Merge tag 'iwlwifi-for-john-2014-10-23' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51         return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58                        struct dentry *ent,
59                        const void *key)
60 {
61         struct drm_info_node *node;
62
63         node = kmalloc(sizeof(*node), GFP_KERNEL);
64         if (node == NULL) {
65                 debugfs_remove(ent);
66                 return -ENOMEM;
67         }
68
69         node->minor = minor;
70         node->dent = ent;
71         node->info_ent = (void *) key;
72
73         mutex_lock(&minor->debugfs_lock);
74         list_add(&node->list, &minor->debugfs_list);
75         mutex_unlock(&minor->debugfs_lock);
76
77         return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82         struct drm_info_node *node = m->private;
83         struct drm_device *dev = node->minor->dev;
84         const struct intel_device_info *info = INTEL_INFO(dev);
85
86         seq_printf(m, "gen: %d\n", info->gen);
87         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94         return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         if (obj->user_pin_count > 0)
100                 return "P";
101         else if (i915_gem_obj_is_pinned(obj))
102                 return "p";
103         else
104                 return " ";
105 }
106
107 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
108 {
109         switch (obj->tiling_mode) {
110         default:
111         case I915_TILING_NONE: return " ";
112         case I915_TILING_X: return "X";
113         case I915_TILING_Y: return "Y";
114         }
115 }
116
117 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
118 {
119         return obj->has_global_gtt_mapping ? "g" : " ";
120 }
121
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125         struct i915_vma *vma;
126         int pin_count = 0;
127
128         seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
129                    &obj->base,
130                    get_pin_flag(obj),
131                    get_tiling_flag(obj),
132                    get_global_flag(obj),
133                    obj->base.size / 1024,
134                    obj->base.read_domains,
135                    obj->base.write_domain,
136                    obj->last_read_seqno,
137                    obj->last_write_seqno,
138                    obj->last_fenced_seqno,
139                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
140                    obj->dirty ? " dirty" : "",
141                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
142         if (obj->base.name)
143                 seq_printf(m, " (name: %d)", obj->base.name);
144         list_for_each_entry(vma, &obj->vma_list, vma_link)
145                 if (vma->pin_count > 0)
146                         pin_count++;
147                 seq_printf(m, " (pinned x %d)", pin_count);
148         if (obj->pin_display)
149                 seq_printf(m, " (display)");
150         if (obj->fence_reg != I915_FENCE_REG_NONE)
151                 seq_printf(m, " (fence: %d)", obj->fence_reg);
152         list_for_each_entry(vma, &obj->vma_list, vma_link) {
153                 if (!i915_is_ggtt(vma->vm))
154                         seq_puts(m, " (pp");
155                 else
156                         seq_puts(m, " (g");
157                 seq_printf(m, "gtt offset: %08lx, size: %08lx)",
158                            vma->node.start, vma->node.size);
159         }
160         if (obj->stolen)
161                 seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
162         if (obj->pin_mappable || obj->fault_mappable) {
163                 char s[3], *t = s;
164                 if (obj->pin_mappable)
165                         *t++ = 'p';
166                 if (obj->fault_mappable)
167                         *t++ = 'f';
168                 *t = '\0';
169                 seq_printf(m, " (%s mappable)", s);
170         }
171         if (obj->ring != NULL)
172                 seq_printf(m, " (%s)", obj->ring->name);
173         if (obj->frontbuffer_bits)
174                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
175 }
176
177 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
178 {
179         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
180         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
181         seq_putc(m, ' ');
182 }
183
184 static int i915_gem_object_list_info(struct seq_file *m, void *data)
185 {
186         struct drm_info_node *node = m->private;
187         uintptr_t list = (uintptr_t) node->info_ent->data;
188         struct list_head *head;
189         struct drm_device *dev = node->minor->dev;
190         struct drm_i915_private *dev_priv = dev->dev_private;
191         struct i915_address_space *vm = &dev_priv->gtt.base;
192         struct i915_vma *vma;
193         size_t total_obj_size, total_gtt_size;
194         int count, ret;
195
196         ret = mutex_lock_interruptible(&dev->struct_mutex);
197         if (ret)
198                 return ret;
199
200         /* FIXME: the user of this interface might want more than just GGTT */
201         switch (list) {
202         case ACTIVE_LIST:
203                 seq_puts(m, "Active:\n");
204                 head = &vm->active_list;
205                 break;
206         case INACTIVE_LIST:
207                 seq_puts(m, "Inactive:\n");
208                 head = &vm->inactive_list;
209                 break;
210         default:
211                 mutex_unlock(&dev->struct_mutex);
212                 return -EINVAL;
213         }
214
215         total_obj_size = total_gtt_size = count = 0;
216         list_for_each_entry(vma, head, mm_list) {
217                 seq_printf(m, "   ");
218                 describe_obj(m, vma->obj);
219                 seq_printf(m, "\n");
220                 total_obj_size += vma->obj->base.size;
221                 total_gtt_size += vma->node.size;
222                 count++;
223         }
224         mutex_unlock(&dev->struct_mutex);
225
226         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
227                    count, total_obj_size, total_gtt_size);
228         return 0;
229 }
230
231 static int obj_rank_by_stolen(void *priv,
232                               struct list_head *A, struct list_head *B)
233 {
234         struct drm_i915_gem_object *a =
235                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
236         struct drm_i915_gem_object *b =
237                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
238
239         return a->stolen->start - b->stolen->start;
240 }
241
242 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
243 {
244         struct drm_info_node *node = m->private;
245         struct drm_device *dev = node->minor->dev;
246         struct drm_i915_private *dev_priv = dev->dev_private;
247         struct drm_i915_gem_object *obj;
248         size_t total_obj_size, total_gtt_size;
249         LIST_HEAD(stolen);
250         int count, ret;
251
252         ret = mutex_lock_interruptible(&dev->struct_mutex);
253         if (ret)
254                 return ret;
255
256         total_obj_size = total_gtt_size = count = 0;
257         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
258                 if (obj->stolen == NULL)
259                         continue;
260
261                 list_add(&obj->obj_exec_link, &stolen);
262
263                 total_obj_size += obj->base.size;
264                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
265                 count++;
266         }
267         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
268                 if (obj->stolen == NULL)
269                         continue;
270
271                 list_add(&obj->obj_exec_link, &stolen);
272
273                 total_obj_size += obj->base.size;
274                 count++;
275         }
276         list_sort(NULL, &stolen, obj_rank_by_stolen);
277         seq_puts(m, "Stolen:\n");
278         while (!list_empty(&stolen)) {
279                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
280                 seq_puts(m, "   ");
281                 describe_obj(m, obj);
282                 seq_putc(m, '\n');
283                 list_del_init(&obj->obj_exec_link);
284         }
285         mutex_unlock(&dev->struct_mutex);
286
287         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
288                    count, total_obj_size, total_gtt_size);
289         return 0;
290 }
291
292 #define count_objects(list, member) do { \
293         list_for_each_entry(obj, list, member) { \
294                 size += i915_gem_obj_ggtt_size(obj); \
295                 ++count; \
296                 if (obj->map_and_fenceable) { \
297                         mappable_size += i915_gem_obj_ggtt_size(obj); \
298                         ++mappable_count; \
299                 } \
300         } \
301 } while (0)
302
303 struct file_stats {
304         struct drm_i915_file_private *file_priv;
305         int count;
306         size_t total, unbound;
307         size_t global, shared;
308         size_t active, inactive;
309 };
310
311 static int per_file_stats(int id, void *ptr, void *data)
312 {
313         struct drm_i915_gem_object *obj = ptr;
314         struct file_stats *stats = data;
315         struct i915_vma *vma;
316
317         stats->count++;
318         stats->total += obj->base.size;
319
320         if (obj->base.name || obj->base.dma_buf)
321                 stats->shared += obj->base.size;
322
323         if (USES_FULL_PPGTT(obj->base.dev)) {
324                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
325                         struct i915_hw_ppgtt *ppgtt;
326
327                         if (!drm_mm_node_allocated(&vma->node))
328                                 continue;
329
330                         if (i915_is_ggtt(vma->vm)) {
331                                 stats->global += obj->base.size;
332                                 continue;
333                         }
334
335                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
336                         if (ppgtt->file_priv != stats->file_priv)
337                                 continue;
338
339                         if (obj->ring) /* XXX per-vma statistic */
340                                 stats->active += obj->base.size;
341                         else
342                                 stats->inactive += obj->base.size;
343
344                         return 0;
345                 }
346         } else {
347                 if (i915_gem_obj_ggtt_bound(obj)) {
348                         stats->global += obj->base.size;
349                         if (obj->ring)
350                                 stats->active += obj->base.size;
351                         else
352                                 stats->inactive += obj->base.size;
353                         return 0;
354                 }
355         }
356
357         if (!list_empty(&obj->global_list))
358                 stats->unbound += obj->base.size;
359
360         return 0;
361 }
362
363 #define count_vmas(list, member) do { \
364         list_for_each_entry(vma, list, member) { \
365                 size += i915_gem_obj_ggtt_size(vma->obj); \
366                 ++count; \
367                 if (vma->obj->map_and_fenceable) { \
368                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
369                         ++mappable_count; \
370                 } \
371         } \
372 } while (0)
373
374 static int i915_gem_object_info(struct seq_file *m, void* data)
375 {
376         struct drm_info_node *node = m->private;
377         struct drm_device *dev = node->minor->dev;
378         struct drm_i915_private *dev_priv = dev->dev_private;
379         u32 count, mappable_count, purgeable_count;
380         size_t size, mappable_size, purgeable_size;
381         struct drm_i915_gem_object *obj;
382         struct i915_address_space *vm = &dev_priv->gtt.base;
383         struct drm_file *file;
384         struct i915_vma *vma;
385         int ret;
386
387         ret = mutex_lock_interruptible(&dev->struct_mutex);
388         if (ret)
389                 return ret;
390
391         seq_printf(m, "%u objects, %zu bytes\n",
392                    dev_priv->mm.object_count,
393                    dev_priv->mm.object_memory);
394
395         size = count = mappable_size = mappable_count = 0;
396         count_objects(&dev_priv->mm.bound_list, global_list);
397         seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
398                    count, mappable_count, size, mappable_size);
399
400         size = count = mappable_size = mappable_count = 0;
401         count_vmas(&vm->active_list, mm_list);
402         seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
403                    count, mappable_count, size, mappable_size);
404
405         size = count = mappable_size = mappable_count = 0;
406         count_vmas(&vm->inactive_list, mm_list);
407         seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
408                    count, mappable_count, size, mappable_size);
409
410         size = count = purgeable_size = purgeable_count = 0;
411         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
412                 size += obj->base.size, ++count;
413                 if (obj->madv == I915_MADV_DONTNEED)
414                         purgeable_size += obj->base.size, ++purgeable_count;
415         }
416         seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
417
418         size = count = mappable_size = mappable_count = 0;
419         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
420                 if (obj->fault_mappable) {
421                         size += i915_gem_obj_ggtt_size(obj);
422                         ++count;
423                 }
424                 if (obj->pin_mappable) {
425                         mappable_size += i915_gem_obj_ggtt_size(obj);
426                         ++mappable_count;
427                 }
428                 if (obj->madv == I915_MADV_DONTNEED) {
429                         purgeable_size += obj->base.size;
430                         ++purgeable_count;
431                 }
432         }
433         seq_printf(m, "%u purgeable objects, %zu bytes\n",
434                    purgeable_count, purgeable_size);
435         seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
436                    mappable_count, mappable_size);
437         seq_printf(m, "%u fault mappable objects, %zu bytes\n",
438                    count, size);
439
440         seq_printf(m, "%zu [%lu] gtt total\n",
441                    dev_priv->gtt.base.total,
442                    dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
443
444         seq_putc(m, '\n');
445         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
446                 struct file_stats stats;
447                 struct task_struct *task;
448
449                 memset(&stats, 0, sizeof(stats));
450                 stats.file_priv = file->driver_priv;
451                 spin_lock(&file->table_lock);
452                 idr_for_each(&file->object_idr, per_file_stats, &stats);
453                 spin_unlock(&file->table_lock);
454                 /*
455                  * Although we have a valid reference on file->pid, that does
456                  * not guarantee that the task_struct who called get_pid() is
457                  * still alive (e.g. get_pid(current) => fork() => exit()).
458                  * Therefore, we need to protect this ->comm access using RCU.
459                  */
460                 rcu_read_lock();
461                 task = pid_task(file->pid, PIDTYPE_PID);
462                 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
463                            task ? task->comm : "<unknown>",
464                            stats.count,
465                            stats.total,
466                            stats.active,
467                            stats.inactive,
468                            stats.global,
469                            stats.shared,
470                            stats.unbound);
471                 rcu_read_unlock();
472         }
473
474         mutex_unlock(&dev->struct_mutex);
475
476         return 0;
477 }
478
479 static int i915_gem_gtt_info(struct seq_file *m, void *data)
480 {
481         struct drm_info_node *node = m->private;
482         struct drm_device *dev = node->minor->dev;
483         uintptr_t list = (uintptr_t) node->info_ent->data;
484         struct drm_i915_private *dev_priv = dev->dev_private;
485         struct drm_i915_gem_object *obj;
486         size_t total_obj_size, total_gtt_size;
487         int count, ret;
488
489         ret = mutex_lock_interruptible(&dev->struct_mutex);
490         if (ret)
491                 return ret;
492
493         total_obj_size = total_gtt_size = count = 0;
494         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
495                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
496                         continue;
497
498                 seq_puts(m, "   ");
499                 describe_obj(m, obj);
500                 seq_putc(m, '\n');
501                 total_obj_size += obj->base.size;
502                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
503                 count++;
504         }
505
506         mutex_unlock(&dev->struct_mutex);
507
508         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
509                    count, total_obj_size, total_gtt_size);
510
511         return 0;
512 }
513
514 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
515 {
516         struct drm_info_node *node = m->private;
517         struct drm_device *dev = node->minor->dev;
518         struct drm_i915_private *dev_priv = dev->dev_private;
519         unsigned long flags;
520         struct intel_crtc *crtc;
521         int ret;
522
523         ret = mutex_lock_interruptible(&dev->struct_mutex);
524         if (ret)
525                 return ret;
526
527         for_each_intel_crtc(dev, crtc) {
528                 const char pipe = pipe_name(crtc->pipe);
529                 const char plane = plane_name(crtc->plane);
530                 struct intel_unpin_work *work;
531
532                 spin_lock_irqsave(&dev->event_lock, flags);
533                 work = crtc->unpin_work;
534                 if (work == NULL) {
535                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
536                                    pipe, plane);
537                 } else {
538                         u32 addr;
539
540                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
541                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
542                                            pipe, plane);
543                         } else {
544                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
545                                            pipe, plane);
546                         }
547                         if (work->flip_queued_ring) {
548                                 seq_printf(m, "Flip queued on %s at seqno %u, next seqno %u [current breadcrumb %u], completed? %d\n",
549                                            work->flip_queued_ring->name,
550                                            work->flip_queued_seqno,
551                                            dev_priv->next_seqno,
552                                            work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
553                                            i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
554                                                              work->flip_queued_seqno));
555                         } else
556                                 seq_printf(m, "Flip not associated with any ring\n");
557                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
558                                    work->flip_queued_vblank,
559                                    work->flip_ready_vblank,
560                                    drm_vblank_count(dev, crtc->pipe));
561                         if (work->enable_stall_check)
562                                 seq_puts(m, "Stall check enabled, ");
563                         else
564                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
565                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
566
567                         if (INTEL_INFO(dev)->gen >= 4)
568                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
569                         else
570                                 addr = I915_READ(DSPADDR(crtc->plane));
571                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
572
573                         if (work->pending_flip_obj) {
574                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
575                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
576                         }
577                 }
578                 spin_unlock_irqrestore(&dev->event_lock, flags);
579         }
580
581         mutex_unlock(&dev->struct_mutex);
582
583         return 0;
584 }
585
586 static int i915_gem_request_info(struct seq_file *m, void *data)
587 {
588         struct drm_info_node *node = m->private;
589         struct drm_device *dev = node->minor->dev;
590         struct drm_i915_private *dev_priv = dev->dev_private;
591         struct intel_engine_cs *ring;
592         struct drm_i915_gem_request *gem_request;
593         int ret, count, i;
594
595         ret = mutex_lock_interruptible(&dev->struct_mutex);
596         if (ret)
597                 return ret;
598
599         count = 0;
600         for_each_ring(ring, dev_priv, i) {
601                 if (list_empty(&ring->request_list))
602                         continue;
603
604                 seq_printf(m, "%s requests:\n", ring->name);
605                 list_for_each_entry(gem_request,
606                                     &ring->request_list,
607                                     list) {
608                         seq_printf(m, "    %d @ %d\n",
609                                    gem_request->seqno,
610                                    (int) (jiffies - gem_request->emitted_jiffies));
611                 }
612                 count++;
613         }
614         mutex_unlock(&dev->struct_mutex);
615
616         if (count == 0)
617                 seq_puts(m, "No requests\n");
618
619         return 0;
620 }
621
622 static void i915_ring_seqno_info(struct seq_file *m,
623                                  struct intel_engine_cs *ring)
624 {
625         if (ring->get_seqno) {
626                 seq_printf(m, "Current sequence (%s): %u\n",
627                            ring->name, ring->get_seqno(ring, false));
628         }
629 }
630
631 static int i915_gem_seqno_info(struct seq_file *m, void *data)
632 {
633         struct drm_info_node *node = m->private;
634         struct drm_device *dev = node->minor->dev;
635         struct drm_i915_private *dev_priv = dev->dev_private;
636         struct intel_engine_cs *ring;
637         int ret, i;
638
639         ret = mutex_lock_interruptible(&dev->struct_mutex);
640         if (ret)
641                 return ret;
642         intel_runtime_pm_get(dev_priv);
643
644         for_each_ring(ring, dev_priv, i)
645                 i915_ring_seqno_info(m, ring);
646
647         intel_runtime_pm_put(dev_priv);
648         mutex_unlock(&dev->struct_mutex);
649
650         return 0;
651 }
652
653
654 static int i915_interrupt_info(struct seq_file *m, void *data)
655 {
656         struct drm_info_node *node = m->private;
657         struct drm_device *dev = node->minor->dev;
658         struct drm_i915_private *dev_priv = dev->dev_private;
659         struct intel_engine_cs *ring;
660         int ret, i, pipe;
661
662         ret = mutex_lock_interruptible(&dev->struct_mutex);
663         if (ret)
664                 return ret;
665         intel_runtime_pm_get(dev_priv);
666
667         if (IS_CHERRYVIEW(dev)) {
668                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
669                            I915_READ(GEN8_MASTER_IRQ));
670
671                 seq_printf(m, "Display IER:\t%08x\n",
672                            I915_READ(VLV_IER));
673                 seq_printf(m, "Display IIR:\t%08x\n",
674                            I915_READ(VLV_IIR));
675                 seq_printf(m, "Display IIR_RW:\t%08x\n",
676                            I915_READ(VLV_IIR_RW));
677                 seq_printf(m, "Display IMR:\t%08x\n",
678                            I915_READ(VLV_IMR));
679                 for_each_pipe(dev_priv, pipe)
680                         seq_printf(m, "Pipe %c stat:\t%08x\n",
681                                    pipe_name(pipe),
682                                    I915_READ(PIPESTAT(pipe)));
683
684                 seq_printf(m, "Port hotplug:\t%08x\n",
685                            I915_READ(PORT_HOTPLUG_EN));
686                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
687                            I915_READ(VLV_DPFLIPSTAT));
688                 seq_printf(m, "DPINVGTT:\t%08x\n",
689                            I915_READ(DPINVGTT));
690
691                 for (i = 0; i < 4; i++) {
692                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
693                                    i, I915_READ(GEN8_GT_IMR(i)));
694                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
695                                    i, I915_READ(GEN8_GT_IIR(i)));
696                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
697                                    i, I915_READ(GEN8_GT_IER(i)));
698                 }
699
700                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
701                            I915_READ(GEN8_PCU_IMR));
702                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
703                            I915_READ(GEN8_PCU_IIR));
704                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
705                            I915_READ(GEN8_PCU_IER));
706         } else if (INTEL_INFO(dev)->gen >= 8) {
707                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
708                            I915_READ(GEN8_MASTER_IRQ));
709
710                 for (i = 0; i < 4; i++) {
711                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
712                                    i, I915_READ(GEN8_GT_IMR(i)));
713                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
714                                    i, I915_READ(GEN8_GT_IIR(i)));
715                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
716                                    i, I915_READ(GEN8_GT_IER(i)));
717                 }
718
719                 for_each_pipe(dev_priv, pipe) {
720                         if (!intel_display_power_enabled(dev_priv,
721                                                 POWER_DOMAIN_PIPE(pipe))) {
722                                 seq_printf(m, "Pipe %c power disabled\n",
723                                            pipe_name(pipe));
724                                 continue;
725                         }
726                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
727                                    pipe_name(pipe),
728                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
729                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
730                                    pipe_name(pipe),
731                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
732                         seq_printf(m, "Pipe %c IER:\t%08x\n",
733                                    pipe_name(pipe),
734                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
735                 }
736
737                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
738                            I915_READ(GEN8_DE_PORT_IMR));
739                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
740                            I915_READ(GEN8_DE_PORT_IIR));
741                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
742                            I915_READ(GEN8_DE_PORT_IER));
743
744                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
745                            I915_READ(GEN8_DE_MISC_IMR));
746                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
747                            I915_READ(GEN8_DE_MISC_IIR));
748                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
749                            I915_READ(GEN8_DE_MISC_IER));
750
751                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
752                            I915_READ(GEN8_PCU_IMR));
753                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
754                            I915_READ(GEN8_PCU_IIR));
755                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
756                            I915_READ(GEN8_PCU_IER));
757         } else if (IS_VALLEYVIEW(dev)) {
758                 seq_printf(m, "Display IER:\t%08x\n",
759                            I915_READ(VLV_IER));
760                 seq_printf(m, "Display IIR:\t%08x\n",
761                            I915_READ(VLV_IIR));
762                 seq_printf(m, "Display IIR_RW:\t%08x\n",
763                            I915_READ(VLV_IIR_RW));
764                 seq_printf(m, "Display IMR:\t%08x\n",
765                            I915_READ(VLV_IMR));
766                 for_each_pipe(dev_priv, pipe)
767                         seq_printf(m, "Pipe %c stat:\t%08x\n",
768                                    pipe_name(pipe),
769                                    I915_READ(PIPESTAT(pipe)));
770
771                 seq_printf(m, "Master IER:\t%08x\n",
772                            I915_READ(VLV_MASTER_IER));
773
774                 seq_printf(m, "Render IER:\t%08x\n",
775                            I915_READ(GTIER));
776                 seq_printf(m, "Render IIR:\t%08x\n",
777                            I915_READ(GTIIR));
778                 seq_printf(m, "Render IMR:\t%08x\n",
779                            I915_READ(GTIMR));
780
781                 seq_printf(m, "PM IER:\t\t%08x\n",
782                            I915_READ(GEN6_PMIER));
783                 seq_printf(m, "PM IIR:\t\t%08x\n",
784                            I915_READ(GEN6_PMIIR));
785                 seq_printf(m, "PM IMR:\t\t%08x\n",
786                            I915_READ(GEN6_PMIMR));
787
788                 seq_printf(m, "Port hotplug:\t%08x\n",
789                            I915_READ(PORT_HOTPLUG_EN));
790                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
791                            I915_READ(VLV_DPFLIPSTAT));
792                 seq_printf(m, "DPINVGTT:\t%08x\n",
793                            I915_READ(DPINVGTT));
794
795         } else if (!HAS_PCH_SPLIT(dev)) {
796                 seq_printf(m, "Interrupt enable:    %08x\n",
797                            I915_READ(IER));
798                 seq_printf(m, "Interrupt identity:  %08x\n",
799                            I915_READ(IIR));
800                 seq_printf(m, "Interrupt mask:      %08x\n",
801                            I915_READ(IMR));
802                 for_each_pipe(dev_priv, pipe)
803                         seq_printf(m, "Pipe %c stat:         %08x\n",
804                                    pipe_name(pipe),
805                                    I915_READ(PIPESTAT(pipe)));
806         } else {
807                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
808                            I915_READ(DEIER));
809                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
810                            I915_READ(DEIIR));
811                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
812                            I915_READ(DEIMR));
813                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
814                            I915_READ(SDEIER));
815                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
816                            I915_READ(SDEIIR));
817                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
818                            I915_READ(SDEIMR));
819                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
820                            I915_READ(GTIER));
821                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
822                            I915_READ(GTIIR));
823                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
824                            I915_READ(GTIMR));
825         }
826         for_each_ring(ring, dev_priv, i) {
827                 if (INTEL_INFO(dev)->gen >= 6) {
828                         seq_printf(m,
829                                    "Graphics Interrupt mask (%s):       %08x\n",
830                                    ring->name, I915_READ_IMR(ring));
831                 }
832                 i915_ring_seqno_info(m, ring);
833         }
834         intel_runtime_pm_put(dev_priv);
835         mutex_unlock(&dev->struct_mutex);
836
837         return 0;
838 }
839
840 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
841 {
842         struct drm_info_node *node = m->private;
843         struct drm_device *dev = node->minor->dev;
844         struct drm_i915_private *dev_priv = dev->dev_private;
845         int i, ret;
846
847         ret = mutex_lock_interruptible(&dev->struct_mutex);
848         if (ret)
849                 return ret;
850
851         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
852         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
853         for (i = 0; i < dev_priv->num_fence_regs; i++) {
854                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
855
856                 seq_printf(m, "Fence %d, pin count = %d, object = ",
857                            i, dev_priv->fence_regs[i].pin_count);
858                 if (obj == NULL)
859                         seq_puts(m, "unused");
860                 else
861                         describe_obj(m, obj);
862                 seq_putc(m, '\n');
863         }
864
865         mutex_unlock(&dev->struct_mutex);
866         return 0;
867 }
868
869 static int i915_hws_info(struct seq_file *m, void *data)
870 {
871         struct drm_info_node *node = m->private;
872         struct drm_device *dev = node->minor->dev;
873         struct drm_i915_private *dev_priv = dev->dev_private;
874         struct intel_engine_cs *ring;
875         const u32 *hws;
876         int i;
877
878         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
879         hws = ring->status_page.page_addr;
880         if (hws == NULL)
881                 return 0;
882
883         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
884                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
885                            i * 4,
886                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
887         }
888         return 0;
889 }
890
891 static ssize_t
892 i915_error_state_write(struct file *filp,
893                        const char __user *ubuf,
894                        size_t cnt,
895                        loff_t *ppos)
896 {
897         struct i915_error_state_file_priv *error_priv = filp->private_data;
898         struct drm_device *dev = error_priv->dev;
899         int ret;
900
901         DRM_DEBUG_DRIVER("Resetting error state\n");
902
903         ret = mutex_lock_interruptible(&dev->struct_mutex);
904         if (ret)
905                 return ret;
906
907         i915_destroy_error_state(dev);
908         mutex_unlock(&dev->struct_mutex);
909
910         return cnt;
911 }
912
913 static int i915_error_state_open(struct inode *inode, struct file *file)
914 {
915         struct drm_device *dev = inode->i_private;
916         struct i915_error_state_file_priv *error_priv;
917
918         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
919         if (!error_priv)
920                 return -ENOMEM;
921
922         error_priv->dev = dev;
923
924         i915_error_state_get(dev, error_priv);
925
926         file->private_data = error_priv;
927
928         return 0;
929 }
930
931 static int i915_error_state_release(struct inode *inode, struct file *file)
932 {
933         struct i915_error_state_file_priv *error_priv = file->private_data;
934
935         i915_error_state_put(error_priv);
936         kfree(error_priv);
937
938         return 0;
939 }
940
941 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
942                                      size_t count, loff_t *pos)
943 {
944         struct i915_error_state_file_priv *error_priv = file->private_data;
945         struct drm_i915_error_state_buf error_str;
946         loff_t tmp_pos = 0;
947         ssize_t ret_count = 0;
948         int ret;
949
950         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
951         if (ret)
952                 return ret;
953
954         ret = i915_error_state_to_str(&error_str, error_priv);
955         if (ret)
956                 goto out;
957
958         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
959                                             error_str.buf,
960                                             error_str.bytes);
961
962         if (ret_count < 0)
963                 ret = ret_count;
964         else
965                 *pos = error_str.start + ret_count;
966 out:
967         i915_error_state_buf_release(&error_str);
968         return ret ?: ret_count;
969 }
970
971 static const struct file_operations i915_error_state_fops = {
972         .owner = THIS_MODULE,
973         .open = i915_error_state_open,
974         .read = i915_error_state_read,
975         .write = i915_error_state_write,
976         .llseek = default_llseek,
977         .release = i915_error_state_release,
978 };
979
980 static int
981 i915_next_seqno_get(void *data, u64 *val)
982 {
983         struct drm_device *dev = data;
984         struct drm_i915_private *dev_priv = dev->dev_private;
985         int ret;
986
987         ret = mutex_lock_interruptible(&dev->struct_mutex);
988         if (ret)
989                 return ret;
990
991         *val = dev_priv->next_seqno;
992         mutex_unlock(&dev->struct_mutex);
993
994         return 0;
995 }
996
997 static int
998 i915_next_seqno_set(void *data, u64 val)
999 {
1000         struct drm_device *dev = data;
1001         int ret;
1002
1003         ret = mutex_lock_interruptible(&dev->struct_mutex);
1004         if (ret)
1005                 return ret;
1006
1007         ret = i915_gem_set_seqno(dev, val);
1008         mutex_unlock(&dev->struct_mutex);
1009
1010         return ret;
1011 }
1012
1013 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1014                         i915_next_seqno_get, i915_next_seqno_set,
1015                         "0x%llx\n");
1016
1017 static int i915_frequency_info(struct seq_file *m, void *unused)
1018 {
1019         struct drm_info_node *node = m->private;
1020         struct drm_device *dev = node->minor->dev;
1021         struct drm_i915_private *dev_priv = dev->dev_private;
1022         int ret = 0;
1023
1024         intel_runtime_pm_get(dev_priv);
1025
1026         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1027
1028         if (IS_GEN5(dev)) {
1029                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1030                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1031
1032                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1033                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1034                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1035                            MEMSTAT_VID_SHIFT);
1036                 seq_printf(m, "Current P-state: %d\n",
1037                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1038         } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1039                    IS_BROADWELL(dev)) {
1040                 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1041                 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1042                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1043                 u32 rpmodectl, rpinclimit, rpdeclimit;
1044                 u32 rpstat, cagf, reqf;
1045                 u32 rpupei, rpcurup, rpprevup;
1046                 u32 rpdownei, rpcurdown, rpprevdown;
1047                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1048                 int max_freq;
1049
1050                 /* RPSTAT1 is in the GT power well */
1051                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1052                 if (ret)
1053                         goto out;
1054
1055                 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
1056
1057                 reqf = I915_READ(GEN6_RPNSWREQ);
1058                 reqf &= ~GEN6_TURBO_DISABLE;
1059                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1060                         reqf >>= 24;
1061                 else
1062                         reqf >>= 25;
1063                 reqf *= GT_FREQUENCY_MULTIPLIER;
1064
1065                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1066                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1067                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1068
1069                 rpstat = I915_READ(GEN6_RPSTAT1);
1070                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1071                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1072                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1073                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1074                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1075                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1076                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1077                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1078                 else
1079                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1080                 cagf *= GT_FREQUENCY_MULTIPLIER;
1081
1082                 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
1083                 mutex_unlock(&dev->struct_mutex);
1084
1085                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1086                         pm_ier = I915_READ(GEN6_PMIER);
1087                         pm_imr = I915_READ(GEN6_PMIMR);
1088                         pm_isr = I915_READ(GEN6_PMISR);
1089                         pm_iir = I915_READ(GEN6_PMIIR);
1090                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1091                 } else {
1092                         pm_ier = I915_READ(GEN8_GT_IER(2));
1093                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1094                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1095                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1096                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1097                 }
1098                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1099                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1100                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1101                 seq_printf(m, "Render p-state ratio: %d\n",
1102                            (gt_perf_status & 0xff00) >> 8);
1103                 seq_printf(m, "Render p-state VID: %d\n",
1104                            gt_perf_status & 0xff);
1105                 seq_printf(m, "Render p-state limit: %d\n",
1106                            rp_state_limits & 0xff);
1107                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1108                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1109                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1110                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1111                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1112                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1113                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1114                            GEN6_CURICONT_MASK);
1115                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1116                            GEN6_CURBSYTAVG_MASK);
1117                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1118                            GEN6_CURBSYTAVG_MASK);
1119                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1120                            GEN6_CURIAVG_MASK);
1121                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1122                            GEN6_CURBSYTAVG_MASK);
1123                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1124                            GEN6_CURBSYTAVG_MASK);
1125
1126                 max_freq = (rp_state_cap & 0xff0000) >> 16;
1127                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1128                            max_freq * GT_FREQUENCY_MULTIPLIER);
1129
1130                 max_freq = (rp_state_cap & 0xff00) >> 8;
1131                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1132                            max_freq * GT_FREQUENCY_MULTIPLIER);
1133
1134                 max_freq = rp_state_cap & 0xff;
1135                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1136                            max_freq * GT_FREQUENCY_MULTIPLIER);
1137
1138                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1139                            dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
1140         } else if (IS_VALLEYVIEW(dev)) {
1141                 u32 freq_sts;
1142
1143                 mutex_lock(&dev_priv->rps.hw_lock);
1144                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1145                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1146                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1147
1148                 seq_printf(m, "max GPU freq: %d MHz\n",
1149                            vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1150
1151                 seq_printf(m, "min GPU freq: %d MHz\n",
1152                            vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1153
1154                 seq_printf(m, "efficient (RPe) frequency: %d MHz\n",
1155                            vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1156
1157                 seq_printf(m, "current GPU freq: %d MHz\n",
1158                            vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1159                 mutex_unlock(&dev_priv->rps.hw_lock);
1160         } else {
1161                 seq_puts(m, "no P-state info available\n");
1162         }
1163
1164 out:
1165         intel_runtime_pm_put(dev_priv);
1166         return ret;
1167 }
1168
1169 static int ironlake_drpc_info(struct seq_file *m)
1170 {
1171         struct drm_info_node *node = m->private;
1172         struct drm_device *dev = node->minor->dev;
1173         struct drm_i915_private *dev_priv = dev->dev_private;
1174         u32 rgvmodectl, rstdbyctl;
1175         u16 crstandvid;
1176         int ret;
1177
1178         ret = mutex_lock_interruptible(&dev->struct_mutex);
1179         if (ret)
1180                 return ret;
1181         intel_runtime_pm_get(dev_priv);
1182
1183         rgvmodectl = I915_READ(MEMMODECTL);
1184         rstdbyctl = I915_READ(RSTDBYCTL);
1185         crstandvid = I915_READ16(CRSTANDVID);
1186
1187         intel_runtime_pm_put(dev_priv);
1188         mutex_unlock(&dev->struct_mutex);
1189
1190         seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1191                    "yes" : "no");
1192         seq_printf(m, "Boost freq: %d\n",
1193                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1194                    MEMMODE_BOOST_FREQ_SHIFT);
1195         seq_printf(m, "HW control enabled: %s\n",
1196                    rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1197         seq_printf(m, "SW control enabled: %s\n",
1198                    rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1199         seq_printf(m, "Gated voltage change: %s\n",
1200                    rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1201         seq_printf(m, "Starting frequency: P%d\n",
1202                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1203         seq_printf(m, "Max P-state: P%d\n",
1204                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1205         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1206         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1207         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1208         seq_printf(m, "Render standby enabled: %s\n",
1209                    (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1210         seq_puts(m, "Current RS state: ");
1211         switch (rstdbyctl & RSX_STATUS_MASK) {
1212         case RSX_STATUS_ON:
1213                 seq_puts(m, "on\n");
1214                 break;
1215         case RSX_STATUS_RC1:
1216                 seq_puts(m, "RC1\n");
1217                 break;
1218         case RSX_STATUS_RC1E:
1219                 seq_puts(m, "RC1E\n");
1220                 break;
1221         case RSX_STATUS_RS1:
1222                 seq_puts(m, "RS1\n");
1223                 break;
1224         case RSX_STATUS_RS2:
1225                 seq_puts(m, "RS2 (RC6)\n");
1226                 break;
1227         case RSX_STATUS_RS3:
1228                 seq_puts(m, "RC3 (RC6+)\n");
1229                 break;
1230         default:
1231                 seq_puts(m, "unknown\n");
1232                 break;
1233         }
1234
1235         return 0;
1236 }
1237
1238 static int vlv_drpc_info(struct seq_file *m)
1239 {
1240
1241         struct drm_info_node *node = m->private;
1242         struct drm_device *dev = node->minor->dev;
1243         struct drm_i915_private *dev_priv = dev->dev_private;
1244         u32 rpmodectl1, rcctl1;
1245         unsigned fw_rendercount = 0, fw_mediacount = 0;
1246
1247         intel_runtime_pm_get(dev_priv);
1248
1249         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1250         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1251
1252         intel_runtime_pm_put(dev_priv);
1253
1254         seq_printf(m, "Video Turbo Mode: %s\n",
1255                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1256         seq_printf(m, "Turbo enabled: %s\n",
1257                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1258         seq_printf(m, "HW control enabled: %s\n",
1259                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1260         seq_printf(m, "SW control enabled: %s\n",
1261                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1262                           GEN6_RP_MEDIA_SW_MODE));
1263         seq_printf(m, "RC6 Enabled: %s\n",
1264                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1265                                         GEN6_RC_CTL_EI_MODE(1))));
1266         seq_printf(m, "Render Power Well: %s\n",
1267                         (I915_READ(VLV_GTLC_PW_STATUS) &
1268                                 VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1269         seq_printf(m, "Media Power Well: %s\n",
1270                         (I915_READ(VLV_GTLC_PW_STATUS) &
1271                                 VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1272
1273         seq_printf(m, "Render RC6 residency since boot: %u\n",
1274                    I915_READ(VLV_GT_RENDER_RC6));
1275         seq_printf(m, "Media RC6 residency since boot: %u\n",
1276                    I915_READ(VLV_GT_MEDIA_RC6));
1277
1278         spin_lock_irq(&dev_priv->uncore.lock);
1279         fw_rendercount = dev_priv->uncore.fw_rendercount;
1280         fw_mediacount = dev_priv->uncore.fw_mediacount;
1281         spin_unlock_irq(&dev_priv->uncore.lock);
1282
1283         seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1284         seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1285
1286
1287         return 0;
1288 }
1289
1290
1291 static int gen6_drpc_info(struct seq_file *m)
1292 {
1293
1294         struct drm_info_node *node = m->private;
1295         struct drm_device *dev = node->minor->dev;
1296         struct drm_i915_private *dev_priv = dev->dev_private;
1297         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1298         unsigned forcewake_count;
1299         int count = 0, ret;
1300
1301         ret = mutex_lock_interruptible(&dev->struct_mutex);
1302         if (ret)
1303                 return ret;
1304         intel_runtime_pm_get(dev_priv);
1305
1306         spin_lock_irq(&dev_priv->uncore.lock);
1307         forcewake_count = dev_priv->uncore.forcewake_count;
1308         spin_unlock_irq(&dev_priv->uncore.lock);
1309
1310         if (forcewake_count) {
1311                 seq_puts(m, "RC information inaccurate because somebody "
1312                             "holds a forcewake reference \n");
1313         } else {
1314                 /* NB: we cannot use forcewake, else we read the wrong values */
1315                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1316                         udelay(10);
1317                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1318         }
1319
1320         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1321         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1322
1323         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1324         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1325         mutex_unlock(&dev->struct_mutex);
1326         mutex_lock(&dev_priv->rps.hw_lock);
1327         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1328         mutex_unlock(&dev_priv->rps.hw_lock);
1329
1330         intel_runtime_pm_put(dev_priv);
1331
1332         seq_printf(m, "Video Turbo Mode: %s\n",
1333                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1334         seq_printf(m, "HW control enabled: %s\n",
1335                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1336         seq_printf(m, "SW control enabled: %s\n",
1337                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1338                           GEN6_RP_MEDIA_SW_MODE));
1339         seq_printf(m, "RC1e Enabled: %s\n",
1340                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1341         seq_printf(m, "RC6 Enabled: %s\n",
1342                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1343         seq_printf(m, "Deep RC6 Enabled: %s\n",
1344                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1345         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1346                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1347         seq_puts(m, "Current RC state: ");
1348         switch (gt_core_status & GEN6_RCn_MASK) {
1349         case GEN6_RC0:
1350                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1351                         seq_puts(m, "Core Power Down\n");
1352                 else
1353                         seq_puts(m, "on\n");
1354                 break;
1355         case GEN6_RC3:
1356                 seq_puts(m, "RC3\n");
1357                 break;
1358         case GEN6_RC6:
1359                 seq_puts(m, "RC6\n");
1360                 break;
1361         case GEN6_RC7:
1362                 seq_puts(m, "RC7\n");
1363                 break;
1364         default:
1365                 seq_puts(m, "Unknown\n");
1366                 break;
1367         }
1368
1369         seq_printf(m, "Core Power Down: %s\n",
1370                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1371
1372         /* Not exactly sure what this is */
1373         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1374                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1375         seq_printf(m, "RC6 residency since boot: %u\n",
1376                    I915_READ(GEN6_GT_GFX_RC6));
1377         seq_printf(m, "RC6+ residency since boot: %u\n",
1378                    I915_READ(GEN6_GT_GFX_RC6p));
1379         seq_printf(m, "RC6++ residency since boot: %u\n",
1380                    I915_READ(GEN6_GT_GFX_RC6pp));
1381
1382         seq_printf(m, "RC6   voltage: %dmV\n",
1383                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1384         seq_printf(m, "RC6+  voltage: %dmV\n",
1385                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1386         seq_printf(m, "RC6++ voltage: %dmV\n",
1387                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1388         return 0;
1389 }
1390
1391 static int i915_drpc_info(struct seq_file *m, void *unused)
1392 {
1393         struct drm_info_node *node = m->private;
1394         struct drm_device *dev = node->minor->dev;
1395
1396         if (IS_VALLEYVIEW(dev))
1397                 return vlv_drpc_info(m);
1398         else if (INTEL_INFO(dev)->gen >= 6)
1399                 return gen6_drpc_info(m);
1400         else
1401                 return ironlake_drpc_info(m);
1402 }
1403
1404 static int i915_fbc_status(struct seq_file *m, void *unused)
1405 {
1406         struct drm_info_node *node = m->private;
1407         struct drm_device *dev = node->minor->dev;
1408         struct drm_i915_private *dev_priv = dev->dev_private;
1409
1410         if (!HAS_FBC(dev)) {
1411                 seq_puts(m, "FBC unsupported on this chipset\n");
1412                 return 0;
1413         }
1414
1415         intel_runtime_pm_get(dev_priv);
1416
1417         if (intel_fbc_enabled(dev)) {
1418                 seq_puts(m, "FBC enabled\n");
1419         } else {
1420                 seq_puts(m, "FBC disabled: ");
1421                 switch (dev_priv->fbc.no_fbc_reason) {
1422                 case FBC_OK:
1423                         seq_puts(m, "FBC actived, but currently disabled in hardware");
1424                         break;
1425                 case FBC_UNSUPPORTED:
1426                         seq_puts(m, "unsupported by this chipset");
1427                         break;
1428                 case FBC_NO_OUTPUT:
1429                         seq_puts(m, "no outputs");
1430                         break;
1431                 case FBC_STOLEN_TOO_SMALL:
1432                         seq_puts(m, "not enough stolen memory");
1433                         break;
1434                 case FBC_UNSUPPORTED_MODE:
1435                         seq_puts(m, "mode not supported");
1436                         break;
1437                 case FBC_MODE_TOO_LARGE:
1438                         seq_puts(m, "mode too large");
1439                         break;
1440                 case FBC_BAD_PLANE:
1441                         seq_puts(m, "FBC unsupported on plane");
1442                         break;
1443                 case FBC_NOT_TILED:
1444                         seq_puts(m, "scanout buffer not tiled");
1445                         break;
1446                 case FBC_MULTIPLE_PIPES:
1447                         seq_puts(m, "multiple pipes are enabled");
1448                         break;
1449                 case FBC_MODULE_PARAM:
1450                         seq_puts(m, "disabled per module param (default off)");
1451                         break;
1452                 case FBC_CHIP_DEFAULT:
1453                         seq_puts(m, "disabled per chip default");
1454                         break;
1455                 default:
1456                         seq_puts(m, "unknown reason");
1457                 }
1458                 seq_putc(m, '\n');
1459         }
1460
1461         intel_runtime_pm_put(dev_priv);
1462
1463         return 0;
1464 }
1465
1466 static int i915_fbc_fc_get(void *data, u64 *val)
1467 {
1468         struct drm_device *dev = data;
1469         struct drm_i915_private *dev_priv = dev->dev_private;
1470
1471         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1472                 return -ENODEV;
1473
1474         drm_modeset_lock_all(dev);
1475         *val = dev_priv->fbc.false_color;
1476         drm_modeset_unlock_all(dev);
1477
1478         return 0;
1479 }
1480
1481 static int i915_fbc_fc_set(void *data, u64 val)
1482 {
1483         struct drm_device *dev = data;
1484         struct drm_i915_private *dev_priv = dev->dev_private;
1485         u32 reg;
1486
1487         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1488                 return -ENODEV;
1489
1490         drm_modeset_lock_all(dev);
1491
1492         reg = I915_READ(ILK_DPFC_CONTROL);
1493         dev_priv->fbc.false_color = val;
1494
1495         I915_WRITE(ILK_DPFC_CONTROL, val ?
1496                    (reg | FBC_CTL_FALSE_COLOR) :
1497                    (reg & ~FBC_CTL_FALSE_COLOR));
1498
1499         drm_modeset_unlock_all(dev);
1500         return 0;
1501 }
1502
1503 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1504                         i915_fbc_fc_get, i915_fbc_fc_set,
1505                         "%llu\n");
1506
1507 static int i915_ips_status(struct seq_file *m, void *unused)
1508 {
1509         struct drm_info_node *node = m->private;
1510         struct drm_device *dev = node->minor->dev;
1511         struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513         if (!HAS_IPS(dev)) {
1514                 seq_puts(m, "not supported\n");
1515                 return 0;
1516         }
1517
1518         intel_runtime_pm_get(dev_priv);
1519
1520         seq_printf(m, "Enabled by kernel parameter: %s\n",
1521                    yesno(i915.enable_ips));
1522
1523         if (INTEL_INFO(dev)->gen >= 8) {
1524                 seq_puts(m, "Currently: unknown\n");
1525         } else {
1526                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1527                         seq_puts(m, "Currently: enabled\n");
1528                 else
1529                         seq_puts(m, "Currently: disabled\n");
1530         }
1531
1532         intel_runtime_pm_put(dev_priv);
1533
1534         return 0;
1535 }
1536
1537 static int i915_sr_status(struct seq_file *m, void *unused)
1538 {
1539         struct drm_info_node *node = m->private;
1540         struct drm_device *dev = node->minor->dev;
1541         struct drm_i915_private *dev_priv = dev->dev_private;
1542         bool sr_enabled = false;
1543
1544         intel_runtime_pm_get(dev_priv);
1545
1546         if (HAS_PCH_SPLIT(dev))
1547                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1548         else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1549                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1550         else if (IS_I915GM(dev))
1551                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1552         else if (IS_PINEVIEW(dev))
1553                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1554
1555         intel_runtime_pm_put(dev_priv);
1556
1557         seq_printf(m, "self-refresh: %s\n",
1558                    sr_enabled ? "enabled" : "disabled");
1559
1560         return 0;
1561 }
1562
1563 static int i915_emon_status(struct seq_file *m, void *unused)
1564 {
1565         struct drm_info_node *node = m->private;
1566         struct drm_device *dev = node->minor->dev;
1567         struct drm_i915_private *dev_priv = dev->dev_private;
1568         unsigned long temp, chipset, gfx;
1569         int ret;
1570
1571         if (!IS_GEN5(dev))
1572                 return -ENODEV;
1573
1574         ret = mutex_lock_interruptible(&dev->struct_mutex);
1575         if (ret)
1576                 return ret;
1577
1578         temp = i915_mch_val(dev_priv);
1579         chipset = i915_chipset_val(dev_priv);
1580         gfx = i915_gfx_val(dev_priv);
1581         mutex_unlock(&dev->struct_mutex);
1582
1583         seq_printf(m, "GMCH temp: %ld\n", temp);
1584         seq_printf(m, "Chipset power: %ld\n", chipset);
1585         seq_printf(m, "GFX power: %ld\n", gfx);
1586         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1587
1588         return 0;
1589 }
1590
1591 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1592 {
1593         struct drm_info_node *node = m->private;
1594         struct drm_device *dev = node->minor->dev;
1595         struct drm_i915_private *dev_priv = dev->dev_private;
1596         int ret = 0;
1597         int gpu_freq, ia_freq;
1598
1599         if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1600                 seq_puts(m, "unsupported on this chipset\n");
1601                 return 0;
1602         }
1603
1604         intel_runtime_pm_get(dev_priv);
1605
1606         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1607
1608         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1609         if (ret)
1610                 goto out;
1611
1612         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1613
1614         for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1615              gpu_freq <= dev_priv->rps.max_freq_softlimit;
1616              gpu_freq++) {
1617                 ia_freq = gpu_freq;
1618                 sandybridge_pcode_read(dev_priv,
1619                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1620                                        &ia_freq);
1621                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1622                            gpu_freq * GT_FREQUENCY_MULTIPLIER,
1623                            ((ia_freq >> 0) & 0xff) * 100,
1624                            ((ia_freq >> 8) & 0xff) * 100);
1625         }
1626
1627         mutex_unlock(&dev_priv->rps.hw_lock);
1628
1629 out:
1630         intel_runtime_pm_put(dev_priv);
1631         return ret;
1632 }
1633
1634 static int i915_opregion(struct seq_file *m, void *unused)
1635 {
1636         struct drm_info_node *node = m->private;
1637         struct drm_device *dev = node->minor->dev;
1638         struct drm_i915_private *dev_priv = dev->dev_private;
1639         struct intel_opregion *opregion = &dev_priv->opregion;
1640         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1641         int ret;
1642
1643         if (data == NULL)
1644                 return -ENOMEM;
1645
1646         ret = mutex_lock_interruptible(&dev->struct_mutex);
1647         if (ret)
1648                 goto out;
1649
1650         if (opregion->header) {
1651                 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1652                 seq_write(m, data, OPREGION_SIZE);
1653         }
1654
1655         mutex_unlock(&dev->struct_mutex);
1656
1657 out:
1658         kfree(data);
1659         return 0;
1660 }
1661
1662 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1663 {
1664         struct drm_info_node *node = m->private;
1665         struct drm_device *dev = node->minor->dev;
1666         struct intel_fbdev *ifbdev = NULL;
1667         struct intel_framebuffer *fb;
1668
1669 #ifdef CONFIG_DRM_I915_FBDEV
1670         struct drm_i915_private *dev_priv = dev->dev_private;
1671
1672         ifbdev = dev_priv->fbdev;
1673         fb = to_intel_framebuffer(ifbdev->helper.fb);
1674
1675         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1676                    fb->base.width,
1677                    fb->base.height,
1678                    fb->base.depth,
1679                    fb->base.bits_per_pixel,
1680                    atomic_read(&fb->base.refcount.refcount));
1681         describe_obj(m, fb->obj);
1682         seq_putc(m, '\n');
1683 #endif
1684
1685         mutex_lock(&dev->mode_config.fb_lock);
1686         list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1687                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1688                         continue;
1689
1690                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1691                            fb->base.width,
1692                            fb->base.height,
1693                            fb->base.depth,
1694                            fb->base.bits_per_pixel,
1695                            atomic_read(&fb->base.refcount.refcount));
1696                 describe_obj(m, fb->obj);
1697                 seq_putc(m, '\n');
1698         }
1699         mutex_unlock(&dev->mode_config.fb_lock);
1700
1701         return 0;
1702 }
1703
1704 static void describe_ctx_ringbuf(struct seq_file *m,
1705                                  struct intel_ringbuffer *ringbuf)
1706 {
1707         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1708                    ringbuf->space, ringbuf->head, ringbuf->tail,
1709                    ringbuf->last_retired_head);
1710 }
1711
1712 static int i915_context_status(struct seq_file *m, void *unused)
1713 {
1714         struct drm_info_node *node = m->private;
1715         struct drm_device *dev = node->minor->dev;
1716         struct drm_i915_private *dev_priv = dev->dev_private;
1717         struct intel_engine_cs *ring;
1718         struct intel_context *ctx;
1719         int ret, i;
1720
1721         ret = mutex_lock_interruptible(&dev->struct_mutex);
1722         if (ret)
1723                 return ret;
1724
1725         if (dev_priv->ips.pwrctx) {
1726                 seq_puts(m, "power context ");
1727                 describe_obj(m, dev_priv->ips.pwrctx);
1728                 seq_putc(m, '\n');
1729         }
1730
1731         if (dev_priv->ips.renderctx) {
1732                 seq_puts(m, "render context ");
1733                 describe_obj(m, dev_priv->ips.renderctx);
1734                 seq_putc(m, '\n');
1735         }
1736
1737         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1738                 if (!i915.enable_execlists &&
1739                     ctx->legacy_hw_ctx.rcs_state == NULL)
1740                         continue;
1741
1742                 seq_puts(m, "HW context ");
1743                 describe_ctx(m, ctx);
1744                 for_each_ring(ring, dev_priv, i) {
1745                         if (ring->default_context == ctx)
1746                                 seq_printf(m, "(default context %s) ",
1747                                            ring->name);
1748                 }
1749
1750                 if (i915.enable_execlists) {
1751                         seq_putc(m, '\n');
1752                         for_each_ring(ring, dev_priv, i) {
1753                                 struct drm_i915_gem_object *ctx_obj =
1754                                         ctx->engine[i].state;
1755                                 struct intel_ringbuffer *ringbuf =
1756                                         ctx->engine[i].ringbuf;
1757
1758                                 seq_printf(m, "%s: ", ring->name);
1759                                 if (ctx_obj)
1760                                         describe_obj(m, ctx_obj);
1761                                 if (ringbuf)
1762                                         describe_ctx_ringbuf(m, ringbuf);
1763                                 seq_putc(m, '\n');
1764                         }
1765                 } else {
1766                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1767                 }
1768
1769                 seq_putc(m, '\n');
1770         }
1771
1772         mutex_unlock(&dev->struct_mutex);
1773
1774         return 0;
1775 }
1776
1777 static int i915_dump_lrc(struct seq_file *m, void *unused)
1778 {
1779         struct drm_info_node *node = (struct drm_info_node *) m->private;
1780         struct drm_device *dev = node->minor->dev;
1781         struct drm_i915_private *dev_priv = dev->dev_private;
1782         struct intel_engine_cs *ring;
1783         struct intel_context *ctx;
1784         int ret, i;
1785
1786         if (!i915.enable_execlists) {
1787                 seq_printf(m, "Logical Ring Contexts are disabled\n");
1788                 return 0;
1789         }
1790
1791         ret = mutex_lock_interruptible(&dev->struct_mutex);
1792         if (ret)
1793                 return ret;
1794
1795         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1796                 for_each_ring(ring, dev_priv, i) {
1797                         struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1798
1799                         if (ring->default_context == ctx)
1800                                 continue;
1801
1802                         if (ctx_obj) {
1803                                 struct page *page = i915_gem_object_get_page(ctx_obj, 1);
1804                                 uint32_t *reg_state = kmap_atomic(page);
1805                                 int j;
1806
1807                                 seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1808                                                 intel_execlists_ctx_id(ctx_obj));
1809
1810                                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1811                                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1812                                         i915_gem_obj_ggtt_offset(ctx_obj) + 4096 + (j * 4),
1813                                         reg_state[j], reg_state[j + 1],
1814                                         reg_state[j + 2], reg_state[j + 3]);
1815                                 }
1816                                 kunmap_atomic(reg_state);
1817
1818                                 seq_putc(m, '\n');
1819                         }
1820                 }
1821         }
1822
1823         mutex_unlock(&dev->struct_mutex);
1824
1825         return 0;
1826 }
1827
1828 static int i915_execlists(struct seq_file *m, void *data)
1829 {
1830         struct drm_info_node *node = (struct drm_info_node *)m->private;
1831         struct drm_device *dev = node->minor->dev;
1832         struct drm_i915_private *dev_priv = dev->dev_private;
1833         struct intel_engine_cs *ring;
1834         u32 status_pointer;
1835         u8 read_pointer;
1836         u8 write_pointer;
1837         u32 status;
1838         u32 ctx_id;
1839         struct list_head *cursor;
1840         int ring_id, i;
1841         int ret;
1842
1843         if (!i915.enable_execlists) {
1844                 seq_puts(m, "Logical Ring Contexts are disabled\n");
1845                 return 0;
1846         }
1847
1848         ret = mutex_lock_interruptible(&dev->struct_mutex);
1849         if (ret)
1850                 return ret;
1851
1852         for_each_ring(ring, dev_priv, ring_id) {
1853                 struct intel_ctx_submit_request *head_req = NULL;
1854                 int count = 0;
1855                 unsigned long flags;
1856
1857                 seq_printf(m, "%s\n", ring->name);
1858
1859                 status = I915_READ(RING_EXECLIST_STATUS(ring));
1860                 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
1861                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
1862                            status, ctx_id);
1863
1864                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
1865                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
1866
1867                 read_pointer = ring->next_context_status_buffer;
1868                 write_pointer = status_pointer & 0x07;
1869                 if (read_pointer > write_pointer)
1870                         write_pointer += 6;
1871                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
1872                            read_pointer, write_pointer);
1873
1874                 for (i = 0; i < 6; i++) {
1875                         status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
1876                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
1877
1878                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
1879                                    i, status, ctx_id);
1880                 }
1881
1882                 spin_lock_irqsave(&ring->execlist_lock, flags);
1883                 list_for_each(cursor, &ring->execlist_queue)
1884                         count++;
1885                 head_req = list_first_entry_or_null(&ring->execlist_queue,
1886                                 struct intel_ctx_submit_request, execlist_link);
1887                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
1888
1889                 seq_printf(m, "\t%d requests in queue\n", count);
1890                 if (head_req) {
1891                         struct drm_i915_gem_object *ctx_obj;
1892
1893                         ctx_obj = head_req->ctx->engine[ring_id].state;
1894                         seq_printf(m, "\tHead request id: %u\n",
1895                                    intel_execlists_ctx_id(ctx_obj));
1896                         seq_printf(m, "\tHead request tail: %u\n",
1897                                    head_req->tail);
1898                 }
1899
1900                 seq_putc(m, '\n');
1901         }
1902
1903         mutex_unlock(&dev->struct_mutex);
1904
1905         return 0;
1906 }
1907
1908 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1909 {
1910         struct drm_info_node *node = m->private;
1911         struct drm_device *dev = node->minor->dev;
1912         struct drm_i915_private *dev_priv = dev->dev_private;
1913         unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1914
1915         spin_lock_irq(&dev_priv->uncore.lock);
1916         if (IS_VALLEYVIEW(dev)) {
1917                 fw_rendercount = dev_priv->uncore.fw_rendercount;
1918                 fw_mediacount = dev_priv->uncore.fw_mediacount;
1919         } else
1920                 forcewake_count = dev_priv->uncore.forcewake_count;
1921         spin_unlock_irq(&dev_priv->uncore.lock);
1922
1923         if (IS_VALLEYVIEW(dev)) {
1924                 seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
1925                 seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
1926         } else
1927                 seq_printf(m, "forcewake count = %u\n", forcewake_count);
1928
1929         return 0;
1930 }
1931
1932 static const char *swizzle_string(unsigned swizzle)
1933 {
1934         switch (swizzle) {
1935         case I915_BIT_6_SWIZZLE_NONE:
1936                 return "none";
1937         case I915_BIT_6_SWIZZLE_9:
1938                 return "bit9";
1939         case I915_BIT_6_SWIZZLE_9_10:
1940                 return "bit9/bit10";
1941         case I915_BIT_6_SWIZZLE_9_11:
1942                 return "bit9/bit11";
1943         case I915_BIT_6_SWIZZLE_9_10_11:
1944                 return "bit9/bit10/bit11";
1945         case I915_BIT_6_SWIZZLE_9_17:
1946                 return "bit9/bit17";
1947         case I915_BIT_6_SWIZZLE_9_10_17:
1948                 return "bit9/bit10/bit17";
1949         case I915_BIT_6_SWIZZLE_UNKNOWN:
1950                 return "unknown";
1951         }
1952
1953         return "bug";
1954 }
1955
1956 static int i915_swizzle_info(struct seq_file *m, void *data)
1957 {
1958         struct drm_info_node *node = m->private;
1959         struct drm_device *dev = node->minor->dev;
1960         struct drm_i915_private *dev_priv = dev->dev_private;
1961         int ret;
1962
1963         ret = mutex_lock_interruptible(&dev->struct_mutex);
1964         if (ret)
1965                 return ret;
1966         intel_runtime_pm_get(dev_priv);
1967
1968         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1969                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1970         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1971                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1972
1973         if (IS_GEN3(dev) || IS_GEN4(dev)) {
1974                 seq_printf(m, "DDC = 0x%08x\n",
1975                            I915_READ(DCC));
1976                 seq_printf(m, "C0DRB3 = 0x%04x\n",
1977                            I915_READ16(C0DRB3));
1978                 seq_printf(m, "C1DRB3 = 0x%04x\n",
1979                            I915_READ16(C1DRB3));
1980         } else if (INTEL_INFO(dev)->gen >= 6) {
1981                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1982                            I915_READ(MAD_DIMM_C0));
1983                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1984                            I915_READ(MAD_DIMM_C1));
1985                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1986                            I915_READ(MAD_DIMM_C2));
1987                 seq_printf(m, "TILECTL = 0x%08x\n",
1988                            I915_READ(TILECTL));
1989                 if (IS_GEN8(dev))
1990                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1991                                    I915_READ(GAMTARBMODE));
1992                 else
1993                         seq_printf(m, "ARB_MODE = 0x%08x\n",
1994                                    I915_READ(ARB_MODE));
1995                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1996                            I915_READ(DISP_ARB_CTL));
1997         }
1998         intel_runtime_pm_put(dev_priv);
1999         mutex_unlock(&dev->struct_mutex);
2000
2001         return 0;
2002 }
2003
2004 static int per_file_ctx(int id, void *ptr, void *data)
2005 {
2006         struct intel_context *ctx = ptr;
2007         struct seq_file *m = data;
2008         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2009
2010         if (!ppgtt) {
2011                 seq_printf(m, "  no ppgtt for context %d\n",
2012                            ctx->user_handle);
2013                 return 0;
2014         }
2015
2016         if (i915_gem_context_is_default(ctx))
2017                 seq_puts(m, "  default context:\n");
2018         else
2019                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2020         ppgtt->debug_dump(ppgtt, m);
2021
2022         return 0;
2023 }
2024
2025 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2026 {
2027         struct drm_i915_private *dev_priv = dev->dev_private;
2028         struct intel_engine_cs *ring;
2029         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2030         int unused, i;
2031
2032         if (!ppgtt)
2033                 return;
2034
2035         seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
2036         seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
2037         for_each_ring(ring, dev_priv, unused) {
2038                 seq_printf(m, "%s\n", ring->name);
2039                 for (i = 0; i < 4; i++) {
2040                         u32 offset = 0x270 + i * 8;
2041                         u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2042                         pdp <<= 32;
2043                         pdp |= I915_READ(ring->mmio_base + offset);
2044                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2045                 }
2046         }
2047 }
2048
2049 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2050 {
2051         struct drm_i915_private *dev_priv = dev->dev_private;
2052         struct intel_engine_cs *ring;
2053         struct drm_file *file;
2054         int i;
2055
2056         if (INTEL_INFO(dev)->gen == 6)
2057                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2058
2059         for_each_ring(ring, dev_priv, i) {
2060                 seq_printf(m, "%s\n", ring->name);
2061                 if (INTEL_INFO(dev)->gen == 7)
2062                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2063                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2064                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2065                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2066         }
2067         if (dev_priv->mm.aliasing_ppgtt) {
2068                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2069
2070                 seq_puts(m, "aliasing PPGTT:\n");
2071                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
2072
2073                 ppgtt->debug_dump(ppgtt, m);
2074         }
2075
2076         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2077                 struct drm_i915_file_private *file_priv = file->driver_priv;
2078
2079                 seq_printf(m, "proc: %s\n",
2080                            get_pid_task(file->pid, PIDTYPE_PID)->comm);
2081                 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2082         }
2083         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2084 }
2085
2086 static int i915_ppgtt_info(struct seq_file *m, void *data)
2087 {
2088         struct drm_info_node *node = m->private;
2089         struct drm_device *dev = node->minor->dev;
2090         struct drm_i915_private *dev_priv = dev->dev_private;
2091
2092         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2093         if (ret)
2094                 return ret;
2095         intel_runtime_pm_get(dev_priv);
2096
2097         if (INTEL_INFO(dev)->gen >= 8)
2098                 gen8_ppgtt_info(m, dev);
2099         else if (INTEL_INFO(dev)->gen >= 6)
2100                 gen6_ppgtt_info(m, dev);
2101
2102         intel_runtime_pm_put(dev_priv);
2103         mutex_unlock(&dev->struct_mutex);
2104
2105         return 0;
2106 }
2107
2108 static int i915_llc(struct seq_file *m, void *data)
2109 {
2110         struct drm_info_node *node = m->private;
2111         struct drm_device *dev = node->minor->dev;
2112         struct drm_i915_private *dev_priv = dev->dev_private;
2113
2114         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2115         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2116         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2117
2118         return 0;
2119 }
2120
2121 static int i915_edp_psr_status(struct seq_file *m, void *data)
2122 {
2123         struct drm_info_node *node = m->private;
2124         struct drm_device *dev = node->minor->dev;
2125         struct drm_i915_private *dev_priv = dev->dev_private;
2126         u32 psrperf = 0;
2127         bool enabled = false;
2128
2129         intel_runtime_pm_get(dev_priv);
2130
2131         mutex_lock(&dev_priv->psr.lock);
2132         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2133         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2134         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2135         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2136         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2137                    dev_priv->psr.busy_frontbuffer_bits);
2138         seq_printf(m, "Re-enable work scheduled: %s\n",
2139                    yesno(work_busy(&dev_priv->psr.work.work)));
2140
2141         enabled = HAS_PSR(dev) &&
2142                 I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2143         seq_printf(m, "HW Enabled & Active bit: %s\n", yesno(enabled));
2144
2145         if (HAS_PSR(dev))
2146                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2147                         EDP_PSR_PERF_CNT_MASK;
2148         seq_printf(m, "Performance_Counter: %u\n", psrperf);
2149         mutex_unlock(&dev_priv->psr.lock);
2150
2151         intel_runtime_pm_put(dev_priv);
2152         return 0;
2153 }
2154
2155 static int i915_sink_crc(struct seq_file *m, void *data)
2156 {
2157         struct drm_info_node *node = m->private;
2158         struct drm_device *dev = node->minor->dev;
2159         struct intel_encoder *encoder;
2160         struct intel_connector *connector;
2161         struct intel_dp *intel_dp = NULL;
2162         int ret;
2163         u8 crc[6];
2164
2165         drm_modeset_lock_all(dev);
2166         list_for_each_entry(connector, &dev->mode_config.connector_list,
2167                             base.head) {
2168
2169                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2170                         continue;
2171
2172                 if (!connector->base.encoder)
2173                         continue;
2174
2175                 encoder = to_intel_encoder(connector->base.encoder);
2176                 if (encoder->type != INTEL_OUTPUT_EDP)
2177                         continue;
2178
2179                 intel_dp = enc_to_intel_dp(&encoder->base);
2180
2181                 ret = intel_dp_sink_crc(intel_dp, crc);
2182                 if (ret)
2183                         goto out;
2184
2185                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2186                            crc[0], crc[1], crc[2],
2187                            crc[3], crc[4], crc[5]);
2188                 goto out;
2189         }
2190         ret = -ENODEV;
2191 out:
2192         drm_modeset_unlock_all(dev);
2193         return ret;
2194 }
2195
2196 static int i915_energy_uJ(struct seq_file *m, void *data)
2197 {
2198         struct drm_info_node *node = m->private;
2199         struct drm_device *dev = node->minor->dev;
2200         struct drm_i915_private *dev_priv = dev->dev_private;
2201         u64 power;
2202         u32 units;
2203
2204         if (INTEL_INFO(dev)->gen < 6)
2205                 return -ENODEV;
2206
2207         intel_runtime_pm_get(dev_priv);
2208
2209         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2210         power = (power & 0x1f00) >> 8;
2211         units = 1000000 / (1 << power); /* convert to uJ */
2212         power = I915_READ(MCH_SECP_NRG_STTS);
2213         power *= units;
2214
2215         intel_runtime_pm_put(dev_priv);
2216
2217         seq_printf(m, "%llu", (long long unsigned)power);
2218
2219         return 0;
2220 }
2221
2222 static int i915_pc8_status(struct seq_file *m, void *unused)
2223 {
2224         struct drm_info_node *node = m->private;
2225         struct drm_device *dev = node->minor->dev;
2226         struct drm_i915_private *dev_priv = dev->dev_private;
2227
2228         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2229                 seq_puts(m, "not supported\n");
2230                 return 0;
2231         }
2232
2233         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2234         seq_printf(m, "IRQs disabled: %s\n",
2235                    yesno(!intel_irqs_enabled(dev_priv)));
2236
2237         return 0;
2238 }
2239
2240 static const char *power_domain_str(enum intel_display_power_domain domain)
2241 {
2242         switch (domain) {
2243         case POWER_DOMAIN_PIPE_A:
2244                 return "PIPE_A";
2245         case POWER_DOMAIN_PIPE_B:
2246                 return "PIPE_B";
2247         case POWER_DOMAIN_PIPE_C:
2248                 return "PIPE_C";
2249         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2250                 return "PIPE_A_PANEL_FITTER";
2251         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2252                 return "PIPE_B_PANEL_FITTER";
2253         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2254                 return "PIPE_C_PANEL_FITTER";
2255         case POWER_DOMAIN_TRANSCODER_A:
2256                 return "TRANSCODER_A";
2257         case POWER_DOMAIN_TRANSCODER_B:
2258                 return "TRANSCODER_B";
2259         case POWER_DOMAIN_TRANSCODER_C:
2260                 return "TRANSCODER_C";
2261         case POWER_DOMAIN_TRANSCODER_EDP:
2262                 return "TRANSCODER_EDP";
2263         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2264                 return "PORT_DDI_A_2_LANES";
2265         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2266                 return "PORT_DDI_A_4_LANES";
2267         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2268                 return "PORT_DDI_B_2_LANES";
2269         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2270                 return "PORT_DDI_B_4_LANES";
2271         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2272                 return "PORT_DDI_C_2_LANES";
2273         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2274                 return "PORT_DDI_C_4_LANES";
2275         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2276                 return "PORT_DDI_D_2_LANES";
2277         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2278                 return "PORT_DDI_D_4_LANES";
2279         case POWER_DOMAIN_PORT_DSI:
2280                 return "PORT_DSI";
2281         case POWER_DOMAIN_PORT_CRT:
2282                 return "PORT_CRT";
2283         case POWER_DOMAIN_PORT_OTHER:
2284                 return "PORT_OTHER";
2285         case POWER_DOMAIN_VGA:
2286                 return "VGA";
2287         case POWER_DOMAIN_AUDIO:
2288                 return "AUDIO";
2289         case POWER_DOMAIN_PLLS:
2290                 return "PLLS";
2291         case POWER_DOMAIN_INIT:
2292                 return "INIT";
2293         default:
2294                 WARN_ON(1);
2295                 return "?";
2296         }
2297 }
2298
2299 static int i915_power_domain_info(struct seq_file *m, void *unused)
2300 {
2301         struct drm_info_node *node = m->private;
2302         struct drm_device *dev = node->minor->dev;
2303         struct drm_i915_private *dev_priv = dev->dev_private;
2304         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2305         int i;
2306
2307         mutex_lock(&power_domains->lock);
2308
2309         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2310         for (i = 0; i < power_domains->power_well_count; i++) {
2311                 struct i915_power_well *power_well;
2312                 enum intel_display_power_domain power_domain;
2313
2314                 power_well = &power_domains->power_wells[i];
2315                 seq_printf(m, "%-25s %d\n", power_well->name,
2316                            power_well->count);
2317
2318                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2319                      power_domain++) {
2320                         if (!(BIT(power_domain) & power_well->domains))
2321                                 continue;
2322
2323                         seq_printf(m, "  %-23s %d\n",
2324                                  power_domain_str(power_domain),
2325                                  power_domains->domain_use_count[power_domain]);
2326                 }
2327         }
2328
2329         mutex_unlock(&power_domains->lock);
2330
2331         return 0;
2332 }
2333
2334 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2335                                  struct drm_display_mode *mode)
2336 {
2337         int i;
2338
2339         for (i = 0; i < tabs; i++)
2340                 seq_putc(m, '\t');
2341
2342         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2343                    mode->base.id, mode->name,
2344                    mode->vrefresh, mode->clock,
2345                    mode->hdisplay, mode->hsync_start,
2346                    mode->hsync_end, mode->htotal,
2347                    mode->vdisplay, mode->vsync_start,
2348                    mode->vsync_end, mode->vtotal,
2349                    mode->type, mode->flags);
2350 }
2351
2352 static void intel_encoder_info(struct seq_file *m,
2353                                struct intel_crtc *intel_crtc,
2354                                struct intel_encoder *intel_encoder)
2355 {
2356         struct drm_info_node *node = m->private;
2357         struct drm_device *dev = node->minor->dev;
2358         struct drm_crtc *crtc = &intel_crtc->base;
2359         struct intel_connector *intel_connector;
2360         struct drm_encoder *encoder;
2361
2362         encoder = &intel_encoder->base;
2363         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2364                    encoder->base.id, encoder->name);
2365         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2366                 struct drm_connector *connector = &intel_connector->base;
2367                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2368                            connector->base.id,
2369                            connector->name,
2370                            drm_get_connector_status_name(connector->status));
2371                 if (connector->status == connector_status_connected) {
2372                         struct drm_display_mode *mode = &crtc->mode;
2373                         seq_printf(m, ", mode:\n");
2374                         intel_seq_print_mode(m, 2, mode);
2375                 } else {
2376                         seq_putc(m, '\n');
2377                 }
2378         }
2379 }
2380
2381 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2382 {
2383         struct drm_info_node *node = m->private;
2384         struct drm_device *dev = node->minor->dev;
2385         struct drm_crtc *crtc = &intel_crtc->base;
2386         struct intel_encoder *intel_encoder;
2387
2388         if (crtc->primary->fb)
2389                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2390                            crtc->primary->fb->base.id, crtc->x, crtc->y,
2391                            crtc->primary->fb->width, crtc->primary->fb->height);
2392         else
2393                 seq_puts(m, "\tprimary plane disabled\n");
2394         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2395                 intel_encoder_info(m, intel_crtc, intel_encoder);
2396 }
2397
2398 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2399 {
2400         struct drm_display_mode *mode = panel->fixed_mode;
2401
2402         seq_printf(m, "\tfixed mode:\n");
2403         intel_seq_print_mode(m, 2, mode);
2404 }
2405
2406 static void intel_dp_info(struct seq_file *m,
2407                           struct intel_connector *intel_connector)
2408 {
2409         struct intel_encoder *intel_encoder = intel_connector->encoder;
2410         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2411
2412         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2413         seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2414                    "no");
2415         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2416                 intel_panel_info(m, &intel_connector->panel);
2417 }
2418
2419 static void intel_hdmi_info(struct seq_file *m,
2420                             struct intel_connector *intel_connector)
2421 {
2422         struct intel_encoder *intel_encoder = intel_connector->encoder;
2423         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2424
2425         seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2426                    "no");
2427 }
2428
2429 static void intel_lvds_info(struct seq_file *m,
2430                             struct intel_connector *intel_connector)
2431 {
2432         intel_panel_info(m, &intel_connector->panel);
2433 }
2434
2435 static void intel_connector_info(struct seq_file *m,
2436                                  struct drm_connector *connector)
2437 {
2438         struct intel_connector *intel_connector = to_intel_connector(connector);
2439         struct intel_encoder *intel_encoder = intel_connector->encoder;
2440         struct drm_display_mode *mode;
2441
2442         seq_printf(m, "connector %d: type %s, status: %s\n",
2443                    connector->base.id, connector->name,
2444                    drm_get_connector_status_name(connector->status));
2445         if (connector->status == connector_status_connected) {
2446                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2447                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2448                            connector->display_info.width_mm,
2449                            connector->display_info.height_mm);
2450                 seq_printf(m, "\tsubpixel order: %s\n",
2451                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2452                 seq_printf(m, "\tCEA rev: %d\n",
2453                            connector->display_info.cea_rev);
2454         }
2455         if (intel_encoder) {
2456                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2457                     intel_encoder->type == INTEL_OUTPUT_EDP)
2458                         intel_dp_info(m, intel_connector);
2459                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2460                         intel_hdmi_info(m, intel_connector);
2461                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2462                         intel_lvds_info(m, intel_connector);
2463         }
2464
2465         seq_printf(m, "\tmodes:\n");
2466         list_for_each_entry(mode, &connector->modes, head)
2467                 intel_seq_print_mode(m, 2, mode);
2468 }
2469
2470 static bool cursor_active(struct drm_device *dev, int pipe)
2471 {
2472         struct drm_i915_private *dev_priv = dev->dev_private;
2473         u32 state;
2474
2475         if (IS_845G(dev) || IS_I865G(dev))
2476                 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2477         else
2478                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2479
2480         return state;
2481 }
2482
2483 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2484 {
2485         struct drm_i915_private *dev_priv = dev->dev_private;
2486         u32 pos;
2487
2488         pos = I915_READ(CURPOS(pipe));
2489
2490         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2491         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2492                 *x = -*x;
2493
2494         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2495         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2496                 *y = -*y;
2497
2498         return cursor_active(dev, pipe);
2499 }
2500
2501 static int i915_display_info(struct seq_file *m, void *unused)
2502 {
2503         struct drm_info_node *node = m->private;
2504         struct drm_device *dev = node->minor->dev;
2505         struct drm_i915_private *dev_priv = dev->dev_private;
2506         struct intel_crtc *crtc;
2507         struct drm_connector *connector;
2508
2509         intel_runtime_pm_get(dev_priv);
2510         drm_modeset_lock_all(dev);
2511         seq_printf(m, "CRTC info\n");
2512         seq_printf(m, "---------\n");
2513         for_each_intel_crtc(dev, crtc) {
2514                 bool active;
2515                 int x, y;
2516
2517                 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2518                            crtc->base.base.id, pipe_name(crtc->pipe),
2519                            yesno(crtc->active), crtc->config.pipe_src_w, crtc->config.pipe_src_h);
2520                 if (crtc->active) {
2521                         intel_crtc_info(m, crtc);
2522
2523                         active = cursor_position(dev, crtc->pipe, &x, &y);
2524                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2525                                    yesno(crtc->cursor_base),
2526                                    x, y, crtc->cursor_width, crtc->cursor_height,
2527                                    crtc->cursor_addr, yesno(active));
2528                 }
2529
2530                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2531                            yesno(!crtc->cpu_fifo_underrun_disabled),
2532                            yesno(!crtc->pch_fifo_underrun_disabled));
2533         }
2534
2535         seq_printf(m, "\n");
2536         seq_printf(m, "Connector info\n");
2537         seq_printf(m, "--------------\n");
2538         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2539                 intel_connector_info(m, connector);
2540         }
2541         drm_modeset_unlock_all(dev);
2542         intel_runtime_pm_put(dev_priv);
2543
2544         return 0;
2545 }
2546
2547 static int i915_semaphore_status(struct seq_file *m, void *unused)
2548 {
2549         struct drm_info_node *node = (struct drm_info_node *) m->private;
2550         struct drm_device *dev = node->minor->dev;
2551         struct drm_i915_private *dev_priv = dev->dev_private;
2552         struct intel_engine_cs *ring;
2553         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2554         int i, j, ret;
2555
2556         if (!i915_semaphore_is_enabled(dev)) {
2557                 seq_puts(m, "Semaphores are disabled\n");
2558                 return 0;
2559         }
2560
2561         ret = mutex_lock_interruptible(&dev->struct_mutex);
2562         if (ret)
2563                 return ret;
2564         intel_runtime_pm_get(dev_priv);
2565
2566         if (IS_BROADWELL(dev)) {
2567                 struct page *page;
2568                 uint64_t *seqno;
2569
2570                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2571
2572                 seqno = (uint64_t *)kmap_atomic(page);
2573                 for_each_ring(ring, dev_priv, i) {
2574                         uint64_t offset;
2575
2576                         seq_printf(m, "%s\n", ring->name);
2577
2578                         seq_puts(m, "  Last signal:");
2579                         for (j = 0; j < num_rings; j++) {
2580                                 offset = i * I915_NUM_RINGS + j;
2581                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2582                                            seqno[offset], offset * 8);
2583                         }
2584                         seq_putc(m, '\n');
2585
2586                         seq_puts(m, "  Last wait:  ");
2587                         for (j = 0; j < num_rings; j++) {
2588                                 offset = i + (j * I915_NUM_RINGS);
2589                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2590                                            seqno[offset], offset * 8);
2591                         }
2592                         seq_putc(m, '\n');
2593
2594                 }
2595                 kunmap_atomic(seqno);
2596         } else {
2597                 seq_puts(m, "  Last signal:");
2598                 for_each_ring(ring, dev_priv, i)
2599                         for (j = 0; j < num_rings; j++)
2600                                 seq_printf(m, "0x%08x\n",
2601                                            I915_READ(ring->semaphore.mbox.signal[j]));
2602                 seq_putc(m, '\n');
2603         }
2604
2605         seq_puts(m, "\nSync seqno:\n");
2606         for_each_ring(ring, dev_priv, i) {
2607                 for (j = 0; j < num_rings; j++) {
2608                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
2609                 }
2610                 seq_putc(m, '\n');
2611         }
2612         seq_putc(m, '\n');
2613
2614         intel_runtime_pm_put(dev_priv);
2615         mutex_unlock(&dev->struct_mutex);
2616         return 0;
2617 }
2618
2619 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2620 {
2621         struct drm_info_node *node = (struct drm_info_node *) m->private;
2622         struct drm_device *dev = node->minor->dev;
2623         struct drm_i915_private *dev_priv = dev->dev_private;
2624         int i;
2625
2626         drm_modeset_lock_all(dev);
2627         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2628                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2629
2630                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2631                 seq_printf(m, " refcount: %i, active: %i, on: %s\n", pll->refcount,
2632                            pll->active, yesno(pll->on));
2633                 seq_printf(m, " tracked hardware state:\n");
2634                 seq_printf(m, " dpll:    0x%08x\n", pll->hw_state.dpll);
2635                 seq_printf(m, " dpll_md: 0x%08x\n", pll->hw_state.dpll_md);
2636                 seq_printf(m, " fp0:     0x%08x\n", pll->hw_state.fp0);
2637                 seq_printf(m, " fp1:     0x%08x\n", pll->hw_state.fp1);
2638                 seq_printf(m, " wrpll:   0x%08x\n", pll->hw_state.wrpll);
2639         }
2640         drm_modeset_unlock_all(dev);
2641
2642         return 0;
2643 }
2644
2645 static int i915_wa_registers(struct seq_file *m, void *unused)
2646 {
2647         int i;
2648         int ret;
2649         struct drm_info_node *node = (struct drm_info_node *) m->private;
2650         struct drm_device *dev = node->minor->dev;
2651         struct drm_i915_private *dev_priv = dev->dev_private;
2652
2653         ret = mutex_lock_interruptible(&dev->struct_mutex);
2654         if (ret)
2655                 return ret;
2656
2657         intel_runtime_pm_get(dev_priv);
2658
2659         seq_printf(m, "Workarounds applied: %d\n", dev_priv->num_wa_regs);
2660         for (i = 0; i < dev_priv->num_wa_regs; ++i) {
2661                 u32 addr, mask;
2662
2663                 addr = dev_priv->intel_wa_regs[i].addr;
2664                 mask = dev_priv->intel_wa_regs[i].mask;
2665                 dev_priv->intel_wa_regs[i].value = I915_READ(addr) | mask;
2666                 if (dev_priv->intel_wa_regs[i].addr)
2667                         seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X\n",
2668                                    dev_priv->intel_wa_regs[i].addr,
2669                                    dev_priv->intel_wa_regs[i].value,
2670                                    dev_priv->intel_wa_regs[i].mask);
2671         }
2672
2673         intel_runtime_pm_put(dev_priv);
2674         mutex_unlock(&dev->struct_mutex);
2675
2676         return 0;
2677 }
2678
2679 struct pipe_crc_info {
2680         const char *name;
2681         struct drm_device *dev;
2682         enum pipe pipe;
2683 };
2684
2685 static int i915_dp_mst_info(struct seq_file *m, void *unused)
2686 {
2687         struct drm_info_node *node = (struct drm_info_node *) m->private;
2688         struct drm_device *dev = node->minor->dev;
2689         struct drm_encoder *encoder;
2690         struct intel_encoder *intel_encoder;
2691         struct intel_digital_port *intel_dig_port;
2692         drm_modeset_lock_all(dev);
2693         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2694                 intel_encoder = to_intel_encoder(encoder);
2695                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
2696                         continue;
2697                 intel_dig_port = enc_to_dig_port(encoder);
2698                 if (!intel_dig_port->dp.can_mst)
2699                         continue;
2700
2701                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
2702         }
2703         drm_modeset_unlock_all(dev);
2704         return 0;
2705 }
2706
2707 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2708 {
2709         struct pipe_crc_info *info = inode->i_private;
2710         struct drm_i915_private *dev_priv = info->dev->dev_private;
2711         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2712
2713         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2714                 return -ENODEV;
2715
2716         spin_lock_irq(&pipe_crc->lock);
2717
2718         if (pipe_crc->opened) {
2719                 spin_unlock_irq(&pipe_crc->lock);
2720                 return -EBUSY; /* already open */
2721         }
2722
2723         pipe_crc->opened = true;
2724         filep->private_data = inode->i_private;
2725
2726         spin_unlock_irq(&pipe_crc->lock);
2727
2728         return 0;
2729 }
2730
2731 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2732 {
2733         struct pipe_crc_info *info = inode->i_private;
2734         struct drm_i915_private *dev_priv = info->dev->dev_private;
2735         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2736
2737         spin_lock_irq(&pipe_crc->lock);
2738         pipe_crc->opened = false;
2739         spin_unlock_irq(&pipe_crc->lock);
2740
2741         return 0;
2742 }
2743
2744 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2745 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
2746 /* account for \'0' */
2747 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
2748
2749 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2750 {
2751         assert_spin_locked(&pipe_crc->lock);
2752         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2753                         INTEL_PIPE_CRC_ENTRIES_NR);
2754 }
2755
2756 static ssize_t
2757 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2758                    loff_t *pos)
2759 {
2760         struct pipe_crc_info *info = filep->private_data;
2761         struct drm_device *dev = info->dev;
2762         struct drm_i915_private *dev_priv = dev->dev_private;
2763         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2764         char buf[PIPE_CRC_BUFFER_LEN];
2765         int head, tail, n_entries, n;
2766         ssize_t bytes_read;
2767
2768         /*
2769          * Don't allow user space to provide buffers not big enough to hold
2770          * a line of data.
2771          */
2772         if (count < PIPE_CRC_LINE_LEN)
2773                 return -EINVAL;
2774
2775         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2776                 return 0;
2777
2778         /* nothing to read */
2779         spin_lock_irq(&pipe_crc->lock);
2780         while (pipe_crc_data_count(pipe_crc) == 0) {
2781                 int ret;
2782
2783                 if (filep->f_flags & O_NONBLOCK) {
2784                         spin_unlock_irq(&pipe_crc->lock);
2785                         return -EAGAIN;
2786                 }
2787
2788                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2789                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2790                 if (ret) {
2791                         spin_unlock_irq(&pipe_crc->lock);
2792                         return ret;
2793                 }
2794         }
2795
2796         /* We now have one or more entries to read */
2797         head = pipe_crc->head;
2798         tail = pipe_crc->tail;
2799         n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
2800                         count / PIPE_CRC_LINE_LEN);
2801         spin_unlock_irq(&pipe_crc->lock);
2802
2803         bytes_read = 0;
2804         n = 0;
2805         do {
2806                 struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
2807                 int ret;
2808
2809                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2810                                        "%8u %8x %8x %8x %8x %8x\n",
2811                                        entry->frame, entry->crc[0],
2812                                        entry->crc[1], entry->crc[2],
2813                                        entry->crc[3], entry->crc[4]);
2814
2815                 ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
2816                                    buf, PIPE_CRC_LINE_LEN);
2817                 if (ret == PIPE_CRC_LINE_LEN)
2818                         return -EFAULT;
2819
2820                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2821                 tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2822                 n++;
2823         } while (--n_entries);
2824
2825         spin_lock_irq(&pipe_crc->lock);
2826         pipe_crc->tail = tail;
2827         spin_unlock_irq(&pipe_crc->lock);
2828
2829         return bytes_read;
2830 }
2831
2832 static const struct file_operations i915_pipe_crc_fops = {
2833         .owner = THIS_MODULE,
2834         .open = i915_pipe_crc_open,
2835         .read = i915_pipe_crc_read,
2836         .release = i915_pipe_crc_release,
2837 };
2838
2839 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2840         {
2841                 .name = "i915_pipe_A_crc",
2842                 .pipe = PIPE_A,
2843         },
2844         {
2845                 .name = "i915_pipe_B_crc",
2846                 .pipe = PIPE_B,
2847         },
2848         {
2849                 .name = "i915_pipe_C_crc",
2850                 .pipe = PIPE_C,
2851         },
2852 };
2853
2854 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
2855                                 enum pipe pipe)
2856 {
2857         struct drm_device *dev = minor->dev;
2858         struct dentry *ent;
2859         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2860
2861         info->dev = dev;
2862         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2863                                   &i915_pipe_crc_fops);
2864         if (!ent)
2865                 return -ENOMEM;
2866
2867         return drm_add_fake_info_node(minor, ent, info);
2868 }
2869
2870 static const char * const pipe_crc_sources[] = {
2871         "none",
2872         "plane1",
2873         "plane2",
2874         "pf",
2875         "pipe",
2876         "TV",
2877         "DP-B",
2878         "DP-C",
2879         "DP-D",
2880         "auto",
2881 };
2882
2883 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2884 {
2885         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2886         return pipe_crc_sources[source];
2887 }
2888
2889 static int display_crc_ctl_show(struct seq_file *m, void *data)
2890 {
2891         struct drm_device *dev = m->private;
2892         struct drm_i915_private *dev_priv = dev->dev_private;
2893         int i;
2894
2895         for (i = 0; i < I915_MAX_PIPES; i++)
2896                 seq_printf(m, "%c %s\n", pipe_name(i),
2897                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2898
2899         return 0;
2900 }
2901
2902 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2903 {
2904         struct drm_device *dev = inode->i_private;
2905
2906         return single_open(file, display_crc_ctl_show, dev);
2907 }
2908
2909 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2910                                  uint32_t *val)
2911 {
2912         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2913                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2914
2915         switch (*source) {
2916         case INTEL_PIPE_CRC_SOURCE_PIPE:
2917                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
2918                 break;
2919         case INTEL_PIPE_CRC_SOURCE_NONE:
2920                 *val = 0;
2921                 break;
2922         default:
2923                 return -EINVAL;
2924         }
2925
2926         return 0;
2927 }
2928
2929 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
2930                                      enum intel_pipe_crc_source *source)
2931 {
2932         struct intel_encoder *encoder;
2933         struct intel_crtc *crtc;
2934         struct intel_digital_port *dig_port;
2935         int ret = 0;
2936
2937         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2938
2939         drm_modeset_lock_all(dev);
2940         for_each_intel_encoder(dev, encoder) {
2941                 if (!encoder->base.crtc)
2942                         continue;
2943
2944                 crtc = to_intel_crtc(encoder->base.crtc);
2945
2946                 if (crtc->pipe != pipe)
2947                         continue;
2948
2949                 switch (encoder->type) {
2950                 case INTEL_OUTPUT_TVOUT:
2951                         *source = INTEL_PIPE_CRC_SOURCE_TV;
2952                         break;
2953                 case INTEL_OUTPUT_DISPLAYPORT:
2954                 case INTEL_OUTPUT_EDP:
2955                         dig_port = enc_to_dig_port(&encoder->base);
2956                         switch (dig_port->port) {
2957                         case PORT_B:
2958                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
2959                                 break;
2960                         case PORT_C:
2961                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
2962                                 break;
2963                         case PORT_D:
2964                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
2965                                 break;
2966                         default:
2967                                 WARN(1, "nonexisting DP port %c\n",
2968                                      port_name(dig_port->port));
2969                                 break;
2970                         }
2971                         break;
2972                 }
2973         }
2974         drm_modeset_unlock_all(dev);
2975
2976         return ret;
2977 }
2978
2979 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
2980                                 enum pipe pipe,
2981                                 enum intel_pipe_crc_source *source,
2982                                 uint32_t *val)
2983 {
2984         struct drm_i915_private *dev_priv = dev->dev_private;
2985         bool need_stable_symbols = false;
2986
2987         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2988                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2989                 if (ret)
2990                         return ret;
2991         }
2992
2993         switch (*source) {
2994         case INTEL_PIPE_CRC_SOURCE_PIPE:
2995                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
2996                 break;
2997         case INTEL_PIPE_CRC_SOURCE_DP_B:
2998                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
2999                 need_stable_symbols = true;
3000                 break;
3001         case INTEL_PIPE_CRC_SOURCE_DP_C:
3002                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3003                 need_stable_symbols = true;
3004                 break;
3005         case INTEL_PIPE_CRC_SOURCE_NONE:
3006                 *val = 0;
3007                 break;
3008         default:
3009                 return -EINVAL;
3010         }
3011
3012         /*
3013          * When the pipe CRC tap point is after the transcoders we need
3014          * to tweak symbol-level features to produce a deterministic series of
3015          * symbols for a given frame. We need to reset those features only once
3016          * a frame (instead of every nth symbol):
3017          *   - DC-balance: used to ensure a better clock recovery from the data
3018          *     link (SDVO)
3019          *   - DisplayPort scrambling: used for EMI reduction
3020          */
3021         if (need_stable_symbols) {
3022                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3023
3024                 tmp |= DC_BALANCE_RESET_VLV;
3025                 if (pipe == PIPE_A)
3026                         tmp |= PIPE_A_SCRAMBLE_RESET;
3027                 else
3028                         tmp |= PIPE_B_SCRAMBLE_RESET;
3029
3030                 I915_WRITE(PORT_DFT2_G4X, tmp);
3031         }
3032
3033         return 0;
3034 }
3035
3036 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3037                                  enum pipe pipe,
3038                                  enum intel_pipe_crc_source *source,
3039                                  uint32_t *val)
3040 {
3041         struct drm_i915_private *dev_priv = dev->dev_private;
3042         bool need_stable_symbols = false;
3043
3044         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3045                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3046                 if (ret)
3047                         return ret;
3048         }
3049
3050         switch (*source) {
3051         case INTEL_PIPE_CRC_SOURCE_PIPE:
3052                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3053                 break;
3054         case INTEL_PIPE_CRC_SOURCE_TV:
3055                 if (!SUPPORTS_TV(dev))
3056                         return -EINVAL;
3057                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3058                 break;
3059         case INTEL_PIPE_CRC_SOURCE_DP_B:
3060                 if (!IS_G4X(dev))
3061                         return -EINVAL;
3062                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3063                 need_stable_symbols = true;
3064                 break;
3065         case INTEL_PIPE_CRC_SOURCE_DP_C:
3066                 if (!IS_G4X(dev))
3067                         return -EINVAL;
3068                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3069                 need_stable_symbols = true;
3070                 break;
3071         case INTEL_PIPE_CRC_SOURCE_DP_D:
3072                 if (!IS_G4X(dev))
3073                         return -EINVAL;
3074                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3075                 need_stable_symbols = true;
3076                 break;
3077         case INTEL_PIPE_CRC_SOURCE_NONE:
3078                 *val = 0;
3079                 break;
3080         default:
3081                 return -EINVAL;
3082         }
3083
3084         /*
3085          * When the pipe CRC tap point is after the transcoders we need
3086          * to tweak symbol-level features to produce a deterministic series of
3087          * symbols for a given frame. We need to reset those features only once
3088          * a frame (instead of every nth symbol):
3089          *   - DC-balance: used to ensure a better clock recovery from the data
3090          *     link (SDVO)
3091          *   - DisplayPort scrambling: used for EMI reduction
3092          */
3093         if (need_stable_symbols) {
3094                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3095
3096                 WARN_ON(!IS_G4X(dev));
3097
3098                 I915_WRITE(PORT_DFT_I9XX,
3099                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3100
3101                 if (pipe == PIPE_A)
3102                         tmp |= PIPE_A_SCRAMBLE_RESET;
3103                 else
3104                         tmp |= PIPE_B_SCRAMBLE_RESET;
3105
3106                 I915_WRITE(PORT_DFT2_G4X, tmp);
3107         }
3108
3109         return 0;
3110 }
3111
3112 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3113                                          enum pipe pipe)
3114 {
3115         struct drm_i915_private *dev_priv = dev->dev_private;
3116         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3117
3118         if (pipe == PIPE_A)
3119                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3120         else
3121                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3122         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3123                 tmp &= ~DC_BALANCE_RESET_VLV;
3124         I915_WRITE(PORT_DFT2_G4X, tmp);
3125
3126 }
3127
3128 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3129                                          enum pipe pipe)
3130 {
3131         struct drm_i915_private *dev_priv = dev->dev_private;
3132         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3133
3134         if (pipe == PIPE_A)
3135                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3136         else
3137                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3138         I915_WRITE(PORT_DFT2_G4X, tmp);
3139
3140         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3141                 I915_WRITE(PORT_DFT_I9XX,
3142                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3143         }
3144 }
3145
3146 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3147                                 uint32_t *val)
3148 {
3149         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3150                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3151
3152         switch (*source) {
3153         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3154                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3155                 break;
3156         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3157                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3158                 break;
3159         case INTEL_PIPE_CRC_SOURCE_PIPE:
3160                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3161                 break;
3162         case INTEL_PIPE_CRC_SOURCE_NONE:
3163                 *val = 0;
3164                 break;
3165         default:
3166                 return -EINVAL;
3167         }
3168
3169         return 0;
3170 }
3171
3172 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3173 {
3174         struct drm_i915_private *dev_priv = dev->dev_private;
3175         struct intel_crtc *crtc =
3176                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3177
3178         drm_modeset_lock_all(dev);
3179         /*
3180          * If we use the eDP transcoder we need to make sure that we don't
3181          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3182          * relevant on hsw with pipe A when using the always-on power well
3183          * routing.
3184          */
3185         if (crtc->config.cpu_transcoder == TRANSCODER_EDP &&
3186             !crtc->config.pch_pfit.enabled) {
3187                 crtc->config.pch_pfit.force_thru = true;
3188
3189                 intel_display_power_get(dev_priv,
3190                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3191
3192                 dev_priv->display.crtc_disable(&crtc->base);
3193                 dev_priv->display.crtc_enable(&crtc->base);
3194         }
3195         drm_modeset_unlock_all(dev);
3196 }
3197
3198 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3199 {
3200         struct drm_i915_private *dev_priv = dev->dev_private;
3201         struct intel_crtc *crtc =
3202                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3203
3204         drm_modeset_lock_all(dev);
3205         /*
3206          * If we use the eDP transcoder we need to make sure that we don't
3207          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3208          * relevant on hsw with pipe A when using the always-on power well
3209          * routing.
3210          */
3211         if (crtc->config.pch_pfit.force_thru) {
3212                 crtc->config.pch_pfit.force_thru = false;
3213
3214                 dev_priv->display.crtc_disable(&crtc->base);
3215                 dev_priv->display.crtc_enable(&crtc->base);
3216
3217                 intel_display_power_put(dev_priv,
3218                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3219         }
3220         drm_modeset_unlock_all(dev);
3221 }
3222
3223 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3224                                 enum pipe pipe,
3225                                 enum intel_pipe_crc_source *source,
3226                                 uint32_t *val)
3227 {
3228         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3229                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3230
3231         switch (*source) {
3232         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3233                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3234                 break;
3235         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3236                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3237                 break;
3238         case INTEL_PIPE_CRC_SOURCE_PF:
3239                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3240                         hsw_trans_edp_pipe_A_crc_wa(dev);
3241
3242                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3243                 break;
3244         case INTEL_PIPE_CRC_SOURCE_NONE:
3245                 *val = 0;
3246                 break;
3247         default:
3248                 return -EINVAL;
3249         }
3250
3251         return 0;
3252 }
3253
3254 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3255                                enum intel_pipe_crc_source source)
3256 {
3257         struct drm_i915_private *dev_priv = dev->dev_private;
3258         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3259         u32 val = 0; /* shut up gcc */
3260         int ret;
3261
3262         if (pipe_crc->source == source)
3263                 return 0;
3264
3265         /* forbid changing the source without going back to 'none' */
3266         if (pipe_crc->source && source)
3267                 return -EINVAL;
3268
3269         if (IS_GEN2(dev))
3270                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3271         else if (INTEL_INFO(dev)->gen < 5)
3272                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3273         else if (IS_VALLEYVIEW(dev))
3274                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3275         else if (IS_GEN5(dev) || IS_GEN6(dev))
3276                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3277         else
3278                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3279
3280         if (ret != 0)
3281                 return ret;
3282
3283         /* none -> real source transition */
3284         if (source) {
3285                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3286                                  pipe_name(pipe), pipe_crc_source_name(source));
3287
3288                 pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
3289                                             INTEL_PIPE_CRC_ENTRIES_NR,
3290                                             GFP_KERNEL);
3291                 if (!pipe_crc->entries)
3292                         return -ENOMEM;
3293
3294                 spin_lock_irq(&pipe_crc->lock);
3295                 pipe_crc->head = 0;
3296                 pipe_crc->tail = 0;
3297                 spin_unlock_irq(&pipe_crc->lock);
3298         }
3299
3300         pipe_crc->source = source;
3301
3302         I915_WRITE(PIPE_CRC_CTL(pipe), val);
3303         POSTING_READ(PIPE_CRC_CTL(pipe));
3304
3305         /* real source -> none transition */
3306         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3307                 struct intel_pipe_crc_entry *entries;
3308                 struct intel_crtc *crtc =
3309                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3310
3311                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3312                                  pipe_name(pipe));
3313
3314                 drm_modeset_lock(&crtc->base.mutex, NULL);
3315                 if (crtc->active)
3316                         intel_wait_for_vblank(dev, pipe);
3317                 drm_modeset_unlock(&crtc->base.mutex);
3318
3319                 spin_lock_irq(&pipe_crc->lock);
3320                 entries = pipe_crc->entries;
3321                 pipe_crc->entries = NULL;
3322                 spin_unlock_irq(&pipe_crc->lock);
3323
3324                 kfree(entries);
3325
3326                 if (IS_G4X(dev))
3327                         g4x_undo_pipe_scramble_reset(dev, pipe);
3328                 else if (IS_VALLEYVIEW(dev))
3329                         vlv_undo_pipe_scramble_reset(dev, pipe);
3330                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3331                         hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3332         }
3333
3334         return 0;
3335 }
3336
3337 /*
3338  * Parse pipe CRC command strings:
3339  *   command: wsp* object wsp+ name wsp+ source wsp*
3340  *   object: 'pipe'
3341  *   name: (A | B | C)
3342  *   source: (none | plane1 | plane2 | pf)
3343  *   wsp: (#0x20 | #0x9 | #0xA)+
3344  *
3345  * eg.:
3346  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3347  *  "pipe A none"    ->  Stop CRC
3348  */
3349 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3350 {
3351         int n_words = 0;
3352
3353         while (*buf) {
3354                 char *end;
3355
3356                 /* skip leading white space */
3357                 buf = skip_spaces(buf);
3358                 if (!*buf)
3359                         break;  /* end of buffer */
3360
3361                 /* find end of word */
3362                 for (end = buf; *end && !isspace(*end); end++)
3363                         ;
3364
3365                 if (n_words == max_words) {
3366                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3367                                          max_words);
3368                         return -EINVAL; /* ran out of words[] before bytes */
3369                 }
3370
3371                 if (*end)
3372                         *end++ = '\0';
3373                 words[n_words++] = buf;
3374                 buf = end;
3375         }
3376
3377         return n_words;
3378 }
3379
3380 enum intel_pipe_crc_object {
3381         PIPE_CRC_OBJECT_PIPE,
3382 };
3383
3384 static const char * const pipe_crc_objects[] = {
3385         "pipe",
3386 };
3387
3388 static int
3389 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3390 {
3391         int i;
3392
3393         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3394                 if (!strcmp(buf, pipe_crc_objects[i])) {
3395                         *o = i;
3396                         return 0;
3397                     }
3398
3399         return -EINVAL;
3400 }
3401
3402 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3403 {
3404         const char name = buf[0];
3405
3406         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3407                 return -EINVAL;
3408
3409         *pipe = name - 'A';
3410
3411         return 0;
3412 }
3413
3414 static int
3415 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3416 {
3417         int i;
3418
3419         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3420                 if (!strcmp(buf, pipe_crc_sources[i])) {
3421                         *s = i;
3422                         return 0;
3423                     }
3424
3425         return -EINVAL;
3426 }
3427
3428 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3429 {
3430 #define N_WORDS 3
3431         int n_words;
3432         char *words[N_WORDS];
3433         enum pipe pipe;
3434         enum intel_pipe_crc_object object;
3435         enum intel_pipe_crc_source source;
3436
3437         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3438         if (n_words != N_WORDS) {
3439                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3440                                  N_WORDS);
3441                 return -EINVAL;
3442         }
3443
3444         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3445                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3446                 return -EINVAL;
3447         }
3448
3449         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3450                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3451                 return -EINVAL;
3452         }
3453
3454         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3455                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3456                 return -EINVAL;
3457         }
3458
3459         return pipe_crc_set_source(dev, pipe, source);
3460 }
3461
3462 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3463                                      size_t len, loff_t *offp)
3464 {
3465         struct seq_file *m = file->private_data;
3466         struct drm_device *dev = m->private;
3467         char *tmpbuf;
3468         int ret;
3469
3470         if (len == 0)
3471                 return 0;
3472
3473         if (len > PAGE_SIZE - 1) {
3474                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3475                                  PAGE_SIZE);
3476                 return -E2BIG;
3477         }
3478
3479         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3480         if (!tmpbuf)
3481                 return -ENOMEM;
3482
3483         if (copy_from_user(tmpbuf, ubuf, len)) {
3484                 ret = -EFAULT;
3485                 goto out;
3486         }
3487         tmpbuf[len] = '\0';
3488
3489         ret = display_crc_ctl_parse(dev, tmpbuf, len);
3490
3491 out:
3492         kfree(tmpbuf);
3493         if (ret < 0)
3494                 return ret;
3495
3496         *offp += len;
3497         return len;
3498 }
3499
3500 static const struct file_operations i915_display_crc_ctl_fops = {
3501         .owner = THIS_MODULE,
3502         .open = display_crc_ctl_open,
3503         .read = seq_read,
3504         .llseek = seq_lseek,
3505         .release = single_release,
3506         .write = display_crc_ctl_write
3507 };
3508
3509 static void wm_latency_show(struct seq_file *m, const uint16_t wm[5])
3510 {
3511         struct drm_device *dev = m->private;
3512         int num_levels = ilk_wm_max_level(dev) + 1;
3513         int level;
3514
3515         drm_modeset_lock_all(dev);
3516
3517         for (level = 0; level < num_levels; level++) {
3518                 unsigned int latency = wm[level];
3519
3520                 /* WM1+ latency values in 0.5us units */
3521                 if (level > 0)
3522                         latency *= 5;
3523
3524                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3525                            level, wm[level],
3526                            latency / 10, latency % 10);
3527         }
3528
3529         drm_modeset_unlock_all(dev);
3530 }
3531
3532 static int pri_wm_latency_show(struct seq_file *m, void *data)
3533 {
3534         struct drm_device *dev = m->private;
3535
3536         wm_latency_show(m, to_i915(dev)->wm.pri_latency);
3537
3538         return 0;
3539 }
3540
3541 static int spr_wm_latency_show(struct seq_file *m, void *data)
3542 {
3543         struct drm_device *dev = m->private;
3544
3545         wm_latency_show(m, to_i915(dev)->wm.spr_latency);
3546
3547         return 0;
3548 }
3549
3550 static int cur_wm_latency_show(struct seq_file *m, void *data)
3551 {
3552         struct drm_device *dev = m->private;
3553
3554         wm_latency_show(m, to_i915(dev)->wm.cur_latency);
3555
3556         return 0;
3557 }
3558
3559 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3560 {
3561         struct drm_device *dev = inode->i_private;
3562
3563         if (HAS_GMCH_DISPLAY(dev))
3564                 return -ENODEV;
3565
3566         return single_open(file, pri_wm_latency_show, dev);
3567 }
3568
3569 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3570 {
3571         struct drm_device *dev = inode->i_private;
3572
3573         if (HAS_GMCH_DISPLAY(dev))
3574                 return -ENODEV;
3575
3576         return single_open(file, spr_wm_latency_show, dev);
3577 }
3578
3579 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3580 {
3581         struct drm_device *dev = inode->i_private;
3582
3583         if (HAS_GMCH_DISPLAY(dev))
3584                 return -ENODEV;
3585
3586         return single_open(file, cur_wm_latency_show, dev);
3587 }
3588
3589 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3590                                 size_t len, loff_t *offp, uint16_t wm[5])
3591 {
3592         struct seq_file *m = file->private_data;
3593         struct drm_device *dev = m->private;
3594         uint16_t new[5] = { 0 };
3595         int num_levels = ilk_wm_max_level(dev) + 1;
3596         int level;
3597         int ret;
3598         char tmp[32];
3599
3600         if (len >= sizeof(tmp))
3601                 return -EINVAL;
3602
3603         if (copy_from_user(tmp, ubuf, len))
3604                 return -EFAULT;
3605
3606         tmp[len] = '\0';
3607
3608         ret = sscanf(tmp, "%hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4]);
3609         if (ret != num_levels)
3610                 return -EINVAL;
3611
3612         drm_modeset_lock_all(dev);
3613
3614         for (level = 0; level < num_levels; level++)
3615                 wm[level] = new[level];
3616
3617         drm_modeset_unlock_all(dev);
3618
3619         return len;
3620 }
3621
3622
3623 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3624                                     size_t len, loff_t *offp)
3625 {
3626         struct seq_file *m = file->private_data;
3627         struct drm_device *dev = m->private;
3628
3629         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.pri_latency);
3630 }
3631
3632 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3633                                     size_t len, loff_t *offp)
3634 {
3635         struct seq_file *m = file->private_data;
3636         struct drm_device *dev = m->private;
3637
3638         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.spr_latency);
3639 }
3640
3641 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3642                                     size_t len, loff_t *offp)
3643 {
3644         struct seq_file *m = file->private_data;
3645         struct drm_device *dev = m->private;
3646
3647         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.cur_latency);
3648 }
3649
3650 static const struct file_operations i915_pri_wm_latency_fops = {
3651         .owner = THIS_MODULE,
3652         .open = pri_wm_latency_open,
3653         .read = seq_read,
3654         .llseek = seq_lseek,
3655         .release = single_release,
3656         .write = pri_wm_latency_write
3657 };
3658
3659 static const struct file_operations i915_spr_wm_latency_fops = {
3660         .owner = THIS_MODULE,
3661         .open = spr_wm_latency_open,
3662         .read = seq_read,
3663         .llseek = seq_lseek,
3664         .release = single_release,
3665         .write = spr_wm_latency_write
3666 };
3667
3668 static const struct file_operations i915_cur_wm_latency_fops = {
3669         .owner = THIS_MODULE,
3670         .open = cur_wm_latency_open,
3671         .read = seq_read,
3672         .llseek = seq_lseek,
3673         .release = single_release,
3674         .write = cur_wm_latency_write
3675 };
3676
3677 static int
3678 i915_wedged_get(void *data, u64 *val)
3679 {
3680         struct drm_device *dev = data;
3681         struct drm_i915_private *dev_priv = dev->dev_private;
3682
3683         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
3684
3685         return 0;
3686 }
3687
3688 static int
3689 i915_wedged_set(void *data, u64 val)
3690 {
3691         struct drm_device *dev = data;
3692         struct drm_i915_private *dev_priv = dev->dev_private;
3693
3694         intel_runtime_pm_get(dev_priv);
3695
3696         i915_handle_error(dev, val,
3697                           "Manually setting wedged to %llu", val);
3698
3699         intel_runtime_pm_put(dev_priv);
3700
3701         return 0;
3702 }
3703
3704 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3705                         i915_wedged_get, i915_wedged_set,
3706                         "%llu\n");
3707
3708 static int
3709 i915_ring_stop_get(void *data, u64 *val)
3710 {
3711         struct drm_device *dev = data;
3712         struct drm_i915_private *dev_priv = dev->dev_private;
3713
3714         *val = dev_priv->gpu_error.stop_rings;
3715
3716         return 0;
3717 }
3718
3719 static int
3720 i915_ring_stop_set(void *data, u64 val)
3721 {
3722         struct drm_device *dev = data;
3723         struct drm_i915_private *dev_priv = dev->dev_private;
3724         int ret;
3725
3726         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
3727
3728         ret = mutex_lock_interruptible(&dev->struct_mutex);
3729         if (ret)
3730                 return ret;
3731
3732         dev_priv->gpu_error.stop_rings = val;
3733         mutex_unlock(&dev->struct_mutex);
3734
3735         return 0;
3736 }
3737
3738 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
3739                         i915_ring_stop_get, i915_ring_stop_set,
3740                         "0x%08llx\n");
3741
3742 static int
3743 i915_ring_missed_irq_get(void *data, u64 *val)
3744 {
3745         struct drm_device *dev = data;
3746         struct drm_i915_private *dev_priv = dev->dev_private;
3747
3748         *val = dev_priv->gpu_error.missed_irq_rings;
3749         return 0;
3750 }
3751
3752 static int
3753 i915_ring_missed_irq_set(void *data, u64 val)
3754 {
3755         struct drm_device *dev = data;
3756         struct drm_i915_private *dev_priv = dev->dev_private;
3757         int ret;
3758
3759         /* Lock against concurrent debugfs callers */
3760         ret = mutex_lock_interruptible(&dev->struct_mutex);
3761         if (ret)
3762                 return ret;
3763         dev_priv->gpu_error.missed_irq_rings = val;
3764         mutex_unlock(&dev->struct_mutex);
3765
3766         return 0;
3767 }
3768
3769 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3770                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3771                         "0x%08llx\n");
3772
3773 static int
3774 i915_ring_test_irq_get(void *data, u64 *val)
3775 {
3776         struct drm_device *dev = data;
3777         struct drm_i915_private *dev_priv = dev->dev_private;
3778
3779         *val = dev_priv->gpu_error.test_irq_rings;
3780
3781         return 0;
3782 }
3783
3784 static int
3785 i915_ring_test_irq_set(void *data, u64 val)
3786 {
3787         struct drm_device *dev = data;
3788         struct drm_i915_private *dev_priv = dev->dev_private;
3789         int ret;
3790
3791         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
3792
3793         /* Lock against concurrent debugfs callers */
3794         ret = mutex_lock_interruptible(&dev->struct_mutex);
3795         if (ret)
3796                 return ret;
3797
3798         dev_priv->gpu_error.test_irq_rings = val;
3799         mutex_unlock(&dev->struct_mutex);
3800
3801         return 0;
3802 }
3803
3804 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
3805                         i915_ring_test_irq_get, i915_ring_test_irq_set,
3806                         "0x%08llx\n");
3807
3808 #define DROP_UNBOUND 0x1
3809 #define DROP_BOUND 0x2
3810 #define DROP_RETIRE 0x4
3811 #define DROP_ACTIVE 0x8
3812 #define DROP_ALL (DROP_UNBOUND | \
3813                   DROP_BOUND | \
3814                   DROP_RETIRE | \
3815                   DROP_ACTIVE)
3816 static int
3817 i915_drop_caches_get(void *data, u64 *val)
3818 {
3819         *val = DROP_ALL;
3820
3821         return 0;
3822 }
3823
3824 static int
3825 i915_drop_caches_set(void *data, u64 val)
3826 {
3827         struct drm_device *dev = data;
3828         struct drm_i915_private *dev_priv = dev->dev_private;
3829         int ret;
3830
3831         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
3832
3833         /* No need to check and wait for gpu resets, only libdrm auto-restarts
3834          * on ioctls on -EAGAIN. */
3835         ret = mutex_lock_interruptible(&dev->struct_mutex);
3836         if (ret)
3837                 return ret;
3838
3839         if (val & DROP_ACTIVE) {
3840                 ret = i915_gpu_idle(dev);
3841                 if (ret)
3842                         goto unlock;
3843         }
3844
3845         if (val & (DROP_RETIRE | DROP_ACTIVE))
3846                 i915_gem_retire_requests(dev);
3847
3848         if (val & DROP_BOUND)
3849                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
3850
3851         if (val & DROP_UNBOUND)
3852                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
3853
3854 unlock:
3855         mutex_unlock(&dev->struct_mutex);
3856
3857         return ret;
3858 }
3859
3860 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
3861                         i915_drop_caches_get, i915_drop_caches_set,
3862                         "0x%08llx\n");
3863
3864 static int
3865 i915_max_freq_get(void *data, u64 *val)
3866 {
3867         struct drm_device *dev = data;
3868         struct drm_i915_private *dev_priv = dev->dev_private;
3869         int ret;
3870
3871         if (INTEL_INFO(dev)->gen < 6)
3872                 return -ENODEV;
3873
3874         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3875
3876         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3877         if (ret)
3878                 return ret;
3879
3880         if (IS_VALLEYVIEW(dev))
3881                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
3882         else
3883                 *val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3884         mutex_unlock(&dev_priv->rps.hw_lock);
3885
3886         return 0;
3887 }
3888
3889 static int
3890 i915_max_freq_set(void *data, u64 val)
3891 {
3892         struct drm_device *dev = data;
3893         struct drm_i915_private *dev_priv = dev->dev_private;
3894         u32 rp_state_cap, hw_max, hw_min;
3895         int ret;
3896
3897         if (INTEL_INFO(dev)->gen < 6)
3898                 return -ENODEV;
3899
3900         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3901
3902         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
3903
3904         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3905         if (ret)
3906                 return ret;
3907
3908         /*
3909          * Turbo will still be enabled, but won't go above the set value.
3910          */
3911         if (IS_VALLEYVIEW(dev)) {
3912                 val = vlv_freq_opcode(dev_priv, val);
3913
3914                 hw_max = dev_priv->rps.max_freq;
3915                 hw_min = dev_priv->rps.min_freq;
3916         } else {
3917                 do_div(val, GT_FREQUENCY_MULTIPLIER);
3918
3919                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3920                 hw_max = dev_priv->rps.max_freq;
3921                 hw_min = (rp_state_cap >> 16) & 0xff;
3922         }
3923
3924         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
3925                 mutex_unlock(&dev_priv->rps.hw_lock);
3926                 return -EINVAL;
3927         }
3928
3929         dev_priv->rps.max_freq_softlimit = val;
3930
3931         if (IS_VALLEYVIEW(dev))
3932                 valleyview_set_rps(dev, val);
3933         else
3934                 gen6_set_rps(dev, val);
3935
3936         mutex_unlock(&dev_priv->rps.hw_lock);
3937
3938         return 0;
3939 }
3940
3941 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
3942                         i915_max_freq_get, i915_max_freq_set,
3943                         "%llu\n");
3944
3945 static int
3946 i915_min_freq_get(void *data, u64 *val)
3947 {
3948         struct drm_device *dev = data;
3949         struct drm_i915_private *dev_priv = dev->dev_private;
3950         int ret;
3951
3952         if (INTEL_INFO(dev)->gen < 6)
3953                 return -ENODEV;
3954
3955         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3956
3957         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3958         if (ret)
3959                 return ret;
3960
3961         if (IS_VALLEYVIEW(dev))
3962                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
3963         else
3964                 *val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3965         mutex_unlock(&dev_priv->rps.hw_lock);
3966
3967         return 0;
3968 }
3969
3970 static int
3971 i915_min_freq_set(void *data, u64 val)
3972 {
3973         struct drm_device *dev = data;
3974         struct drm_i915_private *dev_priv = dev->dev_private;
3975         u32 rp_state_cap, hw_max, hw_min;
3976         int ret;
3977
3978         if (INTEL_INFO(dev)->gen < 6)
3979                 return -ENODEV;
3980
3981         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3982
3983         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
3984
3985         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3986         if (ret)
3987                 return ret;
3988
3989         /*
3990          * Turbo will still be enabled, but won't go below the set value.
3991          */
3992         if (IS_VALLEYVIEW(dev)) {
3993                 val = vlv_freq_opcode(dev_priv, val);
3994
3995                 hw_max = dev_priv->rps.max_freq;
3996                 hw_min = dev_priv->rps.min_freq;
3997         } else {
3998                 do_div(val, GT_FREQUENCY_MULTIPLIER);
3999
4000                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4001                 hw_max = dev_priv->rps.max_freq;
4002                 hw_min = (rp_state_cap >> 16) & 0xff;
4003         }
4004
4005         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4006                 mutex_unlock(&dev_priv->rps.hw_lock);
4007                 return -EINVAL;
4008         }
4009
4010         dev_priv->rps.min_freq_softlimit = val;
4011
4012         if (IS_VALLEYVIEW(dev))
4013                 valleyview_set_rps(dev, val);
4014         else
4015                 gen6_set_rps(dev, val);
4016
4017         mutex_unlock(&dev_priv->rps.hw_lock);
4018
4019         return 0;
4020 }
4021
4022 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4023                         i915_min_freq_get, i915_min_freq_set,
4024                         "%llu\n");
4025
4026 static int
4027 i915_cache_sharing_get(void *data, u64 *val)
4028 {
4029         struct drm_device *dev = data;
4030         struct drm_i915_private *dev_priv = dev->dev_private;
4031         u32 snpcr;
4032         int ret;
4033
4034         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4035                 return -ENODEV;
4036
4037         ret = mutex_lock_interruptible(&dev->struct_mutex);
4038         if (ret)
4039                 return ret;
4040         intel_runtime_pm_get(dev_priv);
4041
4042         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4043
4044         intel_runtime_pm_put(dev_priv);
4045         mutex_unlock(&dev_priv->dev->struct_mutex);
4046
4047         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4048
4049         return 0;
4050 }
4051
4052 static int
4053 i915_cache_sharing_set(void *data, u64 val)
4054 {
4055         struct drm_device *dev = data;
4056         struct drm_i915_private *dev_priv = dev->dev_private;
4057         u32 snpcr;
4058
4059         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4060                 return -ENODEV;
4061
4062         if (val > 3)
4063                 return -EINVAL;
4064
4065         intel_runtime_pm_get(dev_priv);
4066         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4067
4068         /* Update the cache sharing policy here as well */
4069         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4070         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4071         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4072         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4073
4074         intel_runtime_pm_put(dev_priv);
4075         return 0;
4076 }
4077
4078 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4079                         i915_cache_sharing_get, i915_cache_sharing_set,
4080                         "%llu\n");
4081
4082 static int i915_forcewake_open(struct inode *inode, struct file *file)
4083 {
4084         struct drm_device *dev = inode->i_private;
4085         struct drm_i915_private *dev_priv = dev->dev_private;
4086
4087         if (INTEL_INFO(dev)->gen < 6)
4088                 return 0;
4089
4090         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4091
4092         return 0;
4093 }
4094
4095 static int i915_forcewake_release(struct inode *inode, struct file *file)
4096 {
4097         struct drm_device *dev = inode->i_private;
4098         struct drm_i915_private *dev_priv = dev->dev_private;
4099
4100         if (INTEL_INFO(dev)->gen < 6)
4101                 return 0;
4102
4103         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4104
4105         return 0;
4106 }
4107
4108 static const struct file_operations i915_forcewake_fops = {
4109         .owner = THIS_MODULE,
4110         .open = i915_forcewake_open,
4111         .release = i915_forcewake_release,
4112 };
4113
4114 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4115 {
4116         struct drm_device *dev = minor->dev;
4117         struct dentry *ent;
4118
4119         ent = debugfs_create_file("i915_forcewake_user",
4120                                   S_IRUSR,
4121                                   root, dev,
4122                                   &i915_forcewake_fops);
4123         if (!ent)
4124                 return -ENOMEM;
4125
4126         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4127 }
4128
4129 static int i915_debugfs_create(struct dentry *root,
4130                                struct drm_minor *minor,
4131                                const char *name,
4132                                const struct file_operations *fops)
4133 {
4134         struct drm_device *dev = minor->dev;
4135         struct dentry *ent;
4136
4137         ent = debugfs_create_file(name,
4138                                   S_IRUGO | S_IWUSR,
4139                                   root, dev,
4140                                   fops);
4141         if (!ent)
4142                 return -ENOMEM;
4143
4144         return drm_add_fake_info_node(minor, ent, fops);
4145 }
4146
4147 static const struct drm_info_list i915_debugfs_list[] = {
4148         {"i915_capabilities", i915_capabilities, 0},
4149         {"i915_gem_objects", i915_gem_object_info, 0},
4150         {"i915_gem_gtt", i915_gem_gtt_info, 0},
4151         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
4152         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
4153         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
4154         {"i915_gem_stolen", i915_gem_stolen_list_info },
4155         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4156         {"i915_gem_request", i915_gem_request_info, 0},
4157         {"i915_gem_seqno", i915_gem_seqno_info, 0},
4158         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4159         {"i915_gem_interrupt", i915_interrupt_info, 0},
4160         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
4161         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
4162         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
4163         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
4164         {"i915_frequency_info", i915_frequency_info, 0},
4165         {"i915_drpc_info", i915_drpc_info, 0},
4166         {"i915_emon_status", i915_emon_status, 0},
4167         {"i915_ring_freq_table", i915_ring_freq_table, 0},
4168         {"i915_fbc_status", i915_fbc_status, 0},
4169         {"i915_ips_status", i915_ips_status, 0},
4170         {"i915_sr_status", i915_sr_status, 0},
4171         {"i915_opregion", i915_opregion, 0},
4172         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4173         {"i915_context_status", i915_context_status, 0},
4174         {"i915_dump_lrc", i915_dump_lrc, 0},
4175         {"i915_execlists", i915_execlists, 0},
4176         {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
4177         {"i915_swizzle_info", i915_swizzle_info, 0},
4178         {"i915_ppgtt_info", i915_ppgtt_info, 0},
4179         {"i915_llc", i915_llc, 0},
4180         {"i915_edp_psr_status", i915_edp_psr_status, 0},
4181         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
4182         {"i915_energy_uJ", i915_energy_uJ, 0},
4183         {"i915_pc8_status", i915_pc8_status, 0},
4184         {"i915_power_domain_info", i915_power_domain_info, 0},
4185         {"i915_display_info", i915_display_info, 0},
4186         {"i915_semaphore_status", i915_semaphore_status, 0},
4187         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4188         {"i915_dp_mst_info", i915_dp_mst_info, 0},
4189         {"i915_wa_registers", i915_wa_registers, 0},
4190 };
4191 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4192
4193 static const struct i915_debugfs_files {
4194         const char *name;
4195         const struct file_operations *fops;
4196 } i915_debugfs_files[] = {
4197         {"i915_wedged", &i915_wedged_fops},
4198         {"i915_max_freq", &i915_max_freq_fops},
4199         {"i915_min_freq", &i915_min_freq_fops},
4200         {"i915_cache_sharing", &i915_cache_sharing_fops},
4201         {"i915_ring_stop", &i915_ring_stop_fops},
4202         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4203         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
4204         {"i915_gem_drop_caches", &i915_drop_caches_fops},
4205         {"i915_error_state", &i915_error_state_fops},
4206         {"i915_next_seqno", &i915_next_seqno_fops},
4207         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4208         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4209         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4210         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4211         {"i915_fbc_false_color", &i915_fbc_fc_fops},
4212 };
4213
4214 void intel_display_crc_init(struct drm_device *dev)
4215 {
4216         struct drm_i915_private *dev_priv = dev->dev_private;
4217         enum pipe pipe;
4218
4219         for_each_pipe(dev_priv, pipe) {
4220                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4221
4222                 pipe_crc->opened = false;
4223                 spin_lock_init(&pipe_crc->lock);
4224                 init_waitqueue_head(&pipe_crc->wq);
4225         }
4226 }
4227
4228 int i915_debugfs_init(struct drm_minor *minor)
4229 {
4230         int ret, i;
4231
4232         ret = i915_forcewake_create(minor->debugfs_root, minor);
4233         if (ret)
4234                 return ret;
4235
4236         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4237                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
4238                 if (ret)
4239                         return ret;
4240         }
4241
4242         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4243                 ret = i915_debugfs_create(minor->debugfs_root, minor,
4244                                           i915_debugfs_files[i].name,
4245                                           i915_debugfs_files[i].fops);
4246                 if (ret)
4247                         return ret;
4248         }
4249
4250         return drm_debugfs_create_files(i915_debugfs_list,
4251                                         I915_DEBUGFS_ENTRIES,
4252                                         minor->debugfs_root, minor);
4253 }
4254
4255 void i915_debugfs_cleanup(struct drm_minor *minor)
4256 {
4257         int i;
4258
4259         drm_debugfs_remove_files(i915_debugfs_list,
4260                                  I915_DEBUGFS_ENTRIES, minor);
4261
4262         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
4263                                  1, minor);
4264
4265         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4266                 struct drm_info_list *info_list =
4267                         (struct drm_info_list *)&i915_pipe_crc_data[i];
4268
4269                 drm_debugfs_remove_files(info_list, 1, minor);
4270         }
4271
4272         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4273                 struct drm_info_list *info_list =
4274                         (struct drm_info_list *) i915_debugfs_files[i].fops;
4275
4276                 drm_debugfs_remove_files(info_list, 1, minor);
4277         }
4278 }