Merge remote-tracking branches 'regmap/topic/devm-irq', 'regmap/topic/doc', 'regmap...
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53                        struct dentry *ent,
54                        const void *key)
55 {
56         struct drm_info_node *node;
57
58         node = kmalloc(sizeof(*node), GFP_KERNEL);
59         if (node == NULL) {
60                 debugfs_remove(ent);
61                 return -ENOMEM;
62         }
63
64         node->minor = minor;
65         node->dent = ent;
66         node->info_ent = (void *) key;
67
68         mutex_lock(&minor->debugfs_lock);
69         list_add(&node->list, &minor->debugfs_list);
70         mutex_unlock(&minor->debugfs_lock);
71
72         return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77         struct drm_info_node *node = m->private;
78         struct drm_device *dev = node->minor->dev;
79         const struct intel_device_info *info = INTEL_INFO(dev);
80
81         seq_printf(m, "gen: %d\n", info->gen);
82         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89         return 0;
90 }
91
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94         if (obj->pin_display)
95                 return "p";
96         else
97                 return " ";
98 }
99
100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102         switch (obj->tiling_mode) {
103         default:
104         case I915_TILING_NONE: return " ";
105         case I915_TILING_X: return "X";
106         case I915_TILING_Y: return "Y";
107         }
108 }
109
110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112         return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114
115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117         u64 size = 0;
118         struct i915_vma *vma;
119
120         list_for_each_entry(vma, &obj->vma_list, vma_link) {
121                 if (i915_is_ggtt(vma->vm) &&
122                     drm_mm_node_allocated(&vma->node))
123                         size += vma->node.size;
124         }
125
126         return size;
127 }
128
129 static void
130 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
131 {
132         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
133         struct intel_engine_cs *ring;
134         struct i915_vma *vma;
135         int pin_count = 0;
136         int i;
137
138         seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
139                    &obj->base,
140                    obj->active ? "*" : " ",
141                    get_pin_flag(obj),
142                    get_tiling_flag(obj),
143                    get_global_flag(obj),
144                    obj->base.size / 1024,
145                    obj->base.read_domains,
146                    obj->base.write_domain);
147         for_each_ring(ring, dev_priv, i)
148                 seq_printf(m, "%x ",
149                                 i915_gem_request_get_seqno(obj->last_read_req[i]));
150         seq_printf(m, "] %x %x%s%s%s",
151                    i915_gem_request_get_seqno(obj->last_write_req),
152                    i915_gem_request_get_seqno(obj->last_fenced_req),
153                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
154                    obj->dirty ? " dirty" : "",
155                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
156         if (obj->base.name)
157                 seq_printf(m, " (name: %d)", obj->base.name);
158         list_for_each_entry(vma, &obj->vma_list, vma_link) {
159                 if (vma->pin_count > 0)
160                         pin_count++;
161         }
162         seq_printf(m, " (pinned x %d)", pin_count);
163         if (obj->pin_display)
164                 seq_printf(m, " (display)");
165         if (obj->fence_reg != I915_FENCE_REG_NONE)
166                 seq_printf(m, " (fence: %d)", obj->fence_reg);
167         list_for_each_entry(vma, &obj->vma_list, vma_link) {
168                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
169                            i915_is_ggtt(vma->vm) ? "g" : "pp",
170                            vma->node.start, vma->node.size);
171                 if (i915_is_ggtt(vma->vm))
172                         seq_printf(m, ", type: %u)", vma->ggtt_view.type);
173                 else
174                         seq_puts(m, ")");
175         }
176         if (obj->stolen)
177                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
178         if (obj->pin_display || obj->fault_mappable) {
179                 char s[3], *t = s;
180                 if (obj->pin_display)
181                         *t++ = 'p';
182                 if (obj->fault_mappable)
183                         *t++ = 'f';
184                 *t = '\0';
185                 seq_printf(m, " (%s mappable)", s);
186         }
187         if (obj->last_write_req != NULL)
188                 seq_printf(m, " (%s)",
189                            i915_gem_request_get_ring(obj->last_write_req)->name);
190         if (obj->frontbuffer_bits)
191                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
192 }
193
194 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
195 {
196         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
197         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
198         seq_putc(m, ' ');
199 }
200
201 static int i915_gem_object_list_info(struct seq_file *m, void *data)
202 {
203         struct drm_info_node *node = m->private;
204         uintptr_t list = (uintptr_t) node->info_ent->data;
205         struct list_head *head;
206         struct drm_device *dev = node->minor->dev;
207         struct drm_i915_private *dev_priv = dev->dev_private;
208         struct i915_address_space *vm = &dev_priv->gtt.base;
209         struct i915_vma *vma;
210         u64 total_obj_size, total_gtt_size;
211         int count, ret;
212
213         ret = mutex_lock_interruptible(&dev->struct_mutex);
214         if (ret)
215                 return ret;
216
217         /* FIXME: the user of this interface might want more than just GGTT */
218         switch (list) {
219         case ACTIVE_LIST:
220                 seq_puts(m, "Active:\n");
221                 head = &vm->active_list;
222                 break;
223         case INACTIVE_LIST:
224                 seq_puts(m, "Inactive:\n");
225                 head = &vm->inactive_list;
226                 break;
227         default:
228                 mutex_unlock(&dev->struct_mutex);
229                 return -EINVAL;
230         }
231
232         total_obj_size = total_gtt_size = count = 0;
233         list_for_each_entry(vma, head, mm_list) {
234                 seq_printf(m, "   ");
235                 describe_obj(m, vma->obj);
236                 seq_printf(m, "\n");
237                 total_obj_size += vma->obj->base.size;
238                 total_gtt_size += vma->node.size;
239                 count++;
240         }
241         mutex_unlock(&dev->struct_mutex);
242
243         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
244                    count, total_obj_size, total_gtt_size);
245         return 0;
246 }
247
248 static int obj_rank_by_stolen(void *priv,
249                               struct list_head *A, struct list_head *B)
250 {
251         struct drm_i915_gem_object *a =
252                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
253         struct drm_i915_gem_object *b =
254                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
255
256         if (a->stolen->start < b->stolen->start)
257                 return -1;
258         if (a->stolen->start > b->stolen->start)
259                 return 1;
260         return 0;
261 }
262
263 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
264 {
265         struct drm_info_node *node = m->private;
266         struct drm_device *dev = node->minor->dev;
267         struct drm_i915_private *dev_priv = dev->dev_private;
268         struct drm_i915_gem_object *obj;
269         u64 total_obj_size, total_gtt_size;
270         LIST_HEAD(stolen);
271         int count, ret;
272
273         ret = mutex_lock_interruptible(&dev->struct_mutex);
274         if (ret)
275                 return ret;
276
277         total_obj_size = total_gtt_size = count = 0;
278         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
279                 if (obj->stolen == NULL)
280                         continue;
281
282                 list_add(&obj->obj_exec_link, &stolen);
283
284                 total_obj_size += obj->base.size;
285                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
286                 count++;
287         }
288         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
289                 if (obj->stolen == NULL)
290                         continue;
291
292                 list_add(&obj->obj_exec_link, &stolen);
293
294                 total_obj_size += obj->base.size;
295                 count++;
296         }
297         list_sort(NULL, &stolen, obj_rank_by_stolen);
298         seq_puts(m, "Stolen:\n");
299         while (!list_empty(&stolen)) {
300                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
301                 seq_puts(m, "   ");
302                 describe_obj(m, obj);
303                 seq_putc(m, '\n');
304                 list_del_init(&obj->obj_exec_link);
305         }
306         mutex_unlock(&dev->struct_mutex);
307
308         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
309                    count, total_obj_size, total_gtt_size);
310         return 0;
311 }
312
313 #define count_objects(list, member) do { \
314         list_for_each_entry(obj, list, member) { \
315                 size += i915_gem_obj_total_ggtt_size(obj); \
316                 ++count; \
317                 if (obj->map_and_fenceable) { \
318                         mappable_size += i915_gem_obj_ggtt_size(obj); \
319                         ++mappable_count; \
320                 } \
321         } \
322 } while (0)
323
324 struct file_stats {
325         struct drm_i915_file_private *file_priv;
326         unsigned long count;
327         u64 total, unbound;
328         u64 global, shared;
329         u64 active, inactive;
330 };
331
332 static int per_file_stats(int id, void *ptr, void *data)
333 {
334         struct drm_i915_gem_object *obj = ptr;
335         struct file_stats *stats = data;
336         struct i915_vma *vma;
337
338         stats->count++;
339         stats->total += obj->base.size;
340
341         if (obj->base.name || obj->base.dma_buf)
342                 stats->shared += obj->base.size;
343
344         if (USES_FULL_PPGTT(obj->base.dev)) {
345                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
346                         struct i915_hw_ppgtt *ppgtt;
347
348                         if (!drm_mm_node_allocated(&vma->node))
349                                 continue;
350
351                         if (i915_is_ggtt(vma->vm)) {
352                                 stats->global += obj->base.size;
353                                 continue;
354                         }
355
356                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
357                         if (ppgtt->file_priv != stats->file_priv)
358                                 continue;
359
360                         if (obj->active) /* XXX per-vma statistic */
361                                 stats->active += obj->base.size;
362                         else
363                                 stats->inactive += obj->base.size;
364
365                         return 0;
366                 }
367         } else {
368                 if (i915_gem_obj_ggtt_bound(obj)) {
369                         stats->global += obj->base.size;
370                         if (obj->active)
371                                 stats->active += obj->base.size;
372                         else
373                                 stats->inactive += obj->base.size;
374                         return 0;
375                 }
376         }
377
378         if (!list_empty(&obj->global_list))
379                 stats->unbound += obj->base.size;
380
381         return 0;
382 }
383
384 #define print_file_stats(m, name, stats) do { \
385         if (stats.count) \
386                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
387                            name, \
388                            stats.count, \
389                            stats.total, \
390                            stats.active, \
391                            stats.inactive, \
392                            stats.global, \
393                            stats.shared, \
394                            stats.unbound); \
395 } while (0)
396
397 static void print_batch_pool_stats(struct seq_file *m,
398                                    struct drm_i915_private *dev_priv)
399 {
400         struct drm_i915_gem_object *obj;
401         struct file_stats stats;
402         struct intel_engine_cs *ring;
403         int i, j;
404
405         memset(&stats, 0, sizeof(stats));
406
407         for_each_ring(ring, dev_priv, i) {
408                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
409                         list_for_each_entry(obj,
410                                             &ring->batch_pool.cache_list[j],
411                                             batch_pool_link)
412                                 per_file_stats(0, obj, &stats);
413                 }
414         }
415
416         print_file_stats(m, "[k]batch pool", stats);
417 }
418
419 #define count_vmas(list, member) do { \
420         list_for_each_entry(vma, list, member) { \
421                 size += i915_gem_obj_total_ggtt_size(vma->obj); \
422                 ++count; \
423                 if (vma->obj->map_and_fenceable) { \
424                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
425                         ++mappable_count; \
426                 } \
427         } \
428 } while (0)
429
430 static int i915_gem_object_info(struct seq_file *m, void* data)
431 {
432         struct drm_info_node *node = m->private;
433         struct drm_device *dev = node->minor->dev;
434         struct drm_i915_private *dev_priv = dev->dev_private;
435         u32 count, mappable_count, purgeable_count;
436         u64 size, mappable_size, purgeable_size;
437         struct drm_i915_gem_object *obj;
438         struct i915_address_space *vm = &dev_priv->gtt.base;
439         struct drm_file *file;
440         struct i915_vma *vma;
441         int ret;
442
443         ret = mutex_lock_interruptible(&dev->struct_mutex);
444         if (ret)
445                 return ret;
446
447         seq_printf(m, "%u objects, %zu bytes\n",
448                    dev_priv->mm.object_count,
449                    dev_priv->mm.object_memory);
450
451         size = count = mappable_size = mappable_count = 0;
452         count_objects(&dev_priv->mm.bound_list, global_list);
453         seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
454                    count, mappable_count, size, mappable_size);
455
456         size = count = mappable_size = mappable_count = 0;
457         count_vmas(&vm->active_list, mm_list);
458         seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
459                    count, mappable_count, size, mappable_size);
460
461         size = count = mappable_size = mappable_count = 0;
462         count_vmas(&vm->inactive_list, mm_list);
463         seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
464                    count, mappable_count, size, mappable_size);
465
466         size = count = purgeable_size = purgeable_count = 0;
467         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
468                 size += obj->base.size, ++count;
469                 if (obj->madv == I915_MADV_DONTNEED)
470                         purgeable_size += obj->base.size, ++purgeable_count;
471         }
472         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
473
474         size = count = mappable_size = mappable_count = 0;
475         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
476                 if (obj->fault_mappable) {
477                         size += i915_gem_obj_ggtt_size(obj);
478                         ++count;
479                 }
480                 if (obj->pin_display) {
481                         mappable_size += i915_gem_obj_ggtt_size(obj);
482                         ++mappable_count;
483                 }
484                 if (obj->madv == I915_MADV_DONTNEED) {
485                         purgeable_size += obj->base.size;
486                         ++purgeable_count;
487                 }
488         }
489         seq_printf(m, "%u purgeable objects, %llu bytes\n",
490                    purgeable_count, purgeable_size);
491         seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
492                    mappable_count, mappable_size);
493         seq_printf(m, "%u fault mappable objects, %llu bytes\n",
494                    count, size);
495
496         seq_printf(m, "%llu [%llu] gtt total\n",
497                    dev_priv->gtt.base.total,
498                    (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
499
500         seq_putc(m, '\n');
501         print_batch_pool_stats(m, dev_priv);
502         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
503                 struct file_stats stats;
504                 struct task_struct *task;
505
506                 memset(&stats, 0, sizeof(stats));
507                 stats.file_priv = file->driver_priv;
508                 spin_lock(&file->table_lock);
509                 idr_for_each(&file->object_idr, per_file_stats, &stats);
510                 spin_unlock(&file->table_lock);
511                 /*
512                  * Although we have a valid reference on file->pid, that does
513                  * not guarantee that the task_struct who called get_pid() is
514                  * still alive (e.g. get_pid(current) => fork() => exit()).
515                  * Therefore, we need to protect this ->comm access using RCU.
516                  */
517                 rcu_read_lock();
518                 task = pid_task(file->pid, PIDTYPE_PID);
519                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
520                 rcu_read_unlock();
521         }
522
523         mutex_unlock(&dev->struct_mutex);
524
525         return 0;
526 }
527
528 static int i915_gem_gtt_info(struct seq_file *m, void *data)
529 {
530         struct drm_info_node *node = m->private;
531         struct drm_device *dev = node->minor->dev;
532         uintptr_t list = (uintptr_t) node->info_ent->data;
533         struct drm_i915_private *dev_priv = dev->dev_private;
534         struct drm_i915_gem_object *obj;
535         u64 total_obj_size, total_gtt_size;
536         int count, ret;
537
538         ret = mutex_lock_interruptible(&dev->struct_mutex);
539         if (ret)
540                 return ret;
541
542         total_obj_size = total_gtt_size = count = 0;
543         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
544                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
545                         continue;
546
547                 seq_puts(m, "   ");
548                 describe_obj(m, obj);
549                 seq_putc(m, '\n');
550                 total_obj_size += obj->base.size;
551                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
552                 count++;
553         }
554
555         mutex_unlock(&dev->struct_mutex);
556
557         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
558                    count, total_obj_size, total_gtt_size);
559
560         return 0;
561 }
562
563 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
564 {
565         struct drm_info_node *node = m->private;
566         struct drm_device *dev = node->minor->dev;
567         struct drm_i915_private *dev_priv = dev->dev_private;
568         struct intel_crtc *crtc;
569         int ret;
570
571         ret = mutex_lock_interruptible(&dev->struct_mutex);
572         if (ret)
573                 return ret;
574
575         for_each_intel_crtc(dev, crtc) {
576                 const char pipe = pipe_name(crtc->pipe);
577                 const char plane = plane_name(crtc->plane);
578                 struct intel_unpin_work *work;
579
580                 spin_lock_irq(&dev->event_lock);
581                 work = crtc->unpin_work;
582                 if (work == NULL) {
583                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
584                                    pipe, plane);
585                 } else {
586                         u32 addr;
587
588                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
589                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
590                                            pipe, plane);
591                         } else {
592                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
593                                            pipe, plane);
594                         }
595                         if (work->flip_queued_req) {
596                                 struct intel_engine_cs *ring =
597                                         i915_gem_request_get_ring(work->flip_queued_req);
598
599                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
600                                            ring->name,
601                                            i915_gem_request_get_seqno(work->flip_queued_req),
602                                            dev_priv->next_seqno,
603                                            ring->get_seqno(ring, true),
604                                            i915_gem_request_completed(work->flip_queued_req, true));
605                         } else
606                                 seq_printf(m, "Flip not associated with any ring\n");
607                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
608                                    work->flip_queued_vblank,
609                                    work->flip_ready_vblank,
610                                    drm_crtc_vblank_count(&crtc->base));
611                         if (work->enable_stall_check)
612                                 seq_puts(m, "Stall check enabled, ");
613                         else
614                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
615                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
616
617                         if (INTEL_INFO(dev)->gen >= 4)
618                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
619                         else
620                                 addr = I915_READ(DSPADDR(crtc->plane));
621                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
622
623                         if (work->pending_flip_obj) {
624                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
625                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
626                         }
627                 }
628                 spin_unlock_irq(&dev->event_lock);
629         }
630
631         mutex_unlock(&dev->struct_mutex);
632
633         return 0;
634 }
635
636 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
637 {
638         struct drm_info_node *node = m->private;
639         struct drm_device *dev = node->minor->dev;
640         struct drm_i915_private *dev_priv = dev->dev_private;
641         struct drm_i915_gem_object *obj;
642         struct intel_engine_cs *ring;
643         int total = 0;
644         int ret, i, j;
645
646         ret = mutex_lock_interruptible(&dev->struct_mutex);
647         if (ret)
648                 return ret;
649
650         for_each_ring(ring, dev_priv, i) {
651                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
652                         int count;
653
654                         count = 0;
655                         list_for_each_entry(obj,
656                                             &ring->batch_pool.cache_list[j],
657                                             batch_pool_link)
658                                 count++;
659                         seq_printf(m, "%s cache[%d]: %d objects\n",
660                                    ring->name, j, count);
661
662                         list_for_each_entry(obj,
663                                             &ring->batch_pool.cache_list[j],
664                                             batch_pool_link) {
665                                 seq_puts(m, "   ");
666                                 describe_obj(m, obj);
667                                 seq_putc(m, '\n');
668                         }
669
670                         total += count;
671                 }
672         }
673
674         seq_printf(m, "total: %d\n", total);
675
676         mutex_unlock(&dev->struct_mutex);
677
678         return 0;
679 }
680
681 static int i915_gem_request_info(struct seq_file *m, void *data)
682 {
683         struct drm_info_node *node = m->private;
684         struct drm_device *dev = node->minor->dev;
685         struct drm_i915_private *dev_priv = dev->dev_private;
686         struct intel_engine_cs *ring;
687         struct drm_i915_gem_request *req;
688         int ret, any, i;
689
690         ret = mutex_lock_interruptible(&dev->struct_mutex);
691         if (ret)
692                 return ret;
693
694         any = 0;
695         for_each_ring(ring, dev_priv, i) {
696                 int count;
697
698                 count = 0;
699                 list_for_each_entry(req, &ring->request_list, list)
700                         count++;
701                 if (count == 0)
702                         continue;
703
704                 seq_printf(m, "%s requests: %d\n", ring->name, count);
705                 list_for_each_entry(req, &ring->request_list, list) {
706                         struct task_struct *task;
707
708                         rcu_read_lock();
709                         task = NULL;
710                         if (req->pid)
711                                 task = pid_task(req->pid, PIDTYPE_PID);
712                         seq_printf(m, "    %x @ %d: %s [%d]\n",
713                                    req->seqno,
714                                    (int) (jiffies - req->emitted_jiffies),
715                                    task ? task->comm : "<unknown>",
716                                    task ? task->pid : -1);
717                         rcu_read_unlock();
718                 }
719
720                 any++;
721         }
722         mutex_unlock(&dev->struct_mutex);
723
724         if (any == 0)
725                 seq_puts(m, "No requests\n");
726
727         return 0;
728 }
729
730 static void i915_ring_seqno_info(struct seq_file *m,
731                                  struct intel_engine_cs *ring)
732 {
733         if (ring->get_seqno) {
734                 seq_printf(m, "Current sequence (%s): %x\n",
735                            ring->name, ring->get_seqno(ring, false));
736         }
737 }
738
739 static int i915_gem_seqno_info(struct seq_file *m, void *data)
740 {
741         struct drm_info_node *node = m->private;
742         struct drm_device *dev = node->minor->dev;
743         struct drm_i915_private *dev_priv = dev->dev_private;
744         struct intel_engine_cs *ring;
745         int ret, i;
746
747         ret = mutex_lock_interruptible(&dev->struct_mutex);
748         if (ret)
749                 return ret;
750         intel_runtime_pm_get(dev_priv);
751
752         for_each_ring(ring, dev_priv, i)
753                 i915_ring_seqno_info(m, ring);
754
755         intel_runtime_pm_put(dev_priv);
756         mutex_unlock(&dev->struct_mutex);
757
758         return 0;
759 }
760
761
762 static int i915_interrupt_info(struct seq_file *m, void *data)
763 {
764         struct drm_info_node *node = m->private;
765         struct drm_device *dev = node->minor->dev;
766         struct drm_i915_private *dev_priv = dev->dev_private;
767         struct intel_engine_cs *ring;
768         int ret, i, pipe;
769
770         ret = mutex_lock_interruptible(&dev->struct_mutex);
771         if (ret)
772                 return ret;
773         intel_runtime_pm_get(dev_priv);
774
775         if (IS_CHERRYVIEW(dev)) {
776                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
777                            I915_READ(GEN8_MASTER_IRQ));
778
779                 seq_printf(m, "Display IER:\t%08x\n",
780                            I915_READ(VLV_IER));
781                 seq_printf(m, "Display IIR:\t%08x\n",
782                            I915_READ(VLV_IIR));
783                 seq_printf(m, "Display IIR_RW:\t%08x\n",
784                            I915_READ(VLV_IIR_RW));
785                 seq_printf(m, "Display IMR:\t%08x\n",
786                            I915_READ(VLV_IMR));
787                 for_each_pipe(dev_priv, pipe)
788                         seq_printf(m, "Pipe %c stat:\t%08x\n",
789                                    pipe_name(pipe),
790                                    I915_READ(PIPESTAT(pipe)));
791
792                 seq_printf(m, "Port hotplug:\t%08x\n",
793                            I915_READ(PORT_HOTPLUG_EN));
794                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
795                            I915_READ(VLV_DPFLIPSTAT));
796                 seq_printf(m, "DPINVGTT:\t%08x\n",
797                            I915_READ(DPINVGTT));
798
799                 for (i = 0; i < 4; i++) {
800                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
801                                    i, I915_READ(GEN8_GT_IMR(i)));
802                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
803                                    i, I915_READ(GEN8_GT_IIR(i)));
804                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
805                                    i, I915_READ(GEN8_GT_IER(i)));
806                 }
807
808                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
809                            I915_READ(GEN8_PCU_IMR));
810                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
811                            I915_READ(GEN8_PCU_IIR));
812                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
813                            I915_READ(GEN8_PCU_IER));
814         } else if (INTEL_INFO(dev)->gen >= 8) {
815                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
816                            I915_READ(GEN8_MASTER_IRQ));
817
818                 for (i = 0; i < 4; i++) {
819                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
820                                    i, I915_READ(GEN8_GT_IMR(i)));
821                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
822                                    i, I915_READ(GEN8_GT_IIR(i)));
823                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
824                                    i, I915_READ(GEN8_GT_IER(i)));
825                 }
826
827                 for_each_pipe(dev_priv, pipe) {
828                         enum intel_display_power_domain power_domain;
829
830                         power_domain = POWER_DOMAIN_PIPE(pipe);
831                         if (!intel_display_power_get_if_enabled(dev_priv,
832                                                                 power_domain)) {
833                                 seq_printf(m, "Pipe %c power disabled\n",
834                                            pipe_name(pipe));
835                                 continue;
836                         }
837                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
838                                    pipe_name(pipe),
839                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
840                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
841                                    pipe_name(pipe),
842                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
843                         seq_printf(m, "Pipe %c IER:\t%08x\n",
844                                    pipe_name(pipe),
845                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
846
847                         intel_display_power_put(dev_priv, power_domain);
848                 }
849
850                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
851                            I915_READ(GEN8_DE_PORT_IMR));
852                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
853                            I915_READ(GEN8_DE_PORT_IIR));
854                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
855                            I915_READ(GEN8_DE_PORT_IER));
856
857                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
858                            I915_READ(GEN8_DE_MISC_IMR));
859                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
860                            I915_READ(GEN8_DE_MISC_IIR));
861                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
862                            I915_READ(GEN8_DE_MISC_IER));
863
864                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
865                            I915_READ(GEN8_PCU_IMR));
866                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
867                            I915_READ(GEN8_PCU_IIR));
868                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
869                            I915_READ(GEN8_PCU_IER));
870         } else if (IS_VALLEYVIEW(dev)) {
871                 seq_printf(m, "Display IER:\t%08x\n",
872                            I915_READ(VLV_IER));
873                 seq_printf(m, "Display IIR:\t%08x\n",
874                            I915_READ(VLV_IIR));
875                 seq_printf(m, "Display IIR_RW:\t%08x\n",
876                            I915_READ(VLV_IIR_RW));
877                 seq_printf(m, "Display IMR:\t%08x\n",
878                            I915_READ(VLV_IMR));
879                 for_each_pipe(dev_priv, pipe)
880                         seq_printf(m, "Pipe %c stat:\t%08x\n",
881                                    pipe_name(pipe),
882                                    I915_READ(PIPESTAT(pipe)));
883
884                 seq_printf(m, "Master IER:\t%08x\n",
885                            I915_READ(VLV_MASTER_IER));
886
887                 seq_printf(m, "Render IER:\t%08x\n",
888                            I915_READ(GTIER));
889                 seq_printf(m, "Render IIR:\t%08x\n",
890                            I915_READ(GTIIR));
891                 seq_printf(m, "Render IMR:\t%08x\n",
892                            I915_READ(GTIMR));
893
894                 seq_printf(m, "PM IER:\t\t%08x\n",
895                            I915_READ(GEN6_PMIER));
896                 seq_printf(m, "PM IIR:\t\t%08x\n",
897                            I915_READ(GEN6_PMIIR));
898                 seq_printf(m, "PM IMR:\t\t%08x\n",
899                            I915_READ(GEN6_PMIMR));
900
901                 seq_printf(m, "Port hotplug:\t%08x\n",
902                            I915_READ(PORT_HOTPLUG_EN));
903                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
904                            I915_READ(VLV_DPFLIPSTAT));
905                 seq_printf(m, "DPINVGTT:\t%08x\n",
906                            I915_READ(DPINVGTT));
907
908         } else if (!HAS_PCH_SPLIT(dev)) {
909                 seq_printf(m, "Interrupt enable:    %08x\n",
910                            I915_READ(IER));
911                 seq_printf(m, "Interrupt identity:  %08x\n",
912                            I915_READ(IIR));
913                 seq_printf(m, "Interrupt mask:      %08x\n",
914                            I915_READ(IMR));
915                 for_each_pipe(dev_priv, pipe)
916                         seq_printf(m, "Pipe %c stat:         %08x\n",
917                                    pipe_name(pipe),
918                                    I915_READ(PIPESTAT(pipe)));
919         } else {
920                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
921                            I915_READ(DEIER));
922                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
923                            I915_READ(DEIIR));
924                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
925                            I915_READ(DEIMR));
926                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
927                            I915_READ(SDEIER));
928                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
929                            I915_READ(SDEIIR));
930                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
931                            I915_READ(SDEIMR));
932                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
933                            I915_READ(GTIER));
934                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
935                            I915_READ(GTIIR));
936                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
937                            I915_READ(GTIMR));
938         }
939         for_each_ring(ring, dev_priv, i) {
940                 if (INTEL_INFO(dev)->gen >= 6) {
941                         seq_printf(m,
942                                    "Graphics Interrupt mask (%s):       %08x\n",
943                                    ring->name, I915_READ_IMR(ring));
944                 }
945                 i915_ring_seqno_info(m, ring);
946         }
947         intel_runtime_pm_put(dev_priv);
948         mutex_unlock(&dev->struct_mutex);
949
950         return 0;
951 }
952
953 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
954 {
955         struct drm_info_node *node = m->private;
956         struct drm_device *dev = node->minor->dev;
957         struct drm_i915_private *dev_priv = dev->dev_private;
958         int i, ret;
959
960         ret = mutex_lock_interruptible(&dev->struct_mutex);
961         if (ret)
962                 return ret;
963
964         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
965         for (i = 0; i < dev_priv->num_fence_regs; i++) {
966                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
967
968                 seq_printf(m, "Fence %d, pin count = %d, object = ",
969                            i, dev_priv->fence_regs[i].pin_count);
970                 if (obj == NULL)
971                         seq_puts(m, "unused");
972                 else
973                         describe_obj(m, obj);
974                 seq_putc(m, '\n');
975         }
976
977         mutex_unlock(&dev->struct_mutex);
978         return 0;
979 }
980
981 static int i915_hws_info(struct seq_file *m, void *data)
982 {
983         struct drm_info_node *node = m->private;
984         struct drm_device *dev = node->minor->dev;
985         struct drm_i915_private *dev_priv = dev->dev_private;
986         struct intel_engine_cs *ring;
987         const u32 *hws;
988         int i;
989
990         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
991         hws = ring->status_page.page_addr;
992         if (hws == NULL)
993                 return 0;
994
995         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
996                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
997                            i * 4,
998                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
999         }
1000         return 0;
1001 }
1002
1003 static ssize_t
1004 i915_error_state_write(struct file *filp,
1005                        const char __user *ubuf,
1006                        size_t cnt,
1007                        loff_t *ppos)
1008 {
1009         struct i915_error_state_file_priv *error_priv = filp->private_data;
1010         struct drm_device *dev = error_priv->dev;
1011         int ret;
1012
1013         DRM_DEBUG_DRIVER("Resetting error state\n");
1014
1015         ret = mutex_lock_interruptible(&dev->struct_mutex);
1016         if (ret)
1017                 return ret;
1018
1019         i915_destroy_error_state(dev);
1020         mutex_unlock(&dev->struct_mutex);
1021
1022         return cnt;
1023 }
1024
1025 static int i915_error_state_open(struct inode *inode, struct file *file)
1026 {
1027         struct drm_device *dev = inode->i_private;
1028         struct i915_error_state_file_priv *error_priv;
1029
1030         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1031         if (!error_priv)
1032                 return -ENOMEM;
1033
1034         error_priv->dev = dev;
1035
1036         i915_error_state_get(dev, error_priv);
1037
1038         file->private_data = error_priv;
1039
1040         return 0;
1041 }
1042
1043 static int i915_error_state_release(struct inode *inode, struct file *file)
1044 {
1045         struct i915_error_state_file_priv *error_priv = file->private_data;
1046
1047         i915_error_state_put(error_priv);
1048         kfree(error_priv);
1049
1050         return 0;
1051 }
1052
1053 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1054                                      size_t count, loff_t *pos)
1055 {
1056         struct i915_error_state_file_priv *error_priv = file->private_data;
1057         struct drm_i915_error_state_buf error_str;
1058         loff_t tmp_pos = 0;
1059         ssize_t ret_count = 0;
1060         int ret;
1061
1062         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1063         if (ret)
1064                 return ret;
1065
1066         ret = i915_error_state_to_str(&error_str, error_priv);
1067         if (ret)
1068                 goto out;
1069
1070         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1071                                             error_str.buf,
1072                                             error_str.bytes);
1073
1074         if (ret_count < 0)
1075                 ret = ret_count;
1076         else
1077                 *pos = error_str.start + ret_count;
1078 out:
1079         i915_error_state_buf_release(&error_str);
1080         return ret ?: ret_count;
1081 }
1082
1083 static const struct file_operations i915_error_state_fops = {
1084         .owner = THIS_MODULE,
1085         .open = i915_error_state_open,
1086         .read = i915_error_state_read,
1087         .write = i915_error_state_write,
1088         .llseek = default_llseek,
1089         .release = i915_error_state_release,
1090 };
1091
1092 static int
1093 i915_next_seqno_get(void *data, u64 *val)
1094 {
1095         struct drm_device *dev = data;
1096         struct drm_i915_private *dev_priv = dev->dev_private;
1097         int ret;
1098
1099         ret = mutex_lock_interruptible(&dev->struct_mutex);
1100         if (ret)
1101                 return ret;
1102
1103         *val = dev_priv->next_seqno;
1104         mutex_unlock(&dev->struct_mutex);
1105
1106         return 0;
1107 }
1108
1109 static int
1110 i915_next_seqno_set(void *data, u64 val)
1111 {
1112         struct drm_device *dev = data;
1113         int ret;
1114
1115         ret = mutex_lock_interruptible(&dev->struct_mutex);
1116         if (ret)
1117                 return ret;
1118
1119         ret = i915_gem_set_seqno(dev, val);
1120         mutex_unlock(&dev->struct_mutex);
1121
1122         return ret;
1123 }
1124
1125 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1126                         i915_next_seqno_get, i915_next_seqno_set,
1127                         "0x%llx\n");
1128
1129 static int i915_frequency_info(struct seq_file *m, void *unused)
1130 {
1131         struct drm_info_node *node = m->private;
1132         struct drm_device *dev = node->minor->dev;
1133         struct drm_i915_private *dev_priv = dev->dev_private;
1134         int ret = 0;
1135
1136         intel_runtime_pm_get(dev_priv);
1137
1138         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1139
1140         if (IS_GEN5(dev)) {
1141                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1142                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1143
1144                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1145                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1146                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1147                            MEMSTAT_VID_SHIFT);
1148                 seq_printf(m, "Current P-state: %d\n",
1149                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1150         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1151                 u32 freq_sts;
1152
1153                 mutex_lock(&dev_priv->rps.hw_lock);
1154                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1155                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1156                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1157
1158                 seq_printf(m, "actual GPU freq: %d MHz\n",
1159                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1160
1161                 seq_printf(m, "current GPU freq: %d MHz\n",
1162                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1163
1164                 seq_printf(m, "max GPU freq: %d MHz\n",
1165                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1166
1167                 seq_printf(m, "min GPU freq: %d MHz\n",
1168                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1169
1170                 seq_printf(m, "idle GPU freq: %d MHz\n",
1171                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1172
1173                 seq_printf(m,
1174                            "efficient (RPe) frequency: %d MHz\n",
1175                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1176                 mutex_unlock(&dev_priv->rps.hw_lock);
1177         } else if (INTEL_INFO(dev)->gen >= 6) {
1178                 u32 rp_state_limits;
1179                 u32 gt_perf_status;
1180                 u32 rp_state_cap;
1181                 u32 rpmodectl, rpinclimit, rpdeclimit;
1182                 u32 rpstat, cagf, reqf;
1183                 u32 rpupei, rpcurup, rpprevup;
1184                 u32 rpdownei, rpcurdown, rpprevdown;
1185                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1186                 int max_freq;
1187
1188                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1189                 if (IS_BROXTON(dev)) {
1190                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1191                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1192                 } else {
1193                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1194                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1195                 }
1196
1197                 /* RPSTAT1 is in the GT power well */
1198                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1199                 if (ret)
1200                         goto out;
1201
1202                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1203
1204                 reqf = I915_READ(GEN6_RPNSWREQ);
1205                 if (IS_GEN9(dev))
1206                         reqf >>= 23;
1207                 else {
1208                         reqf &= ~GEN6_TURBO_DISABLE;
1209                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1210                                 reqf >>= 24;
1211                         else
1212                                 reqf >>= 25;
1213                 }
1214                 reqf = intel_gpu_freq(dev_priv, reqf);
1215
1216                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1217                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1218                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1219
1220                 rpstat = I915_READ(GEN6_RPSTAT1);
1221                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1222                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1223                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1224                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1225                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1226                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1227                 if (IS_GEN9(dev))
1228                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1229                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1230                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1231                 else
1232                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1233                 cagf = intel_gpu_freq(dev_priv, cagf);
1234
1235                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1236                 mutex_unlock(&dev->struct_mutex);
1237
1238                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1239                         pm_ier = I915_READ(GEN6_PMIER);
1240                         pm_imr = I915_READ(GEN6_PMIMR);
1241                         pm_isr = I915_READ(GEN6_PMISR);
1242                         pm_iir = I915_READ(GEN6_PMIIR);
1243                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1244                 } else {
1245                         pm_ier = I915_READ(GEN8_GT_IER(2));
1246                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1247                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1248                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1249                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1250                 }
1251                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1252                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1253                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1254                 seq_printf(m, "Render p-state ratio: %d\n",
1255                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1256                 seq_printf(m, "Render p-state VID: %d\n",
1257                            gt_perf_status & 0xff);
1258                 seq_printf(m, "Render p-state limit: %d\n",
1259                            rp_state_limits & 0xff);
1260                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1261                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1262                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1263                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1264                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1265                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1266                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1267                            GEN6_CURICONT_MASK);
1268                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1269                            GEN6_CURBSYTAVG_MASK);
1270                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1271                            GEN6_CURBSYTAVG_MASK);
1272                 seq_printf(m, "Up threshold: %d%%\n",
1273                            dev_priv->rps.up_threshold);
1274
1275                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1276                            GEN6_CURIAVG_MASK);
1277                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1278                            GEN6_CURBSYTAVG_MASK);
1279                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1280                            GEN6_CURBSYTAVG_MASK);
1281                 seq_printf(m, "Down threshold: %d%%\n",
1282                            dev_priv->rps.down_threshold);
1283
1284                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1285                             rp_state_cap >> 16) & 0xff;
1286                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1287                              GEN9_FREQ_SCALER : 1);
1288                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1289                            intel_gpu_freq(dev_priv, max_freq));
1290
1291                 max_freq = (rp_state_cap & 0xff00) >> 8;
1292                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1293                              GEN9_FREQ_SCALER : 1);
1294                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1295                            intel_gpu_freq(dev_priv, max_freq));
1296
1297                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1298                             rp_state_cap >> 0) & 0xff;
1299                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1300                              GEN9_FREQ_SCALER : 1);
1301                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1302                            intel_gpu_freq(dev_priv, max_freq));
1303                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1304                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1305
1306                 seq_printf(m, "Current freq: %d MHz\n",
1307                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1308                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1309                 seq_printf(m, "Idle freq: %d MHz\n",
1310                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1311                 seq_printf(m, "Min freq: %d MHz\n",
1312                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1313                 seq_printf(m, "Max freq: %d MHz\n",
1314                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1315                 seq_printf(m,
1316                            "efficient (RPe) frequency: %d MHz\n",
1317                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1318         } else {
1319                 seq_puts(m, "no P-state info available\n");
1320         }
1321
1322         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1323         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1324         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1325
1326 out:
1327         intel_runtime_pm_put(dev_priv);
1328         return ret;
1329 }
1330
1331 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1332 {
1333         struct drm_info_node *node = m->private;
1334         struct drm_device *dev = node->minor->dev;
1335         struct drm_i915_private *dev_priv = dev->dev_private;
1336         struct intel_engine_cs *ring;
1337         u64 acthd[I915_NUM_RINGS];
1338         u32 seqno[I915_NUM_RINGS];
1339         int i;
1340
1341         if (!i915.enable_hangcheck) {
1342                 seq_printf(m, "Hangcheck disabled\n");
1343                 return 0;
1344         }
1345
1346         intel_runtime_pm_get(dev_priv);
1347
1348         for_each_ring(ring, dev_priv, i) {
1349                 seqno[i] = ring->get_seqno(ring, false);
1350                 acthd[i] = intel_ring_get_active_head(ring);
1351         }
1352
1353         intel_runtime_pm_put(dev_priv);
1354
1355         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1356                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1357                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1358                                             jiffies));
1359         } else
1360                 seq_printf(m, "Hangcheck inactive\n");
1361
1362         for_each_ring(ring, dev_priv, i) {
1363                 seq_printf(m, "%s:\n", ring->name);
1364                 seq_printf(m, "\tseqno = %x [current %x]\n",
1365                            ring->hangcheck.seqno, seqno[i]);
1366                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1367                            (long long)ring->hangcheck.acthd,
1368                            (long long)acthd[i]);
1369                 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1370                            (long long)ring->hangcheck.max_acthd);
1371                 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1372                 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1373         }
1374
1375         return 0;
1376 }
1377
1378 static int ironlake_drpc_info(struct seq_file *m)
1379 {
1380         struct drm_info_node *node = m->private;
1381         struct drm_device *dev = node->minor->dev;
1382         struct drm_i915_private *dev_priv = dev->dev_private;
1383         u32 rgvmodectl, rstdbyctl;
1384         u16 crstandvid;
1385         int ret;
1386
1387         ret = mutex_lock_interruptible(&dev->struct_mutex);
1388         if (ret)
1389                 return ret;
1390         intel_runtime_pm_get(dev_priv);
1391
1392         rgvmodectl = I915_READ(MEMMODECTL);
1393         rstdbyctl = I915_READ(RSTDBYCTL);
1394         crstandvid = I915_READ16(CRSTANDVID);
1395
1396         intel_runtime_pm_put(dev_priv);
1397         mutex_unlock(&dev->struct_mutex);
1398
1399         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1400         seq_printf(m, "Boost freq: %d\n",
1401                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1402                    MEMMODE_BOOST_FREQ_SHIFT);
1403         seq_printf(m, "HW control enabled: %s\n",
1404                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1405         seq_printf(m, "SW control enabled: %s\n",
1406                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1407         seq_printf(m, "Gated voltage change: %s\n",
1408                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1409         seq_printf(m, "Starting frequency: P%d\n",
1410                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1411         seq_printf(m, "Max P-state: P%d\n",
1412                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1413         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1414         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1415         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1416         seq_printf(m, "Render standby enabled: %s\n",
1417                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1418         seq_puts(m, "Current RS state: ");
1419         switch (rstdbyctl & RSX_STATUS_MASK) {
1420         case RSX_STATUS_ON:
1421                 seq_puts(m, "on\n");
1422                 break;
1423         case RSX_STATUS_RC1:
1424                 seq_puts(m, "RC1\n");
1425                 break;
1426         case RSX_STATUS_RC1E:
1427                 seq_puts(m, "RC1E\n");
1428                 break;
1429         case RSX_STATUS_RS1:
1430                 seq_puts(m, "RS1\n");
1431                 break;
1432         case RSX_STATUS_RS2:
1433                 seq_puts(m, "RS2 (RC6)\n");
1434                 break;
1435         case RSX_STATUS_RS3:
1436                 seq_puts(m, "RC3 (RC6+)\n");
1437                 break;
1438         default:
1439                 seq_puts(m, "unknown\n");
1440                 break;
1441         }
1442
1443         return 0;
1444 }
1445
1446 static int i915_forcewake_domains(struct seq_file *m, void *data)
1447 {
1448         struct drm_info_node *node = m->private;
1449         struct drm_device *dev = node->minor->dev;
1450         struct drm_i915_private *dev_priv = dev->dev_private;
1451         struct intel_uncore_forcewake_domain *fw_domain;
1452         int i;
1453
1454         spin_lock_irq(&dev_priv->uncore.lock);
1455         for_each_fw_domain(fw_domain, dev_priv, i) {
1456                 seq_printf(m, "%s.wake_count = %u\n",
1457                            intel_uncore_forcewake_domain_to_str(i),
1458                            fw_domain->wake_count);
1459         }
1460         spin_unlock_irq(&dev_priv->uncore.lock);
1461
1462         return 0;
1463 }
1464
1465 static int vlv_drpc_info(struct seq_file *m)
1466 {
1467         struct drm_info_node *node = m->private;
1468         struct drm_device *dev = node->minor->dev;
1469         struct drm_i915_private *dev_priv = dev->dev_private;
1470         u32 rpmodectl1, rcctl1, pw_status;
1471
1472         intel_runtime_pm_get(dev_priv);
1473
1474         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1475         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1476         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1477
1478         intel_runtime_pm_put(dev_priv);
1479
1480         seq_printf(m, "Video Turbo Mode: %s\n",
1481                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1482         seq_printf(m, "Turbo enabled: %s\n",
1483                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1484         seq_printf(m, "HW control enabled: %s\n",
1485                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1486         seq_printf(m, "SW control enabled: %s\n",
1487                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1488                           GEN6_RP_MEDIA_SW_MODE));
1489         seq_printf(m, "RC6 Enabled: %s\n",
1490                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1491                                         GEN6_RC_CTL_EI_MODE(1))));
1492         seq_printf(m, "Render Power Well: %s\n",
1493                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1494         seq_printf(m, "Media Power Well: %s\n",
1495                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1496
1497         seq_printf(m, "Render RC6 residency since boot: %u\n",
1498                    I915_READ(VLV_GT_RENDER_RC6));
1499         seq_printf(m, "Media RC6 residency since boot: %u\n",
1500                    I915_READ(VLV_GT_MEDIA_RC6));
1501
1502         return i915_forcewake_domains(m, NULL);
1503 }
1504
1505 static int gen6_drpc_info(struct seq_file *m)
1506 {
1507         struct drm_info_node *node = m->private;
1508         struct drm_device *dev = node->minor->dev;
1509         struct drm_i915_private *dev_priv = dev->dev_private;
1510         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1511         unsigned forcewake_count;
1512         int count = 0, ret;
1513
1514         ret = mutex_lock_interruptible(&dev->struct_mutex);
1515         if (ret)
1516                 return ret;
1517         intel_runtime_pm_get(dev_priv);
1518
1519         spin_lock_irq(&dev_priv->uncore.lock);
1520         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1521         spin_unlock_irq(&dev_priv->uncore.lock);
1522
1523         if (forcewake_count) {
1524                 seq_puts(m, "RC information inaccurate because somebody "
1525                             "holds a forcewake reference \n");
1526         } else {
1527                 /* NB: we cannot use forcewake, else we read the wrong values */
1528                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1529                         udelay(10);
1530                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1531         }
1532
1533         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1534         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1535
1536         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1537         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1538         mutex_unlock(&dev->struct_mutex);
1539         mutex_lock(&dev_priv->rps.hw_lock);
1540         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1541         mutex_unlock(&dev_priv->rps.hw_lock);
1542
1543         intel_runtime_pm_put(dev_priv);
1544
1545         seq_printf(m, "Video Turbo Mode: %s\n",
1546                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1547         seq_printf(m, "HW control enabled: %s\n",
1548                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1549         seq_printf(m, "SW control enabled: %s\n",
1550                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1551                           GEN6_RP_MEDIA_SW_MODE));
1552         seq_printf(m, "RC1e Enabled: %s\n",
1553                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1554         seq_printf(m, "RC6 Enabled: %s\n",
1555                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1556         seq_printf(m, "Deep RC6 Enabled: %s\n",
1557                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1558         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1559                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1560         seq_puts(m, "Current RC state: ");
1561         switch (gt_core_status & GEN6_RCn_MASK) {
1562         case GEN6_RC0:
1563                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1564                         seq_puts(m, "Core Power Down\n");
1565                 else
1566                         seq_puts(m, "on\n");
1567                 break;
1568         case GEN6_RC3:
1569                 seq_puts(m, "RC3\n");
1570                 break;
1571         case GEN6_RC6:
1572                 seq_puts(m, "RC6\n");
1573                 break;
1574         case GEN6_RC7:
1575                 seq_puts(m, "RC7\n");
1576                 break;
1577         default:
1578                 seq_puts(m, "Unknown\n");
1579                 break;
1580         }
1581
1582         seq_printf(m, "Core Power Down: %s\n",
1583                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1584
1585         /* Not exactly sure what this is */
1586         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1587                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1588         seq_printf(m, "RC6 residency since boot: %u\n",
1589                    I915_READ(GEN6_GT_GFX_RC6));
1590         seq_printf(m, "RC6+ residency since boot: %u\n",
1591                    I915_READ(GEN6_GT_GFX_RC6p));
1592         seq_printf(m, "RC6++ residency since boot: %u\n",
1593                    I915_READ(GEN6_GT_GFX_RC6pp));
1594
1595         seq_printf(m, "RC6   voltage: %dmV\n",
1596                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1597         seq_printf(m, "RC6+  voltage: %dmV\n",
1598                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1599         seq_printf(m, "RC6++ voltage: %dmV\n",
1600                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1601         return 0;
1602 }
1603
1604 static int i915_drpc_info(struct seq_file *m, void *unused)
1605 {
1606         struct drm_info_node *node = m->private;
1607         struct drm_device *dev = node->minor->dev;
1608
1609         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1610                 return vlv_drpc_info(m);
1611         else if (INTEL_INFO(dev)->gen >= 6)
1612                 return gen6_drpc_info(m);
1613         else
1614                 return ironlake_drpc_info(m);
1615 }
1616
1617 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1618 {
1619         struct drm_info_node *node = m->private;
1620         struct drm_device *dev = node->minor->dev;
1621         struct drm_i915_private *dev_priv = dev->dev_private;
1622
1623         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1624                    dev_priv->fb_tracking.busy_bits);
1625
1626         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1627                    dev_priv->fb_tracking.flip_bits);
1628
1629         return 0;
1630 }
1631
1632 static int i915_fbc_status(struct seq_file *m, void *unused)
1633 {
1634         struct drm_info_node *node = m->private;
1635         struct drm_device *dev = node->minor->dev;
1636         struct drm_i915_private *dev_priv = dev->dev_private;
1637
1638         if (!HAS_FBC(dev)) {
1639                 seq_puts(m, "FBC unsupported on this chipset\n");
1640                 return 0;
1641         }
1642
1643         intel_runtime_pm_get(dev_priv);
1644         mutex_lock(&dev_priv->fbc.lock);
1645
1646         if (intel_fbc_is_active(dev_priv))
1647                 seq_puts(m, "FBC enabled\n");
1648         else
1649                 seq_printf(m, "FBC disabled: %s\n",
1650                            dev_priv->fbc.no_fbc_reason);
1651
1652         if (INTEL_INFO(dev_priv)->gen >= 7)
1653                 seq_printf(m, "Compressing: %s\n",
1654                            yesno(I915_READ(FBC_STATUS2) &
1655                                  FBC_COMPRESSION_MASK));
1656
1657         mutex_unlock(&dev_priv->fbc.lock);
1658         intel_runtime_pm_put(dev_priv);
1659
1660         return 0;
1661 }
1662
1663 static int i915_fbc_fc_get(void *data, u64 *val)
1664 {
1665         struct drm_device *dev = data;
1666         struct drm_i915_private *dev_priv = dev->dev_private;
1667
1668         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1669                 return -ENODEV;
1670
1671         *val = dev_priv->fbc.false_color;
1672
1673         return 0;
1674 }
1675
1676 static int i915_fbc_fc_set(void *data, u64 val)
1677 {
1678         struct drm_device *dev = data;
1679         struct drm_i915_private *dev_priv = dev->dev_private;
1680         u32 reg;
1681
1682         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1683                 return -ENODEV;
1684
1685         mutex_lock(&dev_priv->fbc.lock);
1686
1687         reg = I915_READ(ILK_DPFC_CONTROL);
1688         dev_priv->fbc.false_color = val;
1689
1690         I915_WRITE(ILK_DPFC_CONTROL, val ?
1691                    (reg | FBC_CTL_FALSE_COLOR) :
1692                    (reg & ~FBC_CTL_FALSE_COLOR));
1693
1694         mutex_unlock(&dev_priv->fbc.lock);
1695         return 0;
1696 }
1697
1698 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1699                         i915_fbc_fc_get, i915_fbc_fc_set,
1700                         "%llu\n");
1701
1702 static int i915_ips_status(struct seq_file *m, void *unused)
1703 {
1704         struct drm_info_node *node = m->private;
1705         struct drm_device *dev = node->minor->dev;
1706         struct drm_i915_private *dev_priv = dev->dev_private;
1707
1708         if (!HAS_IPS(dev)) {
1709                 seq_puts(m, "not supported\n");
1710                 return 0;
1711         }
1712
1713         intel_runtime_pm_get(dev_priv);
1714
1715         seq_printf(m, "Enabled by kernel parameter: %s\n",
1716                    yesno(i915.enable_ips));
1717
1718         if (INTEL_INFO(dev)->gen >= 8) {
1719                 seq_puts(m, "Currently: unknown\n");
1720         } else {
1721                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1722                         seq_puts(m, "Currently: enabled\n");
1723                 else
1724                         seq_puts(m, "Currently: disabled\n");
1725         }
1726
1727         intel_runtime_pm_put(dev_priv);
1728
1729         return 0;
1730 }
1731
1732 static int i915_sr_status(struct seq_file *m, void *unused)
1733 {
1734         struct drm_info_node *node = m->private;
1735         struct drm_device *dev = node->minor->dev;
1736         struct drm_i915_private *dev_priv = dev->dev_private;
1737         bool sr_enabled = false;
1738
1739         intel_runtime_pm_get(dev_priv);
1740
1741         if (HAS_PCH_SPLIT(dev))
1742                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1743         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1744                  IS_I945G(dev) || IS_I945GM(dev))
1745                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1746         else if (IS_I915GM(dev))
1747                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1748         else if (IS_PINEVIEW(dev))
1749                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1750         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1751                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1752
1753         intel_runtime_pm_put(dev_priv);
1754
1755         seq_printf(m, "self-refresh: %s\n",
1756                    sr_enabled ? "enabled" : "disabled");
1757
1758         return 0;
1759 }
1760
1761 static int i915_emon_status(struct seq_file *m, void *unused)
1762 {
1763         struct drm_info_node *node = m->private;
1764         struct drm_device *dev = node->minor->dev;
1765         struct drm_i915_private *dev_priv = dev->dev_private;
1766         unsigned long temp, chipset, gfx;
1767         int ret;
1768
1769         if (!IS_GEN5(dev))
1770                 return -ENODEV;
1771
1772         ret = mutex_lock_interruptible(&dev->struct_mutex);
1773         if (ret)
1774                 return ret;
1775
1776         temp = i915_mch_val(dev_priv);
1777         chipset = i915_chipset_val(dev_priv);
1778         gfx = i915_gfx_val(dev_priv);
1779         mutex_unlock(&dev->struct_mutex);
1780
1781         seq_printf(m, "GMCH temp: %ld\n", temp);
1782         seq_printf(m, "Chipset power: %ld\n", chipset);
1783         seq_printf(m, "GFX power: %ld\n", gfx);
1784         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1785
1786         return 0;
1787 }
1788
1789 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1790 {
1791         struct drm_info_node *node = m->private;
1792         struct drm_device *dev = node->minor->dev;
1793         struct drm_i915_private *dev_priv = dev->dev_private;
1794         int ret = 0;
1795         int gpu_freq, ia_freq;
1796         unsigned int max_gpu_freq, min_gpu_freq;
1797
1798         if (!HAS_CORE_RING_FREQ(dev)) {
1799                 seq_puts(m, "unsupported on this chipset\n");
1800                 return 0;
1801         }
1802
1803         intel_runtime_pm_get(dev_priv);
1804
1805         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1806
1807         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1808         if (ret)
1809                 goto out;
1810
1811         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1812                 /* Convert GT frequency to 50 HZ units */
1813                 min_gpu_freq =
1814                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1815                 max_gpu_freq =
1816                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1817         } else {
1818                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1819                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1820         }
1821
1822         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1823
1824         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1825                 ia_freq = gpu_freq;
1826                 sandybridge_pcode_read(dev_priv,
1827                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1828                                        &ia_freq);
1829                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1830                            intel_gpu_freq(dev_priv, (gpu_freq *
1831                                 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1832                                  GEN9_FREQ_SCALER : 1))),
1833                            ((ia_freq >> 0) & 0xff) * 100,
1834                            ((ia_freq >> 8) & 0xff) * 100);
1835         }
1836
1837         mutex_unlock(&dev_priv->rps.hw_lock);
1838
1839 out:
1840         intel_runtime_pm_put(dev_priv);
1841         return ret;
1842 }
1843
1844 static int i915_opregion(struct seq_file *m, void *unused)
1845 {
1846         struct drm_info_node *node = m->private;
1847         struct drm_device *dev = node->minor->dev;
1848         struct drm_i915_private *dev_priv = dev->dev_private;
1849         struct intel_opregion *opregion = &dev_priv->opregion;
1850         int ret;
1851
1852         ret = mutex_lock_interruptible(&dev->struct_mutex);
1853         if (ret)
1854                 goto out;
1855
1856         if (opregion->header)
1857                 seq_write(m, opregion->header, OPREGION_SIZE);
1858
1859         mutex_unlock(&dev->struct_mutex);
1860
1861 out:
1862         return 0;
1863 }
1864
1865 static int i915_vbt(struct seq_file *m, void *unused)
1866 {
1867         struct drm_info_node *node = m->private;
1868         struct drm_device *dev = node->minor->dev;
1869         struct drm_i915_private *dev_priv = dev->dev_private;
1870         struct intel_opregion *opregion = &dev_priv->opregion;
1871
1872         if (opregion->vbt)
1873                 seq_write(m, opregion->vbt, opregion->vbt_size);
1874
1875         return 0;
1876 }
1877
1878 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1879 {
1880         struct drm_info_node *node = m->private;
1881         struct drm_device *dev = node->minor->dev;
1882         struct intel_framebuffer *fbdev_fb = NULL;
1883         struct drm_framebuffer *drm_fb;
1884
1885 #ifdef CONFIG_DRM_FBDEV_EMULATION
1886        if (to_i915(dev)->fbdev) {
1887                fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1888
1889                seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1890                          fbdev_fb->base.width,
1891                          fbdev_fb->base.height,
1892                          fbdev_fb->base.depth,
1893                          fbdev_fb->base.bits_per_pixel,
1894                          fbdev_fb->base.modifier[0],
1895                          atomic_read(&fbdev_fb->base.refcount.refcount));
1896                describe_obj(m, fbdev_fb->obj);
1897                seq_putc(m, '\n');
1898        }
1899 #endif
1900
1901         mutex_lock(&dev->mode_config.fb_lock);
1902         drm_for_each_fb(drm_fb, dev) {
1903                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1904                 if (fb == fbdev_fb)
1905                         continue;
1906
1907                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1908                            fb->base.width,
1909                            fb->base.height,
1910                            fb->base.depth,
1911                            fb->base.bits_per_pixel,
1912                            fb->base.modifier[0],
1913                            atomic_read(&fb->base.refcount.refcount));
1914                 describe_obj(m, fb->obj);
1915                 seq_putc(m, '\n');
1916         }
1917         mutex_unlock(&dev->mode_config.fb_lock);
1918
1919         return 0;
1920 }
1921
1922 static void describe_ctx_ringbuf(struct seq_file *m,
1923                                  struct intel_ringbuffer *ringbuf)
1924 {
1925         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1926                    ringbuf->space, ringbuf->head, ringbuf->tail,
1927                    ringbuf->last_retired_head);
1928 }
1929
1930 static int i915_context_status(struct seq_file *m, void *unused)
1931 {
1932         struct drm_info_node *node = m->private;
1933         struct drm_device *dev = node->minor->dev;
1934         struct drm_i915_private *dev_priv = dev->dev_private;
1935         struct intel_engine_cs *ring;
1936         struct intel_context *ctx;
1937         int ret, i;
1938
1939         ret = mutex_lock_interruptible(&dev->struct_mutex);
1940         if (ret)
1941                 return ret;
1942
1943         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1944                 if (!i915.enable_execlists &&
1945                     ctx->legacy_hw_ctx.rcs_state == NULL)
1946                         continue;
1947
1948                 seq_puts(m, "HW context ");
1949                 describe_ctx(m, ctx);
1950                 for_each_ring(ring, dev_priv, i) {
1951                         if (ring->default_context == ctx)
1952                                 seq_printf(m, "(default context %s) ",
1953                                            ring->name);
1954                 }
1955
1956                 if (i915.enable_execlists) {
1957                         seq_putc(m, '\n');
1958                         for_each_ring(ring, dev_priv, i) {
1959                                 struct drm_i915_gem_object *ctx_obj =
1960                                         ctx->engine[i].state;
1961                                 struct intel_ringbuffer *ringbuf =
1962                                         ctx->engine[i].ringbuf;
1963
1964                                 seq_printf(m, "%s: ", ring->name);
1965                                 if (ctx_obj)
1966                                         describe_obj(m, ctx_obj);
1967                                 if (ringbuf)
1968                                         describe_ctx_ringbuf(m, ringbuf);
1969                                 seq_putc(m, '\n');
1970                         }
1971                 } else {
1972                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1973                 }
1974
1975                 seq_putc(m, '\n');
1976         }
1977
1978         mutex_unlock(&dev->struct_mutex);
1979
1980         return 0;
1981 }
1982
1983 static void i915_dump_lrc_obj(struct seq_file *m,
1984                               struct intel_engine_cs *ring,
1985                               struct drm_i915_gem_object *ctx_obj)
1986 {
1987         struct page *page;
1988         uint32_t *reg_state;
1989         int j;
1990         unsigned long ggtt_offset = 0;
1991
1992         if (ctx_obj == NULL) {
1993                 seq_printf(m, "Context on %s with no gem object\n",
1994                            ring->name);
1995                 return;
1996         }
1997
1998         seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1999                    intel_execlists_ctx_id(ctx_obj));
2000
2001         if (!i915_gem_obj_ggtt_bound(ctx_obj))
2002                 seq_puts(m, "\tNot bound in GGTT\n");
2003         else
2004                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2005
2006         if (i915_gem_object_get_pages(ctx_obj)) {
2007                 seq_puts(m, "\tFailed to get pages for context object\n");
2008                 return;
2009         }
2010
2011         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2012         if (!WARN_ON(page == NULL)) {
2013                 reg_state = kmap_atomic(page);
2014
2015                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2016                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2017                                    ggtt_offset + 4096 + (j * 4),
2018                                    reg_state[j], reg_state[j + 1],
2019                                    reg_state[j + 2], reg_state[j + 3]);
2020                 }
2021                 kunmap_atomic(reg_state);
2022         }
2023
2024         seq_putc(m, '\n');
2025 }
2026
2027 static int i915_dump_lrc(struct seq_file *m, void *unused)
2028 {
2029         struct drm_info_node *node = (struct drm_info_node *) m->private;
2030         struct drm_device *dev = node->minor->dev;
2031         struct drm_i915_private *dev_priv = dev->dev_private;
2032         struct intel_engine_cs *ring;
2033         struct intel_context *ctx;
2034         int ret, i;
2035
2036         if (!i915.enable_execlists) {
2037                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2038                 return 0;
2039         }
2040
2041         ret = mutex_lock_interruptible(&dev->struct_mutex);
2042         if (ret)
2043                 return ret;
2044
2045         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2046                 for_each_ring(ring, dev_priv, i) {
2047                         if (ring->default_context != ctx)
2048                                 i915_dump_lrc_obj(m, ring,
2049                                                   ctx->engine[i].state);
2050                 }
2051         }
2052
2053         mutex_unlock(&dev->struct_mutex);
2054
2055         return 0;
2056 }
2057
2058 static int i915_execlists(struct seq_file *m, void *data)
2059 {
2060         struct drm_info_node *node = (struct drm_info_node *)m->private;
2061         struct drm_device *dev = node->minor->dev;
2062         struct drm_i915_private *dev_priv = dev->dev_private;
2063         struct intel_engine_cs *ring;
2064         u32 status_pointer;
2065         u8 read_pointer;
2066         u8 write_pointer;
2067         u32 status;
2068         u32 ctx_id;
2069         struct list_head *cursor;
2070         int ring_id, i;
2071         int ret;
2072
2073         if (!i915.enable_execlists) {
2074                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2075                 return 0;
2076         }
2077
2078         ret = mutex_lock_interruptible(&dev->struct_mutex);
2079         if (ret)
2080                 return ret;
2081
2082         intel_runtime_pm_get(dev_priv);
2083
2084         for_each_ring(ring, dev_priv, ring_id) {
2085                 struct drm_i915_gem_request *head_req = NULL;
2086                 int count = 0;
2087                 unsigned long flags;
2088
2089                 seq_printf(m, "%s\n", ring->name);
2090
2091                 status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
2092                 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
2093                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2094                            status, ctx_id);
2095
2096                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2097                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2098
2099                 read_pointer = ring->next_context_status_buffer;
2100                 write_pointer = status_pointer & 0x07;
2101                 if (read_pointer > write_pointer)
2102                         write_pointer += 6;
2103                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2104                            read_pointer, write_pointer);
2105
2106                 for (i = 0; i < 6; i++) {
2107                         status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
2108                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
2109
2110                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2111                                    i, status, ctx_id);
2112                 }
2113
2114                 spin_lock_irqsave(&ring->execlist_lock, flags);
2115                 list_for_each(cursor, &ring->execlist_queue)
2116                         count++;
2117                 head_req = list_first_entry_or_null(&ring->execlist_queue,
2118                                 struct drm_i915_gem_request, execlist_link);
2119                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2120
2121                 seq_printf(m, "\t%d requests in queue\n", count);
2122                 if (head_req) {
2123                         struct drm_i915_gem_object *ctx_obj;
2124
2125                         ctx_obj = head_req->ctx->engine[ring_id].state;
2126                         seq_printf(m, "\tHead request id: %u\n",
2127                                    intel_execlists_ctx_id(ctx_obj));
2128                         seq_printf(m, "\tHead request tail: %u\n",
2129                                    head_req->tail);
2130                 }
2131
2132                 seq_putc(m, '\n');
2133         }
2134
2135         intel_runtime_pm_put(dev_priv);
2136         mutex_unlock(&dev->struct_mutex);
2137
2138         return 0;
2139 }
2140
2141 static const char *swizzle_string(unsigned swizzle)
2142 {
2143         switch (swizzle) {
2144         case I915_BIT_6_SWIZZLE_NONE:
2145                 return "none";
2146         case I915_BIT_6_SWIZZLE_9:
2147                 return "bit9";
2148         case I915_BIT_6_SWIZZLE_9_10:
2149                 return "bit9/bit10";
2150         case I915_BIT_6_SWIZZLE_9_11:
2151                 return "bit9/bit11";
2152         case I915_BIT_6_SWIZZLE_9_10_11:
2153                 return "bit9/bit10/bit11";
2154         case I915_BIT_6_SWIZZLE_9_17:
2155                 return "bit9/bit17";
2156         case I915_BIT_6_SWIZZLE_9_10_17:
2157                 return "bit9/bit10/bit17";
2158         case I915_BIT_6_SWIZZLE_UNKNOWN:
2159                 return "unknown";
2160         }
2161
2162         return "bug";
2163 }
2164
2165 static int i915_swizzle_info(struct seq_file *m, void *data)
2166 {
2167         struct drm_info_node *node = m->private;
2168         struct drm_device *dev = node->minor->dev;
2169         struct drm_i915_private *dev_priv = dev->dev_private;
2170         int ret;
2171
2172         ret = mutex_lock_interruptible(&dev->struct_mutex);
2173         if (ret)
2174                 return ret;
2175         intel_runtime_pm_get(dev_priv);
2176
2177         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2178                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2179         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2180                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2181
2182         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2183                 seq_printf(m, "DDC = 0x%08x\n",
2184                            I915_READ(DCC));
2185                 seq_printf(m, "DDC2 = 0x%08x\n",
2186                            I915_READ(DCC2));
2187                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2188                            I915_READ16(C0DRB3));
2189                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2190                            I915_READ16(C1DRB3));
2191         } else if (INTEL_INFO(dev)->gen >= 6) {
2192                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2193                            I915_READ(MAD_DIMM_C0));
2194                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2195                            I915_READ(MAD_DIMM_C1));
2196                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2197                            I915_READ(MAD_DIMM_C2));
2198                 seq_printf(m, "TILECTL = 0x%08x\n",
2199                            I915_READ(TILECTL));
2200                 if (INTEL_INFO(dev)->gen >= 8)
2201                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2202                                    I915_READ(GAMTARBMODE));
2203                 else
2204                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2205                                    I915_READ(ARB_MODE));
2206                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2207                            I915_READ(DISP_ARB_CTL));
2208         }
2209
2210         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2211                 seq_puts(m, "L-shaped memory detected\n");
2212
2213         intel_runtime_pm_put(dev_priv);
2214         mutex_unlock(&dev->struct_mutex);
2215
2216         return 0;
2217 }
2218
2219 static int per_file_ctx(int id, void *ptr, void *data)
2220 {
2221         struct intel_context *ctx = ptr;
2222         struct seq_file *m = data;
2223         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2224
2225         if (!ppgtt) {
2226                 seq_printf(m, "  no ppgtt for context %d\n",
2227                            ctx->user_handle);
2228                 return 0;
2229         }
2230
2231         if (i915_gem_context_is_default(ctx))
2232                 seq_puts(m, "  default context:\n");
2233         else
2234                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2235         ppgtt->debug_dump(ppgtt, m);
2236
2237         return 0;
2238 }
2239
2240 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2241 {
2242         struct drm_i915_private *dev_priv = dev->dev_private;
2243         struct intel_engine_cs *ring;
2244         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2245         int unused, i;
2246
2247         if (!ppgtt)
2248                 return;
2249
2250         for_each_ring(ring, dev_priv, unused) {
2251                 seq_printf(m, "%s\n", ring->name);
2252                 for (i = 0; i < 4; i++) {
2253                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
2254                         pdp <<= 32;
2255                         pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
2256                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2257                 }
2258         }
2259 }
2260
2261 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2262 {
2263         struct drm_i915_private *dev_priv = dev->dev_private;
2264         struct intel_engine_cs *ring;
2265         int i;
2266
2267         if (INTEL_INFO(dev)->gen == 6)
2268                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2269
2270         for_each_ring(ring, dev_priv, i) {
2271                 seq_printf(m, "%s\n", ring->name);
2272                 if (INTEL_INFO(dev)->gen == 7)
2273                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2274                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2275                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2276                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2277         }
2278         if (dev_priv->mm.aliasing_ppgtt) {
2279                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2280
2281                 seq_puts(m, "aliasing PPGTT:\n");
2282                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2283
2284                 ppgtt->debug_dump(ppgtt, m);
2285         }
2286
2287         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2288 }
2289
2290 static int i915_ppgtt_info(struct seq_file *m, void *data)
2291 {
2292         struct drm_info_node *node = m->private;
2293         struct drm_device *dev = node->minor->dev;
2294         struct drm_i915_private *dev_priv = dev->dev_private;
2295         struct drm_file *file;
2296
2297         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2298         if (ret)
2299                 return ret;
2300         intel_runtime_pm_get(dev_priv);
2301
2302         if (INTEL_INFO(dev)->gen >= 8)
2303                 gen8_ppgtt_info(m, dev);
2304         else if (INTEL_INFO(dev)->gen >= 6)
2305                 gen6_ppgtt_info(m, dev);
2306
2307         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2308                 struct drm_i915_file_private *file_priv = file->driver_priv;
2309                 struct task_struct *task;
2310
2311                 task = get_pid_task(file->pid, PIDTYPE_PID);
2312                 if (!task) {
2313                         ret = -ESRCH;
2314                         goto out_put;
2315                 }
2316                 seq_printf(m, "\nproc: %s\n", task->comm);
2317                 put_task_struct(task);
2318                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2319                              (void *)(unsigned long)m);
2320         }
2321
2322 out_put:
2323         intel_runtime_pm_put(dev_priv);
2324         mutex_unlock(&dev->struct_mutex);
2325
2326         return ret;
2327 }
2328
2329 static int count_irq_waiters(struct drm_i915_private *i915)
2330 {
2331         struct intel_engine_cs *ring;
2332         int count = 0;
2333         int i;
2334
2335         for_each_ring(ring, i915, i)
2336                 count += ring->irq_refcount;
2337
2338         return count;
2339 }
2340
2341 static int i915_rps_boost_info(struct seq_file *m, void *data)
2342 {
2343         struct drm_info_node *node = m->private;
2344         struct drm_device *dev = node->minor->dev;
2345         struct drm_i915_private *dev_priv = dev->dev_private;
2346         struct drm_file *file;
2347
2348         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2349         seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2350         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2351         seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2352                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2353                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2354                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2355                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2356                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2357         spin_lock(&dev_priv->rps.client_lock);
2358         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2359                 struct drm_i915_file_private *file_priv = file->driver_priv;
2360                 struct task_struct *task;
2361
2362                 rcu_read_lock();
2363                 task = pid_task(file->pid, PIDTYPE_PID);
2364                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2365                            task ? task->comm : "<unknown>",
2366                            task ? task->pid : -1,
2367                            file_priv->rps.boosts,
2368                            list_empty(&file_priv->rps.link) ? "" : ", active");
2369                 rcu_read_unlock();
2370         }
2371         seq_printf(m, "Semaphore boosts: %d%s\n",
2372                    dev_priv->rps.semaphores.boosts,
2373                    list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2374         seq_printf(m, "MMIO flip boosts: %d%s\n",
2375                    dev_priv->rps.mmioflips.boosts,
2376                    list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2377         seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2378         spin_unlock(&dev_priv->rps.client_lock);
2379
2380         return 0;
2381 }
2382
2383 static int i915_llc(struct seq_file *m, void *data)
2384 {
2385         struct drm_info_node *node = m->private;
2386         struct drm_device *dev = node->minor->dev;
2387         struct drm_i915_private *dev_priv = dev->dev_private;
2388
2389         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2390         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2391         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2392
2393         return 0;
2394 }
2395
2396 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2397 {
2398         struct drm_info_node *node = m->private;
2399         struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2400         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2401         u32 tmp, i;
2402
2403         if (!HAS_GUC_UCODE(dev_priv->dev))
2404                 return 0;
2405
2406         seq_printf(m, "GuC firmware status:\n");
2407         seq_printf(m, "\tpath: %s\n",
2408                 guc_fw->guc_fw_path);
2409         seq_printf(m, "\tfetch: %s\n",
2410                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2411         seq_printf(m, "\tload: %s\n",
2412                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2413         seq_printf(m, "\tversion wanted: %d.%d\n",
2414                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2415         seq_printf(m, "\tversion found: %d.%d\n",
2416                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2417         seq_printf(m, "\theader: offset is %d; size = %d\n",
2418                 guc_fw->header_offset, guc_fw->header_size);
2419         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2420                 guc_fw->ucode_offset, guc_fw->ucode_size);
2421         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2422                 guc_fw->rsa_offset, guc_fw->rsa_size);
2423
2424         tmp = I915_READ(GUC_STATUS);
2425
2426         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2427         seq_printf(m, "\tBootrom status = 0x%x\n",
2428                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2429         seq_printf(m, "\tuKernel status = 0x%x\n",
2430                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2431         seq_printf(m, "\tMIA Core status = 0x%x\n",
2432                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2433         seq_puts(m, "\nScratch registers:\n");
2434         for (i = 0; i < 16; i++)
2435                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2436
2437         return 0;
2438 }
2439
2440 static void i915_guc_client_info(struct seq_file *m,
2441                                  struct drm_i915_private *dev_priv,
2442                                  struct i915_guc_client *client)
2443 {
2444         struct intel_engine_cs *ring;
2445         uint64_t tot = 0;
2446         uint32_t i;
2447
2448         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2449                 client->priority, client->ctx_index, client->proc_desc_offset);
2450         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2451                 client->doorbell_id, client->doorbell_offset, client->cookie);
2452         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2453                 client->wq_size, client->wq_offset, client->wq_tail);
2454
2455         seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2456         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2457         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2458
2459         for_each_ring(ring, dev_priv, i) {
2460                 seq_printf(m, "\tSubmissions: %llu %s\n",
2461                                 client->submissions[i],
2462                                 ring->name);
2463                 tot += client->submissions[i];
2464         }
2465         seq_printf(m, "\tTotal: %llu\n", tot);
2466 }
2467
2468 static int i915_guc_info(struct seq_file *m, void *data)
2469 {
2470         struct drm_info_node *node = m->private;
2471         struct drm_device *dev = node->minor->dev;
2472         struct drm_i915_private *dev_priv = dev->dev_private;
2473         struct intel_guc guc;
2474         struct i915_guc_client client = {};
2475         struct intel_engine_cs *ring;
2476         enum intel_ring_id i;
2477         u64 total = 0;
2478
2479         if (!HAS_GUC_SCHED(dev_priv->dev))
2480                 return 0;
2481
2482         if (mutex_lock_interruptible(&dev->struct_mutex))
2483                 return 0;
2484
2485         /* Take a local copy of the GuC data, so we can dump it at leisure */
2486         guc = dev_priv->guc;
2487         if (guc.execbuf_client)
2488                 client = *guc.execbuf_client;
2489
2490         mutex_unlock(&dev->struct_mutex);
2491
2492         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2493         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2494         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2495         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2496         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2497
2498         seq_printf(m, "\nGuC submissions:\n");
2499         for_each_ring(ring, dev_priv, i) {
2500                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x %9d\n",
2501                         ring->name, guc.submissions[i],
2502                         guc.last_seqno[i], guc.last_seqno[i]);
2503                 total += guc.submissions[i];
2504         }
2505         seq_printf(m, "\t%s: %llu\n", "Total", total);
2506
2507         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2508         i915_guc_client_info(m, dev_priv, &client);
2509
2510         /* Add more as required ... */
2511
2512         return 0;
2513 }
2514
2515 static int i915_guc_log_dump(struct seq_file *m, void *data)
2516 {
2517         struct drm_info_node *node = m->private;
2518         struct drm_device *dev = node->minor->dev;
2519         struct drm_i915_private *dev_priv = dev->dev_private;
2520         struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2521         u32 *log;
2522         int i = 0, pg;
2523
2524         if (!log_obj)
2525                 return 0;
2526
2527         for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2528                 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2529
2530                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2531                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2532                                    *(log + i), *(log + i + 1),
2533                                    *(log + i + 2), *(log + i + 3));
2534
2535                 kunmap_atomic(log);
2536         }
2537
2538         seq_putc(m, '\n');
2539
2540         return 0;
2541 }
2542
2543 static int i915_edp_psr_status(struct seq_file *m, void *data)
2544 {
2545         struct drm_info_node *node = m->private;
2546         struct drm_device *dev = node->minor->dev;
2547         struct drm_i915_private *dev_priv = dev->dev_private;
2548         u32 psrperf = 0;
2549         u32 stat[3];
2550         enum pipe pipe;
2551         bool enabled = false;
2552
2553         if (!HAS_PSR(dev)) {
2554                 seq_puts(m, "PSR not supported\n");
2555                 return 0;
2556         }
2557
2558         intel_runtime_pm_get(dev_priv);
2559
2560         mutex_lock(&dev_priv->psr.lock);
2561         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2562         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2563         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2564         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2565         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2566                    dev_priv->psr.busy_frontbuffer_bits);
2567         seq_printf(m, "Re-enable work scheduled: %s\n",
2568                    yesno(work_busy(&dev_priv->psr.work.work)));
2569
2570         if (HAS_DDI(dev))
2571                 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2572         else {
2573                 for_each_pipe(dev_priv, pipe) {
2574                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2575                                 VLV_EDP_PSR_CURR_STATE_MASK;
2576                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2577                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2578                                 enabled = true;
2579                 }
2580         }
2581         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2582
2583         if (!HAS_DDI(dev))
2584                 for_each_pipe(dev_priv, pipe) {
2585                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2586                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2587                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2588                 }
2589         seq_puts(m, "\n");
2590
2591         /*
2592          * VLV/CHV PSR has no kind of performance counter
2593          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2594          */
2595         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2596                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2597                         EDP_PSR_PERF_CNT_MASK;
2598
2599                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2600         }
2601         mutex_unlock(&dev_priv->psr.lock);
2602
2603         intel_runtime_pm_put(dev_priv);
2604         return 0;
2605 }
2606
2607 static int i915_sink_crc(struct seq_file *m, void *data)
2608 {
2609         struct drm_info_node *node = m->private;
2610         struct drm_device *dev = node->minor->dev;
2611         struct intel_encoder *encoder;
2612         struct intel_connector *connector;
2613         struct intel_dp *intel_dp = NULL;
2614         int ret;
2615         u8 crc[6];
2616
2617         drm_modeset_lock_all(dev);
2618         for_each_intel_connector(dev, connector) {
2619
2620                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2621                         continue;
2622
2623                 if (!connector->base.encoder)
2624                         continue;
2625
2626                 encoder = to_intel_encoder(connector->base.encoder);
2627                 if (encoder->type != INTEL_OUTPUT_EDP)
2628                         continue;
2629
2630                 intel_dp = enc_to_intel_dp(&encoder->base);
2631
2632                 ret = intel_dp_sink_crc(intel_dp, crc);
2633                 if (ret)
2634                         goto out;
2635
2636                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2637                            crc[0], crc[1], crc[2],
2638                            crc[3], crc[4], crc[5]);
2639                 goto out;
2640         }
2641         ret = -ENODEV;
2642 out:
2643         drm_modeset_unlock_all(dev);
2644         return ret;
2645 }
2646
2647 static int i915_energy_uJ(struct seq_file *m, void *data)
2648 {
2649         struct drm_info_node *node = m->private;
2650         struct drm_device *dev = node->minor->dev;
2651         struct drm_i915_private *dev_priv = dev->dev_private;
2652         u64 power;
2653         u32 units;
2654
2655         if (INTEL_INFO(dev)->gen < 6)
2656                 return -ENODEV;
2657
2658         intel_runtime_pm_get(dev_priv);
2659
2660         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2661         power = (power & 0x1f00) >> 8;
2662         units = 1000000 / (1 << power); /* convert to uJ */
2663         power = I915_READ(MCH_SECP_NRG_STTS);
2664         power *= units;
2665
2666         intel_runtime_pm_put(dev_priv);
2667
2668         seq_printf(m, "%llu", (long long unsigned)power);
2669
2670         return 0;
2671 }
2672
2673 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2674 {
2675         struct drm_info_node *node = m->private;
2676         struct drm_device *dev = node->minor->dev;
2677         struct drm_i915_private *dev_priv = dev->dev_private;
2678
2679         if (!HAS_RUNTIME_PM(dev)) {
2680                 seq_puts(m, "not supported\n");
2681                 return 0;
2682         }
2683
2684         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2685         seq_printf(m, "IRQs disabled: %s\n",
2686                    yesno(!intel_irqs_enabled(dev_priv)));
2687 #ifdef CONFIG_PM
2688         seq_printf(m, "Usage count: %d\n",
2689                    atomic_read(&dev->dev->power.usage_count));
2690 #else
2691         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2692 #endif
2693
2694         return 0;
2695 }
2696
2697 static int i915_power_domain_info(struct seq_file *m, void *unused)
2698 {
2699         struct drm_info_node *node = m->private;
2700         struct drm_device *dev = node->minor->dev;
2701         struct drm_i915_private *dev_priv = dev->dev_private;
2702         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2703         int i;
2704
2705         mutex_lock(&power_domains->lock);
2706
2707         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2708         for (i = 0; i < power_domains->power_well_count; i++) {
2709                 struct i915_power_well *power_well;
2710                 enum intel_display_power_domain power_domain;
2711
2712                 power_well = &power_domains->power_wells[i];
2713                 seq_printf(m, "%-25s %d\n", power_well->name,
2714                            power_well->count);
2715
2716                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2717                      power_domain++) {
2718                         if (!(BIT(power_domain) & power_well->domains))
2719                                 continue;
2720
2721                         seq_printf(m, "  %-23s %d\n",
2722                                  intel_display_power_domain_str(power_domain),
2723                                  power_domains->domain_use_count[power_domain]);
2724                 }
2725         }
2726
2727         mutex_unlock(&power_domains->lock);
2728
2729         return 0;
2730 }
2731
2732 static int i915_dmc_info(struct seq_file *m, void *unused)
2733 {
2734         struct drm_info_node *node = m->private;
2735         struct drm_device *dev = node->minor->dev;
2736         struct drm_i915_private *dev_priv = dev->dev_private;
2737         struct intel_csr *csr;
2738
2739         if (!HAS_CSR(dev)) {
2740                 seq_puts(m, "not supported\n");
2741                 return 0;
2742         }
2743
2744         csr = &dev_priv->csr;
2745
2746         intel_runtime_pm_get(dev_priv);
2747
2748         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2749         seq_printf(m, "path: %s\n", csr->fw_path);
2750
2751         if (!csr->dmc_payload)
2752                 goto out;
2753
2754         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2755                    CSR_VERSION_MINOR(csr->version));
2756
2757         if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2758                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2759                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2760                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2761                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2762         } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2763                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2764                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2765         }
2766
2767 out:
2768         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2769         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2770         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2771
2772         intel_runtime_pm_put(dev_priv);
2773
2774         return 0;
2775 }
2776
2777 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2778                                  struct drm_display_mode *mode)
2779 {
2780         int i;
2781
2782         for (i = 0; i < tabs; i++)
2783                 seq_putc(m, '\t');
2784
2785         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2786                    mode->base.id, mode->name,
2787                    mode->vrefresh, mode->clock,
2788                    mode->hdisplay, mode->hsync_start,
2789                    mode->hsync_end, mode->htotal,
2790                    mode->vdisplay, mode->vsync_start,
2791                    mode->vsync_end, mode->vtotal,
2792                    mode->type, mode->flags);
2793 }
2794
2795 static void intel_encoder_info(struct seq_file *m,
2796                                struct intel_crtc *intel_crtc,
2797                                struct intel_encoder *intel_encoder)
2798 {
2799         struct drm_info_node *node = m->private;
2800         struct drm_device *dev = node->minor->dev;
2801         struct drm_crtc *crtc = &intel_crtc->base;
2802         struct intel_connector *intel_connector;
2803         struct drm_encoder *encoder;
2804
2805         encoder = &intel_encoder->base;
2806         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2807                    encoder->base.id, encoder->name);
2808         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2809                 struct drm_connector *connector = &intel_connector->base;
2810                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2811                            connector->base.id,
2812                            connector->name,
2813                            drm_get_connector_status_name(connector->status));
2814                 if (connector->status == connector_status_connected) {
2815                         struct drm_display_mode *mode = &crtc->mode;
2816                         seq_printf(m, ", mode:\n");
2817                         intel_seq_print_mode(m, 2, mode);
2818                 } else {
2819                         seq_putc(m, '\n');
2820                 }
2821         }
2822 }
2823
2824 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2825 {
2826         struct drm_info_node *node = m->private;
2827         struct drm_device *dev = node->minor->dev;
2828         struct drm_crtc *crtc = &intel_crtc->base;
2829         struct intel_encoder *intel_encoder;
2830         struct drm_plane_state *plane_state = crtc->primary->state;
2831         struct drm_framebuffer *fb = plane_state->fb;
2832
2833         if (fb)
2834                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2835                            fb->base.id, plane_state->src_x >> 16,
2836                            plane_state->src_y >> 16, fb->width, fb->height);
2837         else
2838                 seq_puts(m, "\tprimary plane disabled\n");
2839         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2840                 intel_encoder_info(m, intel_crtc, intel_encoder);
2841 }
2842
2843 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2844 {
2845         struct drm_display_mode *mode = panel->fixed_mode;
2846
2847         seq_printf(m, "\tfixed mode:\n");
2848         intel_seq_print_mode(m, 2, mode);
2849 }
2850
2851 static void intel_dp_info(struct seq_file *m,
2852                           struct intel_connector *intel_connector)
2853 {
2854         struct intel_encoder *intel_encoder = intel_connector->encoder;
2855         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2856
2857         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2858         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2859         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2860                 intel_panel_info(m, &intel_connector->panel);
2861 }
2862
2863 static void intel_dp_mst_info(struct seq_file *m,
2864                           struct intel_connector *intel_connector)
2865 {
2866         struct intel_encoder *intel_encoder = intel_connector->encoder;
2867         struct intel_dp_mst_encoder *intel_mst =
2868                 enc_to_mst(&intel_encoder->base);
2869         struct intel_digital_port *intel_dig_port = intel_mst->primary;
2870         struct intel_dp *intel_dp = &intel_dig_port->dp;
2871         bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2872                                         intel_connector->port);
2873
2874         seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2875 }
2876
2877 static void intel_hdmi_info(struct seq_file *m,
2878                             struct intel_connector *intel_connector)
2879 {
2880         struct intel_encoder *intel_encoder = intel_connector->encoder;
2881         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2882
2883         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2884 }
2885
2886 static void intel_lvds_info(struct seq_file *m,
2887                             struct intel_connector *intel_connector)
2888 {
2889         intel_panel_info(m, &intel_connector->panel);
2890 }
2891
2892 static void intel_connector_info(struct seq_file *m,
2893                                  struct drm_connector *connector)
2894 {
2895         struct intel_connector *intel_connector = to_intel_connector(connector);
2896         struct intel_encoder *intel_encoder = intel_connector->encoder;
2897         struct drm_display_mode *mode;
2898
2899         seq_printf(m, "connector %d: type %s, status: %s\n",
2900                    connector->base.id, connector->name,
2901                    drm_get_connector_status_name(connector->status));
2902         if (connector->status == connector_status_connected) {
2903                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2904                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2905                            connector->display_info.width_mm,
2906                            connector->display_info.height_mm);
2907                 seq_printf(m, "\tsubpixel order: %s\n",
2908                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2909                 seq_printf(m, "\tCEA rev: %d\n",
2910                            connector->display_info.cea_rev);
2911         }
2912         if (intel_encoder) {
2913                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2914                     intel_encoder->type == INTEL_OUTPUT_EDP)
2915                         intel_dp_info(m, intel_connector);
2916                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2917                         intel_hdmi_info(m, intel_connector);
2918                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2919                         intel_lvds_info(m, intel_connector);
2920                 else if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
2921                         intel_dp_mst_info(m, intel_connector);
2922         }
2923
2924         seq_printf(m, "\tmodes:\n");
2925         list_for_each_entry(mode, &connector->modes, head)
2926                 intel_seq_print_mode(m, 2, mode);
2927 }
2928
2929 static bool cursor_active(struct drm_device *dev, int pipe)
2930 {
2931         struct drm_i915_private *dev_priv = dev->dev_private;
2932         u32 state;
2933
2934         if (IS_845G(dev) || IS_I865G(dev))
2935                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2936         else
2937                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2938
2939         return state;
2940 }
2941
2942 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2943 {
2944         struct drm_i915_private *dev_priv = dev->dev_private;
2945         u32 pos;
2946
2947         pos = I915_READ(CURPOS(pipe));
2948
2949         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2950         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2951                 *x = -*x;
2952
2953         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2954         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2955                 *y = -*y;
2956
2957         return cursor_active(dev, pipe);
2958 }
2959
2960 static const char *plane_type(enum drm_plane_type type)
2961 {
2962         switch (type) {
2963         case DRM_PLANE_TYPE_OVERLAY:
2964                 return "OVL";
2965         case DRM_PLANE_TYPE_PRIMARY:
2966                 return "PRI";
2967         case DRM_PLANE_TYPE_CURSOR:
2968                 return "CUR";
2969         /*
2970          * Deliberately omitting default: to generate compiler warnings
2971          * when a new drm_plane_type gets added.
2972          */
2973         }
2974
2975         return "unknown";
2976 }
2977
2978 static const char *plane_rotation(unsigned int rotation)
2979 {
2980         static char buf[48];
2981         /*
2982          * According to doc only one DRM_ROTATE_ is allowed but this
2983          * will print them all to visualize if the values are misused
2984          */
2985         snprintf(buf, sizeof(buf),
2986                  "%s%s%s%s%s%s(0x%08x)",
2987                  (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
2988                  (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
2989                  (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
2990                  (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
2991                  (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
2992                  (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
2993                  rotation);
2994
2995         return buf;
2996 }
2997
2998 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2999 {
3000         struct drm_info_node *node = m->private;
3001         struct drm_device *dev = node->minor->dev;
3002         struct intel_plane *intel_plane;
3003
3004         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3005                 struct drm_plane_state *state;
3006                 struct drm_plane *plane = &intel_plane->base;
3007
3008                 if (!plane->state) {
3009                         seq_puts(m, "plane->state is NULL!\n");
3010                         continue;
3011                 }
3012
3013                 state = plane->state;
3014
3015                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3016                            plane->base.id,
3017                            plane_type(intel_plane->base.type),
3018                            state->crtc_x, state->crtc_y,
3019                            state->crtc_w, state->crtc_h,
3020                            (state->src_x >> 16),
3021                            ((state->src_x & 0xffff) * 15625) >> 10,
3022                            (state->src_y >> 16),
3023                            ((state->src_y & 0xffff) * 15625) >> 10,
3024                            (state->src_w >> 16),
3025                            ((state->src_w & 0xffff) * 15625) >> 10,
3026                            (state->src_h >> 16),
3027                            ((state->src_h & 0xffff) * 15625) >> 10,
3028                            state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3029                            plane_rotation(state->rotation));
3030         }
3031 }
3032
3033 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3034 {
3035         struct intel_crtc_state *pipe_config;
3036         int num_scalers = intel_crtc->num_scalers;
3037         int i;
3038
3039         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3040
3041         /* Not all platformas have a scaler */
3042         if (num_scalers) {
3043                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3044                            num_scalers,
3045                            pipe_config->scaler_state.scaler_users,
3046                            pipe_config->scaler_state.scaler_id);
3047
3048                 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3049                         struct intel_scaler *sc =
3050                                         &pipe_config->scaler_state.scalers[i];
3051
3052                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3053                                    i, yesno(sc->in_use), sc->mode);
3054                 }
3055                 seq_puts(m, "\n");
3056         } else {
3057                 seq_puts(m, "\tNo scalers available on this platform\n");
3058         }
3059 }
3060
3061 static int i915_display_info(struct seq_file *m, void *unused)
3062 {
3063         struct drm_info_node *node = m->private;
3064         struct drm_device *dev = node->minor->dev;
3065         struct drm_i915_private *dev_priv = dev->dev_private;
3066         struct intel_crtc *crtc;
3067         struct drm_connector *connector;
3068
3069         intel_runtime_pm_get(dev_priv);
3070         drm_modeset_lock_all(dev);
3071         seq_printf(m, "CRTC info\n");
3072         seq_printf(m, "---------\n");
3073         for_each_intel_crtc(dev, crtc) {
3074                 bool active;
3075                 struct intel_crtc_state *pipe_config;
3076                 int x, y;
3077
3078                 pipe_config = to_intel_crtc_state(crtc->base.state);
3079
3080                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3081                            crtc->base.base.id, pipe_name(crtc->pipe),
3082                            yesno(pipe_config->base.active),
3083                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3084                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3085
3086                 if (pipe_config->base.active) {
3087                         intel_crtc_info(m, crtc);
3088
3089                         active = cursor_position(dev, crtc->pipe, &x, &y);
3090                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3091                                    yesno(crtc->cursor_base),
3092                                    x, y, crtc->base.cursor->state->crtc_w,
3093                                    crtc->base.cursor->state->crtc_h,
3094                                    crtc->cursor_addr, yesno(active));
3095                         intel_scaler_info(m, crtc);
3096                         intel_plane_info(m, crtc);
3097                 }
3098
3099                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3100                            yesno(!crtc->cpu_fifo_underrun_disabled),
3101                            yesno(!crtc->pch_fifo_underrun_disabled));
3102         }
3103
3104         seq_printf(m, "\n");
3105         seq_printf(m, "Connector info\n");
3106         seq_printf(m, "--------------\n");
3107         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3108                 intel_connector_info(m, connector);
3109         }
3110         drm_modeset_unlock_all(dev);
3111         intel_runtime_pm_put(dev_priv);
3112
3113         return 0;
3114 }
3115
3116 static int i915_semaphore_status(struct seq_file *m, void *unused)
3117 {
3118         struct drm_info_node *node = (struct drm_info_node *) m->private;
3119         struct drm_device *dev = node->minor->dev;
3120         struct drm_i915_private *dev_priv = dev->dev_private;
3121         struct intel_engine_cs *ring;
3122         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3123         int i, j, ret;
3124
3125         if (!i915_semaphore_is_enabled(dev)) {
3126                 seq_puts(m, "Semaphores are disabled\n");
3127                 return 0;
3128         }
3129
3130         ret = mutex_lock_interruptible(&dev->struct_mutex);
3131         if (ret)
3132                 return ret;
3133         intel_runtime_pm_get(dev_priv);
3134
3135         if (IS_BROADWELL(dev)) {
3136                 struct page *page;
3137                 uint64_t *seqno;
3138
3139                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3140
3141                 seqno = (uint64_t *)kmap_atomic(page);
3142                 for_each_ring(ring, dev_priv, i) {
3143                         uint64_t offset;
3144
3145                         seq_printf(m, "%s\n", ring->name);
3146
3147                         seq_puts(m, "  Last signal:");
3148                         for (j = 0; j < num_rings; j++) {
3149                                 offset = i * I915_NUM_RINGS + j;
3150                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3151                                            seqno[offset], offset * 8);
3152                         }
3153                         seq_putc(m, '\n');
3154
3155                         seq_puts(m, "  Last wait:  ");
3156                         for (j = 0; j < num_rings; j++) {
3157                                 offset = i + (j * I915_NUM_RINGS);
3158                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3159                                            seqno[offset], offset * 8);
3160                         }
3161                         seq_putc(m, '\n');
3162
3163                 }
3164                 kunmap_atomic(seqno);
3165         } else {
3166                 seq_puts(m, "  Last signal:");
3167                 for_each_ring(ring, dev_priv, i)
3168                         for (j = 0; j < num_rings; j++)
3169                                 seq_printf(m, "0x%08x\n",
3170                                            I915_READ(ring->semaphore.mbox.signal[j]));
3171                 seq_putc(m, '\n');
3172         }
3173
3174         seq_puts(m, "\nSync seqno:\n");
3175         for_each_ring(ring, dev_priv, i) {
3176                 for (j = 0; j < num_rings; j++) {
3177                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
3178                 }
3179                 seq_putc(m, '\n');
3180         }
3181         seq_putc(m, '\n');
3182
3183         intel_runtime_pm_put(dev_priv);
3184         mutex_unlock(&dev->struct_mutex);
3185         return 0;
3186 }
3187
3188 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3189 {
3190         struct drm_info_node *node = (struct drm_info_node *) m->private;
3191         struct drm_device *dev = node->minor->dev;
3192         struct drm_i915_private *dev_priv = dev->dev_private;
3193         int i;
3194
3195         drm_modeset_lock_all(dev);
3196         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3197                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3198
3199                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3200                 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
3201                            pll->config.crtc_mask, pll->active, yesno(pll->on));
3202                 seq_printf(m, " tracked hardware state:\n");
3203                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3204                 seq_printf(m, " dpll_md: 0x%08x\n",
3205                            pll->config.hw_state.dpll_md);
3206                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3207                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3208                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3209         }
3210         drm_modeset_unlock_all(dev);
3211
3212         return 0;
3213 }
3214
3215 static int i915_wa_registers(struct seq_file *m, void *unused)
3216 {
3217         int i;
3218         int ret;
3219         struct drm_info_node *node = (struct drm_info_node *) m->private;
3220         struct drm_device *dev = node->minor->dev;
3221         struct drm_i915_private *dev_priv = dev->dev_private;
3222
3223         ret = mutex_lock_interruptible(&dev->struct_mutex);
3224         if (ret)
3225                 return ret;
3226
3227         intel_runtime_pm_get(dev_priv);
3228
3229         seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
3230         for (i = 0; i < dev_priv->workarounds.count; ++i) {
3231                 i915_reg_t addr;
3232                 u32 mask, value, read;
3233                 bool ok;
3234
3235                 addr = dev_priv->workarounds.reg[i].addr;
3236                 mask = dev_priv->workarounds.reg[i].mask;
3237                 value = dev_priv->workarounds.reg[i].value;
3238                 read = I915_READ(addr);
3239                 ok = (value & mask) == (read & mask);
3240                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3241                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3242         }
3243
3244         intel_runtime_pm_put(dev_priv);
3245         mutex_unlock(&dev->struct_mutex);
3246
3247         return 0;
3248 }
3249
3250 static int i915_ddb_info(struct seq_file *m, void *unused)
3251 {
3252         struct drm_info_node *node = m->private;
3253         struct drm_device *dev = node->minor->dev;
3254         struct drm_i915_private *dev_priv = dev->dev_private;
3255         struct skl_ddb_allocation *ddb;
3256         struct skl_ddb_entry *entry;
3257         enum pipe pipe;
3258         int plane;
3259
3260         if (INTEL_INFO(dev)->gen < 9)
3261                 return 0;
3262
3263         drm_modeset_lock_all(dev);
3264
3265         ddb = &dev_priv->wm.skl_hw.ddb;
3266
3267         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3268
3269         for_each_pipe(dev_priv, pipe) {
3270                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3271
3272                 for_each_plane(dev_priv, pipe, plane) {
3273                         entry = &ddb->plane[pipe][plane];
3274                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3275                                    entry->start, entry->end,
3276                                    skl_ddb_entry_size(entry));
3277                 }
3278
3279                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3280                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3281                            entry->end, skl_ddb_entry_size(entry));
3282         }
3283
3284         drm_modeset_unlock_all(dev);
3285
3286         return 0;
3287 }
3288
3289 static void drrs_status_per_crtc(struct seq_file *m,
3290                 struct drm_device *dev, struct intel_crtc *intel_crtc)
3291 {
3292         struct intel_encoder *intel_encoder;
3293         struct drm_i915_private *dev_priv = dev->dev_private;
3294         struct i915_drrs *drrs = &dev_priv->drrs;
3295         int vrefresh = 0;
3296
3297         for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3298                 /* Encoder connected on this CRTC */
3299                 switch (intel_encoder->type) {
3300                 case INTEL_OUTPUT_EDP:
3301                         seq_puts(m, "eDP:\n");
3302                         break;
3303                 case INTEL_OUTPUT_DSI:
3304                         seq_puts(m, "DSI:\n");
3305                         break;
3306                 case INTEL_OUTPUT_HDMI:
3307                         seq_puts(m, "HDMI:\n");
3308                         break;
3309                 case INTEL_OUTPUT_DISPLAYPORT:
3310                         seq_puts(m, "DP:\n");
3311                         break;
3312                 default:
3313                         seq_printf(m, "Other encoder (id=%d).\n",
3314                                                 intel_encoder->type);
3315                         return;
3316                 }
3317         }
3318
3319         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3320                 seq_puts(m, "\tVBT: DRRS_type: Static");
3321         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3322                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3323         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3324                 seq_puts(m, "\tVBT: DRRS_type: None");
3325         else
3326                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3327
3328         seq_puts(m, "\n\n");
3329
3330         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3331                 struct intel_panel *panel;
3332
3333                 mutex_lock(&drrs->mutex);
3334                 /* DRRS Supported */
3335                 seq_puts(m, "\tDRRS Supported: Yes\n");
3336
3337                 /* disable_drrs() will make drrs->dp NULL */
3338                 if (!drrs->dp) {
3339                         seq_puts(m, "Idleness DRRS: Disabled");
3340                         mutex_unlock(&drrs->mutex);
3341                         return;
3342                 }
3343
3344                 panel = &drrs->dp->attached_connector->panel;
3345                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3346                                         drrs->busy_frontbuffer_bits);
3347
3348                 seq_puts(m, "\n\t\t");
3349                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3350                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3351                         vrefresh = panel->fixed_mode->vrefresh;
3352                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3353                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3354                         vrefresh = panel->downclock_mode->vrefresh;
3355                 } else {
3356                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3357                                                 drrs->refresh_rate_type);
3358                         mutex_unlock(&drrs->mutex);
3359                         return;
3360                 }
3361                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3362
3363                 seq_puts(m, "\n\t\t");
3364                 mutex_unlock(&drrs->mutex);
3365         } else {
3366                 /* DRRS not supported. Print the VBT parameter*/
3367                 seq_puts(m, "\tDRRS Supported : No");
3368         }
3369         seq_puts(m, "\n");
3370 }
3371
3372 static int i915_drrs_status(struct seq_file *m, void *unused)
3373 {
3374         struct drm_info_node *node = m->private;
3375         struct drm_device *dev = node->minor->dev;
3376         struct intel_crtc *intel_crtc;
3377         int active_crtc_cnt = 0;
3378
3379         for_each_intel_crtc(dev, intel_crtc) {
3380                 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3381
3382                 if (intel_crtc->base.state->active) {
3383                         active_crtc_cnt++;
3384                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3385
3386                         drrs_status_per_crtc(m, dev, intel_crtc);
3387                 }
3388
3389                 drm_modeset_unlock(&intel_crtc->base.mutex);
3390         }
3391
3392         if (!active_crtc_cnt)
3393                 seq_puts(m, "No active crtc found\n");
3394
3395         return 0;
3396 }
3397
3398 struct pipe_crc_info {
3399         const char *name;
3400         struct drm_device *dev;
3401         enum pipe pipe;
3402 };
3403
3404 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3405 {
3406         struct drm_info_node *node = (struct drm_info_node *) m->private;
3407         struct drm_device *dev = node->minor->dev;
3408         struct drm_encoder *encoder;
3409         struct intel_encoder *intel_encoder;
3410         struct intel_digital_port *intel_dig_port;
3411         drm_modeset_lock_all(dev);
3412         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3413                 intel_encoder = to_intel_encoder(encoder);
3414                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3415                         continue;
3416                 intel_dig_port = enc_to_dig_port(encoder);
3417                 if (!intel_dig_port->dp.can_mst)
3418                         continue;
3419
3420                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3421         }
3422         drm_modeset_unlock_all(dev);
3423         return 0;
3424 }
3425
3426 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3427 {
3428         struct pipe_crc_info *info = inode->i_private;
3429         struct drm_i915_private *dev_priv = info->dev->dev_private;
3430         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3431
3432         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3433                 return -ENODEV;
3434
3435         spin_lock_irq(&pipe_crc->lock);
3436
3437         if (pipe_crc->opened) {
3438                 spin_unlock_irq(&pipe_crc->lock);
3439                 return -EBUSY; /* already open */
3440         }
3441
3442         pipe_crc->opened = true;
3443         filep->private_data = inode->i_private;
3444
3445         spin_unlock_irq(&pipe_crc->lock);
3446
3447         return 0;
3448 }
3449
3450 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3451 {
3452         struct pipe_crc_info *info = inode->i_private;
3453         struct drm_i915_private *dev_priv = info->dev->dev_private;
3454         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3455
3456         spin_lock_irq(&pipe_crc->lock);
3457         pipe_crc->opened = false;
3458         spin_unlock_irq(&pipe_crc->lock);
3459
3460         return 0;
3461 }
3462
3463 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3464 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3465 /* account for \'0' */
3466 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3467
3468 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3469 {
3470         assert_spin_locked(&pipe_crc->lock);
3471         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3472                         INTEL_PIPE_CRC_ENTRIES_NR);
3473 }
3474
3475 static ssize_t
3476 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3477                    loff_t *pos)
3478 {
3479         struct pipe_crc_info *info = filep->private_data;
3480         struct drm_device *dev = info->dev;
3481         struct drm_i915_private *dev_priv = dev->dev_private;
3482         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3483         char buf[PIPE_CRC_BUFFER_LEN];
3484         int n_entries;
3485         ssize_t bytes_read;
3486
3487         /*
3488          * Don't allow user space to provide buffers not big enough to hold
3489          * a line of data.
3490          */
3491         if (count < PIPE_CRC_LINE_LEN)
3492                 return -EINVAL;
3493
3494         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3495                 return 0;
3496
3497         /* nothing to read */
3498         spin_lock_irq(&pipe_crc->lock);
3499         while (pipe_crc_data_count(pipe_crc) == 0) {
3500                 int ret;
3501
3502                 if (filep->f_flags & O_NONBLOCK) {
3503                         spin_unlock_irq(&pipe_crc->lock);
3504                         return -EAGAIN;
3505                 }
3506
3507                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3508                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3509                 if (ret) {
3510                         spin_unlock_irq(&pipe_crc->lock);
3511                         return ret;
3512                 }
3513         }
3514
3515         /* We now have one or more entries to read */
3516         n_entries = count / PIPE_CRC_LINE_LEN;
3517
3518         bytes_read = 0;
3519         while (n_entries > 0) {
3520                 struct intel_pipe_crc_entry *entry =
3521                         &pipe_crc->entries[pipe_crc->tail];
3522                 int ret;
3523
3524                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3525                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3526                         break;
3527
3528                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3529                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3530
3531                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3532                                        "%8u %8x %8x %8x %8x %8x\n",
3533                                        entry->frame, entry->crc[0],
3534                                        entry->crc[1], entry->crc[2],
3535                                        entry->crc[3], entry->crc[4]);
3536
3537                 spin_unlock_irq(&pipe_crc->lock);
3538
3539                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3540                 if (ret == PIPE_CRC_LINE_LEN)
3541                         return -EFAULT;
3542
3543                 user_buf += PIPE_CRC_LINE_LEN;
3544                 n_entries--;
3545
3546                 spin_lock_irq(&pipe_crc->lock);
3547         }
3548
3549         spin_unlock_irq(&pipe_crc->lock);
3550
3551         return bytes_read;
3552 }
3553
3554 static const struct file_operations i915_pipe_crc_fops = {
3555         .owner = THIS_MODULE,
3556         .open = i915_pipe_crc_open,
3557         .read = i915_pipe_crc_read,
3558         .release = i915_pipe_crc_release,
3559 };
3560
3561 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3562         {
3563                 .name = "i915_pipe_A_crc",
3564                 .pipe = PIPE_A,
3565         },
3566         {
3567                 .name = "i915_pipe_B_crc",
3568                 .pipe = PIPE_B,
3569         },
3570         {
3571                 .name = "i915_pipe_C_crc",
3572                 .pipe = PIPE_C,
3573         },
3574 };
3575
3576 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3577                                 enum pipe pipe)
3578 {
3579         struct drm_device *dev = minor->dev;
3580         struct dentry *ent;
3581         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3582
3583         info->dev = dev;
3584         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3585                                   &i915_pipe_crc_fops);
3586         if (!ent)
3587                 return -ENOMEM;
3588
3589         return drm_add_fake_info_node(minor, ent, info);
3590 }
3591
3592 static const char * const pipe_crc_sources[] = {
3593         "none",
3594         "plane1",
3595         "plane2",
3596         "pf",
3597         "pipe",
3598         "TV",
3599         "DP-B",
3600         "DP-C",
3601         "DP-D",
3602         "auto",
3603 };
3604
3605 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3606 {
3607         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3608         return pipe_crc_sources[source];
3609 }
3610
3611 static int display_crc_ctl_show(struct seq_file *m, void *data)
3612 {
3613         struct drm_device *dev = m->private;
3614         struct drm_i915_private *dev_priv = dev->dev_private;
3615         int i;
3616
3617         for (i = 0; i < I915_MAX_PIPES; i++)
3618                 seq_printf(m, "%c %s\n", pipe_name(i),
3619                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3620
3621         return 0;
3622 }
3623
3624 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3625 {
3626         struct drm_device *dev = inode->i_private;
3627
3628         return single_open(file, display_crc_ctl_show, dev);
3629 }
3630
3631 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3632                                  uint32_t *val)
3633 {
3634         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3635                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3636
3637         switch (*source) {
3638         case INTEL_PIPE_CRC_SOURCE_PIPE:
3639                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3640                 break;
3641         case INTEL_PIPE_CRC_SOURCE_NONE:
3642                 *val = 0;
3643                 break;
3644         default:
3645                 return -EINVAL;
3646         }
3647
3648         return 0;
3649 }
3650
3651 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3652                                      enum intel_pipe_crc_source *source)
3653 {
3654         struct intel_encoder *encoder;
3655         struct intel_crtc *crtc;
3656         struct intel_digital_port *dig_port;
3657         int ret = 0;
3658
3659         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3660
3661         drm_modeset_lock_all(dev);
3662         for_each_intel_encoder(dev, encoder) {
3663                 if (!encoder->base.crtc)
3664                         continue;
3665
3666                 crtc = to_intel_crtc(encoder->base.crtc);
3667
3668                 if (crtc->pipe != pipe)
3669                         continue;
3670
3671                 switch (encoder->type) {
3672                 case INTEL_OUTPUT_TVOUT:
3673                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3674                         break;
3675                 case INTEL_OUTPUT_DISPLAYPORT:
3676                 case INTEL_OUTPUT_EDP:
3677                         dig_port = enc_to_dig_port(&encoder->base);
3678                         switch (dig_port->port) {
3679                         case PORT_B:
3680                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3681                                 break;
3682                         case PORT_C:
3683                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3684                                 break;
3685                         case PORT_D:
3686                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3687                                 break;
3688                         default:
3689                                 WARN(1, "nonexisting DP port %c\n",
3690                                      port_name(dig_port->port));
3691                                 break;
3692                         }
3693                         break;
3694                 default:
3695                         break;
3696                 }
3697         }
3698         drm_modeset_unlock_all(dev);
3699
3700         return ret;
3701 }
3702
3703 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3704                                 enum pipe pipe,
3705                                 enum intel_pipe_crc_source *source,
3706                                 uint32_t *val)
3707 {
3708         struct drm_i915_private *dev_priv = dev->dev_private;
3709         bool need_stable_symbols = false;
3710
3711         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3712                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3713                 if (ret)
3714                         return ret;
3715         }
3716
3717         switch (*source) {
3718         case INTEL_PIPE_CRC_SOURCE_PIPE:
3719                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3720                 break;
3721         case INTEL_PIPE_CRC_SOURCE_DP_B:
3722                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3723                 need_stable_symbols = true;
3724                 break;
3725         case INTEL_PIPE_CRC_SOURCE_DP_C:
3726                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3727                 need_stable_symbols = true;
3728                 break;
3729         case INTEL_PIPE_CRC_SOURCE_DP_D:
3730                 if (!IS_CHERRYVIEW(dev))
3731                         return -EINVAL;
3732                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3733                 need_stable_symbols = true;
3734                 break;
3735         case INTEL_PIPE_CRC_SOURCE_NONE:
3736                 *val = 0;
3737                 break;
3738         default:
3739                 return -EINVAL;
3740         }
3741
3742         /*
3743          * When the pipe CRC tap point is after the transcoders we need
3744          * to tweak symbol-level features to produce a deterministic series of
3745          * symbols for a given frame. We need to reset those features only once
3746          * a frame (instead of every nth symbol):
3747          *   - DC-balance: used to ensure a better clock recovery from the data
3748          *     link (SDVO)
3749          *   - DisplayPort scrambling: used for EMI reduction
3750          */
3751         if (need_stable_symbols) {
3752                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3753
3754                 tmp |= DC_BALANCE_RESET_VLV;
3755                 switch (pipe) {
3756                 case PIPE_A:
3757                         tmp |= PIPE_A_SCRAMBLE_RESET;
3758                         break;
3759                 case PIPE_B:
3760                         tmp |= PIPE_B_SCRAMBLE_RESET;
3761                         break;
3762                 case PIPE_C:
3763                         tmp |= PIPE_C_SCRAMBLE_RESET;
3764                         break;
3765                 default:
3766                         return -EINVAL;
3767                 }
3768                 I915_WRITE(PORT_DFT2_G4X, tmp);
3769         }
3770
3771         return 0;
3772 }
3773
3774 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3775                                  enum pipe pipe,
3776                                  enum intel_pipe_crc_source *source,
3777                                  uint32_t *val)
3778 {
3779         struct drm_i915_private *dev_priv = dev->dev_private;
3780         bool need_stable_symbols = false;
3781
3782         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3783                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3784                 if (ret)
3785                         return ret;
3786         }
3787
3788         switch (*source) {
3789         case INTEL_PIPE_CRC_SOURCE_PIPE:
3790                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3791                 break;
3792         case INTEL_PIPE_CRC_SOURCE_TV:
3793                 if (!SUPPORTS_TV(dev))
3794                         return -EINVAL;
3795                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3796                 break;
3797         case INTEL_PIPE_CRC_SOURCE_DP_B:
3798                 if (!IS_G4X(dev))
3799                         return -EINVAL;
3800                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3801                 need_stable_symbols = true;
3802                 break;
3803         case INTEL_PIPE_CRC_SOURCE_DP_C:
3804                 if (!IS_G4X(dev))
3805                         return -EINVAL;
3806                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3807                 need_stable_symbols = true;
3808                 break;
3809         case INTEL_PIPE_CRC_SOURCE_DP_D:
3810                 if (!IS_G4X(dev))
3811                         return -EINVAL;
3812                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3813                 need_stable_symbols = true;
3814                 break;
3815         case INTEL_PIPE_CRC_SOURCE_NONE:
3816                 *val = 0;
3817                 break;
3818         default:
3819                 return -EINVAL;
3820         }
3821
3822         /*
3823          * When the pipe CRC tap point is after the transcoders we need
3824          * to tweak symbol-level features to produce a deterministic series of
3825          * symbols for a given frame. We need to reset those features only once
3826          * a frame (instead of every nth symbol):
3827          *   - DC-balance: used to ensure a better clock recovery from the data
3828          *     link (SDVO)
3829          *   - DisplayPort scrambling: used for EMI reduction
3830          */
3831         if (need_stable_symbols) {
3832                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3833
3834                 WARN_ON(!IS_G4X(dev));
3835
3836                 I915_WRITE(PORT_DFT_I9XX,
3837                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3838
3839                 if (pipe == PIPE_A)
3840                         tmp |= PIPE_A_SCRAMBLE_RESET;
3841                 else
3842                         tmp |= PIPE_B_SCRAMBLE_RESET;
3843
3844                 I915_WRITE(PORT_DFT2_G4X, tmp);
3845         }
3846
3847         return 0;
3848 }
3849
3850 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3851                                          enum pipe pipe)
3852 {
3853         struct drm_i915_private *dev_priv = dev->dev_private;
3854         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3855
3856         switch (pipe) {
3857         case PIPE_A:
3858                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3859                 break;
3860         case PIPE_B:
3861                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3862                 break;
3863         case PIPE_C:
3864                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3865                 break;
3866         default:
3867                 return;
3868         }
3869         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3870                 tmp &= ~DC_BALANCE_RESET_VLV;
3871         I915_WRITE(PORT_DFT2_G4X, tmp);
3872
3873 }
3874
3875 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3876                                          enum pipe pipe)
3877 {
3878         struct drm_i915_private *dev_priv = dev->dev_private;
3879         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3880
3881         if (pipe == PIPE_A)
3882                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3883         else
3884                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3885         I915_WRITE(PORT_DFT2_G4X, tmp);
3886
3887         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3888                 I915_WRITE(PORT_DFT_I9XX,
3889                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3890         }
3891 }
3892
3893 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3894                                 uint32_t *val)
3895 {
3896         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3897                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3898
3899         switch (*source) {
3900         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3901                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3902                 break;
3903         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3904                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3905                 break;
3906         case INTEL_PIPE_CRC_SOURCE_PIPE:
3907                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3908                 break;
3909         case INTEL_PIPE_CRC_SOURCE_NONE:
3910                 *val = 0;
3911                 break;
3912         default:
3913                 return -EINVAL;
3914         }
3915
3916         return 0;
3917 }
3918
3919 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3920 {
3921         struct drm_i915_private *dev_priv = dev->dev_private;
3922         struct intel_crtc *crtc =
3923                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3924         struct intel_crtc_state *pipe_config;
3925         struct drm_atomic_state *state;
3926         int ret = 0;
3927
3928         drm_modeset_lock_all(dev);
3929         state = drm_atomic_state_alloc(dev);
3930         if (!state) {
3931                 ret = -ENOMEM;
3932                 goto out;
3933         }
3934
3935         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3936         pipe_config = intel_atomic_get_crtc_state(state, crtc);
3937         if (IS_ERR(pipe_config)) {
3938                 ret = PTR_ERR(pipe_config);
3939                 goto out;
3940         }
3941
3942         pipe_config->pch_pfit.force_thru = enable;
3943         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3944             pipe_config->pch_pfit.enabled != enable)
3945                 pipe_config->base.connectors_changed = true;
3946
3947         ret = drm_atomic_commit(state);
3948 out:
3949         drm_modeset_unlock_all(dev);
3950         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3951         if (ret)
3952                 drm_atomic_state_free(state);
3953 }
3954
3955 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3956                                 enum pipe pipe,
3957                                 enum intel_pipe_crc_source *source,
3958                                 uint32_t *val)
3959 {
3960         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3961                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3962
3963         switch (*source) {
3964         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3965                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3966                 break;
3967         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3968                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3969                 break;
3970         case INTEL_PIPE_CRC_SOURCE_PF:
3971                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3972                         hsw_trans_edp_pipe_A_crc_wa(dev, true);
3973
3974                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3975                 break;
3976         case INTEL_PIPE_CRC_SOURCE_NONE:
3977                 *val = 0;
3978                 break;
3979         default:
3980                 return -EINVAL;
3981         }
3982
3983         return 0;
3984 }
3985
3986 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3987                                enum intel_pipe_crc_source source)
3988 {
3989         struct drm_i915_private *dev_priv = dev->dev_private;
3990         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3991         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3992                                                                         pipe));
3993         enum intel_display_power_domain power_domain;
3994         u32 val = 0; /* shut up gcc */
3995         int ret;
3996
3997         if (pipe_crc->source == source)
3998                 return 0;
3999
4000         /* forbid changing the source without going back to 'none' */
4001         if (pipe_crc->source && source)
4002                 return -EINVAL;
4003
4004         power_domain = POWER_DOMAIN_PIPE(pipe);
4005         if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4006                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4007                 return -EIO;
4008         }
4009
4010         if (IS_GEN2(dev))
4011                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4012         else if (INTEL_INFO(dev)->gen < 5)
4013                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4014         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4015                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4016         else if (IS_GEN5(dev) || IS_GEN6(dev))
4017                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4018         else
4019                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4020
4021         if (ret != 0)
4022                 goto out;
4023
4024         /* none -> real source transition */
4025         if (source) {
4026                 struct intel_pipe_crc_entry *entries;
4027
4028                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4029                                  pipe_name(pipe), pipe_crc_source_name(source));
4030
4031                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4032                                   sizeof(pipe_crc->entries[0]),
4033                                   GFP_KERNEL);
4034                 if (!entries) {
4035                         ret = -ENOMEM;
4036                         goto out;
4037                 }
4038
4039                 /*
4040                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4041                  * enabled and disabled dynamically based on package C states,
4042                  * user space can't make reliable use of the CRCs, so let's just
4043                  * completely disable it.
4044                  */
4045                 hsw_disable_ips(crtc);
4046
4047                 spin_lock_irq(&pipe_crc->lock);
4048                 kfree(pipe_crc->entries);
4049                 pipe_crc->entries = entries;
4050                 pipe_crc->head = 0;
4051                 pipe_crc->tail = 0;
4052                 spin_unlock_irq(&pipe_crc->lock);
4053         }
4054
4055         pipe_crc->source = source;
4056
4057         I915_WRITE(PIPE_CRC_CTL(pipe), val);
4058         POSTING_READ(PIPE_CRC_CTL(pipe));
4059
4060         /* real source -> none transition */
4061         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4062                 struct intel_pipe_crc_entry *entries;
4063                 struct intel_crtc *crtc =
4064                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4065
4066                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4067                                  pipe_name(pipe));
4068
4069                 drm_modeset_lock(&crtc->base.mutex, NULL);
4070                 if (crtc->base.state->active)
4071                         intel_wait_for_vblank(dev, pipe);
4072                 drm_modeset_unlock(&crtc->base.mutex);
4073
4074                 spin_lock_irq(&pipe_crc->lock);
4075                 entries = pipe_crc->entries;
4076                 pipe_crc->entries = NULL;
4077                 pipe_crc->head = 0;
4078                 pipe_crc->tail = 0;
4079                 spin_unlock_irq(&pipe_crc->lock);
4080
4081                 kfree(entries);
4082
4083                 if (IS_G4X(dev))
4084                         g4x_undo_pipe_scramble_reset(dev, pipe);
4085                 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4086                         vlv_undo_pipe_scramble_reset(dev, pipe);
4087                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4088                         hsw_trans_edp_pipe_A_crc_wa(dev, false);
4089
4090                 hsw_enable_ips(crtc);
4091         }
4092
4093         ret = 0;
4094
4095 out:
4096         intel_display_power_put(dev_priv, power_domain);
4097
4098         return ret;
4099 }
4100
4101 /*
4102  * Parse pipe CRC command strings:
4103  *   command: wsp* object wsp+ name wsp+ source wsp*
4104  *   object: 'pipe'
4105  *   name: (A | B | C)
4106  *   source: (none | plane1 | plane2 | pf)
4107  *   wsp: (#0x20 | #0x9 | #0xA)+
4108  *
4109  * eg.:
4110  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4111  *  "pipe A none"    ->  Stop CRC
4112  */
4113 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4114 {
4115         int n_words = 0;
4116
4117         while (*buf) {
4118                 char *end;
4119
4120                 /* skip leading white space */
4121                 buf = skip_spaces(buf);
4122                 if (!*buf)
4123                         break;  /* end of buffer */
4124
4125                 /* find end of word */
4126                 for (end = buf; *end && !isspace(*end); end++)
4127                         ;
4128
4129                 if (n_words == max_words) {
4130                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4131                                          max_words);
4132                         return -EINVAL; /* ran out of words[] before bytes */
4133                 }
4134
4135                 if (*end)
4136                         *end++ = '\0';
4137                 words[n_words++] = buf;
4138                 buf = end;
4139         }
4140
4141         return n_words;
4142 }
4143
4144 enum intel_pipe_crc_object {
4145         PIPE_CRC_OBJECT_PIPE,
4146 };
4147
4148 static const char * const pipe_crc_objects[] = {
4149         "pipe",
4150 };
4151
4152 static int
4153 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4154 {
4155         int i;
4156
4157         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4158                 if (!strcmp(buf, pipe_crc_objects[i])) {
4159                         *o = i;
4160                         return 0;
4161                     }
4162
4163         return -EINVAL;
4164 }
4165
4166 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4167 {
4168         const char name = buf[0];
4169
4170         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4171                 return -EINVAL;
4172
4173         *pipe = name - 'A';
4174
4175         return 0;
4176 }
4177
4178 static int
4179 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4180 {
4181         int i;
4182
4183         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4184                 if (!strcmp(buf, pipe_crc_sources[i])) {
4185                         *s = i;
4186                         return 0;
4187                     }
4188
4189         return -EINVAL;
4190 }
4191
4192 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4193 {
4194 #define N_WORDS 3
4195         int n_words;
4196         char *words[N_WORDS];
4197         enum pipe pipe;
4198         enum intel_pipe_crc_object object;
4199         enum intel_pipe_crc_source source;
4200
4201         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4202         if (n_words != N_WORDS) {
4203                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4204                                  N_WORDS);
4205                 return -EINVAL;
4206         }
4207
4208         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4209                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4210                 return -EINVAL;
4211         }
4212
4213         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4214                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4215                 return -EINVAL;
4216         }
4217
4218         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4219                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4220                 return -EINVAL;
4221         }
4222
4223         return pipe_crc_set_source(dev, pipe, source);
4224 }
4225
4226 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4227                                      size_t len, loff_t *offp)
4228 {
4229         struct seq_file *m = file->private_data;
4230         struct drm_device *dev = m->private;
4231         char *tmpbuf;
4232         int ret;
4233
4234         if (len == 0)
4235                 return 0;
4236
4237         if (len > PAGE_SIZE - 1) {
4238                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4239                                  PAGE_SIZE);
4240                 return -E2BIG;
4241         }
4242
4243         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4244         if (!tmpbuf)
4245                 return -ENOMEM;
4246
4247         if (copy_from_user(tmpbuf, ubuf, len)) {
4248                 ret = -EFAULT;
4249                 goto out;
4250         }
4251         tmpbuf[len] = '\0';
4252
4253         ret = display_crc_ctl_parse(dev, tmpbuf, len);
4254
4255 out:
4256         kfree(tmpbuf);
4257         if (ret < 0)
4258                 return ret;
4259
4260         *offp += len;
4261         return len;
4262 }
4263
4264 static const struct file_operations i915_display_crc_ctl_fops = {
4265         .owner = THIS_MODULE,
4266         .open = display_crc_ctl_open,
4267         .read = seq_read,
4268         .llseek = seq_lseek,
4269         .release = single_release,
4270         .write = display_crc_ctl_write
4271 };
4272
4273 static ssize_t i915_displayport_test_active_write(struct file *file,
4274                                             const char __user *ubuf,
4275                                             size_t len, loff_t *offp)
4276 {
4277         char *input_buffer;
4278         int status = 0;
4279         struct drm_device *dev;
4280         struct drm_connector *connector;
4281         struct list_head *connector_list;
4282         struct intel_dp *intel_dp;
4283         int val = 0;
4284
4285         dev = ((struct seq_file *)file->private_data)->private;
4286
4287         connector_list = &dev->mode_config.connector_list;
4288
4289         if (len == 0)
4290                 return 0;
4291
4292         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4293         if (!input_buffer)
4294                 return -ENOMEM;
4295
4296         if (copy_from_user(input_buffer, ubuf, len)) {
4297                 status = -EFAULT;
4298                 goto out;
4299         }
4300
4301         input_buffer[len] = '\0';
4302         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4303
4304         list_for_each_entry(connector, connector_list, head) {
4305
4306                 if (connector->connector_type !=
4307                     DRM_MODE_CONNECTOR_DisplayPort)
4308                         continue;
4309
4310                 if (connector->status == connector_status_connected &&
4311                     connector->encoder != NULL) {
4312                         intel_dp = enc_to_intel_dp(connector->encoder);
4313                         status = kstrtoint(input_buffer, 10, &val);
4314                         if (status < 0)
4315                                 goto out;
4316                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4317                         /* To prevent erroneous activation of the compliance
4318                          * testing code, only accept an actual value of 1 here
4319                          */
4320                         if (val == 1)
4321                                 intel_dp->compliance_test_active = 1;
4322                         else
4323                                 intel_dp->compliance_test_active = 0;
4324                 }
4325         }
4326 out:
4327         kfree(input_buffer);
4328         if (status < 0)
4329                 return status;
4330
4331         *offp += len;
4332         return len;
4333 }
4334
4335 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4336 {
4337         struct drm_device *dev = m->private;
4338         struct drm_connector *connector;
4339         struct list_head *connector_list = &dev->mode_config.connector_list;
4340         struct intel_dp *intel_dp;
4341
4342         list_for_each_entry(connector, connector_list, head) {
4343
4344                 if (connector->connector_type !=
4345                     DRM_MODE_CONNECTOR_DisplayPort)
4346                         continue;
4347
4348                 if (connector->status == connector_status_connected &&
4349                     connector->encoder != NULL) {
4350                         intel_dp = enc_to_intel_dp(connector->encoder);
4351                         if (intel_dp->compliance_test_active)
4352                                 seq_puts(m, "1");
4353                         else
4354                                 seq_puts(m, "0");
4355                 } else
4356                         seq_puts(m, "0");
4357         }
4358
4359         return 0;
4360 }
4361
4362 static int i915_displayport_test_active_open(struct inode *inode,
4363                                        struct file *file)
4364 {
4365         struct drm_device *dev = inode->i_private;
4366
4367         return single_open(file, i915_displayport_test_active_show, dev);
4368 }
4369
4370 static const struct file_operations i915_displayport_test_active_fops = {
4371         .owner = THIS_MODULE,
4372         .open = i915_displayport_test_active_open,
4373         .read = seq_read,
4374         .llseek = seq_lseek,
4375         .release = single_release,
4376         .write = i915_displayport_test_active_write
4377 };
4378
4379 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4380 {
4381         struct drm_device *dev = m->private;
4382         struct drm_connector *connector;
4383         struct list_head *connector_list = &dev->mode_config.connector_list;
4384         struct intel_dp *intel_dp;
4385
4386         list_for_each_entry(connector, connector_list, head) {
4387
4388                 if (connector->connector_type !=
4389                     DRM_MODE_CONNECTOR_DisplayPort)
4390                         continue;
4391
4392                 if (connector->status == connector_status_connected &&
4393                     connector->encoder != NULL) {
4394                         intel_dp = enc_to_intel_dp(connector->encoder);
4395                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4396                 } else
4397                         seq_puts(m, "0");
4398         }
4399
4400         return 0;
4401 }
4402 static int i915_displayport_test_data_open(struct inode *inode,
4403                                        struct file *file)
4404 {
4405         struct drm_device *dev = inode->i_private;
4406
4407         return single_open(file, i915_displayport_test_data_show, dev);
4408 }
4409
4410 static const struct file_operations i915_displayport_test_data_fops = {
4411         .owner = THIS_MODULE,
4412         .open = i915_displayport_test_data_open,
4413         .read = seq_read,
4414         .llseek = seq_lseek,
4415         .release = single_release
4416 };
4417
4418 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4419 {
4420         struct drm_device *dev = m->private;
4421         struct drm_connector *connector;
4422         struct list_head *connector_list = &dev->mode_config.connector_list;
4423         struct intel_dp *intel_dp;
4424
4425         list_for_each_entry(connector, connector_list, head) {
4426
4427                 if (connector->connector_type !=
4428                     DRM_MODE_CONNECTOR_DisplayPort)
4429                         continue;
4430
4431                 if (connector->status == connector_status_connected &&
4432                     connector->encoder != NULL) {
4433                         intel_dp = enc_to_intel_dp(connector->encoder);
4434                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4435                 } else
4436                         seq_puts(m, "0");
4437         }
4438
4439         return 0;
4440 }
4441
4442 static int i915_displayport_test_type_open(struct inode *inode,
4443                                        struct file *file)
4444 {
4445         struct drm_device *dev = inode->i_private;
4446
4447         return single_open(file, i915_displayport_test_type_show, dev);
4448 }
4449
4450 static const struct file_operations i915_displayport_test_type_fops = {
4451         .owner = THIS_MODULE,
4452         .open = i915_displayport_test_type_open,
4453         .read = seq_read,
4454         .llseek = seq_lseek,
4455         .release = single_release
4456 };
4457
4458 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4459 {
4460         struct drm_device *dev = m->private;
4461         int level;
4462         int num_levels;
4463
4464         if (IS_CHERRYVIEW(dev))
4465                 num_levels = 3;
4466         else if (IS_VALLEYVIEW(dev))
4467                 num_levels = 1;
4468         else
4469                 num_levels = ilk_wm_max_level(dev) + 1;
4470
4471         drm_modeset_lock_all(dev);
4472
4473         for (level = 0; level < num_levels; level++) {
4474                 unsigned int latency = wm[level];
4475
4476                 /*
4477                  * - WM1+ latency values in 0.5us units
4478                  * - latencies are in us on gen9/vlv/chv
4479                  */
4480                 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4481                     IS_CHERRYVIEW(dev))
4482                         latency *= 10;
4483                 else if (level > 0)
4484                         latency *= 5;
4485
4486                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4487                            level, wm[level], latency / 10, latency % 10);
4488         }
4489
4490         drm_modeset_unlock_all(dev);
4491 }
4492
4493 static int pri_wm_latency_show(struct seq_file *m, void *data)
4494 {
4495         struct drm_device *dev = m->private;
4496         struct drm_i915_private *dev_priv = dev->dev_private;
4497         const uint16_t *latencies;
4498
4499         if (INTEL_INFO(dev)->gen >= 9)
4500                 latencies = dev_priv->wm.skl_latency;
4501         else
4502                 latencies = to_i915(dev)->wm.pri_latency;
4503
4504         wm_latency_show(m, latencies);
4505
4506         return 0;
4507 }
4508
4509 static int spr_wm_latency_show(struct seq_file *m, void *data)
4510 {
4511         struct drm_device *dev = m->private;
4512         struct drm_i915_private *dev_priv = dev->dev_private;
4513         const uint16_t *latencies;
4514
4515         if (INTEL_INFO(dev)->gen >= 9)
4516                 latencies = dev_priv->wm.skl_latency;
4517         else
4518                 latencies = to_i915(dev)->wm.spr_latency;
4519
4520         wm_latency_show(m, latencies);
4521
4522         return 0;
4523 }
4524
4525 static int cur_wm_latency_show(struct seq_file *m, void *data)
4526 {
4527         struct drm_device *dev = m->private;
4528         struct drm_i915_private *dev_priv = dev->dev_private;
4529         const uint16_t *latencies;
4530
4531         if (INTEL_INFO(dev)->gen >= 9)
4532                 latencies = dev_priv->wm.skl_latency;
4533         else
4534                 latencies = to_i915(dev)->wm.cur_latency;
4535
4536         wm_latency_show(m, latencies);
4537
4538         return 0;
4539 }
4540
4541 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4542 {
4543         struct drm_device *dev = inode->i_private;
4544
4545         if (INTEL_INFO(dev)->gen < 5)
4546                 return -ENODEV;
4547
4548         return single_open(file, pri_wm_latency_show, dev);
4549 }
4550
4551 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4552 {
4553         struct drm_device *dev = inode->i_private;
4554
4555         if (HAS_GMCH_DISPLAY(dev))
4556                 return -ENODEV;
4557
4558         return single_open(file, spr_wm_latency_show, dev);
4559 }
4560
4561 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4562 {
4563         struct drm_device *dev = inode->i_private;
4564
4565         if (HAS_GMCH_DISPLAY(dev))
4566                 return -ENODEV;
4567
4568         return single_open(file, cur_wm_latency_show, dev);
4569 }
4570
4571 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4572                                 size_t len, loff_t *offp, uint16_t wm[8])
4573 {
4574         struct seq_file *m = file->private_data;
4575         struct drm_device *dev = m->private;
4576         uint16_t new[8] = { 0 };
4577         int num_levels;
4578         int level;
4579         int ret;
4580         char tmp[32];
4581
4582         if (IS_CHERRYVIEW(dev))
4583                 num_levels = 3;
4584         else if (IS_VALLEYVIEW(dev))
4585                 num_levels = 1;
4586         else
4587                 num_levels = ilk_wm_max_level(dev) + 1;
4588
4589         if (len >= sizeof(tmp))
4590                 return -EINVAL;
4591
4592         if (copy_from_user(tmp, ubuf, len))
4593                 return -EFAULT;
4594
4595         tmp[len] = '\0';
4596
4597         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4598                      &new[0], &new[1], &new[2], &new[3],
4599                      &new[4], &new[5], &new[6], &new[7]);
4600         if (ret != num_levels)
4601                 return -EINVAL;
4602
4603         drm_modeset_lock_all(dev);
4604
4605         for (level = 0; level < num_levels; level++)
4606                 wm[level] = new[level];
4607
4608         drm_modeset_unlock_all(dev);
4609
4610         return len;
4611 }
4612
4613
4614 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4615                                     size_t len, loff_t *offp)
4616 {
4617         struct seq_file *m = file->private_data;
4618         struct drm_device *dev = m->private;
4619         struct drm_i915_private *dev_priv = dev->dev_private;
4620         uint16_t *latencies;
4621
4622         if (INTEL_INFO(dev)->gen >= 9)
4623                 latencies = dev_priv->wm.skl_latency;
4624         else
4625                 latencies = to_i915(dev)->wm.pri_latency;
4626
4627         return wm_latency_write(file, ubuf, len, offp, latencies);
4628 }
4629
4630 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4631                                     size_t len, loff_t *offp)
4632 {
4633         struct seq_file *m = file->private_data;
4634         struct drm_device *dev = m->private;
4635         struct drm_i915_private *dev_priv = dev->dev_private;
4636         uint16_t *latencies;
4637
4638         if (INTEL_INFO(dev)->gen >= 9)
4639                 latencies = dev_priv->wm.skl_latency;
4640         else
4641                 latencies = to_i915(dev)->wm.spr_latency;
4642
4643         return wm_latency_write(file, ubuf, len, offp, latencies);
4644 }
4645
4646 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4647                                     size_t len, loff_t *offp)
4648 {
4649         struct seq_file *m = file->private_data;
4650         struct drm_device *dev = m->private;
4651         struct drm_i915_private *dev_priv = dev->dev_private;
4652         uint16_t *latencies;
4653
4654         if (INTEL_INFO(dev)->gen >= 9)
4655                 latencies = dev_priv->wm.skl_latency;
4656         else
4657                 latencies = to_i915(dev)->wm.cur_latency;
4658
4659         return wm_latency_write(file, ubuf, len, offp, latencies);
4660 }
4661
4662 static const struct file_operations i915_pri_wm_latency_fops = {
4663         .owner = THIS_MODULE,
4664         .open = pri_wm_latency_open,
4665         .read = seq_read,
4666         .llseek = seq_lseek,
4667         .release = single_release,
4668         .write = pri_wm_latency_write
4669 };
4670
4671 static const struct file_operations i915_spr_wm_latency_fops = {
4672         .owner = THIS_MODULE,
4673         .open = spr_wm_latency_open,
4674         .read = seq_read,
4675         .llseek = seq_lseek,
4676         .release = single_release,
4677         .write = spr_wm_latency_write
4678 };
4679
4680 static const struct file_operations i915_cur_wm_latency_fops = {
4681         .owner = THIS_MODULE,
4682         .open = cur_wm_latency_open,
4683         .read = seq_read,
4684         .llseek = seq_lseek,
4685         .release = single_release,
4686         .write = cur_wm_latency_write
4687 };
4688
4689 static int
4690 i915_wedged_get(void *data, u64 *val)
4691 {
4692         struct drm_device *dev = data;
4693         struct drm_i915_private *dev_priv = dev->dev_private;
4694
4695         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4696
4697         return 0;
4698 }
4699
4700 static int
4701 i915_wedged_set(void *data, u64 val)
4702 {
4703         struct drm_device *dev = data;
4704         struct drm_i915_private *dev_priv = dev->dev_private;
4705
4706         /*
4707          * There is no safeguard against this debugfs entry colliding
4708          * with the hangcheck calling same i915_handle_error() in
4709          * parallel, causing an explosion. For now we assume that the
4710          * test harness is responsible enough not to inject gpu hangs
4711          * while it is writing to 'i915_wedged'
4712          */
4713
4714         if (i915_reset_in_progress(&dev_priv->gpu_error))
4715                 return -EAGAIN;
4716
4717         intel_runtime_pm_get(dev_priv);
4718
4719         i915_handle_error(dev, val,
4720                           "Manually setting wedged to %llu", val);
4721
4722         intel_runtime_pm_put(dev_priv);
4723
4724         return 0;
4725 }
4726
4727 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4728                         i915_wedged_get, i915_wedged_set,
4729                         "%llu\n");
4730
4731 static int
4732 i915_ring_stop_get(void *data, u64 *val)
4733 {
4734         struct drm_device *dev = data;
4735         struct drm_i915_private *dev_priv = dev->dev_private;
4736
4737         *val = dev_priv->gpu_error.stop_rings;
4738
4739         return 0;
4740 }
4741
4742 static int
4743 i915_ring_stop_set(void *data, u64 val)
4744 {
4745         struct drm_device *dev = data;
4746         struct drm_i915_private *dev_priv = dev->dev_private;
4747         int ret;
4748
4749         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4750
4751         ret = mutex_lock_interruptible(&dev->struct_mutex);
4752         if (ret)
4753                 return ret;
4754
4755         dev_priv->gpu_error.stop_rings = val;
4756         mutex_unlock(&dev->struct_mutex);
4757
4758         return 0;
4759 }
4760
4761 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4762                         i915_ring_stop_get, i915_ring_stop_set,
4763                         "0x%08llx\n");
4764
4765 static int
4766 i915_ring_missed_irq_get(void *data, u64 *val)
4767 {
4768         struct drm_device *dev = data;
4769         struct drm_i915_private *dev_priv = dev->dev_private;
4770
4771         *val = dev_priv->gpu_error.missed_irq_rings;
4772         return 0;
4773 }
4774
4775 static int
4776 i915_ring_missed_irq_set(void *data, u64 val)
4777 {
4778         struct drm_device *dev = data;
4779         struct drm_i915_private *dev_priv = dev->dev_private;
4780         int ret;
4781
4782         /* Lock against concurrent debugfs callers */
4783         ret = mutex_lock_interruptible(&dev->struct_mutex);
4784         if (ret)
4785                 return ret;
4786         dev_priv->gpu_error.missed_irq_rings = val;
4787         mutex_unlock(&dev->struct_mutex);
4788
4789         return 0;
4790 }
4791
4792 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4793                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4794                         "0x%08llx\n");
4795
4796 static int
4797 i915_ring_test_irq_get(void *data, u64 *val)
4798 {
4799         struct drm_device *dev = data;
4800         struct drm_i915_private *dev_priv = dev->dev_private;
4801
4802         *val = dev_priv->gpu_error.test_irq_rings;
4803
4804         return 0;
4805 }
4806
4807 static int
4808 i915_ring_test_irq_set(void *data, u64 val)
4809 {
4810         struct drm_device *dev = data;
4811         struct drm_i915_private *dev_priv = dev->dev_private;
4812         int ret;
4813
4814         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4815
4816         /* Lock against concurrent debugfs callers */
4817         ret = mutex_lock_interruptible(&dev->struct_mutex);
4818         if (ret)
4819                 return ret;
4820
4821         dev_priv->gpu_error.test_irq_rings = val;
4822         mutex_unlock(&dev->struct_mutex);
4823
4824         return 0;
4825 }
4826
4827 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4828                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4829                         "0x%08llx\n");
4830
4831 #define DROP_UNBOUND 0x1
4832 #define DROP_BOUND 0x2
4833 #define DROP_RETIRE 0x4
4834 #define DROP_ACTIVE 0x8
4835 #define DROP_ALL (DROP_UNBOUND | \
4836                   DROP_BOUND | \
4837                   DROP_RETIRE | \
4838                   DROP_ACTIVE)
4839 static int
4840 i915_drop_caches_get(void *data, u64 *val)
4841 {
4842         *val = DROP_ALL;
4843
4844         return 0;
4845 }
4846
4847 static int
4848 i915_drop_caches_set(void *data, u64 val)
4849 {
4850         struct drm_device *dev = data;
4851         struct drm_i915_private *dev_priv = dev->dev_private;
4852         int ret;
4853
4854         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4855
4856         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4857          * on ioctls on -EAGAIN. */
4858         ret = mutex_lock_interruptible(&dev->struct_mutex);
4859         if (ret)
4860                 return ret;
4861
4862         if (val & DROP_ACTIVE) {
4863                 ret = i915_gpu_idle(dev);
4864                 if (ret)
4865                         goto unlock;
4866         }
4867
4868         if (val & (DROP_RETIRE | DROP_ACTIVE))
4869                 i915_gem_retire_requests(dev);
4870
4871         if (val & DROP_BOUND)
4872                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4873
4874         if (val & DROP_UNBOUND)
4875                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4876
4877 unlock:
4878         mutex_unlock(&dev->struct_mutex);
4879
4880         return ret;
4881 }
4882
4883 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4884                         i915_drop_caches_get, i915_drop_caches_set,
4885                         "0x%08llx\n");
4886
4887 static int
4888 i915_max_freq_get(void *data, u64 *val)
4889 {
4890         struct drm_device *dev = data;
4891         struct drm_i915_private *dev_priv = dev->dev_private;
4892         int ret;
4893
4894         if (INTEL_INFO(dev)->gen < 6)
4895                 return -ENODEV;
4896
4897         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4898
4899         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4900         if (ret)
4901                 return ret;
4902
4903         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4904         mutex_unlock(&dev_priv->rps.hw_lock);
4905
4906         return 0;
4907 }
4908
4909 static int
4910 i915_max_freq_set(void *data, u64 val)
4911 {
4912         struct drm_device *dev = data;
4913         struct drm_i915_private *dev_priv = dev->dev_private;
4914         u32 hw_max, hw_min;
4915         int ret;
4916
4917         if (INTEL_INFO(dev)->gen < 6)
4918                 return -ENODEV;
4919
4920         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4921
4922         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4923
4924         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4925         if (ret)
4926                 return ret;
4927
4928         /*
4929          * Turbo will still be enabled, but won't go above the set value.
4930          */
4931         val = intel_freq_opcode(dev_priv, val);
4932
4933         hw_max = dev_priv->rps.max_freq;
4934         hw_min = dev_priv->rps.min_freq;
4935
4936         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4937                 mutex_unlock(&dev_priv->rps.hw_lock);
4938                 return -EINVAL;
4939         }
4940
4941         dev_priv->rps.max_freq_softlimit = val;
4942
4943         intel_set_rps(dev, val);
4944
4945         mutex_unlock(&dev_priv->rps.hw_lock);
4946
4947         return 0;
4948 }
4949
4950 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4951                         i915_max_freq_get, i915_max_freq_set,
4952                         "%llu\n");
4953
4954 static int
4955 i915_min_freq_get(void *data, u64 *val)
4956 {
4957         struct drm_device *dev = data;
4958         struct drm_i915_private *dev_priv = dev->dev_private;
4959         int ret;
4960
4961         if (INTEL_INFO(dev)->gen < 6)
4962                 return -ENODEV;
4963
4964         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4965
4966         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4967         if (ret)
4968                 return ret;
4969
4970         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4971         mutex_unlock(&dev_priv->rps.hw_lock);
4972
4973         return 0;
4974 }
4975
4976 static int
4977 i915_min_freq_set(void *data, u64 val)
4978 {
4979         struct drm_device *dev = data;
4980         struct drm_i915_private *dev_priv = dev->dev_private;
4981         u32 hw_max, hw_min;
4982         int ret;
4983
4984         if (INTEL_INFO(dev)->gen < 6)
4985                 return -ENODEV;
4986
4987         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4988
4989         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4990
4991         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4992         if (ret)
4993                 return ret;
4994
4995         /*
4996          * Turbo will still be enabled, but won't go below the set value.
4997          */
4998         val = intel_freq_opcode(dev_priv, val);
4999
5000         hw_max = dev_priv->rps.max_freq;
5001         hw_min = dev_priv->rps.min_freq;
5002
5003         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5004                 mutex_unlock(&dev_priv->rps.hw_lock);
5005                 return -EINVAL;
5006         }
5007
5008         dev_priv->rps.min_freq_softlimit = val;
5009
5010         intel_set_rps(dev, val);
5011
5012         mutex_unlock(&dev_priv->rps.hw_lock);
5013
5014         return 0;
5015 }
5016
5017 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5018                         i915_min_freq_get, i915_min_freq_set,
5019                         "%llu\n");
5020
5021 static int
5022 i915_cache_sharing_get(void *data, u64 *val)
5023 {
5024         struct drm_device *dev = data;
5025         struct drm_i915_private *dev_priv = dev->dev_private;
5026         u32 snpcr;
5027         int ret;
5028
5029         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5030                 return -ENODEV;
5031
5032         ret = mutex_lock_interruptible(&dev->struct_mutex);
5033         if (ret)
5034                 return ret;
5035         intel_runtime_pm_get(dev_priv);
5036
5037         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5038
5039         intel_runtime_pm_put(dev_priv);
5040         mutex_unlock(&dev_priv->dev->struct_mutex);
5041
5042         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5043
5044         return 0;
5045 }
5046
5047 static int
5048 i915_cache_sharing_set(void *data, u64 val)
5049 {
5050         struct drm_device *dev = data;
5051         struct drm_i915_private *dev_priv = dev->dev_private;
5052         u32 snpcr;
5053
5054         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5055                 return -ENODEV;
5056
5057         if (val > 3)
5058                 return -EINVAL;
5059
5060         intel_runtime_pm_get(dev_priv);
5061         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5062
5063         /* Update the cache sharing policy here as well */
5064         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5065         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5066         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5067         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5068
5069         intel_runtime_pm_put(dev_priv);
5070         return 0;
5071 }
5072
5073 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5074                         i915_cache_sharing_get, i915_cache_sharing_set,
5075                         "%llu\n");
5076
5077 struct sseu_dev_status {
5078         unsigned int slice_total;
5079         unsigned int subslice_total;
5080         unsigned int subslice_per_slice;
5081         unsigned int eu_total;
5082         unsigned int eu_per_subslice;
5083 };
5084
5085 static void cherryview_sseu_device_status(struct drm_device *dev,
5086                                           struct sseu_dev_status *stat)
5087 {
5088         struct drm_i915_private *dev_priv = dev->dev_private;
5089         int ss_max = 2;
5090         int ss;
5091         u32 sig1[ss_max], sig2[ss_max];
5092
5093         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5094         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5095         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5096         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5097
5098         for (ss = 0; ss < ss_max; ss++) {
5099                 unsigned int eu_cnt;
5100
5101                 if (sig1[ss] & CHV_SS_PG_ENABLE)
5102                         /* skip disabled subslice */
5103                         continue;
5104
5105                 stat->slice_total = 1;
5106                 stat->subslice_per_slice++;
5107                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5108                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5109                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5110                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5111                 stat->eu_total += eu_cnt;
5112                 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5113         }
5114         stat->subslice_total = stat->subslice_per_slice;
5115 }
5116
5117 static void gen9_sseu_device_status(struct drm_device *dev,
5118                                     struct sseu_dev_status *stat)
5119 {
5120         struct drm_i915_private *dev_priv = dev->dev_private;
5121         int s_max = 3, ss_max = 4;
5122         int s, ss;
5123         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5124
5125         /* BXT has a single slice and at most 3 subslices. */
5126         if (IS_BROXTON(dev)) {
5127                 s_max = 1;
5128                 ss_max = 3;
5129         }
5130
5131         for (s = 0; s < s_max; s++) {
5132                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5133                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5134                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5135         }
5136
5137         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5138                      GEN9_PGCTL_SSA_EU19_ACK |
5139                      GEN9_PGCTL_SSA_EU210_ACK |
5140                      GEN9_PGCTL_SSA_EU311_ACK;
5141         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5142                      GEN9_PGCTL_SSB_EU19_ACK |
5143                      GEN9_PGCTL_SSB_EU210_ACK |
5144                      GEN9_PGCTL_SSB_EU311_ACK;
5145
5146         for (s = 0; s < s_max; s++) {
5147                 unsigned int ss_cnt = 0;
5148
5149                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5150                         /* skip disabled slice */
5151                         continue;
5152
5153                 stat->slice_total++;
5154
5155                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5156                         ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5157
5158                 for (ss = 0; ss < ss_max; ss++) {
5159                         unsigned int eu_cnt;
5160
5161                         if (IS_BROXTON(dev) &&
5162                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5163                                 /* skip disabled subslice */
5164                                 continue;
5165
5166                         if (IS_BROXTON(dev))
5167                                 ss_cnt++;
5168
5169                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5170                                                eu_mask[ss%2]);
5171                         stat->eu_total += eu_cnt;
5172                         stat->eu_per_subslice = max(stat->eu_per_subslice,
5173                                                     eu_cnt);
5174                 }
5175
5176                 stat->subslice_total += ss_cnt;
5177                 stat->subslice_per_slice = max(stat->subslice_per_slice,
5178                                                ss_cnt);
5179         }
5180 }
5181
5182 static void broadwell_sseu_device_status(struct drm_device *dev,
5183                                          struct sseu_dev_status *stat)
5184 {
5185         struct drm_i915_private *dev_priv = dev->dev_private;
5186         int s;
5187         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5188
5189         stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5190
5191         if (stat->slice_total) {
5192                 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5193                 stat->subslice_total = stat->slice_total *
5194                                        stat->subslice_per_slice;
5195                 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5196                 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5197
5198                 /* subtract fused off EU(s) from enabled slice(s) */
5199                 for (s = 0; s < stat->slice_total; s++) {
5200                         u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5201
5202                         stat->eu_total -= hweight8(subslice_7eu);
5203                 }
5204         }
5205 }
5206
5207 static int i915_sseu_status(struct seq_file *m, void *unused)
5208 {
5209         struct drm_info_node *node = (struct drm_info_node *) m->private;
5210         struct drm_device *dev = node->minor->dev;
5211         struct sseu_dev_status stat;
5212
5213         if (INTEL_INFO(dev)->gen < 8)
5214                 return -ENODEV;
5215
5216         seq_puts(m, "SSEU Device Info\n");
5217         seq_printf(m, "  Available Slice Total: %u\n",
5218                    INTEL_INFO(dev)->slice_total);
5219         seq_printf(m, "  Available Subslice Total: %u\n",
5220                    INTEL_INFO(dev)->subslice_total);
5221         seq_printf(m, "  Available Subslice Per Slice: %u\n",
5222                    INTEL_INFO(dev)->subslice_per_slice);
5223         seq_printf(m, "  Available EU Total: %u\n",
5224                    INTEL_INFO(dev)->eu_total);
5225         seq_printf(m, "  Available EU Per Subslice: %u\n",
5226                    INTEL_INFO(dev)->eu_per_subslice);
5227         seq_printf(m, "  Has Slice Power Gating: %s\n",
5228                    yesno(INTEL_INFO(dev)->has_slice_pg));
5229         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5230                    yesno(INTEL_INFO(dev)->has_subslice_pg));
5231         seq_printf(m, "  Has EU Power Gating: %s\n",
5232                    yesno(INTEL_INFO(dev)->has_eu_pg));
5233
5234         seq_puts(m, "SSEU Device Status\n");
5235         memset(&stat, 0, sizeof(stat));
5236         if (IS_CHERRYVIEW(dev)) {
5237                 cherryview_sseu_device_status(dev, &stat);
5238         } else if (IS_BROADWELL(dev)) {
5239                 broadwell_sseu_device_status(dev, &stat);
5240         } else if (INTEL_INFO(dev)->gen >= 9) {
5241                 gen9_sseu_device_status(dev, &stat);
5242         }
5243         seq_printf(m, "  Enabled Slice Total: %u\n",
5244                    stat.slice_total);
5245         seq_printf(m, "  Enabled Subslice Total: %u\n",
5246                    stat.subslice_total);
5247         seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5248                    stat.subslice_per_slice);
5249         seq_printf(m, "  Enabled EU Total: %u\n",
5250                    stat.eu_total);
5251         seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5252                    stat.eu_per_subslice);
5253
5254         return 0;
5255 }
5256
5257 static int i915_forcewake_open(struct inode *inode, struct file *file)
5258 {
5259         struct drm_device *dev = inode->i_private;
5260         struct drm_i915_private *dev_priv = dev->dev_private;
5261
5262         if (INTEL_INFO(dev)->gen < 6)
5263                 return 0;
5264
5265         intel_runtime_pm_get(dev_priv);
5266         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5267
5268         return 0;
5269 }
5270
5271 static int i915_forcewake_release(struct inode *inode, struct file *file)
5272 {
5273         struct drm_device *dev = inode->i_private;
5274         struct drm_i915_private *dev_priv = dev->dev_private;
5275
5276         if (INTEL_INFO(dev)->gen < 6)
5277                 return 0;
5278
5279         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5280         intel_runtime_pm_put(dev_priv);
5281
5282         return 0;
5283 }
5284
5285 static const struct file_operations i915_forcewake_fops = {
5286         .owner = THIS_MODULE,
5287         .open = i915_forcewake_open,
5288         .release = i915_forcewake_release,
5289 };
5290
5291 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5292 {
5293         struct drm_device *dev = minor->dev;
5294         struct dentry *ent;
5295
5296         ent = debugfs_create_file("i915_forcewake_user",
5297                                   S_IRUSR,
5298                                   root, dev,
5299                                   &i915_forcewake_fops);
5300         if (!ent)
5301                 return -ENOMEM;
5302
5303         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5304 }
5305
5306 static int i915_debugfs_create(struct dentry *root,
5307                                struct drm_minor *minor,
5308                                const char *name,
5309                                const struct file_operations *fops)
5310 {
5311         struct drm_device *dev = minor->dev;
5312         struct dentry *ent;
5313
5314         ent = debugfs_create_file(name,
5315                                   S_IRUGO | S_IWUSR,
5316                                   root, dev,
5317                                   fops);
5318         if (!ent)
5319                 return -ENOMEM;
5320
5321         return drm_add_fake_info_node(minor, ent, fops);
5322 }
5323
5324 static const struct drm_info_list i915_debugfs_list[] = {
5325         {"i915_capabilities", i915_capabilities, 0},
5326         {"i915_gem_objects", i915_gem_object_info, 0},
5327         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5328         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5329         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5330         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5331         {"i915_gem_stolen", i915_gem_stolen_list_info },
5332         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5333         {"i915_gem_request", i915_gem_request_info, 0},
5334         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5335         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5336         {"i915_gem_interrupt", i915_interrupt_info, 0},
5337         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5338         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5339         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5340         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5341         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5342         {"i915_guc_info", i915_guc_info, 0},
5343         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5344         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5345         {"i915_frequency_info", i915_frequency_info, 0},
5346         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5347         {"i915_drpc_info", i915_drpc_info, 0},
5348         {"i915_emon_status", i915_emon_status, 0},
5349         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5350         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5351         {"i915_fbc_status", i915_fbc_status, 0},
5352         {"i915_ips_status", i915_ips_status, 0},
5353         {"i915_sr_status", i915_sr_status, 0},
5354         {"i915_opregion", i915_opregion, 0},
5355         {"i915_vbt", i915_vbt, 0},
5356         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5357         {"i915_context_status", i915_context_status, 0},
5358         {"i915_dump_lrc", i915_dump_lrc, 0},
5359         {"i915_execlists", i915_execlists, 0},
5360         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5361         {"i915_swizzle_info", i915_swizzle_info, 0},
5362         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5363         {"i915_llc", i915_llc, 0},
5364         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5365         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5366         {"i915_energy_uJ", i915_energy_uJ, 0},
5367         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5368         {"i915_power_domain_info", i915_power_domain_info, 0},
5369         {"i915_dmc_info", i915_dmc_info, 0},
5370         {"i915_display_info", i915_display_info, 0},
5371         {"i915_semaphore_status", i915_semaphore_status, 0},
5372         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5373         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5374         {"i915_wa_registers", i915_wa_registers, 0},
5375         {"i915_ddb_info", i915_ddb_info, 0},
5376         {"i915_sseu_status", i915_sseu_status, 0},
5377         {"i915_drrs_status", i915_drrs_status, 0},
5378         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5379 };
5380 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5381
5382 static const struct i915_debugfs_files {
5383         const char *name;
5384         const struct file_operations *fops;
5385 } i915_debugfs_files[] = {
5386         {"i915_wedged", &i915_wedged_fops},
5387         {"i915_max_freq", &i915_max_freq_fops},
5388         {"i915_min_freq", &i915_min_freq_fops},
5389         {"i915_cache_sharing", &i915_cache_sharing_fops},
5390         {"i915_ring_stop", &i915_ring_stop_fops},
5391         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5392         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5393         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5394         {"i915_error_state", &i915_error_state_fops},
5395         {"i915_next_seqno", &i915_next_seqno_fops},
5396         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5397         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5398         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5399         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5400         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5401         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5402         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5403         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5404 };
5405
5406 void intel_display_crc_init(struct drm_device *dev)
5407 {
5408         struct drm_i915_private *dev_priv = dev->dev_private;
5409         enum pipe pipe;
5410
5411         for_each_pipe(dev_priv, pipe) {
5412                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5413
5414                 pipe_crc->opened = false;
5415                 spin_lock_init(&pipe_crc->lock);
5416                 init_waitqueue_head(&pipe_crc->wq);
5417         }
5418 }
5419
5420 int i915_debugfs_init(struct drm_minor *minor)
5421 {
5422         int ret, i;
5423
5424         ret = i915_forcewake_create(minor->debugfs_root, minor);
5425         if (ret)
5426                 return ret;
5427
5428         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5429                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5430                 if (ret)
5431                         return ret;
5432         }
5433
5434         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5435                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5436                                           i915_debugfs_files[i].name,
5437                                           i915_debugfs_files[i].fops);
5438                 if (ret)
5439                         return ret;
5440         }
5441
5442         return drm_debugfs_create_files(i915_debugfs_list,
5443                                         I915_DEBUGFS_ENTRIES,
5444                                         minor->debugfs_root, minor);
5445 }
5446
5447 void i915_debugfs_cleanup(struct drm_minor *minor)
5448 {
5449         int i;
5450
5451         drm_debugfs_remove_files(i915_debugfs_list,
5452                                  I915_DEBUGFS_ENTRIES, minor);
5453
5454         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5455                                  1, minor);
5456
5457         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5458                 struct drm_info_list *info_list =
5459                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5460
5461                 drm_debugfs_remove_files(info_list, 1, minor);
5462         }
5463
5464         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5465                 struct drm_info_list *info_list =
5466                         (struct drm_info_list *) i915_debugfs_files[i].fops;
5467
5468                 drm_debugfs_remove_files(info_list, 1, minor);
5469         }
5470 }
5471
5472 struct dpcd_block {
5473         /* DPCD dump start address. */
5474         unsigned int offset;
5475         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5476         unsigned int end;
5477         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5478         size_t size;
5479         /* Only valid for eDP. */
5480         bool edp;
5481 };
5482
5483 static const struct dpcd_block i915_dpcd_debug[] = {
5484         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5485         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5486         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5487         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5488         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5489         { .offset = DP_SET_POWER },
5490         { .offset = DP_EDP_DPCD_REV },
5491         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5492         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5493         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5494 };
5495
5496 static int i915_dpcd_show(struct seq_file *m, void *data)
5497 {
5498         struct drm_connector *connector = m->private;
5499         struct intel_dp *intel_dp =
5500                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5501         uint8_t buf[16];
5502         ssize_t err;
5503         int i;
5504
5505         if (connector->status != connector_status_connected)
5506                 return -ENODEV;
5507
5508         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5509                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5510                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5511
5512                 if (b->edp &&
5513                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5514                         continue;
5515
5516                 /* low tech for now */
5517                 if (WARN_ON(size > sizeof(buf)))
5518                         continue;
5519
5520                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5521                 if (err <= 0) {
5522                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5523                                   size, b->offset, err);
5524                         continue;
5525                 }
5526
5527                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5528         }
5529
5530         return 0;
5531 }
5532
5533 static int i915_dpcd_open(struct inode *inode, struct file *file)
5534 {
5535         return single_open(file, i915_dpcd_show, inode->i_private);
5536 }
5537
5538 static const struct file_operations i915_dpcd_fops = {
5539         .owner = THIS_MODULE,
5540         .open = i915_dpcd_open,
5541         .read = seq_read,
5542         .llseek = seq_lseek,
5543         .release = single_release,
5544 };
5545
5546 /**
5547  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5548  * @connector: pointer to a registered drm_connector
5549  *
5550  * Cleanup will be done by drm_connector_unregister() through a call to
5551  * drm_debugfs_connector_remove().
5552  *
5553  * Returns 0 on success, negative error codes on error.
5554  */
5555 int i915_debugfs_connector_add(struct drm_connector *connector)
5556 {
5557         struct dentry *root = connector->debugfs_entry;
5558
5559         /* The connector must have been registered beforehands. */
5560         if (!root)
5561                 return -ENODEV;
5562
5563         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5564             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5565                 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5566                                     &i915_dpcd_fops);
5567
5568         return 0;
5569 }