ASoC: nau8825: fix issue that pop noise when start playback
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53                        struct dentry *ent,
54                        const void *key)
55 {
56         struct drm_info_node *node;
57
58         node = kmalloc(sizeof(*node), GFP_KERNEL);
59         if (node == NULL) {
60                 debugfs_remove(ent);
61                 return -ENOMEM;
62         }
63
64         node->minor = minor;
65         node->dent = ent;
66         node->info_ent = (void *) key;
67
68         mutex_lock(&minor->debugfs_lock);
69         list_add(&node->list, &minor->debugfs_list);
70         mutex_unlock(&minor->debugfs_lock);
71
72         return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77         struct drm_info_node *node = m->private;
78         struct drm_device *dev = node->minor->dev;
79         const struct intel_device_info *info = INTEL_INFO(dev);
80
81         seq_printf(m, "gen: %d\n", info->gen);
82         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89         return 0;
90 }
91
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94         if (obj->pin_display)
95                 return "p";
96         else
97                 return " ";
98 }
99
100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102         switch (obj->tiling_mode) {
103         default:
104         case I915_TILING_NONE: return " ";
105         case I915_TILING_X: return "X";
106         case I915_TILING_Y: return "Y";
107         }
108 }
109
110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112         return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114
115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117         u64 size = 0;
118         struct i915_vma *vma;
119
120         list_for_each_entry(vma, &obj->vma_list, vma_link) {
121                 if (i915_is_ggtt(vma->vm) &&
122                     drm_mm_node_allocated(&vma->node))
123                         size += vma->node.size;
124         }
125
126         return size;
127 }
128
129 static void
130 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
131 {
132         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
133         struct intel_engine_cs *ring;
134         struct i915_vma *vma;
135         int pin_count = 0;
136         int i;
137
138         seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
139                    &obj->base,
140                    obj->active ? "*" : " ",
141                    get_pin_flag(obj),
142                    get_tiling_flag(obj),
143                    get_global_flag(obj),
144                    obj->base.size / 1024,
145                    obj->base.read_domains,
146                    obj->base.write_domain);
147         for_each_ring(ring, dev_priv, i)
148                 seq_printf(m, "%x ",
149                                 i915_gem_request_get_seqno(obj->last_read_req[i]));
150         seq_printf(m, "] %x %x%s%s%s",
151                    i915_gem_request_get_seqno(obj->last_write_req),
152                    i915_gem_request_get_seqno(obj->last_fenced_req),
153                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
154                    obj->dirty ? " dirty" : "",
155                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
156         if (obj->base.name)
157                 seq_printf(m, " (name: %d)", obj->base.name);
158         list_for_each_entry(vma, &obj->vma_list, vma_link) {
159                 if (vma->pin_count > 0)
160                         pin_count++;
161         }
162         seq_printf(m, " (pinned x %d)", pin_count);
163         if (obj->pin_display)
164                 seq_printf(m, " (display)");
165         if (obj->fence_reg != I915_FENCE_REG_NONE)
166                 seq_printf(m, " (fence: %d)", obj->fence_reg);
167         list_for_each_entry(vma, &obj->vma_list, vma_link) {
168                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
169                            i915_is_ggtt(vma->vm) ? "g" : "pp",
170                            vma->node.start, vma->node.size);
171                 if (i915_is_ggtt(vma->vm))
172                         seq_printf(m, ", type: %u)", vma->ggtt_view.type);
173                 else
174                         seq_puts(m, ")");
175         }
176         if (obj->stolen)
177                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
178         if (obj->pin_display || obj->fault_mappable) {
179                 char s[3], *t = s;
180                 if (obj->pin_display)
181                         *t++ = 'p';
182                 if (obj->fault_mappable)
183                         *t++ = 'f';
184                 *t = '\0';
185                 seq_printf(m, " (%s mappable)", s);
186         }
187         if (obj->last_write_req != NULL)
188                 seq_printf(m, " (%s)",
189                            i915_gem_request_get_ring(obj->last_write_req)->name);
190         if (obj->frontbuffer_bits)
191                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
192 }
193
194 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
195 {
196         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
197         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
198         seq_putc(m, ' ');
199 }
200
201 static int i915_gem_object_list_info(struct seq_file *m, void *data)
202 {
203         struct drm_info_node *node = m->private;
204         uintptr_t list = (uintptr_t) node->info_ent->data;
205         struct list_head *head;
206         struct drm_device *dev = node->minor->dev;
207         struct drm_i915_private *dev_priv = dev->dev_private;
208         struct i915_address_space *vm = &dev_priv->gtt.base;
209         struct i915_vma *vma;
210         u64 total_obj_size, total_gtt_size;
211         int count, ret;
212
213         ret = mutex_lock_interruptible(&dev->struct_mutex);
214         if (ret)
215                 return ret;
216
217         /* FIXME: the user of this interface might want more than just GGTT */
218         switch (list) {
219         case ACTIVE_LIST:
220                 seq_puts(m, "Active:\n");
221                 head = &vm->active_list;
222                 break;
223         case INACTIVE_LIST:
224                 seq_puts(m, "Inactive:\n");
225                 head = &vm->inactive_list;
226                 break;
227         default:
228                 mutex_unlock(&dev->struct_mutex);
229                 return -EINVAL;
230         }
231
232         total_obj_size = total_gtt_size = count = 0;
233         list_for_each_entry(vma, head, mm_list) {
234                 seq_printf(m, "   ");
235                 describe_obj(m, vma->obj);
236                 seq_printf(m, "\n");
237                 total_obj_size += vma->obj->base.size;
238                 total_gtt_size += vma->node.size;
239                 count++;
240         }
241         mutex_unlock(&dev->struct_mutex);
242
243         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
244                    count, total_obj_size, total_gtt_size);
245         return 0;
246 }
247
248 static int obj_rank_by_stolen(void *priv,
249                               struct list_head *A, struct list_head *B)
250 {
251         struct drm_i915_gem_object *a =
252                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
253         struct drm_i915_gem_object *b =
254                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
255
256         if (a->stolen->start < b->stolen->start)
257                 return -1;
258         if (a->stolen->start > b->stolen->start)
259                 return 1;
260         return 0;
261 }
262
263 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
264 {
265         struct drm_info_node *node = m->private;
266         struct drm_device *dev = node->minor->dev;
267         struct drm_i915_private *dev_priv = dev->dev_private;
268         struct drm_i915_gem_object *obj;
269         u64 total_obj_size, total_gtt_size;
270         LIST_HEAD(stolen);
271         int count, ret;
272
273         ret = mutex_lock_interruptible(&dev->struct_mutex);
274         if (ret)
275                 return ret;
276
277         total_obj_size = total_gtt_size = count = 0;
278         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
279                 if (obj->stolen == NULL)
280                         continue;
281
282                 list_add(&obj->obj_exec_link, &stolen);
283
284                 total_obj_size += obj->base.size;
285                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
286                 count++;
287         }
288         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
289                 if (obj->stolen == NULL)
290                         continue;
291
292                 list_add(&obj->obj_exec_link, &stolen);
293
294                 total_obj_size += obj->base.size;
295                 count++;
296         }
297         list_sort(NULL, &stolen, obj_rank_by_stolen);
298         seq_puts(m, "Stolen:\n");
299         while (!list_empty(&stolen)) {
300                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
301                 seq_puts(m, "   ");
302                 describe_obj(m, obj);
303                 seq_putc(m, '\n');
304                 list_del_init(&obj->obj_exec_link);
305         }
306         mutex_unlock(&dev->struct_mutex);
307
308         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
309                    count, total_obj_size, total_gtt_size);
310         return 0;
311 }
312
313 #define count_objects(list, member) do { \
314         list_for_each_entry(obj, list, member) { \
315                 size += i915_gem_obj_total_ggtt_size(obj); \
316                 ++count; \
317                 if (obj->map_and_fenceable) { \
318                         mappable_size += i915_gem_obj_ggtt_size(obj); \
319                         ++mappable_count; \
320                 } \
321         } \
322 } while (0)
323
324 struct file_stats {
325         struct drm_i915_file_private *file_priv;
326         unsigned long count;
327         u64 total, unbound;
328         u64 global, shared;
329         u64 active, inactive;
330 };
331
332 static int per_file_stats(int id, void *ptr, void *data)
333 {
334         struct drm_i915_gem_object *obj = ptr;
335         struct file_stats *stats = data;
336         struct i915_vma *vma;
337
338         stats->count++;
339         stats->total += obj->base.size;
340
341         if (obj->base.name || obj->base.dma_buf)
342                 stats->shared += obj->base.size;
343
344         if (USES_FULL_PPGTT(obj->base.dev)) {
345                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
346                         struct i915_hw_ppgtt *ppgtt;
347
348                         if (!drm_mm_node_allocated(&vma->node))
349                                 continue;
350
351                         if (i915_is_ggtt(vma->vm)) {
352                                 stats->global += obj->base.size;
353                                 continue;
354                         }
355
356                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
357                         if (ppgtt->file_priv != stats->file_priv)
358                                 continue;
359
360                         if (obj->active) /* XXX per-vma statistic */
361                                 stats->active += obj->base.size;
362                         else
363                                 stats->inactive += obj->base.size;
364
365                         return 0;
366                 }
367         } else {
368                 if (i915_gem_obj_ggtt_bound(obj)) {
369                         stats->global += obj->base.size;
370                         if (obj->active)
371                                 stats->active += obj->base.size;
372                         else
373                                 stats->inactive += obj->base.size;
374                         return 0;
375                 }
376         }
377
378         if (!list_empty(&obj->global_list))
379                 stats->unbound += obj->base.size;
380
381         return 0;
382 }
383
384 #define print_file_stats(m, name, stats) do { \
385         if (stats.count) \
386                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
387                            name, \
388                            stats.count, \
389                            stats.total, \
390                            stats.active, \
391                            stats.inactive, \
392                            stats.global, \
393                            stats.shared, \
394                            stats.unbound); \
395 } while (0)
396
397 static void print_batch_pool_stats(struct seq_file *m,
398                                    struct drm_i915_private *dev_priv)
399 {
400         struct drm_i915_gem_object *obj;
401         struct file_stats stats;
402         struct intel_engine_cs *ring;
403         int i, j;
404
405         memset(&stats, 0, sizeof(stats));
406
407         for_each_ring(ring, dev_priv, i) {
408                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
409                         list_for_each_entry(obj,
410                                             &ring->batch_pool.cache_list[j],
411                                             batch_pool_link)
412                                 per_file_stats(0, obj, &stats);
413                 }
414         }
415
416         print_file_stats(m, "[k]batch pool", stats);
417 }
418
419 #define count_vmas(list, member) do { \
420         list_for_each_entry(vma, list, member) { \
421                 size += i915_gem_obj_total_ggtt_size(vma->obj); \
422                 ++count; \
423                 if (vma->obj->map_and_fenceable) { \
424                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
425                         ++mappable_count; \
426                 } \
427         } \
428 } while (0)
429
430 static int i915_gem_object_info(struct seq_file *m, void* data)
431 {
432         struct drm_info_node *node = m->private;
433         struct drm_device *dev = node->minor->dev;
434         struct drm_i915_private *dev_priv = dev->dev_private;
435         u32 count, mappable_count, purgeable_count;
436         u64 size, mappable_size, purgeable_size;
437         struct drm_i915_gem_object *obj;
438         struct i915_address_space *vm = &dev_priv->gtt.base;
439         struct drm_file *file;
440         struct i915_vma *vma;
441         int ret;
442
443         ret = mutex_lock_interruptible(&dev->struct_mutex);
444         if (ret)
445                 return ret;
446
447         seq_printf(m, "%u objects, %zu bytes\n",
448                    dev_priv->mm.object_count,
449                    dev_priv->mm.object_memory);
450
451         size = count = mappable_size = mappable_count = 0;
452         count_objects(&dev_priv->mm.bound_list, global_list);
453         seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
454                    count, mappable_count, size, mappable_size);
455
456         size = count = mappable_size = mappable_count = 0;
457         count_vmas(&vm->active_list, mm_list);
458         seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
459                    count, mappable_count, size, mappable_size);
460
461         size = count = mappable_size = mappable_count = 0;
462         count_vmas(&vm->inactive_list, mm_list);
463         seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
464                    count, mappable_count, size, mappable_size);
465
466         size = count = purgeable_size = purgeable_count = 0;
467         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
468                 size += obj->base.size, ++count;
469                 if (obj->madv == I915_MADV_DONTNEED)
470                         purgeable_size += obj->base.size, ++purgeable_count;
471         }
472         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
473
474         size = count = mappable_size = mappable_count = 0;
475         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
476                 if (obj->fault_mappable) {
477                         size += i915_gem_obj_ggtt_size(obj);
478                         ++count;
479                 }
480                 if (obj->pin_display) {
481                         mappable_size += i915_gem_obj_ggtt_size(obj);
482                         ++mappable_count;
483                 }
484                 if (obj->madv == I915_MADV_DONTNEED) {
485                         purgeable_size += obj->base.size;
486                         ++purgeable_count;
487                 }
488         }
489         seq_printf(m, "%u purgeable objects, %llu bytes\n",
490                    purgeable_count, purgeable_size);
491         seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
492                    mappable_count, mappable_size);
493         seq_printf(m, "%u fault mappable objects, %llu bytes\n",
494                    count, size);
495
496         seq_printf(m, "%llu [%llu] gtt total\n",
497                    dev_priv->gtt.base.total,
498                    (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
499
500         seq_putc(m, '\n');
501         print_batch_pool_stats(m, dev_priv);
502         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
503                 struct file_stats stats;
504                 struct task_struct *task;
505
506                 memset(&stats, 0, sizeof(stats));
507                 stats.file_priv = file->driver_priv;
508                 spin_lock(&file->table_lock);
509                 idr_for_each(&file->object_idr, per_file_stats, &stats);
510                 spin_unlock(&file->table_lock);
511                 /*
512                  * Although we have a valid reference on file->pid, that does
513                  * not guarantee that the task_struct who called get_pid() is
514                  * still alive (e.g. get_pid(current) => fork() => exit()).
515                  * Therefore, we need to protect this ->comm access using RCU.
516                  */
517                 rcu_read_lock();
518                 task = pid_task(file->pid, PIDTYPE_PID);
519                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
520                 rcu_read_unlock();
521         }
522
523         mutex_unlock(&dev->struct_mutex);
524
525         return 0;
526 }
527
528 static int i915_gem_gtt_info(struct seq_file *m, void *data)
529 {
530         struct drm_info_node *node = m->private;
531         struct drm_device *dev = node->minor->dev;
532         uintptr_t list = (uintptr_t) node->info_ent->data;
533         struct drm_i915_private *dev_priv = dev->dev_private;
534         struct drm_i915_gem_object *obj;
535         u64 total_obj_size, total_gtt_size;
536         int count, ret;
537
538         ret = mutex_lock_interruptible(&dev->struct_mutex);
539         if (ret)
540                 return ret;
541
542         total_obj_size = total_gtt_size = count = 0;
543         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
544                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
545                         continue;
546
547                 seq_puts(m, "   ");
548                 describe_obj(m, obj);
549                 seq_putc(m, '\n');
550                 total_obj_size += obj->base.size;
551                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
552                 count++;
553         }
554
555         mutex_unlock(&dev->struct_mutex);
556
557         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
558                    count, total_obj_size, total_gtt_size);
559
560         return 0;
561 }
562
563 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
564 {
565         struct drm_info_node *node = m->private;
566         struct drm_device *dev = node->minor->dev;
567         struct drm_i915_private *dev_priv = dev->dev_private;
568         struct intel_crtc *crtc;
569         int ret;
570
571         ret = mutex_lock_interruptible(&dev->struct_mutex);
572         if (ret)
573                 return ret;
574
575         for_each_intel_crtc(dev, crtc) {
576                 const char pipe = pipe_name(crtc->pipe);
577                 const char plane = plane_name(crtc->plane);
578                 struct intel_unpin_work *work;
579
580                 spin_lock_irq(&dev->event_lock);
581                 work = crtc->unpin_work;
582                 if (work == NULL) {
583                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
584                                    pipe, plane);
585                 } else {
586                         u32 addr;
587
588                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
589                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
590                                            pipe, plane);
591                         } else {
592                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
593                                            pipe, plane);
594                         }
595                         if (work->flip_queued_req) {
596                                 struct intel_engine_cs *ring =
597                                         i915_gem_request_get_ring(work->flip_queued_req);
598
599                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
600                                            ring->name,
601                                            i915_gem_request_get_seqno(work->flip_queued_req),
602                                            dev_priv->next_seqno,
603                                            ring->get_seqno(ring, true),
604                                            i915_gem_request_completed(work->flip_queued_req, true));
605                         } else
606                                 seq_printf(m, "Flip not associated with any ring\n");
607                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
608                                    work->flip_queued_vblank,
609                                    work->flip_ready_vblank,
610                                    drm_crtc_vblank_count(&crtc->base));
611                         if (work->enable_stall_check)
612                                 seq_puts(m, "Stall check enabled, ");
613                         else
614                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
615                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
616
617                         if (INTEL_INFO(dev)->gen >= 4)
618                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
619                         else
620                                 addr = I915_READ(DSPADDR(crtc->plane));
621                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
622
623                         if (work->pending_flip_obj) {
624                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
625                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
626                         }
627                 }
628                 spin_unlock_irq(&dev->event_lock);
629         }
630
631         mutex_unlock(&dev->struct_mutex);
632
633         return 0;
634 }
635
636 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
637 {
638         struct drm_info_node *node = m->private;
639         struct drm_device *dev = node->minor->dev;
640         struct drm_i915_private *dev_priv = dev->dev_private;
641         struct drm_i915_gem_object *obj;
642         struct intel_engine_cs *ring;
643         int total = 0;
644         int ret, i, j;
645
646         ret = mutex_lock_interruptible(&dev->struct_mutex);
647         if (ret)
648                 return ret;
649
650         for_each_ring(ring, dev_priv, i) {
651                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
652                         int count;
653
654                         count = 0;
655                         list_for_each_entry(obj,
656                                             &ring->batch_pool.cache_list[j],
657                                             batch_pool_link)
658                                 count++;
659                         seq_printf(m, "%s cache[%d]: %d objects\n",
660                                    ring->name, j, count);
661
662                         list_for_each_entry(obj,
663                                             &ring->batch_pool.cache_list[j],
664                                             batch_pool_link) {
665                                 seq_puts(m, "   ");
666                                 describe_obj(m, obj);
667                                 seq_putc(m, '\n');
668                         }
669
670                         total += count;
671                 }
672         }
673
674         seq_printf(m, "total: %d\n", total);
675
676         mutex_unlock(&dev->struct_mutex);
677
678         return 0;
679 }
680
681 static int i915_gem_request_info(struct seq_file *m, void *data)
682 {
683         struct drm_info_node *node = m->private;
684         struct drm_device *dev = node->minor->dev;
685         struct drm_i915_private *dev_priv = dev->dev_private;
686         struct intel_engine_cs *ring;
687         struct drm_i915_gem_request *req;
688         int ret, any, i;
689
690         ret = mutex_lock_interruptible(&dev->struct_mutex);
691         if (ret)
692                 return ret;
693
694         any = 0;
695         for_each_ring(ring, dev_priv, i) {
696                 int count;
697
698                 count = 0;
699                 list_for_each_entry(req, &ring->request_list, list)
700                         count++;
701                 if (count == 0)
702                         continue;
703
704                 seq_printf(m, "%s requests: %d\n", ring->name, count);
705                 list_for_each_entry(req, &ring->request_list, list) {
706                         struct task_struct *task;
707
708                         rcu_read_lock();
709                         task = NULL;
710                         if (req->pid)
711                                 task = pid_task(req->pid, PIDTYPE_PID);
712                         seq_printf(m, "    %x @ %d: %s [%d]\n",
713                                    req->seqno,
714                                    (int) (jiffies - req->emitted_jiffies),
715                                    task ? task->comm : "<unknown>",
716                                    task ? task->pid : -1);
717                         rcu_read_unlock();
718                 }
719
720                 any++;
721         }
722         mutex_unlock(&dev->struct_mutex);
723
724         if (any == 0)
725                 seq_puts(m, "No requests\n");
726
727         return 0;
728 }
729
730 static void i915_ring_seqno_info(struct seq_file *m,
731                                  struct intel_engine_cs *ring)
732 {
733         if (ring->get_seqno) {
734                 seq_printf(m, "Current sequence (%s): %x\n",
735                            ring->name, ring->get_seqno(ring, false));
736         }
737 }
738
739 static int i915_gem_seqno_info(struct seq_file *m, void *data)
740 {
741         struct drm_info_node *node = m->private;
742         struct drm_device *dev = node->minor->dev;
743         struct drm_i915_private *dev_priv = dev->dev_private;
744         struct intel_engine_cs *ring;
745         int ret, i;
746
747         ret = mutex_lock_interruptible(&dev->struct_mutex);
748         if (ret)
749                 return ret;
750         intel_runtime_pm_get(dev_priv);
751
752         for_each_ring(ring, dev_priv, i)
753                 i915_ring_seqno_info(m, ring);
754
755         intel_runtime_pm_put(dev_priv);
756         mutex_unlock(&dev->struct_mutex);
757
758         return 0;
759 }
760
761
762 static int i915_interrupt_info(struct seq_file *m, void *data)
763 {
764         struct drm_info_node *node = m->private;
765         struct drm_device *dev = node->minor->dev;
766         struct drm_i915_private *dev_priv = dev->dev_private;
767         struct intel_engine_cs *ring;
768         int ret, i, pipe;
769
770         ret = mutex_lock_interruptible(&dev->struct_mutex);
771         if (ret)
772                 return ret;
773         intel_runtime_pm_get(dev_priv);
774
775         if (IS_CHERRYVIEW(dev)) {
776                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
777                            I915_READ(GEN8_MASTER_IRQ));
778
779                 seq_printf(m, "Display IER:\t%08x\n",
780                            I915_READ(VLV_IER));
781                 seq_printf(m, "Display IIR:\t%08x\n",
782                            I915_READ(VLV_IIR));
783                 seq_printf(m, "Display IIR_RW:\t%08x\n",
784                            I915_READ(VLV_IIR_RW));
785                 seq_printf(m, "Display IMR:\t%08x\n",
786                            I915_READ(VLV_IMR));
787                 for_each_pipe(dev_priv, pipe)
788                         seq_printf(m, "Pipe %c stat:\t%08x\n",
789                                    pipe_name(pipe),
790                                    I915_READ(PIPESTAT(pipe)));
791
792                 seq_printf(m, "Port hotplug:\t%08x\n",
793                            I915_READ(PORT_HOTPLUG_EN));
794                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
795                            I915_READ(VLV_DPFLIPSTAT));
796                 seq_printf(m, "DPINVGTT:\t%08x\n",
797                            I915_READ(DPINVGTT));
798
799                 for (i = 0; i < 4; i++) {
800                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
801                                    i, I915_READ(GEN8_GT_IMR(i)));
802                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
803                                    i, I915_READ(GEN8_GT_IIR(i)));
804                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
805                                    i, I915_READ(GEN8_GT_IER(i)));
806                 }
807
808                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
809                            I915_READ(GEN8_PCU_IMR));
810                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
811                            I915_READ(GEN8_PCU_IIR));
812                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
813                            I915_READ(GEN8_PCU_IER));
814         } else if (INTEL_INFO(dev)->gen >= 8) {
815                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
816                            I915_READ(GEN8_MASTER_IRQ));
817
818                 for (i = 0; i < 4; i++) {
819                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
820                                    i, I915_READ(GEN8_GT_IMR(i)));
821                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
822                                    i, I915_READ(GEN8_GT_IIR(i)));
823                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
824                                    i, I915_READ(GEN8_GT_IER(i)));
825                 }
826
827                 for_each_pipe(dev_priv, pipe) {
828                         if (!intel_display_power_is_enabled(dev_priv,
829                                                 POWER_DOMAIN_PIPE(pipe))) {
830                                 seq_printf(m, "Pipe %c power disabled\n",
831                                            pipe_name(pipe));
832                                 continue;
833                         }
834                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
835                                    pipe_name(pipe),
836                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
837                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
838                                    pipe_name(pipe),
839                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
840                         seq_printf(m, "Pipe %c IER:\t%08x\n",
841                                    pipe_name(pipe),
842                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
843                 }
844
845                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
846                            I915_READ(GEN8_DE_PORT_IMR));
847                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
848                            I915_READ(GEN8_DE_PORT_IIR));
849                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
850                            I915_READ(GEN8_DE_PORT_IER));
851
852                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
853                            I915_READ(GEN8_DE_MISC_IMR));
854                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
855                            I915_READ(GEN8_DE_MISC_IIR));
856                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
857                            I915_READ(GEN8_DE_MISC_IER));
858
859                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
860                            I915_READ(GEN8_PCU_IMR));
861                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
862                            I915_READ(GEN8_PCU_IIR));
863                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
864                            I915_READ(GEN8_PCU_IER));
865         } else if (IS_VALLEYVIEW(dev)) {
866                 seq_printf(m, "Display IER:\t%08x\n",
867                            I915_READ(VLV_IER));
868                 seq_printf(m, "Display IIR:\t%08x\n",
869                            I915_READ(VLV_IIR));
870                 seq_printf(m, "Display IIR_RW:\t%08x\n",
871                            I915_READ(VLV_IIR_RW));
872                 seq_printf(m, "Display IMR:\t%08x\n",
873                            I915_READ(VLV_IMR));
874                 for_each_pipe(dev_priv, pipe)
875                         seq_printf(m, "Pipe %c stat:\t%08x\n",
876                                    pipe_name(pipe),
877                                    I915_READ(PIPESTAT(pipe)));
878
879                 seq_printf(m, "Master IER:\t%08x\n",
880                            I915_READ(VLV_MASTER_IER));
881
882                 seq_printf(m, "Render IER:\t%08x\n",
883                            I915_READ(GTIER));
884                 seq_printf(m, "Render IIR:\t%08x\n",
885                            I915_READ(GTIIR));
886                 seq_printf(m, "Render IMR:\t%08x\n",
887                            I915_READ(GTIMR));
888
889                 seq_printf(m, "PM IER:\t\t%08x\n",
890                            I915_READ(GEN6_PMIER));
891                 seq_printf(m, "PM IIR:\t\t%08x\n",
892                            I915_READ(GEN6_PMIIR));
893                 seq_printf(m, "PM IMR:\t\t%08x\n",
894                            I915_READ(GEN6_PMIMR));
895
896                 seq_printf(m, "Port hotplug:\t%08x\n",
897                            I915_READ(PORT_HOTPLUG_EN));
898                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
899                            I915_READ(VLV_DPFLIPSTAT));
900                 seq_printf(m, "DPINVGTT:\t%08x\n",
901                            I915_READ(DPINVGTT));
902
903         } else if (!HAS_PCH_SPLIT(dev)) {
904                 seq_printf(m, "Interrupt enable:    %08x\n",
905                            I915_READ(IER));
906                 seq_printf(m, "Interrupt identity:  %08x\n",
907                            I915_READ(IIR));
908                 seq_printf(m, "Interrupt mask:      %08x\n",
909                            I915_READ(IMR));
910                 for_each_pipe(dev_priv, pipe)
911                         seq_printf(m, "Pipe %c stat:         %08x\n",
912                                    pipe_name(pipe),
913                                    I915_READ(PIPESTAT(pipe)));
914         } else {
915                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
916                            I915_READ(DEIER));
917                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
918                            I915_READ(DEIIR));
919                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
920                            I915_READ(DEIMR));
921                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
922                            I915_READ(SDEIER));
923                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
924                            I915_READ(SDEIIR));
925                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
926                            I915_READ(SDEIMR));
927                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
928                            I915_READ(GTIER));
929                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
930                            I915_READ(GTIIR));
931                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
932                            I915_READ(GTIMR));
933         }
934         for_each_ring(ring, dev_priv, i) {
935                 if (INTEL_INFO(dev)->gen >= 6) {
936                         seq_printf(m,
937                                    "Graphics Interrupt mask (%s):       %08x\n",
938                                    ring->name, I915_READ_IMR(ring));
939                 }
940                 i915_ring_seqno_info(m, ring);
941         }
942         intel_runtime_pm_put(dev_priv);
943         mutex_unlock(&dev->struct_mutex);
944
945         return 0;
946 }
947
948 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
949 {
950         struct drm_info_node *node = m->private;
951         struct drm_device *dev = node->minor->dev;
952         struct drm_i915_private *dev_priv = dev->dev_private;
953         int i, ret;
954
955         ret = mutex_lock_interruptible(&dev->struct_mutex);
956         if (ret)
957                 return ret;
958
959         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
960         for (i = 0; i < dev_priv->num_fence_regs; i++) {
961                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
962
963                 seq_printf(m, "Fence %d, pin count = %d, object = ",
964                            i, dev_priv->fence_regs[i].pin_count);
965                 if (obj == NULL)
966                         seq_puts(m, "unused");
967                 else
968                         describe_obj(m, obj);
969                 seq_putc(m, '\n');
970         }
971
972         mutex_unlock(&dev->struct_mutex);
973         return 0;
974 }
975
976 static int i915_hws_info(struct seq_file *m, void *data)
977 {
978         struct drm_info_node *node = m->private;
979         struct drm_device *dev = node->minor->dev;
980         struct drm_i915_private *dev_priv = dev->dev_private;
981         struct intel_engine_cs *ring;
982         const u32 *hws;
983         int i;
984
985         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
986         hws = ring->status_page.page_addr;
987         if (hws == NULL)
988                 return 0;
989
990         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
991                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
992                            i * 4,
993                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
994         }
995         return 0;
996 }
997
998 static ssize_t
999 i915_error_state_write(struct file *filp,
1000                        const char __user *ubuf,
1001                        size_t cnt,
1002                        loff_t *ppos)
1003 {
1004         struct i915_error_state_file_priv *error_priv = filp->private_data;
1005         struct drm_device *dev = error_priv->dev;
1006         int ret;
1007
1008         DRM_DEBUG_DRIVER("Resetting error state\n");
1009
1010         ret = mutex_lock_interruptible(&dev->struct_mutex);
1011         if (ret)
1012                 return ret;
1013
1014         i915_destroy_error_state(dev);
1015         mutex_unlock(&dev->struct_mutex);
1016
1017         return cnt;
1018 }
1019
1020 static int i915_error_state_open(struct inode *inode, struct file *file)
1021 {
1022         struct drm_device *dev = inode->i_private;
1023         struct i915_error_state_file_priv *error_priv;
1024
1025         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1026         if (!error_priv)
1027                 return -ENOMEM;
1028
1029         error_priv->dev = dev;
1030
1031         i915_error_state_get(dev, error_priv);
1032
1033         file->private_data = error_priv;
1034
1035         return 0;
1036 }
1037
1038 static int i915_error_state_release(struct inode *inode, struct file *file)
1039 {
1040         struct i915_error_state_file_priv *error_priv = file->private_data;
1041
1042         i915_error_state_put(error_priv);
1043         kfree(error_priv);
1044
1045         return 0;
1046 }
1047
1048 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1049                                      size_t count, loff_t *pos)
1050 {
1051         struct i915_error_state_file_priv *error_priv = file->private_data;
1052         struct drm_i915_error_state_buf error_str;
1053         loff_t tmp_pos = 0;
1054         ssize_t ret_count = 0;
1055         int ret;
1056
1057         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1058         if (ret)
1059                 return ret;
1060
1061         ret = i915_error_state_to_str(&error_str, error_priv);
1062         if (ret)
1063                 goto out;
1064
1065         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1066                                             error_str.buf,
1067                                             error_str.bytes);
1068
1069         if (ret_count < 0)
1070                 ret = ret_count;
1071         else
1072                 *pos = error_str.start + ret_count;
1073 out:
1074         i915_error_state_buf_release(&error_str);
1075         return ret ?: ret_count;
1076 }
1077
1078 static const struct file_operations i915_error_state_fops = {
1079         .owner = THIS_MODULE,
1080         .open = i915_error_state_open,
1081         .read = i915_error_state_read,
1082         .write = i915_error_state_write,
1083         .llseek = default_llseek,
1084         .release = i915_error_state_release,
1085 };
1086
1087 static int
1088 i915_next_seqno_get(void *data, u64 *val)
1089 {
1090         struct drm_device *dev = data;
1091         struct drm_i915_private *dev_priv = dev->dev_private;
1092         int ret;
1093
1094         ret = mutex_lock_interruptible(&dev->struct_mutex);
1095         if (ret)
1096                 return ret;
1097
1098         *val = dev_priv->next_seqno;
1099         mutex_unlock(&dev->struct_mutex);
1100
1101         return 0;
1102 }
1103
1104 static int
1105 i915_next_seqno_set(void *data, u64 val)
1106 {
1107         struct drm_device *dev = data;
1108         int ret;
1109
1110         ret = mutex_lock_interruptible(&dev->struct_mutex);
1111         if (ret)
1112                 return ret;
1113
1114         ret = i915_gem_set_seqno(dev, val);
1115         mutex_unlock(&dev->struct_mutex);
1116
1117         return ret;
1118 }
1119
1120 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1121                         i915_next_seqno_get, i915_next_seqno_set,
1122                         "0x%llx\n");
1123
1124 static int i915_frequency_info(struct seq_file *m, void *unused)
1125 {
1126         struct drm_info_node *node = m->private;
1127         struct drm_device *dev = node->minor->dev;
1128         struct drm_i915_private *dev_priv = dev->dev_private;
1129         int ret = 0;
1130
1131         intel_runtime_pm_get(dev_priv);
1132
1133         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1134
1135         if (IS_GEN5(dev)) {
1136                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1137                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1138
1139                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1140                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1141                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1142                            MEMSTAT_VID_SHIFT);
1143                 seq_printf(m, "Current P-state: %d\n",
1144                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1145         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1146                 u32 freq_sts;
1147
1148                 mutex_lock(&dev_priv->rps.hw_lock);
1149                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1150                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1151                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1152
1153                 seq_printf(m, "actual GPU freq: %d MHz\n",
1154                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1155
1156                 seq_printf(m, "current GPU freq: %d MHz\n",
1157                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1158
1159                 seq_printf(m, "max GPU freq: %d MHz\n",
1160                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1161
1162                 seq_printf(m, "min GPU freq: %d MHz\n",
1163                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1164
1165                 seq_printf(m, "idle GPU freq: %d MHz\n",
1166                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1167
1168                 seq_printf(m,
1169                            "efficient (RPe) frequency: %d MHz\n",
1170                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1171                 mutex_unlock(&dev_priv->rps.hw_lock);
1172         } else if (INTEL_INFO(dev)->gen >= 6) {
1173                 u32 rp_state_limits;
1174                 u32 gt_perf_status;
1175                 u32 rp_state_cap;
1176                 u32 rpmodectl, rpinclimit, rpdeclimit;
1177                 u32 rpstat, cagf, reqf;
1178                 u32 rpupei, rpcurup, rpprevup;
1179                 u32 rpdownei, rpcurdown, rpprevdown;
1180                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1181                 int max_freq;
1182
1183                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1184                 if (IS_BROXTON(dev)) {
1185                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1186                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1187                 } else {
1188                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1189                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1190                 }
1191
1192                 /* RPSTAT1 is in the GT power well */
1193                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1194                 if (ret)
1195                         goto out;
1196
1197                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1198
1199                 reqf = I915_READ(GEN6_RPNSWREQ);
1200                 if (IS_GEN9(dev))
1201                         reqf >>= 23;
1202                 else {
1203                         reqf &= ~GEN6_TURBO_DISABLE;
1204                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1205                                 reqf >>= 24;
1206                         else
1207                                 reqf >>= 25;
1208                 }
1209                 reqf = intel_gpu_freq(dev_priv, reqf);
1210
1211                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1212                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1213                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1214
1215                 rpstat = I915_READ(GEN6_RPSTAT1);
1216                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1217                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1218                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1219                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1220                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1221                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1222                 if (IS_GEN9(dev))
1223                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1224                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1225                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1226                 else
1227                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1228                 cagf = intel_gpu_freq(dev_priv, cagf);
1229
1230                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1231                 mutex_unlock(&dev->struct_mutex);
1232
1233                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1234                         pm_ier = I915_READ(GEN6_PMIER);
1235                         pm_imr = I915_READ(GEN6_PMIMR);
1236                         pm_isr = I915_READ(GEN6_PMISR);
1237                         pm_iir = I915_READ(GEN6_PMIIR);
1238                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1239                 } else {
1240                         pm_ier = I915_READ(GEN8_GT_IER(2));
1241                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1242                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1243                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1244                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1245                 }
1246                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1247                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1248                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1249                 seq_printf(m, "Render p-state ratio: %d\n",
1250                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1251                 seq_printf(m, "Render p-state VID: %d\n",
1252                            gt_perf_status & 0xff);
1253                 seq_printf(m, "Render p-state limit: %d\n",
1254                            rp_state_limits & 0xff);
1255                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1256                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1257                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1258                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1259                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1260                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1261                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1262                            GEN6_CURICONT_MASK);
1263                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1264                            GEN6_CURBSYTAVG_MASK);
1265                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1266                            GEN6_CURBSYTAVG_MASK);
1267                 seq_printf(m, "Up threshold: %d%%\n",
1268                            dev_priv->rps.up_threshold);
1269
1270                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1271                            GEN6_CURIAVG_MASK);
1272                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1273                            GEN6_CURBSYTAVG_MASK);
1274                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1275                            GEN6_CURBSYTAVG_MASK);
1276                 seq_printf(m, "Down threshold: %d%%\n",
1277                            dev_priv->rps.down_threshold);
1278
1279                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1280                             rp_state_cap >> 16) & 0xff;
1281                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1282                              GEN9_FREQ_SCALER : 1);
1283                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1284                            intel_gpu_freq(dev_priv, max_freq));
1285
1286                 max_freq = (rp_state_cap & 0xff00) >> 8;
1287                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1288                              GEN9_FREQ_SCALER : 1);
1289                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1290                            intel_gpu_freq(dev_priv, max_freq));
1291
1292                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1293                             rp_state_cap >> 0) & 0xff;
1294                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1295                              GEN9_FREQ_SCALER : 1);
1296                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1297                            intel_gpu_freq(dev_priv, max_freq));
1298                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1299                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1300
1301                 seq_printf(m, "Current freq: %d MHz\n",
1302                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1303                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1304                 seq_printf(m, "Idle freq: %d MHz\n",
1305                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1306                 seq_printf(m, "Min freq: %d MHz\n",
1307                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1308                 seq_printf(m, "Max freq: %d MHz\n",
1309                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1310                 seq_printf(m,
1311                            "efficient (RPe) frequency: %d MHz\n",
1312                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1313         } else {
1314                 seq_puts(m, "no P-state info available\n");
1315         }
1316
1317         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1318         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1319         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1320
1321 out:
1322         intel_runtime_pm_put(dev_priv);
1323         return ret;
1324 }
1325
1326 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1327 {
1328         struct drm_info_node *node = m->private;
1329         struct drm_device *dev = node->minor->dev;
1330         struct drm_i915_private *dev_priv = dev->dev_private;
1331         struct intel_engine_cs *ring;
1332         u64 acthd[I915_NUM_RINGS];
1333         u32 seqno[I915_NUM_RINGS];
1334         int i;
1335
1336         if (!i915.enable_hangcheck) {
1337                 seq_printf(m, "Hangcheck disabled\n");
1338                 return 0;
1339         }
1340
1341         intel_runtime_pm_get(dev_priv);
1342
1343         for_each_ring(ring, dev_priv, i) {
1344                 seqno[i] = ring->get_seqno(ring, false);
1345                 acthd[i] = intel_ring_get_active_head(ring);
1346         }
1347
1348         intel_runtime_pm_put(dev_priv);
1349
1350         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1351                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1352                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1353                                             jiffies));
1354         } else
1355                 seq_printf(m, "Hangcheck inactive\n");
1356
1357         for_each_ring(ring, dev_priv, i) {
1358                 seq_printf(m, "%s:\n", ring->name);
1359                 seq_printf(m, "\tseqno = %x [current %x]\n",
1360                            ring->hangcheck.seqno, seqno[i]);
1361                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1362                            (long long)ring->hangcheck.acthd,
1363                            (long long)acthd[i]);
1364                 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1365                            (long long)ring->hangcheck.max_acthd);
1366                 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1367                 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1368         }
1369
1370         return 0;
1371 }
1372
1373 static int ironlake_drpc_info(struct seq_file *m)
1374 {
1375         struct drm_info_node *node = m->private;
1376         struct drm_device *dev = node->minor->dev;
1377         struct drm_i915_private *dev_priv = dev->dev_private;
1378         u32 rgvmodectl, rstdbyctl;
1379         u16 crstandvid;
1380         int ret;
1381
1382         ret = mutex_lock_interruptible(&dev->struct_mutex);
1383         if (ret)
1384                 return ret;
1385         intel_runtime_pm_get(dev_priv);
1386
1387         rgvmodectl = I915_READ(MEMMODECTL);
1388         rstdbyctl = I915_READ(RSTDBYCTL);
1389         crstandvid = I915_READ16(CRSTANDVID);
1390
1391         intel_runtime_pm_put(dev_priv);
1392         mutex_unlock(&dev->struct_mutex);
1393
1394         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1395         seq_printf(m, "Boost freq: %d\n",
1396                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1397                    MEMMODE_BOOST_FREQ_SHIFT);
1398         seq_printf(m, "HW control enabled: %s\n",
1399                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1400         seq_printf(m, "SW control enabled: %s\n",
1401                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1402         seq_printf(m, "Gated voltage change: %s\n",
1403                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1404         seq_printf(m, "Starting frequency: P%d\n",
1405                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1406         seq_printf(m, "Max P-state: P%d\n",
1407                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1408         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1409         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1410         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1411         seq_printf(m, "Render standby enabled: %s\n",
1412                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1413         seq_puts(m, "Current RS state: ");
1414         switch (rstdbyctl & RSX_STATUS_MASK) {
1415         case RSX_STATUS_ON:
1416                 seq_puts(m, "on\n");
1417                 break;
1418         case RSX_STATUS_RC1:
1419                 seq_puts(m, "RC1\n");
1420                 break;
1421         case RSX_STATUS_RC1E:
1422                 seq_puts(m, "RC1E\n");
1423                 break;
1424         case RSX_STATUS_RS1:
1425                 seq_puts(m, "RS1\n");
1426                 break;
1427         case RSX_STATUS_RS2:
1428                 seq_puts(m, "RS2 (RC6)\n");
1429                 break;
1430         case RSX_STATUS_RS3:
1431                 seq_puts(m, "RC3 (RC6+)\n");
1432                 break;
1433         default:
1434                 seq_puts(m, "unknown\n");
1435                 break;
1436         }
1437
1438         return 0;
1439 }
1440
1441 static int i915_forcewake_domains(struct seq_file *m, void *data)
1442 {
1443         struct drm_info_node *node = m->private;
1444         struct drm_device *dev = node->minor->dev;
1445         struct drm_i915_private *dev_priv = dev->dev_private;
1446         struct intel_uncore_forcewake_domain *fw_domain;
1447         int i;
1448
1449         spin_lock_irq(&dev_priv->uncore.lock);
1450         for_each_fw_domain(fw_domain, dev_priv, i) {
1451                 seq_printf(m, "%s.wake_count = %u\n",
1452                            intel_uncore_forcewake_domain_to_str(i),
1453                            fw_domain->wake_count);
1454         }
1455         spin_unlock_irq(&dev_priv->uncore.lock);
1456
1457         return 0;
1458 }
1459
1460 static int vlv_drpc_info(struct seq_file *m)
1461 {
1462         struct drm_info_node *node = m->private;
1463         struct drm_device *dev = node->minor->dev;
1464         struct drm_i915_private *dev_priv = dev->dev_private;
1465         u32 rpmodectl1, rcctl1, pw_status;
1466
1467         intel_runtime_pm_get(dev_priv);
1468
1469         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1470         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1471         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1472
1473         intel_runtime_pm_put(dev_priv);
1474
1475         seq_printf(m, "Video Turbo Mode: %s\n",
1476                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1477         seq_printf(m, "Turbo enabled: %s\n",
1478                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1479         seq_printf(m, "HW control enabled: %s\n",
1480                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1481         seq_printf(m, "SW control enabled: %s\n",
1482                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1483                           GEN6_RP_MEDIA_SW_MODE));
1484         seq_printf(m, "RC6 Enabled: %s\n",
1485                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1486                                         GEN6_RC_CTL_EI_MODE(1))));
1487         seq_printf(m, "Render Power Well: %s\n",
1488                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1489         seq_printf(m, "Media Power Well: %s\n",
1490                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1491
1492         seq_printf(m, "Render RC6 residency since boot: %u\n",
1493                    I915_READ(VLV_GT_RENDER_RC6));
1494         seq_printf(m, "Media RC6 residency since boot: %u\n",
1495                    I915_READ(VLV_GT_MEDIA_RC6));
1496
1497         return i915_forcewake_domains(m, NULL);
1498 }
1499
1500 static int gen6_drpc_info(struct seq_file *m)
1501 {
1502         struct drm_info_node *node = m->private;
1503         struct drm_device *dev = node->minor->dev;
1504         struct drm_i915_private *dev_priv = dev->dev_private;
1505         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1506         unsigned forcewake_count;
1507         int count = 0, ret;
1508
1509         ret = mutex_lock_interruptible(&dev->struct_mutex);
1510         if (ret)
1511                 return ret;
1512         intel_runtime_pm_get(dev_priv);
1513
1514         spin_lock_irq(&dev_priv->uncore.lock);
1515         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1516         spin_unlock_irq(&dev_priv->uncore.lock);
1517
1518         if (forcewake_count) {
1519                 seq_puts(m, "RC information inaccurate because somebody "
1520                             "holds a forcewake reference \n");
1521         } else {
1522                 /* NB: we cannot use forcewake, else we read the wrong values */
1523                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1524                         udelay(10);
1525                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1526         }
1527
1528         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1529         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1530
1531         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1532         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1533         mutex_unlock(&dev->struct_mutex);
1534         mutex_lock(&dev_priv->rps.hw_lock);
1535         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1536         mutex_unlock(&dev_priv->rps.hw_lock);
1537
1538         intel_runtime_pm_put(dev_priv);
1539
1540         seq_printf(m, "Video Turbo Mode: %s\n",
1541                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1542         seq_printf(m, "HW control enabled: %s\n",
1543                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1544         seq_printf(m, "SW control enabled: %s\n",
1545                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1546                           GEN6_RP_MEDIA_SW_MODE));
1547         seq_printf(m, "RC1e Enabled: %s\n",
1548                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1549         seq_printf(m, "RC6 Enabled: %s\n",
1550                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1551         seq_printf(m, "Deep RC6 Enabled: %s\n",
1552                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1553         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1554                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1555         seq_puts(m, "Current RC state: ");
1556         switch (gt_core_status & GEN6_RCn_MASK) {
1557         case GEN6_RC0:
1558                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1559                         seq_puts(m, "Core Power Down\n");
1560                 else
1561                         seq_puts(m, "on\n");
1562                 break;
1563         case GEN6_RC3:
1564                 seq_puts(m, "RC3\n");
1565                 break;
1566         case GEN6_RC6:
1567                 seq_puts(m, "RC6\n");
1568                 break;
1569         case GEN6_RC7:
1570                 seq_puts(m, "RC7\n");
1571                 break;
1572         default:
1573                 seq_puts(m, "Unknown\n");
1574                 break;
1575         }
1576
1577         seq_printf(m, "Core Power Down: %s\n",
1578                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1579
1580         /* Not exactly sure what this is */
1581         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1582                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1583         seq_printf(m, "RC6 residency since boot: %u\n",
1584                    I915_READ(GEN6_GT_GFX_RC6));
1585         seq_printf(m, "RC6+ residency since boot: %u\n",
1586                    I915_READ(GEN6_GT_GFX_RC6p));
1587         seq_printf(m, "RC6++ residency since boot: %u\n",
1588                    I915_READ(GEN6_GT_GFX_RC6pp));
1589
1590         seq_printf(m, "RC6   voltage: %dmV\n",
1591                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1592         seq_printf(m, "RC6+  voltage: %dmV\n",
1593                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1594         seq_printf(m, "RC6++ voltage: %dmV\n",
1595                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1596         return 0;
1597 }
1598
1599 static int i915_drpc_info(struct seq_file *m, void *unused)
1600 {
1601         struct drm_info_node *node = m->private;
1602         struct drm_device *dev = node->minor->dev;
1603
1604         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1605                 return vlv_drpc_info(m);
1606         else if (INTEL_INFO(dev)->gen >= 6)
1607                 return gen6_drpc_info(m);
1608         else
1609                 return ironlake_drpc_info(m);
1610 }
1611
1612 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1613 {
1614         struct drm_info_node *node = m->private;
1615         struct drm_device *dev = node->minor->dev;
1616         struct drm_i915_private *dev_priv = dev->dev_private;
1617
1618         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1619                    dev_priv->fb_tracking.busy_bits);
1620
1621         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1622                    dev_priv->fb_tracking.flip_bits);
1623
1624         return 0;
1625 }
1626
1627 static int i915_fbc_status(struct seq_file *m, void *unused)
1628 {
1629         struct drm_info_node *node = m->private;
1630         struct drm_device *dev = node->minor->dev;
1631         struct drm_i915_private *dev_priv = dev->dev_private;
1632
1633         if (!HAS_FBC(dev)) {
1634                 seq_puts(m, "FBC unsupported on this chipset\n");
1635                 return 0;
1636         }
1637
1638         intel_runtime_pm_get(dev_priv);
1639         mutex_lock(&dev_priv->fbc.lock);
1640
1641         if (intel_fbc_is_active(dev_priv))
1642                 seq_puts(m, "FBC enabled\n");
1643         else
1644                 seq_printf(m, "FBC disabled: %s\n",
1645                            dev_priv->fbc.no_fbc_reason);
1646
1647         if (INTEL_INFO(dev_priv)->gen >= 7)
1648                 seq_printf(m, "Compressing: %s\n",
1649                            yesno(I915_READ(FBC_STATUS2) &
1650                                  FBC_COMPRESSION_MASK));
1651
1652         mutex_unlock(&dev_priv->fbc.lock);
1653         intel_runtime_pm_put(dev_priv);
1654
1655         return 0;
1656 }
1657
1658 static int i915_fbc_fc_get(void *data, u64 *val)
1659 {
1660         struct drm_device *dev = data;
1661         struct drm_i915_private *dev_priv = dev->dev_private;
1662
1663         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1664                 return -ENODEV;
1665
1666         *val = dev_priv->fbc.false_color;
1667
1668         return 0;
1669 }
1670
1671 static int i915_fbc_fc_set(void *data, u64 val)
1672 {
1673         struct drm_device *dev = data;
1674         struct drm_i915_private *dev_priv = dev->dev_private;
1675         u32 reg;
1676
1677         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1678                 return -ENODEV;
1679
1680         mutex_lock(&dev_priv->fbc.lock);
1681
1682         reg = I915_READ(ILK_DPFC_CONTROL);
1683         dev_priv->fbc.false_color = val;
1684
1685         I915_WRITE(ILK_DPFC_CONTROL, val ?
1686                    (reg | FBC_CTL_FALSE_COLOR) :
1687                    (reg & ~FBC_CTL_FALSE_COLOR));
1688
1689         mutex_unlock(&dev_priv->fbc.lock);
1690         return 0;
1691 }
1692
1693 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1694                         i915_fbc_fc_get, i915_fbc_fc_set,
1695                         "%llu\n");
1696
1697 static int i915_ips_status(struct seq_file *m, void *unused)
1698 {
1699         struct drm_info_node *node = m->private;
1700         struct drm_device *dev = node->minor->dev;
1701         struct drm_i915_private *dev_priv = dev->dev_private;
1702
1703         if (!HAS_IPS(dev)) {
1704                 seq_puts(m, "not supported\n");
1705                 return 0;
1706         }
1707
1708         intel_runtime_pm_get(dev_priv);
1709
1710         seq_printf(m, "Enabled by kernel parameter: %s\n",
1711                    yesno(i915.enable_ips));
1712
1713         if (INTEL_INFO(dev)->gen >= 8) {
1714                 seq_puts(m, "Currently: unknown\n");
1715         } else {
1716                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1717                         seq_puts(m, "Currently: enabled\n");
1718                 else
1719                         seq_puts(m, "Currently: disabled\n");
1720         }
1721
1722         intel_runtime_pm_put(dev_priv);
1723
1724         return 0;
1725 }
1726
1727 static int i915_sr_status(struct seq_file *m, void *unused)
1728 {
1729         struct drm_info_node *node = m->private;
1730         struct drm_device *dev = node->minor->dev;
1731         struct drm_i915_private *dev_priv = dev->dev_private;
1732         bool sr_enabled = false;
1733
1734         intel_runtime_pm_get(dev_priv);
1735
1736         if (HAS_PCH_SPLIT(dev))
1737                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1738         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1739                  IS_I945G(dev) || IS_I945GM(dev))
1740                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1741         else if (IS_I915GM(dev))
1742                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1743         else if (IS_PINEVIEW(dev))
1744                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1745         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1746                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1747
1748         intel_runtime_pm_put(dev_priv);
1749
1750         seq_printf(m, "self-refresh: %s\n",
1751                    sr_enabled ? "enabled" : "disabled");
1752
1753         return 0;
1754 }
1755
1756 static int i915_emon_status(struct seq_file *m, void *unused)
1757 {
1758         struct drm_info_node *node = m->private;
1759         struct drm_device *dev = node->minor->dev;
1760         struct drm_i915_private *dev_priv = dev->dev_private;
1761         unsigned long temp, chipset, gfx;
1762         int ret;
1763
1764         if (!IS_GEN5(dev))
1765                 return -ENODEV;
1766
1767         ret = mutex_lock_interruptible(&dev->struct_mutex);
1768         if (ret)
1769                 return ret;
1770
1771         temp = i915_mch_val(dev_priv);
1772         chipset = i915_chipset_val(dev_priv);
1773         gfx = i915_gfx_val(dev_priv);
1774         mutex_unlock(&dev->struct_mutex);
1775
1776         seq_printf(m, "GMCH temp: %ld\n", temp);
1777         seq_printf(m, "Chipset power: %ld\n", chipset);
1778         seq_printf(m, "GFX power: %ld\n", gfx);
1779         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1780
1781         return 0;
1782 }
1783
1784 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1785 {
1786         struct drm_info_node *node = m->private;
1787         struct drm_device *dev = node->minor->dev;
1788         struct drm_i915_private *dev_priv = dev->dev_private;
1789         int ret = 0;
1790         int gpu_freq, ia_freq;
1791         unsigned int max_gpu_freq, min_gpu_freq;
1792
1793         if (!HAS_CORE_RING_FREQ(dev)) {
1794                 seq_puts(m, "unsupported on this chipset\n");
1795                 return 0;
1796         }
1797
1798         intel_runtime_pm_get(dev_priv);
1799
1800         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1801
1802         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1803         if (ret)
1804                 goto out;
1805
1806         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1807                 /* Convert GT frequency to 50 HZ units */
1808                 min_gpu_freq =
1809                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1810                 max_gpu_freq =
1811                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1812         } else {
1813                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1814                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1815         }
1816
1817         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1818
1819         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1820                 ia_freq = gpu_freq;
1821                 sandybridge_pcode_read(dev_priv,
1822                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1823                                        &ia_freq);
1824                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1825                            intel_gpu_freq(dev_priv, (gpu_freq *
1826                                 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1827                                  GEN9_FREQ_SCALER : 1))),
1828                            ((ia_freq >> 0) & 0xff) * 100,
1829                            ((ia_freq >> 8) & 0xff) * 100);
1830         }
1831
1832         mutex_unlock(&dev_priv->rps.hw_lock);
1833
1834 out:
1835         intel_runtime_pm_put(dev_priv);
1836         return ret;
1837 }
1838
1839 static int i915_opregion(struct seq_file *m, void *unused)
1840 {
1841         struct drm_info_node *node = m->private;
1842         struct drm_device *dev = node->minor->dev;
1843         struct drm_i915_private *dev_priv = dev->dev_private;
1844         struct intel_opregion *opregion = &dev_priv->opregion;
1845         int ret;
1846
1847         ret = mutex_lock_interruptible(&dev->struct_mutex);
1848         if (ret)
1849                 goto out;
1850
1851         if (opregion->header)
1852                 seq_write(m, opregion->header, OPREGION_SIZE);
1853
1854         mutex_unlock(&dev->struct_mutex);
1855
1856 out:
1857         return 0;
1858 }
1859
1860 static int i915_vbt(struct seq_file *m, void *unused)
1861 {
1862         struct drm_info_node *node = m->private;
1863         struct drm_device *dev = node->minor->dev;
1864         struct drm_i915_private *dev_priv = dev->dev_private;
1865         struct intel_opregion *opregion = &dev_priv->opregion;
1866
1867         if (opregion->vbt)
1868                 seq_write(m, opregion->vbt, opregion->vbt_size);
1869
1870         return 0;
1871 }
1872
1873 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1874 {
1875         struct drm_info_node *node = m->private;
1876         struct drm_device *dev = node->minor->dev;
1877         struct intel_framebuffer *fbdev_fb = NULL;
1878         struct drm_framebuffer *drm_fb;
1879
1880 #ifdef CONFIG_DRM_FBDEV_EMULATION
1881        if (to_i915(dev)->fbdev) {
1882                fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1883
1884                seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1885                          fbdev_fb->base.width,
1886                          fbdev_fb->base.height,
1887                          fbdev_fb->base.depth,
1888                          fbdev_fb->base.bits_per_pixel,
1889                          fbdev_fb->base.modifier[0],
1890                          atomic_read(&fbdev_fb->base.refcount.refcount));
1891                describe_obj(m, fbdev_fb->obj);
1892                seq_putc(m, '\n');
1893        }
1894 #endif
1895
1896         mutex_lock(&dev->mode_config.fb_lock);
1897         drm_for_each_fb(drm_fb, dev) {
1898                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1899                 if (fb == fbdev_fb)
1900                         continue;
1901
1902                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1903                            fb->base.width,
1904                            fb->base.height,
1905                            fb->base.depth,
1906                            fb->base.bits_per_pixel,
1907                            fb->base.modifier[0],
1908                            atomic_read(&fb->base.refcount.refcount));
1909                 describe_obj(m, fb->obj);
1910                 seq_putc(m, '\n');
1911         }
1912         mutex_unlock(&dev->mode_config.fb_lock);
1913
1914         return 0;
1915 }
1916
1917 static void describe_ctx_ringbuf(struct seq_file *m,
1918                                  struct intel_ringbuffer *ringbuf)
1919 {
1920         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1921                    ringbuf->space, ringbuf->head, ringbuf->tail,
1922                    ringbuf->last_retired_head);
1923 }
1924
1925 static int i915_context_status(struct seq_file *m, void *unused)
1926 {
1927         struct drm_info_node *node = m->private;
1928         struct drm_device *dev = node->minor->dev;
1929         struct drm_i915_private *dev_priv = dev->dev_private;
1930         struct intel_engine_cs *ring;
1931         struct intel_context *ctx;
1932         int ret, i;
1933
1934         ret = mutex_lock_interruptible(&dev->struct_mutex);
1935         if (ret)
1936                 return ret;
1937
1938         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1939                 if (!i915.enable_execlists &&
1940                     ctx->legacy_hw_ctx.rcs_state == NULL)
1941                         continue;
1942
1943                 seq_puts(m, "HW context ");
1944                 describe_ctx(m, ctx);
1945                 for_each_ring(ring, dev_priv, i) {
1946                         if (ring->default_context == ctx)
1947                                 seq_printf(m, "(default context %s) ",
1948                                            ring->name);
1949                 }
1950
1951                 if (i915.enable_execlists) {
1952                         seq_putc(m, '\n');
1953                         for_each_ring(ring, dev_priv, i) {
1954                                 struct drm_i915_gem_object *ctx_obj =
1955                                         ctx->engine[i].state;
1956                                 struct intel_ringbuffer *ringbuf =
1957                                         ctx->engine[i].ringbuf;
1958
1959                                 seq_printf(m, "%s: ", ring->name);
1960                                 if (ctx_obj)
1961                                         describe_obj(m, ctx_obj);
1962                                 if (ringbuf)
1963                                         describe_ctx_ringbuf(m, ringbuf);
1964                                 seq_putc(m, '\n');
1965                         }
1966                 } else {
1967                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1968                 }
1969
1970                 seq_putc(m, '\n');
1971         }
1972
1973         mutex_unlock(&dev->struct_mutex);
1974
1975         return 0;
1976 }
1977
1978 static void i915_dump_lrc_obj(struct seq_file *m,
1979                               struct intel_engine_cs *ring,
1980                               struct drm_i915_gem_object *ctx_obj)
1981 {
1982         struct page *page;
1983         uint32_t *reg_state;
1984         int j;
1985         unsigned long ggtt_offset = 0;
1986
1987         if (ctx_obj == NULL) {
1988                 seq_printf(m, "Context on %s with no gem object\n",
1989                            ring->name);
1990                 return;
1991         }
1992
1993         seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1994                    intel_execlists_ctx_id(ctx_obj));
1995
1996         if (!i915_gem_obj_ggtt_bound(ctx_obj))
1997                 seq_puts(m, "\tNot bound in GGTT\n");
1998         else
1999                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2000
2001         if (i915_gem_object_get_pages(ctx_obj)) {
2002                 seq_puts(m, "\tFailed to get pages for context object\n");
2003                 return;
2004         }
2005
2006         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2007         if (!WARN_ON(page == NULL)) {
2008                 reg_state = kmap_atomic(page);
2009
2010                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2011                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2012                                    ggtt_offset + 4096 + (j * 4),
2013                                    reg_state[j], reg_state[j + 1],
2014                                    reg_state[j + 2], reg_state[j + 3]);
2015                 }
2016                 kunmap_atomic(reg_state);
2017         }
2018
2019         seq_putc(m, '\n');
2020 }
2021
2022 static int i915_dump_lrc(struct seq_file *m, void *unused)
2023 {
2024         struct drm_info_node *node = (struct drm_info_node *) m->private;
2025         struct drm_device *dev = node->minor->dev;
2026         struct drm_i915_private *dev_priv = dev->dev_private;
2027         struct intel_engine_cs *ring;
2028         struct intel_context *ctx;
2029         int ret, i;
2030
2031         if (!i915.enable_execlists) {
2032                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2033                 return 0;
2034         }
2035
2036         ret = mutex_lock_interruptible(&dev->struct_mutex);
2037         if (ret)
2038                 return ret;
2039
2040         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2041                 for_each_ring(ring, dev_priv, i) {
2042                         if (ring->default_context != ctx)
2043                                 i915_dump_lrc_obj(m, ring,
2044                                                   ctx->engine[i].state);
2045                 }
2046         }
2047
2048         mutex_unlock(&dev->struct_mutex);
2049
2050         return 0;
2051 }
2052
2053 static int i915_execlists(struct seq_file *m, void *data)
2054 {
2055         struct drm_info_node *node = (struct drm_info_node *)m->private;
2056         struct drm_device *dev = node->minor->dev;
2057         struct drm_i915_private *dev_priv = dev->dev_private;
2058         struct intel_engine_cs *ring;
2059         u32 status_pointer;
2060         u8 read_pointer;
2061         u8 write_pointer;
2062         u32 status;
2063         u32 ctx_id;
2064         struct list_head *cursor;
2065         int ring_id, i;
2066         int ret;
2067
2068         if (!i915.enable_execlists) {
2069                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2070                 return 0;
2071         }
2072
2073         ret = mutex_lock_interruptible(&dev->struct_mutex);
2074         if (ret)
2075                 return ret;
2076
2077         intel_runtime_pm_get(dev_priv);
2078
2079         for_each_ring(ring, dev_priv, ring_id) {
2080                 struct drm_i915_gem_request *head_req = NULL;
2081                 int count = 0;
2082                 unsigned long flags;
2083
2084                 seq_printf(m, "%s\n", ring->name);
2085
2086                 status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
2087                 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
2088                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2089                            status, ctx_id);
2090
2091                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2092                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2093
2094                 read_pointer = ring->next_context_status_buffer;
2095                 write_pointer = status_pointer & 0x07;
2096                 if (read_pointer > write_pointer)
2097                         write_pointer += 6;
2098                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2099                            read_pointer, write_pointer);
2100
2101                 for (i = 0; i < 6; i++) {
2102                         status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
2103                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
2104
2105                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2106                                    i, status, ctx_id);
2107                 }
2108
2109                 spin_lock_irqsave(&ring->execlist_lock, flags);
2110                 list_for_each(cursor, &ring->execlist_queue)
2111                         count++;
2112                 head_req = list_first_entry_or_null(&ring->execlist_queue,
2113                                 struct drm_i915_gem_request, execlist_link);
2114                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2115
2116                 seq_printf(m, "\t%d requests in queue\n", count);
2117                 if (head_req) {
2118                         struct drm_i915_gem_object *ctx_obj;
2119
2120                         ctx_obj = head_req->ctx->engine[ring_id].state;
2121                         seq_printf(m, "\tHead request id: %u\n",
2122                                    intel_execlists_ctx_id(ctx_obj));
2123                         seq_printf(m, "\tHead request tail: %u\n",
2124                                    head_req->tail);
2125                 }
2126
2127                 seq_putc(m, '\n');
2128         }
2129
2130         intel_runtime_pm_put(dev_priv);
2131         mutex_unlock(&dev->struct_mutex);
2132
2133         return 0;
2134 }
2135
2136 static const char *swizzle_string(unsigned swizzle)
2137 {
2138         switch (swizzle) {
2139         case I915_BIT_6_SWIZZLE_NONE:
2140                 return "none";
2141         case I915_BIT_6_SWIZZLE_9:
2142                 return "bit9";
2143         case I915_BIT_6_SWIZZLE_9_10:
2144                 return "bit9/bit10";
2145         case I915_BIT_6_SWIZZLE_9_11:
2146                 return "bit9/bit11";
2147         case I915_BIT_6_SWIZZLE_9_10_11:
2148                 return "bit9/bit10/bit11";
2149         case I915_BIT_6_SWIZZLE_9_17:
2150                 return "bit9/bit17";
2151         case I915_BIT_6_SWIZZLE_9_10_17:
2152                 return "bit9/bit10/bit17";
2153         case I915_BIT_6_SWIZZLE_UNKNOWN:
2154                 return "unknown";
2155         }
2156
2157         return "bug";
2158 }
2159
2160 static int i915_swizzle_info(struct seq_file *m, void *data)
2161 {
2162         struct drm_info_node *node = m->private;
2163         struct drm_device *dev = node->minor->dev;
2164         struct drm_i915_private *dev_priv = dev->dev_private;
2165         int ret;
2166
2167         ret = mutex_lock_interruptible(&dev->struct_mutex);
2168         if (ret)
2169                 return ret;
2170         intel_runtime_pm_get(dev_priv);
2171
2172         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2173                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2174         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2175                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2176
2177         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2178                 seq_printf(m, "DDC = 0x%08x\n",
2179                            I915_READ(DCC));
2180                 seq_printf(m, "DDC2 = 0x%08x\n",
2181                            I915_READ(DCC2));
2182                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2183                            I915_READ16(C0DRB3));
2184                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2185                            I915_READ16(C1DRB3));
2186         } else if (INTEL_INFO(dev)->gen >= 6) {
2187                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2188                            I915_READ(MAD_DIMM_C0));
2189                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2190                            I915_READ(MAD_DIMM_C1));
2191                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2192                            I915_READ(MAD_DIMM_C2));
2193                 seq_printf(m, "TILECTL = 0x%08x\n",
2194                            I915_READ(TILECTL));
2195                 if (INTEL_INFO(dev)->gen >= 8)
2196                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2197                                    I915_READ(GAMTARBMODE));
2198                 else
2199                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2200                                    I915_READ(ARB_MODE));
2201                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2202                            I915_READ(DISP_ARB_CTL));
2203         }
2204
2205         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2206                 seq_puts(m, "L-shaped memory detected\n");
2207
2208         intel_runtime_pm_put(dev_priv);
2209         mutex_unlock(&dev->struct_mutex);
2210
2211         return 0;
2212 }
2213
2214 static int per_file_ctx(int id, void *ptr, void *data)
2215 {
2216         struct intel_context *ctx = ptr;
2217         struct seq_file *m = data;
2218         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2219
2220         if (!ppgtt) {
2221                 seq_printf(m, "  no ppgtt for context %d\n",
2222                            ctx->user_handle);
2223                 return 0;
2224         }
2225
2226         if (i915_gem_context_is_default(ctx))
2227                 seq_puts(m, "  default context:\n");
2228         else
2229                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2230         ppgtt->debug_dump(ppgtt, m);
2231
2232         return 0;
2233 }
2234
2235 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2236 {
2237         struct drm_i915_private *dev_priv = dev->dev_private;
2238         struct intel_engine_cs *ring;
2239         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2240         int unused, i;
2241
2242         if (!ppgtt)
2243                 return;
2244
2245         for_each_ring(ring, dev_priv, unused) {
2246                 seq_printf(m, "%s\n", ring->name);
2247                 for (i = 0; i < 4; i++) {
2248                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
2249                         pdp <<= 32;
2250                         pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
2251                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2252                 }
2253         }
2254 }
2255
2256 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2257 {
2258         struct drm_i915_private *dev_priv = dev->dev_private;
2259         struct intel_engine_cs *ring;
2260         int i;
2261
2262         if (INTEL_INFO(dev)->gen == 6)
2263                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2264
2265         for_each_ring(ring, dev_priv, i) {
2266                 seq_printf(m, "%s\n", ring->name);
2267                 if (INTEL_INFO(dev)->gen == 7)
2268                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2269                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2270                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2271                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2272         }
2273         if (dev_priv->mm.aliasing_ppgtt) {
2274                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2275
2276                 seq_puts(m, "aliasing PPGTT:\n");
2277                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2278
2279                 ppgtt->debug_dump(ppgtt, m);
2280         }
2281
2282         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2283 }
2284
2285 static int i915_ppgtt_info(struct seq_file *m, void *data)
2286 {
2287         struct drm_info_node *node = m->private;
2288         struct drm_device *dev = node->minor->dev;
2289         struct drm_i915_private *dev_priv = dev->dev_private;
2290         struct drm_file *file;
2291
2292         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2293         if (ret)
2294                 return ret;
2295         intel_runtime_pm_get(dev_priv);
2296
2297         if (INTEL_INFO(dev)->gen >= 8)
2298                 gen8_ppgtt_info(m, dev);
2299         else if (INTEL_INFO(dev)->gen >= 6)
2300                 gen6_ppgtt_info(m, dev);
2301
2302         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2303                 struct drm_i915_file_private *file_priv = file->driver_priv;
2304                 struct task_struct *task;
2305
2306                 task = get_pid_task(file->pid, PIDTYPE_PID);
2307                 if (!task) {
2308                         ret = -ESRCH;
2309                         goto out_put;
2310                 }
2311                 seq_printf(m, "\nproc: %s\n", task->comm);
2312                 put_task_struct(task);
2313                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2314                              (void *)(unsigned long)m);
2315         }
2316
2317 out_put:
2318         intel_runtime_pm_put(dev_priv);
2319         mutex_unlock(&dev->struct_mutex);
2320
2321         return ret;
2322 }
2323
2324 static int count_irq_waiters(struct drm_i915_private *i915)
2325 {
2326         struct intel_engine_cs *ring;
2327         int count = 0;
2328         int i;
2329
2330         for_each_ring(ring, i915, i)
2331                 count += ring->irq_refcount;
2332
2333         return count;
2334 }
2335
2336 static int i915_rps_boost_info(struct seq_file *m, void *data)
2337 {
2338         struct drm_info_node *node = m->private;
2339         struct drm_device *dev = node->minor->dev;
2340         struct drm_i915_private *dev_priv = dev->dev_private;
2341         struct drm_file *file;
2342
2343         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2344         seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2345         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2346         seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2347                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2348                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2349                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2350                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2351                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2352         spin_lock(&dev_priv->rps.client_lock);
2353         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2354                 struct drm_i915_file_private *file_priv = file->driver_priv;
2355                 struct task_struct *task;
2356
2357                 rcu_read_lock();
2358                 task = pid_task(file->pid, PIDTYPE_PID);
2359                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2360                            task ? task->comm : "<unknown>",
2361                            task ? task->pid : -1,
2362                            file_priv->rps.boosts,
2363                            list_empty(&file_priv->rps.link) ? "" : ", active");
2364                 rcu_read_unlock();
2365         }
2366         seq_printf(m, "Semaphore boosts: %d%s\n",
2367                    dev_priv->rps.semaphores.boosts,
2368                    list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2369         seq_printf(m, "MMIO flip boosts: %d%s\n",
2370                    dev_priv->rps.mmioflips.boosts,
2371                    list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2372         seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2373         spin_unlock(&dev_priv->rps.client_lock);
2374
2375         return 0;
2376 }
2377
2378 static int i915_llc(struct seq_file *m, void *data)
2379 {
2380         struct drm_info_node *node = m->private;
2381         struct drm_device *dev = node->minor->dev;
2382         struct drm_i915_private *dev_priv = dev->dev_private;
2383
2384         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2385         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2386         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2387
2388         return 0;
2389 }
2390
2391 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2392 {
2393         struct drm_info_node *node = m->private;
2394         struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2395         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2396         u32 tmp, i;
2397
2398         if (!HAS_GUC_UCODE(dev_priv->dev))
2399                 return 0;
2400
2401         seq_printf(m, "GuC firmware status:\n");
2402         seq_printf(m, "\tpath: %s\n",
2403                 guc_fw->guc_fw_path);
2404         seq_printf(m, "\tfetch: %s\n",
2405                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2406         seq_printf(m, "\tload: %s\n",
2407                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2408         seq_printf(m, "\tversion wanted: %d.%d\n",
2409                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2410         seq_printf(m, "\tversion found: %d.%d\n",
2411                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2412         seq_printf(m, "\theader: offset is %d; size = %d\n",
2413                 guc_fw->header_offset, guc_fw->header_size);
2414         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2415                 guc_fw->ucode_offset, guc_fw->ucode_size);
2416         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2417                 guc_fw->rsa_offset, guc_fw->rsa_size);
2418
2419         tmp = I915_READ(GUC_STATUS);
2420
2421         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2422         seq_printf(m, "\tBootrom status = 0x%x\n",
2423                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2424         seq_printf(m, "\tuKernel status = 0x%x\n",
2425                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2426         seq_printf(m, "\tMIA Core status = 0x%x\n",
2427                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2428         seq_puts(m, "\nScratch registers:\n");
2429         for (i = 0; i < 16; i++)
2430                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2431
2432         return 0;
2433 }
2434
2435 static void i915_guc_client_info(struct seq_file *m,
2436                                  struct drm_i915_private *dev_priv,
2437                                  struct i915_guc_client *client)
2438 {
2439         struct intel_engine_cs *ring;
2440         uint64_t tot = 0;
2441         uint32_t i;
2442
2443         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2444                 client->priority, client->ctx_index, client->proc_desc_offset);
2445         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2446                 client->doorbell_id, client->doorbell_offset, client->cookie);
2447         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2448                 client->wq_size, client->wq_offset, client->wq_tail);
2449
2450         seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2451         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2452         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2453
2454         for_each_ring(ring, dev_priv, i) {
2455                 seq_printf(m, "\tSubmissions: %llu %s\n",
2456                                 client->submissions[i],
2457                                 ring->name);
2458                 tot += client->submissions[i];
2459         }
2460         seq_printf(m, "\tTotal: %llu\n", tot);
2461 }
2462
2463 static int i915_guc_info(struct seq_file *m, void *data)
2464 {
2465         struct drm_info_node *node = m->private;
2466         struct drm_device *dev = node->minor->dev;
2467         struct drm_i915_private *dev_priv = dev->dev_private;
2468         struct intel_guc guc;
2469         struct i915_guc_client client = {};
2470         struct intel_engine_cs *ring;
2471         enum intel_ring_id i;
2472         u64 total = 0;
2473
2474         if (!HAS_GUC_SCHED(dev_priv->dev))
2475                 return 0;
2476
2477         if (mutex_lock_interruptible(&dev->struct_mutex))
2478                 return 0;
2479
2480         /* Take a local copy of the GuC data, so we can dump it at leisure */
2481         guc = dev_priv->guc;
2482         if (guc.execbuf_client)
2483                 client = *guc.execbuf_client;
2484
2485         mutex_unlock(&dev->struct_mutex);
2486
2487         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2488         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2489         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2490         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2491         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2492
2493         seq_printf(m, "\nGuC submissions:\n");
2494         for_each_ring(ring, dev_priv, i) {
2495                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x %9d\n",
2496                         ring->name, guc.submissions[i],
2497                         guc.last_seqno[i], guc.last_seqno[i]);
2498                 total += guc.submissions[i];
2499         }
2500         seq_printf(m, "\t%s: %llu\n", "Total", total);
2501
2502         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2503         i915_guc_client_info(m, dev_priv, &client);
2504
2505         /* Add more as required ... */
2506
2507         return 0;
2508 }
2509
2510 static int i915_guc_log_dump(struct seq_file *m, void *data)
2511 {
2512         struct drm_info_node *node = m->private;
2513         struct drm_device *dev = node->minor->dev;
2514         struct drm_i915_private *dev_priv = dev->dev_private;
2515         struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2516         u32 *log;
2517         int i = 0, pg;
2518
2519         if (!log_obj)
2520                 return 0;
2521
2522         for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2523                 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2524
2525                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2526                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2527                                    *(log + i), *(log + i + 1),
2528                                    *(log + i + 2), *(log + i + 3));
2529
2530                 kunmap_atomic(log);
2531         }
2532
2533         seq_putc(m, '\n');
2534
2535         return 0;
2536 }
2537
2538 static int i915_edp_psr_status(struct seq_file *m, void *data)
2539 {
2540         struct drm_info_node *node = m->private;
2541         struct drm_device *dev = node->minor->dev;
2542         struct drm_i915_private *dev_priv = dev->dev_private;
2543         u32 psrperf = 0;
2544         u32 stat[3];
2545         enum pipe pipe;
2546         bool enabled = false;
2547
2548         if (!HAS_PSR(dev)) {
2549                 seq_puts(m, "PSR not supported\n");
2550                 return 0;
2551         }
2552
2553         intel_runtime_pm_get(dev_priv);
2554
2555         mutex_lock(&dev_priv->psr.lock);
2556         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2557         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2558         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2559         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2560         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2561                    dev_priv->psr.busy_frontbuffer_bits);
2562         seq_printf(m, "Re-enable work scheduled: %s\n",
2563                    yesno(work_busy(&dev_priv->psr.work.work)));
2564
2565         if (HAS_DDI(dev))
2566                 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2567         else {
2568                 for_each_pipe(dev_priv, pipe) {
2569                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2570                                 VLV_EDP_PSR_CURR_STATE_MASK;
2571                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2572                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2573                                 enabled = true;
2574                 }
2575         }
2576         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2577
2578         if (!HAS_DDI(dev))
2579                 for_each_pipe(dev_priv, pipe) {
2580                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2581                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2582                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2583                 }
2584         seq_puts(m, "\n");
2585
2586         /*
2587          * VLV/CHV PSR has no kind of performance counter
2588          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2589          */
2590         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2591                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2592                         EDP_PSR_PERF_CNT_MASK;
2593
2594                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2595         }
2596         mutex_unlock(&dev_priv->psr.lock);
2597
2598         intel_runtime_pm_put(dev_priv);
2599         return 0;
2600 }
2601
2602 static int i915_sink_crc(struct seq_file *m, void *data)
2603 {
2604         struct drm_info_node *node = m->private;
2605         struct drm_device *dev = node->minor->dev;
2606         struct intel_encoder *encoder;
2607         struct intel_connector *connector;
2608         struct intel_dp *intel_dp = NULL;
2609         int ret;
2610         u8 crc[6];
2611
2612         drm_modeset_lock_all(dev);
2613         for_each_intel_connector(dev, connector) {
2614
2615                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2616                         continue;
2617
2618                 if (!connector->base.encoder)
2619                         continue;
2620
2621                 encoder = to_intel_encoder(connector->base.encoder);
2622                 if (encoder->type != INTEL_OUTPUT_EDP)
2623                         continue;
2624
2625                 intel_dp = enc_to_intel_dp(&encoder->base);
2626
2627                 ret = intel_dp_sink_crc(intel_dp, crc);
2628                 if (ret)
2629                         goto out;
2630
2631                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2632                            crc[0], crc[1], crc[2],
2633                            crc[3], crc[4], crc[5]);
2634                 goto out;
2635         }
2636         ret = -ENODEV;
2637 out:
2638         drm_modeset_unlock_all(dev);
2639         return ret;
2640 }
2641
2642 static int i915_energy_uJ(struct seq_file *m, void *data)
2643 {
2644         struct drm_info_node *node = m->private;
2645         struct drm_device *dev = node->minor->dev;
2646         struct drm_i915_private *dev_priv = dev->dev_private;
2647         u64 power;
2648         u32 units;
2649
2650         if (INTEL_INFO(dev)->gen < 6)
2651                 return -ENODEV;
2652
2653         intel_runtime_pm_get(dev_priv);
2654
2655         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2656         power = (power & 0x1f00) >> 8;
2657         units = 1000000 / (1 << power); /* convert to uJ */
2658         power = I915_READ(MCH_SECP_NRG_STTS);
2659         power *= units;
2660
2661         intel_runtime_pm_put(dev_priv);
2662
2663         seq_printf(m, "%llu", (long long unsigned)power);
2664
2665         return 0;
2666 }
2667
2668 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2669 {
2670         struct drm_info_node *node = m->private;
2671         struct drm_device *dev = node->minor->dev;
2672         struct drm_i915_private *dev_priv = dev->dev_private;
2673
2674         if (!HAS_RUNTIME_PM(dev)) {
2675                 seq_puts(m, "not supported\n");
2676                 return 0;
2677         }
2678
2679         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2680         seq_printf(m, "IRQs disabled: %s\n",
2681                    yesno(!intel_irqs_enabled(dev_priv)));
2682 #ifdef CONFIG_PM
2683         seq_printf(m, "Usage count: %d\n",
2684                    atomic_read(&dev->dev->power.usage_count));
2685 #else
2686         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2687 #endif
2688
2689         return 0;
2690 }
2691
2692 static int i915_power_domain_info(struct seq_file *m, void *unused)
2693 {
2694         struct drm_info_node *node = m->private;
2695         struct drm_device *dev = node->minor->dev;
2696         struct drm_i915_private *dev_priv = dev->dev_private;
2697         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2698         int i;
2699
2700         mutex_lock(&power_domains->lock);
2701
2702         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2703         for (i = 0; i < power_domains->power_well_count; i++) {
2704                 struct i915_power_well *power_well;
2705                 enum intel_display_power_domain power_domain;
2706
2707                 power_well = &power_domains->power_wells[i];
2708                 seq_printf(m, "%-25s %d\n", power_well->name,
2709                            power_well->count);
2710
2711                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2712                      power_domain++) {
2713                         if (!(BIT(power_domain) & power_well->domains))
2714                                 continue;
2715
2716                         seq_printf(m, "  %-23s %d\n",
2717                                  intel_display_power_domain_str(power_domain),
2718                                  power_domains->domain_use_count[power_domain]);
2719                 }
2720         }
2721
2722         mutex_unlock(&power_domains->lock);
2723
2724         return 0;
2725 }
2726
2727 static int i915_dmc_info(struct seq_file *m, void *unused)
2728 {
2729         struct drm_info_node *node = m->private;
2730         struct drm_device *dev = node->minor->dev;
2731         struct drm_i915_private *dev_priv = dev->dev_private;
2732         struct intel_csr *csr;
2733
2734         if (!HAS_CSR(dev)) {
2735                 seq_puts(m, "not supported\n");
2736                 return 0;
2737         }
2738
2739         csr = &dev_priv->csr;
2740
2741         intel_runtime_pm_get(dev_priv);
2742
2743         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2744         seq_printf(m, "path: %s\n", csr->fw_path);
2745
2746         if (!csr->dmc_payload)
2747                 goto out;
2748
2749         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2750                    CSR_VERSION_MINOR(csr->version));
2751
2752         if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2753                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2754                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2755                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2756                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2757         } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2758                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2759                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2760         }
2761
2762 out:
2763         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2764         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2765         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2766
2767         intel_runtime_pm_put(dev_priv);
2768
2769         return 0;
2770 }
2771
2772 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2773                                  struct drm_display_mode *mode)
2774 {
2775         int i;
2776
2777         for (i = 0; i < tabs; i++)
2778                 seq_putc(m, '\t');
2779
2780         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2781                    mode->base.id, mode->name,
2782                    mode->vrefresh, mode->clock,
2783                    mode->hdisplay, mode->hsync_start,
2784                    mode->hsync_end, mode->htotal,
2785                    mode->vdisplay, mode->vsync_start,
2786                    mode->vsync_end, mode->vtotal,
2787                    mode->type, mode->flags);
2788 }
2789
2790 static void intel_encoder_info(struct seq_file *m,
2791                                struct intel_crtc *intel_crtc,
2792                                struct intel_encoder *intel_encoder)
2793 {
2794         struct drm_info_node *node = m->private;
2795         struct drm_device *dev = node->minor->dev;
2796         struct drm_crtc *crtc = &intel_crtc->base;
2797         struct intel_connector *intel_connector;
2798         struct drm_encoder *encoder;
2799
2800         encoder = &intel_encoder->base;
2801         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2802                    encoder->base.id, encoder->name);
2803         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2804                 struct drm_connector *connector = &intel_connector->base;
2805                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2806                            connector->base.id,
2807                            connector->name,
2808                            drm_get_connector_status_name(connector->status));
2809                 if (connector->status == connector_status_connected) {
2810                         struct drm_display_mode *mode = &crtc->mode;
2811                         seq_printf(m, ", mode:\n");
2812                         intel_seq_print_mode(m, 2, mode);
2813                 } else {
2814                         seq_putc(m, '\n');
2815                 }
2816         }
2817 }
2818
2819 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2820 {
2821         struct drm_info_node *node = m->private;
2822         struct drm_device *dev = node->minor->dev;
2823         struct drm_crtc *crtc = &intel_crtc->base;
2824         struct intel_encoder *intel_encoder;
2825         struct drm_plane_state *plane_state = crtc->primary->state;
2826         struct drm_framebuffer *fb = plane_state->fb;
2827
2828         if (fb)
2829                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2830                            fb->base.id, plane_state->src_x >> 16,
2831                            plane_state->src_y >> 16, fb->width, fb->height);
2832         else
2833                 seq_puts(m, "\tprimary plane disabled\n");
2834         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2835                 intel_encoder_info(m, intel_crtc, intel_encoder);
2836 }
2837
2838 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2839 {
2840         struct drm_display_mode *mode = panel->fixed_mode;
2841
2842         seq_printf(m, "\tfixed mode:\n");
2843         intel_seq_print_mode(m, 2, mode);
2844 }
2845
2846 static void intel_dp_info(struct seq_file *m,
2847                           struct intel_connector *intel_connector)
2848 {
2849         struct intel_encoder *intel_encoder = intel_connector->encoder;
2850         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2851
2852         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2853         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2854         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2855                 intel_panel_info(m, &intel_connector->panel);
2856 }
2857
2858 static void intel_dp_mst_info(struct seq_file *m,
2859                           struct intel_connector *intel_connector)
2860 {
2861         struct intel_encoder *intel_encoder = intel_connector->encoder;
2862         struct intel_dp_mst_encoder *intel_mst =
2863                 enc_to_mst(&intel_encoder->base);
2864         struct intel_digital_port *intel_dig_port = intel_mst->primary;
2865         struct intel_dp *intel_dp = &intel_dig_port->dp;
2866         bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2867                                         intel_connector->port);
2868
2869         seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2870 }
2871
2872 static void intel_hdmi_info(struct seq_file *m,
2873                             struct intel_connector *intel_connector)
2874 {
2875         struct intel_encoder *intel_encoder = intel_connector->encoder;
2876         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2877
2878         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2879 }
2880
2881 static void intel_lvds_info(struct seq_file *m,
2882                             struct intel_connector *intel_connector)
2883 {
2884         intel_panel_info(m, &intel_connector->panel);
2885 }
2886
2887 static void intel_connector_info(struct seq_file *m,
2888                                  struct drm_connector *connector)
2889 {
2890         struct intel_connector *intel_connector = to_intel_connector(connector);
2891         struct intel_encoder *intel_encoder = intel_connector->encoder;
2892         struct drm_display_mode *mode;
2893
2894         seq_printf(m, "connector %d: type %s, status: %s\n",
2895                    connector->base.id, connector->name,
2896                    drm_get_connector_status_name(connector->status));
2897         if (connector->status == connector_status_connected) {
2898                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2899                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2900                            connector->display_info.width_mm,
2901                            connector->display_info.height_mm);
2902                 seq_printf(m, "\tsubpixel order: %s\n",
2903                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2904                 seq_printf(m, "\tCEA rev: %d\n",
2905                            connector->display_info.cea_rev);
2906         }
2907         if (intel_encoder) {
2908                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2909                     intel_encoder->type == INTEL_OUTPUT_EDP)
2910                         intel_dp_info(m, intel_connector);
2911                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2912                         intel_hdmi_info(m, intel_connector);
2913                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2914                         intel_lvds_info(m, intel_connector);
2915                 else if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
2916                         intel_dp_mst_info(m, intel_connector);
2917         }
2918
2919         seq_printf(m, "\tmodes:\n");
2920         list_for_each_entry(mode, &connector->modes, head)
2921                 intel_seq_print_mode(m, 2, mode);
2922 }
2923
2924 static bool cursor_active(struct drm_device *dev, int pipe)
2925 {
2926         struct drm_i915_private *dev_priv = dev->dev_private;
2927         u32 state;
2928
2929         if (IS_845G(dev) || IS_I865G(dev))
2930                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2931         else
2932                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2933
2934         return state;
2935 }
2936
2937 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2938 {
2939         struct drm_i915_private *dev_priv = dev->dev_private;
2940         u32 pos;
2941
2942         pos = I915_READ(CURPOS(pipe));
2943
2944         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2945         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2946                 *x = -*x;
2947
2948         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2949         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2950                 *y = -*y;
2951
2952         return cursor_active(dev, pipe);
2953 }
2954
2955 static const char *plane_type(enum drm_plane_type type)
2956 {
2957         switch (type) {
2958         case DRM_PLANE_TYPE_OVERLAY:
2959                 return "OVL";
2960         case DRM_PLANE_TYPE_PRIMARY:
2961                 return "PRI";
2962         case DRM_PLANE_TYPE_CURSOR:
2963                 return "CUR";
2964         /*
2965          * Deliberately omitting default: to generate compiler warnings
2966          * when a new drm_plane_type gets added.
2967          */
2968         }
2969
2970         return "unknown";
2971 }
2972
2973 static const char *plane_rotation(unsigned int rotation)
2974 {
2975         static char buf[48];
2976         /*
2977          * According to doc only one DRM_ROTATE_ is allowed but this
2978          * will print them all to visualize if the values are misused
2979          */
2980         snprintf(buf, sizeof(buf),
2981                  "%s%s%s%s%s%s(0x%08x)",
2982                  (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
2983                  (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
2984                  (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
2985                  (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
2986                  (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
2987                  (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
2988                  rotation);
2989
2990         return buf;
2991 }
2992
2993 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2994 {
2995         struct drm_info_node *node = m->private;
2996         struct drm_device *dev = node->minor->dev;
2997         struct intel_plane *intel_plane;
2998
2999         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3000                 struct drm_plane_state *state;
3001                 struct drm_plane *plane = &intel_plane->base;
3002
3003                 if (!plane->state) {
3004                         seq_puts(m, "plane->state is NULL!\n");
3005                         continue;
3006                 }
3007
3008                 state = plane->state;
3009
3010                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3011                            plane->base.id,
3012                            plane_type(intel_plane->base.type),
3013                            state->crtc_x, state->crtc_y,
3014                            state->crtc_w, state->crtc_h,
3015                            (state->src_x >> 16),
3016                            ((state->src_x & 0xffff) * 15625) >> 10,
3017                            (state->src_y >> 16),
3018                            ((state->src_y & 0xffff) * 15625) >> 10,
3019                            (state->src_w >> 16),
3020                            ((state->src_w & 0xffff) * 15625) >> 10,
3021                            (state->src_h >> 16),
3022                            ((state->src_h & 0xffff) * 15625) >> 10,
3023                            state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3024                            plane_rotation(state->rotation));
3025         }
3026 }
3027
3028 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3029 {
3030         struct intel_crtc_state *pipe_config;
3031         int num_scalers = intel_crtc->num_scalers;
3032         int i;
3033
3034         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3035
3036         /* Not all platformas have a scaler */
3037         if (num_scalers) {
3038                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3039                            num_scalers,
3040                            pipe_config->scaler_state.scaler_users,
3041                            pipe_config->scaler_state.scaler_id);
3042
3043                 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3044                         struct intel_scaler *sc =
3045                                         &pipe_config->scaler_state.scalers[i];
3046
3047                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3048                                    i, yesno(sc->in_use), sc->mode);
3049                 }
3050                 seq_puts(m, "\n");
3051         } else {
3052                 seq_puts(m, "\tNo scalers available on this platform\n");
3053         }
3054 }
3055
3056 static int i915_display_info(struct seq_file *m, void *unused)
3057 {
3058         struct drm_info_node *node = m->private;
3059         struct drm_device *dev = node->minor->dev;
3060         struct drm_i915_private *dev_priv = dev->dev_private;
3061         struct intel_crtc *crtc;
3062         struct drm_connector *connector;
3063
3064         intel_runtime_pm_get(dev_priv);
3065         drm_modeset_lock_all(dev);
3066         seq_printf(m, "CRTC info\n");
3067         seq_printf(m, "---------\n");
3068         for_each_intel_crtc(dev, crtc) {
3069                 bool active;
3070                 struct intel_crtc_state *pipe_config;
3071                 int x, y;
3072
3073                 pipe_config = to_intel_crtc_state(crtc->base.state);
3074
3075                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3076                            crtc->base.base.id, pipe_name(crtc->pipe),
3077                            yesno(pipe_config->base.active),
3078                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3079                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3080
3081                 if (pipe_config->base.active) {
3082                         intel_crtc_info(m, crtc);
3083
3084                         active = cursor_position(dev, crtc->pipe, &x, &y);
3085                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3086                                    yesno(crtc->cursor_base),
3087                                    x, y, crtc->base.cursor->state->crtc_w,
3088                                    crtc->base.cursor->state->crtc_h,
3089                                    crtc->cursor_addr, yesno(active));
3090                         intel_scaler_info(m, crtc);
3091                         intel_plane_info(m, crtc);
3092                 }
3093
3094                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3095                            yesno(!crtc->cpu_fifo_underrun_disabled),
3096                            yesno(!crtc->pch_fifo_underrun_disabled));
3097         }
3098
3099         seq_printf(m, "\n");
3100         seq_printf(m, "Connector info\n");
3101         seq_printf(m, "--------------\n");
3102         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3103                 intel_connector_info(m, connector);
3104         }
3105         drm_modeset_unlock_all(dev);
3106         intel_runtime_pm_put(dev_priv);
3107
3108         return 0;
3109 }
3110
3111 static int i915_semaphore_status(struct seq_file *m, void *unused)
3112 {
3113         struct drm_info_node *node = (struct drm_info_node *) m->private;
3114         struct drm_device *dev = node->minor->dev;
3115         struct drm_i915_private *dev_priv = dev->dev_private;
3116         struct intel_engine_cs *ring;
3117         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3118         int i, j, ret;
3119
3120         if (!i915_semaphore_is_enabled(dev)) {
3121                 seq_puts(m, "Semaphores are disabled\n");
3122                 return 0;
3123         }
3124
3125         ret = mutex_lock_interruptible(&dev->struct_mutex);
3126         if (ret)
3127                 return ret;
3128         intel_runtime_pm_get(dev_priv);
3129
3130         if (IS_BROADWELL(dev)) {
3131                 struct page *page;
3132                 uint64_t *seqno;
3133
3134                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3135
3136                 seqno = (uint64_t *)kmap_atomic(page);
3137                 for_each_ring(ring, dev_priv, i) {
3138                         uint64_t offset;
3139
3140                         seq_printf(m, "%s\n", ring->name);
3141
3142                         seq_puts(m, "  Last signal:");
3143                         for (j = 0; j < num_rings; j++) {
3144                                 offset = i * I915_NUM_RINGS + j;
3145                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3146                                            seqno[offset], offset * 8);
3147                         }
3148                         seq_putc(m, '\n');
3149
3150                         seq_puts(m, "  Last wait:  ");
3151                         for (j = 0; j < num_rings; j++) {
3152                                 offset = i + (j * I915_NUM_RINGS);
3153                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3154                                            seqno[offset], offset * 8);
3155                         }
3156                         seq_putc(m, '\n');
3157
3158                 }
3159                 kunmap_atomic(seqno);
3160         } else {
3161                 seq_puts(m, "  Last signal:");
3162                 for_each_ring(ring, dev_priv, i)
3163                         for (j = 0; j < num_rings; j++)
3164                                 seq_printf(m, "0x%08x\n",
3165                                            I915_READ(ring->semaphore.mbox.signal[j]));
3166                 seq_putc(m, '\n');
3167         }
3168
3169         seq_puts(m, "\nSync seqno:\n");
3170         for_each_ring(ring, dev_priv, i) {
3171                 for (j = 0; j < num_rings; j++) {
3172                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
3173                 }
3174                 seq_putc(m, '\n');
3175         }
3176         seq_putc(m, '\n');
3177
3178         intel_runtime_pm_put(dev_priv);
3179         mutex_unlock(&dev->struct_mutex);
3180         return 0;
3181 }
3182
3183 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3184 {
3185         struct drm_info_node *node = (struct drm_info_node *) m->private;
3186         struct drm_device *dev = node->minor->dev;
3187         struct drm_i915_private *dev_priv = dev->dev_private;
3188         int i;
3189
3190         drm_modeset_lock_all(dev);
3191         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3192                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3193
3194                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3195                 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
3196                            pll->config.crtc_mask, pll->active, yesno(pll->on));
3197                 seq_printf(m, " tracked hardware state:\n");
3198                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3199                 seq_printf(m, " dpll_md: 0x%08x\n",
3200                            pll->config.hw_state.dpll_md);
3201                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3202                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3203                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3204         }
3205         drm_modeset_unlock_all(dev);
3206
3207         return 0;
3208 }
3209
3210 static int i915_wa_registers(struct seq_file *m, void *unused)
3211 {
3212         int i;
3213         int ret;
3214         struct drm_info_node *node = (struct drm_info_node *) m->private;
3215         struct drm_device *dev = node->minor->dev;
3216         struct drm_i915_private *dev_priv = dev->dev_private;
3217
3218         ret = mutex_lock_interruptible(&dev->struct_mutex);
3219         if (ret)
3220                 return ret;
3221
3222         intel_runtime_pm_get(dev_priv);
3223
3224         seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
3225         for (i = 0; i < dev_priv->workarounds.count; ++i) {
3226                 i915_reg_t addr;
3227                 u32 mask, value, read;
3228                 bool ok;
3229
3230                 addr = dev_priv->workarounds.reg[i].addr;
3231                 mask = dev_priv->workarounds.reg[i].mask;
3232                 value = dev_priv->workarounds.reg[i].value;
3233                 read = I915_READ(addr);
3234                 ok = (value & mask) == (read & mask);
3235                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3236                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3237         }
3238
3239         intel_runtime_pm_put(dev_priv);
3240         mutex_unlock(&dev->struct_mutex);
3241
3242         return 0;
3243 }
3244
3245 static int i915_ddb_info(struct seq_file *m, void *unused)
3246 {
3247         struct drm_info_node *node = m->private;
3248         struct drm_device *dev = node->minor->dev;
3249         struct drm_i915_private *dev_priv = dev->dev_private;
3250         struct skl_ddb_allocation *ddb;
3251         struct skl_ddb_entry *entry;
3252         enum pipe pipe;
3253         int plane;
3254
3255         if (INTEL_INFO(dev)->gen < 9)
3256                 return 0;
3257
3258         drm_modeset_lock_all(dev);
3259
3260         ddb = &dev_priv->wm.skl_hw.ddb;
3261
3262         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3263
3264         for_each_pipe(dev_priv, pipe) {
3265                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3266
3267                 for_each_plane(dev_priv, pipe, plane) {
3268                         entry = &ddb->plane[pipe][plane];
3269                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3270                                    entry->start, entry->end,
3271                                    skl_ddb_entry_size(entry));
3272                 }
3273
3274                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3275                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3276                            entry->end, skl_ddb_entry_size(entry));
3277         }
3278
3279         drm_modeset_unlock_all(dev);
3280
3281         return 0;
3282 }
3283
3284 static void drrs_status_per_crtc(struct seq_file *m,
3285                 struct drm_device *dev, struct intel_crtc *intel_crtc)
3286 {
3287         struct intel_encoder *intel_encoder;
3288         struct drm_i915_private *dev_priv = dev->dev_private;
3289         struct i915_drrs *drrs = &dev_priv->drrs;
3290         int vrefresh = 0;
3291
3292         for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3293                 /* Encoder connected on this CRTC */
3294                 switch (intel_encoder->type) {
3295                 case INTEL_OUTPUT_EDP:
3296                         seq_puts(m, "eDP:\n");
3297                         break;
3298                 case INTEL_OUTPUT_DSI:
3299                         seq_puts(m, "DSI:\n");
3300                         break;
3301                 case INTEL_OUTPUT_HDMI:
3302                         seq_puts(m, "HDMI:\n");
3303                         break;
3304                 case INTEL_OUTPUT_DISPLAYPORT:
3305                         seq_puts(m, "DP:\n");
3306                         break;
3307                 default:
3308                         seq_printf(m, "Other encoder (id=%d).\n",
3309                                                 intel_encoder->type);
3310                         return;
3311                 }
3312         }
3313
3314         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3315                 seq_puts(m, "\tVBT: DRRS_type: Static");
3316         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3317                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3318         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3319                 seq_puts(m, "\tVBT: DRRS_type: None");
3320         else
3321                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3322
3323         seq_puts(m, "\n\n");
3324
3325         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3326                 struct intel_panel *panel;
3327
3328                 mutex_lock(&drrs->mutex);
3329                 /* DRRS Supported */
3330                 seq_puts(m, "\tDRRS Supported: Yes\n");
3331
3332                 /* disable_drrs() will make drrs->dp NULL */
3333                 if (!drrs->dp) {
3334                         seq_puts(m, "Idleness DRRS: Disabled");
3335                         mutex_unlock(&drrs->mutex);
3336                         return;
3337                 }
3338
3339                 panel = &drrs->dp->attached_connector->panel;
3340                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3341                                         drrs->busy_frontbuffer_bits);
3342
3343                 seq_puts(m, "\n\t\t");
3344                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3345                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3346                         vrefresh = panel->fixed_mode->vrefresh;
3347                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3348                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3349                         vrefresh = panel->downclock_mode->vrefresh;
3350                 } else {
3351                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3352                                                 drrs->refresh_rate_type);
3353                         mutex_unlock(&drrs->mutex);
3354                         return;
3355                 }
3356                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3357
3358                 seq_puts(m, "\n\t\t");
3359                 mutex_unlock(&drrs->mutex);
3360         } else {
3361                 /* DRRS not supported. Print the VBT parameter*/
3362                 seq_puts(m, "\tDRRS Supported : No");
3363         }
3364         seq_puts(m, "\n");
3365 }
3366
3367 static int i915_drrs_status(struct seq_file *m, void *unused)
3368 {
3369         struct drm_info_node *node = m->private;
3370         struct drm_device *dev = node->minor->dev;
3371         struct intel_crtc *intel_crtc;
3372         int active_crtc_cnt = 0;
3373
3374         for_each_intel_crtc(dev, intel_crtc) {
3375                 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3376
3377                 if (intel_crtc->base.state->active) {
3378                         active_crtc_cnt++;
3379                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3380
3381                         drrs_status_per_crtc(m, dev, intel_crtc);
3382                 }
3383
3384                 drm_modeset_unlock(&intel_crtc->base.mutex);
3385         }
3386
3387         if (!active_crtc_cnt)
3388                 seq_puts(m, "No active crtc found\n");
3389
3390         return 0;
3391 }
3392
3393 struct pipe_crc_info {
3394         const char *name;
3395         struct drm_device *dev;
3396         enum pipe pipe;
3397 };
3398
3399 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3400 {
3401         struct drm_info_node *node = (struct drm_info_node *) m->private;
3402         struct drm_device *dev = node->minor->dev;
3403         struct drm_encoder *encoder;
3404         struct intel_encoder *intel_encoder;
3405         struct intel_digital_port *intel_dig_port;
3406         drm_modeset_lock_all(dev);
3407         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3408                 intel_encoder = to_intel_encoder(encoder);
3409                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3410                         continue;
3411                 intel_dig_port = enc_to_dig_port(encoder);
3412                 if (!intel_dig_port->dp.can_mst)
3413                         continue;
3414
3415                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3416         }
3417         drm_modeset_unlock_all(dev);
3418         return 0;
3419 }
3420
3421 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3422 {
3423         struct pipe_crc_info *info = inode->i_private;
3424         struct drm_i915_private *dev_priv = info->dev->dev_private;
3425         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3426
3427         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3428                 return -ENODEV;
3429
3430         spin_lock_irq(&pipe_crc->lock);
3431
3432         if (pipe_crc->opened) {
3433                 spin_unlock_irq(&pipe_crc->lock);
3434                 return -EBUSY; /* already open */
3435         }
3436
3437         pipe_crc->opened = true;
3438         filep->private_data = inode->i_private;
3439
3440         spin_unlock_irq(&pipe_crc->lock);
3441
3442         return 0;
3443 }
3444
3445 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3446 {
3447         struct pipe_crc_info *info = inode->i_private;
3448         struct drm_i915_private *dev_priv = info->dev->dev_private;
3449         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3450
3451         spin_lock_irq(&pipe_crc->lock);
3452         pipe_crc->opened = false;
3453         spin_unlock_irq(&pipe_crc->lock);
3454
3455         return 0;
3456 }
3457
3458 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3459 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3460 /* account for \'0' */
3461 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3462
3463 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3464 {
3465         assert_spin_locked(&pipe_crc->lock);
3466         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3467                         INTEL_PIPE_CRC_ENTRIES_NR);
3468 }
3469
3470 static ssize_t
3471 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3472                    loff_t *pos)
3473 {
3474         struct pipe_crc_info *info = filep->private_data;
3475         struct drm_device *dev = info->dev;
3476         struct drm_i915_private *dev_priv = dev->dev_private;
3477         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3478         char buf[PIPE_CRC_BUFFER_LEN];
3479         int n_entries;
3480         ssize_t bytes_read;
3481
3482         /*
3483          * Don't allow user space to provide buffers not big enough to hold
3484          * a line of data.
3485          */
3486         if (count < PIPE_CRC_LINE_LEN)
3487                 return -EINVAL;
3488
3489         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3490                 return 0;
3491
3492         /* nothing to read */
3493         spin_lock_irq(&pipe_crc->lock);
3494         while (pipe_crc_data_count(pipe_crc) == 0) {
3495                 int ret;
3496
3497                 if (filep->f_flags & O_NONBLOCK) {
3498                         spin_unlock_irq(&pipe_crc->lock);
3499                         return -EAGAIN;
3500                 }
3501
3502                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3503                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3504                 if (ret) {
3505                         spin_unlock_irq(&pipe_crc->lock);
3506                         return ret;
3507                 }
3508         }
3509
3510         /* We now have one or more entries to read */
3511         n_entries = count / PIPE_CRC_LINE_LEN;
3512
3513         bytes_read = 0;
3514         while (n_entries > 0) {
3515                 struct intel_pipe_crc_entry *entry =
3516                         &pipe_crc->entries[pipe_crc->tail];
3517                 int ret;
3518
3519                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3520                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3521                         break;
3522
3523                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3524                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3525
3526                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3527                                        "%8u %8x %8x %8x %8x %8x\n",
3528                                        entry->frame, entry->crc[0],
3529                                        entry->crc[1], entry->crc[2],
3530                                        entry->crc[3], entry->crc[4]);
3531
3532                 spin_unlock_irq(&pipe_crc->lock);
3533
3534                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3535                 if (ret == PIPE_CRC_LINE_LEN)
3536                         return -EFAULT;
3537
3538                 user_buf += PIPE_CRC_LINE_LEN;
3539                 n_entries--;
3540
3541                 spin_lock_irq(&pipe_crc->lock);
3542         }
3543
3544         spin_unlock_irq(&pipe_crc->lock);
3545
3546         return bytes_read;
3547 }
3548
3549 static const struct file_operations i915_pipe_crc_fops = {
3550         .owner = THIS_MODULE,
3551         .open = i915_pipe_crc_open,
3552         .read = i915_pipe_crc_read,
3553         .release = i915_pipe_crc_release,
3554 };
3555
3556 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3557         {
3558                 .name = "i915_pipe_A_crc",
3559                 .pipe = PIPE_A,
3560         },
3561         {
3562                 .name = "i915_pipe_B_crc",
3563                 .pipe = PIPE_B,
3564         },
3565         {
3566                 .name = "i915_pipe_C_crc",
3567                 .pipe = PIPE_C,
3568         },
3569 };
3570
3571 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3572                                 enum pipe pipe)
3573 {
3574         struct drm_device *dev = minor->dev;
3575         struct dentry *ent;
3576         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3577
3578         info->dev = dev;
3579         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3580                                   &i915_pipe_crc_fops);
3581         if (!ent)
3582                 return -ENOMEM;
3583
3584         return drm_add_fake_info_node(minor, ent, info);
3585 }
3586
3587 static const char * const pipe_crc_sources[] = {
3588         "none",
3589         "plane1",
3590         "plane2",
3591         "pf",
3592         "pipe",
3593         "TV",
3594         "DP-B",
3595         "DP-C",
3596         "DP-D",
3597         "auto",
3598 };
3599
3600 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3601 {
3602         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3603         return pipe_crc_sources[source];
3604 }
3605
3606 static int display_crc_ctl_show(struct seq_file *m, void *data)
3607 {
3608         struct drm_device *dev = m->private;
3609         struct drm_i915_private *dev_priv = dev->dev_private;
3610         int i;
3611
3612         for (i = 0; i < I915_MAX_PIPES; i++)
3613                 seq_printf(m, "%c %s\n", pipe_name(i),
3614                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3615
3616         return 0;
3617 }
3618
3619 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3620 {
3621         struct drm_device *dev = inode->i_private;
3622
3623         return single_open(file, display_crc_ctl_show, dev);
3624 }
3625
3626 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3627                                  uint32_t *val)
3628 {
3629         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3630                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3631
3632         switch (*source) {
3633         case INTEL_PIPE_CRC_SOURCE_PIPE:
3634                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3635                 break;
3636         case INTEL_PIPE_CRC_SOURCE_NONE:
3637                 *val = 0;
3638                 break;
3639         default:
3640                 return -EINVAL;
3641         }
3642
3643         return 0;
3644 }
3645
3646 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3647                                      enum intel_pipe_crc_source *source)
3648 {
3649         struct intel_encoder *encoder;
3650         struct intel_crtc *crtc;
3651         struct intel_digital_port *dig_port;
3652         int ret = 0;
3653
3654         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3655
3656         drm_modeset_lock_all(dev);
3657         for_each_intel_encoder(dev, encoder) {
3658                 if (!encoder->base.crtc)
3659                         continue;
3660
3661                 crtc = to_intel_crtc(encoder->base.crtc);
3662
3663                 if (crtc->pipe != pipe)
3664                         continue;
3665
3666                 switch (encoder->type) {
3667                 case INTEL_OUTPUT_TVOUT:
3668                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3669                         break;
3670                 case INTEL_OUTPUT_DISPLAYPORT:
3671                 case INTEL_OUTPUT_EDP:
3672                         dig_port = enc_to_dig_port(&encoder->base);
3673                         switch (dig_port->port) {
3674                         case PORT_B:
3675                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3676                                 break;
3677                         case PORT_C:
3678                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3679                                 break;
3680                         case PORT_D:
3681                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3682                                 break;
3683                         default:
3684                                 WARN(1, "nonexisting DP port %c\n",
3685                                      port_name(dig_port->port));
3686                                 break;
3687                         }
3688                         break;
3689                 default:
3690                         break;
3691                 }
3692         }
3693         drm_modeset_unlock_all(dev);
3694
3695         return ret;
3696 }
3697
3698 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3699                                 enum pipe pipe,
3700                                 enum intel_pipe_crc_source *source,
3701                                 uint32_t *val)
3702 {
3703         struct drm_i915_private *dev_priv = dev->dev_private;
3704         bool need_stable_symbols = false;
3705
3706         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3707                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3708                 if (ret)
3709                         return ret;
3710         }
3711
3712         switch (*source) {
3713         case INTEL_PIPE_CRC_SOURCE_PIPE:
3714                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3715                 break;
3716         case INTEL_PIPE_CRC_SOURCE_DP_B:
3717                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3718                 need_stable_symbols = true;
3719                 break;
3720         case INTEL_PIPE_CRC_SOURCE_DP_C:
3721                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3722                 need_stable_symbols = true;
3723                 break;
3724         case INTEL_PIPE_CRC_SOURCE_DP_D:
3725                 if (!IS_CHERRYVIEW(dev))
3726                         return -EINVAL;
3727                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3728                 need_stable_symbols = true;
3729                 break;
3730         case INTEL_PIPE_CRC_SOURCE_NONE:
3731                 *val = 0;
3732                 break;
3733         default:
3734                 return -EINVAL;
3735         }
3736
3737         /*
3738          * When the pipe CRC tap point is after the transcoders we need
3739          * to tweak symbol-level features to produce a deterministic series of
3740          * symbols for a given frame. We need to reset those features only once
3741          * a frame (instead of every nth symbol):
3742          *   - DC-balance: used to ensure a better clock recovery from the data
3743          *     link (SDVO)
3744          *   - DisplayPort scrambling: used for EMI reduction
3745          */
3746         if (need_stable_symbols) {
3747                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3748
3749                 tmp |= DC_BALANCE_RESET_VLV;
3750                 switch (pipe) {
3751                 case PIPE_A:
3752                         tmp |= PIPE_A_SCRAMBLE_RESET;
3753                         break;
3754                 case PIPE_B:
3755                         tmp |= PIPE_B_SCRAMBLE_RESET;
3756                         break;
3757                 case PIPE_C:
3758                         tmp |= PIPE_C_SCRAMBLE_RESET;
3759                         break;
3760                 default:
3761                         return -EINVAL;
3762                 }
3763                 I915_WRITE(PORT_DFT2_G4X, tmp);
3764         }
3765
3766         return 0;
3767 }
3768
3769 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3770                                  enum pipe pipe,
3771                                  enum intel_pipe_crc_source *source,
3772                                  uint32_t *val)
3773 {
3774         struct drm_i915_private *dev_priv = dev->dev_private;
3775         bool need_stable_symbols = false;
3776
3777         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3778                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3779                 if (ret)
3780                         return ret;
3781         }
3782
3783         switch (*source) {
3784         case INTEL_PIPE_CRC_SOURCE_PIPE:
3785                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3786                 break;
3787         case INTEL_PIPE_CRC_SOURCE_TV:
3788                 if (!SUPPORTS_TV(dev))
3789                         return -EINVAL;
3790                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3791                 break;
3792         case INTEL_PIPE_CRC_SOURCE_DP_B:
3793                 if (!IS_G4X(dev))
3794                         return -EINVAL;
3795                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3796                 need_stable_symbols = true;
3797                 break;
3798         case INTEL_PIPE_CRC_SOURCE_DP_C:
3799                 if (!IS_G4X(dev))
3800                         return -EINVAL;
3801                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3802                 need_stable_symbols = true;
3803                 break;
3804         case INTEL_PIPE_CRC_SOURCE_DP_D:
3805                 if (!IS_G4X(dev))
3806                         return -EINVAL;
3807                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3808                 need_stable_symbols = true;
3809                 break;
3810         case INTEL_PIPE_CRC_SOURCE_NONE:
3811                 *val = 0;
3812                 break;
3813         default:
3814                 return -EINVAL;
3815         }
3816
3817         /*
3818          * When the pipe CRC tap point is after the transcoders we need
3819          * to tweak symbol-level features to produce a deterministic series of
3820          * symbols for a given frame. We need to reset those features only once
3821          * a frame (instead of every nth symbol):
3822          *   - DC-balance: used to ensure a better clock recovery from the data
3823          *     link (SDVO)
3824          *   - DisplayPort scrambling: used for EMI reduction
3825          */
3826         if (need_stable_symbols) {
3827                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3828
3829                 WARN_ON(!IS_G4X(dev));
3830
3831                 I915_WRITE(PORT_DFT_I9XX,
3832                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3833
3834                 if (pipe == PIPE_A)
3835                         tmp |= PIPE_A_SCRAMBLE_RESET;
3836                 else
3837                         tmp |= PIPE_B_SCRAMBLE_RESET;
3838
3839                 I915_WRITE(PORT_DFT2_G4X, tmp);
3840         }
3841
3842         return 0;
3843 }
3844
3845 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3846                                          enum pipe pipe)
3847 {
3848         struct drm_i915_private *dev_priv = dev->dev_private;
3849         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3850
3851         switch (pipe) {
3852         case PIPE_A:
3853                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3854                 break;
3855         case PIPE_B:
3856                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3857                 break;
3858         case PIPE_C:
3859                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3860                 break;
3861         default:
3862                 return;
3863         }
3864         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3865                 tmp &= ~DC_BALANCE_RESET_VLV;
3866         I915_WRITE(PORT_DFT2_G4X, tmp);
3867
3868 }
3869
3870 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3871                                          enum pipe pipe)
3872 {
3873         struct drm_i915_private *dev_priv = dev->dev_private;
3874         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3875
3876         if (pipe == PIPE_A)
3877                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3878         else
3879                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3880         I915_WRITE(PORT_DFT2_G4X, tmp);
3881
3882         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3883                 I915_WRITE(PORT_DFT_I9XX,
3884                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3885         }
3886 }
3887
3888 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3889                                 uint32_t *val)
3890 {
3891         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3892                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3893
3894         switch (*source) {
3895         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3896                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3897                 break;
3898         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3899                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3900                 break;
3901         case INTEL_PIPE_CRC_SOURCE_PIPE:
3902                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3903                 break;
3904         case INTEL_PIPE_CRC_SOURCE_NONE:
3905                 *val = 0;
3906                 break;
3907         default:
3908                 return -EINVAL;
3909         }
3910
3911         return 0;
3912 }
3913
3914 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3915 {
3916         struct drm_i915_private *dev_priv = dev->dev_private;
3917         struct intel_crtc *crtc =
3918                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3919         struct intel_crtc_state *pipe_config;
3920         struct drm_atomic_state *state;
3921         int ret = 0;
3922
3923         drm_modeset_lock_all(dev);
3924         state = drm_atomic_state_alloc(dev);
3925         if (!state) {
3926                 ret = -ENOMEM;
3927                 goto out;
3928         }
3929
3930         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3931         pipe_config = intel_atomic_get_crtc_state(state, crtc);
3932         if (IS_ERR(pipe_config)) {
3933                 ret = PTR_ERR(pipe_config);
3934                 goto out;
3935         }
3936
3937         pipe_config->pch_pfit.force_thru = enable;
3938         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3939             pipe_config->pch_pfit.enabled != enable)
3940                 pipe_config->base.connectors_changed = true;
3941
3942         ret = drm_atomic_commit(state);
3943 out:
3944         drm_modeset_unlock_all(dev);
3945         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3946         if (ret)
3947                 drm_atomic_state_free(state);
3948 }
3949
3950 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3951                                 enum pipe pipe,
3952                                 enum intel_pipe_crc_source *source,
3953                                 uint32_t *val)
3954 {
3955         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3956                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3957
3958         switch (*source) {
3959         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3960                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3961                 break;
3962         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3963                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3964                 break;
3965         case INTEL_PIPE_CRC_SOURCE_PF:
3966                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3967                         hsw_trans_edp_pipe_A_crc_wa(dev, true);
3968
3969                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3970                 break;
3971         case INTEL_PIPE_CRC_SOURCE_NONE:
3972                 *val = 0;
3973                 break;
3974         default:
3975                 return -EINVAL;
3976         }
3977
3978         return 0;
3979 }
3980
3981 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3982                                enum intel_pipe_crc_source source)
3983 {
3984         struct drm_i915_private *dev_priv = dev->dev_private;
3985         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3986         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3987                                                                         pipe));
3988         u32 val = 0; /* shut up gcc */
3989         int ret;
3990
3991         if (pipe_crc->source == source)
3992                 return 0;
3993
3994         /* forbid changing the source without going back to 'none' */
3995         if (pipe_crc->source && source)
3996                 return -EINVAL;
3997
3998         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3999                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4000                 return -EIO;
4001         }
4002
4003         if (IS_GEN2(dev))
4004                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4005         else if (INTEL_INFO(dev)->gen < 5)
4006                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4007         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4008                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4009         else if (IS_GEN5(dev) || IS_GEN6(dev))
4010                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4011         else
4012                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4013
4014         if (ret != 0)
4015                 return ret;
4016
4017         /* none -> real source transition */
4018         if (source) {
4019                 struct intel_pipe_crc_entry *entries;
4020
4021                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4022                                  pipe_name(pipe), pipe_crc_source_name(source));
4023
4024                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4025                                   sizeof(pipe_crc->entries[0]),
4026                                   GFP_KERNEL);
4027                 if (!entries)
4028                         return -ENOMEM;
4029
4030                 /*
4031                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4032                  * enabled and disabled dynamically based on package C states,
4033                  * user space can't make reliable use of the CRCs, so let's just
4034                  * completely disable it.
4035                  */
4036                 hsw_disable_ips(crtc);
4037
4038                 spin_lock_irq(&pipe_crc->lock);
4039                 kfree(pipe_crc->entries);
4040                 pipe_crc->entries = entries;
4041                 pipe_crc->head = 0;
4042                 pipe_crc->tail = 0;
4043                 spin_unlock_irq(&pipe_crc->lock);
4044         }
4045
4046         pipe_crc->source = source;
4047
4048         I915_WRITE(PIPE_CRC_CTL(pipe), val);
4049         POSTING_READ(PIPE_CRC_CTL(pipe));
4050
4051         /* real source -> none transition */
4052         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4053                 struct intel_pipe_crc_entry *entries;
4054                 struct intel_crtc *crtc =
4055                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4056
4057                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4058                                  pipe_name(pipe));
4059
4060                 drm_modeset_lock(&crtc->base.mutex, NULL);
4061                 if (crtc->base.state->active)
4062                         intel_wait_for_vblank(dev, pipe);
4063                 drm_modeset_unlock(&crtc->base.mutex);
4064
4065                 spin_lock_irq(&pipe_crc->lock);
4066                 entries = pipe_crc->entries;
4067                 pipe_crc->entries = NULL;
4068                 pipe_crc->head = 0;
4069                 pipe_crc->tail = 0;
4070                 spin_unlock_irq(&pipe_crc->lock);
4071
4072                 kfree(entries);
4073
4074                 if (IS_G4X(dev))
4075                         g4x_undo_pipe_scramble_reset(dev, pipe);
4076                 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4077                         vlv_undo_pipe_scramble_reset(dev, pipe);
4078                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4079                         hsw_trans_edp_pipe_A_crc_wa(dev, false);
4080
4081                 hsw_enable_ips(crtc);
4082         }
4083
4084         return 0;
4085 }
4086
4087 /*
4088  * Parse pipe CRC command strings:
4089  *   command: wsp* object wsp+ name wsp+ source wsp*
4090  *   object: 'pipe'
4091  *   name: (A | B | C)
4092  *   source: (none | plane1 | plane2 | pf)
4093  *   wsp: (#0x20 | #0x9 | #0xA)+
4094  *
4095  * eg.:
4096  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4097  *  "pipe A none"    ->  Stop CRC
4098  */
4099 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4100 {
4101         int n_words = 0;
4102
4103         while (*buf) {
4104                 char *end;
4105
4106                 /* skip leading white space */
4107                 buf = skip_spaces(buf);
4108                 if (!*buf)
4109                         break;  /* end of buffer */
4110
4111                 /* find end of word */
4112                 for (end = buf; *end && !isspace(*end); end++)
4113                         ;
4114
4115                 if (n_words == max_words) {
4116                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4117                                          max_words);
4118                         return -EINVAL; /* ran out of words[] before bytes */
4119                 }
4120
4121                 if (*end)
4122                         *end++ = '\0';
4123                 words[n_words++] = buf;
4124                 buf = end;
4125         }
4126
4127         return n_words;
4128 }
4129
4130 enum intel_pipe_crc_object {
4131         PIPE_CRC_OBJECT_PIPE,
4132 };
4133
4134 static const char * const pipe_crc_objects[] = {
4135         "pipe",
4136 };
4137
4138 static int
4139 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4140 {
4141         int i;
4142
4143         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4144                 if (!strcmp(buf, pipe_crc_objects[i])) {
4145                         *o = i;
4146                         return 0;
4147                     }
4148
4149         return -EINVAL;
4150 }
4151
4152 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4153 {
4154         const char name = buf[0];
4155
4156         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4157                 return -EINVAL;
4158
4159         *pipe = name - 'A';
4160
4161         return 0;
4162 }
4163
4164 static int
4165 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4166 {
4167         int i;
4168
4169         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4170                 if (!strcmp(buf, pipe_crc_sources[i])) {
4171                         *s = i;
4172                         return 0;
4173                     }
4174
4175         return -EINVAL;
4176 }
4177
4178 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4179 {
4180 #define N_WORDS 3
4181         int n_words;
4182         char *words[N_WORDS];
4183         enum pipe pipe;
4184         enum intel_pipe_crc_object object;
4185         enum intel_pipe_crc_source source;
4186
4187         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4188         if (n_words != N_WORDS) {
4189                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4190                                  N_WORDS);
4191                 return -EINVAL;
4192         }
4193
4194         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4195                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4196                 return -EINVAL;
4197         }
4198
4199         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4200                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4201                 return -EINVAL;
4202         }
4203
4204         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4205                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4206                 return -EINVAL;
4207         }
4208
4209         return pipe_crc_set_source(dev, pipe, source);
4210 }
4211
4212 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4213                                      size_t len, loff_t *offp)
4214 {
4215         struct seq_file *m = file->private_data;
4216         struct drm_device *dev = m->private;
4217         char *tmpbuf;
4218         int ret;
4219
4220         if (len == 0)
4221                 return 0;
4222
4223         if (len > PAGE_SIZE - 1) {
4224                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4225                                  PAGE_SIZE);
4226                 return -E2BIG;
4227         }
4228
4229         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4230         if (!tmpbuf)
4231                 return -ENOMEM;
4232
4233         if (copy_from_user(tmpbuf, ubuf, len)) {
4234                 ret = -EFAULT;
4235                 goto out;
4236         }
4237         tmpbuf[len] = '\0';
4238
4239         ret = display_crc_ctl_parse(dev, tmpbuf, len);
4240
4241 out:
4242         kfree(tmpbuf);
4243         if (ret < 0)
4244                 return ret;
4245
4246         *offp += len;
4247         return len;
4248 }
4249
4250 static const struct file_operations i915_display_crc_ctl_fops = {
4251         .owner = THIS_MODULE,
4252         .open = display_crc_ctl_open,
4253         .read = seq_read,
4254         .llseek = seq_lseek,
4255         .release = single_release,
4256         .write = display_crc_ctl_write
4257 };
4258
4259 static ssize_t i915_displayport_test_active_write(struct file *file,
4260                                             const char __user *ubuf,
4261                                             size_t len, loff_t *offp)
4262 {
4263         char *input_buffer;
4264         int status = 0;
4265         struct drm_device *dev;
4266         struct drm_connector *connector;
4267         struct list_head *connector_list;
4268         struct intel_dp *intel_dp;
4269         int val = 0;
4270
4271         dev = ((struct seq_file *)file->private_data)->private;
4272
4273         connector_list = &dev->mode_config.connector_list;
4274
4275         if (len == 0)
4276                 return 0;
4277
4278         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4279         if (!input_buffer)
4280                 return -ENOMEM;
4281
4282         if (copy_from_user(input_buffer, ubuf, len)) {
4283                 status = -EFAULT;
4284                 goto out;
4285         }
4286
4287         input_buffer[len] = '\0';
4288         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4289
4290         list_for_each_entry(connector, connector_list, head) {
4291
4292                 if (connector->connector_type !=
4293                     DRM_MODE_CONNECTOR_DisplayPort)
4294                         continue;
4295
4296                 if (connector->status == connector_status_connected &&
4297                     connector->encoder != NULL) {
4298                         intel_dp = enc_to_intel_dp(connector->encoder);
4299                         status = kstrtoint(input_buffer, 10, &val);
4300                         if (status < 0)
4301                                 goto out;
4302                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4303                         /* To prevent erroneous activation of the compliance
4304                          * testing code, only accept an actual value of 1 here
4305                          */
4306                         if (val == 1)
4307                                 intel_dp->compliance_test_active = 1;
4308                         else
4309                                 intel_dp->compliance_test_active = 0;
4310                 }
4311         }
4312 out:
4313         kfree(input_buffer);
4314         if (status < 0)
4315                 return status;
4316
4317         *offp += len;
4318         return len;
4319 }
4320
4321 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4322 {
4323         struct drm_device *dev = m->private;
4324         struct drm_connector *connector;
4325         struct list_head *connector_list = &dev->mode_config.connector_list;
4326         struct intel_dp *intel_dp;
4327
4328         list_for_each_entry(connector, connector_list, head) {
4329
4330                 if (connector->connector_type !=
4331                     DRM_MODE_CONNECTOR_DisplayPort)
4332                         continue;
4333
4334                 if (connector->status == connector_status_connected &&
4335                     connector->encoder != NULL) {
4336                         intel_dp = enc_to_intel_dp(connector->encoder);
4337                         if (intel_dp->compliance_test_active)
4338                                 seq_puts(m, "1");
4339                         else
4340                                 seq_puts(m, "0");
4341                 } else
4342                         seq_puts(m, "0");
4343         }
4344
4345         return 0;
4346 }
4347
4348 static int i915_displayport_test_active_open(struct inode *inode,
4349                                        struct file *file)
4350 {
4351         struct drm_device *dev = inode->i_private;
4352
4353         return single_open(file, i915_displayport_test_active_show, dev);
4354 }
4355
4356 static const struct file_operations i915_displayport_test_active_fops = {
4357         .owner = THIS_MODULE,
4358         .open = i915_displayport_test_active_open,
4359         .read = seq_read,
4360         .llseek = seq_lseek,
4361         .release = single_release,
4362         .write = i915_displayport_test_active_write
4363 };
4364
4365 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4366 {
4367         struct drm_device *dev = m->private;
4368         struct drm_connector *connector;
4369         struct list_head *connector_list = &dev->mode_config.connector_list;
4370         struct intel_dp *intel_dp;
4371
4372         list_for_each_entry(connector, connector_list, head) {
4373
4374                 if (connector->connector_type !=
4375                     DRM_MODE_CONNECTOR_DisplayPort)
4376                         continue;
4377
4378                 if (connector->status == connector_status_connected &&
4379                     connector->encoder != NULL) {
4380                         intel_dp = enc_to_intel_dp(connector->encoder);
4381                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4382                 } else
4383                         seq_puts(m, "0");
4384         }
4385
4386         return 0;
4387 }
4388 static int i915_displayport_test_data_open(struct inode *inode,
4389                                        struct file *file)
4390 {
4391         struct drm_device *dev = inode->i_private;
4392
4393         return single_open(file, i915_displayport_test_data_show, dev);
4394 }
4395
4396 static const struct file_operations i915_displayport_test_data_fops = {
4397         .owner = THIS_MODULE,
4398         .open = i915_displayport_test_data_open,
4399         .read = seq_read,
4400         .llseek = seq_lseek,
4401         .release = single_release
4402 };
4403
4404 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4405 {
4406         struct drm_device *dev = m->private;
4407         struct drm_connector *connector;
4408         struct list_head *connector_list = &dev->mode_config.connector_list;
4409         struct intel_dp *intel_dp;
4410
4411         list_for_each_entry(connector, connector_list, head) {
4412
4413                 if (connector->connector_type !=
4414                     DRM_MODE_CONNECTOR_DisplayPort)
4415                         continue;
4416
4417                 if (connector->status == connector_status_connected &&
4418                     connector->encoder != NULL) {
4419                         intel_dp = enc_to_intel_dp(connector->encoder);
4420                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4421                 } else
4422                         seq_puts(m, "0");
4423         }
4424
4425         return 0;
4426 }
4427
4428 static int i915_displayport_test_type_open(struct inode *inode,
4429                                        struct file *file)
4430 {
4431         struct drm_device *dev = inode->i_private;
4432
4433         return single_open(file, i915_displayport_test_type_show, dev);
4434 }
4435
4436 static const struct file_operations i915_displayport_test_type_fops = {
4437         .owner = THIS_MODULE,
4438         .open = i915_displayport_test_type_open,
4439         .read = seq_read,
4440         .llseek = seq_lseek,
4441         .release = single_release
4442 };
4443
4444 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4445 {
4446         struct drm_device *dev = m->private;
4447         int level;
4448         int num_levels;
4449
4450         if (IS_CHERRYVIEW(dev))
4451                 num_levels = 3;
4452         else if (IS_VALLEYVIEW(dev))
4453                 num_levels = 1;
4454         else
4455                 num_levels = ilk_wm_max_level(dev) + 1;
4456
4457         drm_modeset_lock_all(dev);
4458
4459         for (level = 0; level < num_levels; level++) {
4460                 unsigned int latency = wm[level];
4461
4462                 /*
4463                  * - WM1+ latency values in 0.5us units
4464                  * - latencies are in us on gen9/vlv/chv
4465                  */
4466                 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4467                     IS_CHERRYVIEW(dev))
4468                         latency *= 10;
4469                 else if (level > 0)
4470                         latency *= 5;
4471
4472                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4473                            level, wm[level], latency / 10, latency % 10);
4474         }
4475
4476         drm_modeset_unlock_all(dev);
4477 }
4478
4479 static int pri_wm_latency_show(struct seq_file *m, void *data)
4480 {
4481         struct drm_device *dev = m->private;
4482         struct drm_i915_private *dev_priv = dev->dev_private;
4483         const uint16_t *latencies;
4484
4485         if (INTEL_INFO(dev)->gen >= 9)
4486                 latencies = dev_priv->wm.skl_latency;
4487         else
4488                 latencies = to_i915(dev)->wm.pri_latency;
4489
4490         wm_latency_show(m, latencies);
4491
4492         return 0;
4493 }
4494
4495 static int spr_wm_latency_show(struct seq_file *m, void *data)
4496 {
4497         struct drm_device *dev = m->private;
4498         struct drm_i915_private *dev_priv = dev->dev_private;
4499         const uint16_t *latencies;
4500
4501         if (INTEL_INFO(dev)->gen >= 9)
4502                 latencies = dev_priv->wm.skl_latency;
4503         else
4504                 latencies = to_i915(dev)->wm.spr_latency;
4505
4506         wm_latency_show(m, latencies);
4507
4508         return 0;
4509 }
4510
4511 static int cur_wm_latency_show(struct seq_file *m, void *data)
4512 {
4513         struct drm_device *dev = m->private;
4514         struct drm_i915_private *dev_priv = dev->dev_private;
4515         const uint16_t *latencies;
4516
4517         if (INTEL_INFO(dev)->gen >= 9)
4518                 latencies = dev_priv->wm.skl_latency;
4519         else
4520                 latencies = to_i915(dev)->wm.cur_latency;
4521
4522         wm_latency_show(m, latencies);
4523
4524         return 0;
4525 }
4526
4527 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4528 {
4529         struct drm_device *dev = inode->i_private;
4530
4531         if (INTEL_INFO(dev)->gen < 5)
4532                 return -ENODEV;
4533
4534         return single_open(file, pri_wm_latency_show, dev);
4535 }
4536
4537 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4538 {
4539         struct drm_device *dev = inode->i_private;
4540
4541         if (HAS_GMCH_DISPLAY(dev))
4542                 return -ENODEV;
4543
4544         return single_open(file, spr_wm_latency_show, dev);
4545 }
4546
4547 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4548 {
4549         struct drm_device *dev = inode->i_private;
4550
4551         if (HAS_GMCH_DISPLAY(dev))
4552                 return -ENODEV;
4553
4554         return single_open(file, cur_wm_latency_show, dev);
4555 }
4556
4557 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4558                                 size_t len, loff_t *offp, uint16_t wm[8])
4559 {
4560         struct seq_file *m = file->private_data;
4561         struct drm_device *dev = m->private;
4562         uint16_t new[8] = { 0 };
4563         int num_levels;
4564         int level;
4565         int ret;
4566         char tmp[32];
4567
4568         if (IS_CHERRYVIEW(dev))
4569                 num_levels = 3;
4570         else if (IS_VALLEYVIEW(dev))
4571                 num_levels = 1;
4572         else
4573                 num_levels = ilk_wm_max_level(dev) + 1;
4574
4575         if (len >= sizeof(tmp))
4576                 return -EINVAL;
4577
4578         if (copy_from_user(tmp, ubuf, len))
4579                 return -EFAULT;
4580
4581         tmp[len] = '\0';
4582
4583         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4584                      &new[0], &new[1], &new[2], &new[3],
4585                      &new[4], &new[5], &new[6], &new[7]);
4586         if (ret != num_levels)
4587                 return -EINVAL;
4588
4589         drm_modeset_lock_all(dev);
4590
4591         for (level = 0; level < num_levels; level++)
4592                 wm[level] = new[level];
4593
4594         drm_modeset_unlock_all(dev);
4595
4596         return len;
4597 }
4598
4599
4600 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4601                                     size_t len, loff_t *offp)
4602 {
4603         struct seq_file *m = file->private_data;
4604         struct drm_device *dev = m->private;
4605         struct drm_i915_private *dev_priv = dev->dev_private;
4606         uint16_t *latencies;
4607
4608         if (INTEL_INFO(dev)->gen >= 9)
4609                 latencies = dev_priv->wm.skl_latency;
4610         else
4611                 latencies = to_i915(dev)->wm.pri_latency;
4612
4613         return wm_latency_write(file, ubuf, len, offp, latencies);
4614 }
4615
4616 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4617                                     size_t len, loff_t *offp)
4618 {
4619         struct seq_file *m = file->private_data;
4620         struct drm_device *dev = m->private;
4621         struct drm_i915_private *dev_priv = dev->dev_private;
4622         uint16_t *latencies;
4623
4624         if (INTEL_INFO(dev)->gen >= 9)
4625                 latencies = dev_priv->wm.skl_latency;
4626         else
4627                 latencies = to_i915(dev)->wm.spr_latency;
4628
4629         return wm_latency_write(file, ubuf, len, offp, latencies);
4630 }
4631
4632 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4633                                     size_t len, loff_t *offp)
4634 {
4635         struct seq_file *m = file->private_data;
4636         struct drm_device *dev = m->private;
4637         struct drm_i915_private *dev_priv = dev->dev_private;
4638         uint16_t *latencies;
4639
4640         if (INTEL_INFO(dev)->gen >= 9)
4641                 latencies = dev_priv->wm.skl_latency;
4642         else
4643                 latencies = to_i915(dev)->wm.cur_latency;
4644
4645         return wm_latency_write(file, ubuf, len, offp, latencies);
4646 }
4647
4648 static const struct file_operations i915_pri_wm_latency_fops = {
4649         .owner = THIS_MODULE,
4650         .open = pri_wm_latency_open,
4651         .read = seq_read,
4652         .llseek = seq_lseek,
4653         .release = single_release,
4654         .write = pri_wm_latency_write
4655 };
4656
4657 static const struct file_operations i915_spr_wm_latency_fops = {
4658         .owner = THIS_MODULE,
4659         .open = spr_wm_latency_open,
4660         .read = seq_read,
4661         .llseek = seq_lseek,
4662         .release = single_release,
4663         .write = spr_wm_latency_write
4664 };
4665
4666 static const struct file_operations i915_cur_wm_latency_fops = {
4667         .owner = THIS_MODULE,
4668         .open = cur_wm_latency_open,
4669         .read = seq_read,
4670         .llseek = seq_lseek,
4671         .release = single_release,
4672         .write = cur_wm_latency_write
4673 };
4674
4675 static int
4676 i915_wedged_get(void *data, u64 *val)
4677 {
4678         struct drm_device *dev = data;
4679         struct drm_i915_private *dev_priv = dev->dev_private;
4680
4681         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4682
4683         return 0;
4684 }
4685
4686 static int
4687 i915_wedged_set(void *data, u64 val)
4688 {
4689         struct drm_device *dev = data;
4690         struct drm_i915_private *dev_priv = dev->dev_private;
4691
4692         /*
4693          * There is no safeguard against this debugfs entry colliding
4694          * with the hangcheck calling same i915_handle_error() in
4695          * parallel, causing an explosion. For now we assume that the
4696          * test harness is responsible enough not to inject gpu hangs
4697          * while it is writing to 'i915_wedged'
4698          */
4699
4700         if (i915_reset_in_progress(&dev_priv->gpu_error))
4701                 return -EAGAIN;
4702
4703         intel_runtime_pm_get(dev_priv);
4704
4705         i915_handle_error(dev, val,
4706                           "Manually setting wedged to %llu", val);
4707
4708         intel_runtime_pm_put(dev_priv);
4709
4710         return 0;
4711 }
4712
4713 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4714                         i915_wedged_get, i915_wedged_set,
4715                         "%llu\n");
4716
4717 static int
4718 i915_ring_stop_get(void *data, u64 *val)
4719 {
4720         struct drm_device *dev = data;
4721         struct drm_i915_private *dev_priv = dev->dev_private;
4722
4723         *val = dev_priv->gpu_error.stop_rings;
4724
4725         return 0;
4726 }
4727
4728 static int
4729 i915_ring_stop_set(void *data, u64 val)
4730 {
4731         struct drm_device *dev = data;
4732         struct drm_i915_private *dev_priv = dev->dev_private;
4733         int ret;
4734
4735         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4736
4737         ret = mutex_lock_interruptible(&dev->struct_mutex);
4738         if (ret)
4739                 return ret;
4740
4741         dev_priv->gpu_error.stop_rings = val;
4742         mutex_unlock(&dev->struct_mutex);
4743
4744         return 0;
4745 }
4746
4747 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4748                         i915_ring_stop_get, i915_ring_stop_set,
4749                         "0x%08llx\n");
4750
4751 static int
4752 i915_ring_missed_irq_get(void *data, u64 *val)
4753 {
4754         struct drm_device *dev = data;
4755         struct drm_i915_private *dev_priv = dev->dev_private;
4756
4757         *val = dev_priv->gpu_error.missed_irq_rings;
4758         return 0;
4759 }
4760
4761 static int
4762 i915_ring_missed_irq_set(void *data, u64 val)
4763 {
4764         struct drm_device *dev = data;
4765         struct drm_i915_private *dev_priv = dev->dev_private;
4766         int ret;
4767
4768         /* Lock against concurrent debugfs callers */
4769         ret = mutex_lock_interruptible(&dev->struct_mutex);
4770         if (ret)
4771                 return ret;
4772         dev_priv->gpu_error.missed_irq_rings = val;
4773         mutex_unlock(&dev->struct_mutex);
4774
4775         return 0;
4776 }
4777
4778 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4779                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4780                         "0x%08llx\n");
4781
4782 static int
4783 i915_ring_test_irq_get(void *data, u64 *val)
4784 {
4785         struct drm_device *dev = data;
4786         struct drm_i915_private *dev_priv = dev->dev_private;
4787
4788         *val = dev_priv->gpu_error.test_irq_rings;
4789
4790         return 0;
4791 }
4792
4793 static int
4794 i915_ring_test_irq_set(void *data, u64 val)
4795 {
4796         struct drm_device *dev = data;
4797         struct drm_i915_private *dev_priv = dev->dev_private;
4798         int ret;
4799
4800         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4801
4802         /* Lock against concurrent debugfs callers */
4803         ret = mutex_lock_interruptible(&dev->struct_mutex);
4804         if (ret)
4805                 return ret;
4806
4807         dev_priv->gpu_error.test_irq_rings = val;
4808         mutex_unlock(&dev->struct_mutex);
4809
4810         return 0;
4811 }
4812
4813 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4814                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4815                         "0x%08llx\n");
4816
4817 #define DROP_UNBOUND 0x1
4818 #define DROP_BOUND 0x2
4819 #define DROP_RETIRE 0x4
4820 #define DROP_ACTIVE 0x8
4821 #define DROP_ALL (DROP_UNBOUND | \
4822                   DROP_BOUND | \
4823                   DROP_RETIRE | \
4824                   DROP_ACTIVE)
4825 static int
4826 i915_drop_caches_get(void *data, u64 *val)
4827 {
4828         *val = DROP_ALL;
4829
4830         return 0;
4831 }
4832
4833 static int
4834 i915_drop_caches_set(void *data, u64 val)
4835 {
4836         struct drm_device *dev = data;
4837         struct drm_i915_private *dev_priv = dev->dev_private;
4838         int ret;
4839
4840         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4841
4842         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4843          * on ioctls on -EAGAIN. */
4844         ret = mutex_lock_interruptible(&dev->struct_mutex);
4845         if (ret)
4846                 return ret;
4847
4848         if (val & DROP_ACTIVE) {
4849                 ret = i915_gpu_idle(dev);
4850                 if (ret)
4851                         goto unlock;
4852         }
4853
4854         if (val & (DROP_RETIRE | DROP_ACTIVE))
4855                 i915_gem_retire_requests(dev);
4856
4857         if (val & DROP_BOUND)
4858                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4859
4860         if (val & DROP_UNBOUND)
4861                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4862
4863 unlock:
4864         mutex_unlock(&dev->struct_mutex);
4865
4866         return ret;
4867 }
4868
4869 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4870                         i915_drop_caches_get, i915_drop_caches_set,
4871                         "0x%08llx\n");
4872
4873 static int
4874 i915_max_freq_get(void *data, u64 *val)
4875 {
4876         struct drm_device *dev = data;
4877         struct drm_i915_private *dev_priv = dev->dev_private;
4878         int ret;
4879
4880         if (INTEL_INFO(dev)->gen < 6)
4881                 return -ENODEV;
4882
4883         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4884
4885         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4886         if (ret)
4887                 return ret;
4888
4889         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4890         mutex_unlock(&dev_priv->rps.hw_lock);
4891
4892         return 0;
4893 }
4894
4895 static int
4896 i915_max_freq_set(void *data, u64 val)
4897 {
4898         struct drm_device *dev = data;
4899         struct drm_i915_private *dev_priv = dev->dev_private;
4900         u32 hw_max, hw_min;
4901         int ret;
4902
4903         if (INTEL_INFO(dev)->gen < 6)
4904                 return -ENODEV;
4905
4906         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4907
4908         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4909
4910         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4911         if (ret)
4912                 return ret;
4913
4914         /*
4915          * Turbo will still be enabled, but won't go above the set value.
4916          */
4917         val = intel_freq_opcode(dev_priv, val);
4918
4919         hw_max = dev_priv->rps.max_freq;
4920         hw_min = dev_priv->rps.min_freq;
4921
4922         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4923                 mutex_unlock(&dev_priv->rps.hw_lock);
4924                 return -EINVAL;
4925         }
4926
4927         dev_priv->rps.max_freq_softlimit = val;
4928
4929         intel_set_rps(dev, val);
4930
4931         mutex_unlock(&dev_priv->rps.hw_lock);
4932
4933         return 0;
4934 }
4935
4936 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4937                         i915_max_freq_get, i915_max_freq_set,
4938                         "%llu\n");
4939
4940 static int
4941 i915_min_freq_get(void *data, u64 *val)
4942 {
4943         struct drm_device *dev = data;
4944         struct drm_i915_private *dev_priv = dev->dev_private;
4945         int ret;
4946
4947         if (INTEL_INFO(dev)->gen < 6)
4948                 return -ENODEV;
4949
4950         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4951
4952         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4953         if (ret)
4954                 return ret;
4955
4956         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4957         mutex_unlock(&dev_priv->rps.hw_lock);
4958
4959         return 0;
4960 }
4961
4962 static int
4963 i915_min_freq_set(void *data, u64 val)
4964 {
4965         struct drm_device *dev = data;
4966         struct drm_i915_private *dev_priv = dev->dev_private;
4967         u32 hw_max, hw_min;
4968         int ret;
4969
4970         if (INTEL_INFO(dev)->gen < 6)
4971                 return -ENODEV;
4972
4973         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4974
4975         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4976
4977         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4978         if (ret)
4979                 return ret;
4980
4981         /*
4982          * Turbo will still be enabled, but won't go below the set value.
4983          */
4984         val = intel_freq_opcode(dev_priv, val);
4985
4986         hw_max = dev_priv->rps.max_freq;
4987         hw_min = dev_priv->rps.min_freq;
4988
4989         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4990                 mutex_unlock(&dev_priv->rps.hw_lock);
4991                 return -EINVAL;
4992         }
4993
4994         dev_priv->rps.min_freq_softlimit = val;
4995
4996         intel_set_rps(dev, val);
4997
4998         mutex_unlock(&dev_priv->rps.hw_lock);
4999
5000         return 0;
5001 }
5002
5003 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5004                         i915_min_freq_get, i915_min_freq_set,
5005                         "%llu\n");
5006
5007 static int
5008 i915_cache_sharing_get(void *data, u64 *val)
5009 {
5010         struct drm_device *dev = data;
5011         struct drm_i915_private *dev_priv = dev->dev_private;
5012         u32 snpcr;
5013         int ret;
5014
5015         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5016                 return -ENODEV;
5017
5018         ret = mutex_lock_interruptible(&dev->struct_mutex);
5019         if (ret)
5020                 return ret;
5021         intel_runtime_pm_get(dev_priv);
5022
5023         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5024
5025         intel_runtime_pm_put(dev_priv);
5026         mutex_unlock(&dev_priv->dev->struct_mutex);
5027
5028         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5029
5030         return 0;
5031 }
5032
5033 static int
5034 i915_cache_sharing_set(void *data, u64 val)
5035 {
5036         struct drm_device *dev = data;
5037         struct drm_i915_private *dev_priv = dev->dev_private;
5038         u32 snpcr;
5039
5040         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5041                 return -ENODEV;
5042
5043         if (val > 3)
5044                 return -EINVAL;
5045
5046         intel_runtime_pm_get(dev_priv);
5047         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5048
5049         /* Update the cache sharing policy here as well */
5050         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5051         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5052         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5053         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5054
5055         intel_runtime_pm_put(dev_priv);
5056         return 0;
5057 }
5058
5059 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5060                         i915_cache_sharing_get, i915_cache_sharing_set,
5061                         "%llu\n");
5062
5063 struct sseu_dev_status {
5064         unsigned int slice_total;
5065         unsigned int subslice_total;
5066         unsigned int subslice_per_slice;
5067         unsigned int eu_total;
5068         unsigned int eu_per_subslice;
5069 };
5070
5071 static void cherryview_sseu_device_status(struct drm_device *dev,
5072                                           struct sseu_dev_status *stat)
5073 {
5074         struct drm_i915_private *dev_priv = dev->dev_private;
5075         int ss_max = 2;
5076         int ss;
5077         u32 sig1[ss_max], sig2[ss_max];
5078
5079         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5080         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5081         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5082         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5083
5084         for (ss = 0; ss < ss_max; ss++) {
5085                 unsigned int eu_cnt;
5086
5087                 if (sig1[ss] & CHV_SS_PG_ENABLE)
5088                         /* skip disabled subslice */
5089                         continue;
5090
5091                 stat->slice_total = 1;
5092                 stat->subslice_per_slice++;
5093                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5094                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5095                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5096                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5097                 stat->eu_total += eu_cnt;
5098                 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5099         }
5100         stat->subslice_total = stat->subslice_per_slice;
5101 }
5102
5103 static void gen9_sseu_device_status(struct drm_device *dev,
5104                                     struct sseu_dev_status *stat)
5105 {
5106         struct drm_i915_private *dev_priv = dev->dev_private;
5107         int s_max = 3, ss_max = 4;
5108         int s, ss;
5109         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5110
5111         /* BXT has a single slice and at most 3 subslices. */
5112         if (IS_BROXTON(dev)) {
5113                 s_max = 1;
5114                 ss_max = 3;
5115         }
5116
5117         for (s = 0; s < s_max; s++) {
5118                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5119                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5120                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5121         }
5122
5123         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5124                      GEN9_PGCTL_SSA_EU19_ACK |
5125                      GEN9_PGCTL_SSA_EU210_ACK |
5126                      GEN9_PGCTL_SSA_EU311_ACK;
5127         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5128                      GEN9_PGCTL_SSB_EU19_ACK |
5129                      GEN9_PGCTL_SSB_EU210_ACK |
5130                      GEN9_PGCTL_SSB_EU311_ACK;
5131
5132         for (s = 0; s < s_max; s++) {
5133                 unsigned int ss_cnt = 0;
5134
5135                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5136                         /* skip disabled slice */
5137                         continue;
5138
5139                 stat->slice_total++;
5140
5141                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5142                         ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5143
5144                 for (ss = 0; ss < ss_max; ss++) {
5145                         unsigned int eu_cnt;
5146
5147                         if (IS_BROXTON(dev) &&
5148                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5149                                 /* skip disabled subslice */
5150                                 continue;
5151
5152                         if (IS_BROXTON(dev))
5153                                 ss_cnt++;
5154
5155                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5156                                                eu_mask[ss%2]);
5157                         stat->eu_total += eu_cnt;
5158                         stat->eu_per_subslice = max(stat->eu_per_subslice,
5159                                                     eu_cnt);
5160                 }
5161
5162                 stat->subslice_total += ss_cnt;
5163                 stat->subslice_per_slice = max(stat->subslice_per_slice,
5164                                                ss_cnt);
5165         }
5166 }
5167
5168 static void broadwell_sseu_device_status(struct drm_device *dev,
5169                                          struct sseu_dev_status *stat)
5170 {
5171         struct drm_i915_private *dev_priv = dev->dev_private;
5172         int s;
5173         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5174
5175         stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5176
5177         if (stat->slice_total) {
5178                 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5179                 stat->subslice_total = stat->slice_total *
5180                                        stat->subslice_per_slice;
5181                 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5182                 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5183
5184                 /* subtract fused off EU(s) from enabled slice(s) */
5185                 for (s = 0; s < stat->slice_total; s++) {
5186                         u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5187
5188                         stat->eu_total -= hweight8(subslice_7eu);
5189                 }
5190         }
5191 }
5192
5193 static int i915_sseu_status(struct seq_file *m, void *unused)
5194 {
5195         struct drm_info_node *node = (struct drm_info_node *) m->private;
5196         struct drm_device *dev = node->minor->dev;
5197         struct sseu_dev_status stat;
5198
5199         if (INTEL_INFO(dev)->gen < 8)
5200                 return -ENODEV;
5201
5202         seq_puts(m, "SSEU Device Info\n");
5203         seq_printf(m, "  Available Slice Total: %u\n",
5204                    INTEL_INFO(dev)->slice_total);
5205         seq_printf(m, "  Available Subslice Total: %u\n",
5206                    INTEL_INFO(dev)->subslice_total);
5207         seq_printf(m, "  Available Subslice Per Slice: %u\n",
5208                    INTEL_INFO(dev)->subslice_per_slice);
5209         seq_printf(m, "  Available EU Total: %u\n",
5210                    INTEL_INFO(dev)->eu_total);
5211         seq_printf(m, "  Available EU Per Subslice: %u\n",
5212                    INTEL_INFO(dev)->eu_per_subslice);
5213         seq_printf(m, "  Has Slice Power Gating: %s\n",
5214                    yesno(INTEL_INFO(dev)->has_slice_pg));
5215         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5216                    yesno(INTEL_INFO(dev)->has_subslice_pg));
5217         seq_printf(m, "  Has EU Power Gating: %s\n",
5218                    yesno(INTEL_INFO(dev)->has_eu_pg));
5219
5220         seq_puts(m, "SSEU Device Status\n");
5221         memset(&stat, 0, sizeof(stat));
5222         if (IS_CHERRYVIEW(dev)) {
5223                 cherryview_sseu_device_status(dev, &stat);
5224         } else if (IS_BROADWELL(dev)) {
5225                 broadwell_sseu_device_status(dev, &stat);
5226         } else if (INTEL_INFO(dev)->gen >= 9) {
5227                 gen9_sseu_device_status(dev, &stat);
5228         }
5229         seq_printf(m, "  Enabled Slice Total: %u\n",
5230                    stat.slice_total);
5231         seq_printf(m, "  Enabled Subslice Total: %u\n",
5232                    stat.subslice_total);
5233         seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5234                    stat.subslice_per_slice);
5235         seq_printf(m, "  Enabled EU Total: %u\n",
5236                    stat.eu_total);
5237         seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5238                    stat.eu_per_subslice);
5239
5240         return 0;
5241 }
5242
5243 static int i915_forcewake_open(struct inode *inode, struct file *file)
5244 {
5245         struct drm_device *dev = inode->i_private;
5246         struct drm_i915_private *dev_priv = dev->dev_private;
5247
5248         if (INTEL_INFO(dev)->gen < 6)
5249                 return 0;
5250
5251         intel_runtime_pm_get(dev_priv);
5252         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5253
5254         return 0;
5255 }
5256
5257 static int i915_forcewake_release(struct inode *inode, struct file *file)
5258 {
5259         struct drm_device *dev = inode->i_private;
5260         struct drm_i915_private *dev_priv = dev->dev_private;
5261
5262         if (INTEL_INFO(dev)->gen < 6)
5263                 return 0;
5264
5265         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5266         intel_runtime_pm_put(dev_priv);
5267
5268         return 0;
5269 }
5270
5271 static const struct file_operations i915_forcewake_fops = {
5272         .owner = THIS_MODULE,
5273         .open = i915_forcewake_open,
5274         .release = i915_forcewake_release,
5275 };
5276
5277 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5278 {
5279         struct drm_device *dev = minor->dev;
5280         struct dentry *ent;
5281
5282         ent = debugfs_create_file("i915_forcewake_user",
5283                                   S_IRUSR,
5284                                   root, dev,
5285                                   &i915_forcewake_fops);
5286         if (!ent)
5287                 return -ENOMEM;
5288
5289         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5290 }
5291
5292 static int i915_debugfs_create(struct dentry *root,
5293                                struct drm_minor *minor,
5294                                const char *name,
5295                                const struct file_operations *fops)
5296 {
5297         struct drm_device *dev = minor->dev;
5298         struct dentry *ent;
5299
5300         ent = debugfs_create_file(name,
5301                                   S_IRUGO | S_IWUSR,
5302                                   root, dev,
5303                                   fops);
5304         if (!ent)
5305                 return -ENOMEM;
5306
5307         return drm_add_fake_info_node(minor, ent, fops);
5308 }
5309
5310 static const struct drm_info_list i915_debugfs_list[] = {
5311         {"i915_capabilities", i915_capabilities, 0},
5312         {"i915_gem_objects", i915_gem_object_info, 0},
5313         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5314         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5315         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5316         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5317         {"i915_gem_stolen", i915_gem_stolen_list_info },
5318         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5319         {"i915_gem_request", i915_gem_request_info, 0},
5320         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5321         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5322         {"i915_gem_interrupt", i915_interrupt_info, 0},
5323         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5324         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5325         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5326         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5327         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5328         {"i915_guc_info", i915_guc_info, 0},
5329         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5330         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5331         {"i915_frequency_info", i915_frequency_info, 0},
5332         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5333         {"i915_drpc_info", i915_drpc_info, 0},
5334         {"i915_emon_status", i915_emon_status, 0},
5335         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5336         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5337         {"i915_fbc_status", i915_fbc_status, 0},
5338         {"i915_ips_status", i915_ips_status, 0},
5339         {"i915_sr_status", i915_sr_status, 0},
5340         {"i915_opregion", i915_opregion, 0},
5341         {"i915_vbt", i915_vbt, 0},
5342         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5343         {"i915_context_status", i915_context_status, 0},
5344         {"i915_dump_lrc", i915_dump_lrc, 0},
5345         {"i915_execlists", i915_execlists, 0},
5346         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5347         {"i915_swizzle_info", i915_swizzle_info, 0},
5348         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5349         {"i915_llc", i915_llc, 0},
5350         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5351         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5352         {"i915_energy_uJ", i915_energy_uJ, 0},
5353         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5354         {"i915_power_domain_info", i915_power_domain_info, 0},
5355         {"i915_dmc_info", i915_dmc_info, 0},
5356         {"i915_display_info", i915_display_info, 0},
5357         {"i915_semaphore_status", i915_semaphore_status, 0},
5358         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5359         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5360         {"i915_wa_registers", i915_wa_registers, 0},
5361         {"i915_ddb_info", i915_ddb_info, 0},
5362         {"i915_sseu_status", i915_sseu_status, 0},
5363         {"i915_drrs_status", i915_drrs_status, 0},
5364         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5365 };
5366 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5367
5368 static const struct i915_debugfs_files {
5369         const char *name;
5370         const struct file_operations *fops;
5371 } i915_debugfs_files[] = {
5372         {"i915_wedged", &i915_wedged_fops},
5373         {"i915_max_freq", &i915_max_freq_fops},
5374         {"i915_min_freq", &i915_min_freq_fops},
5375         {"i915_cache_sharing", &i915_cache_sharing_fops},
5376         {"i915_ring_stop", &i915_ring_stop_fops},
5377         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5378         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5379         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5380         {"i915_error_state", &i915_error_state_fops},
5381         {"i915_next_seqno", &i915_next_seqno_fops},
5382         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5383         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5384         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5385         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5386         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5387         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5388         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5389         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5390 };
5391
5392 void intel_display_crc_init(struct drm_device *dev)
5393 {
5394         struct drm_i915_private *dev_priv = dev->dev_private;
5395         enum pipe pipe;
5396
5397         for_each_pipe(dev_priv, pipe) {
5398                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5399
5400                 pipe_crc->opened = false;
5401                 spin_lock_init(&pipe_crc->lock);
5402                 init_waitqueue_head(&pipe_crc->wq);
5403         }
5404 }
5405
5406 int i915_debugfs_init(struct drm_minor *minor)
5407 {
5408         int ret, i;
5409
5410         ret = i915_forcewake_create(minor->debugfs_root, minor);
5411         if (ret)
5412                 return ret;
5413
5414         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5415                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5416                 if (ret)
5417                         return ret;
5418         }
5419
5420         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5421                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5422                                           i915_debugfs_files[i].name,
5423                                           i915_debugfs_files[i].fops);
5424                 if (ret)
5425                         return ret;
5426         }
5427
5428         return drm_debugfs_create_files(i915_debugfs_list,
5429                                         I915_DEBUGFS_ENTRIES,
5430                                         minor->debugfs_root, minor);
5431 }
5432
5433 void i915_debugfs_cleanup(struct drm_minor *minor)
5434 {
5435         int i;
5436
5437         drm_debugfs_remove_files(i915_debugfs_list,
5438                                  I915_DEBUGFS_ENTRIES, minor);
5439
5440         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5441                                  1, minor);
5442
5443         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5444                 struct drm_info_list *info_list =
5445                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5446
5447                 drm_debugfs_remove_files(info_list, 1, minor);
5448         }
5449
5450         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5451                 struct drm_info_list *info_list =
5452                         (struct drm_info_list *) i915_debugfs_files[i].fops;
5453
5454                 drm_debugfs_remove_files(info_list, 1, minor);
5455         }
5456 }
5457
5458 struct dpcd_block {
5459         /* DPCD dump start address. */
5460         unsigned int offset;
5461         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5462         unsigned int end;
5463         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5464         size_t size;
5465         /* Only valid for eDP. */
5466         bool edp;
5467 };
5468
5469 static const struct dpcd_block i915_dpcd_debug[] = {
5470         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5471         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5472         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5473         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5474         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5475         { .offset = DP_SET_POWER },
5476         { .offset = DP_EDP_DPCD_REV },
5477         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5478         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5479         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5480 };
5481
5482 static int i915_dpcd_show(struct seq_file *m, void *data)
5483 {
5484         struct drm_connector *connector = m->private;
5485         struct intel_dp *intel_dp =
5486                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5487         uint8_t buf[16];
5488         ssize_t err;
5489         int i;
5490
5491         if (connector->status != connector_status_connected)
5492                 return -ENODEV;
5493
5494         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5495                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5496                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5497
5498                 if (b->edp &&
5499                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5500                         continue;
5501
5502                 /* low tech for now */
5503                 if (WARN_ON(size > sizeof(buf)))
5504                         continue;
5505
5506                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5507                 if (err <= 0) {
5508                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5509                                   size, b->offset, err);
5510                         continue;
5511                 }
5512
5513                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5514         }
5515
5516         return 0;
5517 }
5518
5519 static int i915_dpcd_open(struct inode *inode, struct file *file)
5520 {
5521         return single_open(file, i915_dpcd_show, inode->i_private);
5522 }
5523
5524 static const struct file_operations i915_dpcd_fops = {
5525         .owner = THIS_MODULE,
5526         .open = i915_dpcd_open,
5527         .read = seq_read,
5528         .llseek = seq_lseek,
5529         .release = single_release,
5530 };
5531
5532 /**
5533  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5534  * @connector: pointer to a registered drm_connector
5535  *
5536  * Cleanup will be done by drm_connector_unregister() through a call to
5537  * drm_debugfs_connector_remove().
5538  *
5539  * Returns 0 on success, negative error codes on error.
5540  */
5541 int i915_debugfs_connector_add(struct drm_connector *connector)
5542 {
5543         struct dentry *root = connector->debugfs_entry;
5544
5545         /* The connector must have been registered beforehands. */
5546         if (!root)
5547                 return -ENODEV;
5548
5549         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5550             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5551                 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5552                                     &i915_dpcd_fops);
5553
5554         return 0;
5555 }