Merge remote-tracking branch 'asoc/topic/kconfig' into asoc-next
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53                        struct dentry *ent,
54                        const void *key)
55 {
56         struct drm_info_node *node;
57
58         node = kmalloc(sizeof(*node), GFP_KERNEL);
59         if (node == NULL) {
60                 debugfs_remove(ent);
61                 return -ENOMEM;
62         }
63
64         node->minor = minor;
65         node->dent = ent;
66         node->info_ent = (void *) key;
67
68         mutex_lock(&minor->debugfs_lock);
69         list_add(&node->list, &minor->debugfs_list);
70         mutex_unlock(&minor->debugfs_lock);
71
72         return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77         struct drm_info_node *node = m->private;
78         struct drm_device *dev = node->minor->dev;
79         const struct intel_device_info *info = INTEL_INFO(dev);
80
81         seq_printf(m, "gen: %d\n", info->gen);
82         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89         return 0;
90 }
91
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94         if (obj->pin_display)
95                 return "p";
96         else
97                 return " ";
98 }
99
100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102         switch (obj->tiling_mode) {
103         default:
104         case I915_TILING_NONE: return " ";
105         case I915_TILING_X: return "X";
106         case I915_TILING_Y: return "Y";
107         }
108 }
109
110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112         return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114
115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117         u64 size = 0;
118         struct i915_vma *vma;
119
120         list_for_each_entry(vma, &obj->vma_list, obj_link) {
121                 if (vma->is_ggtt && drm_mm_node_allocated(&vma->node))
122                         size += vma->node.size;
123         }
124
125         return size;
126 }
127
128 static void
129 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
130 {
131         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
132         struct intel_engine_cs *ring;
133         struct i915_vma *vma;
134         int pin_count = 0;
135         int i;
136
137         seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
138                    &obj->base,
139                    obj->active ? "*" : " ",
140                    get_pin_flag(obj),
141                    get_tiling_flag(obj),
142                    get_global_flag(obj),
143                    obj->base.size / 1024,
144                    obj->base.read_domains,
145                    obj->base.write_domain);
146         for_each_ring(ring, dev_priv, i)
147                 seq_printf(m, "%x ",
148                                 i915_gem_request_get_seqno(obj->last_read_req[i]));
149         seq_printf(m, "] %x %x%s%s%s",
150                    i915_gem_request_get_seqno(obj->last_write_req),
151                    i915_gem_request_get_seqno(obj->last_fenced_req),
152                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
153                    obj->dirty ? " dirty" : "",
154                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
155         if (obj->base.name)
156                 seq_printf(m, " (name: %d)", obj->base.name);
157         list_for_each_entry(vma, &obj->vma_list, obj_link) {
158                 if (vma->pin_count > 0)
159                         pin_count++;
160         }
161         seq_printf(m, " (pinned x %d)", pin_count);
162         if (obj->pin_display)
163                 seq_printf(m, " (display)");
164         if (obj->fence_reg != I915_FENCE_REG_NONE)
165                 seq_printf(m, " (fence: %d)", obj->fence_reg);
166         list_for_each_entry(vma, &obj->vma_list, obj_link) {
167                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
168                            vma->is_ggtt ? "g" : "pp",
169                            vma->node.start, vma->node.size);
170                 if (vma->is_ggtt)
171                         seq_printf(m, ", type: %u", vma->ggtt_view.type);
172                 seq_puts(m, ")");
173         }
174         if (obj->stolen)
175                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
176         if (obj->pin_display || obj->fault_mappable) {
177                 char s[3], *t = s;
178                 if (obj->pin_display)
179                         *t++ = 'p';
180                 if (obj->fault_mappable)
181                         *t++ = 'f';
182                 *t = '\0';
183                 seq_printf(m, " (%s mappable)", s);
184         }
185         if (obj->last_write_req != NULL)
186                 seq_printf(m, " (%s)",
187                            i915_gem_request_get_ring(obj->last_write_req)->name);
188         if (obj->frontbuffer_bits)
189                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
190 }
191
192 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
193 {
194         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
195         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
196         seq_putc(m, ' ');
197 }
198
199 static int i915_gem_object_list_info(struct seq_file *m, void *data)
200 {
201         struct drm_info_node *node = m->private;
202         uintptr_t list = (uintptr_t) node->info_ent->data;
203         struct list_head *head;
204         struct drm_device *dev = node->minor->dev;
205         struct drm_i915_private *dev_priv = dev->dev_private;
206         struct i915_address_space *vm = &dev_priv->gtt.base;
207         struct i915_vma *vma;
208         u64 total_obj_size, total_gtt_size;
209         int count, ret;
210
211         ret = mutex_lock_interruptible(&dev->struct_mutex);
212         if (ret)
213                 return ret;
214
215         /* FIXME: the user of this interface might want more than just GGTT */
216         switch (list) {
217         case ACTIVE_LIST:
218                 seq_puts(m, "Active:\n");
219                 head = &vm->active_list;
220                 break;
221         case INACTIVE_LIST:
222                 seq_puts(m, "Inactive:\n");
223                 head = &vm->inactive_list;
224                 break;
225         default:
226                 mutex_unlock(&dev->struct_mutex);
227                 return -EINVAL;
228         }
229
230         total_obj_size = total_gtt_size = count = 0;
231         list_for_each_entry(vma, head, vm_link) {
232                 seq_printf(m, "   ");
233                 describe_obj(m, vma->obj);
234                 seq_printf(m, "\n");
235                 total_obj_size += vma->obj->base.size;
236                 total_gtt_size += vma->node.size;
237                 count++;
238         }
239         mutex_unlock(&dev->struct_mutex);
240
241         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
242                    count, total_obj_size, total_gtt_size);
243         return 0;
244 }
245
246 static int obj_rank_by_stolen(void *priv,
247                               struct list_head *A, struct list_head *B)
248 {
249         struct drm_i915_gem_object *a =
250                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
251         struct drm_i915_gem_object *b =
252                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
253
254         if (a->stolen->start < b->stolen->start)
255                 return -1;
256         if (a->stolen->start > b->stolen->start)
257                 return 1;
258         return 0;
259 }
260
261 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
262 {
263         struct drm_info_node *node = m->private;
264         struct drm_device *dev = node->minor->dev;
265         struct drm_i915_private *dev_priv = dev->dev_private;
266         struct drm_i915_gem_object *obj;
267         u64 total_obj_size, total_gtt_size;
268         LIST_HEAD(stolen);
269         int count, ret;
270
271         ret = mutex_lock_interruptible(&dev->struct_mutex);
272         if (ret)
273                 return ret;
274
275         total_obj_size = total_gtt_size = count = 0;
276         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
277                 if (obj->stolen == NULL)
278                         continue;
279
280                 list_add(&obj->obj_exec_link, &stolen);
281
282                 total_obj_size += obj->base.size;
283                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
284                 count++;
285         }
286         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
287                 if (obj->stolen == NULL)
288                         continue;
289
290                 list_add(&obj->obj_exec_link, &stolen);
291
292                 total_obj_size += obj->base.size;
293                 count++;
294         }
295         list_sort(NULL, &stolen, obj_rank_by_stolen);
296         seq_puts(m, "Stolen:\n");
297         while (!list_empty(&stolen)) {
298                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
299                 seq_puts(m, "   ");
300                 describe_obj(m, obj);
301                 seq_putc(m, '\n');
302                 list_del_init(&obj->obj_exec_link);
303         }
304         mutex_unlock(&dev->struct_mutex);
305
306         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
307                    count, total_obj_size, total_gtt_size);
308         return 0;
309 }
310
311 #define count_objects(list, member) do { \
312         list_for_each_entry(obj, list, member) { \
313                 size += i915_gem_obj_total_ggtt_size(obj); \
314                 ++count; \
315                 if (obj->map_and_fenceable) { \
316                         mappable_size += i915_gem_obj_ggtt_size(obj); \
317                         ++mappable_count; \
318                 } \
319         } \
320 } while (0)
321
322 struct file_stats {
323         struct drm_i915_file_private *file_priv;
324         unsigned long count;
325         u64 total, unbound;
326         u64 global, shared;
327         u64 active, inactive;
328 };
329
330 static int per_file_stats(int id, void *ptr, void *data)
331 {
332         struct drm_i915_gem_object *obj = ptr;
333         struct file_stats *stats = data;
334         struct i915_vma *vma;
335
336         stats->count++;
337         stats->total += obj->base.size;
338
339         if (obj->base.name || obj->base.dma_buf)
340                 stats->shared += obj->base.size;
341
342         if (USES_FULL_PPGTT(obj->base.dev)) {
343                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
344                         struct i915_hw_ppgtt *ppgtt;
345
346                         if (!drm_mm_node_allocated(&vma->node))
347                                 continue;
348
349                         if (vma->is_ggtt) {
350                                 stats->global += obj->base.size;
351                                 continue;
352                         }
353
354                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
355                         if (ppgtt->file_priv != stats->file_priv)
356                                 continue;
357
358                         if (obj->active) /* XXX per-vma statistic */
359                                 stats->active += obj->base.size;
360                         else
361                                 stats->inactive += obj->base.size;
362
363                         return 0;
364                 }
365         } else {
366                 if (i915_gem_obj_ggtt_bound(obj)) {
367                         stats->global += obj->base.size;
368                         if (obj->active)
369                                 stats->active += obj->base.size;
370                         else
371                                 stats->inactive += obj->base.size;
372                         return 0;
373                 }
374         }
375
376         if (!list_empty(&obj->global_list))
377                 stats->unbound += obj->base.size;
378
379         return 0;
380 }
381
382 #define print_file_stats(m, name, stats) do { \
383         if (stats.count) \
384                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
385                            name, \
386                            stats.count, \
387                            stats.total, \
388                            stats.active, \
389                            stats.inactive, \
390                            stats.global, \
391                            stats.shared, \
392                            stats.unbound); \
393 } while (0)
394
395 static void print_batch_pool_stats(struct seq_file *m,
396                                    struct drm_i915_private *dev_priv)
397 {
398         struct drm_i915_gem_object *obj;
399         struct file_stats stats;
400         struct intel_engine_cs *ring;
401         int i, j;
402
403         memset(&stats, 0, sizeof(stats));
404
405         for_each_ring(ring, dev_priv, i) {
406                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
407                         list_for_each_entry(obj,
408                                             &ring->batch_pool.cache_list[j],
409                                             batch_pool_link)
410                                 per_file_stats(0, obj, &stats);
411                 }
412         }
413
414         print_file_stats(m, "[k]batch pool", stats);
415 }
416
417 #define count_vmas(list, member) do { \
418         list_for_each_entry(vma, list, member) { \
419                 size += i915_gem_obj_total_ggtt_size(vma->obj); \
420                 ++count; \
421                 if (vma->obj->map_and_fenceable) { \
422                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
423                         ++mappable_count; \
424                 } \
425         } \
426 } while (0)
427
428 static int i915_gem_object_info(struct seq_file *m, void* data)
429 {
430         struct drm_info_node *node = m->private;
431         struct drm_device *dev = node->minor->dev;
432         struct drm_i915_private *dev_priv = dev->dev_private;
433         u32 count, mappable_count, purgeable_count;
434         u64 size, mappable_size, purgeable_size;
435         struct drm_i915_gem_object *obj;
436         struct i915_address_space *vm = &dev_priv->gtt.base;
437         struct drm_file *file;
438         struct i915_vma *vma;
439         int ret;
440
441         ret = mutex_lock_interruptible(&dev->struct_mutex);
442         if (ret)
443                 return ret;
444
445         seq_printf(m, "%u objects, %zu bytes\n",
446                    dev_priv->mm.object_count,
447                    dev_priv->mm.object_memory);
448
449         size = count = mappable_size = mappable_count = 0;
450         count_objects(&dev_priv->mm.bound_list, global_list);
451         seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
452                    count, mappable_count, size, mappable_size);
453
454         size = count = mappable_size = mappable_count = 0;
455         count_vmas(&vm->active_list, vm_link);
456         seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
457                    count, mappable_count, size, mappable_size);
458
459         size = count = mappable_size = mappable_count = 0;
460         count_vmas(&vm->inactive_list, vm_link);
461         seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
462                    count, mappable_count, size, mappable_size);
463
464         size = count = purgeable_size = purgeable_count = 0;
465         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
466                 size += obj->base.size, ++count;
467                 if (obj->madv == I915_MADV_DONTNEED)
468                         purgeable_size += obj->base.size, ++purgeable_count;
469         }
470         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
471
472         size = count = mappable_size = mappable_count = 0;
473         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
474                 if (obj->fault_mappable) {
475                         size += i915_gem_obj_ggtt_size(obj);
476                         ++count;
477                 }
478                 if (obj->pin_display) {
479                         mappable_size += i915_gem_obj_ggtt_size(obj);
480                         ++mappable_count;
481                 }
482                 if (obj->madv == I915_MADV_DONTNEED) {
483                         purgeable_size += obj->base.size;
484                         ++purgeable_count;
485                 }
486         }
487         seq_printf(m, "%u purgeable objects, %llu bytes\n",
488                    purgeable_count, purgeable_size);
489         seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
490                    mappable_count, mappable_size);
491         seq_printf(m, "%u fault mappable objects, %llu bytes\n",
492                    count, size);
493
494         seq_printf(m, "%llu [%llu] gtt total\n",
495                    dev_priv->gtt.base.total,
496                    (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
497
498         seq_putc(m, '\n');
499         print_batch_pool_stats(m, dev_priv);
500         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
501                 struct file_stats stats;
502                 struct task_struct *task;
503
504                 memset(&stats, 0, sizeof(stats));
505                 stats.file_priv = file->driver_priv;
506                 spin_lock(&file->table_lock);
507                 idr_for_each(&file->object_idr, per_file_stats, &stats);
508                 spin_unlock(&file->table_lock);
509                 /*
510                  * Although we have a valid reference on file->pid, that does
511                  * not guarantee that the task_struct who called get_pid() is
512                  * still alive (e.g. get_pid(current) => fork() => exit()).
513                  * Therefore, we need to protect this ->comm access using RCU.
514                  */
515                 rcu_read_lock();
516                 task = pid_task(file->pid, PIDTYPE_PID);
517                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
518                 rcu_read_unlock();
519         }
520
521         mutex_unlock(&dev->struct_mutex);
522
523         return 0;
524 }
525
526 static int i915_gem_gtt_info(struct seq_file *m, void *data)
527 {
528         struct drm_info_node *node = m->private;
529         struct drm_device *dev = node->minor->dev;
530         uintptr_t list = (uintptr_t) node->info_ent->data;
531         struct drm_i915_private *dev_priv = dev->dev_private;
532         struct drm_i915_gem_object *obj;
533         u64 total_obj_size, total_gtt_size;
534         int count, ret;
535
536         ret = mutex_lock_interruptible(&dev->struct_mutex);
537         if (ret)
538                 return ret;
539
540         total_obj_size = total_gtt_size = count = 0;
541         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
542                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
543                         continue;
544
545                 seq_puts(m, "   ");
546                 describe_obj(m, obj);
547                 seq_putc(m, '\n');
548                 total_obj_size += obj->base.size;
549                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
550                 count++;
551         }
552
553         mutex_unlock(&dev->struct_mutex);
554
555         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
556                    count, total_obj_size, total_gtt_size);
557
558         return 0;
559 }
560
561 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
562 {
563         struct drm_info_node *node = m->private;
564         struct drm_device *dev = node->minor->dev;
565         struct drm_i915_private *dev_priv = dev->dev_private;
566         struct intel_crtc *crtc;
567         int ret;
568
569         ret = mutex_lock_interruptible(&dev->struct_mutex);
570         if (ret)
571                 return ret;
572
573         for_each_intel_crtc(dev, crtc) {
574                 const char pipe = pipe_name(crtc->pipe);
575                 const char plane = plane_name(crtc->plane);
576                 struct intel_unpin_work *work;
577
578                 spin_lock_irq(&dev->event_lock);
579                 work = crtc->unpin_work;
580                 if (work == NULL) {
581                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
582                                    pipe, plane);
583                 } else {
584                         u32 addr;
585
586                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
587                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
588                                            pipe, plane);
589                         } else {
590                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
591                                            pipe, plane);
592                         }
593                         if (work->flip_queued_req) {
594                                 struct intel_engine_cs *ring =
595                                         i915_gem_request_get_ring(work->flip_queued_req);
596
597                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
598                                            ring->name,
599                                            i915_gem_request_get_seqno(work->flip_queued_req),
600                                            dev_priv->next_seqno,
601                                            ring->get_seqno(ring, true),
602                                            i915_gem_request_completed(work->flip_queued_req, true));
603                         } else
604                                 seq_printf(m, "Flip not associated with any ring\n");
605                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
606                                    work->flip_queued_vblank,
607                                    work->flip_ready_vblank,
608                                    drm_crtc_vblank_count(&crtc->base));
609                         if (work->enable_stall_check)
610                                 seq_puts(m, "Stall check enabled, ");
611                         else
612                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
613                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
614
615                         if (INTEL_INFO(dev)->gen >= 4)
616                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
617                         else
618                                 addr = I915_READ(DSPADDR(crtc->plane));
619                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
620
621                         if (work->pending_flip_obj) {
622                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
623                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
624                         }
625                 }
626                 spin_unlock_irq(&dev->event_lock);
627         }
628
629         mutex_unlock(&dev->struct_mutex);
630
631         return 0;
632 }
633
634 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
635 {
636         struct drm_info_node *node = m->private;
637         struct drm_device *dev = node->minor->dev;
638         struct drm_i915_private *dev_priv = dev->dev_private;
639         struct drm_i915_gem_object *obj;
640         struct intel_engine_cs *ring;
641         int total = 0;
642         int ret, i, j;
643
644         ret = mutex_lock_interruptible(&dev->struct_mutex);
645         if (ret)
646                 return ret;
647
648         for_each_ring(ring, dev_priv, i) {
649                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
650                         int count;
651
652                         count = 0;
653                         list_for_each_entry(obj,
654                                             &ring->batch_pool.cache_list[j],
655                                             batch_pool_link)
656                                 count++;
657                         seq_printf(m, "%s cache[%d]: %d objects\n",
658                                    ring->name, j, count);
659
660                         list_for_each_entry(obj,
661                                             &ring->batch_pool.cache_list[j],
662                                             batch_pool_link) {
663                                 seq_puts(m, "   ");
664                                 describe_obj(m, obj);
665                                 seq_putc(m, '\n');
666                         }
667
668                         total += count;
669                 }
670         }
671
672         seq_printf(m, "total: %d\n", total);
673
674         mutex_unlock(&dev->struct_mutex);
675
676         return 0;
677 }
678
679 static int i915_gem_request_info(struct seq_file *m, void *data)
680 {
681         struct drm_info_node *node = m->private;
682         struct drm_device *dev = node->minor->dev;
683         struct drm_i915_private *dev_priv = dev->dev_private;
684         struct intel_engine_cs *ring;
685         struct drm_i915_gem_request *req;
686         int ret, any, i;
687
688         ret = mutex_lock_interruptible(&dev->struct_mutex);
689         if (ret)
690                 return ret;
691
692         any = 0;
693         for_each_ring(ring, dev_priv, i) {
694                 int count;
695
696                 count = 0;
697                 list_for_each_entry(req, &ring->request_list, list)
698                         count++;
699                 if (count == 0)
700                         continue;
701
702                 seq_printf(m, "%s requests: %d\n", ring->name, count);
703                 list_for_each_entry(req, &ring->request_list, list) {
704                         struct task_struct *task;
705
706                         rcu_read_lock();
707                         task = NULL;
708                         if (req->pid)
709                                 task = pid_task(req->pid, PIDTYPE_PID);
710                         seq_printf(m, "    %x @ %d: %s [%d]\n",
711                                    req->seqno,
712                                    (int) (jiffies - req->emitted_jiffies),
713                                    task ? task->comm : "<unknown>",
714                                    task ? task->pid : -1);
715                         rcu_read_unlock();
716                 }
717
718                 any++;
719         }
720         mutex_unlock(&dev->struct_mutex);
721
722         if (any == 0)
723                 seq_puts(m, "No requests\n");
724
725         return 0;
726 }
727
728 static void i915_ring_seqno_info(struct seq_file *m,
729                                  struct intel_engine_cs *ring)
730 {
731         if (ring->get_seqno) {
732                 seq_printf(m, "Current sequence (%s): %x\n",
733                            ring->name, ring->get_seqno(ring, false));
734         }
735 }
736
737 static int i915_gem_seqno_info(struct seq_file *m, void *data)
738 {
739         struct drm_info_node *node = m->private;
740         struct drm_device *dev = node->minor->dev;
741         struct drm_i915_private *dev_priv = dev->dev_private;
742         struct intel_engine_cs *ring;
743         int ret, i;
744
745         ret = mutex_lock_interruptible(&dev->struct_mutex);
746         if (ret)
747                 return ret;
748         intel_runtime_pm_get(dev_priv);
749
750         for_each_ring(ring, dev_priv, i)
751                 i915_ring_seqno_info(m, ring);
752
753         intel_runtime_pm_put(dev_priv);
754         mutex_unlock(&dev->struct_mutex);
755
756         return 0;
757 }
758
759
760 static int i915_interrupt_info(struct seq_file *m, void *data)
761 {
762         struct drm_info_node *node = m->private;
763         struct drm_device *dev = node->minor->dev;
764         struct drm_i915_private *dev_priv = dev->dev_private;
765         struct intel_engine_cs *ring;
766         int ret, i, pipe;
767
768         ret = mutex_lock_interruptible(&dev->struct_mutex);
769         if (ret)
770                 return ret;
771         intel_runtime_pm_get(dev_priv);
772
773         if (IS_CHERRYVIEW(dev)) {
774                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
775                            I915_READ(GEN8_MASTER_IRQ));
776
777                 seq_printf(m, "Display IER:\t%08x\n",
778                            I915_READ(VLV_IER));
779                 seq_printf(m, "Display IIR:\t%08x\n",
780                            I915_READ(VLV_IIR));
781                 seq_printf(m, "Display IIR_RW:\t%08x\n",
782                            I915_READ(VLV_IIR_RW));
783                 seq_printf(m, "Display IMR:\t%08x\n",
784                            I915_READ(VLV_IMR));
785                 for_each_pipe(dev_priv, pipe)
786                         seq_printf(m, "Pipe %c stat:\t%08x\n",
787                                    pipe_name(pipe),
788                                    I915_READ(PIPESTAT(pipe)));
789
790                 seq_printf(m, "Port hotplug:\t%08x\n",
791                            I915_READ(PORT_HOTPLUG_EN));
792                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
793                            I915_READ(VLV_DPFLIPSTAT));
794                 seq_printf(m, "DPINVGTT:\t%08x\n",
795                            I915_READ(DPINVGTT));
796
797                 for (i = 0; i < 4; i++) {
798                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
799                                    i, I915_READ(GEN8_GT_IMR(i)));
800                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
801                                    i, I915_READ(GEN8_GT_IIR(i)));
802                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
803                                    i, I915_READ(GEN8_GT_IER(i)));
804                 }
805
806                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
807                            I915_READ(GEN8_PCU_IMR));
808                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
809                            I915_READ(GEN8_PCU_IIR));
810                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
811                            I915_READ(GEN8_PCU_IER));
812         } else if (INTEL_INFO(dev)->gen >= 8) {
813                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
814                            I915_READ(GEN8_MASTER_IRQ));
815
816                 for (i = 0; i < 4; i++) {
817                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
818                                    i, I915_READ(GEN8_GT_IMR(i)));
819                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
820                                    i, I915_READ(GEN8_GT_IIR(i)));
821                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
822                                    i, I915_READ(GEN8_GT_IER(i)));
823                 }
824
825                 for_each_pipe(dev_priv, pipe) {
826                         enum intel_display_power_domain power_domain;
827
828                         power_domain = POWER_DOMAIN_PIPE(pipe);
829                         if (!intel_display_power_get_if_enabled(dev_priv,
830                                                                 power_domain)) {
831                                 seq_printf(m, "Pipe %c power disabled\n",
832                                            pipe_name(pipe));
833                                 continue;
834                         }
835                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
836                                    pipe_name(pipe),
837                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
838                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
839                                    pipe_name(pipe),
840                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
841                         seq_printf(m, "Pipe %c IER:\t%08x\n",
842                                    pipe_name(pipe),
843                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
844
845                         intel_display_power_put(dev_priv, power_domain);
846                 }
847
848                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
849                            I915_READ(GEN8_DE_PORT_IMR));
850                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
851                            I915_READ(GEN8_DE_PORT_IIR));
852                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
853                            I915_READ(GEN8_DE_PORT_IER));
854
855                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
856                            I915_READ(GEN8_DE_MISC_IMR));
857                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
858                            I915_READ(GEN8_DE_MISC_IIR));
859                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
860                            I915_READ(GEN8_DE_MISC_IER));
861
862                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
863                            I915_READ(GEN8_PCU_IMR));
864                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
865                            I915_READ(GEN8_PCU_IIR));
866                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
867                            I915_READ(GEN8_PCU_IER));
868         } else if (IS_VALLEYVIEW(dev)) {
869                 seq_printf(m, "Display IER:\t%08x\n",
870                            I915_READ(VLV_IER));
871                 seq_printf(m, "Display IIR:\t%08x\n",
872                            I915_READ(VLV_IIR));
873                 seq_printf(m, "Display IIR_RW:\t%08x\n",
874                            I915_READ(VLV_IIR_RW));
875                 seq_printf(m, "Display IMR:\t%08x\n",
876                            I915_READ(VLV_IMR));
877                 for_each_pipe(dev_priv, pipe)
878                         seq_printf(m, "Pipe %c stat:\t%08x\n",
879                                    pipe_name(pipe),
880                                    I915_READ(PIPESTAT(pipe)));
881
882                 seq_printf(m, "Master IER:\t%08x\n",
883                            I915_READ(VLV_MASTER_IER));
884
885                 seq_printf(m, "Render IER:\t%08x\n",
886                            I915_READ(GTIER));
887                 seq_printf(m, "Render IIR:\t%08x\n",
888                            I915_READ(GTIIR));
889                 seq_printf(m, "Render IMR:\t%08x\n",
890                            I915_READ(GTIMR));
891
892                 seq_printf(m, "PM IER:\t\t%08x\n",
893                            I915_READ(GEN6_PMIER));
894                 seq_printf(m, "PM IIR:\t\t%08x\n",
895                            I915_READ(GEN6_PMIIR));
896                 seq_printf(m, "PM IMR:\t\t%08x\n",
897                            I915_READ(GEN6_PMIMR));
898
899                 seq_printf(m, "Port hotplug:\t%08x\n",
900                            I915_READ(PORT_HOTPLUG_EN));
901                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
902                            I915_READ(VLV_DPFLIPSTAT));
903                 seq_printf(m, "DPINVGTT:\t%08x\n",
904                            I915_READ(DPINVGTT));
905
906         } else if (!HAS_PCH_SPLIT(dev)) {
907                 seq_printf(m, "Interrupt enable:    %08x\n",
908                            I915_READ(IER));
909                 seq_printf(m, "Interrupt identity:  %08x\n",
910                            I915_READ(IIR));
911                 seq_printf(m, "Interrupt mask:      %08x\n",
912                            I915_READ(IMR));
913                 for_each_pipe(dev_priv, pipe)
914                         seq_printf(m, "Pipe %c stat:         %08x\n",
915                                    pipe_name(pipe),
916                                    I915_READ(PIPESTAT(pipe)));
917         } else {
918                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
919                            I915_READ(DEIER));
920                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
921                            I915_READ(DEIIR));
922                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
923                            I915_READ(DEIMR));
924                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
925                            I915_READ(SDEIER));
926                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
927                            I915_READ(SDEIIR));
928                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
929                            I915_READ(SDEIMR));
930                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
931                            I915_READ(GTIER));
932                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
933                            I915_READ(GTIIR));
934                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
935                            I915_READ(GTIMR));
936         }
937         for_each_ring(ring, dev_priv, i) {
938                 if (INTEL_INFO(dev)->gen >= 6) {
939                         seq_printf(m,
940                                    "Graphics Interrupt mask (%s):       %08x\n",
941                                    ring->name, I915_READ_IMR(ring));
942                 }
943                 i915_ring_seqno_info(m, ring);
944         }
945         intel_runtime_pm_put(dev_priv);
946         mutex_unlock(&dev->struct_mutex);
947
948         return 0;
949 }
950
951 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
952 {
953         struct drm_info_node *node = m->private;
954         struct drm_device *dev = node->minor->dev;
955         struct drm_i915_private *dev_priv = dev->dev_private;
956         int i, ret;
957
958         ret = mutex_lock_interruptible(&dev->struct_mutex);
959         if (ret)
960                 return ret;
961
962         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
963         for (i = 0; i < dev_priv->num_fence_regs; i++) {
964                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
965
966                 seq_printf(m, "Fence %d, pin count = %d, object = ",
967                            i, dev_priv->fence_regs[i].pin_count);
968                 if (obj == NULL)
969                         seq_puts(m, "unused");
970                 else
971                         describe_obj(m, obj);
972                 seq_putc(m, '\n');
973         }
974
975         mutex_unlock(&dev->struct_mutex);
976         return 0;
977 }
978
979 static int i915_hws_info(struct seq_file *m, void *data)
980 {
981         struct drm_info_node *node = m->private;
982         struct drm_device *dev = node->minor->dev;
983         struct drm_i915_private *dev_priv = dev->dev_private;
984         struct intel_engine_cs *ring;
985         const u32 *hws;
986         int i;
987
988         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
989         hws = ring->status_page.page_addr;
990         if (hws == NULL)
991                 return 0;
992
993         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
994                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
995                            i * 4,
996                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
997         }
998         return 0;
999 }
1000
1001 static ssize_t
1002 i915_error_state_write(struct file *filp,
1003                        const char __user *ubuf,
1004                        size_t cnt,
1005                        loff_t *ppos)
1006 {
1007         struct i915_error_state_file_priv *error_priv = filp->private_data;
1008         struct drm_device *dev = error_priv->dev;
1009         int ret;
1010
1011         DRM_DEBUG_DRIVER("Resetting error state\n");
1012
1013         ret = mutex_lock_interruptible(&dev->struct_mutex);
1014         if (ret)
1015                 return ret;
1016
1017         i915_destroy_error_state(dev);
1018         mutex_unlock(&dev->struct_mutex);
1019
1020         return cnt;
1021 }
1022
1023 static int i915_error_state_open(struct inode *inode, struct file *file)
1024 {
1025         struct drm_device *dev = inode->i_private;
1026         struct i915_error_state_file_priv *error_priv;
1027
1028         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1029         if (!error_priv)
1030                 return -ENOMEM;
1031
1032         error_priv->dev = dev;
1033
1034         i915_error_state_get(dev, error_priv);
1035
1036         file->private_data = error_priv;
1037
1038         return 0;
1039 }
1040
1041 static int i915_error_state_release(struct inode *inode, struct file *file)
1042 {
1043         struct i915_error_state_file_priv *error_priv = file->private_data;
1044
1045         i915_error_state_put(error_priv);
1046         kfree(error_priv);
1047
1048         return 0;
1049 }
1050
1051 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1052                                      size_t count, loff_t *pos)
1053 {
1054         struct i915_error_state_file_priv *error_priv = file->private_data;
1055         struct drm_i915_error_state_buf error_str;
1056         loff_t tmp_pos = 0;
1057         ssize_t ret_count = 0;
1058         int ret;
1059
1060         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1061         if (ret)
1062                 return ret;
1063
1064         ret = i915_error_state_to_str(&error_str, error_priv);
1065         if (ret)
1066                 goto out;
1067
1068         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1069                                             error_str.buf,
1070                                             error_str.bytes);
1071
1072         if (ret_count < 0)
1073                 ret = ret_count;
1074         else
1075                 *pos = error_str.start + ret_count;
1076 out:
1077         i915_error_state_buf_release(&error_str);
1078         return ret ?: ret_count;
1079 }
1080
1081 static const struct file_operations i915_error_state_fops = {
1082         .owner = THIS_MODULE,
1083         .open = i915_error_state_open,
1084         .read = i915_error_state_read,
1085         .write = i915_error_state_write,
1086         .llseek = default_llseek,
1087         .release = i915_error_state_release,
1088 };
1089
1090 static int
1091 i915_next_seqno_get(void *data, u64 *val)
1092 {
1093         struct drm_device *dev = data;
1094         struct drm_i915_private *dev_priv = dev->dev_private;
1095         int ret;
1096
1097         ret = mutex_lock_interruptible(&dev->struct_mutex);
1098         if (ret)
1099                 return ret;
1100
1101         *val = dev_priv->next_seqno;
1102         mutex_unlock(&dev->struct_mutex);
1103
1104         return 0;
1105 }
1106
1107 static int
1108 i915_next_seqno_set(void *data, u64 val)
1109 {
1110         struct drm_device *dev = data;
1111         int ret;
1112
1113         ret = mutex_lock_interruptible(&dev->struct_mutex);
1114         if (ret)
1115                 return ret;
1116
1117         ret = i915_gem_set_seqno(dev, val);
1118         mutex_unlock(&dev->struct_mutex);
1119
1120         return ret;
1121 }
1122
1123 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1124                         i915_next_seqno_get, i915_next_seqno_set,
1125                         "0x%llx\n");
1126
1127 static int i915_frequency_info(struct seq_file *m, void *unused)
1128 {
1129         struct drm_info_node *node = m->private;
1130         struct drm_device *dev = node->minor->dev;
1131         struct drm_i915_private *dev_priv = dev->dev_private;
1132         int ret = 0;
1133
1134         intel_runtime_pm_get(dev_priv);
1135
1136         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1137
1138         if (IS_GEN5(dev)) {
1139                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1140                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1141
1142                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1143                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1144                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1145                            MEMSTAT_VID_SHIFT);
1146                 seq_printf(m, "Current P-state: %d\n",
1147                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1148         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1149                 u32 freq_sts;
1150
1151                 mutex_lock(&dev_priv->rps.hw_lock);
1152                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1153                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1154                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1155
1156                 seq_printf(m, "actual GPU freq: %d MHz\n",
1157                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1158
1159                 seq_printf(m, "current GPU freq: %d MHz\n",
1160                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1161
1162                 seq_printf(m, "max GPU freq: %d MHz\n",
1163                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1164
1165                 seq_printf(m, "min GPU freq: %d MHz\n",
1166                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1167
1168                 seq_printf(m, "idle GPU freq: %d MHz\n",
1169                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1170
1171                 seq_printf(m,
1172                            "efficient (RPe) frequency: %d MHz\n",
1173                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1174                 mutex_unlock(&dev_priv->rps.hw_lock);
1175         } else if (INTEL_INFO(dev)->gen >= 6) {
1176                 u32 rp_state_limits;
1177                 u32 gt_perf_status;
1178                 u32 rp_state_cap;
1179                 u32 rpmodectl, rpinclimit, rpdeclimit;
1180                 u32 rpstat, cagf, reqf;
1181                 u32 rpupei, rpcurup, rpprevup;
1182                 u32 rpdownei, rpcurdown, rpprevdown;
1183                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1184                 int max_freq;
1185
1186                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1187                 if (IS_BROXTON(dev)) {
1188                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1189                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1190                 } else {
1191                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1192                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1193                 }
1194
1195                 /* RPSTAT1 is in the GT power well */
1196                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1197                 if (ret)
1198                         goto out;
1199
1200                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1201
1202                 reqf = I915_READ(GEN6_RPNSWREQ);
1203                 if (IS_GEN9(dev))
1204                         reqf >>= 23;
1205                 else {
1206                         reqf &= ~GEN6_TURBO_DISABLE;
1207                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1208                                 reqf >>= 24;
1209                         else
1210                                 reqf >>= 25;
1211                 }
1212                 reqf = intel_gpu_freq(dev_priv, reqf);
1213
1214                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1215                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1216                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1217
1218                 rpstat = I915_READ(GEN6_RPSTAT1);
1219                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1220                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1221                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1222                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1223                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1224                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1225                 if (IS_GEN9(dev))
1226                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1227                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1228                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1229                 else
1230                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1231                 cagf = intel_gpu_freq(dev_priv, cagf);
1232
1233                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1234                 mutex_unlock(&dev->struct_mutex);
1235
1236                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1237                         pm_ier = I915_READ(GEN6_PMIER);
1238                         pm_imr = I915_READ(GEN6_PMIMR);
1239                         pm_isr = I915_READ(GEN6_PMISR);
1240                         pm_iir = I915_READ(GEN6_PMIIR);
1241                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1242                 } else {
1243                         pm_ier = I915_READ(GEN8_GT_IER(2));
1244                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1245                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1246                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1247                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1248                 }
1249                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1250                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1251                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1252                 seq_printf(m, "Render p-state ratio: %d\n",
1253                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1254                 seq_printf(m, "Render p-state VID: %d\n",
1255                            gt_perf_status & 0xff);
1256                 seq_printf(m, "Render p-state limit: %d\n",
1257                            rp_state_limits & 0xff);
1258                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1259                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1260                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1261                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1262                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1263                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1264                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1265                            GEN6_CURICONT_MASK);
1266                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1267                            GEN6_CURBSYTAVG_MASK);
1268                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1269                            GEN6_CURBSYTAVG_MASK);
1270                 seq_printf(m, "Up threshold: %d%%\n",
1271                            dev_priv->rps.up_threshold);
1272
1273                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1274                            GEN6_CURIAVG_MASK);
1275                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1276                            GEN6_CURBSYTAVG_MASK);
1277                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1278                            GEN6_CURBSYTAVG_MASK);
1279                 seq_printf(m, "Down threshold: %d%%\n",
1280                            dev_priv->rps.down_threshold);
1281
1282                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1283                             rp_state_cap >> 16) & 0xff;
1284                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1285                              GEN9_FREQ_SCALER : 1);
1286                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1287                            intel_gpu_freq(dev_priv, max_freq));
1288
1289                 max_freq = (rp_state_cap & 0xff00) >> 8;
1290                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1291                              GEN9_FREQ_SCALER : 1);
1292                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1293                            intel_gpu_freq(dev_priv, max_freq));
1294
1295                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1296                             rp_state_cap >> 0) & 0xff;
1297                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1298                              GEN9_FREQ_SCALER : 1);
1299                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1300                            intel_gpu_freq(dev_priv, max_freq));
1301                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1302                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1303
1304                 seq_printf(m, "Current freq: %d MHz\n",
1305                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1306                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1307                 seq_printf(m, "Idle freq: %d MHz\n",
1308                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1309                 seq_printf(m, "Min freq: %d MHz\n",
1310                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1311                 seq_printf(m, "Max freq: %d MHz\n",
1312                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1313                 seq_printf(m,
1314                            "efficient (RPe) frequency: %d MHz\n",
1315                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1316         } else {
1317                 seq_puts(m, "no P-state info available\n");
1318         }
1319
1320         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1321         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1322         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1323
1324 out:
1325         intel_runtime_pm_put(dev_priv);
1326         return ret;
1327 }
1328
1329 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1330 {
1331         struct drm_info_node *node = m->private;
1332         struct drm_device *dev = node->minor->dev;
1333         struct drm_i915_private *dev_priv = dev->dev_private;
1334         struct intel_engine_cs *ring;
1335         u64 acthd[I915_NUM_RINGS];
1336         u32 seqno[I915_NUM_RINGS];
1337         u32 instdone[I915_NUM_INSTDONE_REG];
1338         int i, j;
1339
1340         if (!i915.enable_hangcheck) {
1341                 seq_printf(m, "Hangcheck disabled\n");
1342                 return 0;
1343         }
1344
1345         intel_runtime_pm_get(dev_priv);
1346
1347         for_each_ring(ring, dev_priv, i) {
1348                 seqno[i] = ring->get_seqno(ring, false);
1349                 acthd[i] = intel_ring_get_active_head(ring);
1350         }
1351
1352         i915_get_extra_instdone(dev, instdone);
1353
1354         intel_runtime_pm_put(dev_priv);
1355
1356         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1357                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1358                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1359                                             jiffies));
1360         } else
1361                 seq_printf(m, "Hangcheck inactive\n");
1362
1363         for_each_ring(ring, dev_priv, i) {
1364                 seq_printf(m, "%s:\n", ring->name);
1365                 seq_printf(m, "\tseqno = %x [current %x]\n",
1366                            ring->hangcheck.seqno, seqno[i]);
1367                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1368                            (long long)ring->hangcheck.acthd,
1369                            (long long)acthd[i]);
1370                 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1371                            (long long)ring->hangcheck.max_acthd);
1372                 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1373                 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1374
1375                 if (ring->id == RCS) {
1376                         seq_puts(m, "\tinstdone read =");
1377
1378                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1379                                 seq_printf(m, " 0x%08x", instdone[j]);
1380
1381                         seq_puts(m, "\n\tinstdone accu =");
1382
1383                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1384                                 seq_printf(m, " 0x%08x",
1385                                            ring->hangcheck.instdone[j]);
1386
1387                         seq_puts(m, "\n");
1388                 }
1389         }
1390
1391         return 0;
1392 }
1393
1394 static int ironlake_drpc_info(struct seq_file *m)
1395 {
1396         struct drm_info_node *node = m->private;
1397         struct drm_device *dev = node->minor->dev;
1398         struct drm_i915_private *dev_priv = dev->dev_private;
1399         u32 rgvmodectl, rstdbyctl;
1400         u16 crstandvid;
1401         int ret;
1402
1403         ret = mutex_lock_interruptible(&dev->struct_mutex);
1404         if (ret)
1405                 return ret;
1406         intel_runtime_pm_get(dev_priv);
1407
1408         rgvmodectl = I915_READ(MEMMODECTL);
1409         rstdbyctl = I915_READ(RSTDBYCTL);
1410         crstandvid = I915_READ16(CRSTANDVID);
1411
1412         intel_runtime_pm_put(dev_priv);
1413         mutex_unlock(&dev->struct_mutex);
1414
1415         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1416         seq_printf(m, "Boost freq: %d\n",
1417                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1418                    MEMMODE_BOOST_FREQ_SHIFT);
1419         seq_printf(m, "HW control enabled: %s\n",
1420                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1421         seq_printf(m, "SW control enabled: %s\n",
1422                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1423         seq_printf(m, "Gated voltage change: %s\n",
1424                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1425         seq_printf(m, "Starting frequency: P%d\n",
1426                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1427         seq_printf(m, "Max P-state: P%d\n",
1428                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1429         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1430         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1431         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1432         seq_printf(m, "Render standby enabled: %s\n",
1433                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1434         seq_puts(m, "Current RS state: ");
1435         switch (rstdbyctl & RSX_STATUS_MASK) {
1436         case RSX_STATUS_ON:
1437                 seq_puts(m, "on\n");
1438                 break;
1439         case RSX_STATUS_RC1:
1440                 seq_puts(m, "RC1\n");
1441                 break;
1442         case RSX_STATUS_RC1E:
1443                 seq_puts(m, "RC1E\n");
1444                 break;
1445         case RSX_STATUS_RS1:
1446                 seq_puts(m, "RS1\n");
1447                 break;
1448         case RSX_STATUS_RS2:
1449                 seq_puts(m, "RS2 (RC6)\n");
1450                 break;
1451         case RSX_STATUS_RS3:
1452                 seq_puts(m, "RC3 (RC6+)\n");
1453                 break;
1454         default:
1455                 seq_puts(m, "unknown\n");
1456                 break;
1457         }
1458
1459         return 0;
1460 }
1461
1462 static int i915_forcewake_domains(struct seq_file *m, void *data)
1463 {
1464         struct drm_info_node *node = m->private;
1465         struct drm_device *dev = node->minor->dev;
1466         struct drm_i915_private *dev_priv = dev->dev_private;
1467         struct intel_uncore_forcewake_domain *fw_domain;
1468         int i;
1469
1470         spin_lock_irq(&dev_priv->uncore.lock);
1471         for_each_fw_domain(fw_domain, dev_priv, i) {
1472                 seq_printf(m, "%s.wake_count = %u\n",
1473                            intel_uncore_forcewake_domain_to_str(i),
1474                            fw_domain->wake_count);
1475         }
1476         spin_unlock_irq(&dev_priv->uncore.lock);
1477
1478         return 0;
1479 }
1480
1481 static int vlv_drpc_info(struct seq_file *m)
1482 {
1483         struct drm_info_node *node = m->private;
1484         struct drm_device *dev = node->minor->dev;
1485         struct drm_i915_private *dev_priv = dev->dev_private;
1486         u32 rpmodectl1, rcctl1, pw_status;
1487
1488         intel_runtime_pm_get(dev_priv);
1489
1490         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1491         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1492         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1493
1494         intel_runtime_pm_put(dev_priv);
1495
1496         seq_printf(m, "Video Turbo Mode: %s\n",
1497                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1498         seq_printf(m, "Turbo enabled: %s\n",
1499                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1500         seq_printf(m, "HW control enabled: %s\n",
1501                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1502         seq_printf(m, "SW control enabled: %s\n",
1503                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1504                           GEN6_RP_MEDIA_SW_MODE));
1505         seq_printf(m, "RC6 Enabled: %s\n",
1506                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1507                                         GEN6_RC_CTL_EI_MODE(1))));
1508         seq_printf(m, "Render Power Well: %s\n",
1509                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1510         seq_printf(m, "Media Power Well: %s\n",
1511                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1512
1513         seq_printf(m, "Render RC6 residency since boot: %u\n",
1514                    I915_READ(VLV_GT_RENDER_RC6));
1515         seq_printf(m, "Media RC6 residency since boot: %u\n",
1516                    I915_READ(VLV_GT_MEDIA_RC6));
1517
1518         return i915_forcewake_domains(m, NULL);
1519 }
1520
1521 static int gen6_drpc_info(struct seq_file *m)
1522 {
1523         struct drm_info_node *node = m->private;
1524         struct drm_device *dev = node->minor->dev;
1525         struct drm_i915_private *dev_priv = dev->dev_private;
1526         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1527         unsigned forcewake_count;
1528         int count = 0, ret;
1529
1530         ret = mutex_lock_interruptible(&dev->struct_mutex);
1531         if (ret)
1532                 return ret;
1533         intel_runtime_pm_get(dev_priv);
1534
1535         spin_lock_irq(&dev_priv->uncore.lock);
1536         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1537         spin_unlock_irq(&dev_priv->uncore.lock);
1538
1539         if (forcewake_count) {
1540                 seq_puts(m, "RC information inaccurate because somebody "
1541                             "holds a forcewake reference \n");
1542         } else {
1543                 /* NB: we cannot use forcewake, else we read the wrong values */
1544                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1545                         udelay(10);
1546                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1547         }
1548
1549         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1550         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1551
1552         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1553         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1554         mutex_unlock(&dev->struct_mutex);
1555         mutex_lock(&dev_priv->rps.hw_lock);
1556         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1557         mutex_unlock(&dev_priv->rps.hw_lock);
1558
1559         intel_runtime_pm_put(dev_priv);
1560
1561         seq_printf(m, "Video Turbo Mode: %s\n",
1562                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1563         seq_printf(m, "HW control enabled: %s\n",
1564                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1565         seq_printf(m, "SW control enabled: %s\n",
1566                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1567                           GEN6_RP_MEDIA_SW_MODE));
1568         seq_printf(m, "RC1e Enabled: %s\n",
1569                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1570         seq_printf(m, "RC6 Enabled: %s\n",
1571                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1572         seq_printf(m, "Deep RC6 Enabled: %s\n",
1573                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1574         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1575                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1576         seq_puts(m, "Current RC state: ");
1577         switch (gt_core_status & GEN6_RCn_MASK) {
1578         case GEN6_RC0:
1579                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1580                         seq_puts(m, "Core Power Down\n");
1581                 else
1582                         seq_puts(m, "on\n");
1583                 break;
1584         case GEN6_RC3:
1585                 seq_puts(m, "RC3\n");
1586                 break;
1587         case GEN6_RC6:
1588                 seq_puts(m, "RC6\n");
1589                 break;
1590         case GEN6_RC7:
1591                 seq_puts(m, "RC7\n");
1592                 break;
1593         default:
1594                 seq_puts(m, "Unknown\n");
1595                 break;
1596         }
1597
1598         seq_printf(m, "Core Power Down: %s\n",
1599                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1600
1601         /* Not exactly sure what this is */
1602         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1603                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1604         seq_printf(m, "RC6 residency since boot: %u\n",
1605                    I915_READ(GEN6_GT_GFX_RC6));
1606         seq_printf(m, "RC6+ residency since boot: %u\n",
1607                    I915_READ(GEN6_GT_GFX_RC6p));
1608         seq_printf(m, "RC6++ residency since boot: %u\n",
1609                    I915_READ(GEN6_GT_GFX_RC6pp));
1610
1611         seq_printf(m, "RC6   voltage: %dmV\n",
1612                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1613         seq_printf(m, "RC6+  voltage: %dmV\n",
1614                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1615         seq_printf(m, "RC6++ voltage: %dmV\n",
1616                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1617         return 0;
1618 }
1619
1620 static int i915_drpc_info(struct seq_file *m, void *unused)
1621 {
1622         struct drm_info_node *node = m->private;
1623         struct drm_device *dev = node->minor->dev;
1624
1625         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1626                 return vlv_drpc_info(m);
1627         else if (INTEL_INFO(dev)->gen >= 6)
1628                 return gen6_drpc_info(m);
1629         else
1630                 return ironlake_drpc_info(m);
1631 }
1632
1633 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1634 {
1635         struct drm_info_node *node = m->private;
1636         struct drm_device *dev = node->minor->dev;
1637         struct drm_i915_private *dev_priv = dev->dev_private;
1638
1639         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1640                    dev_priv->fb_tracking.busy_bits);
1641
1642         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1643                    dev_priv->fb_tracking.flip_bits);
1644
1645         return 0;
1646 }
1647
1648 static int i915_fbc_status(struct seq_file *m, void *unused)
1649 {
1650         struct drm_info_node *node = m->private;
1651         struct drm_device *dev = node->minor->dev;
1652         struct drm_i915_private *dev_priv = dev->dev_private;
1653
1654         if (!HAS_FBC(dev)) {
1655                 seq_puts(m, "FBC unsupported on this chipset\n");
1656                 return 0;
1657         }
1658
1659         intel_runtime_pm_get(dev_priv);
1660         mutex_lock(&dev_priv->fbc.lock);
1661
1662         if (intel_fbc_is_active(dev_priv))
1663                 seq_puts(m, "FBC enabled\n");
1664         else
1665                 seq_printf(m, "FBC disabled: %s\n",
1666                            dev_priv->fbc.no_fbc_reason);
1667
1668         if (INTEL_INFO(dev_priv)->gen >= 7)
1669                 seq_printf(m, "Compressing: %s\n",
1670                            yesno(I915_READ(FBC_STATUS2) &
1671                                  FBC_COMPRESSION_MASK));
1672
1673         mutex_unlock(&dev_priv->fbc.lock);
1674         intel_runtime_pm_put(dev_priv);
1675
1676         return 0;
1677 }
1678
1679 static int i915_fbc_fc_get(void *data, u64 *val)
1680 {
1681         struct drm_device *dev = data;
1682         struct drm_i915_private *dev_priv = dev->dev_private;
1683
1684         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1685                 return -ENODEV;
1686
1687         *val = dev_priv->fbc.false_color;
1688
1689         return 0;
1690 }
1691
1692 static int i915_fbc_fc_set(void *data, u64 val)
1693 {
1694         struct drm_device *dev = data;
1695         struct drm_i915_private *dev_priv = dev->dev_private;
1696         u32 reg;
1697
1698         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1699                 return -ENODEV;
1700
1701         mutex_lock(&dev_priv->fbc.lock);
1702
1703         reg = I915_READ(ILK_DPFC_CONTROL);
1704         dev_priv->fbc.false_color = val;
1705
1706         I915_WRITE(ILK_DPFC_CONTROL, val ?
1707                    (reg | FBC_CTL_FALSE_COLOR) :
1708                    (reg & ~FBC_CTL_FALSE_COLOR));
1709
1710         mutex_unlock(&dev_priv->fbc.lock);
1711         return 0;
1712 }
1713
1714 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1715                         i915_fbc_fc_get, i915_fbc_fc_set,
1716                         "%llu\n");
1717
1718 static int i915_ips_status(struct seq_file *m, void *unused)
1719 {
1720         struct drm_info_node *node = m->private;
1721         struct drm_device *dev = node->minor->dev;
1722         struct drm_i915_private *dev_priv = dev->dev_private;
1723
1724         if (!HAS_IPS(dev)) {
1725                 seq_puts(m, "not supported\n");
1726                 return 0;
1727         }
1728
1729         intel_runtime_pm_get(dev_priv);
1730
1731         seq_printf(m, "Enabled by kernel parameter: %s\n",
1732                    yesno(i915.enable_ips));
1733
1734         if (INTEL_INFO(dev)->gen >= 8) {
1735                 seq_puts(m, "Currently: unknown\n");
1736         } else {
1737                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1738                         seq_puts(m, "Currently: enabled\n");
1739                 else
1740                         seq_puts(m, "Currently: disabled\n");
1741         }
1742
1743         intel_runtime_pm_put(dev_priv);
1744
1745         return 0;
1746 }
1747
1748 static int i915_sr_status(struct seq_file *m, void *unused)
1749 {
1750         struct drm_info_node *node = m->private;
1751         struct drm_device *dev = node->minor->dev;
1752         struct drm_i915_private *dev_priv = dev->dev_private;
1753         bool sr_enabled = false;
1754
1755         intel_runtime_pm_get(dev_priv);
1756
1757         if (HAS_PCH_SPLIT(dev))
1758                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1759         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1760                  IS_I945G(dev) || IS_I945GM(dev))
1761                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1762         else if (IS_I915GM(dev))
1763                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1764         else if (IS_PINEVIEW(dev))
1765                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1766         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1767                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1768
1769         intel_runtime_pm_put(dev_priv);
1770
1771         seq_printf(m, "self-refresh: %s\n",
1772                    sr_enabled ? "enabled" : "disabled");
1773
1774         return 0;
1775 }
1776
1777 static int i915_emon_status(struct seq_file *m, void *unused)
1778 {
1779         struct drm_info_node *node = m->private;
1780         struct drm_device *dev = node->minor->dev;
1781         struct drm_i915_private *dev_priv = dev->dev_private;
1782         unsigned long temp, chipset, gfx;
1783         int ret;
1784
1785         if (!IS_GEN5(dev))
1786                 return -ENODEV;
1787
1788         ret = mutex_lock_interruptible(&dev->struct_mutex);
1789         if (ret)
1790                 return ret;
1791
1792         temp = i915_mch_val(dev_priv);
1793         chipset = i915_chipset_val(dev_priv);
1794         gfx = i915_gfx_val(dev_priv);
1795         mutex_unlock(&dev->struct_mutex);
1796
1797         seq_printf(m, "GMCH temp: %ld\n", temp);
1798         seq_printf(m, "Chipset power: %ld\n", chipset);
1799         seq_printf(m, "GFX power: %ld\n", gfx);
1800         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1801
1802         return 0;
1803 }
1804
1805 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1806 {
1807         struct drm_info_node *node = m->private;
1808         struct drm_device *dev = node->minor->dev;
1809         struct drm_i915_private *dev_priv = dev->dev_private;
1810         int ret = 0;
1811         int gpu_freq, ia_freq;
1812         unsigned int max_gpu_freq, min_gpu_freq;
1813
1814         if (!HAS_CORE_RING_FREQ(dev)) {
1815                 seq_puts(m, "unsupported on this chipset\n");
1816                 return 0;
1817         }
1818
1819         intel_runtime_pm_get(dev_priv);
1820
1821         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1822
1823         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1824         if (ret)
1825                 goto out;
1826
1827         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1828                 /* Convert GT frequency to 50 HZ units */
1829                 min_gpu_freq =
1830                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1831                 max_gpu_freq =
1832                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1833         } else {
1834                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1835                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1836         }
1837
1838         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1839
1840         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1841                 ia_freq = gpu_freq;
1842                 sandybridge_pcode_read(dev_priv,
1843                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1844                                        &ia_freq);
1845                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1846                            intel_gpu_freq(dev_priv, (gpu_freq *
1847                                 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1848                                  GEN9_FREQ_SCALER : 1))),
1849                            ((ia_freq >> 0) & 0xff) * 100,
1850                            ((ia_freq >> 8) & 0xff) * 100);
1851         }
1852
1853         mutex_unlock(&dev_priv->rps.hw_lock);
1854
1855 out:
1856         intel_runtime_pm_put(dev_priv);
1857         return ret;
1858 }
1859
1860 static int i915_opregion(struct seq_file *m, void *unused)
1861 {
1862         struct drm_info_node *node = m->private;
1863         struct drm_device *dev = node->minor->dev;
1864         struct drm_i915_private *dev_priv = dev->dev_private;
1865         struct intel_opregion *opregion = &dev_priv->opregion;
1866         int ret;
1867
1868         ret = mutex_lock_interruptible(&dev->struct_mutex);
1869         if (ret)
1870                 goto out;
1871
1872         if (opregion->header)
1873                 seq_write(m, opregion->header, OPREGION_SIZE);
1874
1875         mutex_unlock(&dev->struct_mutex);
1876
1877 out:
1878         return 0;
1879 }
1880
1881 static int i915_vbt(struct seq_file *m, void *unused)
1882 {
1883         struct drm_info_node *node = m->private;
1884         struct drm_device *dev = node->minor->dev;
1885         struct drm_i915_private *dev_priv = dev->dev_private;
1886         struct intel_opregion *opregion = &dev_priv->opregion;
1887
1888         if (opregion->vbt)
1889                 seq_write(m, opregion->vbt, opregion->vbt_size);
1890
1891         return 0;
1892 }
1893
1894 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1895 {
1896         struct drm_info_node *node = m->private;
1897         struct drm_device *dev = node->minor->dev;
1898         struct intel_framebuffer *fbdev_fb = NULL;
1899         struct drm_framebuffer *drm_fb;
1900
1901 #ifdef CONFIG_DRM_FBDEV_EMULATION
1902        if (to_i915(dev)->fbdev) {
1903                fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1904
1905                seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1906                          fbdev_fb->base.width,
1907                          fbdev_fb->base.height,
1908                          fbdev_fb->base.depth,
1909                          fbdev_fb->base.bits_per_pixel,
1910                          fbdev_fb->base.modifier[0],
1911                          atomic_read(&fbdev_fb->base.refcount.refcount));
1912                describe_obj(m, fbdev_fb->obj);
1913                seq_putc(m, '\n');
1914        }
1915 #endif
1916
1917         mutex_lock(&dev->mode_config.fb_lock);
1918         drm_for_each_fb(drm_fb, dev) {
1919                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1920                 if (fb == fbdev_fb)
1921                         continue;
1922
1923                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1924                            fb->base.width,
1925                            fb->base.height,
1926                            fb->base.depth,
1927                            fb->base.bits_per_pixel,
1928                            fb->base.modifier[0],
1929                            atomic_read(&fb->base.refcount.refcount));
1930                 describe_obj(m, fb->obj);
1931                 seq_putc(m, '\n');
1932         }
1933         mutex_unlock(&dev->mode_config.fb_lock);
1934
1935         return 0;
1936 }
1937
1938 static void describe_ctx_ringbuf(struct seq_file *m,
1939                                  struct intel_ringbuffer *ringbuf)
1940 {
1941         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1942                    ringbuf->space, ringbuf->head, ringbuf->tail,
1943                    ringbuf->last_retired_head);
1944 }
1945
1946 static int i915_context_status(struct seq_file *m, void *unused)
1947 {
1948         struct drm_info_node *node = m->private;
1949         struct drm_device *dev = node->minor->dev;
1950         struct drm_i915_private *dev_priv = dev->dev_private;
1951         struct intel_engine_cs *ring;
1952         struct intel_context *ctx;
1953         int ret, i;
1954
1955         ret = mutex_lock_interruptible(&dev->struct_mutex);
1956         if (ret)
1957                 return ret;
1958
1959         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1960                 if (!i915.enable_execlists &&
1961                     ctx->legacy_hw_ctx.rcs_state == NULL)
1962                         continue;
1963
1964                 seq_puts(m, "HW context ");
1965                 describe_ctx(m, ctx);
1966                 if (ctx == dev_priv->kernel_context)
1967                         seq_printf(m, "(kernel context) ");
1968
1969                 if (i915.enable_execlists) {
1970                         seq_putc(m, '\n');
1971                         for_each_ring(ring, dev_priv, i) {
1972                                 struct drm_i915_gem_object *ctx_obj =
1973                                         ctx->engine[i].state;
1974                                 struct intel_ringbuffer *ringbuf =
1975                                         ctx->engine[i].ringbuf;
1976
1977                                 seq_printf(m, "%s: ", ring->name);
1978                                 if (ctx_obj)
1979                                         describe_obj(m, ctx_obj);
1980                                 if (ringbuf)
1981                                         describe_ctx_ringbuf(m, ringbuf);
1982                                 seq_putc(m, '\n');
1983                         }
1984                 } else {
1985                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1986                 }
1987
1988                 seq_putc(m, '\n');
1989         }
1990
1991         mutex_unlock(&dev->struct_mutex);
1992
1993         return 0;
1994 }
1995
1996 static void i915_dump_lrc_obj(struct seq_file *m,
1997                               struct intel_context *ctx,
1998                               struct intel_engine_cs *ring)
1999 {
2000         struct page *page;
2001         uint32_t *reg_state;
2002         int j;
2003         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
2004         unsigned long ggtt_offset = 0;
2005
2006         if (ctx_obj == NULL) {
2007                 seq_printf(m, "Context on %s with no gem object\n",
2008                            ring->name);
2009                 return;
2010         }
2011
2012         seq_printf(m, "CONTEXT: %s %u\n", ring->name,
2013                    intel_execlists_ctx_id(ctx, ring));
2014
2015         if (!i915_gem_obj_ggtt_bound(ctx_obj))
2016                 seq_puts(m, "\tNot bound in GGTT\n");
2017         else
2018                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2019
2020         if (i915_gem_object_get_pages(ctx_obj)) {
2021                 seq_puts(m, "\tFailed to get pages for context object\n");
2022                 return;
2023         }
2024
2025         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2026         if (!WARN_ON(page == NULL)) {
2027                 reg_state = kmap_atomic(page);
2028
2029                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2030                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2031                                    ggtt_offset + 4096 + (j * 4),
2032                                    reg_state[j], reg_state[j + 1],
2033                                    reg_state[j + 2], reg_state[j + 3]);
2034                 }
2035                 kunmap_atomic(reg_state);
2036         }
2037
2038         seq_putc(m, '\n');
2039 }
2040
2041 static int i915_dump_lrc(struct seq_file *m, void *unused)
2042 {
2043         struct drm_info_node *node = (struct drm_info_node *) m->private;
2044         struct drm_device *dev = node->minor->dev;
2045         struct drm_i915_private *dev_priv = dev->dev_private;
2046         struct intel_engine_cs *ring;
2047         struct intel_context *ctx;
2048         int ret, i;
2049
2050         if (!i915.enable_execlists) {
2051                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2052                 return 0;
2053         }
2054
2055         ret = mutex_lock_interruptible(&dev->struct_mutex);
2056         if (ret)
2057                 return ret;
2058
2059         list_for_each_entry(ctx, &dev_priv->context_list, link)
2060                 if (ctx != dev_priv->kernel_context)
2061                         for_each_ring(ring, dev_priv, i)
2062                                 i915_dump_lrc_obj(m, ctx, ring);
2063
2064         mutex_unlock(&dev->struct_mutex);
2065
2066         return 0;
2067 }
2068
2069 static int i915_execlists(struct seq_file *m, void *data)
2070 {
2071         struct drm_info_node *node = (struct drm_info_node *)m->private;
2072         struct drm_device *dev = node->minor->dev;
2073         struct drm_i915_private *dev_priv = dev->dev_private;
2074         struct intel_engine_cs *ring;
2075         u32 status_pointer;
2076         u8 read_pointer;
2077         u8 write_pointer;
2078         u32 status;
2079         u32 ctx_id;
2080         struct list_head *cursor;
2081         int ring_id, i;
2082         int ret;
2083
2084         if (!i915.enable_execlists) {
2085                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2086                 return 0;
2087         }
2088
2089         ret = mutex_lock_interruptible(&dev->struct_mutex);
2090         if (ret)
2091                 return ret;
2092
2093         intel_runtime_pm_get(dev_priv);
2094
2095         for_each_ring(ring, dev_priv, ring_id) {
2096                 struct drm_i915_gem_request *head_req = NULL;
2097                 int count = 0;
2098                 unsigned long flags;
2099
2100                 seq_printf(m, "%s\n", ring->name);
2101
2102                 status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
2103                 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
2104                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2105                            status, ctx_id);
2106
2107                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2108                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2109
2110                 read_pointer = ring->next_context_status_buffer;
2111                 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2112                 if (read_pointer > write_pointer)
2113                         write_pointer += GEN8_CSB_ENTRIES;
2114                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2115                            read_pointer, write_pointer);
2116
2117                 for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2118                         status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
2119                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
2120
2121                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2122                                    i, status, ctx_id);
2123                 }
2124
2125                 spin_lock_irqsave(&ring->execlist_lock, flags);
2126                 list_for_each(cursor, &ring->execlist_queue)
2127                         count++;
2128                 head_req = list_first_entry_or_null(&ring->execlist_queue,
2129                                 struct drm_i915_gem_request, execlist_link);
2130                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2131
2132                 seq_printf(m, "\t%d requests in queue\n", count);
2133                 if (head_req) {
2134                         seq_printf(m, "\tHead request id: %u\n",
2135                                    intel_execlists_ctx_id(head_req->ctx, ring));
2136                         seq_printf(m, "\tHead request tail: %u\n",
2137                                    head_req->tail);
2138                 }
2139
2140                 seq_putc(m, '\n');
2141         }
2142
2143         intel_runtime_pm_put(dev_priv);
2144         mutex_unlock(&dev->struct_mutex);
2145
2146         return 0;
2147 }
2148
2149 static const char *swizzle_string(unsigned swizzle)
2150 {
2151         switch (swizzle) {
2152         case I915_BIT_6_SWIZZLE_NONE:
2153                 return "none";
2154         case I915_BIT_6_SWIZZLE_9:
2155                 return "bit9";
2156         case I915_BIT_6_SWIZZLE_9_10:
2157                 return "bit9/bit10";
2158         case I915_BIT_6_SWIZZLE_9_11:
2159                 return "bit9/bit11";
2160         case I915_BIT_6_SWIZZLE_9_10_11:
2161                 return "bit9/bit10/bit11";
2162         case I915_BIT_6_SWIZZLE_9_17:
2163                 return "bit9/bit17";
2164         case I915_BIT_6_SWIZZLE_9_10_17:
2165                 return "bit9/bit10/bit17";
2166         case I915_BIT_6_SWIZZLE_UNKNOWN:
2167                 return "unknown";
2168         }
2169
2170         return "bug";
2171 }
2172
2173 static int i915_swizzle_info(struct seq_file *m, void *data)
2174 {
2175         struct drm_info_node *node = m->private;
2176         struct drm_device *dev = node->minor->dev;
2177         struct drm_i915_private *dev_priv = dev->dev_private;
2178         int ret;
2179
2180         ret = mutex_lock_interruptible(&dev->struct_mutex);
2181         if (ret)
2182                 return ret;
2183         intel_runtime_pm_get(dev_priv);
2184
2185         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2186                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2187         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2188                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2189
2190         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2191                 seq_printf(m, "DDC = 0x%08x\n",
2192                            I915_READ(DCC));
2193                 seq_printf(m, "DDC2 = 0x%08x\n",
2194                            I915_READ(DCC2));
2195                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2196                            I915_READ16(C0DRB3));
2197                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2198                            I915_READ16(C1DRB3));
2199         } else if (INTEL_INFO(dev)->gen >= 6) {
2200                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2201                            I915_READ(MAD_DIMM_C0));
2202                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2203                            I915_READ(MAD_DIMM_C1));
2204                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2205                            I915_READ(MAD_DIMM_C2));
2206                 seq_printf(m, "TILECTL = 0x%08x\n",
2207                            I915_READ(TILECTL));
2208                 if (INTEL_INFO(dev)->gen >= 8)
2209                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2210                                    I915_READ(GAMTARBMODE));
2211                 else
2212                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2213                                    I915_READ(ARB_MODE));
2214                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2215                            I915_READ(DISP_ARB_CTL));
2216         }
2217
2218         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2219                 seq_puts(m, "L-shaped memory detected\n");
2220
2221         intel_runtime_pm_put(dev_priv);
2222         mutex_unlock(&dev->struct_mutex);
2223
2224         return 0;
2225 }
2226
2227 static int per_file_ctx(int id, void *ptr, void *data)
2228 {
2229         struct intel_context *ctx = ptr;
2230         struct seq_file *m = data;
2231         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2232
2233         if (!ppgtt) {
2234                 seq_printf(m, "  no ppgtt for context %d\n",
2235                            ctx->user_handle);
2236                 return 0;
2237         }
2238
2239         if (i915_gem_context_is_default(ctx))
2240                 seq_puts(m, "  default context:\n");
2241         else
2242                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2243         ppgtt->debug_dump(ppgtt, m);
2244
2245         return 0;
2246 }
2247
2248 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2249 {
2250         struct drm_i915_private *dev_priv = dev->dev_private;
2251         struct intel_engine_cs *ring;
2252         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2253         int unused, i;
2254
2255         if (!ppgtt)
2256                 return;
2257
2258         for_each_ring(ring, dev_priv, unused) {
2259                 seq_printf(m, "%s\n", ring->name);
2260                 for (i = 0; i < 4; i++) {
2261                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
2262                         pdp <<= 32;
2263                         pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
2264                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2265                 }
2266         }
2267 }
2268
2269 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2270 {
2271         struct drm_i915_private *dev_priv = dev->dev_private;
2272         struct intel_engine_cs *ring;
2273         int i;
2274
2275         if (INTEL_INFO(dev)->gen == 6)
2276                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2277
2278         for_each_ring(ring, dev_priv, i) {
2279                 seq_printf(m, "%s\n", ring->name);
2280                 if (INTEL_INFO(dev)->gen == 7)
2281                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2282                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2283                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2284                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2285         }
2286         if (dev_priv->mm.aliasing_ppgtt) {
2287                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2288
2289                 seq_puts(m, "aliasing PPGTT:\n");
2290                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2291
2292                 ppgtt->debug_dump(ppgtt, m);
2293         }
2294
2295         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2296 }
2297
2298 static int i915_ppgtt_info(struct seq_file *m, void *data)
2299 {
2300         struct drm_info_node *node = m->private;
2301         struct drm_device *dev = node->minor->dev;
2302         struct drm_i915_private *dev_priv = dev->dev_private;
2303         struct drm_file *file;
2304
2305         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2306         if (ret)
2307                 return ret;
2308         intel_runtime_pm_get(dev_priv);
2309
2310         if (INTEL_INFO(dev)->gen >= 8)
2311                 gen8_ppgtt_info(m, dev);
2312         else if (INTEL_INFO(dev)->gen >= 6)
2313                 gen6_ppgtt_info(m, dev);
2314
2315         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2316                 struct drm_i915_file_private *file_priv = file->driver_priv;
2317                 struct task_struct *task;
2318
2319                 task = get_pid_task(file->pid, PIDTYPE_PID);
2320                 if (!task) {
2321                         ret = -ESRCH;
2322                         goto out_put;
2323                 }
2324                 seq_printf(m, "\nproc: %s\n", task->comm);
2325                 put_task_struct(task);
2326                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2327                              (void *)(unsigned long)m);
2328         }
2329
2330 out_put:
2331         intel_runtime_pm_put(dev_priv);
2332         mutex_unlock(&dev->struct_mutex);
2333
2334         return ret;
2335 }
2336
2337 static int count_irq_waiters(struct drm_i915_private *i915)
2338 {
2339         struct intel_engine_cs *ring;
2340         int count = 0;
2341         int i;
2342
2343         for_each_ring(ring, i915, i)
2344                 count += ring->irq_refcount;
2345
2346         return count;
2347 }
2348
2349 static int i915_rps_boost_info(struct seq_file *m, void *data)
2350 {
2351         struct drm_info_node *node = m->private;
2352         struct drm_device *dev = node->minor->dev;
2353         struct drm_i915_private *dev_priv = dev->dev_private;
2354         struct drm_file *file;
2355
2356         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2357         seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2358         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2359         seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2360                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2361                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2362                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2363                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2364                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2365         spin_lock(&dev_priv->rps.client_lock);
2366         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2367                 struct drm_i915_file_private *file_priv = file->driver_priv;
2368                 struct task_struct *task;
2369
2370                 rcu_read_lock();
2371                 task = pid_task(file->pid, PIDTYPE_PID);
2372                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2373                            task ? task->comm : "<unknown>",
2374                            task ? task->pid : -1,
2375                            file_priv->rps.boosts,
2376                            list_empty(&file_priv->rps.link) ? "" : ", active");
2377                 rcu_read_unlock();
2378         }
2379         seq_printf(m, "Semaphore boosts: %d%s\n",
2380                    dev_priv->rps.semaphores.boosts,
2381                    list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2382         seq_printf(m, "MMIO flip boosts: %d%s\n",
2383                    dev_priv->rps.mmioflips.boosts,
2384                    list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2385         seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2386         spin_unlock(&dev_priv->rps.client_lock);
2387
2388         return 0;
2389 }
2390
2391 static int i915_llc(struct seq_file *m, void *data)
2392 {
2393         struct drm_info_node *node = m->private;
2394         struct drm_device *dev = node->minor->dev;
2395         struct drm_i915_private *dev_priv = dev->dev_private;
2396
2397         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2398         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2399         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2400
2401         return 0;
2402 }
2403
2404 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2405 {
2406         struct drm_info_node *node = m->private;
2407         struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2408         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2409         u32 tmp, i;
2410
2411         if (!HAS_GUC_UCODE(dev_priv->dev))
2412                 return 0;
2413
2414         seq_printf(m, "GuC firmware status:\n");
2415         seq_printf(m, "\tpath: %s\n",
2416                 guc_fw->guc_fw_path);
2417         seq_printf(m, "\tfetch: %s\n",
2418                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2419         seq_printf(m, "\tload: %s\n",
2420                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2421         seq_printf(m, "\tversion wanted: %d.%d\n",
2422                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2423         seq_printf(m, "\tversion found: %d.%d\n",
2424                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2425         seq_printf(m, "\theader: offset is %d; size = %d\n",
2426                 guc_fw->header_offset, guc_fw->header_size);
2427         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2428                 guc_fw->ucode_offset, guc_fw->ucode_size);
2429         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2430                 guc_fw->rsa_offset, guc_fw->rsa_size);
2431
2432         tmp = I915_READ(GUC_STATUS);
2433
2434         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2435         seq_printf(m, "\tBootrom status = 0x%x\n",
2436                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2437         seq_printf(m, "\tuKernel status = 0x%x\n",
2438                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2439         seq_printf(m, "\tMIA Core status = 0x%x\n",
2440                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2441         seq_puts(m, "\nScratch registers:\n");
2442         for (i = 0; i < 16; i++)
2443                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2444
2445         return 0;
2446 }
2447
2448 static void i915_guc_client_info(struct seq_file *m,
2449                                  struct drm_i915_private *dev_priv,
2450                                  struct i915_guc_client *client)
2451 {
2452         struct intel_engine_cs *ring;
2453         uint64_t tot = 0;
2454         uint32_t i;
2455
2456         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2457                 client->priority, client->ctx_index, client->proc_desc_offset);
2458         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2459                 client->doorbell_id, client->doorbell_offset, client->cookie);
2460         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2461                 client->wq_size, client->wq_offset, client->wq_tail);
2462
2463         seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2464         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2465         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2466
2467         for_each_ring(ring, dev_priv, i) {
2468                 seq_printf(m, "\tSubmissions: %llu %s\n",
2469                                 client->submissions[ring->guc_id],
2470                                 ring->name);
2471                 tot += client->submissions[ring->guc_id];
2472         }
2473         seq_printf(m, "\tTotal: %llu\n", tot);
2474 }
2475
2476 static int i915_guc_info(struct seq_file *m, void *data)
2477 {
2478         struct drm_info_node *node = m->private;
2479         struct drm_device *dev = node->minor->dev;
2480         struct drm_i915_private *dev_priv = dev->dev_private;
2481         struct intel_guc guc;
2482         struct i915_guc_client client = {};
2483         struct intel_engine_cs *ring;
2484         enum intel_ring_id i;
2485         u64 total = 0;
2486
2487         if (!HAS_GUC_SCHED(dev_priv->dev))
2488                 return 0;
2489
2490         if (mutex_lock_interruptible(&dev->struct_mutex))
2491                 return 0;
2492
2493         /* Take a local copy of the GuC data, so we can dump it at leisure */
2494         guc = dev_priv->guc;
2495         if (guc.execbuf_client)
2496                 client = *guc.execbuf_client;
2497
2498         mutex_unlock(&dev->struct_mutex);
2499
2500         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2501         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2502         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2503         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2504         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2505
2506         seq_printf(m, "\nGuC submissions:\n");
2507         for_each_ring(ring, dev_priv, i) {
2508                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2509                         ring->name, guc.submissions[ring->guc_id],
2510                         guc.last_seqno[ring->guc_id]);
2511                 total += guc.submissions[ring->guc_id];
2512         }
2513         seq_printf(m, "\t%s: %llu\n", "Total", total);
2514
2515         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2516         i915_guc_client_info(m, dev_priv, &client);
2517
2518         /* Add more as required ... */
2519
2520         return 0;
2521 }
2522
2523 static int i915_guc_log_dump(struct seq_file *m, void *data)
2524 {
2525         struct drm_info_node *node = m->private;
2526         struct drm_device *dev = node->minor->dev;
2527         struct drm_i915_private *dev_priv = dev->dev_private;
2528         struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2529         u32 *log;
2530         int i = 0, pg;
2531
2532         if (!log_obj)
2533                 return 0;
2534
2535         for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2536                 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2537
2538                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2539                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2540                                    *(log + i), *(log + i + 1),
2541                                    *(log + i + 2), *(log + i + 3));
2542
2543                 kunmap_atomic(log);
2544         }
2545
2546         seq_putc(m, '\n');
2547
2548         return 0;
2549 }
2550
2551 static int i915_edp_psr_status(struct seq_file *m, void *data)
2552 {
2553         struct drm_info_node *node = m->private;
2554         struct drm_device *dev = node->minor->dev;
2555         struct drm_i915_private *dev_priv = dev->dev_private;
2556         u32 psrperf = 0;
2557         u32 stat[3];
2558         enum pipe pipe;
2559         bool enabled = false;
2560
2561         if (!HAS_PSR(dev)) {
2562                 seq_puts(m, "PSR not supported\n");
2563                 return 0;
2564         }
2565
2566         intel_runtime_pm_get(dev_priv);
2567
2568         mutex_lock(&dev_priv->psr.lock);
2569         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2570         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2571         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2572         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2573         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2574                    dev_priv->psr.busy_frontbuffer_bits);
2575         seq_printf(m, "Re-enable work scheduled: %s\n",
2576                    yesno(work_busy(&dev_priv->psr.work.work)));
2577
2578         if (HAS_DDI(dev))
2579                 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2580         else {
2581                 for_each_pipe(dev_priv, pipe) {
2582                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2583                                 VLV_EDP_PSR_CURR_STATE_MASK;
2584                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2585                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2586                                 enabled = true;
2587                 }
2588         }
2589
2590         seq_printf(m, "Main link in standby mode: %s\n",
2591                    yesno(dev_priv->psr.link_standby));
2592
2593         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2594
2595         if (!HAS_DDI(dev))
2596                 for_each_pipe(dev_priv, pipe) {
2597                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2598                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2599                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2600                 }
2601         seq_puts(m, "\n");
2602
2603         /*
2604          * VLV/CHV PSR has no kind of performance counter
2605          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2606          */
2607         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2608                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2609                         EDP_PSR_PERF_CNT_MASK;
2610
2611                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2612         }
2613         mutex_unlock(&dev_priv->psr.lock);
2614
2615         intel_runtime_pm_put(dev_priv);
2616         return 0;
2617 }
2618
2619 static int i915_sink_crc(struct seq_file *m, void *data)
2620 {
2621         struct drm_info_node *node = m->private;
2622         struct drm_device *dev = node->minor->dev;
2623         struct intel_encoder *encoder;
2624         struct intel_connector *connector;
2625         struct intel_dp *intel_dp = NULL;
2626         int ret;
2627         u8 crc[6];
2628
2629         drm_modeset_lock_all(dev);
2630         for_each_intel_connector(dev, connector) {
2631
2632                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2633                         continue;
2634
2635                 if (!connector->base.encoder)
2636                         continue;
2637
2638                 encoder = to_intel_encoder(connector->base.encoder);
2639                 if (encoder->type != INTEL_OUTPUT_EDP)
2640                         continue;
2641
2642                 intel_dp = enc_to_intel_dp(&encoder->base);
2643
2644                 ret = intel_dp_sink_crc(intel_dp, crc);
2645                 if (ret)
2646                         goto out;
2647
2648                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2649                            crc[0], crc[1], crc[2],
2650                            crc[3], crc[4], crc[5]);
2651                 goto out;
2652         }
2653         ret = -ENODEV;
2654 out:
2655         drm_modeset_unlock_all(dev);
2656         return ret;
2657 }
2658
2659 static int i915_energy_uJ(struct seq_file *m, void *data)
2660 {
2661         struct drm_info_node *node = m->private;
2662         struct drm_device *dev = node->minor->dev;
2663         struct drm_i915_private *dev_priv = dev->dev_private;
2664         u64 power;
2665         u32 units;
2666
2667         if (INTEL_INFO(dev)->gen < 6)
2668                 return -ENODEV;
2669
2670         intel_runtime_pm_get(dev_priv);
2671
2672         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2673         power = (power & 0x1f00) >> 8;
2674         units = 1000000 / (1 << power); /* convert to uJ */
2675         power = I915_READ(MCH_SECP_NRG_STTS);
2676         power *= units;
2677
2678         intel_runtime_pm_put(dev_priv);
2679
2680         seq_printf(m, "%llu", (long long unsigned)power);
2681
2682         return 0;
2683 }
2684
2685 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2686 {
2687         struct drm_info_node *node = m->private;
2688         struct drm_device *dev = node->minor->dev;
2689         struct drm_i915_private *dev_priv = dev->dev_private;
2690
2691         if (!HAS_RUNTIME_PM(dev)) {
2692                 seq_puts(m, "not supported\n");
2693                 return 0;
2694         }
2695
2696         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2697         seq_printf(m, "IRQs disabled: %s\n",
2698                    yesno(!intel_irqs_enabled(dev_priv)));
2699 #ifdef CONFIG_PM
2700         seq_printf(m, "Usage count: %d\n",
2701                    atomic_read(&dev->dev->power.usage_count));
2702 #else
2703         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2704 #endif
2705
2706         return 0;
2707 }
2708
2709 static int i915_power_domain_info(struct seq_file *m, void *unused)
2710 {
2711         struct drm_info_node *node = m->private;
2712         struct drm_device *dev = node->minor->dev;
2713         struct drm_i915_private *dev_priv = dev->dev_private;
2714         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2715         int i;
2716
2717         mutex_lock(&power_domains->lock);
2718
2719         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2720         for (i = 0; i < power_domains->power_well_count; i++) {
2721                 struct i915_power_well *power_well;
2722                 enum intel_display_power_domain power_domain;
2723
2724                 power_well = &power_domains->power_wells[i];
2725                 seq_printf(m, "%-25s %d\n", power_well->name,
2726                            power_well->count);
2727
2728                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2729                      power_domain++) {
2730                         if (!(BIT(power_domain) & power_well->domains))
2731                                 continue;
2732
2733                         seq_printf(m, "  %-23s %d\n",
2734                                  intel_display_power_domain_str(power_domain),
2735                                  power_domains->domain_use_count[power_domain]);
2736                 }
2737         }
2738
2739         mutex_unlock(&power_domains->lock);
2740
2741         return 0;
2742 }
2743
2744 static int i915_dmc_info(struct seq_file *m, void *unused)
2745 {
2746         struct drm_info_node *node = m->private;
2747         struct drm_device *dev = node->minor->dev;
2748         struct drm_i915_private *dev_priv = dev->dev_private;
2749         struct intel_csr *csr;
2750
2751         if (!HAS_CSR(dev)) {
2752                 seq_puts(m, "not supported\n");
2753                 return 0;
2754         }
2755
2756         csr = &dev_priv->csr;
2757
2758         intel_runtime_pm_get(dev_priv);
2759
2760         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2761         seq_printf(m, "path: %s\n", csr->fw_path);
2762
2763         if (!csr->dmc_payload)
2764                 goto out;
2765
2766         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2767                    CSR_VERSION_MINOR(csr->version));
2768
2769         if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2770                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2771                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2772                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2773                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2774         } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2775                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2776                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2777         }
2778
2779 out:
2780         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2781         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2782         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2783
2784         intel_runtime_pm_put(dev_priv);
2785
2786         return 0;
2787 }
2788
2789 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2790                                  struct drm_display_mode *mode)
2791 {
2792         int i;
2793
2794         for (i = 0; i < tabs; i++)
2795                 seq_putc(m, '\t');
2796
2797         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2798                    mode->base.id, mode->name,
2799                    mode->vrefresh, mode->clock,
2800                    mode->hdisplay, mode->hsync_start,
2801                    mode->hsync_end, mode->htotal,
2802                    mode->vdisplay, mode->vsync_start,
2803                    mode->vsync_end, mode->vtotal,
2804                    mode->type, mode->flags);
2805 }
2806
2807 static void intel_encoder_info(struct seq_file *m,
2808                                struct intel_crtc *intel_crtc,
2809                                struct intel_encoder *intel_encoder)
2810 {
2811         struct drm_info_node *node = m->private;
2812         struct drm_device *dev = node->minor->dev;
2813         struct drm_crtc *crtc = &intel_crtc->base;
2814         struct intel_connector *intel_connector;
2815         struct drm_encoder *encoder;
2816
2817         encoder = &intel_encoder->base;
2818         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2819                    encoder->base.id, encoder->name);
2820         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2821                 struct drm_connector *connector = &intel_connector->base;
2822                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2823                            connector->base.id,
2824                            connector->name,
2825                            drm_get_connector_status_name(connector->status));
2826                 if (connector->status == connector_status_connected) {
2827                         struct drm_display_mode *mode = &crtc->mode;
2828                         seq_printf(m, ", mode:\n");
2829                         intel_seq_print_mode(m, 2, mode);
2830                 } else {
2831                         seq_putc(m, '\n');
2832                 }
2833         }
2834 }
2835
2836 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2837 {
2838         struct drm_info_node *node = m->private;
2839         struct drm_device *dev = node->minor->dev;
2840         struct drm_crtc *crtc = &intel_crtc->base;
2841         struct intel_encoder *intel_encoder;
2842         struct drm_plane_state *plane_state = crtc->primary->state;
2843         struct drm_framebuffer *fb = plane_state->fb;
2844
2845         if (fb)
2846                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2847                            fb->base.id, plane_state->src_x >> 16,
2848                            plane_state->src_y >> 16, fb->width, fb->height);
2849         else
2850                 seq_puts(m, "\tprimary plane disabled\n");
2851         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2852                 intel_encoder_info(m, intel_crtc, intel_encoder);
2853 }
2854
2855 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2856 {
2857         struct drm_display_mode *mode = panel->fixed_mode;
2858
2859         seq_printf(m, "\tfixed mode:\n");
2860         intel_seq_print_mode(m, 2, mode);
2861 }
2862
2863 static void intel_dp_info(struct seq_file *m,
2864                           struct intel_connector *intel_connector)
2865 {
2866         struct intel_encoder *intel_encoder = intel_connector->encoder;
2867         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2868
2869         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2870         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2871         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2872                 intel_panel_info(m, &intel_connector->panel);
2873 }
2874
2875 static void intel_hdmi_info(struct seq_file *m,
2876                             struct intel_connector *intel_connector)
2877 {
2878         struct intel_encoder *intel_encoder = intel_connector->encoder;
2879         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2880
2881         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2882 }
2883
2884 static void intel_lvds_info(struct seq_file *m,
2885                             struct intel_connector *intel_connector)
2886 {
2887         intel_panel_info(m, &intel_connector->panel);
2888 }
2889
2890 static void intel_connector_info(struct seq_file *m,
2891                                  struct drm_connector *connector)
2892 {
2893         struct intel_connector *intel_connector = to_intel_connector(connector);
2894         struct intel_encoder *intel_encoder = intel_connector->encoder;
2895         struct drm_display_mode *mode;
2896
2897         seq_printf(m, "connector %d: type %s, status: %s\n",
2898                    connector->base.id, connector->name,
2899                    drm_get_connector_status_name(connector->status));
2900         if (connector->status == connector_status_connected) {
2901                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2902                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2903                            connector->display_info.width_mm,
2904                            connector->display_info.height_mm);
2905                 seq_printf(m, "\tsubpixel order: %s\n",
2906                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2907                 seq_printf(m, "\tCEA rev: %d\n",
2908                            connector->display_info.cea_rev);
2909         }
2910         if (intel_encoder) {
2911                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2912                     intel_encoder->type == INTEL_OUTPUT_EDP)
2913                         intel_dp_info(m, intel_connector);
2914                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2915                         intel_hdmi_info(m, intel_connector);
2916                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2917                         intel_lvds_info(m, intel_connector);
2918         }
2919
2920         seq_printf(m, "\tmodes:\n");
2921         list_for_each_entry(mode, &connector->modes, head)
2922                 intel_seq_print_mode(m, 2, mode);
2923 }
2924
2925 static bool cursor_active(struct drm_device *dev, int pipe)
2926 {
2927         struct drm_i915_private *dev_priv = dev->dev_private;
2928         u32 state;
2929
2930         if (IS_845G(dev) || IS_I865G(dev))
2931                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2932         else
2933                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2934
2935         return state;
2936 }
2937
2938 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2939 {
2940         struct drm_i915_private *dev_priv = dev->dev_private;
2941         u32 pos;
2942
2943         pos = I915_READ(CURPOS(pipe));
2944
2945         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2946         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2947                 *x = -*x;
2948
2949         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2950         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2951                 *y = -*y;
2952
2953         return cursor_active(dev, pipe);
2954 }
2955
2956 static const char *plane_type(enum drm_plane_type type)
2957 {
2958         switch (type) {
2959         case DRM_PLANE_TYPE_OVERLAY:
2960                 return "OVL";
2961         case DRM_PLANE_TYPE_PRIMARY:
2962                 return "PRI";
2963         case DRM_PLANE_TYPE_CURSOR:
2964                 return "CUR";
2965         /*
2966          * Deliberately omitting default: to generate compiler warnings
2967          * when a new drm_plane_type gets added.
2968          */
2969         }
2970
2971         return "unknown";
2972 }
2973
2974 static const char *plane_rotation(unsigned int rotation)
2975 {
2976         static char buf[48];
2977         /*
2978          * According to doc only one DRM_ROTATE_ is allowed but this
2979          * will print them all to visualize if the values are misused
2980          */
2981         snprintf(buf, sizeof(buf),
2982                  "%s%s%s%s%s%s(0x%08x)",
2983                  (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
2984                  (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
2985                  (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
2986                  (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
2987                  (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
2988                  (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
2989                  rotation);
2990
2991         return buf;
2992 }
2993
2994 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2995 {
2996         struct drm_info_node *node = m->private;
2997         struct drm_device *dev = node->minor->dev;
2998         struct intel_plane *intel_plane;
2999
3000         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3001                 struct drm_plane_state *state;
3002                 struct drm_plane *plane = &intel_plane->base;
3003
3004                 if (!plane->state) {
3005                         seq_puts(m, "plane->state is NULL!\n");
3006                         continue;
3007                 }
3008
3009                 state = plane->state;
3010
3011                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3012                            plane->base.id,
3013                            plane_type(intel_plane->base.type),
3014                            state->crtc_x, state->crtc_y,
3015                            state->crtc_w, state->crtc_h,
3016                            (state->src_x >> 16),
3017                            ((state->src_x & 0xffff) * 15625) >> 10,
3018                            (state->src_y >> 16),
3019                            ((state->src_y & 0xffff) * 15625) >> 10,
3020                            (state->src_w >> 16),
3021                            ((state->src_w & 0xffff) * 15625) >> 10,
3022                            (state->src_h >> 16),
3023                            ((state->src_h & 0xffff) * 15625) >> 10,
3024                            state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3025                            plane_rotation(state->rotation));
3026         }
3027 }
3028
3029 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3030 {
3031         struct intel_crtc_state *pipe_config;
3032         int num_scalers = intel_crtc->num_scalers;
3033         int i;
3034
3035         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3036
3037         /* Not all platformas have a scaler */
3038         if (num_scalers) {
3039                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3040                            num_scalers,
3041                            pipe_config->scaler_state.scaler_users,
3042                            pipe_config->scaler_state.scaler_id);
3043
3044                 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3045                         struct intel_scaler *sc =
3046                                         &pipe_config->scaler_state.scalers[i];
3047
3048                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3049                                    i, yesno(sc->in_use), sc->mode);
3050                 }
3051                 seq_puts(m, "\n");
3052         } else {
3053                 seq_puts(m, "\tNo scalers available on this platform\n");
3054         }
3055 }
3056
3057 static int i915_display_info(struct seq_file *m, void *unused)
3058 {
3059         struct drm_info_node *node = m->private;
3060         struct drm_device *dev = node->minor->dev;
3061         struct drm_i915_private *dev_priv = dev->dev_private;
3062         struct intel_crtc *crtc;
3063         struct drm_connector *connector;
3064
3065         intel_runtime_pm_get(dev_priv);
3066         drm_modeset_lock_all(dev);
3067         seq_printf(m, "CRTC info\n");
3068         seq_printf(m, "---------\n");
3069         for_each_intel_crtc(dev, crtc) {
3070                 bool active;
3071                 struct intel_crtc_state *pipe_config;
3072                 int x, y;
3073
3074                 pipe_config = to_intel_crtc_state(crtc->base.state);
3075
3076                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3077                            crtc->base.base.id, pipe_name(crtc->pipe),
3078                            yesno(pipe_config->base.active),
3079                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3080                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3081
3082                 if (pipe_config->base.active) {
3083                         intel_crtc_info(m, crtc);
3084
3085                         active = cursor_position(dev, crtc->pipe, &x, &y);
3086                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3087                                    yesno(crtc->cursor_base),
3088                                    x, y, crtc->base.cursor->state->crtc_w,
3089                                    crtc->base.cursor->state->crtc_h,
3090                                    crtc->cursor_addr, yesno(active));
3091                         intel_scaler_info(m, crtc);
3092                         intel_plane_info(m, crtc);
3093                 }
3094
3095                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3096                            yesno(!crtc->cpu_fifo_underrun_disabled),
3097                            yesno(!crtc->pch_fifo_underrun_disabled));
3098         }
3099
3100         seq_printf(m, "\n");
3101         seq_printf(m, "Connector info\n");
3102         seq_printf(m, "--------------\n");
3103         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3104                 intel_connector_info(m, connector);
3105         }
3106         drm_modeset_unlock_all(dev);
3107         intel_runtime_pm_put(dev_priv);
3108
3109         return 0;
3110 }
3111
3112 static int i915_semaphore_status(struct seq_file *m, void *unused)
3113 {
3114         struct drm_info_node *node = (struct drm_info_node *) m->private;
3115         struct drm_device *dev = node->minor->dev;
3116         struct drm_i915_private *dev_priv = dev->dev_private;
3117         struct intel_engine_cs *ring;
3118         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3119         int i, j, ret;
3120
3121         if (!i915_semaphore_is_enabled(dev)) {
3122                 seq_puts(m, "Semaphores are disabled\n");
3123                 return 0;
3124         }
3125
3126         ret = mutex_lock_interruptible(&dev->struct_mutex);
3127         if (ret)
3128                 return ret;
3129         intel_runtime_pm_get(dev_priv);
3130
3131         if (IS_BROADWELL(dev)) {
3132                 struct page *page;
3133                 uint64_t *seqno;
3134
3135                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3136
3137                 seqno = (uint64_t *)kmap_atomic(page);
3138                 for_each_ring(ring, dev_priv, i) {
3139                         uint64_t offset;
3140
3141                         seq_printf(m, "%s\n", ring->name);
3142
3143                         seq_puts(m, "  Last signal:");
3144                         for (j = 0; j < num_rings; j++) {
3145                                 offset = i * I915_NUM_RINGS + j;
3146                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3147                                            seqno[offset], offset * 8);
3148                         }
3149                         seq_putc(m, '\n');
3150
3151                         seq_puts(m, "  Last wait:  ");
3152                         for (j = 0; j < num_rings; j++) {
3153                                 offset = i + (j * I915_NUM_RINGS);
3154                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3155                                            seqno[offset], offset * 8);
3156                         }
3157                         seq_putc(m, '\n');
3158
3159                 }
3160                 kunmap_atomic(seqno);
3161         } else {
3162                 seq_puts(m, "  Last signal:");
3163                 for_each_ring(ring, dev_priv, i)
3164                         for (j = 0; j < num_rings; j++)
3165                                 seq_printf(m, "0x%08x\n",
3166                                            I915_READ(ring->semaphore.mbox.signal[j]));
3167                 seq_putc(m, '\n');
3168         }
3169
3170         seq_puts(m, "\nSync seqno:\n");
3171         for_each_ring(ring, dev_priv, i) {
3172                 for (j = 0; j < num_rings; j++) {
3173                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
3174                 }
3175                 seq_putc(m, '\n');
3176         }
3177         seq_putc(m, '\n');
3178
3179         intel_runtime_pm_put(dev_priv);
3180         mutex_unlock(&dev->struct_mutex);
3181         return 0;
3182 }
3183
3184 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3185 {
3186         struct drm_info_node *node = (struct drm_info_node *) m->private;
3187         struct drm_device *dev = node->minor->dev;
3188         struct drm_i915_private *dev_priv = dev->dev_private;
3189         int i;
3190
3191         drm_modeset_lock_all(dev);
3192         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3193                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3194
3195                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3196                 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
3197                            pll->config.crtc_mask, pll->active, yesno(pll->on));
3198                 seq_printf(m, " tracked hardware state:\n");
3199                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3200                 seq_printf(m, " dpll_md: 0x%08x\n",
3201                            pll->config.hw_state.dpll_md);
3202                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3203                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3204                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3205         }
3206         drm_modeset_unlock_all(dev);
3207
3208         return 0;
3209 }
3210
3211 static int i915_wa_registers(struct seq_file *m, void *unused)
3212 {
3213         int i;
3214         int ret;
3215         struct intel_engine_cs *ring;
3216         struct drm_info_node *node = (struct drm_info_node *) m->private;
3217         struct drm_device *dev = node->minor->dev;
3218         struct drm_i915_private *dev_priv = dev->dev_private;
3219         struct i915_workarounds *workarounds = &dev_priv->workarounds;
3220
3221         ret = mutex_lock_interruptible(&dev->struct_mutex);
3222         if (ret)
3223                 return ret;
3224
3225         intel_runtime_pm_get(dev_priv);
3226
3227         seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3228         for_each_ring(ring, dev_priv, i)
3229                 seq_printf(m, "HW whitelist count for %s: %d\n",
3230                            ring->name, workarounds->hw_whitelist_count[i]);
3231         for (i = 0; i < workarounds->count; ++i) {
3232                 i915_reg_t addr;
3233                 u32 mask, value, read;
3234                 bool ok;
3235
3236                 addr = workarounds->reg[i].addr;
3237                 mask = workarounds->reg[i].mask;
3238                 value = workarounds->reg[i].value;
3239                 read = I915_READ(addr);
3240                 ok = (value & mask) == (read & mask);
3241                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3242                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3243         }
3244
3245         intel_runtime_pm_put(dev_priv);
3246         mutex_unlock(&dev->struct_mutex);
3247
3248         return 0;
3249 }
3250
3251 static int i915_ddb_info(struct seq_file *m, void *unused)
3252 {
3253         struct drm_info_node *node = m->private;
3254         struct drm_device *dev = node->minor->dev;
3255         struct drm_i915_private *dev_priv = dev->dev_private;
3256         struct skl_ddb_allocation *ddb;
3257         struct skl_ddb_entry *entry;
3258         enum pipe pipe;
3259         int plane;
3260
3261         if (INTEL_INFO(dev)->gen < 9)
3262                 return 0;
3263
3264         drm_modeset_lock_all(dev);
3265
3266         ddb = &dev_priv->wm.skl_hw.ddb;
3267
3268         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3269
3270         for_each_pipe(dev_priv, pipe) {
3271                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3272
3273                 for_each_plane(dev_priv, pipe, plane) {
3274                         entry = &ddb->plane[pipe][plane];
3275                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3276                                    entry->start, entry->end,
3277                                    skl_ddb_entry_size(entry));
3278                 }
3279
3280                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3281                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3282                            entry->end, skl_ddb_entry_size(entry));
3283         }
3284
3285         drm_modeset_unlock_all(dev);
3286
3287         return 0;
3288 }
3289
3290 static void drrs_status_per_crtc(struct seq_file *m,
3291                 struct drm_device *dev, struct intel_crtc *intel_crtc)
3292 {
3293         struct intel_encoder *intel_encoder;
3294         struct drm_i915_private *dev_priv = dev->dev_private;
3295         struct i915_drrs *drrs = &dev_priv->drrs;
3296         int vrefresh = 0;
3297
3298         for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3299                 /* Encoder connected on this CRTC */
3300                 switch (intel_encoder->type) {
3301                 case INTEL_OUTPUT_EDP:
3302                         seq_puts(m, "eDP:\n");
3303                         break;
3304                 case INTEL_OUTPUT_DSI:
3305                         seq_puts(m, "DSI:\n");
3306                         break;
3307                 case INTEL_OUTPUT_HDMI:
3308                         seq_puts(m, "HDMI:\n");
3309                         break;
3310                 case INTEL_OUTPUT_DISPLAYPORT:
3311                         seq_puts(m, "DP:\n");
3312                         break;
3313                 default:
3314                         seq_printf(m, "Other encoder (id=%d).\n",
3315                                                 intel_encoder->type);
3316                         return;
3317                 }
3318         }
3319
3320         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3321                 seq_puts(m, "\tVBT: DRRS_type: Static");
3322         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3323                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3324         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3325                 seq_puts(m, "\tVBT: DRRS_type: None");
3326         else
3327                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3328
3329         seq_puts(m, "\n\n");
3330
3331         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3332                 struct intel_panel *panel;
3333
3334                 mutex_lock(&drrs->mutex);
3335                 /* DRRS Supported */
3336                 seq_puts(m, "\tDRRS Supported: Yes\n");
3337
3338                 /* disable_drrs() will make drrs->dp NULL */
3339                 if (!drrs->dp) {
3340                         seq_puts(m, "Idleness DRRS: Disabled");
3341                         mutex_unlock(&drrs->mutex);
3342                         return;
3343                 }
3344
3345                 panel = &drrs->dp->attached_connector->panel;
3346                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3347                                         drrs->busy_frontbuffer_bits);
3348
3349                 seq_puts(m, "\n\t\t");
3350                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3351                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3352                         vrefresh = panel->fixed_mode->vrefresh;
3353                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3354                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3355                         vrefresh = panel->downclock_mode->vrefresh;
3356                 } else {
3357                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3358                                                 drrs->refresh_rate_type);
3359                         mutex_unlock(&drrs->mutex);
3360                         return;
3361                 }
3362                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3363
3364                 seq_puts(m, "\n\t\t");
3365                 mutex_unlock(&drrs->mutex);
3366         } else {
3367                 /* DRRS not supported. Print the VBT parameter*/
3368                 seq_puts(m, "\tDRRS Supported : No");
3369         }
3370         seq_puts(m, "\n");
3371 }
3372
3373 static int i915_drrs_status(struct seq_file *m, void *unused)
3374 {
3375         struct drm_info_node *node = m->private;
3376         struct drm_device *dev = node->minor->dev;
3377         struct intel_crtc *intel_crtc;
3378         int active_crtc_cnt = 0;
3379
3380         for_each_intel_crtc(dev, intel_crtc) {
3381                 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3382
3383                 if (intel_crtc->base.state->active) {
3384                         active_crtc_cnt++;
3385                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3386
3387                         drrs_status_per_crtc(m, dev, intel_crtc);
3388                 }
3389
3390                 drm_modeset_unlock(&intel_crtc->base.mutex);
3391         }
3392
3393         if (!active_crtc_cnt)
3394                 seq_puts(m, "No active crtc found\n");
3395
3396         return 0;
3397 }
3398
3399 struct pipe_crc_info {
3400         const char *name;
3401         struct drm_device *dev;
3402         enum pipe pipe;
3403 };
3404
3405 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3406 {
3407         struct drm_info_node *node = (struct drm_info_node *) m->private;
3408         struct drm_device *dev = node->minor->dev;
3409         struct drm_encoder *encoder;
3410         struct intel_encoder *intel_encoder;
3411         struct intel_digital_port *intel_dig_port;
3412         drm_modeset_lock_all(dev);
3413         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3414                 intel_encoder = to_intel_encoder(encoder);
3415                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3416                         continue;
3417                 intel_dig_port = enc_to_dig_port(encoder);
3418                 if (!intel_dig_port->dp.can_mst)
3419                         continue;
3420
3421                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3422         }
3423         drm_modeset_unlock_all(dev);
3424         return 0;
3425 }
3426
3427 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3428 {
3429         struct pipe_crc_info *info = inode->i_private;
3430         struct drm_i915_private *dev_priv = info->dev->dev_private;
3431         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3432
3433         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3434                 return -ENODEV;
3435
3436         spin_lock_irq(&pipe_crc->lock);
3437
3438         if (pipe_crc->opened) {
3439                 spin_unlock_irq(&pipe_crc->lock);
3440                 return -EBUSY; /* already open */
3441         }
3442
3443         pipe_crc->opened = true;
3444         filep->private_data = inode->i_private;
3445
3446         spin_unlock_irq(&pipe_crc->lock);
3447
3448         return 0;
3449 }
3450
3451 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3452 {
3453         struct pipe_crc_info *info = inode->i_private;
3454         struct drm_i915_private *dev_priv = info->dev->dev_private;
3455         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3456
3457         spin_lock_irq(&pipe_crc->lock);
3458         pipe_crc->opened = false;
3459         spin_unlock_irq(&pipe_crc->lock);
3460
3461         return 0;
3462 }
3463
3464 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3465 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3466 /* account for \'0' */
3467 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3468
3469 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3470 {
3471         assert_spin_locked(&pipe_crc->lock);
3472         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3473                         INTEL_PIPE_CRC_ENTRIES_NR);
3474 }
3475
3476 static ssize_t
3477 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3478                    loff_t *pos)
3479 {
3480         struct pipe_crc_info *info = filep->private_data;
3481         struct drm_device *dev = info->dev;
3482         struct drm_i915_private *dev_priv = dev->dev_private;
3483         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3484         char buf[PIPE_CRC_BUFFER_LEN];
3485         int n_entries;
3486         ssize_t bytes_read;
3487
3488         /*
3489          * Don't allow user space to provide buffers not big enough to hold
3490          * a line of data.
3491          */
3492         if (count < PIPE_CRC_LINE_LEN)
3493                 return -EINVAL;
3494
3495         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3496                 return 0;
3497
3498         /* nothing to read */
3499         spin_lock_irq(&pipe_crc->lock);
3500         while (pipe_crc_data_count(pipe_crc) == 0) {
3501                 int ret;
3502
3503                 if (filep->f_flags & O_NONBLOCK) {
3504                         spin_unlock_irq(&pipe_crc->lock);
3505                         return -EAGAIN;
3506                 }
3507
3508                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3509                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3510                 if (ret) {
3511                         spin_unlock_irq(&pipe_crc->lock);
3512                         return ret;
3513                 }
3514         }
3515
3516         /* We now have one or more entries to read */
3517         n_entries = count / PIPE_CRC_LINE_LEN;
3518
3519         bytes_read = 0;
3520         while (n_entries > 0) {
3521                 struct intel_pipe_crc_entry *entry =
3522                         &pipe_crc->entries[pipe_crc->tail];
3523                 int ret;
3524
3525                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3526                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3527                         break;
3528
3529                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3530                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3531
3532                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3533                                        "%8u %8x %8x %8x %8x %8x\n",
3534                                        entry->frame, entry->crc[0],
3535                                        entry->crc[1], entry->crc[2],
3536                                        entry->crc[3], entry->crc[4]);
3537
3538                 spin_unlock_irq(&pipe_crc->lock);
3539
3540                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3541                 if (ret == PIPE_CRC_LINE_LEN)
3542                         return -EFAULT;
3543
3544                 user_buf += PIPE_CRC_LINE_LEN;
3545                 n_entries--;
3546
3547                 spin_lock_irq(&pipe_crc->lock);
3548         }
3549
3550         spin_unlock_irq(&pipe_crc->lock);
3551
3552         return bytes_read;
3553 }
3554
3555 static const struct file_operations i915_pipe_crc_fops = {
3556         .owner = THIS_MODULE,
3557         .open = i915_pipe_crc_open,
3558         .read = i915_pipe_crc_read,
3559         .release = i915_pipe_crc_release,
3560 };
3561
3562 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3563         {
3564                 .name = "i915_pipe_A_crc",
3565                 .pipe = PIPE_A,
3566         },
3567         {
3568                 .name = "i915_pipe_B_crc",
3569                 .pipe = PIPE_B,
3570         },
3571         {
3572                 .name = "i915_pipe_C_crc",
3573                 .pipe = PIPE_C,
3574         },
3575 };
3576
3577 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3578                                 enum pipe pipe)
3579 {
3580         struct drm_device *dev = minor->dev;
3581         struct dentry *ent;
3582         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3583
3584         info->dev = dev;
3585         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3586                                   &i915_pipe_crc_fops);
3587         if (!ent)
3588                 return -ENOMEM;
3589
3590         return drm_add_fake_info_node(minor, ent, info);
3591 }
3592
3593 static const char * const pipe_crc_sources[] = {
3594         "none",
3595         "plane1",
3596         "plane2",
3597         "pf",
3598         "pipe",
3599         "TV",
3600         "DP-B",
3601         "DP-C",
3602         "DP-D",
3603         "auto",
3604 };
3605
3606 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3607 {
3608         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3609         return pipe_crc_sources[source];
3610 }
3611
3612 static int display_crc_ctl_show(struct seq_file *m, void *data)
3613 {
3614         struct drm_device *dev = m->private;
3615         struct drm_i915_private *dev_priv = dev->dev_private;
3616         int i;
3617
3618         for (i = 0; i < I915_MAX_PIPES; i++)
3619                 seq_printf(m, "%c %s\n", pipe_name(i),
3620                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3621
3622         return 0;
3623 }
3624
3625 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3626 {
3627         struct drm_device *dev = inode->i_private;
3628
3629         return single_open(file, display_crc_ctl_show, dev);
3630 }
3631
3632 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3633                                  uint32_t *val)
3634 {
3635         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3636                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3637
3638         switch (*source) {
3639         case INTEL_PIPE_CRC_SOURCE_PIPE:
3640                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3641                 break;
3642         case INTEL_PIPE_CRC_SOURCE_NONE:
3643                 *val = 0;
3644                 break;
3645         default:
3646                 return -EINVAL;
3647         }
3648
3649         return 0;
3650 }
3651
3652 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3653                                      enum intel_pipe_crc_source *source)
3654 {
3655         struct intel_encoder *encoder;
3656         struct intel_crtc *crtc;
3657         struct intel_digital_port *dig_port;
3658         int ret = 0;
3659
3660         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3661
3662         drm_modeset_lock_all(dev);
3663         for_each_intel_encoder(dev, encoder) {
3664                 if (!encoder->base.crtc)
3665                         continue;
3666
3667                 crtc = to_intel_crtc(encoder->base.crtc);
3668
3669                 if (crtc->pipe != pipe)
3670                         continue;
3671
3672                 switch (encoder->type) {
3673                 case INTEL_OUTPUT_TVOUT:
3674                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3675                         break;
3676                 case INTEL_OUTPUT_DISPLAYPORT:
3677                 case INTEL_OUTPUT_EDP:
3678                         dig_port = enc_to_dig_port(&encoder->base);
3679                         switch (dig_port->port) {
3680                         case PORT_B:
3681                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3682                                 break;
3683                         case PORT_C:
3684                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3685                                 break;
3686                         case PORT_D:
3687                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3688                                 break;
3689                         default:
3690                                 WARN(1, "nonexisting DP port %c\n",
3691                                      port_name(dig_port->port));
3692                                 break;
3693                         }
3694                         break;
3695                 default:
3696                         break;
3697                 }
3698         }
3699         drm_modeset_unlock_all(dev);
3700
3701         return ret;
3702 }
3703
3704 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3705                                 enum pipe pipe,
3706                                 enum intel_pipe_crc_source *source,
3707                                 uint32_t *val)
3708 {
3709         struct drm_i915_private *dev_priv = dev->dev_private;
3710         bool need_stable_symbols = false;
3711
3712         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3713                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3714                 if (ret)
3715                         return ret;
3716         }
3717
3718         switch (*source) {
3719         case INTEL_PIPE_CRC_SOURCE_PIPE:
3720                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3721                 break;
3722         case INTEL_PIPE_CRC_SOURCE_DP_B:
3723                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3724                 need_stable_symbols = true;
3725                 break;
3726         case INTEL_PIPE_CRC_SOURCE_DP_C:
3727                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3728                 need_stable_symbols = true;
3729                 break;
3730         case INTEL_PIPE_CRC_SOURCE_DP_D:
3731                 if (!IS_CHERRYVIEW(dev))
3732                         return -EINVAL;
3733                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3734                 need_stable_symbols = true;
3735                 break;
3736         case INTEL_PIPE_CRC_SOURCE_NONE:
3737                 *val = 0;
3738                 break;
3739         default:
3740                 return -EINVAL;
3741         }
3742
3743         /*
3744          * When the pipe CRC tap point is after the transcoders we need
3745          * to tweak symbol-level features to produce a deterministic series of
3746          * symbols for a given frame. We need to reset those features only once
3747          * a frame (instead of every nth symbol):
3748          *   - DC-balance: used to ensure a better clock recovery from the data
3749          *     link (SDVO)
3750          *   - DisplayPort scrambling: used for EMI reduction
3751          */
3752         if (need_stable_symbols) {
3753                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3754
3755                 tmp |= DC_BALANCE_RESET_VLV;
3756                 switch (pipe) {
3757                 case PIPE_A:
3758                         tmp |= PIPE_A_SCRAMBLE_RESET;
3759                         break;
3760                 case PIPE_B:
3761                         tmp |= PIPE_B_SCRAMBLE_RESET;
3762                         break;
3763                 case PIPE_C:
3764                         tmp |= PIPE_C_SCRAMBLE_RESET;
3765                         break;
3766                 default:
3767                         return -EINVAL;
3768                 }
3769                 I915_WRITE(PORT_DFT2_G4X, tmp);
3770         }
3771
3772         return 0;
3773 }
3774
3775 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3776                                  enum pipe pipe,
3777                                  enum intel_pipe_crc_source *source,
3778                                  uint32_t *val)
3779 {
3780         struct drm_i915_private *dev_priv = dev->dev_private;
3781         bool need_stable_symbols = false;
3782
3783         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3784                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3785                 if (ret)
3786                         return ret;
3787         }
3788
3789         switch (*source) {
3790         case INTEL_PIPE_CRC_SOURCE_PIPE:
3791                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3792                 break;
3793         case INTEL_PIPE_CRC_SOURCE_TV:
3794                 if (!SUPPORTS_TV(dev))
3795                         return -EINVAL;
3796                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3797                 break;
3798         case INTEL_PIPE_CRC_SOURCE_DP_B:
3799                 if (!IS_G4X(dev))
3800                         return -EINVAL;
3801                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3802                 need_stable_symbols = true;
3803                 break;
3804         case INTEL_PIPE_CRC_SOURCE_DP_C:
3805                 if (!IS_G4X(dev))
3806                         return -EINVAL;
3807                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3808                 need_stable_symbols = true;
3809                 break;
3810         case INTEL_PIPE_CRC_SOURCE_DP_D:
3811                 if (!IS_G4X(dev))
3812                         return -EINVAL;
3813                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3814                 need_stable_symbols = true;
3815                 break;
3816         case INTEL_PIPE_CRC_SOURCE_NONE:
3817                 *val = 0;
3818                 break;
3819         default:
3820                 return -EINVAL;
3821         }
3822
3823         /*
3824          * When the pipe CRC tap point is after the transcoders we need
3825          * to tweak symbol-level features to produce a deterministic series of
3826          * symbols for a given frame. We need to reset those features only once
3827          * a frame (instead of every nth symbol):
3828          *   - DC-balance: used to ensure a better clock recovery from the data
3829          *     link (SDVO)
3830          *   - DisplayPort scrambling: used for EMI reduction
3831          */
3832         if (need_stable_symbols) {
3833                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3834
3835                 WARN_ON(!IS_G4X(dev));
3836
3837                 I915_WRITE(PORT_DFT_I9XX,
3838                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3839
3840                 if (pipe == PIPE_A)
3841                         tmp |= PIPE_A_SCRAMBLE_RESET;
3842                 else
3843                         tmp |= PIPE_B_SCRAMBLE_RESET;
3844
3845                 I915_WRITE(PORT_DFT2_G4X, tmp);
3846         }
3847
3848         return 0;
3849 }
3850
3851 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3852                                          enum pipe pipe)
3853 {
3854         struct drm_i915_private *dev_priv = dev->dev_private;
3855         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3856
3857         switch (pipe) {
3858         case PIPE_A:
3859                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3860                 break;
3861         case PIPE_B:
3862                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3863                 break;
3864         case PIPE_C:
3865                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3866                 break;
3867         default:
3868                 return;
3869         }
3870         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3871                 tmp &= ~DC_BALANCE_RESET_VLV;
3872         I915_WRITE(PORT_DFT2_G4X, tmp);
3873
3874 }
3875
3876 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3877                                          enum pipe pipe)
3878 {
3879         struct drm_i915_private *dev_priv = dev->dev_private;
3880         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3881
3882         if (pipe == PIPE_A)
3883                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3884         else
3885                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3886         I915_WRITE(PORT_DFT2_G4X, tmp);
3887
3888         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3889                 I915_WRITE(PORT_DFT_I9XX,
3890                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3891         }
3892 }
3893
3894 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3895                                 uint32_t *val)
3896 {
3897         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3898                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3899
3900         switch (*source) {
3901         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3902                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3903                 break;
3904         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3905                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3906                 break;
3907         case INTEL_PIPE_CRC_SOURCE_PIPE:
3908                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3909                 break;
3910         case INTEL_PIPE_CRC_SOURCE_NONE:
3911                 *val = 0;
3912                 break;
3913         default:
3914                 return -EINVAL;
3915         }
3916
3917         return 0;
3918 }
3919
3920 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3921 {
3922         struct drm_i915_private *dev_priv = dev->dev_private;
3923         struct intel_crtc *crtc =
3924                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3925         struct intel_crtc_state *pipe_config;
3926         struct drm_atomic_state *state;
3927         int ret = 0;
3928
3929         drm_modeset_lock_all(dev);
3930         state = drm_atomic_state_alloc(dev);
3931         if (!state) {
3932                 ret = -ENOMEM;
3933                 goto out;
3934         }
3935
3936         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3937         pipe_config = intel_atomic_get_crtc_state(state, crtc);
3938         if (IS_ERR(pipe_config)) {
3939                 ret = PTR_ERR(pipe_config);
3940                 goto out;
3941         }
3942
3943         pipe_config->pch_pfit.force_thru = enable;
3944         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3945             pipe_config->pch_pfit.enabled != enable)
3946                 pipe_config->base.connectors_changed = true;
3947
3948         ret = drm_atomic_commit(state);
3949 out:
3950         drm_modeset_unlock_all(dev);
3951         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3952         if (ret)
3953                 drm_atomic_state_free(state);
3954 }
3955
3956 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3957                                 enum pipe pipe,
3958                                 enum intel_pipe_crc_source *source,
3959                                 uint32_t *val)
3960 {
3961         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3962                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3963
3964         switch (*source) {
3965         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3966                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3967                 break;
3968         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3969                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3970                 break;
3971         case INTEL_PIPE_CRC_SOURCE_PF:
3972                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3973                         hsw_trans_edp_pipe_A_crc_wa(dev, true);
3974
3975                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3976                 break;
3977         case INTEL_PIPE_CRC_SOURCE_NONE:
3978                 *val = 0;
3979                 break;
3980         default:
3981                 return -EINVAL;
3982         }
3983
3984         return 0;
3985 }
3986
3987 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3988                                enum intel_pipe_crc_source source)
3989 {
3990         struct drm_i915_private *dev_priv = dev->dev_private;
3991         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3992         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3993                                                                         pipe));
3994         enum intel_display_power_domain power_domain;
3995         u32 val = 0; /* shut up gcc */
3996         int ret;
3997
3998         if (pipe_crc->source == source)
3999                 return 0;
4000
4001         /* forbid changing the source without going back to 'none' */
4002         if (pipe_crc->source && source)
4003                 return -EINVAL;
4004
4005         power_domain = POWER_DOMAIN_PIPE(pipe);
4006         if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4007                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4008                 return -EIO;
4009         }
4010
4011         if (IS_GEN2(dev))
4012                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4013         else if (INTEL_INFO(dev)->gen < 5)
4014                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4015         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4016                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4017         else if (IS_GEN5(dev) || IS_GEN6(dev))
4018                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4019         else
4020                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4021
4022         if (ret != 0)
4023                 goto out;
4024
4025         /* none -> real source transition */
4026         if (source) {
4027                 struct intel_pipe_crc_entry *entries;
4028
4029                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4030                                  pipe_name(pipe), pipe_crc_source_name(source));
4031
4032                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4033                                   sizeof(pipe_crc->entries[0]),
4034                                   GFP_KERNEL);
4035                 if (!entries) {
4036                         ret = -ENOMEM;
4037                         goto out;
4038                 }
4039
4040                 /*
4041                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4042                  * enabled and disabled dynamically based on package C states,
4043                  * user space can't make reliable use of the CRCs, so let's just
4044                  * completely disable it.
4045                  */
4046                 hsw_disable_ips(crtc);
4047
4048                 spin_lock_irq(&pipe_crc->lock);
4049                 kfree(pipe_crc->entries);
4050                 pipe_crc->entries = entries;
4051                 pipe_crc->head = 0;
4052                 pipe_crc->tail = 0;
4053                 spin_unlock_irq(&pipe_crc->lock);
4054         }
4055
4056         pipe_crc->source = source;
4057
4058         I915_WRITE(PIPE_CRC_CTL(pipe), val);
4059         POSTING_READ(PIPE_CRC_CTL(pipe));
4060
4061         /* real source -> none transition */
4062         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4063                 struct intel_pipe_crc_entry *entries;
4064                 struct intel_crtc *crtc =
4065                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4066
4067                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4068                                  pipe_name(pipe));
4069
4070                 drm_modeset_lock(&crtc->base.mutex, NULL);
4071                 if (crtc->base.state->active)
4072                         intel_wait_for_vblank(dev, pipe);
4073                 drm_modeset_unlock(&crtc->base.mutex);
4074
4075                 spin_lock_irq(&pipe_crc->lock);
4076                 entries = pipe_crc->entries;
4077                 pipe_crc->entries = NULL;
4078                 pipe_crc->head = 0;
4079                 pipe_crc->tail = 0;
4080                 spin_unlock_irq(&pipe_crc->lock);
4081
4082                 kfree(entries);
4083
4084                 if (IS_G4X(dev))
4085                         g4x_undo_pipe_scramble_reset(dev, pipe);
4086                 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4087                         vlv_undo_pipe_scramble_reset(dev, pipe);
4088                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4089                         hsw_trans_edp_pipe_A_crc_wa(dev, false);
4090
4091                 hsw_enable_ips(crtc);
4092         }
4093
4094         ret = 0;
4095
4096 out:
4097         intel_display_power_put(dev_priv, power_domain);
4098
4099         return ret;
4100 }
4101
4102 /*
4103  * Parse pipe CRC command strings:
4104  *   command: wsp* object wsp+ name wsp+ source wsp*
4105  *   object: 'pipe'
4106  *   name: (A | B | C)
4107  *   source: (none | plane1 | plane2 | pf)
4108  *   wsp: (#0x20 | #0x9 | #0xA)+
4109  *
4110  * eg.:
4111  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4112  *  "pipe A none"    ->  Stop CRC
4113  */
4114 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4115 {
4116         int n_words = 0;
4117
4118         while (*buf) {
4119                 char *end;
4120
4121                 /* skip leading white space */
4122                 buf = skip_spaces(buf);
4123                 if (!*buf)
4124                         break;  /* end of buffer */
4125
4126                 /* find end of word */
4127                 for (end = buf; *end && !isspace(*end); end++)
4128                         ;
4129
4130                 if (n_words == max_words) {
4131                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4132                                          max_words);
4133                         return -EINVAL; /* ran out of words[] before bytes */
4134                 }
4135
4136                 if (*end)
4137                         *end++ = '\0';
4138                 words[n_words++] = buf;
4139                 buf = end;
4140         }
4141
4142         return n_words;
4143 }
4144
4145 enum intel_pipe_crc_object {
4146         PIPE_CRC_OBJECT_PIPE,
4147 };
4148
4149 static const char * const pipe_crc_objects[] = {
4150         "pipe",
4151 };
4152
4153 static int
4154 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4155 {
4156         int i;
4157
4158         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4159                 if (!strcmp(buf, pipe_crc_objects[i])) {
4160                         *o = i;
4161                         return 0;
4162                     }
4163
4164         return -EINVAL;
4165 }
4166
4167 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4168 {
4169         const char name = buf[0];
4170
4171         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4172                 return -EINVAL;
4173
4174         *pipe = name - 'A';
4175
4176         return 0;
4177 }
4178
4179 static int
4180 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4181 {
4182         int i;
4183
4184         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4185                 if (!strcmp(buf, pipe_crc_sources[i])) {
4186                         *s = i;
4187                         return 0;
4188                     }
4189
4190         return -EINVAL;
4191 }
4192
4193 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4194 {
4195 #define N_WORDS 3
4196         int n_words;
4197         char *words[N_WORDS];
4198         enum pipe pipe;
4199         enum intel_pipe_crc_object object;
4200         enum intel_pipe_crc_source source;
4201
4202         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4203         if (n_words != N_WORDS) {
4204                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4205                                  N_WORDS);
4206                 return -EINVAL;
4207         }
4208
4209         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4210                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4211                 return -EINVAL;
4212         }
4213
4214         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4215                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4216                 return -EINVAL;
4217         }
4218
4219         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4220                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4221                 return -EINVAL;
4222         }
4223
4224         return pipe_crc_set_source(dev, pipe, source);
4225 }
4226
4227 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4228                                      size_t len, loff_t *offp)
4229 {
4230         struct seq_file *m = file->private_data;
4231         struct drm_device *dev = m->private;
4232         char *tmpbuf;
4233         int ret;
4234
4235         if (len == 0)
4236                 return 0;
4237
4238         if (len > PAGE_SIZE - 1) {
4239                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4240                                  PAGE_SIZE);
4241                 return -E2BIG;
4242         }
4243
4244         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4245         if (!tmpbuf)
4246                 return -ENOMEM;
4247
4248         if (copy_from_user(tmpbuf, ubuf, len)) {
4249                 ret = -EFAULT;
4250                 goto out;
4251         }
4252         tmpbuf[len] = '\0';
4253
4254         ret = display_crc_ctl_parse(dev, tmpbuf, len);
4255
4256 out:
4257         kfree(tmpbuf);
4258         if (ret < 0)
4259                 return ret;
4260
4261         *offp += len;
4262         return len;
4263 }
4264
4265 static const struct file_operations i915_display_crc_ctl_fops = {
4266         .owner = THIS_MODULE,
4267         .open = display_crc_ctl_open,
4268         .read = seq_read,
4269         .llseek = seq_lseek,
4270         .release = single_release,
4271         .write = display_crc_ctl_write
4272 };
4273
4274 static ssize_t i915_displayport_test_active_write(struct file *file,
4275                                             const char __user *ubuf,
4276                                             size_t len, loff_t *offp)
4277 {
4278         char *input_buffer;
4279         int status = 0;
4280         struct drm_device *dev;
4281         struct drm_connector *connector;
4282         struct list_head *connector_list;
4283         struct intel_dp *intel_dp;
4284         int val = 0;
4285
4286         dev = ((struct seq_file *)file->private_data)->private;
4287
4288         connector_list = &dev->mode_config.connector_list;
4289
4290         if (len == 0)
4291                 return 0;
4292
4293         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4294         if (!input_buffer)
4295                 return -ENOMEM;
4296
4297         if (copy_from_user(input_buffer, ubuf, len)) {
4298                 status = -EFAULT;
4299                 goto out;
4300         }
4301
4302         input_buffer[len] = '\0';
4303         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4304
4305         list_for_each_entry(connector, connector_list, head) {
4306
4307                 if (connector->connector_type !=
4308                     DRM_MODE_CONNECTOR_DisplayPort)
4309                         continue;
4310
4311                 if (connector->status == connector_status_connected &&
4312                     connector->encoder != NULL) {
4313                         intel_dp = enc_to_intel_dp(connector->encoder);
4314                         status = kstrtoint(input_buffer, 10, &val);
4315                         if (status < 0)
4316                                 goto out;
4317                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4318                         /* To prevent erroneous activation of the compliance
4319                          * testing code, only accept an actual value of 1 here
4320                          */
4321                         if (val == 1)
4322                                 intel_dp->compliance_test_active = 1;
4323                         else
4324                                 intel_dp->compliance_test_active = 0;
4325                 }
4326         }
4327 out:
4328         kfree(input_buffer);
4329         if (status < 0)
4330                 return status;
4331
4332         *offp += len;
4333         return len;
4334 }
4335
4336 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4337 {
4338         struct drm_device *dev = m->private;
4339         struct drm_connector *connector;
4340         struct list_head *connector_list = &dev->mode_config.connector_list;
4341         struct intel_dp *intel_dp;
4342
4343         list_for_each_entry(connector, connector_list, head) {
4344
4345                 if (connector->connector_type !=
4346                     DRM_MODE_CONNECTOR_DisplayPort)
4347                         continue;
4348
4349                 if (connector->status == connector_status_connected &&
4350                     connector->encoder != NULL) {
4351                         intel_dp = enc_to_intel_dp(connector->encoder);
4352                         if (intel_dp->compliance_test_active)
4353                                 seq_puts(m, "1");
4354                         else
4355                                 seq_puts(m, "0");
4356                 } else
4357                         seq_puts(m, "0");
4358         }
4359
4360         return 0;
4361 }
4362
4363 static int i915_displayport_test_active_open(struct inode *inode,
4364                                        struct file *file)
4365 {
4366         struct drm_device *dev = inode->i_private;
4367
4368         return single_open(file, i915_displayport_test_active_show, dev);
4369 }
4370
4371 static const struct file_operations i915_displayport_test_active_fops = {
4372         .owner = THIS_MODULE,
4373         .open = i915_displayport_test_active_open,
4374         .read = seq_read,
4375         .llseek = seq_lseek,
4376         .release = single_release,
4377         .write = i915_displayport_test_active_write
4378 };
4379
4380 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4381 {
4382         struct drm_device *dev = m->private;
4383         struct drm_connector *connector;
4384         struct list_head *connector_list = &dev->mode_config.connector_list;
4385         struct intel_dp *intel_dp;
4386
4387         list_for_each_entry(connector, connector_list, head) {
4388
4389                 if (connector->connector_type !=
4390                     DRM_MODE_CONNECTOR_DisplayPort)
4391                         continue;
4392
4393                 if (connector->status == connector_status_connected &&
4394                     connector->encoder != NULL) {
4395                         intel_dp = enc_to_intel_dp(connector->encoder);
4396                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4397                 } else
4398                         seq_puts(m, "0");
4399         }
4400
4401         return 0;
4402 }
4403 static int i915_displayport_test_data_open(struct inode *inode,
4404                                        struct file *file)
4405 {
4406         struct drm_device *dev = inode->i_private;
4407
4408         return single_open(file, i915_displayport_test_data_show, dev);
4409 }
4410
4411 static const struct file_operations i915_displayport_test_data_fops = {
4412         .owner = THIS_MODULE,
4413         .open = i915_displayport_test_data_open,
4414         .read = seq_read,
4415         .llseek = seq_lseek,
4416         .release = single_release
4417 };
4418
4419 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4420 {
4421         struct drm_device *dev = m->private;
4422         struct drm_connector *connector;
4423         struct list_head *connector_list = &dev->mode_config.connector_list;
4424         struct intel_dp *intel_dp;
4425
4426         list_for_each_entry(connector, connector_list, head) {
4427
4428                 if (connector->connector_type !=
4429                     DRM_MODE_CONNECTOR_DisplayPort)
4430                         continue;
4431
4432                 if (connector->status == connector_status_connected &&
4433                     connector->encoder != NULL) {
4434                         intel_dp = enc_to_intel_dp(connector->encoder);
4435                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4436                 } else
4437                         seq_puts(m, "0");
4438         }
4439
4440         return 0;
4441 }
4442
4443 static int i915_displayport_test_type_open(struct inode *inode,
4444                                        struct file *file)
4445 {
4446         struct drm_device *dev = inode->i_private;
4447
4448         return single_open(file, i915_displayport_test_type_show, dev);
4449 }
4450
4451 static const struct file_operations i915_displayport_test_type_fops = {
4452         .owner = THIS_MODULE,
4453         .open = i915_displayport_test_type_open,
4454         .read = seq_read,
4455         .llseek = seq_lseek,
4456         .release = single_release
4457 };
4458
4459 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4460 {
4461         struct drm_device *dev = m->private;
4462         int level;
4463         int num_levels;
4464
4465         if (IS_CHERRYVIEW(dev))
4466                 num_levels = 3;
4467         else if (IS_VALLEYVIEW(dev))
4468                 num_levels = 1;
4469         else
4470                 num_levels = ilk_wm_max_level(dev) + 1;
4471
4472         drm_modeset_lock_all(dev);
4473
4474         for (level = 0; level < num_levels; level++) {
4475                 unsigned int latency = wm[level];
4476
4477                 /*
4478                  * - WM1+ latency values in 0.5us units
4479                  * - latencies are in us on gen9/vlv/chv
4480                  */
4481                 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4482                     IS_CHERRYVIEW(dev))
4483                         latency *= 10;
4484                 else if (level > 0)
4485                         latency *= 5;
4486
4487                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4488                            level, wm[level], latency / 10, latency % 10);
4489         }
4490
4491         drm_modeset_unlock_all(dev);
4492 }
4493
4494 static int pri_wm_latency_show(struct seq_file *m, void *data)
4495 {
4496         struct drm_device *dev = m->private;
4497         struct drm_i915_private *dev_priv = dev->dev_private;
4498         const uint16_t *latencies;
4499
4500         if (INTEL_INFO(dev)->gen >= 9)
4501                 latencies = dev_priv->wm.skl_latency;
4502         else
4503                 latencies = to_i915(dev)->wm.pri_latency;
4504
4505         wm_latency_show(m, latencies);
4506
4507         return 0;
4508 }
4509
4510 static int spr_wm_latency_show(struct seq_file *m, void *data)
4511 {
4512         struct drm_device *dev = m->private;
4513         struct drm_i915_private *dev_priv = dev->dev_private;
4514         const uint16_t *latencies;
4515
4516         if (INTEL_INFO(dev)->gen >= 9)
4517                 latencies = dev_priv->wm.skl_latency;
4518         else
4519                 latencies = to_i915(dev)->wm.spr_latency;
4520
4521         wm_latency_show(m, latencies);
4522
4523         return 0;
4524 }
4525
4526 static int cur_wm_latency_show(struct seq_file *m, void *data)
4527 {
4528         struct drm_device *dev = m->private;
4529         struct drm_i915_private *dev_priv = dev->dev_private;
4530         const uint16_t *latencies;
4531
4532         if (INTEL_INFO(dev)->gen >= 9)
4533                 latencies = dev_priv->wm.skl_latency;
4534         else
4535                 latencies = to_i915(dev)->wm.cur_latency;
4536
4537         wm_latency_show(m, latencies);
4538
4539         return 0;
4540 }
4541
4542 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4543 {
4544         struct drm_device *dev = inode->i_private;
4545
4546         if (INTEL_INFO(dev)->gen < 5)
4547                 return -ENODEV;
4548
4549         return single_open(file, pri_wm_latency_show, dev);
4550 }
4551
4552 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4553 {
4554         struct drm_device *dev = inode->i_private;
4555
4556         if (HAS_GMCH_DISPLAY(dev))
4557                 return -ENODEV;
4558
4559         return single_open(file, spr_wm_latency_show, dev);
4560 }
4561
4562 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4563 {
4564         struct drm_device *dev = inode->i_private;
4565
4566         if (HAS_GMCH_DISPLAY(dev))
4567                 return -ENODEV;
4568
4569         return single_open(file, cur_wm_latency_show, dev);
4570 }
4571
4572 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4573                                 size_t len, loff_t *offp, uint16_t wm[8])
4574 {
4575         struct seq_file *m = file->private_data;
4576         struct drm_device *dev = m->private;
4577         uint16_t new[8] = { 0 };
4578         int num_levels;
4579         int level;
4580         int ret;
4581         char tmp[32];
4582
4583         if (IS_CHERRYVIEW(dev))
4584                 num_levels = 3;
4585         else if (IS_VALLEYVIEW(dev))
4586                 num_levels = 1;
4587         else
4588                 num_levels = ilk_wm_max_level(dev) + 1;
4589
4590         if (len >= sizeof(tmp))
4591                 return -EINVAL;
4592
4593         if (copy_from_user(tmp, ubuf, len))
4594                 return -EFAULT;
4595
4596         tmp[len] = '\0';
4597
4598         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4599                      &new[0], &new[1], &new[2], &new[3],
4600                      &new[4], &new[5], &new[6], &new[7]);
4601         if (ret != num_levels)
4602                 return -EINVAL;
4603
4604         drm_modeset_lock_all(dev);
4605
4606         for (level = 0; level < num_levels; level++)
4607                 wm[level] = new[level];
4608
4609         drm_modeset_unlock_all(dev);
4610
4611         return len;
4612 }
4613
4614
4615 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4616                                     size_t len, loff_t *offp)
4617 {
4618         struct seq_file *m = file->private_data;
4619         struct drm_device *dev = m->private;
4620         struct drm_i915_private *dev_priv = dev->dev_private;
4621         uint16_t *latencies;
4622
4623         if (INTEL_INFO(dev)->gen >= 9)
4624                 latencies = dev_priv->wm.skl_latency;
4625         else
4626                 latencies = to_i915(dev)->wm.pri_latency;
4627
4628         return wm_latency_write(file, ubuf, len, offp, latencies);
4629 }
4630
4631 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4632                                     size_t len, loff_t *offp)
4633 {
4634         struct seq_file *m = file->private_data;
4635         struct drm_device *dev = m->private;
4636         struct drm_i915_private *dev_priv = dev->dev_private;
4637         uint16_t *latencies;
4638
4639         if (INTEL_INFO(dev)->gen >= 9)
4640                 latencies = dev_priv->wm.skl_latency;
4641         else
4642                 latencies = to_i915(dev)->wm.spr_latency;
4643
4644         return wm_latency_write(file, ubuf, len, offp, latencies);
4645 }
4646
4647 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4648                                     size_t len, loff_t *offp)
4649 {
4650         struct seq_file *m = file->private_data;
4651         struct drm_device *dev = m->private;
4652         struct drm_i915_private *dev_priv = dev->dev_private;
4653         uint16_t *latencies;
4654
4655         if (INTEL_INFO(dev)->gen >= 9)
4656                 latencies = dev_priv->wm.skl_latency;
4657         else
4658                 latencies = to_i915(dev)->wm.cur_latency;
4659
4660         return wm_latency_write(file, ubuf, len, offp, latencies);
4661 }
4662
4663 static const struct file_operations i915_pri_wm_latency_fops = {
4664         .owner = THIS_MODULE,
4665         .open = pri_wm_latency_open,
4666         .read = seq_read,
4667         .llseek = seq_lseek,
4668         .release = single_release,
4669         .write = pri_wm_latency_write
4670 };
4671
4672 static const struct file_operations i915_spr_wm_latency_fops = {
4673         .owner = THIS_MODULE,
4674         .open = spr_wm_latency_open,
4675         .read = seq_read,
4676         .llseek = seq_lseek,
4677         .release = single_release,
4678         .write = spr_wm_latency_write
4679 };
4680
4681 static const struct file_operations i915_cur_wm_latency_fops = {
4682         .owner = THIS_MODULE,
4683         .open = cur_wm_latency_open,
4684         .read = seq_read,
4685         .llseek = seq_lseek,
4686         .release = single_release,
4687         .write = cur_wm_latency_write
4688 };
4689
4690 static int
4691 i915_wedged_get(void *data, u64 *val)
4692 {
4693         struct drm_device *dev = data;
4694         struct drm_i915_private *dev_priv = dev->dev_private;
4695
4696         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4697
4698         return 0;
4699 }
4700
4701 static int
4702 i915_wedged_set(void *data, u64 val)
4703 {
4704         struct drm_device *dev = data;
4705         struct drm_i915_private *dev_priv = dev->dev_private;
4706
4707         /*
4708          * There is no safeguard against this debugfs entry colliding
4709          * with the hangcheck calling same i915_handle_error() in
4710          * parallel, causing an explosion. For now we assume that the
4711          * test harness is responsible enough not to inject gpu hangs
4712          * while it is writing to 'i915_wedged'
4713          */
4714
4715         if (i915_reset_in_progress(&dev_priv->gpu_error))
4716                 return -EAGAIN;
4717
4718         intel_runtime_pm_get(dev_priv);
4719
4720         i915_handle_error(dev, val,
4721                           "Manually setting wedged to %llu", val);
4722
4723         intel_runtime_pm_put(dev_priv);
4724
4725         return 0;
4726 }
4727
4728 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4729                         i915_wedged_get, i915_wedged_set,
4730                         "%llu\n");
4731
4732 static int
4733 i915_ring_stop_get(void *data, u64 *val)
4734 {
4735         struct drm_device *dev = data;
4736         struct drm_i915_private *dev_priv = dev->dev_private;
4737
4738         *val = dev_priv->gpu_error.stop_rings;
4739
4740         return 0;
4741 }
4742
4743 static int
4744 i915_ring_stop_set(void *data, u64 val)
4745 {
4746         struct drm_device *dev = data;
4747         struct drm_i915_private *dev_priv = dev->dev_private;
4748         int ret;
4749
4750         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4751
4752         ret = mutex_lock_interruptible(&dev->struct_mutex);
4753         if (ret)
4754                 return ret;
4755
4756         dev_priv->gpu_error.stop_rings = val;
4757         mutex_unlock(&dev->struct_mutex);
4758
4759         return 0;
4760 }
4761
4762 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4763                         i915_ring_stop_get, i915_ring_stop_set,
4764                         "0x%08llx\n");
4765
4766 static int
4767 i915_ring_missed_irq_get(void *data, u64 *val)
4768 {
4769         struct drm_device *dev = data;
4770         struct drm_i915_private *dev_priv = dev->dev_private;
4771
4772         *val = dev_priv->gpu_error.missed_irq_rings;
4773         return 0;
4774 }
4775
4776 static int
4777 i915_ring_missed_irq_set(void *data, u64 val)
4778 {
4779         struct drm_device *dev = data;
4780         struct drm_i915_private *dev_priv = dev->dev_private;
4781         int ret;
4782
4783         /* Lock against concurrent debugfs callers */
4784         ret = mutex_lock_interruptible(&dev->struct_mutex);
4785         if (ret)
4786                 return ret;
4787         dev_priv->gpu_error.missed_irq_rings = val;
4788         mutex_unlock(&dev->struct_mutex);
4789
4790         return 0;
4791 }
4792
4793 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4794                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4795                         "0x%08llx\n");
4796
4797 static int
4798 i915_ring_test_irq_get(void *data, u64 *val)
4799 {
4800         struct drm_device *dev = data;
4801         struct drm_i915_private *dev_priv = dev->dev_private;
4802
4803         *val = dev_priv->gpu_error.test_irq_rings;
4804
4805         return 0;
4806 }
4807
4808 static int
4809 i915_ring_test_irq_set(void *data, u64 val)
4810 {
4811         struct drm_device *dev = data;
4812         struct drm_i915_private *dev_priv = dev->dev_private;
4813         int ret;
4814
4815         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4816
4817         /* Lock against concurrent debugfs callers */
4818         ret = mutex_lock_interruptible(&dev->struct_mutex);
4819         if (ret)
4820                 return ret;
4821
4822         dev_priv->gpu_error.test_irq_rings = val;
4823         mutex_unlock(&dev->struct_mutex);
4824
4825         return 0;
4826 }
4827
4828 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4829                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4830                         "0x%08llx\n");
4831
4832 #define DROP_UNBOUND 0x1
4833 #define DROP_BOUND 0x2
4834 #define DROP_RETIRE 0x4
4835 #define DROP_ACTIVE 0x8
4836 #define DROP_ALL (DROP_UNBOUND | \
4837                   DROP_BOUND | \
4838                   DROP_RETIRE | \
4839                   DROP_ACTIVE)
4840 static int
4841 i915_drop_caches_get(void *data, u64 *val)
4842 {
4843         *val = DROP_ALL;
4844
4845         return 0;
4846 }
4847
4848 static int
4849 i915_drop_caches_set(void *data, u64 val)
4850 {
4851         struct drm_device *dev = data;
4852         struct drm_i915_private *dev_priv = dev->dev_private;
4853         int ret;
4854
4855         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4856
4857         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4858          * on ioctls on -EAGAIN. */
4859         ret = mutex_lock_interruptible(&dev->struct_mutex);
4860         if (ret)
4861                 return ret;
4862
4863         if (val & DROP_ACTIVE) {
4864                 ret = i915_gpu_idle(dev);
4865                 if (ret)
4866                         goto unlock;
4867         }
4868
4869         if (val & (DROP_RETIRE | DROP_ACTIVE))
4870                 i915_gem_retire_requests(dev);
4871
4872         if (val & DROP_BOUND)
4873                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4874
4875         if (val & DROP_UNBOUND)
4876                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4877
4878 unlock:
4879         mutex_unlock(&dev->struct_mutex);
4880
4881         return ret;
4882 }
4883
4884 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4885                         i915_drop_caches_get, i915_drop_caches_set,
4886                         "0x%08llx\n");
4887
4888 static int
4889 i915_max_freq_get(void *data, u64 *val)
4890 {
4891         struct drm_device *dev = data;
4892         struct drm_i915_private *dev_priv = dev->dev_private;
4893         int ret;
4894
4895         if (INTEL_INFO(dev)->gen < 6)
4896                 return -ENODEV;
4897
4898         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4899
4900         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4901         if (ret)
4902                 return ret;
4903
4904         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4905         mutex_unlock(&dev_priv->rps.hw_lock);
4906
4907         return 0;
4908 }
4909
4910 static int
4911 i915_max_freq_set(void *data, u64 val)
4912 {
4913         struct drm_device *dev = data;
4914         struct drm_i915_private *dev_priv = dev->dev_private;
4915         u32 hw_max, hw_min;
4916         int ret;
4917
4918         if (INTEL_INFO(dev)->gen < 6)
4919                 return -ENODEV;
4920
4921         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4922
4923         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4924
4925         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4926         if (ret)
4927                 return ret;
4928
4929         /*
4930          * Turbo will still be enabled, but won't go above the set value.
4931          */
4932         val = intel_freq_opcode(dev_priv, val);
4933
4934         hw_max = dev_priv->rps.max_freq;
4935         hw_min = dev_priv->rps.min_freq;
4936
4937         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4938                 mutex_unlock(&dev_priv->rps.hw_lock);
4939                 return -EINVAL;
4940         }
4941
4942         dev_priv->rps.max_freq_softlimit = val;
4943
4944         intel_set_rps(dev, val);
4945
4946         mutex_unlock(&dev_priv->rps.hw_lock);
4947
4948         return 0;
4949 }
4950
4951 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4952                         i915_max_freq_get, i915_max_freq_set,
4953                         "%llu\n");
4954
4955 static int
4956 i915_min_freq_get(void *data, u64 *val)
4957 {
4958         struct drm_device *dev = data;
4959         struct drm_i915_private *dev_priv = dev->dev_private;
4960         int ret;
4961
4962         if (INTEL_INFO(dev)->gen < 6)
4963                 return -ENODEV;
4964
4965         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4966
4967         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4968         if (ret)
4969                 return ret;
4970
4971         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4972         mutex_unlock(&dev_priv->rps.hw_lock);
4973
4974         return 0;
4975 }
4976
4977 static int
4978 i915_min_freq_set(void *data, u64 val)
4979 {
4980         struct drm_device *dev = data;
4981         struct drm_i915_private *dev_priv = dev->dev_private;
4982         u32 hw_max, hw_min;
4983         int ret;
4984
4985         if (INTEL_INFO(dev)->gen < 6)
4986                 return -ENODEV;
4987
4988         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4989
4990         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4991
4992         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4993         if (ret)
4994                 return ret;
4995
4996         /*
4997          * Turbo will still be enabled, but won't go below the set value.
4998          */
4999         val = intel_freq_opcode(dev_priv, val);
5000
5001         hw_max = dev_priv->rps.max_freq;
5002         hw_min = dev_priv->rps.min_freq;
5003
5004         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5005                 mutex_unlock(&dev_priv->rps.hw_lock);
5006                 return -EINVAL;
5007         }
5008
5009         dev_priv->rps.min_freq_softlimit = val;
5010
5011         intel_set_rps(dev, val);
5012
5013         mutex_unlock(&dev_priv->rps.hw_lock);
5014
5015         return 0;
5016 }
5017
5018 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5019                         i915_min_freq_get, i915_min_freq_set,
5020                         "%llu\n");
5021
5022 static int
5023 i915_cache_sharing_get(void *data, u64 *val)
5024 {
5025         struct drm_device *dev = data;
5026         struct drm_i915_private *dev_priv = dev->dev_private;
5027         u32 snpcr;
5028         int ret;
5029
5030         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5031                 return -ENODEV;
5032
5033         ret = mutex_lock_interruptible(&dev->struct_mutex);
5034         if (ret)
5035                 return ret;
5036         intel_runtime_pm_get(dev_priv);
5037
5038         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5039
5040         intel_runtime_pm_put(dev_priv);
5041         mutex_unlock(&dev_priv->dev->struct_mutex);
5042
5043         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5044
5045         return 0;
5046 }
5047
5048 static int
5049 i915_cache_sharing_set(void *data, u64 val)
5050 {
5051         struct drm_device *dev = data;
5052         struct drm_i915_private *dev_priv = dev->dev_private;
5053         u32 snpcr;
5054
5055         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5056                 return -ENODEV;
5057
5058         if (val > 3)
5059                 return -EINVAL;
5060
5061         intel_runtime_pm_get(dev_priv);
5062         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5063
5064         /* Update the cache sharing policy here as well */
5065         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5066         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5067         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5068         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5069
5070         intel_runtime_pm_put(dev_priv);
5071         return 0;
5072 }
5073
5074 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5075                         i915_cache_sharing_get, i915_cache_sharing_set,
5076                         "%llu\n");
5077
5078 struct sseu_dev_status {
5079         unsigned int slice_total;
5080         unsigned int subslice_total;
5081         unsigned int subslice_per_slice;
5082         unsigned int eu_total;
5083         unsigned int eu_per_subslice;
5084 };
5085
5086 static void cherryview_sseu_device_status(struct drm_device *dev,
5087                                           struct sseu_dev_status *stat)
5088 {
5089         struct drm_i915_private *dev_priv = dev->dev_private;
5090         int ss_max = 2;
5091         int ss;
5092         u32 sig1[ss_max], sig2[ss_max];
5093
5094         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5095         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5096         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5097         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5098
5099         for (ss = 0; ss < ss_max; ss++) {
5100                 unsigned int eu_cnt;
5101
5102                 if (sig1[ss] & CHV_SS_PG_ENABLE)
5103                         /* skip disabled subslice */
5104                         continue;
5105
5106                 stat->slice_total = 1;
5107                 stat->subslice_per_slice++;
5108                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5109                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5110                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5111                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5112                 stat->eu_total += eu_cnt;
5113                 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5114         }
5115         stat->subslice_total = stat->subslice_per_slice;
5116 }
5117
5118 static void gen9_sseu_device_status(struct drm_device *dev,
5119                                     struct sseu_dev_status *stat)
5120 {
5121         struct drm_i915_private *dev_priv = dev->dev_private;
5122         int s_max = 3, ss_max = 4;
5123         int s, ss;
5124         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5125
5126         /* BXT has a single slice and at most 3 subslices. */
5127         if (IS_BROXTON(dev)) {
5128                 s_max = 1;
5129                 ss_max = 3;
5130         }
5131
5132         for (s = 0; s < s_max; s++) {
5133                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5134                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5135                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5136         }
5137
5138         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5139                      GEN9_PGCTL_SSA_EU19_ACK |
5140                      GEN9_PGCTL_SSA_EU210_ACK |
5141                      GEN9_PGCTL_SSA_EU311_ACK;
5142         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5143                      GEN9_PGCTL_SSB_EU19_ACK |
5144                      GEN9_PGCTL_SSB_EU210_ACK |
5145                      GEN9_PGCTL_SSB_EU311_ACK;
5146
5147         for (s = 0; s < s_max; s++) {
5148                 unsigned int ss_cnt = 0;
5149
5150                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5151                         /* skip disabled slice */
5152                         continue;
5153
5154                 stat->slice_total++;
5155
5156                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5157                         ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5158
5159                 for (ss = 0; ss < ss_max; ss++) {
5160                         unsigned int eu_cnt;
5161
5162                         if (IS_BROXTON(dev) &&
5163                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5164                                 /* skip disabled subslice */
5165                                 continue;
5166
5167                         if (IS_BROXTON(dev))
5168                                 ss_cnt++;
5169
5170                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5171                                                eu_mask[ss%2]);
5172                         stat->eu_total += eu_cnt;
5173                         stat->eu_per_subslice = max(stat->eu_per_subslice,
5174                                                     eu_cnt);
5175                 }
5176
5177                 stat->subslice_total += ss_cnt;
5178                 stat->subslice_per_slice = max(stat->subslice_per_slice,
5179                                                ss_cnt);
5180         }
5181 }
5182
5183 static void broadwell_sseu_device_status(struct drm_device *dev,
5184                                          struct sseu_dev_status *stat)
5185 {
5186         struct drm_i915_private *dev_priv = dev->dev_private;
5187         int s;
5188         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5189
5190         stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5191
5192         if (stat->slice_total) {
5193                 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5194                 stat->subslice_total = stat->slice_total *
5195                                        stat->subslice_per_slice;
5196                 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5197                 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5198
5199                 /* subtract fused off EU(s) from enabled slice(s) */
5200                 for (s = 0; s < stat->slice_total; s++) {
5201                         u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5202
5203                         stat->eu_total -= hweight8(subslice_7eu);
5204                 }
5205         }
5206 }
5207
5208 static int i915_sseu_status(struct seq_file *m, void *unused)
5209 {
5210         struct drm_info_node *node = (struct drm_info_node *) m->private;
5211         struct drm_device *dev = node->minor->dev;
5212         struct sseu_dev_status stat;
5213
5214         if (INTEL_INFO(dev)->gen < 8)
5215                 return -ENODEV;
5216
5217         seq_puts(m, "SSEU Device Info\n");
5218         seq_printf(m, "  Available Slice Total: %u\n",
5219                    INTEL_INFO(dev)->slice_total);
5220         seq_printf(m, "  Available Subslice Total: %u\n",
5221                    INTEL_INFO(dev)->subslice_total);
5222         seq_printf(m, "  Available Subslice Per Slice: %u\n",
5223                    INTEL_INFO(dev)->subslice_per_slice);
5224         seq_printf(m, "  Available EU Total: %u\n",
5225                    INTEL_INFO(dev)->eu_total);
5226         seq_printf(m, "  Available EU Per Subslice: %u\n",
5227                    INTEL_INFO(dev)->eu_per_subslice);
5228         seq_printf(m, "  Has Slice Power Gating: %s\n",
5229                    yesno(INTEL_INFO(dev)->has_slice_pg));
5230         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5231                    yesno(INTEL_INFO(dev)->has_subslice_pg));
5232         seq_printf(m, "  Has EU Power Gating: %s\n",
5233                    yesno(INTEL_INFO(dev)->has_eu_pg));
5234
5235         seq_puts(m, "SSEU Device Status\n");
5236         memset(&stat, 0, sizeof(stat));
5237         if (IS_CHERRYVIEW(dev)) {
5238                 cherryview_sseu_device_status(dev, &stat);
5239         } else if (IS_BROADWELL(dev)) {
5240                 broadwell_sseu_device_status(dev, &stat);
5241         } else if (INTEL_INFO(dev)->gen >= 9) {
5242                 gen9_sseu_device_status(dev, &stat);
5243         }
5244         seq_printf(m, "  Enabled Slice Total: %u\n",
5245                    stat.slice_total);
5246         seq_printf(m, "  Enabled Subslice Total: %u\n",
5247                    stat.subslice_total);
5248         seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5249                    stat.subslice_per_slice);
5250         seq_printf(m, "  Enabled EU Total: %u\n",
5251                    stat.eu_total);
5252         seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5253                    stat.eu_per_subslice);
5254
5255         return 0;
5256 }
5257
5258 static int i915_forcewake_open(struct inode *inode, struct file *file)
5259 {
5260         struct drm_device *dev = inode->i_private;
5261         struct drm_i915_private *dev_priv = dev->dev_private;
5262
5263         if (INTEL_INFO(dev)->gen < 6)
5264                 return 0;
5265
5266         intel_runtime_pm_get(dev_priv);
5267         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5268
5269         return 0;
5270 }
5271
5272 static int i915_forcewake_release(struct inode *inode, struct file *file)
5273 {
5274         struct drm_device *dev = inode->i_private;
5275         struct drm_i915_private *dev_priv = dev->dev_private;
5276
5277         if (INTEL_INFO(dev)->gen < 6)
5278                 return 0;
5279
5280         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5281         intel_runtime_pm_put(dev_priv);
5282
5283         return 0;
5284 }
5285
5286 static const struct file_operations i915_forcewake_fops = {
5287         .owner = THIS_MODULE,
5288         .open = i915_forcewake_open,
5289         .release = i915_forcewake_release,
5290 };
5291
5292 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5293 {
5294         struct drm_device *dev = minor->dev;
5295         struct dentry *ent;
5296
5297         ent = debugfs_create_file("i915_forcewake_user",
5298                                   S_IRUSR,
5299                                   root, dev,
5300                                   &i915_forcewake_fops);
5301         if (!ent)
5302                 return -ENOMEM;
5303
5304         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5305 }
5306
5307 static int i915_debugfs_create(struct dentry *root,
5308                                struct drm_minor *minor,
5309                                const char *name,
5310                                const struct file_operations *fops)
5311 {
5312         struct drm_device *dev = minor->dev;
5313         struct dentry *ent;
5314
5315         ent = debugfs_create_file(name,
5316                                   S_IRUGO | S_IWUSR,
5317                                   root, dev,
5318                                   fops);
5319         if (!ent)
5320                 return -ENOMEM;
5321
5322         return drm_add_fake_info_node(minor, ent, fops);
5323 }
5324
5325 static const struct drm_info_list i915_debugfs_list[] = {
5326         {"i915_capabilities", i915_capabilities, 0},
5327         {"i915_gem_objects", i915_gem_object_info, 0},
5328         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5329         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5330         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5331         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5332         {"i915_gem_stolen", i915_gem_stolen_list_info },
5333         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5334         {"i915_gem_request", i915_gem_request_info, 0},
5335         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5336         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5337         {"i915_gem_interrupt", i915_interrupt_info, 0},
5338         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5339         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5340         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5341         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5342         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5343         {"i915_guc_info", i915_guc_info, 0},
5344         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5345         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5346         {"i915_frequency_info", i915_frequency_info, 0},
5347         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5348         {"i915_drpc_info", i915_drpc_info, 0},
5349         {"i915_emon_status", i915_emon_status, 0},
5350         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5351         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5352         {"i915_fbc_status", i915_fbc_status, 0},
5353         {"i915_ips_status", i915_ips_status, 0},
5354         {"i915_sr_status", i915_sr_status, 0},
5355         {"i915_opregion", i915_opregion, 0},
5356         {"i915_vbt", i915_vbt, 0},
5357         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5358         {"i915_context_status", i915_context_status, 0},
5359         {"i915_dump_lrc", i915_dump_lrc, 0},
5360         {"i915_execlists", i915_execlists, 0},
5361         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5362         {"i915_swizzle_info", i915_swizzle_info, 0},
5363         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5364         {"i915_llc", i915_llc, 0},
5365         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5366         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5367         {"i915_energy_uJ", i915_energy_uJ, 0},
5368         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5369         {"i915_power_domain_info", i915_power_domain_info, 0},
5370         {"i915_dmc_info", i915_dmc_info, 0},
5371         {"i915_display_info", i915_display_info, 0},
5372         {"i915_semaphore_status", i915_semaphore_status, 0},
5373         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5374         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5375         {"i915_wa_registers", i915_wa_registers, 0},
5376         {"i915_ddb_info", i915_ddb_info, 0},
5377         {"i915_sseu_status", i915_sseu_status, 0},
5378         {"i915_drrs_status", i915_drrs_status, 0},
5379         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5380 };
5381 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5382
5383 static const struct i915_debugfs_files {
5384         const char *name;
5385         const struct file_operations *fops;
5386 } i915_debugfs_files[] = {
5387         {"i915_wedged", &i915_wedged_fops},
5388         {"i915_max_freq", &i915_max_freq_fops},
5389         {"i915_min_freq", &i915_min_freq_fops},
5390         {"i915_cache_sharing", &i915_cache_sharing_fops},
5391         {"i915_ring_stop", &i915_ring_stop_fops},
5392         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5393         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5394         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5395         {"i915_error_state", &i915_error_state_fops},
5396         {"i915_next_seqno", &i915_next_seqno_fops},
5397         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5398         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5399         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5400         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5401         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5402         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5403         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5404         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5405 };
5406
5407 void intel_display_crc_init(struct drm_device *dev)
5408 {
5409         struct drm_i915_private *dev_priv = dev->dev_private;
5410         enum pipe pipe;
5411
5412         for_each_pipe(dev_priv, pipe) {
5413                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5414
5415                 pipe_crc->opened = false;
5416                 spin_lock_init(&pipe_crc->lock);
5417                 init_waitqueue_head(&pipe_crc->wq);
5418         }
5419 }
5420
5421 int i915_debugfs_init(struct drm_minor *minor)
5422 {
5423         int ret, i;
5424
5425         ret = i915_forcewake_create(minor->debugfs_root, minor);
5426         if (ret)
5427                 return ret;
5428
5429         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5430                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5431                 if (ret)
5432                         return ret;
5433         }
5434
5435         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5436                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5437                                           i915_debugfs_files[i].name,
5438                                           i915_debugfs_files[i].fops);
5439                 if (ret)
5440                         return ret;
5441         }
5442
5443         return drm_debugfs_create_files(i915_debugfs_list,
5444                                         I915_DEBUGFS_ENTRIES,
5445                                         minor->debugfs_root, minor);
5446 }
5447
5448 void i915_debugfs_cleanup(struct drm_minor *minor)
5449 {
5450         int i;
5451
5452         drm_debugfs_remove_files(i915_debugfs_list,
5453                                  I915_DEBUGFS_ENTRIES, minor);
5454
5455         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5456                                  1, minor);
5457
5458         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5459                 struct drm_info_list *info_list =
5460                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5461
5462                 drm_debugfs_remove_files(info_list, 1, minor);
5463         }
5464
5465         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5466                 struct drm_info_list *info_list =
5467                         (struct drm_info_list *) i915_debugfs_files[i].fops;
5468
5469                 drm_debugfs_remove_files(info_list, 1, minor);
5470         }
5471 }
5472
5473 struct dpcd_block {
5474         /* DPCD dump start address. */
5475         unsigned int offset;
5476         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5477         unsigned int end;
5478         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5479         size_t size;
5480         /* Only valid for eDP. */
5481         bool edp;
5482 };
5483
5484 static const struct dpcd_block i915_dpcd_debug[] = {
5485         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5486         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5487         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5488         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5489         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5490         { .offset = DP_SET_POWER },
5491         { .offset = DP_EDP_DPCD_REV },
5492         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5493         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5494         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5495 };
5496
5497 static int i915_dpcd_show(struct seq_file *m, void *data)
5498 {
5499         struct drm_connector *connector = m->private;
5500         struct intel_dp *intel_dp =
5501                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5502         uint8_t buf[16];
5503         ssize_t err;
5504         int i;
5505
5506         if (connector->status != connector_status_connected)
5507                 return -ENODEV;
5508
5509         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5510                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5511                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5512
5513                 if (b->edp &&
5514                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5515                         continue;
5516
5517                 /* low tech for now */
5518                 if (WARN_ON(size > sizeof(buf)))
5519                         continue;
5520
5521                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5522                 if (err <= 0) {
5523                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5524                                   size, b->offset, err);
5525                         continue;
5526                 }
5527
5528                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5529         }
5530
5531         return 0;
5532 }
5533
5534 static int i915_dpcd_open(struct inode *inode, struct file *file)
5535 {
5536         return single_open(file, i915_dpcd_show, inode->i_private);
5537 }
5538
5539 static const struct file_operations i915_dpcd_fops = {
5540         .owner = THIS_MODULE,
5541         .open = i915_dpcd_open,
5542         .read = seq_read,
5543         .llseek = seq_lseek,
5544         .release = single_release,
5545 };
5546
5547 /**
5548  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5549  * @connector: pointer to a registered drm_connector
5550  *
5551  * Cleanup will be done by drm_connector_unregister() through a call to
5552  * drm_debugfs_connector_remove().
5553  *
5554  * Returns 0 on success, negative error codes on error.
5555  */
5556 int i915_debugfs_connector_add(struct drm_connector *connector)
5557 {
5558         struct dentry *root = connector->debugfs_entry;
5559
5560         /* The connector must have been registered beforehands. */
5561         if (!root)
5562                 return -ENODEV;
5563
5564         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5565             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5566                 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5567                                     &i915_dpcd_fops);
5568
5569         return 0;
5570 }