
2559                 PP_ASSERT_WITH_CODE((0 == result),
2560                                 "can not find divide id for samu clock", return result);
2561
2562                 table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2563
2564                 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
2565                 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
2566         }
2567         return result;
2568 }
2569
2570 static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
2571                 int32_t eng_clock, int32_t mem_clock,
2572                 struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
2573 {
2574         uint32_t dram_timing;
2575         uint32_t dram_timing2;
2576         uint32_t burstTime;
2577         ULONG state, trrds, trrdl;
2578         int result;
2579
2580         result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
2581                         eng_clock, mem_clock);
2582         PP_ASSERT_WITH_CODE(result == 0,
2583                         "Error calling VBIOS to set DRAM_TIMING.", return result);
2584
2585         dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
2586         dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
2587         burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
2588
2589         state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
2590         trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
2591         trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
2592
2593         arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
2594         arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
2595         arb_regs->McArbBurstTime   = (uint8_t)burstTime;
2596         arb_regs->TRRDS            = (uint8_t)trrds;
2597         arb_regs->TRRDL            = (uint8_t)trrdl;
2598
2599         return 0;
2600 }
2601
2602 static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
2603 {
2604         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2605         struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
2606         uint32_t i, j;
2607         int result = 0;
2608
2609         for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
2610                 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
2611                         result = fiji_populate_memory_timing_parameters(hwmgr,
2612                                         data->dpm_table.sclk_table.dpm_levels[i].value,
2613                                         data->dpm_table.mclk_table.dpm_levels[j].value,
2614                                         &arb_regs.entries[i][j]);
2615                         if (result)
2616                                 break;
2617                 }
2618         }
2619
2620         if (!result)
2621                 result = fiji_copy_bytes_to_smc(
2622                                 hwmgr->smumgr,
2623                                 data->arb_table_start,
2624                                 (uint8_t *)&arb_regs,
2625                                 sizeof(SMU73_Discrete_MCArbDramTimingTable),
2626                                 data->sram_end);
2627         return result;
2628 }
2629
2630 static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
2631                 struct SMU73_Discrete_DpmTable *table)
2632 {
2633         int result = -EINVAL;
2634         uint8_t count;
2635         struct pp_atomctrl_clock_dividers_vi dividers;
2636         struct phm_ppt_v1_information *table_info =
2637                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2638         struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2639                         table_info->mm_dep_table;
2640         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2641
2642         table->UvdLevelCount = (uint8_t)(mm_table->count);
2643         table->UvdBootLevel = 0;
2644
2645         for (count = 0; count < table->UvdLevelCount; count++) {
2646                 table->UvdLevel[count].MinVoltage = 0;
2647                 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
2648                 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
2649                 table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2650                                 VOLTAGE_SCALE) << VDDC_SHIFT;
2651                 table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2652                                 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2653                 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2654
2655                 /* retrieve divider value for VBIOS */
2656                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2657                                 table->UvdLevel[count].VclkFrequency, &dividers);
2658                 PP_ASSERT_WITH_CODE((0 == result),
2659                                 "can not find divide id for Vclk clock", return result);
2660
2661                 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
2662
2663                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2664                                 table->UvdLevel[count].DclkFrequency, &dividers);
2665                 PP_ASSERT_WITH_CODE((0 == result),
2666                                 "can not find divide id for Dclk clock", return result);
2667
2668                 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
2669
2670                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
2671                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
2672                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
2673
2674         }
2675         return result;
2676 }
2677
2678 static int fiji_find_boot_level(struct fiji_single_dpm_table *table,
2679                 uint32_t value, uint32_t *boot_level)
2680 {
2681         int result = -EINVAL;
2682         uint32_t i;
2683
2684         for (i = 0; i < table->count; i++) {
2685                 if (value == table->dpm_levels[i].value) {
2686                         *boot_level = i;
2687                         result = 0;
2688                 }
2689         }
2690         return result;
2691 }
2692
2693 static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
2694                 struct SMU73_Discrete_DpmTable *table)
2695 {
2696         int result = 0;
2697         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2698
2699         table->GraphicsBootLevel = 0;
2700         table->MemoryBootLevel = 0;
2701
2702         /* find boot level from dpm table */
2703         result = fiji_find_boot_level(&(data->dpm_table.sclk_table),
2704                         data->vbios_boot_state.sclk_bootup_value,
2705                         (uint32_t *)&(table->GraphicsBootLevel));
2706
2707         result = fiji_find_boot_level(&(data->dpm_table.mclk_table),
2708                         data->vbios_boot_state.mclk_bootup_value,
2709                         (uint32_t *)&(table->MemoryBootLevel));
2710
2711         table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
2712                         VOLTAGE_SCALE;
2713         table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
2714                         VOLTAGE_SCALE;
2715         table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
2716                         VOLTAGE_SCALE;
2717
2718         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
2719         CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
2720         CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
2721
2722         return 0;
2723 }
2724
2725 static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
2726 {
2727         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2728         struct phm_ppt_v1_information *table_info =
2729                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2730         uint8_t count, level;
2731
2732         count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
2733         for (level = 0; level < count; level++) {
2734                 if(table_info->vdd_dep_on_sclk->entries[level].clk >=
2735                                 data->vbios_boot_state.sclk_bootup_value) {
2736                         data->smc_state_table.GraphicsBootLevel = level;
2737                         break;
2738                 }
2739         }
2740
2741         count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
2742         for (level = 0; level < count; level++) {
2743                 if(table_info->vdd_dep_on_mclk->entries[level].clk >=
2744                                 data->vbios_boot_state.mclk_bootup_value) {
2745                         data->smc_state_table.MemoryBootLevel = level;
2746                         break;
2747                 }
2748         }
2749
2750         return 0;
2751 }
2752
2753 static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
2754 {
2755         uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
2756                         volt_with_cks, value;
2757         uint16_t clock_freq_u16;
2758         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2759         uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
2760                         volt_offset = 0;
2761         struct phm_ppt_v1_information *table_info =
2762                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2763         struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
2764                         table_info->vdd_dep_on_sclk;
2765
2766         stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
2767
2768         /* Read SMU_Eefuse to read and calculate RO and determine
2769          * if the part is SS or FF. if RO >= 1660MHz, part is FF.
2770          */
2771         efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2772                         ixSMU_EFUSE_0 + (146 * 4));
2773         efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2774                         ixSMU_EFUSE_0 + (148 * 4));
2775         efuse &= 0xFF000000;
2776         efuse = efuse >> 24;
2777         efuse2 &= 0xF;
2778
2779         if (efuse2 == 1)
2780                 ro = (2300 - 1350) * efuse / 255 + 1350;
2781         else
2782                 ro = (2500 - 1000) * efuse / 255 + 1000;
2783
2784         if (ro >= 1660)
2785                 type = 0;
2786         else
2787                 type = 1;
2788
2789         /* Populate Stretch amount */
2790         data->smc_state_table.ClockStretcherAmount = stretch_amount;
2791
2792         /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
2793         for (i = 0; i < sclk_table->count; i++) {
2794                 data->smc_state_table.Sclk_CKS_masterEn0_7 |=
2795                                 sclk_table->entries[i].cks_enable << i;
2796                 volt_without_cks = (uint32_t)((14041 *
2797                         (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
2798                         (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
2799                 volt_with_cks = (uint32_t)((13946 *
2800                         (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
2801                         (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
2802                 if (volt_without_cks >= volt_with_cks)
2803                         volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
2804                                         sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
2805                 data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
2806         }
2807
2808         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2809                         STRETCH_ENABLE, 0x0);
2810         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2811                         masterReset, 0x1);
2812         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2813                         staticEnable, 0x1);
2814         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2815                         masterReset, 0x0);
2816
2817         /* Populate CKS Lookup Table */
2818         if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
2819                 stretch_amount2 = 0;
2820         else if (stretch_amount == 3 || stretch_amount == 4)
2821                 stretch_amount2 = 1;
2822         else {
2823                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2824                                 PHM_PlatformCaps_ClockStretcher);
2825                 PP_ASSERT_WITH_CODE(false,
2826                                 "Stretch Amount in PPTable not supported\n",
2827                                 return -EINVAL);
2828         }
2829
2830         value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2831                         ixPWR_CKS_CNTL);
2832         value &= 0xFFC2FF87;
2833         data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
2834                         fiji_clock_stretcher_lookup_table[stretch_amount2][0];
2835         data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
2836                         fiji_clock_stretcher_lookup_table[stretch_amount2][1];
2837         clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(data->smc_state_table.
2838                         GraphicsLevel[data->smc_state_table.GraphicsDpmLevelCount - 1].
2839                         SclkFrequency) / 100);
2840         if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
2841                         clock_freq_u16 &&
2842             fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
2843                         clock_freq_u16) {
2844                 /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
2845                 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
2846                 /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
2847                 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
2848                 /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
2849                 value |= (fiji_clock_stretch_amount_conversion
2850                                 [fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
2851                                  [stretch_amount]) << 3;
2852         }
2853         CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
2854                         CKS_LOOKUPTableEntry[0].minFreq);
2855         CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
2856                         CKS_LOOKUPTableEntry[0].maxFreq);
2857         data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
2858                         fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
2859         data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
2860                         (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
2861
2862         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2863                         ixPWR_CKS_CNTL, value);
2864
2865         /* Populate DDT Lookup Table */
2866         for (i = 0; i < 4; i++) {
2867                 /* Assign the minimum and maximum VID stored
2868                  * in the last row of Clock Stretcher Voltage Table.
2869                  */
2870                 data->smc_state_table.ClockStretcherDataTable.
2871                 ClockStretcherDataTableEntry[i].minVID =
2872                                 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
2873                 data->smc_state_table.ClockStretcherDataTable.
2874                 ClockStretcherDataTableEntry[i].maxVID =
2875                                 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
2876                 /* Loop through each SCLK and check the frequency
2877                  * to see if it lies within the frequency for clock stretcher.
2878                  */
2879                 for (j = 0; j < data->smc_state_table.GraphicsDpmLevelCount; j++) {
2880                         cks_setting = 0;
2881                         clock_freq = PP_SMC_TO_HOST_UL(
2882                                         data->smc_state_table.GraphicsLevel[j].SclkFrequency);
2883                         /* Check the allowed frequency against the sclk level[j].
2884                          *  Sclk's endianness has already been converted,
2885                          *  and it's in 10Khz unit,
2886                          *  as opposed to Data table, which is in Mhz unit.
2887                          */
2888                         if (clock_freq >=
2889                                         (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
2890                                 cks_setting |= 0x2;
2891                                 if (clock_freq <
2892                                                 (fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
2893                                         cks_setting |= 0x1;
2894                         }
2895                         data->smc_state_table.ClockStretcherDataTable.
2896                         ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
2897                 }
2898                 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.
2899                                 ClockStretcherDataTable.
2900                                 ClockStretcherDataTableEntry[i].setting);
2901         }
2902
2903         value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
2904         value &= 0xFFFFFFFE;
2905         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
2906
2907         return 0;
2908 }
2909
2910 /**
2911 * Populates the SMC VRConfig field in DPM table.
2912 *
2913 * @param    hwmgr   the address of the hardware manager
2914 * @param    table   the SMC DPM table structure to be populated
2915 * @return   always 0
2916 */
2917 static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
2918                 struct SMU73_Discrete_DpmTable *table)
2919 {
2920         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2921         uint16_t config;
2922
2923         config = VR_MERGED_WITH_VDDC;
2924         table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
2925
2926         /* Set Vddc Voltage Controller */
2927         if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
2928                 config = VR_SVI2_PLANE_1;
2929                 table->VRConfig |= config;
2930         } else {
2931                 PP_ASSERT_WITH_CODE(false,
2932                                 "VDDC should be on SVI2 control in merged mode!",);
2933         }
2934         /* Set Vddci Voltage Controller */
2935         if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
2936                 config = VR_SVI2_PLANE_2;  /* only in merged mode */
2937                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2938         } else if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
2939                 config = VR_SMIO_PATTERN_1;
2940                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2941         } else {
2942                 config = VR_STATIC_VOLTAGE;
2943                 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2944         }
2945         /* Set Mvdd Voltage Controller */
2946         if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
2947                 config = VR_SVI2_PLANE_2;
2948                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2949         } else if(FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
2950                 config = VR_SMIO_PATTERN_2;
2951                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2952         } else {
2953                 config = VR_STATIC_VOLTAGE;
2954                 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2955         }
2956
2957         return 0;
2958 }
2959
2960 /**
2961 * Initializes the SMC table and uploads it
2962 *
2963 * @param    hwmgr  the address of the powerplay hardware manager.
2964 * @param    pInput  the pointer to input data (PowerState)
2965 * @return   always 0
2966 */
2967 static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
2968 {
2969         int result;
2970         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2971         struct phm_ppt_v1_information *table_info =
2972                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
2973         struct SMU73_Discrete_DpmTable *table = &(data->smc_state_table);
2974         const struct fiji_ulv_parm *ulv = &(data->ulv);
2975         uint8_t i;
2976         struct pp_atomctrl_gpio_pin_assignment gpio_pin;
2977
2978         result = fiji_setup_default_dpm_tables(hwmgr);
2979         PP_ASSERT_WITH_CODE(0 == result,
2980                         "Failed to setup default DPM tables!", return result);
2981
2982         if(FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control)
2983                 fiji_populate_smc_voltage_tables(hwmgr, table);
2984
2985         table->SystemFlags = 0;
2986
2987         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2988                         PHM_PlatformCaps_AutomaticDCTransition))
2989                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2990
2991         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2992                         PHM_PlatformCaps_StepVddc))
2993                 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2994
2995         if (data->is_memory_gddr5)
2996                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2997
2998         if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) {
2999                 result = fiji_populate_ulv_state(hwmgr, table);
3000                 PP_ASSERT_WITH_CODE(0 == result,
3001                                 "Failed to initialize ULV state!", return result);
3002                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3003                                 ixCG_ULV_PARAMETER, ulv->cg_ulv_parameter);
3004         }
3005
3006         result = fiji_populate_smc_link_level(hwmgr, table);
3007         PP_ASSERT_WITH_CODE(0 == result,
3008                         "Failed to initialize Link Level!", return result);
3009
3010         result = fiji_populate_all_graphic_levels(hwmgr);
3011         PP_ASSERT_WITH_CODE(0 == result,
3012                         "Failed to initialize Graphics Level!", return result);
3013
3014         result = fiji_populate_all_memory_levels(hwmgr);
3015         PP_ASSERT_WITH_CODE(0 == result,
3016                         "Failed to initialize Memory Level!", return result);
3017
3018         result = fiji_populate_smc_acpi_level(hwmgr, table);
3019         PP_ASSERT_WITH_CODE(0 == result,
3020                         "Failed to initialize ACPI Level!", return result);
3021
3022         result = fiji_populate_smc_vce_level(hwmgr, table);
3023         PP_ASSERT_WITH_CODE(0 == result,
3024                         "Failed to initialize VCE Level!", return result);
3025
3026         result = fiji_populate_smc_acp_level(hwmgr, table);
3027         PP_ASSERT_WITH_CODE(0 == result,
3028                         "Failed to initialize ACP Level!", return result);
3029
3030         result = fiji_populate_smc_samu_level(hwmgr, table);
3031         PP_ASSERT_WITH_CODE(0 == result,
3032                         "Failed to initialize SAMU Level!", return result);
3033
3034         /* Since only the initial state is completely set up at this point
3035          * (the other states are just copies of the boot state) we only
3036          * need to populate the  ARB settings for the initial state.
3037          */
3038         result = fiji_program_memory_timing_parameters(hwmgr);
3039         PP_ASSERT_WITH_CODE(0 == result,
3040                         "Failed to Write ARB settings for the initial state.", return result);
3041
3042         result = fiji_populate_smc_uvd_level(hwmgr, table);
3043         PP_ASSERT_WITH_CODE(0 == result,
3044                         "Failed to initialize UVD Level!", return result);
3045
3046         result = fiji_populate_smc_boot_level(hwmgr, table);
3047         PP_ASSERT_WITH_CODE(0 == result,
3048                         "Failed to initialize Boot Level!", return result);
3049
3050         result = fiji_populate_smc_initailial_state(hwmgr);
3051         PP_ASSERT_WITH_CODE(0 == result,
3052                         "Failed to initialize Boot State!", return result);
3053
3054         result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
3055         PP_ASSERT_WITH_CODE(0 == result,
3056                         "Failed to populate BAPM Parameters!", return result);
3057
3058         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3059                         PHM_PlatformCaps_ClockStretcher)) {
3060                 result = fiji_populate_clock_stretcher_data_table(hwmgr);
3061                 PP_ASSERT_WITH_CODE(0 == result,
3062                                 "Failed to populate Clock Stretcher Data Table!",
3063                                 return result);
3064         }
3065
3066         table->GraphicsVoltageChangeEnable  = 1;
3067         table->GraphicsThermThrottleEnable  = 1;
3068         table->GraphicsInterval = 1;
3069         table->VoltageInterval  = 1;
3070         table->ThermalInterval  = 1;
3071         table->TemperatureLimitHigh =
3072                         table_info->cac_dtp_table->usTargetOperatingTemp *
3073                         FIJI_Q88_FORMAT_CONVERSION_UNIT;
3074         table->TemperatureLimitLow  =
3075                         (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
3076                         FIJI_Q88_FORMAT_CONVERSION_UNIT;
3077         table->MemoryVoltageChangeEnable = 1;
3078         table->MemoryInterval = 1;
3079         table->VoltageResponseTime = 0;
3080         table->PhaseResponseTime = 0;
3081         table->MemoryThermThrottleEnable = 1;
3082         table->PCIeBootLinkLevel = 0;      /* 0:Gen1 1:Gen2 2:Gen3*/
3083         table->PCIeGenInterval = 1;
3084         table->VRConfig = 0;
3085
3086         result = fiji_populate_vr_config(hwmgr, table);
3087         PP_ASSERT_WITH_CODE(0 == result,
3088                         "Failed to populate VRConfig setting!", return result);
3089
3090         table->ThermGpio = 17;
3091         table->SclkStepSize = 0x4000;
3092
3093         if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
3094                 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
3095                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3096                                 PHM_PlatformCaps_RegulatorHot);
3097         } else {
3098                 table->VRHotGpio = FIJI_UNUSED_GPIO_PIN;
3099                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3100                                 PHM_PlatformCaps_RegulatorHot);
3101         }
3102
3103         if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
3104                         &gpio_pin)) {
3105                 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
3106                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3107                                 PHM_PlatformCaps_AutomaticDCTransition);
3108         } else {
3109                 table->AcDcGpio = FIJI_UNUSED_GPIO_PIN;
3110                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3111                                 PHM_PlatformCaps_AutomaticDCTransition);
3112         }
3113
3114         /* Thermal Output GPIO */
3115         if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
3116                         &gpio_pin)) {
3117                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3118                                 PHM_PlatformCaps_ThermalOutGPIO);
3119
3120                 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
3121
3122                 /* For porlarity read GPIOPAD_A with assigned Gpio pin
3123                  * since VBIOS will program this register to set 'inactive state',
3124                  * driver can then determine 'active state' from this and
3125                  * program SMU with correct polarity
3126                  */
3127                 table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
3128                                 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
3129                 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
3130
3131                 /* if required, combine VRHot/PCC with thermal out GPIO */
3132                 if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3133                                 PHM_PlatformCaps_RegulatorHot) &&
3134                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3135                                         PHM_PlatformCaps_CombinePCCWithThermalSignal))
3136                         table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
3137         } else {
3138                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3139                                 PHM_PlatformCaps_ThermalOutGPIO);
3140                 table->ThermOutGpio = 17;
3141                 table->ThermOutPolarity = 1;
3142                 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
3143         }
3144
3145         for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
3146                 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
3147
3148         CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
3149         CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
3150         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
3151         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
3152         CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
3153         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
3154         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
3155         CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
3156         CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
3157
3158         /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
3159         result = fiji_copy_bytes_to_smc(hwmgr->smumgr,
3160                         data->dpm_table_start +
3161                         offsetof(SMU73_Discrete_DpmTable, SystemFlags),
3162                         (uint8_t *)&(table->SystemFlags),
3163                         sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
3164                         data->sram_end);
3165         PP_ASSERT_WITH_CODE(0 == result,
3166                         "Failed to upload dpm data to SMC memory!", return result);
3167
3168         return 0;
3169 }
3170
3171 /**
3172 * Initialize the ARB DRAM timing table's index field.
3173 *
3174 * @param    hwmgr  the address of the powerplay hardware manager.
3175 * @return   always 0
3176 */
3177 static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
3178 {
3179         const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3180         uint32_t tmp;
3181         int result;
3182
3183         /* This is a read-modify-write on the first byte of the ARB table.
3184          * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
3185          * is the field 'current'.
3186          * This solution is ugly, but we never write the whole table only
3187          * individual fields in it.
3188          * In reality this field should not be in that structure
3189          * but in a soft register.
3190          */
3191         result = fiji_read_smc_sram_dword(hwmgr->smumgr,
3192                         data->arb_table_start, &tmp, data->sram_end);
3193
3194         if (result)
3195                 return result;
3196
3197         tmp &= 0x00FFFFFF;
3198         tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
3199
3200         return fiji_write_smc_sram_dword(hwmgr->smumgr,
3201                         data->arb_table_start,  tmp, data->sram_end);
3202 }
3203
3204 static int fiji_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
3205 {
3206         if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3207                         PHM_PlatformCaps_RegulatorHot))
3208                 return smum_send_msg_to_smc(hwmgr->smumgr,
3209                                 PPSMC_MSG_EnableVRHotGPIOInterrupt);
3210
3211         return 0;
3212 }
3213
3214 static int fiji_enable_sclk_control(struct pp_hwmgr *hwmgr)
3215 {
3216         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3217                         SCLK_PWRMGT_OFF, 0);
3218         return 0;
3219 }
3220
3221 static int fiji_enable_ulv(struct pp_hwmgr *hwmgr)
3222 {
3223         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3224         struct fiji_ulv_parm *ulv = &(data->ulv);
3225
3226         if (ulv->ulv_supported)
3227                 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV);
3228
3229         return 0;
3230 }
3231
3232 static int fiji_disable_ulv(struct pp_hwmgr *hwmgr)
3233 {
3234         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3235         struct fiji_ulv_parm *ulv = &(data->ulv);
3236
3237         if (ulv->ulv_supported)
3238                 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DisableULV);
3239
3240         return 0;
3241 }
3242
3243 static int fiji_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
3244 {
3245         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3246                         PHM_PlatformCaps_SclkDeepSleep)) {
3247                 if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON))
3248                         PP_ASSERT_WITH_CODE(false,
3249                                         "Attempt to enable Master Deep Sleep switch failed!",
3250                                         return -1);
3251         } else {
3252                 if (smum_send_msg_to_smc(hwmgr->smumgr,
3253                                 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
3254                         PP_ASSERT_WITH_CODE(false,
3255                                         "Attempt to disable Master Deep Sleep switch failed!",
3256                                         return -1);
3257                 }
3258         }
3259
3260         return 0;
3261 }
3262
3263 static int fiji_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
3264 {
3265         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3266                         PHM_PlatformCaps_SclkDeepSleep)) {
3267                 if (smum_send_msg_to_smc(hwmgr->smumgr,
3268                                 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
3269                         PP_ASSERT_WITH_CODE(false,
3270                                         "Attempt to disable Master Deep Sleep switch failed!",
3271                                         return -1);
3272                 }
3273         }
3274
3275         return 0;
3276 }
3277
3278 static int fiji_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3279 {
3280         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3281         uint32_t   val, val0, val2;
3282         uint32_t   i, cpl_cntl, cpl_threshold, mc_threshold;
3283
3284         /* enable SCLK dpm */
3285         if(!data->sclk_dpm_key_disabled)
3286                 PP_ASSERT_WITH_CODE(
3287                 (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
3288                 "Failed to enable SCLK DPM during DPM Start Function!",
3289                 return -1);
3290
3291         /* enable MCLK dpm */
3292         if(0 == data->mclk_dpm_key_disabled) {
3293                 cpl_threshold = 0;
3294                 mc_threshold = 0;
3295
3296                 /* Read per MCD tile (0 - 7) */
3297                 for (i = 0; i < 8; i++) {
3298                         PHM_WRITE_FIELD(hwmgr->device, MC_CONFIG_MCD, MC_RD_ENABLE, i);
3299                         val = cgs_read_register(hwmgr->device, mmMC_SEQ_RESERVE_0_S) & 0xf0000000;
3300                         if (0xf0000000 != val) {
3301                                 /* count number of MCQ that has channel(s) enabled */
3302                                 cpl_threshold++;
3303                                 /* only harvest 3 or full 4 supported */
3304                                 mc_threshold = val ? 3 : 4;
3305                         }
3306                 }
3307                 PP_ASSERT_WITH_CODE(0 != cpl_threshold,
3308                                 "Number of MCQ is zero!", return -EINVAL;);
3309
3310                 mc_threshold = ((mc_threshold & LCAC_MC0_CNTL__MC0_THRESHOLD_MASK) <<
3311                                 LCAC_MC0_CNTL__MC0_THRESHOLD__SHIFT) |
3312                                                 LCAC_MC0_CNTL__MC0_ENABLE_MASK;
3313                 cpl_cntl = ((cpl_threshold & LCAC_CPL_CNTL__CPL_THRESHOLD_MASK) <<
3314                                 LCAC_CPL_CNTL__CPL_THRESHOLD__SHIFT) |
3315                                                 LCAC_CPL_CNTL__CPL_ENABLE_MASK;
3316                 cpl_cntl = (cpl_cntl | (8 << LCAC_CPL_CNTL__CPL_BLOCK_ID__SHIFT));
3317                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3318                                 ixLCAC_MC0_CNTL, mc_threshold);
3319                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3320                                 ixLCAC_MC1_CNTL, mc_threshold);
3321                 if (8 == cpl_threshold) {
3322                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3323                                         ixLCAC_MC2_CNTL, mc_threshold);
3324                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3325                                         ixLCAC_MC3_CNTL, mc_threshold);
3326                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3327                                         ixLCAC_MC4_CNTL, mc_threshold);
3328                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3329                                         ixLCAC_MC5_CNTL, mc_threshold);
3330                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3331                                         ixLCAC_MC6_CNTL, mc_threshold);
3332                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3333                                         ixLCAC_MC7_CNTL, mc_threshold);
3334                 }
3335                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3336                                 ixLCAC_CPL_CNTL, cpl_cntl);
3337
3338                 udelay(5);
3339
3340                 mc_threshold = mc_threshold |
3341                                 (1 << LCAC_MC0_CNTL__MC0_SIGNAL_ID__SHIFT);
3342                 cpl_cntl = cpl_cntl | (1 << LCAC_CPL_CNTL__CPL_SIGNAL_ID__SHIFT);
3343                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3344                                 ixLCAC_MC0_CNTL, mc_threshold);
3345                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3346                                 ixLCAC_MC1_CNTL, mc_threshold);
3347                 if (8 == cpl_threshold) {
3348                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3349                                         ixLCAC_MC2_CNTL, mc_threshold);
3350                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3351                                         ixLCAC_MC3_CNTL, mc_threshold);
3352                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3353                                         ixLCAC_MC4_CNTL, mc_threshold);
3354                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3355                                         ixLCAC_MC5_CNTL, mc_threshold);
3356                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3357                                         ixLCAC_MC6_CNTL, mc_threshold);
3358                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3359                                         ixLCAC_MC7_CNTL, mc_threshold);
3360                 }
3361                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3362                                 ixLCAC_CPL_CNTL, cpl_cntl);
3363
3364                 /* Program CAC_EN per MCD (0-7) Tile */
3365                 val0 = val = cgs_read_register(hwmgr->device, mmMC_CONFIG_MCD);
3366                 val &= ~(MC_CONFIG_MCD__MCD0_WR_ENABLE_MASK |
3367                                 MC_CONFIG_MCD__MCD1_WR_ENABLE_MASK |
3368                                 MC_CONFIG_MCD__MCD2_WR_ENABLE_MASK |
3369                                 MC_CONFIG_MCD__MCD3_WR_ENABLE_MASK |
3370                                 MC_CONFIG_MCD__MCD4_WR_ENABLE_MASK |
3371                                 MC_CONFIG_MCD__MCD5_WR_ENABLE_MASK |
3372                                 MC_CONFIG_MCD__MCD6_WR_ENABLE_MASK |
3373                                 MC_CONFIG_MCD__MCD7_WR_ENABLE_MASK |
3374                                 MC_CONFIG_MCD__MC_RD_ENABLE_MASK);
3375
3376                 for (i = 0; i < 8; i++) {
3377                         /* Enable MCD i Tile read & write */
3378                         val2  = (val | (i << MC_CONFIG_MCD__MC_RD_ENABLE__SHIFT) |
3379                                         (1 << i));
3380                         cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val2);
3381                         /* Enbale CAC_ON MCD i Tile */
3382                         val2 = cgs_read_register(hwmgr->device, mmMC_SEQ_CNTL);
3383                         val2 |= MC_SEQ_CNTL__CAC_EN_MASK;
3384                         cgs_write_register(hwmgr->device, mmMC_SEQ_CNTL, val2);
3385                 }
3386                 /* Set MC_CONFIG_MCD back to its default setting val0 */
3387                 cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val0);
3388
3389                 PP_ASSERT_WITH_CODE(
3390                                 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3391                                                 PPSMC_MSG_MCLKDPM_Enable)),
3392                                 "Failed to enable MCLK DPM during DPM Start Function!",
3393                                 return -1);
3394         }
3395         return 0;
3396 }
3397
3398 static int fiji_start_dpm(struct pp_hwmgr *hwmgr)
3399 {
3400         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3401
3402         /*enable general power management */
3403         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3404                         GLOBAL_PWRMGT_EN, 1);
3405         /* enable sclk deep sleep */
3406         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3407                         DYNAMIC_PM_EN, 1);
3408         /* prepare for PCIE DPM */
3409         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3410                         data->soft_regs_start + offsetof(SMU73_SoftRegisters,
3411                                         VoltageChangeTimeout), 0x1000);
3412         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
3413                         SWRST_COMMAND_1, RESETLC, 0x0);
3414
3415         PP_ASSERT_WITH_CODE(
3416                         (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3417                                         PPSMC_MSG_Voltage_Cntl_Enable)),
3418                         "Failed to enable voltage DPM during DPM Start Function!",
3419                         return -1);
3420
3421         if (fiji_enable_sclk_mclk_dpm(hwmgr)) {
3422                 printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!");
3423                 return -1;
3424         }
3425
3426         /* enable PCIE dpm */
3427         if(!data->pcie_dpm_key_disabled) {
3428                 PP_ASSERT_WITH_CODE(
3429                                 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3430                                                 PPSMC_MSG_PCIeDPM_Enable)),
3431                                 "Failed to enable pcie DPM during DPM Start Function!",
3432                                 return -1);
3433         }
3434
3435         return 0;
3436 }
3437
3438 static int fiji_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3439 {
3440         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3441
3442         /* disable SCLK dpm */
3443         if (!data->sclk_dpm_key_disabled)
3444                 PP_ASSERT_WITH_CODE(
3445                                 (smum_send_msg_to_smc(hwmgr->smumgr,
3446                                                 PPSMC_MSG_DPM_Disable) == 0),
3447                                 "Failed to disable SCLK DPM!",
3448                                 return -1);
3449
3450         /* disable MCLK dpm */
3451         if (!data->mclk_dpm_key_disabled) {
3452                 PP_ASSERT_WITH_CODE(
3453                                 (smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3454                                 PPSMC_MSG_MCLKDPM_SetEnabledMask, 1) == 0),
3455                                 "Failed to force MCLK DPM0!",
3456                                 return -1);
3457
3458                 PP_ASSERT_WITH_CODE(
3459                                 (smum_send_msg_to_smc(hwmgr->smumgr,
3460                                                 PPSMC_MSG_MCLKDPM_Disable) == 0),
3461                                 "Failed to disable MCLK DPM!",
3462                                 return -1);
3463         }
3464
3465         return 0;
3466 }
3467
3468 static int fiji_stop_dpm(struct pp_hwmgr *hwmgr)
3469 {
3470         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3471
3472         /* disable general power management */
3473         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3474                         GLOBAL_PWRMGT_EN, 0);
3475         /* disable sclk deep sleep */
3476         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3477                         DYNAMIC_PM_EN, 0);
3478
3479         /* disable PCIE dpm */
3480         if (!data->pcie_dpm_key_disabled) {
3481                 PP_ASSERT_WITH_CODE(
3482                                 (smum_send_msg_to_smc(hwmgr->smumgr,
3483                                                 PPSMC_MSG_PCIeDPM_Disable) == 0),
3484                                 "Failed to disable pcie DPM during DPM Stop Function!",
3485                                 return -1);
3486         }
3487
3488         if (fiji_disable_sclk_mclk_dpm(hwmgr)) {
3489                 printk(KERN_ERR "Failed to disable Sclk DPM and Mclk DPM!");
3490                 return -1;
3491         }
3492
3493         PP_ASSERT_WITH_CODE(
3494                         (smum_send_msg_to_smc(hwmgr->smumgr,
3495                                         PPSMC_MSG_Voltage_Cntl_Disable) == 0),
3496                         "Failed to disable voltage DPM during DPM Stop Function!",
3497                         return -1);
3498
3499         return 0;
3500 }
3501
3502 static void fiji_set_dpm_event_sources(struct pp_hwmgr *hwmgr,
3503                 uint32_t sources)
3504 {
3505         bool protection;
3506         enum DPM_EVENT_SRC src;
3507
3508         switch (sources) {
3509         default:
3510                 printk(KERN_ERR "Unknown throttling event sources.");
3511                 /* fall through */
3512         case 0:
3513                 protection = false;
3514                 /* src is unused */
3515                 break;
3516         case (1 << PHM_AutoThrottleSource_Thermal):
3517                 protection = true;
3518                 src = DPM_EVENT_SRC_DIGITAL;
3519                 break;
3520         case (1 << PHM_AutoThrottleSource_External):
3521                 protection = true;
3522                 src = DPM_EVENT_SRC_EXTERNAL;
3523                 break;
3524         case (1 << PHM_AutoThrottleSource_External) |
3525                         (1 << PHM_AutoThrottleSource_Thermal):
3526                 protection = true;
3527                 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
3528                 break;
3529         }
3530         /* Order matters - don't enable thermal protection for the wrong source. */
3531         if (protection) {
3532                 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
3533                                 DPM_EVENT_SRC, src);
3534                 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3535                                 THERMAL_PROTECTION_DIS,
3536                                 !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3537                                                 PHM_PlatformCaps_ThermalController));
3538         } else
3539                 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3540                                 THERMAL_PROTECTION_DIS, 1);
3541 }
3542
3543 static int fiji_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
3544                 PHM_AutoThrottleSource source)
3545 {
3546         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3547
3548         if (!(data->active_auto_throttle_sources & (1 << source))) {
3549                 data->active_auto_throttle_sources |= 1 << source;
3550                 fiji_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
3551         }
3552         return 0;
3553 }
3554
3555 static int fiji_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
3556 {
3557         return fiji_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
3558 }
3559
3560 static int fiji_disable_auto_throttle_source(struct pp_hwmgr *hwmgr,
3561                 PHM_AutoThrottleSource source)
3562 {
3563         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3564
3565         if (data->active_auto_throttle_sources & (1 << source)) {
3566                 data->active_auto_throttle_sources &= ~(1 << source);
3567                 fiji_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
3568         }
3569         return 0;
3570 }
3571
3572 static int fiji_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
3573 {
3574         return fiji_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
3575 }
3576
3577 static int fiji_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
3578 {
3579         int tmp_result, result = 0;
3580
3581         tmp_result = (!fiji_is_dpm_running(hwmgr))? 0 : -1;
3582         PP_ASSERT_WITH_CODE(result == 0,
3583                         "DPM is already running right now, no need to enable DPM!",
3584                         return 0);
3585
3586         if (fiji_voltage_control(hwmgr)) {
3587                 tmp_result = fiji_enable_voltage_control(hwmgr);
3588                 PP_ASSERT_WITH_CODE(tmp_result == 0,
3589                                 "Failed to enable voltage control!",
3590                                 result = tmp_result);
3591         }
3592
3593         if (fiji_voltage_control(hwmgr)) {
3594                 tmp_result = fiji_construct_voltage_tables(hwmgr);
3595                 PP_ASSERT_WITH_CODE((0 == tmp_result),
3596                                 "Failed to contruct voltage tables!",
3597                                 result = tmp_result);
3598         }
3599
3600         tmp_result = fiji_initialize_mc_reg_table(hwmgr);
3601         PP_ASSERT_WITH_CODE((0 == tmp_result),
3602                         "Failed to initialize MC reg table!", result = tmp_result);
3603
3604         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3605                         PHM_PlatformCaps_EngineSpreadSpectrumSupport))
3606                 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3607                                 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
3608
3609         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3610                         PHM_PlatformCaps_ThermalController))
3611                 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3612                                 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
3613
3614         tmp_result = fiji_program_static_screen_threshold_parameters(hwmgr);
3615         PP_ASSERT_WITH_CODE((0 == tmp_result),
3616                         "Failed to program static screen threshold parameters!",
3617                         result = tmp_result);
3618
3619         tmp_result = fiji_enable_display_gap(hwmgr);
3620         PP_ASSERT_WITH_CODE((0 == tmp_result),
3621                         "Failed to enable display gap!", result = tmp_result);
3622
3623         tmp_result = fiji_program_voting_clients(hwmgr);
3624         PP_ASSERT_WITH_CODE((0 == tmp_result),
3625                         "Failed to program voting clients!", result = tmp_result);
3626
3627         tmp_result = fiji_process_firmware_header(hwmgr);
3628         PP_ASSERT_WITH_CODE((0 == tmp_result),
3629                         "Failed to process firmware header!", result = tmp_result);
3630
3631         tmp_result = fiji_initial_switch_from_arbf0_to_f1(hwmgr);
3632         PP_ASSERT_WITH_CODE((0 == tmp_result),
3633                         "Failed to initialize switch from ArbF0 to F1!",
3634                         result = tmp_result);
3635
3636         tmp_result = fiji_init_smc_table(hwmgr);
3637         PP_ASSERT_WITH_CODE((0 == tmp_result),
3638                         "Failed to initialize SMC table!", result = tmp_result);
3639
3640         tmp_result = fiji_init_arb_table_index(hwmgr);
3641         PP_ASSERT_WITH_CODE((0 == tmp_result),
3642                         "Failed to initialize ARB table index!", result = tmp_result);
3643
3644         tmp_result = fiji_populate_pm_fuses(hwmgr);
3645         PP_ASSERT_WITH_CODE((0 == tmp_result),
3646                         "Failed to populate PM fuses!", result = tmp_result);
3647
3648         tmp_result = fiji_enable_vrhot_gpio_interrupt(hwmgr);
3649         PP_ASSERT_WITH_CODE((0 == tmp_result),
3650                         "Failed to enable VR hot GPIO interrupt!", result = tmp_result);
3651
3652         tmp_result = tonga_notify_smc_display_change(hwmgr, false);
3653         PP_ASSERT_WITH_CODE((0 == tmp_result),
3654                         "Failed to notify no display!", result = tmp_result);
3655
3656         tmp_result = fiji_enable_sclk_control(hwmgr);
3657         PP_ASSERT_WITH_CODE((0 == tmp_result),
3658                         "Failed to enable SCLK control!", result = tmp_result);
3659
3660         tmp_result = fiji_enable_ulv(hwmgr);
3661         PP_ASSERT_WITH_CODE((0 == tmp_result),
3662                         "Failed to enable ULV!", result = tmp_result);
3663
3664         tmp_result = fiji_enable_deep_sleep_master_switch(hwmgr);
3665         PP_ASSERT_WITH_CODE((0 == tmp_result),
3666                         "Failed to enable deep sleep master switch!", result = tmp_result);
3667
3668         tmp_result = fiji_start_dpm(hwmgr);
3669         PP_ASSERT_WITH_CODE((0 == tmp_result),
3670                         "Failed to start DPM!", result = tmp_result);
3671
3672         tmp_result = fiji_enable_smc_cac(hwmgr);
3673         PP_ASSERT_WITH_CODE((0 == tmp_result),
3674                         "Failed to enable SMC CAC!", result = tmp_result);
3675
3676         tmp_result = fiji_enable_power_containment(hwmgr);
3677         PP_ASSERT_WITH_CODE((0 == tmp_result),
3678                         "Failed to enable power containment!", result = tmp_result);
3679
3680         tmp_result = fiji_power_control_set_level(hwmgr);
3681         PP_ASSERT_WITH_CODE((0 == tmp_result),
3682                         "Failed to power control set level!", result = tmp_result);
3683
3684         tmp_result = fiji_enable_thermal_auto_throttle(hwmgr);
3685         PP_ASSERT_WITH_CODE((0 == tmp_result),
3686                         "Failed to enable thermal auto throttle!", result = tmp_result);
3687
3688         return result;
3689 }
3690
3691 static int fiji_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
3692 {
3693         int tmp_result, result = 0;
3694
3695         tmp_result = (fiji_is_dpm_running(hwmgr)) ? 0 : -1;
3696         PP_ASSERT_WITH_CODE(tmp_result == 0,
3697                         "DPM is not running right now, no need to disable DPM!",
3698                         return 0);
3699
3700         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3701                         PHM_PlatformCaps_ThermalController))
3702                 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3703                                 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1);
3704
3705         tmp_result = fiji_disable_power_containment(hwmgr);
3706         PP_ASSERT_WITH_CODE((tmp_result == 0),
3707                         "Failed to disable power containment!", result = tmp_result);
3708
3709         tmp_result = fiji_disable_smc_cac(hwmgr);
3710         PP_ASSERT_WITH_CODE((tmp_result == 0),
3711                         "Failed to disable SMC CAC!", result = tmp_result);
3712
3713         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3714                         CG_SPLL_SPREAD_SPECTRUM, SSEN, 0);
3715         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3716                         GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0);
3717
3718         tmp_result = fiji_disable_thermal_auto_throttle(hwmgr);
3719         PP_ASSERT_WITH_CODE((tmp_result == 0),
3720                         "Failed to disable thermal auto throttle!", result = tmp_result);
3721
3722         tmp_result = fiji_stop_dpm(hwmgr);
3723         PP_ASSERT_WITH_CODE((tmp_result == 0),
3724                         "Failed to stop DPM!", result = tmp_result);
3725
3726         tmp_result = fiji_disable_deep_sleep_master_switch(hwmgr);
3727         PP_ASSERT_WITH_CODE((tmp_result == 0),
3728                         "Failed to disable deep sleep master switch!", result = tmp_result);
3729
3730         tmp_result = fiji_disable_ulv(hwmgr);
3731         PP_ASSERT_WITH_CODE((tmp_result == 0),
3732                         "Failed to disable ULV!", result = tmp_result);
3733
3734         tmp_result = fiji_clear_voting_clients(hwmgr);
3735         PP_ASSERT_WITH_CODE((tmp_result == 0),
3736                         "Failed to clear voting clients!", result = tmp_result);
3737
3738         tmp_result = fiji_reset_to_default(hwmgr);
3739         PP_ASSERT_WITH_CODE((tmp_result == 0),
3740                         "Failed to reset to default!", result = tmp_result);
3741
3742         tmp_result = fiji_force_switch_to_arbf0(hwmgr);
3743         PP_ASSERT_WITH_CODE((tmp_result == 0),
3744                         "Failed to force to switch arbf0!", result = tmp_result);
3745
3746         return result;
3747 }
3748
3749 static int fiji_force_dpm_highest(struct pp_hwmgr *hwmgr)
3750 {
3751         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3752         uint32_t level, tmp;
3753
3754         if (!data->sclk_dpm_key_disabled) {
3755                 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3756                         level = 0;
3757                         tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3758                         while (tmp >>= 1)
3759                                 level++;
3760                         if (level)
3761                                 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3762                                                 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3763                                                 (1 << level));
3764                 }
3765         }
3766
3767         if (!data->mclk_dpm_key_disabled) {
3768                 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3769                         level = 0;
3770                         tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3771                         while (tmp >>= 1)
3772                                 level++;
3773                         if (level)
3774                                 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3775                                                 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3776                                                 (1 << level));
3777                 }
3778         }
3779
3780         if (!data->pcie_dpm_key_disabled) {
3781                 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3782                         level = 0;
3783                         tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3784                         while (tmp >>= 1)
3785                                 level++;
3786                         if (level)
3787                                 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3788                                                 PPSMC_MSG_PCIeDPM_ForceLevel,
3789                                                 (1 << level));
3790                 }
3791         }
3792         return 0;
3793 }
3794
3795 static int fiji_upload_dpmlevel_enable_mask(struct pp_hwmgr *hwmgr)
3796 {
3797         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3798
3799         phm_apply_dal_min_voltage_request(hwmgr);
3800
3801         if (!data->sclk_dpm_key_disabled) {
3802                 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
3803                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3804                                         PPSMC_MSG_SCLKDPM_SetEnabledMask,
3805                                         data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3806         }
3807         return 0;
3808 }
3809
3810 static int fiji_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3811 {
3812         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3813
3814         if (!fiji_is_dpm_running(hwmgr))
3815                 return -EINVAL;
3816
3817         if (!data->pcie_dpm_key_disabled) {
3818                 smum_send_msg_to_smc(hwmgr->smumgr,
3819                                 PPSMC_MSG_PCIeDPM_UnForceLevel);
3820         }
3821
3822         return fiji_upload_dpmlevel_enable_mask(hwmgr);
3823 }
3824
3825 static uint32_t fiji_get_lowest_enabled_level(
3826                 struct pp_hwmgr *hwmgr, uint32_t mask)
3827 {
3828         uint32_t level = 0;
3829
3830         while(0 == (mask & (1 << level)))
3831                 level++;
3832
3833         return level;
3834 }
3835
3836 static int fiji_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3837 {
3838         struct fiji_hwmgr *data =
3839                         (struct fiji_hwmgr *)(hwmgr->backend);
3840         uint32_t level;
3841
3842         if (!data->sclk_dpm_key_disabled)
3843                 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3844                         level = fiji_get_lowest_enabled_level(hwmgr,
3845                                                               data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3846                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3847                                                             PPSMC_MSG_SCLKDPM_SetEnabledMask,
3848                                                             (1 << level));
3849
3850         }
3851
3852         if (!data->mclk_dpm_key_disabled) {
3853                 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3854                         level = fiji_get_lowest_enabled_level(hwmgr,
3855                                                               data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3856                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3857                                                             PPSMC_MSG_MCLKDPM_SetEnabledMask,
3858                                                             (1 << level));
3859                 }
3860         }
3861
3862         if (!data->pcie_dpm_key_disabled) {
3863                 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3864                         level = fiji_get_lowest_enabled_level(hwmgr,
3865                                                               data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3866                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3867                                                             PPSMC_MSG_PCIeDPM_ForceLevel,
3868                                                             (1 << level));
3869                 }
3870         }
3871
3872         return 0;
3873
3874 }
3875 static int fiji_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
3876                                 enum amd_dpm_forced_level level)
3877 {
3878         int ret = 0;
3879
3880         switch (level) {
3881         case AMD_DPM_FORCED_LEVEL_HIGH:
3882                 ret = fiji_force_dpm_highest(hwmgr);
3883                 if (ret)
3884                         return ret;
3885                 break;
3886         case AMD_DPM_FORCED_LEVEL_LOW:
3887                 ret = fiji_force_dpm_lowest(hwmgr);
3888                 if (ret)
3889                         return ret;
3890                 break;
3891         case AMD_DPM_FORCED_LEVEL_AUTO:
3892                 ret = fiji_unforce_dpm_levels(hwmgr);
3893                 if (ret)
3894                         return ret;
3895                 break;
3896         default:
3897                 break;
3898         }
3899
3900         hwmgr->dpm_level = level;
3901
3902         return ret;
3903 }
3904
3905 static int fiji_get_power_state_size(struct pp_hwmgr *hwmgr)
3906 {
3907         return sizeof(struct fiji_power_state);
3908 }
3909
3910 static int fiji_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3911                 void *state, struct pp_power_state *power_state,
3912                 void *pp_table, uint32_t classification_flag)
3913 {
3914         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3915         struct fiji_power_state  *fiji_power_state =
3916                         (struct fiji_power_state *)(&(power_state->hardware));
3917         struct fiji_performance_level *performance_level;
3918         ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
3919         ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
3920                         (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3921         ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
3922                         (ATOM_Tonga_SCLK_Dependency_Table *)
3923                         (((unsigned long)powerplay_table) +
3924                                 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3925         ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
3926                         (ATOM_Tonga_MCLK_Dependency_Table *)
3927                         (((unsigned long)powerplay_table) +
3928                                 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3929
3930         /* The following fields are not initialized here: id orderedList allStatesList */
3931         power_state->classification.ui_label =
3932                         (le16_to_cpu(state_entry->usClassification) &
3933                         ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3934                         ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3935         power_state->classification.flags = classification_flag;
3936         /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
3937
3938         power_state->classification.temporary_state = false;
3939         power_state->classification.to_be_deleted = false;
3940
3941         power_state->validation.disallowOnDC =
3942                         (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3943                                         ATOM_Tonga_DISALLOW_ON_DC));
3944
3945         power_state->pcie.lanes = 0;
3946
3947         power_state->display.disableFrameModulation = false;
3948         power_state->display.limitRefreshrate = false;
3949         power_state->display.enableVariBright =
3950                         (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3951                                         ATOM_Tonga_ENABLE_VARIBRIGHT));
3952
3953         power_state->validation.supportedPowerLevels = 0;
3954         power_state->uvd_clocks.VCLK = 0;
3955         power_state->uvd_clocks.DCLK = 0;
3956         power_state->temperatures.min = 0;
3957         power_state->temperatures.max = 0;
3958
3959         performance_level = &(fiji_power_state->performance_levels
3960                         [fiji_power_state->performance_level_count++]);
3961
3962         PP_ASSERT_WITH_CODE(
3963                         (fiji_power_state->performance_level_count < SMU73_MAX_LEVELS_GRAPHICS),
3964                         "Performance levels exceeds SMC limit!",
3965                         return -1);
3966
3967         PP_ASSERT_WITH_CODE(
3968                         (fiji_power_state->performance_level_count <=
3969                                         hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3970                         "Performance levels exceeds Driver limit!",
3971                         return -1);
3972
3973         /* Performance levels are arranged from low to high. */
3974         performance_level->memory_clock = mclk_dep_table->entries
3975                         [state_entry->ucMemoryClockIndexLow].ulMclk;
3976         performance_level->engine_clock = sclk_dep_table->entries
3977                         [state_entry->ucEngineClockIndexLow].ulSclk;
3978         performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3979                         state_entry->ucPCIEGenLow);
3980         performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3981                         state_entry->ucPCIELaneHigh);
3982
3983         performance_level = &(fiji_power_state->performance_levels
3984                         [fiji_power_state->performance_level_count++]);
3985         performance_level->memory_clock = mclk_dep_table->entries
3986                         [state_entry->ucMemoryClockIndexHigh].ulMclk;
3987         performance_level->engine_clock = sclk_dep_table->entries
3988                         [state_entry->ucEngineClockIndexHigh].ulSclk;
3989         performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3990                         state_entry->ucPCIEGenHigh);
3991         performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3992                         state_entry->ucPCIELaneHigh);
3993
3994         return 0;
3995 }
3996
3997 static int fiji_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3998                 unsigned long entry_index, struct pp_power_state *state)
3999 {
4000         int result;
4001         struct fiji_power_state *ps;
4002         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4003         struct phm_ppt_v1_information *table_info =
4004                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
4005         struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
4006                         table_info->vdd_dep_on_mclk;
4007
4008         state->hardware.magic = PHM_VIslands_Magic;
4009
4010         ps = (struct fiji_power_state *)(&state->hardware);
4011
4012         result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state,
4013                         fiji_get_pp_table_entry_callback_func);
4014
4015         /* This is the earliest time we have all the dependency table and the VBIOS boot state
4016          * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
4017          * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
4018          */
4019         if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
4020                 if (dep_mclk_table->entries[0].clk !=
4021                                 data->vbios_boot_state.mclk_bootup_value)
4022                         printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
4023                                         "does not match VBIOS boot MCLK level");
4024                 if (dep_mclk_table->entries[0].vddci !=
4025                                 data->vbios_boot_state.vddci_bootup_value)
4026                         printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
4027                                         "does not match VBIOS boot VDDCI level");
4028         }
4029
4030         /* set DC compatible flag if this state supports DC */
4031         if (!state->validation.disallowOnDC)
4032                 ps->dc_compatible = true;
4033
4034         if (state->classification.flags & PP_StateClassificationFlag_ACPI)
4035                 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
4036
4037         ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
4038         ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
4039
4040         if (!result) {
4041                 uint32_t i;
4042
4043                 switch (state->classification.ui_label) {
4044                 case PP_StateUILabel_Performance:
4045                         data->use_pcie_performance_levels = true;
4046
4047                         for (i = 0; i < ps->performance_level_count; i++) {
4048                                 if (data->pcie_gen_performance.max <
4049                                                 ps->performance_levels[i].pcie_gen)
4050                                         data->pcie_gen_performance.max =
4051                                                         ps->performance_levels[i].pcie_gen;
4052
4053                                 if (data->pcie_gen_performance.min >
4054                                                 ps->performance_levels[i].pcie_gen)
4055                                         data->pcie_gen_performance.min =
4056                                                         ps->performance_levels[i].pcie_gen;
4057
4058                                 if (data->pcie_lane_performance.max <
4059                                                 ps->performance_levels[i].pcie_lane)
4060                                         data->pcie_lane_performance.max =
4061                                                         ps->performance_levels[i].pcie_lane;
4062
4063                                 if (data->pcie_lane_performance.min >
4064                                                 ps->performance_levels[i].pcie_lane)
4065                                         data->pcie_lane_performance.min =
4066                                                         ps->performance_levels[i].pcie_lane;
4067                         }
4068                         break;
4069                 case PP_StateUILabel_Battery:
4070                         data->use_pcie_power_saving_levels = true;
4071
4072                         for (i = 0; i < ps->performance_level_count; i++) {
4073                                 if (data->pcie_gen_power_saving.max <
4074                                                 ps->performance_levels[i].pcie_gen)
4075                                         data->pcie_gen_power_saving.max =
4076                                                         ps->performance_levels[i].pcie_gen;
4077
4078                                 if (data->pcie_gen_power_saving.min >
4079                                                 ps->performance_levels[i].pcie_gen)
4080                                         data->pcie_gen_power_saving.min =
4081                                                         ps->performance_levels[i].pcie_gen;
4082
4083                                 if (data->pcie_lane_power_saving.max <
4084                                                 ps->performance_levels[i].pcie_lane)
4085                                         data->pcie_lane_power_saving.max =
4086                                                         ps->performance_levels[i].pcie_lane;
4087
4088                                 if (data->pcie_lane_power_saving.min >
4089                                                 ps->performance_levels[i].pcie_lane)
4090                                         data->pcie_lane_power_saving.min =
4091                                                         ps->performance_levels[i].pcie_lane;
4092                         }
4093                         break;
4094                 default:
4095                         break;
4096                 }
4097         }
4098         return 0;
4099 }
4100
4101 static int fiji_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
4102                                 struct pp_power_state  *request_ps,
4103                         const struct pp_power_state *current_ps)
4104 {
4105         struct fiji_power_state *fiji_ps =
4106                                 cast_phw_fiji_power_state(&request_ps->hardware);
4107         uint32_t sclk;
4108         uint32_t mclk;
4109         struct PP_Clocks minimum_clocks = {0};
4110         bool disable_mclk_switching;
4111         bool disable_mclk_switching_for_frame_lock;
4112         struct cgs_display_info info = {0};
4113         const struct phm_clock_and_voltage_limits *max_limits;
4114         uint32_t i;
4115         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4116         struct phm_ppt_v1_information *table_info =
4117                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
4118         int32_t count;
4119         int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
4120
4121         data->battery_state = (PP_StateUILabel_Battery ==
4122                         request_ps->classification.ui_label);
4123
4124         PP_ASSERT_WITH_CODE(fiji_ps->performance_level_count == 2,
4125                                  "VI should always have 2 performance levels",);
4126
4127         max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
4128                         &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
4129                         &(hwmgr->dyn_state.max_clock_voltage_on_dc);
4130
4131         /* Cap clock DPM tables at DC MAX if it is in DC. */
4132         if (PP_PowerSource_DC == hwmgr->power_source) {
4133                 for (i = 0; i < fiji_ps->performance_level_count; i++) {
4134                         if (fiji_ps->performance_levels[i].memory_clock > max_limits->mclk)
4135                                 fiji_ps->performance_levels[i].memory_clock = max_limits->mclk;
4136                         if (fiji_ps->performance_levels[i].engine_clock > max_limits->sclk)
4137                                 fiji_ps->performance_levels[i].engine_clock = max_limits->sclk;
4138                 }
4139         }
4140
4141         fiji_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
4142         fiji_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
4143
4144         fiji_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
4145
4146         cgs_get_active_displays_info(hwmgr->device, &info);
4147
4148         /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
4149
4150         /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
4151
4152         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4153                         PHM_PlatformCaps_StablePState)) {
4154                 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
4155                 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
4156
4157                 for (count = table_info->vdd_dep_on_sclk->count - 1;
4158                                 count >= 0; count--) {
4159                         if (stable_pstate_sclk >=
4160                                         table_info->vdd_dep_on_sclk->entries[count].clk) {
4161                                 stable_pstate_sclk =
4162                                                 table_info->vdd_dep_on_sclk->entries[count].clk;
4163                                 break;
4164                         }
4165                 }
4166
4167                 if (count < 0)
4168                         stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
4169
4170                 stable_pstate_mclk = max_limits->mclk;
4171
4172                 minimum_clocks.engineClock = stable_pstate_sclk;
4173                 minimum_clocks.memoryClock = stable_pstate_mclk;
4174         }
4175
4176         if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
4177                 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
4178
4179         if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
4180                 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
4181
4182         fiji_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
4183
4184         if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
4185                 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
4186                                 hwmgr->platform_descriptor.overdriveLimit.engineClock),
4187                                 "Overdrive sclk exceeds limit",
4188                                 hwmgr->gfx_arbiter.sclk_over_drive =
4189                                                 hwmgr->platform_descriptor.overdriveLimit.engineClock);
4190
4191                 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
4192                         fiji_ps->performance_levels[1].engine_clock =
4193                                         hwmgr->gfx_arbiter.sclk_over_drive;
4194         }
4195
4196         if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
4197                 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
4198                                 hwmgr->platform_descriptor.overdriveLimit.memoryClock),
4199                                 "Overdrive mclk exceeds limit",
4200                                 hwmgr->gfx_arbiter.mclk_over_drive =
4201                                                 hwmgr->platform_descriptor.overdriveLimit.memoryClock);
4202
4203                 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
4204                         fiji_ps->performance_levels[1].memory_clock =
4205                                         hwmgr->gfx_arbiter.mclk_over_drive;
4206         }
4207
4208         disable_mclk_switching_for_frame_lock = phm_cap_enabled(
4209                                     hwmgr->platform_descriptor.platformCaps,
4210                                     PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
4211
4212         disable_mclk_switching = (1 < info.display_count) ||
4213                                     disable_mclk_switching_for_frame_lock;
4214
4215         sclk = fiji_ps->performance_levels[0].engine_clock;
4216         mclk = fiji_ps->performance_levels[0].memory_clock;
4217
4218         if (disable_mclk_switching)
4219                 mclk = fiji_ps->performance_levels
4220                 [fiji_ps->performance_level_count - 1].memory_clock;
4221
4222         if (sclk < minimum_clocks.engineClock)
4223                 sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
4224                                 max_limits->sclk : minimum_clocks.engineClock;
4225
4226         if (mclk < minimum_clocks.memoryClock)
4227                 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
4228                                 max_limits->mclk : minimum_clocks.memoryClock;
4229
4230         fiji_ps->performance_levels[0].engine_clock = sclk;
4231         fiji_ps->performance_levels[0].memory_clock = mclk;
4232
4233         fiji_ps->performance_levels[1].engine_clock =
4234                 (fiji_ps->performance_levels[1].engine_clock >=
4235                                 fiji_ps->performance_levels[0].engine_clock) ?
4236                                                 fiji_ps->performance_levels[1].engine_clock :
4237                                                 fiji_ps->performance_levels[0].engine_clock;
4238
4239         if (disable_mclk_switching) {
4240                 if (mclk < fiji_ps->performance_levels[1].memory_clock)
4241                         mclk = fiji_ps->performance_levels[1].memory_clock;
4242
4243                 fiji_ps->performance_levels[0].memory_clock = mclk;
4244                 fiji_ps->performance_levels[1].memory_clock = mclk;
4245         } else {
4246                 if (fiji_ps->performance_levels[1].memory_clock <
4247                                 fiji_ps->performance_levels[0].memory_clock)
4248                         fiji_ps->performance_levels[1].memory_clock =
4249                                         fiji_ps->performance_levels[0].memory_clock;
4250         }
4251
4252         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4253                         PHM_PlatformCaps_StablePState)) {
4254                 for (i = 0; i < fiji_ps->performance_level_count; i++) {
4255                         fiji_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
4256                         fiji_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
4257                         fiji_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
4258                         fiji_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
4259                 }
4260         }
4261
4262         return 0;
4263 }
4264
4265 static int fiji_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
4266 {
4267         const struct phm_set_power_state_input *states =
4268                         (const struct phm_set_power_state_input *)input;
4269         const struct fiji_power_state *fiji_ps =
4270                         cast_const_phw_fiji_power_state(states->pnew_state);
4271         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4272         struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4273         uint32_t sclk = fiji_ps->performance_levels
4274                         [fiji_ps->performance_level_count - 1].engine_clock;
4275         struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4276         uint32_t mclk = fiji_ps->performance_levels
4277                         [fiji_ps->performance_level_count - 1].memory_clock;
4278         uint32_t i;
4279         struct cgs_display_info info = {0};
4280
4281         data->need_update_smu7_dpm_table = 0;
4282
4283         for (i = 0; i < sclk_table->count; i++) {
4284                 if (sclk == sclk_table->dpm_levels[i].value)
4285                         break;
4286         }
4287
4288         if (i >= sclk_table->count)
4289                 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
4290         else {
4291                 if(data->display_timing.min_clock_in_sr !=
4292                         hwmgr->display_config.min_core_set_clock_in_sr)
4293                         data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
4294         }
4295
4296         for (i = 0; i < mclk_table->count; i++) {
4297                 if (mclk == mclk_table->dpm_levels[i].value)
4298                         break;
4299         }
4300
4301         if (i >= mclk_table->count)
4302                 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
4303
4304         cgs_get_active_displays_info(hwmgr->device, &info);
4305
4306         if (data->display_timing.num_existing_displays != info.display_count)
4307                 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
4308
4309         return 0;
4310 }
4311
4312 static uint16_t fiji_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
4313                 const struct fiji_power_state *fiji_ps)
4314 {
4315         uint32_t i;
4316         uint32_t sclk, max_sclk = 0;
4317         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4318         struct fiji_dpm_table *dpm_table = &data->dpm_table;
4319
4320         for (i = 0; i < fiji_ps->performance_level_count; i++) {
4321                 sclk = fiji_ps->performance_levels[i].engine_clock;
4322                 if (max_sclk < sclk)
4323                         max_sclk = sclk;
4324         }
4325
4326         for (i = 0; i < dpm_table->sclk_table.count; i++) {
4327                 if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
4328                         return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
4329                                         dpm_table->pcie_speed_table.dpm_levels
4330                                         [dpm_table->pcie_speed_table.count - 1].value :
4331                                         dpm_table->pcie_speed_table.dpm_levels[i].value);
4332         }
4333
4334         return 0;
4335 }
4336
4337 static int fiji_request_link_speed_change_before_state_change(
4338                 struct pp_hwmgr *hwmgr, const void *input)
4339 {
4340         const struct phm_set_power_state_input *states =
4341                         (const struct phm_set_power_state_input *)input;
4342         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4343         const struct fiji_power_state *fiji_nps =
4344                         cast_const_phw_fiji_power_state(states->pnew_state);
4345         const struct fiji_power_state *fiji_cps =
4346                         cast_const_phw_fiji_power_state(states->pcurrent_state);
4347
4348         uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_nps);
4349         uint16_t current_link_speed;
4350
4351         if (data->force_pcie_gen == PP_PCIEGenInvalid)
4352                 current_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_cps);
4353         else
4354                 current_link_speed = data->force_pcie_gen;
4355
4356         data->force_pcie_gen = PP_PCIEGenInvalid;
4357         data->pspp_notify_required = false;
4358         if (target_link_speed > current_link_speed) {
4359                 switch(target_link_speed) {
4360                 case PP_PCIEGen3:
4361                         if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
4362                                 break;
4363                         data->force_pcie_gen = PP_PCIEGen2;
4364                         if (current_link_speed == PP_PCIEGen2)
4365                                 break;
4366                 case PP_PCIEGen2:
4367                         if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
4368                                 break;
4369                 default:
4370                         data->force_pcie_gen = fiji_get_current_pcie_speed(hwmgr);
4371                         break;
4372                 }
4373         } else {
4374                 if (target_link_speed < current_link_speed)
4375                         data->pspp_notify_required = true;
4376         }
4377
4378         return 0;
4379 }
4380
4381 static int fiji_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4382 {
4383         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4384
4385         if (0 == data->need_update_smu7_dpm_table)
4386                 return 0;
4387
4388         if ((0 == data->sclk_dpm_key_disabled) &&
4389                 (data->need_update_smu7_dpm_table &
4390                         (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4391                 PP_ASSERT_WITH_CODE(fiji_is_dpm_running(hwmgr),
4392                                     "Trying to freeze SCLK DPM when DPM is disabled",
4393                                     );
4394                 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4395                                 PPSMC_MSG_SCLKDPM_FreezeLevel),
4396                                 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
4397                                 return -1);
4398         }
4399
4400         if ((0 == data->mclk_dpm_key_disabled) &&
4401                 (data->need_update_smu7_dpm_table &
4402                  DPMTABLE_OD_UPDATE_MCLK)) {
4403                 PP_ASSERT_WITH_CODE(fiji_is_dpm_running(hwmgr),
4404                                     "Trying to freeze MCLK DPM when DPM is disabled",
4405                                     );
4406                 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4407                                 PPSMC_MSG_MCLKDPM_FreezeLevel),
4408                                 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
4409                                 return -1);
4410         }
4411
4412         return 0;
4413 }
4414
4415 static int fiji_populate_and_upload_sclk_mclk_dpm_levels(
4416                 struct pp_hwmgr *hwmgr, const void *input)
4417 {
4418         int result = 0;
4419         const struct phm_set_power_state_input *states =
4420                         (const struct phm_set_power_state_input *)input;
4421         const struct fiji_power_state *fiji_ps =
4422                         cast_const_phw_fiji_power_state(states->pnew_state);
4423         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4424         uint32_t sclk = fiji_ps->performance_levels
4425                         [fiji_ps->performance_level_count - 1].engine_clock;
4426         uint32_t mclk = fiji_ps->performance_levels
4427                         [fiji_ps->performance_level_count - 1].memory_clock;
4428         struct fiji_dpm_table *dpm_table = &data->dpm_table;
4429
4430         struct fiji_dpm_table *golden_dpm_table = &data->golden_dpm_table;
4431         uint32_t dpm_count, clock_percent;
4432         uint32_t i;
4433
4434         if (0 == data->need_update_smu7_dpm_table)
4435                 return 0;
4436
4437         if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
4438                 dpm_table->sclk_table.dpm_levels
4439                 [dpm_table->sclk_table.count - 1].value = sclk;
4440
4441                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4442                                 PHM_PlatformCaps_OD6PlusinACSupport) ||
4443                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4444                                         PHM_PlatformCaps_OD6PlusinDCSupport)) {
4445                 /* Need to do calculation based on the golden DPM table
4446                  * as the Heatmap GPU Clock axis is also based on the default values
4447                  */
4448                         PP_ASSERT_WITH_CODE(
4449                                 (golden_dpm_table->sclk_table.dpm_levels
4450                                                 [golden_dpm_table->sclk_table.count - 1].value != 0),
4451                                 "Divide by 0!",
4452                                 return -1);
4453                         dpm_count = dpm_table->sclk_table.count < 2 ?
4454                                         0 : dpm_table->sclk_table.count - 2;
4455                         for (i = dpm_count; i > 1; i--) {
4456                                 if (sclk > golden_dpm_table->sclk_table.dpm_levels
4457                                                 [golden_dpm_table->sclk_table.count-1].value) {
4458                                         clock_percent =
4459                                                 ((sclk - golden_dpm_table->sclk_table.dpm_levels
4460                                                         [golden_dpm_table->sclk_table.count-1].value) * 100) /
4461                                                 golden_dpm_table->sclk_table.dpm_levels
4462                                                         [golden_dpm_table->sclk_table.count-1].value;
4463
4464                                         dpm_table->sclk_table.dpm_levels[i].value =
4465                                                         golden_dpm_table->sclk_table.dpm_levels[i].value +
4466                                                         (golden_dpm_table->sclk_table.dpm_levels[i].value *
4467                                                                 clock_percent)/100;
4468
4469                                 } else if (golden_dpm_table->sclk_table.dpm_levels
4470                                                 [dpm_table->sclk_table.count-1].value > sclk) {
4471                                         clock_percent =
4472                                                 ((golden_dpm_table->sclk_table.dpm_levels
4473                                                 [golden_dpm_table->sclk_table.count - 1].value - sclk) *
4474                                                                 100) /
4475                                                 golden_dpm_table->sclk_table.dpm_levels
4476                                                         [golden_dpm_table->sclk_table.count-1].value;
4477
4478                                         dpm_table->sclk_table.dpm_levels[i].value =
4479                                                         golden_dpm_table->sclk_table.dpm_levels[i].value -
4480                                                         (golden_dpm_table->sclk_table.dpm_levels[i].value *
4481                                                                         clock_percent) / 100;
4482                                 } else
4483                                         dpm_table->sclk_table.dpm_levels[i].value =
4484                                                         golden_dpm_table->sclk_table.dpm_levels[i].value;
4485                         }
4486                 }
4487         }
4488
4489         if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
4490                 dpm_table->mclk_table.dpm_levels
4491                         [dpm_table->mclk_table.count - 1].value = mclk;
4492                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4493                                 PHM_PlatformCaps_OD6PlusinACSupport) ||
4494                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4495                                 PHM_PlatformCaps_OD6PlusinDCSupport)) {
4496
4497                         PP_ASSERT_WITH_CODE(
4498                                         (golden_dpm_table->mclk_table.dpm_levels
4499                                                 [golden_dpm_table->mclk_table.count-1].value != 0),
4500                                         "Divide by 0!",
4501                                         return -1);
4502                         dpm_count = dpm_table->mclk_table.count < 2 ?
4503                                         0 : dpm_table->mclk_table.count - 2;
4504                         for (i = dpm_count; i > 1; i--) {
4505                                 if (mclk > golden_dpm_table->mclk_table.dpm_levels
4506                                                 [golden_dpm_table->mclk_table.count-1].value) {
4507                                         clock_percent = ((mclk -
4508                                                         golden_dpm_table->mclk_table.dpm_levels
4509                                                         [golden_dpm_table->mclk_table.count-1].value) * 100) /
4510                                                         golden_dpm_table->mclk_table.dpm_levels
4511                                                         [golden_dpm_table->mclk_table.count-1].value;
4512
4513                                         dpm_table->mclk_table.dpm_levels[i].value =
4514                                                         golden_dpm_table->mclk_table.dpm_levels[i].value +
4515                                                         (golden_dpm_table->mclk_table.dpm_levels[i].value *
4516                                                                         clock_percent) / 100;
4517
4518                                 } else if (golden_dpm_table->mclk_table.dpm_levels
4519                                                 [dpm_table->mclk_table.count-1].value > mclk) {
4520                                         clock_percent = ((golden_dpm_table->mclk_table.dpm_levels
4521                                                         [golden_dpm_table->mclk_table.count-1].value - mclk) * 100) /
4522                                                                         golden_dpm_table->mclk_table.dpm_levels
4523                                                                         [golden_dpm_table->mclk_table.count-1].value;
4524
4525                                         dpm_table->mclk_table.dpm_levels[i].value =
4526                                                         golden_dpm_table->mclk_table.dpm_levels[i].value -
4527                                                         (golden_dpm_table->mclk_table.dpm_levels[i].value *
4528                                                                         clock_percent) / 100;
4529                                 } else
4530                                         dpm_table->mclk_table.dpm_levels[i].value =
4531                                                         golden_dpm_table->mclk_table.dpm_levels[i].value;
4532                         }
4533                 }
4534         }
4535
4536         if (data->need_update_smu7_dpm_table &
4537                         (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
4538                 result = fiji_populate_all_graphic_levels(hwmgr);
4539                 PP_ASSERT_WITH_CODE((0 == result),
4540                                 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
4541                                 return result);
4542         }
4543
4544         if (data->need_update_smu7_dpm_table &
4545                         (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
4546                 /*populate MCLK dpm table to SMU7 */
4547                 result = fiji_populate_all_memory_levels(hwmgr);
4548                 PP_ASSERT_WITH_CODE((0 == result),
4549                                 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
4550                                 return result);
4551         }
4552
4553         return result;
4554 }
4555
4556 static int fiji_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
4557                           struct fiji_single_dpm_table * dpm_table,
4558                              uint32_t low_limit, uint32_t high_limit)
4559 {
4560         uint32_t i;
4561
4562         for (i = 0; i < dpm_table->count; i++) {
4563                 if ((dpm_table->dpm_levels[i].value < low_limit) ||
4564                     (dpm_table->dpm_levels[i].value > high_limit))
4565                         dpm_table->dpm_levels[i].enabled = false;
4566                 else
4567                         dpm_table->dpm_levels[i].enabled = true;
4568         }
4569         return 0;
4570 }
4571
4572 static int fiji_trim_dpm_states(struct pp_hwmgr *hwmgr,
4573                 const struct fiji_power_state *fiji_ps)
4574 {
4575         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4576         uint32_t high_limit_count;
4577
4578         PP_ASSERT_WITH_CODE((fiji_ps->performance_level_count >= 1),
4579                         "power state did not have any performance level",
4580                         return -1);
4581
4582         high_limit_count = (1 == fiji_ps->performance_level_count) ? 0 : 1;
4583
4584         fiji_trim_single_dpm_states(hwmgr,
4585                         &(data->dpm_table.sclk_table),
4586                         fiji_ps->performance_levels[0].engine_clock,
4587                         fiji_ps->performance_levels[high_limit_count].engine_clock);
4588
4589         fiji_trim_single_dpm_states(hwmgr,
4590                         &(data->dpm_table.mclk_table),
4591                         fiji_ps->performance_levels[0].memory_clock,
4592                         fiji_ps->performance_levels[high_limit_count].memory_clock);
4593
4594         return 0;
4595 }
4596
4597 static int fiji_generate_dpm_level_enable_mask(
4598                 struct pp_hwmgr *hwmgr, const void *input)
4599 {
4600         int result;
4601         const struct phm_set_power_state_input *states =
4602                         (const struct phm_set_power_state_input *)input;
4603         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4604         const struct fiji_power_state *fiji_ps =
4605                         cast_const_phw_fiji_power_state(states->pnew_state);
4606
4607         result = fiji_trim_dpm_states(hwmgr, fiji_ps);
4608         if (result)
4609                 return result;
4610
4611         data->dpm_level_enable_mask.sclk_dpm_enable_mask =
4612                         fiji_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
4613         data->dpm_level_enable_mask.mclk_dpm_enable_mask =
4614                         fiji_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
4615         data->last_mclk_dpm_enable_mask =
4616                         data->dpm_level_enable_mask.mclk_dpm_enable_mask;
4617
4618         if (data->uvd_enabled) {
4619                 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask & 1)
4620                         data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
4621         }
4622
4623         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
4624                         fiji_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
4625
4626         return 0;
4627 }
4628
4629 int fiji_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4630 {
4631         return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
4632                                   (PPSMC_Msg)PPSMC_MSG_UVDDPM_Enable :
4633                                   (PPSMC_Msg)PPSMC_MSG_UVDDPM_Disable);
4634 }
4635
4636 int fiji_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
4637 {
4638         return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4639                         PPSMC_MSG_VCEDPM_Enable :
4640                         PPSMC_MSG_VCEDPM_Disable);
4641 }
4642
4643 int fiji_enable_disable_samu_dpm(struct pp_hwmgr *hwmgr, bool enable)
4644 {
4645         return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4646                         PPSMC_MSG_SAMUDPM_Enable :
4647                         PPSMC_MSG_SAMUDPM_Disable);
4648 }
4649
4650 int fiji_enable_disable_acp_dpm(struct pp_hwmgr *hwmgr, bool enable)
4651 {
4652         return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4653                         PPSMC_MSG_ACPDPM_Enable :
4654                         PPSMC_MSG_ACPDPM_Disable);
4655 }
4656
4657 int fiji_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4658 {
4659         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4660         uint32_t mm_boot_level_offset, mm_boot_level_value;
4661         struct phm_ppt_v1_information *table_info =
4662                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
4663
4664         if (!bgate) {
4665                 data->smc_state_table.UvdBootLevel = 0;
4666                 if (table_info->mm_dep_table->count > 0)
4667                         data->smc_state_table.UvdBootLevel =
4668                                         (uint8_t) (table_info->mm_dep_table->count - 1);
4669                 mm_boot_level_offset = data->dpm_table_start +
4670                                 offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
4671                 mm_boot_level_offset /= 4;
4672                 mm_boot_level_offset *= 4;
4673                 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4674                                 CGS_IND_REG__SMC, mm_boot_level_offset);
4675                 mm_boot_level_value &= 0x00FFFFFF;
4676                 mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24;
4677                 cgs_write_ind_register(hwmgr->device,
4678                                 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4679
4680                 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4681                                 PHM_PlatformCaps_UVDDPM) ||
4682                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4683                                 PHM_PlatformCaps_StablePState))
4684                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4685                                         PPSMC_MSG_UVDDPM_SetEnabledMask,
4686                                         (uint32_t)(1 << data->smc_state_table.UvdBootLevel));
4687         }
4688
4689         return fiji_enable_disable_uvd_dpm(hwmgr, !bgate);
4690 }
4691
4692 int fiji_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
4693 {
4694         const struct phm_set_power_state_input *states =
4695                         (const struct phm_set_power_state_input *)input;
4696         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4697         const struct fiji_power_state *fiji_nps =
4698                         cast_const_phw_fiji_power_state(states->pnew_state);
4699         const struct fiji_power_state *fiji_cps =
4700                         cast_const_phw_fiji_power_state(states->pcurrent_state);
4701
4702         uint32_t mm_boot_level_offset, mm_boot_level_value;
4703         struct phm_ppt_v1_information *table_info =
4704                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
4705
4706         if (fiji_nps->vce_clks.evclk >0 &&
4707         (fiji_cps == NULL || fiji_cps->vce_clks.evclk == 0)) {
4708                 data->smc_state_table.VceBootLevel =
4709                                 (uint8_t) (table_info->mm_dep_table->count - 1);
4710
4711                 mm_boot_level_offset = data->dpm_table_start +
4712                                 offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
4713                 mm_boot_level_offset /= 4;
4714                 mm_boot_level_offset *= 4;
4715                 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4716                                 CGS_IND_REG__SMC, mm_boot_level_offset);
4717                 mm_boot_level_value &= 0xFF00FFFF;
4718                 mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
4719                 cgs_write_ind_register(hwmgr->device,
4720                                 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4721
4722                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4723                                 PHM_PlatformCaps_StablePState)) {
4724                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4725                                         PPSMC_MSG_VCEDPM_SetEnabledMask,
4726                                         (uint32_t)1 << data->smc_state_table.VceBootLevel);
4727
4728                         fiji_enable_disable_vce_dpm(hwmgr, true);
4729                 } else if (fiji_nps->vce_clks.evclk == 0 &&
4730                                 fiji_cps != NULL &&
4731                                 fiji_cps->vce_clks.evclk > 0)
4732                         fiji_enable_disable_vce_dpm(hwmgr, false);
4733         }
4734
4735         return 0;
4736 }
4737
4738 int fiji_update_samu_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4739 {
4740         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4741         uint32_t mm_boot_level_offset, mm_boot_level_value;
4742         struct phm_ppt_v1_information *table_info =
4743                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
4744
4745         if (!bgate) {
4746                 data->smc_state_table.SamuBootLevel =
4747                                 (uint8_t) (table_info->mm_dep_table->count - 1);
4748                 mm_boot_level_offset = data->dpm_table_start +
4749                                 offsetof(SMU73_Discrete_DpmTable, SamuBootLevel);
4750                 mm_boot_level_offset /= 4;
4751                 mm_boot_level_offset *= 4;
4752                 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4753                                 CGS_IND_REG__SMC, mm_boot_level_offset);
4754                 mm_boot_level_value &= 0xFFFFFF00;
4755                 mm_boot_level_value |= data->smc_state_table.SamuBootLevel << 0;
4756                 cgs_write_ind_register(hwmgr->device,
4757                                 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4758
4759                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4760                                 PHM_PlatformCaps_StablePState))
4761                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4762                                         PPSMC_MSG_SAMUDPM_SetEnabledMask,
4763                                         (uint32_t)(1 << data->smc_state_table.SamuBootLevel));
4764         }
4765
4766         return fiji_enable_disable_samu_dpm(hwmgr, !bgate);
4767 }
4768
4769 int fiji_update_acp_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4770 {
4771         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4772         uint32_t mm_boot_level_offset, mm_boot_level_value;
4773         struct phm_ppt_v1_information *table_info =
4774                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
4775
4776         if (!bgate) {
4777                 data->smc_state_table.AcpBootLevel =
4778                                 (uint8_t) (table_info->mm_dep_table->count - 1);
4779                 mm_boot_level_offset = data->dpm_table_start +
4780                                 offsetof(SMU73_Discrete_DpmTable, AcpBootLevel);
4781                 mm_boot_level_offset /= 4;
4782                 mm_boot_level_offset *= 4;
4783                 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4784                                 CGS_IND_REG__SMC, mm_boot_level_offset);
4785                 mm_boot_level_value &= 0xFFFF00FF;
4786                 mm_boot_level_value |= data->smc_state_table.AcpBootLevel << 8;
4787                 cgs_write_ind_register(hwmgr->device,
4788                                 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4789
4790                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4791                                 PHM_PlatformCaps_StablePState))
4792                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4793                                                 PPSMC_MSG_ACPDPM_SetEnabledMask,
4794                                                 (uint32_t)(1 << data->smc_state_table.AcpBootLevel));
4795         }
4796
4797         return fiji_enable_disable_acp_dpm(hwmgr, !bgate);
4798 }
4799
4800 static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
4801 {
4802         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4803
4804         int result = 0;
4805         uint32_t low_sclk_interrupt_threshold = 0;
4806
4807         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4808                         PHM_PlatformCaps_SclkThrottleLowNotification)
4809                 && (hwmgr->gfx_arbiter.sclk_threshold !=
4810                                 data->low_sclk_interrupt_threshold)) {
4811                 data->low_sclk_interrupt_threshold =
4812                                 hwmgr->gfx_arbiter.sclk_threshold;
4813                 low_sclk_interrupt_threshold =
4814                                 data->low_sclk_interrupt_threshold;
4815
4816                 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
4817
4818                 result = fiji_copy_bytes_to_smc(
4819                                 hwmgr->smumgr,
4820                                 data->dpm_table_start +
4821                                 offsetof(SMU73_Discrete_DpmTable,
4822                                         LowSclkInterruptThreshold),
4823                                 (uint8_t *)&low_sclk_interrupt_threshold,
4824                                 sizeof(uint32_t),
4825                                 data->sram_end);
4826         }
4827
4828         return result;
4829 }
4830
4831 static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
4832 {
4833         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4834
4835         if (data->need_update_smu7_dpm_table &
4836                 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
4837                 return fiji_program_memory_timing_parameters(hwmgr);
4838
4839         return 0;
4840 }
4841
4842 static int fiji_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4843 {
4844         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4845
4846         if (0 == data->need_update_smu7_dpm_table)
4847                 return 0;
4848
4849         if ((0 == data->sclk_dpm_key_disabled) &&
4850                 (data->need_update_smu7_dpm_table &
4851                 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4852
4853                 PP_ASSERT_WITH_CODE(fiji_is_dpm_running(hwmgr),
4854                                     "Trying to Unfreeze SCLK DPM when DPM is disabled",
4855                                     );
4856                 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4857                                 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4858                         "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
4859                         return -1);
4860         }
4861
4862         if ((0 == data->mclk_dpm_key_disabled) &&
4863                 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
4864
4865                 PP_ASSERT_WITH_CODE(fiji_is_dpm_running(hwmgr),
4866                                     "Trying to Unfreeze MCLK DPM when DPM is disabled",
4867                                     );
4868                 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4869                                 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4870                     "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
4871                     return -1);
4872         }
4873
4874         data->need_update_smu7_dpm_table = 0;
4875
4876         return 0;
4877 }
4878
4879 /* Look up the voltaged based on DAL's requested level.
4880  * and then send the requested VDDC voltage to SMC
4881  */
4882 static void fiji_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
4883 {
4884         return;
4885 }
4886
4887 int fiji_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
4888 {
4889         int result;
4890         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4891
4892         /* Apply minimum voltage based on DAL's request level */
4893         fiji_apply_dal_minimum_voltage_request(hwmgr);
4894
4895         if (0 == data->sclk_dpm_key_disabled) {
4896                 /* Checking if DPM is running.  If we discover hang because of this,
4897                  *  we should skip this message.
4898                  */
4899                 if (!fiji_is_dpm_running(hwmgr))
4900                         printk(KERN_ERR "[ powerplay ] "
4901                                         "Trying to set Enable Mask when DPM is disabled \n");
4902
4903                 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
4904                         result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4905                                         PPSMC_MSG_SCLKDPM_SetEnabledMask,
4906                                         data->dpm_level_enable_mask.sclk_dpm_enable_mask);
4907                         PP_ASSERT_WITH_CODE((0 == result),
4908                                 "Set Sclk Dpm enable Mask failed", return -1);
4909                 }
4910         }
4911
4912         if (0 == data->mclk_dpm_key_disabled) {
4913                 /* Checking if DPM is running.  If we discover hang because of this,
4914                  *  we should skip this message.
4915                  */
4916                 if (!fiji_is_dpm_running(hwmgr))
4917                         printk(KERN_ERR "[ powerplay ]"
4918                                         " Trying to set Enable Mask when DPM is disabled \n");
4919
4920                 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
4921                         result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4922                                         PPSMC_MSG_MCLKDPM_SetEnabledMask,
4923                                         data->dpm_level_enable_mask.mclk_dpm_enable_mask);
4924                         PP_ASSERT_WITH_CODE((0 == result),
4925                                 "Set Mclk Dpm enable Mask failed", return -1);
4926                 }
4927         }
4928
4929         return 0;
4930 }
4931
4932 static int fiji_notify_link_speed_change_after_state_change(
4933                 struct pp_hwmgr *hwmgr, const void *input)
4934 {
4935         const struct phm_set_power_state_input *states =
4936                         (const struct phm_set_power_state_input *)input;
4937         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4938         const struct fiji_power_state *fiji_ps =
4939                         cast_const_phw_fiji_power_state(states->pnew_state);
4940         uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_ps);
4941         uint8_t  request;
4942
4943         if (data->pspp_notify_required) {
4944                 if (target_link_speed == PP_PCIEGen3)
4945                         request = PCIE_PERF_REQ_GEN3;
4946                 else if (target_link_speed == PP_PCIEGen2)
4947                         request = PCIE_PERF_REQ_GEN2;
4948                 else
4949                         request = PCIE_PERF_REQ_GEN1;
4950
4951                 if(request == PCIE_PERF_REQ_GEN1 &&
4952                                 fiji_get_current_pcie_speed(hwmgr) > 0)
4953                         return 0;
4954
4955                 if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
4956                         if (PP_PCIEGen2 == target_link_speed)
4957                                 printk("PSPP request to switch to Gen2 from Gen3 Failed!");
4958                         else
4959                                 printk("PSPP request to switch to Gen1 from Gen2 Failed!");
4960                 }
4961         }
4962
4963         return 0;
4964 }
4965
4966 static int fiji_set_power_state_tasks(struct pp_hwmgr *hwmgr,
4967                 const void *input)
4968 {
4969         int tmp_result, result = 0;
4970
4971         tmp_result = fiji_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4972         PP_ASSERT_WITH_CODE((0 == tmp_result),
4973                         "Failed to find DPM states clocks in DPM table!",
4974                         result = tmp_result);
4975
4976         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4977                         PHM_PlatformCaps_PCIEPerformanceRequest)) {
4978                 tmp_result =
4979                         fiji_request_link_speed_change_before_state_change(hwmgr, input);
4980                 PP_ASSERT_WITH_CODE((0 == tmp_result),
4981                                 "Failed to request link speed change before state change!",
4982                                 result = tmp_result);
4983         }
4984
4985         tmp_result = fiji_freeze_sclk_mclk_dpm(hwmgr);
4986         PP_ASSERT_WITH_CODE((0 == tmp_result),
4987                         "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
4988
4989         tmp_result = fiji_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4990         PP_ASSERT_WITH_CODE((0 == tmp_result),
4991                         "Failed to populate and upload SCLK MCLK DPM levels!",
4992                         result = tmp_result);
4993
4994         tmp_result = fiji_generate_dpm_level_enable_mask(hwmgr, input);
4995         PP_ASSERT_WITH_CODE((0 == tmp_result),
4996                         "Failed to generate DPM level enabled mask!",
4997                         result = tmp_result);
4998
4999         tmp_result = fiji_update_vce_dpm(hwmgr, input);
5000         PP_ASSERT_WITH_CODE((0 == tmp_result),
5001                         "Failed to update VCE DPM!",
5002                         result = tmp_result);
5003
5004         tmp_result = fiji_update_sclk_threshold(hwmgr);
5005         PP_ASSERT_WITH_CODE((0 == tmp_result),
5006                         "Failed to update SCLK threshold!",
5007                         result = tmp_result);
5008
5009         tmp_result = fiji_program_mem_timing_parameters(hwmgr);
5010         PP_ASSERT_WITH_CODE((0 == tmp_result),
5011                         "Failed to program memory timing parameters!",
5012                         result = tmp_result);
5013
5014         tmp_result = fiji_unfreeze_sclk_mclk_dpm(hwmgr);
5015         PP_ASSERT_WITH_CODE((0 == tmp_result),
5016                         "Failed to unfreeze SCLK MCLK DPM!",
5017                         result = tmp_result);
5018
5019         tmp_result = fiji_upload_dpm_level_enable_mask(hwmgr);
5020         PP_ASSERT_WITH_CODE((0 == tmp_result),
5021                         "Failed to upload DPM level enabled mask!",
5022                         result = tmp_result);
5023
5024         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
5025                         PHM_PlatformCaps_PCIEPerformanceRequest)) {
5026                 tmp_result =
5027                         fiji_notify_link_speed_change_after_state_change(hwmgr, input);
5028                 PP_ASSERT_WITH_CODE((0 == tmp_result),
5029                                 "Failed to notify link speed change after state change!",
5030                                 result = tmp_result);
5031         }
5032
5033         return result;
5034 }
5035
5036 static int fiji_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
5037 {
5038         struct pp_power_state  *ps;
5039         struct fiji_power_state  *fiji_ps;
5040
5041         if (hwmgr == NULL)
5042                 return -EINVAL;
5043
5044         ps = hwmgr->request_ps;
5045
5046         if (ps == NULL)
5047                 return -EINVAL;
5048
5049         fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
5050
5051         if (low)
5052                 return fiji_ps->performance_levels[0].engine_clock;
5053         else
5054                 return fiji_ps->performance_levels
5055                                 [fiji_ps->performance_level_count-1].engine_clock;
5056 }
5057
5058 static int fiji_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
5059 {
5060         struct pp_power_state  *ps;
5061         struct fiji_power_state  *fiji_ps;
5062
5063         if (hwmgr == NULL)
5064                 return -EINVAL;
5065
5066         ps = hwmgr->request_ps;
5067
5068         if (ps == NULL)
5069                 return -EINVAL;
5070
5071         fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
5072
5073         if (low)
5074                 return fiji_ps->performance_levels[0].memory_clock;
5075         else
5076                 return fiji_ps->performance_levels
5077                                 [fiji_ps->performance_level_count-1].memory_clock;
5078 }
5079
5080 static void fiji_print_current_perforce_level(
5081                 struct pp_hwmgr *hwmgr, struct seq_file *m)
5082 {
5083         uint32_t sclk, mclk, activity_percent = 0;
5084         uint32_t offset;
5085         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5086
5087         smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
5088
5089         sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5090
5091         smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
5092
5093         mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5094         seq_printf(m, "\n [  mclk  ]: %u MHz\n\n [  sclk  ]: %u MHz\n",
5095                         mclk / 100, sclk / 100);
5096
5097         offset = data->soft_regs_start + offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
5098         activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
5099         activity_percent += 0x80;
5100         activity_percent >>= 8;
5101
5102         seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent);
5103
5104         seq_printf(m, "uvd    %sabled\n", data->uvd_power_gated ? "dis" : "en");
5105
5106         seq_printf(m, "vce    %sabled\n", data->vce_power_gated ? "dis" : "en");
5107 }
5108
5109 static int fiji_program_display_gap(struct pp_hwmgr *hwmgr)
5110 {
5111         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5112         uint32_t num_active_displays = 0;
5113         uint32_t display_gap = cgs_read_ind_register(hwmgr->device,
5114                         CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
5115         uint32_t display_gap2;
5116         uint32_t pre_vbi_time_in_us;
5117         uint32_t frame_time_in_us;
5118         uint32_t ref_clock;
5119         uint32_t refresh_rate = 0;
5120         struct cgs_display_info info = {0};
5121         struct cgs_mode_info mode_info;
5122
5123         info.mode_info = &mode_info;
5124
5125         cgs_get_active_displays_info(hwmgr->device, &info);
5126         num_active_displays = info.display_count;
5127
5128         display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
5129                         DISP_GAP, (num_active_displays > 0)?
5130                         DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
5131         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5132                         ixCG_DISPLAY_GAP_CNTL, display_gap);
5133
5134         ref_clock = mode_info.ref_clock;
5135         refresh_rate = mode_info.refresh_rate;
5136
5137         if (refresh_rate == 0)
5138                 refresh_rate = 60;
5139
5140         frame_time_in_us = 1000000 / refresh_rate;
5141
5142         pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
5143         display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
5144
5145         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5146                         ixCG_DISPLAY_GAP_CNTL2, display_gap2);
5147
5148         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5149                         data->soft_regs_start +
5150                         offsetof(SMU73_SoftRegisters, PreVBlankGap), 0x64);
5151
5152         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5153                         data->soft_regs_start +
5154                         offsetof(SMU73_SoftRegisters, VBlankTimeout),
5155                         (frame_time_in_us - pre_vbi_time_in_us));
5156
5157         if (num_active_displays == 1)
5158                 tonga_notify_smc_display_change(hwmgr, true);
5159
5160         return 0;
5161 }
5162
5163 int fiji_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
5164 {
5165         return fiji_program_display_gap(hwmgr);
5166 }
5167
5168 static int fiji_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr,
5169                 uint16_t us_max_fan_pwm)
5170 {
5171         hwmgr->thermal_controller.
5172         advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
5173
5174         if (phm_is_hw_access_blocked(hwmgr))
5175                 return 0;
5176
5177         return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5178                         PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm);
5179 }
5180
5181 static int fiji_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr,
5182                 uint16_t us_max_fan_rpm)
5183 {
5184         hwmgr->thermal_controller.
5185         advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
5186
5187         if (phm_is_hw_access_blocked(hwmgr))
5188                 return 0;
5189
5190         return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5191                         PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm);
5192 }
5193
5194 int fiji_dpm_set_interrupt_state(void *private_data,
5195                                          unsigned src_id, unsigned type,
5196                                          int enabled)
5197 {
5198         uint32_t cg_thermal_int;
5199         struct pp_hwmgr *hwmgr = ((struct pp_eventmgr *)private_data)->hwmgr;
5200
5201         if (hwmgr == NULL)
5202                 return -EINVAL;
5203
5204         switch (type) {
5205         case AMD_THERMAL_IRQ_LOW_TO_HIGH:
5206                 if (enabled) {
5207                         cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5208                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5209                         cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
5210                         cgs_write_ind_register(hwmgr->device,
5211                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5212                 } else {
5213                         cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5214                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5215                         cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
5216                         cgs_write_ind_register(hwmgr->device,
5217                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5218                 }
5219                 break;
5220
5221         case AMD_THERMAL_IRQ_HIGH_TO_LOW:
5222                 if (enabled) {
5223                         cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5224                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5225                         cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5226                         cgs_write_ind_register(hwmgr->device,
5227                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5228                 } else {
5229                         cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5230                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5231                         cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5232                         cgs_write_ind_register(hwmgr->device,
5233                                         CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5234                 }
5235                 break;
5236         default:
5237                 break;
5238         }
5239         return 0;
5240 }
5241
5242 int fiji_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
5243                                         const void *thermal_interrupt_info)
5244 {
5245         int result;
5246         const struct pp_interrupt_registration_info *info =
5247                         (const struct pp_interrupt_registration_info *)
5248                         thermal_interrupt_info;
5249
5250         if (info == NULL)
5251                 return -EINVAL;
5252
5253         result = cgs_add_irq_source(hwmgr->device, 230, AMD_THERMAL_IRQ_LAST,
5254                                 fiji_dpm_set_interrupt_state,
5255                                 info->call_back, info->context);
5256
5257         if (result)
5258                 return -EINVAL;
5259
5260         result = cgs_add_irq_source(hwmgr->device, 231, AMD_THERMAL_IRQ_LAST,
5261                                 fiji_dpm_set_interrupt_state,
5262                                 info->call_back, info->context);
5263
5264         if (result)
5265                 return -EINVAL;
5266
5267         return 0;
5268 }
5269
5270 static int fiji_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
5271 {
5272         if (mode) {
5273                 /* stop auto-manage */
5274                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
5275                                 PHM_PlatformCaps_MicrocodeFanControl))
5276                         fiji_fan_ctrl_stop_smc_fan_control(hwmgr);
5277                 fiji_fan_ctrl_set_static_mode(hwmgr, mode);
5278         } else
5279                 /* restart auto-manage */
5280                 fiji_fan_ctrl_reset_fan_speed_to_default(hwmgr);
5281
5282         return 0;
5283 }
5284
5285 static int fiji_get_fan_control_mode(struct pp_hwmgr *hwmgr)
5286 {
5287         if (hwmgr->fan_ctrl_is_in_default_mode)
5288                 return hwmgr->fan_ctrl_default_mode;
5289         else
5290                 return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
5291                                 CG_FDO_CTRL2, FDO_PWM_MODE);
5292 }
5293
5294 static int fiji_force_clock_level(struct pp_hwmgr *hwmgr,
5295                 enum pp_clock_type type, uint32_t mask)
5296 {
5297         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5298
5299         if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
5300                 return -EINVAL;
5301
5302         switch (type) {
5303         case PP_SCLK:
5304                 if (!data->sclk_dpm_key_disabled)
5305                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5306                                         PPSMC_MSG_SCLKDPM_SetEnabledMask,
5307                                         data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask);
5308                 break;
5309
5310         case PP_MCLK:
5311                 if (!data->mclk_dpm_key_disabled)
5312                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5313                                         PPSMC_MSG_MCLKDPM_SetEnabledMask,
5314                                         data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask);
5315                 break;
5316
5317         case PP_PCIE:
5318         {
5319                 uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
5320                 uint32_t level = 0;
5321
5322                 while (tmp >>= 1)
5323                         level++;
5324
5325                 if (!data->pcie_dpm_key_disabled)
5326                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5327                                         PPSMC_MSG_PCIeDPM_ForceLevel,
5328                                         level);
5329                 break;
5330         }
5331         default:
5332                 break;
5333         }
5334
5335         return 0;
5336 }
5337
5338 static int fiji_print_clock_levels(struct pp_hwmgr *hwmgr,
5339                 enum pp_clock_type type, char *buf)
5340 {
5341         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5342         struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5343         struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5344         struct fiji_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
5345         int i, now, size = 0;
5346         uint32_t clock, pcie_speed;
5347
5348         switch (type) {
5349         case PP_SCLK:
5350                 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
5351                 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5352
5353                 for (i = 0; i < sclk_table->count; i++) {
5354                         if (clock > sclk_table->dpm_levels[i].value)
5355                                 continue;
5356                         break;
5357                 }
5358                 now = i;
5359
5360                 for (i = 0; i < sclk_table->count; i++)
5361                         size += sprintf(buf + size, "%d: %uMhz %s\n",
5362                                         i, sclk_table->dpm_levels[i].value / 100,
5363                                         (i == now) ? "*" : "");
5364                 break;
5365         case PP_MCLK:
5366                 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
5367                 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5368
5369                 for (i = 0; i < mclk_table->count; i++) {
5370                         if (clock > mclk_table->dpm_levels[i].value)
5371                                 continue;
5372                         break;
5373                 }
5374                 now = i;
5375
5376                 for (i = 0; i < mclk_table->count; i++)
5377                         size += sprintf(buf + size, "%d: %uMhz %s\n",
5378                                         i, mclk_table->dpm_levels[i].value / 100,
5379                                         (i == now) ? "*" : "");
5380                 break;
5381         case PP_PCIE:
5382                 pcie_speed = fiji_get_current_pcie_speed(hwmgr);
5383                 for (i = 0; i < pcie_table->count; i++) {
5384                         if (pcie_speed != pcie_table->dpm_levels[i].value)
5385                                 continue;
5386                         break;
5387                 }
5388                 now = i;
5389
5390                 for (i = 0; i < pcie_table->count; i++)
5391                         size += sprintf(buf + size, "%d: %s %s\n", i,
5392                                         (pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x1" :
5393                                         (pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" :
5394                                         (pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "",
5395                                         (i == now) ? "*" : "");
5396                 break;
5397         default:
5398                 break;
5399         }
5400         return size;
5401 }
5402
5403 static inline bool fiji_are_power_levels_equal(const struct fiji_performance_level *pl1,
5404                                                            const struct fiji_performance_level *pl2)
5405 {
5406         return ((pl1->memory_clock == pl2->memory_clock) &&
5407                   (pl1->engine_clock == pl2->engine_clock) &&
5408                   (pl1->pcie_gen == pl2->pcie_gen) &&
5409                   (pl1->pcie_lane == pl2->pcie_lane));
5410 }
5411
5412 int fiji_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal)
5413 {
5414         const struct fiji_power_state *psa = cast_const_phw_fiji_power_state(pstate1);
5415         const struct fiji_power_state *psb = cast_const_phw_fiji_power_state(pstate2);
5416         int i;
5417
5418         if (equal == NULL || psa == NULL || psb == NULL)
5419                 return -EINVAL;
5420
5421         /* If the two states don't even have the same number of performance levels they cannot be the same state. */
5422         if (psa->performance_level_count != psb->performance_level_count) {
5423                 *equal = false;
5424                 return 0;
5425         }
5426
5427         for (i = 0; i < psa->performance_level_count; i++) {
5428                 if (!fiji_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
5429                         /* If we have found even one performance level pair that is different the states are different. */
5430                         *equal = false;
5431                         return 0;
5432                 }
5433         }
5434
5435         /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
5436         *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
5437         *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
5438         *equal &= (psa->sclk_threshold == psb->sclk_threshold);
5439         *equal &= (psa->acp_clk == psb->acp_clk);
5440
5441         return 0;
5442 }
5443
5444 bool fiji_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
5445 {
5446         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5447         bool is_update_required = false;
5448         struct cgs_display_info info = {0,0,NULL};
5449
5450         cgs_get_active_displays_info(hwmgr->device, &info);
5451
5452         if (data->display_timing.num_existing_displays != info.display_count)
5453                 is_update_required = true;
5454
5455         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
5456                 if(hwmgr->display_config.min_core_set_clock_in_sr != data->display_timing.min_clock_in_sr)
5457                         is_update_required = true;
5458         }
5459
5460         return is_update_required;
5461 }
5462
5463 static int fiji_get_sclk_od(struct pp_hwmgr *hwmgr)
5464 {
5465         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5466         struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5467         struct fiji_single_dpm_table *golden_sclk_table =
5468                         &(data->golden_dpm_table.sclk_table);
5469         int value;
5470
5471         value = (sclk_table->dpm_levels[sclk_table->count - 1].value -
5472                         golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value) *
5473                         100 /
5474                         golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
5475
5476         return value;
5477 }
5478
5479 static int fiji_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5480 {
5481         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5482         struct fiji_single_dpm_table *golden_sclk_table =
5483                         &(data->golden_dpm_table.sclk_table);
5484         struct pp_power_state  *ps;
5485         struct fiji_power_state  *fiji_ps;
5486
5487         if (value > 20)
5488                 value = 20;
5489
5490         ps = hwmgr->request_ps;
5491
5492         if (ps == NULL)
5493                 return -EINVAL;
5494
5495         fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
5496
5497         fiji_ps->performance_levels[fiji_ps->performance_level_count - 1].engine_clock =
5498                         golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value *
5499                         value / 100 +
5500                         golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
5501
5502         return 0;
5503 }
5504
5505 static int fiji_get_mclk_od(struct pp_hwmgr *hwmgr)
5506 {
5507         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5508         struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5509         struct fiji_single_dpm_table *golden_mclk_table =
5510                         &(data->golden_dpm_table.mclk_table);
5511         int value;
5512
5513         value = (mclk_table->dpm_levels[mclk_table->count - 1].value -
5514                         golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value) *
5515                         100 /
5516                         golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
5517
5518         return value;
5519 }
5520
5521 static int fiji_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5522 {
5523         struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5524         struct fiji_single_dpm_table *golden_mclk_table =
5525                         &(data->golden_dpm_table.mclk_table);
5526         struct pp_power_state  *ps;
5527         struct fiji_power_state  *fiji_ps;
5528
5529         if (value > 20)
5530                 value = 20;
5531
5532         ps = hwmgr->request_ps;
5533
5534         if (ps == NULL)
5535                 return -EINVAL;
5536
5537         fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
5538
5539         fiji_ps->performance_levels[fiji_ps->performance_level_count - 1].memory_clock =
5540                         golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value *
5541                         value / 100 +
5542                         golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
5543
5544         return 0;
5545 }
5546
5547 static const struct pp_hwmgr_func fiji_hwmgr_funcs = {
5548         .backend_init = &fiji_hwmgr_backend_init,
5549         .backend_fini = &fiji_hwmgr_backend_fini,
5550         .asic_setup = &fiji_setup_asic_task,
5551         .dynamic_state_management_enable = &fiji_enable_dpm_tasks,
5552         .dynamic_state_management_disable = &fiji_disable_dpm_tasks,
5553         .force_dpm_level = &fiji_dpm_force_dpm_level,
5554         .get_num_of_pp_table_entries = &tonga_get_number_of_powerplay_table_entries,
5555         .get_power_state_size = &fiji_get_power_state_size,
5556         .get_pp_table_entry = &fiji_get_pp_table_entry,
5557         .patch_boot_state = &fiji_patch_boot_state,
5558         .apply_state_adjust_rules = &fiji_apply_state_adjust_rules,
5559         .power_state_set = &fiji_set_power_state_tasks,
5560         .get_sclk = &fiji_dpm_get_sclk,
5561         .get_mclk = &fiji_dpm_get_mclk,
5562         .print_current_perforce_level = &fiji_print_current_perforce_level,
5563         .powergate_uvd = &fiji_phm_powergate_uvd,
5564         .powergate_vce = &fiji_phm_powergate_vce,
5565         .disable_clock_power_gating = &fiji_phm_disable_clock_power_gating,
5566         .notify_smc_display_config_after_ps_adjustment =
5567                         &tonga_notify_smc_display_config_after_ps_adjustment,
5568         .display_config_changed = &fiji_display_configuration_changed_task,
5569         .set_max_fan_pwm_output = fiji_set_max_fan_pwm_output,
5570         .set_max_fan_rpm_output = fiji_set_max_fan_rpm_output,
5571         .get_temperature = fiji_thermal_get_temperature,
5572         .stop_thermal_controller = fiji_thermal_stop_thermal_controller,
5573         .get_fan_speed_info = fiji_fan_ctrl_get_fan_speed_info,
5574         .get_fan_speed_percent = fiji_fan_ctrl_get_fan_speed_percent,
5575         .set_fan_speed_percent = fiji_fan_ctrl_set_fan_speed_percent,
5576         .reset_fan_speed_to_default = fiji_fan_ctrl_reset_fan_speed_to_default,
5577         .get_fan_speed_rpm = fiji_fan_ctrl_get_fan_speed_rpm,
5578         .set_fan_speed_rpm = fiji_fan_ctrl_set_fan_speed_rpm,
5579         .uninitialize_thermal_controller = fiji_thermal_ctrl_uninitialize_thermal_controller,
5580         .register_internal_thermal_interrupt = fiji_register_internal_thermal_interrupt,
5581         .set_fan_control_mode = fiji_set_fan_control_mode,
5582         .get_fan_control_mode = fiji_get_fan_control_mode,
5583         .check_states_equal = fiji_check_states_equal,
5584         .check_smc_update_required_for_display_configuration = fiji_check_smc_update_required_for_display_configuration,
5585         .force_clock_level = fiji_force_clock_level,
5586         .print_clock_levels = fiji_print_clock_levels,
5587         .get_sclk_od = fiji_get_sclk_od,
5588         .set_sclk_od = fiji_set_sclk_od,
5589         .get_mclk_od = fiji_get_mclk_od,
5590         .set_mclk_od = fiji_set_mclk_od,
5591 };
5592
5593 int fiji_hwmgr_init(struct pp_hwmgr *hwmgr)
5594 {
5595         hwmgr->hwmgr_func = &fiji_hwmgr_funcs;
5596         hwmgr->pptable_func = &tonga_pptable_funcs;
5597         pp_fiji_thermal_initialize(hwmgr);
5598         return 0;
5599 }