Merge tag 'iwlwifi-next-for-kalle-2015-02-03' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51         return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58                        struct dentry *ent,
59                        const void *key)
60 {
61         struct drm_info_node *node;
62
63         node = kmalloc(sizeof(*node), GFP_KERNEL);
64         if (node == NULL) {
65                 debugfs_remove(ent);
66                 return -ENOMEM;
67         }
68
69         node->minor = minor;
70         node->dent = ent;
71         node->info_ent = (void *) key;
72
73         mutex_lock(&minor->debugfs_lock);
74         list_add(&node->list, &minor->debugfs_list);
75         mutex_unlock(&minor->debugfs_lock);
76
77         return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82         struct drm_info_node *node = m->private;
83         struct drm_device *dev = node->minor->dev;
84         const struct intel_device_info *info = INTEL_INFO(dev);
85
86         seq_printf(m, "gen: %d\n", info->gen);
87         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94         return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         if (obj->user_pin_count > 0)
100                 return "P";
101         else if (i915_gem_obj_is_pinned(obj))
102                 return "p";
103         else
104                 return " ";
105 }
106
107 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
108 {
109         switch (obj->tiling_mode) {
110         default:
111         case I915_TILING_NONE: return " ";
112         case I915_TILING_X: return "X";
113         case I915_TILING_Y: return "Y";
114         }
115 }
116
117 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
118 {
119         return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
120 }
121
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125         struct i915_vma *vma;
126         int pin_count = 0;
127
128         seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
129                    &obj->base,
130                    get_pin_flag(obj),
131                    get_tiling_flag(obj),
132                    get_global_flag(obj),
133                    obj->base.size / 1024,
134                    obj->base.read_domains,
135                    obj->base.write_domain,
136                    obj->last_read_seqno,
137                    obj->last_write_seqno,
138                    obj->last_fenced_seqno,
139                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
140                    obj->dirty ? " dirty" : "",
141                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
142         if (obj->base.name)
143                 seq_printf(m, " (name: %d)", obj->base.name);
144         list_for_each_entry(vma, &obj->vma_list, vma_link)
145                 if (vma->pin_count > 0)
146                         pin_count++;
147                 seq_printf(m, " (pinned x %d)", pin_count);
148         if (obj->pin_display)
149                 seq_printf(m, " (display)");
150         if (obj->fence_reg != I915_FENCE_REG_NONE)
151                 seq_printf(m, " (fence: %d)", obj->fence_reg);
152         list_for_each_entry(vma, &obj->vma_list, vma_link) {
153                 if (!i915_is_ggtt(vma->vm))
154                         seq_puts(m, " (pp");
155                 else
156                         seq_puts(m, " (g");
157                 seq_printf(m, "gtt offset: %08lx, size: %08lx)",
158                            vma->node.start, vma->node.size);
159         }
160         if (obj->stolen)
161                 seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
162         if (obj->pin_mappable || obj->fault_mappable) {
163                 char s[3], *t = s;
164                 if (obj->pin_mappable)
165                         *t++ = 'p';
166                 if (obj->fault_mappable)
167                         *t++ = 'f';
168                 *t = '\0';
169                 seq_printf(m, " (%s mappable)", s);
170         }
171         if (obj->ring != NULL)
172                 seq_printf(m, " (%s)", obj->ring->name);
173         if (obj->frontbuffer_bits)
174                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
175 }
176
177 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
178 {
179         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
180         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
181         seq_putc(m, ' ');
182 }
183
184 static int i915_gem_object_list_info(struct seq_file *m, void *data)
185 {
186         struct drm_info_node *node = m->private;
187         uintptr_t list = (uintptr_t) node->info_ent->data;
188         struct list_head *head;
189         struct drm_device *dev = node->minor->dev;
190         struct drm_i915_private *dev_priv = dev->dev_private;
191         struct i915_address_space *vm = &dev_priv->gtt.base;
192         struct i915_vma *vma;
193         size_t total_obj_size, total_gtt_size;
194         int count, ret;
195
196         ret = mutex_lock_interruptible(&dev->struct_mutex);
197         if (ret)
198                 return ret;
199
200         /* FIXME: the user of this interface might want more than just GGTT */
201         switch (list) {
202         case ACTIVE_LIST:
203                 seq_puts(m, "Active:\n");
204                 head = &vm->active_list;
205                 break;
206         case INACTIVE_LIST:
207                 seq_puts(m, "Inactive:\n");
208                 head = &vm->inactive_list;
209                 break;
210         default:
211                 mutex_unlock(&dev->struct_mutex);
212                 return -EINVAL;
213         }
214
215         total_obj_size = total_gtt_size = count = 0;
216         list_for_each_entry(vma, head, mm_list) {
217                 seq_printf(m, "   ");
218                 describe_obj(m, vma->obj);
219                 seq_printf(m, "\n");
220                 total_obj_size += vma->obj->base.size;
221                 total_gtt_size += vma->node.size;
222                 count++;
223         }
224         mutex_unlock(&dev->struct_mutex);
225
226         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
227                    count, total_obj_size, total_gtt_size);
228         return 0;
229 }
230
231 static int obj_rank_by_stolen(void *priv,
232                               struct list_head *A, struct list_head *B)
233 {
234         struct drm_i915_gem_object *a =
235                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
236         struct drm_i915_gem_object *b =
237                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
238
239         return a->stolen->start - b->stolen->start;
240 }
241
242 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
243 {
244         struct drm_info_node *node = m->private;
245         struct drm_device *dev = node->minor->dev;
246         struct drm_i915_private *dev_priv = dev->dev_private;
247         struct drm_i915_gem_object *obj;
248         size_t total_obj_size, total_gtt_size;
249         LIST_HEAD(stolen);
250         int count, ret;
251
252         ret = mutex_lock_interruptible(&dev->struct_mutex);
253         if (ret)
254                 return ret;
255
256         total_obj_size = total_gtt_size = count = 0;
257         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
258                 if (obj->stolen == NULL)
259                         continue;
260
261                 list_add(&obj->obj_exec_link, &stolen);
262
263                 total_obj_size += obj->base.size;
264                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
265                 count++;
266         }
267         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
268                 if (obj->stolen == NULL)
269                         continue;
270
271                 list_add(&obj->obj_exec_link, &stolen);
272
273                 total_obj_size += obj->base.size;
274                 count++;
275         }
276         list_sort(NULL, &stolen, obj_rank_by_stolen);
277         seq_puts(m, "Stolen:\n");
278         while (!list_empty(&stolen)) {
279                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
280                 seq_puts(m, "   ");
281                 describe_obj(m, obj);
282                 seq_putc(m, '\n');
283                 list_del_init(&obj->obj_exec_link);
284         }
285         mutex_unlock(&dev->struct_mutex);
286
287         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
288                    count, total_obj_size, total_gtt_size);
289         return 0;
290 }
291
292 #define count_objects(list, member) do { \
293         list_for_each_entry(obj, list, member) { \
294                 size += i915_gem_obj_ggtt_size(obj); \
295                 ++count; \
296                 if (obj->map_and_fenceable) { \
297                         mappable_size += i915_gem_obj_ggtt_size(obj); \
298                         ++mappable_count; \
299                 } \
300         } \
301 } while (0)
302
303 struct file_stats {
304         struct drm_i915_file_private *file_priv;
305         int count;
306         size_t total, unbound;
307         size_t global, shared;
308         size_t active, inactive;
309 };
310
311 static int per_file_stats(int id, void *ptr, void *data)
312 {
313         struct drm_i915_gem_object *obj = ptr;
314         struct file_stats *stats = data;
315         struct i915_vma *vma;
316
317         stats->count++;
318         stats->total += obj->base.size;
319
320         if (obj->base.name || obj->base.dma_buf)
321                 stats->shared += obj->base.size;
322
323         if (USES_FULL_PPGTT(obj->base.dev)) {
324                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
325                         struct i915_hw_ppgtt *ppgtt;
326
327                         if (!drm_mm_node_allocated(&vma->node))
328                                 continue;
329
330                         if (i915_is_ggtt(vma->vm)) {
331                                 stats->global += obj->base.size;
332                                 continue;
333                         }
334
335                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
336                         if (ppgtt->file_priv != stats->file_priv)
337                                 continue;
338
339                         if (obj->ring) /* XXX per-vma statistic */
340                                 stats->active += obj->base.size;
341                         else
342                                 stats->inactive += obj->base.size;
343
344                         return 0;
345                 }
346         } else {
347                 if (i915_gem_obj_ggtt_bound(obj)) {
348                         stats->global += obj->base.size;
349                         if (obj->ring)
350                                 stats->active += obj->base.size;
351                         else
352                                 stats->inactive += obj->base.size;
353                         return 0;
354                 }
355         }
356
357         if (!list_empty(&obj->global_list))
358                 stats->unbound += obj->base.size;
359
360         return 0;
361 }
362
363 #define count_vmas(list, member) do { \
364         list_for_each_entry(vma, list, member) { \
365                 size += i915_gem_obj_ggtt_size(vma->obj); \
366                 ++count; \
367                 if (vma->obj->map_and_fenceable) { \
368                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
369                         ++mappable_count; \
370                 } \
371         } \
372 } while (0)
373
374 static int i915_gem_object_info(struct seq_file *m, void* data)
375 {
376         struct drm_info_node *node = m->private;
377         struct drm_device *dev = node->minor->dev;
378         struct drm_i915_private *dev_priv = dev->dev_private;
379         u32 count, mappable_count, purgeable_count;
380         size_t size, mappable_size, purgeable_size;
381         struct drm_i915_gem_object *obj;
382         struct i915_address_space *vm = &dev_priv->gtt.base;
383         struct drm_file *file;
384         struct i915_vma *vma;
385         int ret;
386
387         ret = mutex_lock_interruptible(&dev->struct_mutex);
388         if (ret)
389                 return ret;
390
391         seq_printf(m, "%u objects, %zu bytes\n",
392                    dev_priv->mm.object_count,
393                    dev_priv->mm.object_memory);
394
395         size = count = mappable_size = mappable_count = 0;
396         count_objects(&dev_priv->mm.bound_list, global_list);
397         seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
398                    count, mappable_count, size, mappable_size);
399
400         size = count = mappable_size = mappable_count = 0;
401         count_vmas(&vm->active_list, mm_list);
402         seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
403                    count, mappable_count, size, mappable_size);
404
405         size = count = mappable_size = mappable_count = 0;
406         count_vmas(&vm->inactive_list, mm_list);
407         seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
408                    count, mappable_count, size, mappable_size);
409
410         size = count = purgeable_size = purgeable_count = 0;
411         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
412                 size += obj->base.size, ++count;
413                 if (obj->madv == I915_MADV_DONTNEED)
414                         purgeable_size += obj->base.size, ++purgeable_count;
415         }
416         seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
417
418         size = count = mappable_size = mappable_count = 0;
419         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
420                 if (obj->fault_mappable) {
421                         size += i915_gem_obj_ggtt_size(obj);
422                         ++count;
423                 }
424                 if (obj->pin_mappable) {
425                         mappable_size += i915_gem_obj_ggtt_size(obj);
426                         ++mappable_count;
427                 }
428                 if (obj->madv == I915_MADV_DONTNEED) {
429                         purgeable_size += obj->base.size;
430                         ++purgeable_count;
431                 }
432         }
433         seq_printf(m, "%u purgeable objects, %zu bytes\n",
434                    purgeable_count, purgeable_size);
435         seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
436                    mappable_count, mappable_size);
437         seq_printf(m, "%u fault mappable objects, %zu bytes\n",
438                    count, size);
439
440         seq_printf(m, "%zu [%lu] gtt total\n",
441                    dev_priv->gtt.base.total,
442                    dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
443
444         seq_putc(m, '\n');
445         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
446                 struct file_stats stats;
447                 struct task_struct *task;
448
449                 memset(&stats, 0, sizeof(stats));
450                 stats.file_priv = file->driver_priv;
451                 spin_lock(&file->table_lock);
452                 idr_for_each(&file->object_idr, per_file_stats, &stats);
453                 spin_unlock(&file->table_lock);
454                 /*
455                  * Although we have a valid reference on file->pid, that does
456                  * not guarantee that the task_struct who called get_pid() is
457                  * still alive (e.g. get_pid(current) => fork() => exit()).
458                  * Therefore, we need to protect this ->comm access using RCU.
459                  */
460                 rcu_read_lock();
461                 task = pid_task(file->pid, PIDTYPE_PID);
462                 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
463                            task ? task->comm : "<unknown>",
464                            stats.count,
465                            stats.total,
466                            stats.active,
467                            stats.inactive,
468                            stats.global,
469                            stats.shared,
470                            stats.unbound);
471                 rcu_read_unlock();
472         }
473
474         mutex_unlock(&dev->struct_mutex);
475
476         return 0;
477 }
478
479 static int i915_gem_gtt_info(struct seq_file *m, void *data)
480 {
481         struct drm_info_node *node = m->private;
482         struct drm_device *dev = node->minor->dev;
483         uintptr_t list = (uintptr_t) node->info_ent->data;
484         struct drm_i915_private *dev_priv = dev->dev_private;
485         struct drm_i915_gem_object *obj;
486         size_t total_obj_size, total_gtt_size;
487         int count, ret;
488
489         ret = mutex_lock_interruptible(&dev->struct_mutex);
490         if (ret)
491                 return ret;
492
493         total_obj_size = total_gtt_size = count = 0;
494         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
495                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
496                         continue;
497
498                 seq_puts(m, "   ");
499                 describe_obj(m, obj);
500                 seq_putc(m, '\n');
501                 total_obj_size += obj->base.size;
502                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
503                 count++;
504         }
505
506         mutex_unlock(&dev->struct_mutex);
507
508         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
509                    count, total_obj_size, total_gtt_size);
510
511         return 0;
512 }
513
514 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
515 {
516         struct drm_info_node *node = m->private;
517         struct drm_device *dev = node->minor->dev;
518         struct drm_i915_private *dev_priv = dev->dev_private;
519         struct intel_crtc *crtc;
520         int ret;
521
522         ret = mutex_lock_interruptible(&dev->struct_mutex);
523         if (ret)
524                 return ret;
525
526         for_each_intel_crtc(dev, crtc) {
527                 const char pipe = pipe_name(crtc->pipe);
528                 const char plane = plane_name(crtc->plane);
529                 struct intel_unpin_work *work;
530
531                 spin_lock_irq(&dev->event_lock);
532                 work = crtc->unpin_work;
533                 if (work == NULL) {
534                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
535                                    pipe, plane);
536                 } else {
537                         u32 addr;
538
539                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
540                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
541                                            pipe, plane);
542                         } else {
543                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
544                                            pipe, plane);
545                         }
546                         if (work->flip_queued_ring) {
547                                 seq_printf(m, "Flip queued on %s at seqno %u, next seqno %u [current breadcrumb %u], completed? %d\n",
548                                            work->flip_queued_ring->name,
549                                            work->flip_queued_seqno,
550                                            dev_priv->next_seqno,
551                                            work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
552                                            i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
553                                                              work->flip_queued_seqno));
554                         } else
555                                 seq_printf(m, "Flip not associated with any ring\n");
556                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
557                                    work->flip_queued_vblank,
558                                    work->flip_ready_vblank,
559                                    drm_vblank_count(dev, crtc->pipe));
560                         if (work->enable_stall_check)
561                                 seq_puts(m, "Stall check enabled, ");
562                         else
563                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
564                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
565
566                         if (INTEL_INFO(dev)->gen >= 4)
567                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
568                         else
569                                 addr = I915_READ(DSPADDR(crtc->plane));
570                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
571
572                         if (work->pending_flip_obj) {
573                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
574                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
575                         }
576                 }
577                 spin_unlock_irq(&dev->event_lock);
578         }
579
580         mutex_unlock(&dev->struct_mutex);
581
582         return 0;
583 }
584
585 static int i915_gem_request_info(struct seq_file *m, void *data)
586 {
587         struct drm_info_node *node = m->private;
588         struct drm_device *dev = node->minor->dev;
589         struct drm_i915_private *dev_priv = dev->dev_private;
590         struct intel_engine_cs *ring;
591         struct drm_i915_gem_request *gem_request;
592         int ret, count, i;
593
594         ret = mutex_lock_interruptible(&dev->struct_mutex);
595         if (ret)
596                 return ret;
597
598         count = 0;
599         for_each_ring(ring, dev_priv, i) {
600                 if (list_empty(&ring->request_list))
601                         continue;
602
603                 seq_printf(m, "%s requests:\n", ring->name);
604                 list_for_each_entry(gem_request,
605                                     &ring->request_list,
606                                     list) {
607                         seq_printf(m, "    %d @ %d\n",
608                                    gem_request->seqno,
609                                    (int) (jiffies - gem_request->emitted_jiffies));
610                 }
611                 count++;
612         }
613         mutex_unlock(&dev->struct_mutex);
614
615         if (count == 0)
616                 seq_puts(m, "No requests\n");
617
618         return 0;
619 }
620
621 static void i915_ring_seqno_info(struct seq_file *m,
622                                  struct intel_engine_cs *ring)
623 {
624         if (ring->get_seqno) {
625                 seq_printf(m, "Current sequence (%s): %u\n",
626                            ring->name, ring->get_seqno(ring, false));
627         }
628 }
629
630 static int i915_gem_seqno_info(struct seq_file *m, void *data)
631 {
632         struct drm_info_node *node = m->private;
633         struct drm_device *dev = node->minor->dev;
634         struct drm_i915_private *dev_priv = dev->dev_private;
635         struct intel_engine_cs *ring;
636         int ret, i;
637
638         ret = mutex_lock_interruptible(&dev->struct_mutex);
639         if (ret)
640                 return ret;
641         intel_runtime_pm_get(dev_priv);
642
643         for_each_ring(ring, dev_priv, i)
644                 i915_ring_seqno_info(m, ring);
645
646         intel_runtime_pm_put(dev_priv);
647         mutex_unlock(&dev->struct_mutex);
648
649         return 0;
650 }
651
652
653 static int i915_interrupt_info(struct seq_file *m, void *data)
654 {
655         struct drm_info_node *node = m->private;
656         struct drm_device *dev = node->minor->dev;
657         struct drm_i915_private *dev_priv = dev->dev_private;
658         struct intel_engine_cs *ring;
659         int ret, i, pipe;
660
661         ret = mutex_lock_interruptible(&dev->struct_mutex);
662         if (ret)
663                 return ret;
664         intel_runtime_pm_get(dev_priv);
665
666         if (IS_CHERRYVIEW(dev)) {
667                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
668                            I915_READ(GEN8_MASTER_IRQ));
669
670                 seq_printf(m, "Display IER:\t%08x\n",
671                            I915_READ(VLV_IER));
672                 seq_printf(m, "Display IIR:\t%08x\n",
673                            I915_READ(VLV_IIR));
674                 seq_printf(m, "Display IIR_RW:\t%08x\n",
675                            I915_READ(VLV_IIR_RW));
676                 seq_printf(m, "Display IMR:\t%08x\n",
677                            I915_READ(VLV_IMR));
678                 for_each_pipe(dev_priv, pipe)
679                         seq_printf(m, "Pipe %c stat:\t%08x\n",
680                                    pipe_name(pipe),
681                                    I915_READ(PIPESTAT(pipe)));
682
683                 seq_printf(m, "Port hotplug:\t%08x\n",
684                            I915_READ(PORT_HOTPLUG_EN));
685                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
686                            I915_READ(VLV_DPFLIPSTAT));
687                 seq_printf(m, "DPINVGTT:\t%08x\n",
688                            I915_READ(DPINVGTT));
689
690                 for (i = 0; i < 4; i++) {
691                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
692                                    i, I915_READ(GEN8_GT_IMR(i)));
693                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
694                                    i, I915_READ(GEN8_GT_IIR(i)));
695                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
696                                    i, I915_READ(GEN8_GT_IER(i)));
697                 }
698
699                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
700                            I915_READ(GEN8_PCU_IMR));
701                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
702                            I915_READ(GEN8_PCU_IIR));
703                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
704                            I915_READ(GEN8_PCU_IER));
705         } else if (INTEL_INFO(dev)->gen >= 8) {
706                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
707                            I915_READ(GEN8_MASTER_IRQ));
708
709                 for (i = 0; i < 4; i++) {
710                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
711                                    i, I915_READ(GEN8_GT_IMR(i)));
712                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
713                                    i, I915_READ(GEN8_GT_IIR(i)));
714                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
715                                    i, I915_READ(GEN8_GT_IER(i)));
716                 }
717
718                 for_each_pipe(dev_priv, pipe) {
719                         if (!intel_display_power_is_enabled(dev_priv,
720                                                 POWER_DOMAIN_PIPE(pipe))) {
721                                 seq_printf(m, "Pipe %c power disabled\n",
722                                            pipe_name(pipe));
723                                 continue;
724                         }
725                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
726                                    pipe_name(pipe),
727                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
728                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
729                                    pipe_name(pipe),
730                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
731                         seq_printf(m, "Pipe %c IER:\t%08x\n",
732                                    pipe_name(pipe),
733                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
734                 }
735
736                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
737                            I915_READ(GEN8_DE_PORT_IMR));
738                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
739                            I915_READ(GEN8_DE_PORT_IIR));
740                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
741                            I915_READ(GEN8_DE_PORT_IER));
742
743                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
744                            I915_READ(GEN8_DE_MISC_IMR));
745                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
746                            I915_READ(GEN8_DE_MISC_IIR));
747                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
748                            I915_READ(GEN8_DE_MISC_IER));
749
750                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
751                            I915_READ(GEN8_PCU_IMR));
752                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
753                            I915_READ(GEN8_PCU_IIR));
754                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
755                            I915_READ(GEN8_PCU_IER));
756         } else if (IS_VALLEYVIEW(dev)) {
757                 seq_printf(m, "Display IER:\t%08x\n",
758                            I915_READ(VLV_IER));
759                 seq_printf(m, "Display IIR:\t%08x\n",
760                            I915_READ(VLV_IIR));
761                 seq_printf(m, "Display IIR_RW:\t%08x\n",
762                            I915_READ(VLV_IIR_RW));
763                 seq_printf(m, "Display IMR:\t%08x\n",
764                            I915_READ(VLV_IMR));
765                 for_each_pipe(dev_priv, pipe)
766                         seq_printf(m, "Pipe %c stat:\t%08x\n",
767                                    pipe_name(pipe),
768                                    I915_READ(PIPESTAT(pipe)));
769
770                 seq_printf(m, "Master IER:\t%08x\n",
771                            I915_READ(VLV_MASTER_IER));
772
773                 seq_printf(m, "Render IER:\t%08x\n",
774                            I915_READ(GTIER));
775                 seq_printf(m, "Render IIR:\t%08x\n",
776                            I915_READ(GTIIR));
777                 seq_printf(m, "Render IMR:\t%08x\n",
778                            I915_READ(GTIMR));
779
780                 seq_printf(m, "PM IER:\t\t%08x\n",
781                            I915_READ(GEN6_PMIER));
782                 seq_printf(m, "PM IIR:\t\t%08x\n",
783                            I915_READ(GEN6_PMIIR));
784                 seq_printf(m, "PM IMR:\t\t%08x\n",
785                            I915_READ(GEN6_PMIMR));
786
787                 seq_printf(m, "Port hotplug:\t%08x\n",
788                            I915_READ(PORT_HOTPLUG_EN));
789                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
790                            I915_READ(VLV_DPFLIPSTAT));
791                 seq_printf(m, "DPINVGTT:\t%08x\n",
792                            I915_READ(DPINVGTT));
793
794         } else if (!HAS_PCH_SPLIT(dev)) {
795                 seq_printf(m, "Interrupt enable:    %08x\n",
796                            I915_READ(IER));
797                 seq_printf(m, "Interrupt identity:  %08x\n",
798                            I915_READ(IIR));
799                 seq_printf(m, "Interrupt mask:      %08x\n",
800                            I915_READ(IMR));
801                 for_each_pipe(dev_priv, pipe)
802                         seq_printf(m, "Pipe %c stat:         %08x\n",
803                                    pipe_name(pipe),
804                                    I915_READ(PIPESTAT(pipe)));
805         } else {
806                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
807                            I915_READ(DEIER));
808                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
809                            I915_READ(DEIIR));
810                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
811                            I915_READ(DEIMR));
812                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
813                            I915_READ(SDEIER));
814                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
815                            I915_READ(SDEIIR));
816                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
817                            I915_READ(SDEIMR));
818                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
819                            I915_READ(GTIER));
820                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
821                            I915_READ(GTIIR));
822                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
823                            I915_READ(GTIMR));
824         }
825         for_each_ring(ring, dev_priv, i) {
826                 if (INTEL_INFO(dev)->gen >= 6) {
827                         seq_printf(m,
828                                    "Graphics Interrupt mask (%s):       %08x\n",
829                                    ring->name, I915_READ_IMR(ring));
830                 }
831                 i915_ring_seqno_info(m, ring);
832         }
833         intel_runtime_pm_put(dev_priv);
834         mutex_unlock(&dev->struct_mutex);
835
836         return 0;
837 }
838
839 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
840 {
841         struct drm_info_node *node = m->private;
842         struct drm_device *dev = node->minor->dev;
843         struct drm_i915_private *dev_priv = dev->dev_private;
844         int i, ret;
845
846         ret = mutex_lock_interruptible(&dev->struct_mutex);
847         if (ret)
848                 return ret;
849
850         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
851         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
852         for (i = 0; i < dev_priv->num_fence_regs; i++) {
853                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
854
855                 seq_printf(m, "Fence %d, pin count = %d, object = ",
856                            i, dev_priv->fence_regs[i].pin_count);
857                 if (obj == NULL)
858                         seq_puts(m, "unused");
859                 else
860                         describe_obj(m, obj);
861                 seq_putc(m, '\n');
862         }
863
864         mutex_unlock(&dev->struct_mutex);
865         return 0;
866 }
867
868 static int i915_hws_info(struct seq_file *m, void *data)
869 {
870         struct drm_info_node *node = m->private;
871         struct drm_device *dev = node->minor->dev;
872         struct drm_i915_private *dev_priv = dev->dev_private;
873         struct intel_engine_cs *ring;
874         const u32 *hws;
875         int i;
876
877         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
878         hws = ring->status_page.page_addr;
879         if (hws == NULL)
880                 return 0;
881
882         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
883                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
884                            i * 4,
885                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
886         }
887         return 0;
888 }
889
890 static ssize_t
891 i915_error_state_write(struct file *filp,
892                        const char __user *ubuf,
893                        size_t cnt,
894                        loff_t *ppos)
895 {
896         struct i915_error_state_file_priv *error_priv = filp->private_data;
897         struct drm_device *dev = error_priv->dev;
898         int ret;
899
900         DRM_DEBUG_DRIVER("Resetting error state\n");
901
902         ret = mutex_lock_interruptible(&dev->struct_mutex);
903         if (ret)
904                 return ret;
905
906         i915_destroy_error_state(dev);
907         mutex_unlock(&dev->struct_mutex);
908
909         return cnt;
910 }
911
912 static int i915_error_state_open(struct inode *inode, struct file *file)
913 {
914         struct drm_device *dev = inode->i_private;
915         struct i915_error_state_file_priv *error_priv;
916
917         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
918         if (!error_priv)
919                 return -ENOMEM;
920
921         error_priv->dev = dev;
922
923         i915_error_state_get(dev, error_priv);
924
925         file->private_data = error_priv;
926
927         return 0;
928 }
929
930 static int i915_error_state_release(struct inode *inode, struct file *file)
931 {
932         struct i915_error_state_file_priv *error_priv = file->private_data;
933
934         i915_error_state_put(error_priv);
935         kfree(error_priv);
936
937         return 0;
938 }
939
940 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
941                                      size_t count, loff_t *pos)
942 {
943         struct i915_error_state_file_priv *error_priv = file->private_data;
944         struct drm_i915_error_state_buf error_str;
945         loff_t tmp_pos = 0;
946         ssize_t ret_count = 0;
947         int ret;
948
949         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
950         if (ret)
951                 return ret;
952
953         ret = i915_error_state_to_str(&error_str, error_priv);
954         if (ret)
955                 goto out;
956
957         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
958                                             error_str.buf,
959                                             error_str.bytes);
960
961         if (ret_count < 0)
962                 ret = ret_count;
963         else
964                 *pos = error_str.start + ret_count;
965 out:
966         i915_error_state_buf_release(&error_str);
967         return ret ?: ret_count;
968 }
969
970 static const struct file_operations i915_error_state_fops = {
971         .owner = THIS_MODULE,
972         .open = i915_error_state_open,
973         .read = i915_error_state_read,
974         .write = i915_error_state_write,
975         .llseek = default_llseek,
976         .release = i915_error_state_release,
977 };
978
979 static int
980 i915_next_seqno_get(void *data, u64 *val)
981 {
982         struct drm_device *dev = data;
983         struct drm_i915_private *dev_priv = dev->dev_private;
984         int ret;
985
986         ret = mutex_lock_interruptible(&dev->struct_mutex);
987         if (ret)
988                 return ret;
989
990         *val = dev_priv->next_seqno;
991         mutex_unlock(&dev->struct_mutex);
992
993         return 0;
994 }
995
996 static int
997 i915_next_seqno_set(void *data, u64 val)
998 {
999         struct drm_device *dev = data;
1000         int ret;
1001
1002         ret = mutex_lock_interruptible(&dev->struct_mutex);
1003         if (ret)
1004                 return ret;
1005
1006         ret = i915_gem_set_seqno(dev, val);
1007         mutex_unlock(&dev->struct_mutex);
1008
1009         return ret;
1010 }
1011
1012 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1013                         i915_next_seqno_get, i915_next_seqno_set,
1014                         "0x%llx\n");
1015
1016 static int i915_frequency_info(struct seq_file *m, void *unused)
1017 {
1018         struct drm_info_node *node = m->private;
1019         struct drm_device *dev = node->minor->dev;
1020         struct drm_i915_private *dev_priv = dev->dev_private;
1021         int ret = 0;
1022
1023         intel_runtime_pm_get(dev_priv);
1024
1025         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1026
1027         if (IS_GEN5(dev)) {
1028                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1029                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1030
1031                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1032                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1033                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1034                            MEMSTAT_VID_SHIFT);
1035                 seq_printf(m, "Current P-state: %d\n",
1036                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1037         } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1038                    IS_BROADWELL(dev)) {
1039                 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1040                 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1041                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1042                 u32 rpmodectl, rpinclimit, rpdeclimit;
1043                 u32 rpstat, cagf, reqf;
1044                 u32 rpupei, rpcurup, rpprevup;
1045                 u32 rpdownei, rpcurdown, rpprevdown;
1046                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1047                 int max_freq;
1048
1049                 /* RPSTAT1 is in the GT power well */
1050                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1051                 if (ret)
1052                         goto out;
1053
1054                 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
1055
1056                 reqf = I915_READ(GEN6_RPNSWREQ);
1057                 reqf &= ~GEN6_TURBO_DISABLE;
1058                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1059                         reqf >>= 24;
1060                 else
1061                         reqf >>= 25;
1062                 reqf *= GT_FREQUENCY_MULTIPLIER;
1063
1064                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1065                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1066                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1067
1068                 rpstat = I915_READ(GEN6_RPSTAT1);
1069                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1070                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1071                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1072                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1073                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1074                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1075                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1076                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1077                 else
1078                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1079                 cagf *= GT_FREQUENCY_MULTIPLIER;
1080
1081                 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
1082                 mutex_unlock(&dev->struct_mutex);
1083
1084                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1085                         pm_ier = I915_READ(GEN6_PMIER);
1086                         pm_imr = I915_READ(GEN6_PMIMR);
1087                         pm_isr = I915_READ(GEN6_PMISR);
1088                         pm_iir = I915_READ(GEN6_PMIIR);
1089                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1090                 } else {
1091                         pm_ier = I915_READ(GEN8_GT_IER(2));
1092                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1093                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1094                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1095                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1096                 }
1097                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1098                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1099                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1100                 seq_printf(m, "Render p-state ratio: %d\n",
1101                            (gt_perf_status & 0xff00) >> 8);
1102                 seq_printf(m, "Render p-state VID: %d\n",
1103                            gt_perf_status & 0xff);
1104                 seq_printf(m, "Render p-state limit: %d\n",
1105                            rp_state_limits & 0xff);
1106                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1107                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1108                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1109                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1110                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1111                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1112                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1113                            GEN6_CURICONT_MASK);
1114                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1115                            GEN6_CURBSYTAVG_MASK);
1116                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1117                            GEN6_CURBSYTAVG_MASK);
1118                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1119                            GEN6_CURIAVG_MASK);
1120                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1121                            GEN6_CURBSYTAVG_MASK);
1122                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1123                            GEN6_CURBSYTAVG_MASK);
1124
1125                 max_freq = (rp_state_cap & 0xff0000) >> 16;
1126                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1127                            max_freq * GT_FREQUENCY_MULTIPLIER);
1128
1129                 max_freq = (rp_state_cap & 0xff00) >> 8;
1130                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1131                            max_freq * GT_FREQUENCY_MULTIPLIER);
1132
1133                 max_freq = rp_state_cap & 0xff;
1134                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1135                            max_freq * GT_FREQUENCY_MULTIPLIER);
1136
1137                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1138                            dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
1139         } else if (IS_VALLEYVIEW(dev)) {
1140                 u32 freq_sts;
1141
1142                 mutex_lock(&dev_priv->rps.hw_lock);
1143                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1144                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1145                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1146
1147                 seq_printf(m, "max GPU freq: %d MHz\n",
1148                            vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1149
1150                 seq_printf(m, "min GPU freq: %d MHz\n",
1151                            vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1152
1153                 seq_printf(m, "efficient (RPe) frequency: %d MHz\n",
1154                            vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1155
1156                 seq_printf(m, "current GPU freq: %d MHz\n",
1157                            vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1158                 mutex_unlock(&dev_priv->rps.hw_lock);
1159         } else {
1160                 seq_puts(m, "no P-state info available\n");
1161         }
1162
1163 out:
1164         intel_runtime_pm_put(dev_priv);
1165         return ret;
1166 }
1167
1168 static int ironlake_drpc_info(struct seq_file *m)
1169 {
1170         struct drm_info_node *node = m->private;
1171         struct drm_device *dev = node->minor->dev;
1172         struct drm_i915_private *dev_priv = dev->dev_private;
1173         u32 rgvmodectl, rstdbyctl;
1174         u16 crstandvid;
1175         int ret;
1176
1177         ret = mutex_lock_interruptible(&dev->struct_mutex);
1178         if (ret)
1179                 return ret;
1180         intel_runtime_pm_get(dev_priv);
1181
1182         rgvmodectl = I915_READ(MEMMODECTL);
1183         rstdbyctl = I915_READ(RSTDBYCTL);
1184         crstandvid = I915_READ16(CRSTANDVID);
1185
1186         intel_runtime_pm_put(dev_priv);
1187         mutex_unlock(&dev->struct_mutex);
1188
1189         seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1190                    "yes" : "no");
1191         seq_printf(m, "Boost freq: %d\n",
1192                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1193                    MEMMODE_BOOST_FREQ_SHIFT);
1194         seq_printf(m, "HW control enabled: %s\n",
1195                    rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1196         seq_printf(m, "SW control enabled: %s\n",
1197                    rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1198         seq_printf(m, "Gated voltage change: %s\n",
1199                    rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1200         seq_printf(m, "Starting frequency: P%d\n",
1201                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1202         seq_printf(m, "Max P-state: P%d\n",
1203                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1204         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1205         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1206         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1207         seq_printf(m, "Render standby enabled: %s\n",
1208                    (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1209         seq_puts(m, "Current RS state: ");
1210         switch (rstdbyctl & RSX_STATUS_MASK) {
1211         case RSX_STATUS_ON:
1212                 seq_puts(m, "on\n");
1213                 break;
1214         case RSX_STATUS_RC1:
1215                 seq_puts(m, "RC1\n");
1216                 break;
1217         case RSX_STATUS_RC1E:
1218                 seq_puts(m, "RC1E\n");
1219                 break;
1220         case RSX_STATUS_RS1:
1221                 seq_puts(m, "RS1\n");
1222                 break;
1223         case RSX_STATUS_RS2:
1224                 seq_puts(m, "RS2 (RC6)\n");
1225                 break;
1226         case RSX_STATUS_RS3:
1227                 seq_puts(m, "RC3 (RC6+)\n");
1228                 break;
1229         default:
1230                 seq_puts(m, "unknown\n");
1231                 break;
1232         }
1233
1234         return 0;
1235 }
1236
1237 static int vlv_drpc_info(struct seq_file *m)
1238 {
1239
1240         struct drm_info_node *node = m->private;
1241         struct drm_device *dev = node->minor->dev;
1242         struct drm_i915_private *dev_priv = dev->dev_private;
1243         u32 rpmodectl1, rcctl1, pw_status;
1244         unsigned fw_rendercount = 0, fw_mediacount = 0;
1245
1246         intel_runtime_pm_get(dev_priv);
1247
1248         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1249         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1250         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1251
1252         intel_runtime_pm_put(dev_priv);
1253
1254         seq_printf(m, "Video Turbo Mode: %s\n",
1255                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1256         seq_printf(m, "Turbo enabled: %s\n",
1257                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1258         seq_printf(m, "HW control enabled: %s\n",
1259                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1260         seq_printf(m, "SW control enabled: %s\n",
1261                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1262                           GEN6_RP_MEDIA_SW_MODE));
1263         seq_printf(m, "RC6 Enabled: %s\n",
1264                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1265                                         GEN6_RC_CTL_EI_MODE(1))));
1266         seq_printf(m, "Render Power Well: %s\n",
1267                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1268         seq_printf(m, "Media Power Well: %s\n",
1269                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1270
1271         seq_printf(m, "Render RC6 residency since boot: %u\n",
1272                    I915_READ(VLV_GT_RENDER_RC6));
1273         seq_printf(m, "Media RC6 residency since boot: %u\n",
1274                    I915_READ(VLV_GT_MEDIA_RC6));
1275
1276         spin_lock_irq(&dev_priv->uncore.lock);
1277         fw_rendercount = dev_priv->uncore.fw_rendercount;
1278         fw_mediacount = dev_priv->uncore.fw_mediacount;
1279         spin_unlock_irq(&dev_priv->uncore.lock);
1280
1281         seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1282         seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1283
1284
1285         return 0;
1286 }
1287
1288
1289 static int gen6_drpc_info(struct seq_file *m)
1290 {
1291
1292         struct drm_info_node *node = m->private;
1293         struct drm_device *dev = node->minor->dev;
1294         struct drm_i915_private *dev_priv = dev->dev_private;
1295         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1296         unsigned forcewake_count;
1297         int count = 0, ret;
1298
1299         ret = mutex_lock_interruptible(&dev->struct_mutex);
1300         if (ret)
1301                 return ret;
1302         intel_runtime_pm_get(dev_priv);
1303
1304         spin_lock_irq(&dev_priv->uncore.lock);
1305         forcewake_count = dev_priv->uncore.forcewake_count;
1306         spin_unlock_irq(&dev_priv->uncore.lock);
1307
1308         if (forcewake_count) {
1309                 seq_puts(m, "RC information inaccurate because somebody "
1310                             "holds a forcewake reference \n");
1311         } else {
1312                 /* NB: we cannot use forcewake, else we read the wrong values */
1313                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1314                         udelay(10);
1315                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1316         }
1317
1318         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1319         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1320
1321         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1322         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1323         mutex_unlock(&dev->struct_mutex);
1324         mutex_lock(&dev_priv->rps.hw_lock);
1325         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1326         mutex_unlock(&dev_priv->rps.hw_lock);
1327
1328         intel_runtime_pm_put(dev_priv);
1329
1330         seq_printf(m, "Video Turbo Mode: %s\n",
1331                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1332         seq_printf(m, "HW control enabled: %s\n",
1333                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1334         seq_printf(m, "SW control enabled: %s\n",
1335                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1336                           GEN6_RP_MEDIA_SW_MODE));
1337         seq_printf(m, "RC1e Enabled: %s\n",
1338                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1339         seq_printf(m, "RC6 Enabled: %s\n",
1340                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1341         seq_printf(m, "Deep RC6 Enabled: %s\n",
1342                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1343         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1344                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1345         seq_puts(m, "Current RC state: ");
1346         switch (gt_core_status & GEN6_RCn_MASK) {
1347         case GEN6_RC0:
1348                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1349                         seq_puts(m, "Core Power Down\n");
1350                 else
1351                         seq_puts(m, "on\n");
1352                 break;
1353         case GEN6_RC3:
1354                 seq_puts(m, "RC3\n");
1355                 break;
1356         case GEN6_RC6:
1357                 seq_puts(m, "RC6\n");
1358                 break;
1359         case GEN6_RC7:
1360                 seq_puts(m, "RC7\n");
1361                 break;
1362         default:
1363                 seq_puts(m, "Unknown\n");
1364                 break;
1365         }
1366
1367         seq_printf(m, "Core Power Down: %s\n",
1368                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1369
1370         /* Not exactly sure what this is */
1371         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1372                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1373         seq_printf(m, "RC6 residency since boot: %u\n",
1374                    I915_READ(GEN6_GT_GFX_RC6));
1375         seq_printf(m, "RC6+ residency since boot: %u\n",
1376                    I915_READ(GEN6_GT_GFX_RC6p));
1377         seq_printf(m, "RC6++ residency since boot: %u\n",
1378                    I915_READ(GEN6_GT_GFX_RC6pp));
1379
1380         seq_printf(m, "RC6   voltage: %dmV\n",
1381                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1382         seq_printf(m, "RC6+  voltage: %dmV\n",
1383                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1384         seq_printf(m, "RC6++ voltage: %dmV\n",
1385                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1386         return 0;
1387 }
1388
1389 static int i915_drpc_info(struct seq_file *m, void *unused)
1390 {
1391         struct drm_info_node *node = m->private;
1392         struct drm_device *dev = node->minor->dev;
1393
1394         if (IS_VALLEYVIEW(dev))
1395                 return vlv_drpc_info(m);
1396         else if (INTEL_INFO(dev)->gen >= 6)
1397                 return gen6_drpc_info(m);
1398         else
1399                 return ironlake_drpc_info(m);
1400 }
1401
1402 static int i915_fbc_status(struct seq_file *m, void *unused)
1403 {
1404         struct drm_info_node *node = m->private;
1405         struct drm_device *dev = node->minor->dev;
1406         struct drm_i915_private *dev_priv = dev->dev_private;
1407
1408         if (!HAS_FBC(dev)) {
1409                 seq_puts(m, "FBC unsupported on this chipset\n");
1410                 return 0;
1411         }
1412
1413         intel_runtime_pm_get(dev_priv);
1414
1415         if (intel_fbc_enabled(dev)) {
1416                 seq_puts(m, "FBC enabled\n");
1417         } else {
1418                 seq_puts(m, "FBC disabled: ");
1419                 switch (dev_priv->fbc.no_fbc_reason) {
1420                 case FBC_OK:
1421                         seq_puts(m, "FBC actived, but currently disabled in hardware");
1422                         break;
1423                 case FBC_UNSUPPORTED:
1424                         seq_puts(m, "unsupported by this chipset");
1425                         break;
1426                 case FBC_NO_OUTPUT:
1427                         seq_puts(m, "no outputs");
1428                         break;
1429                 case FBC_STOLEN_TOO_SMALL:
1430                         seq_puts(m, "not enough stolen memory");
1431                         break;
1432                 case FBC_UNSUPPORTED_MODE:
1433                         seq_puts(m, "mode not supported");
1434                         break;
1435                 case FBC_MODE_TOO_LARGE:
1436                         seq_puts(m, "mode too large");
1437                         break;
1438                 case FBC_BAD_PLANE:
1439                         seq_puts(m, "FBC unsupported on plane");
1440                         break;
1441                 case FBC_NOT_TILED:
1442                         seq_puts(m, "scanout buffer not tiled");
1443                         break;
1444                 case FBC_MULTIPLE_PIPES:
1445                         seq_puts(m, "multiple pipes are enabled");
1446                         break;
1447                 case FBC_MODULE_PARAM:
1448                         seq_puts(m, "disabled per module param (default off)");
1449                         break;
1450                 case FBC_CHIP_DEFAULT:
1451                         seq_puts(m, "disabled per chip default");
1452                         break;
1453                 default:
1454                         seq_puts(m, "unknown reason");
1455                 }
1456                 seq_putc(m, '\n');
1457         }
1458
1459         intel_runtime_pm_put(dev_priv);
1460
1461         return 0;
1462 }
1463
1464 static int i915_fbc_fc_get(void *data, u64 *val)
1465 {
1466         struct drm_device *dev = data;
1467         struct drm_i915_private *dev_priv = dev->dev_private;
1468
1469         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1470                 return -ENODEV;
1471
1472         drm_modeset_lock_all(dev);
1473         *val = dev_priv->fbc.false_color;
1474         drm_modeset_unlock_all(dev);
1475
1476         return 0;
1477 }
1478
1479 static int i915_fbc_fc_set(void *data, u64 val)
1480 {
1481         struct drm_device *dev = data;
1482         struct drm_i915_private *dev_priv = dev->dev_private;
1483         u32 reg;
1484
1485         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1486                 return -ENODEV;
1487
1488         drm_modeset_lock_all(dev);
1489
1490         reg = I915_READ(ILK_DPFC_CONTROL);
1491         dev_priv->fbc.false_color = val;
1492
1493         I915_WRITE(ILK_DPFC_CONTROL, val ?
1494                    (reg | FBC_CTL_FALSE_COLOR) :
1495                    (reg & ~FBC_CTL_FALSE_COLOR));
1496
1497         drm_modeset_unlock_all(dev);
1498         return 0;
1499 }
1500
1501 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1502                         i915_fbc_fc_get, i915_fbc_fc_set,
1503                         "%llu\n");
1504
1505 static int i915_ips_status(struct seq_file *m, void *unused)
1506 {
1507         struct drm_info_node *node = m->private;
1508         struct drm_device *dev = node->minor->dev;
1509         struct drm_i915_private *dev_priv = dev->dev_private;
1510
1511         if (!HAS_IPS(dev)) {
1512                 seq_puts(m, "not supported\n");
1513                 return 0;
1514         }
1515
1516         intel_runtime_pm_get(dev_priv);
1517
1518         seq_printf(m, "Enabled by kernel parameter: %s\n",
1519                    yesno(i915.enable_ips));
1520
1521         if (INTEL_INFO(dev)->gen >= 8) {
1522                 seq_puts(m, "Currently: unknown\n");
1523         } else {
1524                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1525                         seq_puts(m, "Currently: enabled\n");
1526                 else
1527                         seq_puts(m, "Currently: disabled\n");
1528         }
1529
1530         intel_runtime_pm_put(dev_priv);
1531
1532         return 0;
1533 }
1534
1535 static int i915_sr_status(struct seq_file *m, void *unused)
1536 {
1537         struct drm_info_node *node = m->private;
1538         struct drm_device *dev = node->minor->dev;
1539         struct drm_i915_private *dev_priv = dev->dev_private;
1540         bool sr_enabled = false;
1541
1542         intel_runtime_pm_get(dev_priv);
1543
1544         if (HAS_PCH_SPLIT(dev))
1545                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1546         else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1547                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1548         else if (IS_I915GM(dev))
1549                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1550         else if (IS_PINEVIEW(dev))
1551                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1552
1553         intel_runtime_pm_put(dev_priv);
1554
1555         seq_printf(m, "self-refresh: %s\n",
1556                    sr_enabled ? "enabled" : "disabled");
1557
1558         return 0;
1559 }
1560
1561 static int i915_emon_status(struct seq_file *m, void *unused)
1562 {
1563         struct drm_info_node *node = m->private;
1564         struct drm_device *dev = node->minor->dev;
1565         struct drm_i915_private *dev_priv = dev->dev_private;
1566         unsigned long temp, chipset, gfx;
1567         int ret;
1568
1569         if (!IS_GEN5(dev))
1570                 return -ENODEV;
1571
1572         ret = mutex_lock_interruptible(&dev->struct_mutex);
1573         if (ret)
1574                 return ret;
1575
1576         temp = i915_mch_val(dev_priv);
1577         chipset = i915_chipset_val(dev_priv);
1578         gfx = i915_gfx_val(dev_priv);
1579         mutex_unlock(&dev->struct_mutex);
1580
1581         seq_printf(m, "GMCH temp: %ld\n", temp);
1582         seq_printf(m, "Chipset power: %ld\n", chipset);
1583         seq_printf(m, "GFX power: %ld\n", gfx);
1584         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1585
1586         return 0;
1587 }
1588
1589 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1590 {
1591         struct drm_info_node *node = m->private;
1592         struct drm_device *dev = node->minor->dev;
1593         struct drm_i915_private *dev_priv = dev->dev_private;
1594         int ret = 0;
1595         int gpu_freq, ia_freq;
1596
1597         if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1598                 seq_puts(m, "unsupported on this chipset\n");
1599                 return 0;
1600         }
1601
1602         intel_runtime_pm_get(dev_priv);
1603
1604         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1605
1606         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1607         if (ret)
1608                 goto out;
1609
1610         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1611
1612         for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1613              gpu_freq <= dev_priv->rps.max_freq_softlimit;
1614              gpu_freq++) {
1615                 ia_freq = gpu_freq;
1616                 sandybridge_pcode_read(dev_priv,
1617                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1618                                        &ia_freq);
1619                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1620                            gpu_freq * GT_FREQUENCY_MULTIPLIER,
1621                            ((ia_freq >> 0) & 0xff) * 100,
1622                            ((ia_freq >> 8) & 0xff) * 100);
1623         }
1624
1625         mutex_unlock(&dev_priv->rps.hw_lock);
1626
1627 out:
1628         intel_runtime_pm_put(dev_priv);
1629         return ret;
1630 }
1631
1632 static int i915_opregion(struct seq_file *m, void *unused)
1633 {
1634         struct drm_info_node *node = m->private;
1635         struct drm_device *dev = node->minor->dev;
1636         struct drm_i915_private *dev_priv = dev->dev_private;
1637         struct intel_opregion *opregion = &dev_priv->opregion;
1638         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1639         int ret;
1640
1641         if (data == NULL)
1642                 return -ENOMEM;
1643
1644         ret = mutex_lock_interruptible(&dev->struct_mutex);
1645         if (ret)
1646                 goto out;
1647
1648         if (opregion->header) {
1649                 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1650                 seq_write(m, data, OPREGION_SIZE);
1651         }
1652
1653         mutex_unlock(&dev->struct_mutex);
1654
1655 out:
1656         kfree(data);
1657         return 0;
1658 }
1659
1660 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1661 {
1662         struct drm_info_node *node = m->private;
1663         struct drm_device *dev = node->minor->dev;
1664         struct intel_fbdev *ifbdev = NULL;
1665         struct intel_framebuffer *fb;
1666
1667 #ifdef CONFIG_DRM_I915_FBDEV
1668         struct drm_i915_private *dev_priv = dev->dev_private;
1669
1670         ifbdev = dev_priv->fbdev;
1671         fb = to_intel_framebuffer(ifbdev->helper.fb);
1672
1673         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1674                    fb->base.width,
1675                    fb->base.height,
1676                    fb->base.depth,
1677                    fb->base.bits_per_pixel,
1678                    atomic_read(&fb->base.refcount.refcount));
1679         describe_obj(m, fb->obj);
1680         seq_putc(m, '\n');
1681 #endif
1682
1683         mutex_lock(&dev->mode_config.fb_lock);
1684         list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1685                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1686                         continue;
1687
1688                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1689                            fb->base.width,
1690                            fb->base.height,
1691                            fb->base.depth,
1692                            fb->base.bits_per_pixel,
1693                            atomic_read(&fb->base.refcount.refcount));
1694                 describe_obj(m, fb->obj);
1695                 seq_putc(m, '\n');
1696         }
1697         mutex_unlock(&dev->mode_config.fb_lock);
1698
1699         return 0;
1700 }
1701
1702 static void describe_ctx_ringbuf(struct seq_file *m,
1703                                  struct intel_ringbuffer *ringbuf)
1704 {
1705         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1706                    ringbuf->space, ringbuf->head, ringbuf->tail,
1707                    ringbuf->last_retired_head);
1708 }
1709
1710 static int i915_context_status(struct seq_file *m, void *unused)
1711 {
1712         struct drm_info_node *node = m->private;
1713         struct drm_device *dev = node->minor->dev;
1714         struct drm_i915_private *dev_priv = dev->dev_private;
1715         struct intel_engine_cs *ring;
1716         struct intel_context *ctx;
1717         int ret, i;
1718
1719         ret = mutex_lock_interruptible(&dev->struct_mutex);
1720         if (ret)
1721                 return ret;
1722
1723         if (dev_priv->ips.pwrctx) {
1724                 seq_puts(m, "power context ");
1725                 describe_obj(m, dev_priv->ips.pwrctx);
1726                 seq_putc(m, '\n');
1727         }
1728
1729         if (dev_priv->ips.renderctx) {
1730                 seq_puts(m, "render context ");
1731                 describe_obj(m, dev_priv->ips.renderctx);
1732                 seq_putc(m, '\n');
1733         }
1734
1735         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1736                 if (!i915.enable_execlists &&
1737                     ctx->legacy_hw_ctx.rcs_state == NULL)
1738                         continue;
1739
1740                 seq_puts(m, "HW context ");
1741                 describe_ctx(m, ctx);
1742                 for_each_ring(ring, dev_priv, i) {
1743                         if (ring->default_context == ctx)
1744                                 seq_printf(m, "(default context %s) ",
1745                                            ring->name);
1746                 }
1747
1748                 if (i915.enable_execlists) {
1749                         seq_putc(m, '\n');
1750                         for_each_ring(ring, dev_priv, i) {
1751                                 struct drm_i915_gem_object *ctx_obj =
1752                                         ctx->engine[i].state;
1753                                 struct intel_ringbuffer *ringbuf =
1754                                         ctx->engine[i].ringbuf;
1755
1756                                 seq_printf(m, "%s: ", ring->name);
1757                                 if (ctx_obj)
1758                                         describe_obj(m, ctx_obj);
1759                                 if (ringbuf)
1760                                         describe_ctx_ringbuf(m, ringbuf);
1761                                 seq_putc(m, '\n');
1762                         }
1763                 } else {
1764                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1765                 }
1766
1767                 seq_putc(m, '\n');
1768         }
1769
1770         mutex_unlock(&dev->struct_mutex);
1771
1772         return 0;
1773 }
1774
1775 static void i915_dump_lrc_obj(struct seq_file *m,
1776                               struct intel_engine_cs *ring,
1777                               struct drm_i915_gem_object *ctx_obj)
1778 {
1779         struct page *page;
1780         uint32_t *reg_state;
1781         int j;
1782         unsigned long ggtt_offset = 0;
1783
1784         if (ctx_obj == NULL) {
1785                 seq_printf(m, "Context on %s with no gem object\n",
1786                            ring->name);
1787                 return;
1788         }
1789
1790         seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1791                    intel_execlists_ctx_id(ctx_obj));
1792
1793         if (!i915_gem_obj_ggtt_bound(ctx_obj))
1794                 seq_puts(m, "\tNot bound in GGTT\n");
1795         else
1796                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1797
1798         if (i915_gem_object_get_pages(ctx_obj)) {
1799                 seq_puts(m, "\tFailed to get pages for context object\n");
1800                 return;
1801         }
1802
1803         page = i915_gem_object_get_page(ctx_obj, 1);
1804         if (!WARN_ON(page == NULL)) {
1805                 reg_state = kmap_atomic(page);
1806
1807                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1808                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1809                                    ggtt_offset + 4096 + (j * 4),
1810                                    reg_state[j], reg_state[j + 1],
1811                                    reg_state[j + 2], reg_state[j + 3]);
1812                 }
1813                 kunmap_atomic(reg_state);
1814         }
1815
1816         seq_putc(m, '\n');
1817 }
1818
1819 static int i915_dump_lrc(struct seq_file *m, void *unused)
1820 {
1821         struct drm_info_node *node = (struct drm_info_node *) m->private;
1822         struct drm_device *dev = node->minor->dev;
1823         struct drm_i915_private *dev_priv = dev->dev_private;
1824         struct intel_engine_cs *ring;
1825         struct intel_context *ctx;
1826         int ret, i;
1827
1828         if (!i915.enable_execlists) {
1829                 seq_printf(m, "Logical Ring Contexts are disabled\n");
1830                 return 0;
1831         }
1832
1833         ret = mutex_lock_interruptible(&dev->struct_mutex);
1834         if (ret)
1835                 return ret;
1836
1837         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1838                 for_each_ring(ring, dev_priv, i) {
1839                         if (ring->default_context != ctx)
1840                                 i915_dump_lrc_obj(m, ring,
1841                                                   ctx->engine[i].state);
1842                 }
1843         }
1844
1845         mutex_unlock(&dev->struct_mutex);
1846
1847         return 0;
1848 }
1849
1850 static int i915_execlists(struct seq_file *m, void *data)
1851 {
1852         struct drm_info_node *node = (struct drm_info_node *)m->private;
1853         struct drm_device *dev = node->minor->dev;
1854         struct drm_i915_private *dev_priv = dev->dev_private;
1855         struct intel_engine_cs *ring;
1856         u32 status_pointer;
1857         u8 read_pointer;
1858         u8 write_pointer;
1859         u32 status;
1860         u32 ctx_id;
1861         struct list_head *cursor;
1862         int ring_id, i;
1863         int ret;
1864
1865         if (!i915.enable_execlists) {
1866                 seq_puts(m, "Logical Ring Contexts are disabled\n");
1867                 return 0;
1868         }
1869
1870         ret = mutex_lock_interruptible(&dev->struct_mutex);
1871         if (ret)
1872                 return ret;
1873
1874         intel_runtime_pm_get(dev_priv);
1875
1876         for_each_ring(ring, dev_priv, ring_id) {
1877                 struct intel_ctx_submit_request *head_req = NULL;
1878                 int count = 0;
1879                 unsigned long flags;
1880
1881                 seq_printf(m, "%s\n", ring->name);
1882
1883                 status = I915_READ(RING_EXECLIST_STATUS(ring));
1884                 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
1885                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
1886                            status, ctx_id);
1887
1888                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
1889                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
1890
1891                 read_pointer = ring->next_context_status_buffer;
1892                 write_pointer = status_pointer & 0x07;
1893                 if (read_pointer > write_pointer)
1894                         write_pointer += 6;
1895                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
1896                            read_pointer, write_pointer);
1897
1898                 for (i = 0; i < 6; i++) {
1899                         status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
1900                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
1901
1902                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
1903                                    i, status, ctx_id);
1904                 }
1905
1906                 spin_lock_irqsave(&ring->execlist_lock, flags);
1907                 list_for_each(cursor, &ring->execlist_queue)
1908                         count++;
1909                 head_req = list_first_entry_or_null(&ring->execlist_queue,
1910                                 struct intel_ctx_submit_request, execlist_link);
1911                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
1912
1913                 seq_printf(m, "\t%d requests in queue\n", count);
1914                 if (head_req) {
1915                         struct drm_i915_gem_object *ctx_obj;
1916
1917                         ctx_obj = head_req->ctx->engine[ring_id].state;
1918                         seq_printf(m, "\tHead request id: %u\n",
1919                                    intel_execlists_ctx_id(ctx_obj));
1920                         seq_printf(m, "\tHead request tail: %u\n",
1921                                    head_req->tail);
1922                 }
1923
1924                 seq_putc(m, '\n');
1925         }
1926
1927         intel_runtime_pm_put(dev_priv);
1928         mutex_unlock(&dev->struct_mutex);
1929
1930         return 0;
1931 }
1932
1933 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1934 {
1935         struct drm_info_node *node = m->private;
1936         struct drm_device *dev = node->minor->dev;
1937         struct drm_i915_private *dev_priv = dev->dev_private;
1938         unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1939
1940         spin_lock_irq(&dev_priv->uncore.lock);
1941         if (IS_VALLEYVIEW(dev)) {
1942                 fw_rendercount = dev_priv->uncore.fw_rendercount;
1943                 fw_mediacount = dev_priv->uncore.fw_mediacount;
1944         } else
1945                 forcewake_count = dev_priv->uncore.forcewake_count;
1946         spin_unlock_irq(&dev_priv->uncore.lock);
1947
1948         if (IS_VALLEYVIEW(dev)) {
1949                 seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
1950                 seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
1951         } else
1952                 seq_printf(m, "forcewake count = %u\n", forcewake_count);
1953
1954         return 0;
1955 }
1956
1957 static const char *swizzle_string(unsigned swizzle)
1958 {
1959         switch (swizzle) {
1960         case I915_BIT_6_SWIZZLE_NONE:
1961                 return "none";
1962         case I915_BIT_6_SWIZZLE_9:
1963                 return "bit9";
1964         case I915_BIT_6_SWIZZLE_9_10:
1965                 return "bit9/bit10";
1966         case I915_BIT_6_SWIZZLE_9_11:
1967                 return "bit9/bit11";
1968         case I915_BIT_6_SWIZZLE_9_10_11:
1969                 return "bit9/bit10/bit11";
1970         case I915_BIT_6_SWIZZLE_9_17:
1971                 return "bit9/bit17";
1972         case I915_BIT_6_SWIZZLE_9_10_17:
1973                 return "bit9/bit10/bit17";
1974         case I915_BIT_6_SWIZZLE_UNKNOWN:
1975                 return "unknown";
1976         }
1977
1978         return "bug";
1979 }
1980
1981 static int i915_swizzle_info(struct seq_file *m, void *data)
1982 {
1983         struct drm_info_node *node = m->private;
1984         struct drm_device *dev = node->minor->dev;
1985         struct drm_i915_private *dev_priv = dev->dev_private;
1986         int ret;
1987
1988         ret = mutex_lock_interruptible(&dev->struct_mutex);
1989         if (ret)
1990                 return ret;
1991         intel_runtime_pm_get(dev_priv);
1992
1993         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1994                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1995         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1996                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1997
1998         if (IS_GEN3(dev) || IS_GEN4(dev)) {
1999                 seq_printf(m, "DDC = 0x%08x\n",
2000                            I915_READ(DCC));
2001                 seq_printf(m, "DDC2 = 0x%08x\n",
2002                            I915_READ(DCC2));
2003                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2004                            I915_READ16(C0DRB3));
2005                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2006                            I915_READ16(C1DRB3));
2007         } else if (INTEL_INFO(dev)->gen >= 6) {
2008                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2009                            I915_READ(MAD_DIMM_C0));
2010                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2011                            I915_READ(MAD_DIMM_C1));
2012                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2013                            I915_READ(MAD_DIMM_C2));
2014                 seq_printf(m, "TILECTL = 0x%08x\n",
2015                            I915_READ(TILECTL));
2016                 if (INTEL_INFO(dev)->gen >= 8)
2017                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2018                                    I915_READ(GAMTARBMODE));
2019                 else
2020                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2021                                    I915_READ(ARB_MODE));
2022                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2023                            I915_READ(DISP_ARB_CTL));
2024         }
2025
2026         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2027                 seq_puts(m, "L-shaped memory detected\n");
2028
2029         intel_runtime_pm_put(dev_priv);
2030         mutex_unlock(&dev->struct_mutex);
2031
2032         return 0;
2033 }
2034
2035 static int per_file_ctx(int id, void *ptr, void *data)
2036 {
2037         struct intel_context *ctx = ptr;
2038         struct seq_file *m = data;
2039         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2040
2041         if (!ppgtt) {
2042                 seq_printf(m, "  no ppgtt for context %d\n",
2043                            ctx->user_handle);
2044                 return 0;
2045         }
2046
2047         if (i915_gem_context_is_default(ctx))
2048                 seq_puts(m, "  default context:\n");
2049         else
2050                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2051         ppgtt->debug_dump(ppgtt, m);
2052
2053         return 0;
2054 }
2055
2056 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2057 {
2058         struct drm_i915_private *dev_priv = dev->dev_private;
2059         struct intel_engine_cs *ring;
2060         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2061         int unused, i;
2062
2063         if (!ppgtt)
2064                 return;
2065
2066         seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
2067         seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
2068         for_each_ring(ring, dev_priv, unused) {
2069                 seq_printf(m, "%s\n", ring->name);
2070                 for (i = 0; i < 4; i++) {
2071                         u32 offset = 0x270 + i * 8;
2072                         u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2073                         pdp <<= 32;
2074                         pdp |= I915_READ(ring->mmio_base + offset);
2075                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2076                 }
2077         }
2078 }
2079
2080 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2081 {
2082         struct drm_i915_private *dev_priv = dev->dev_private;
2083         struct intel_engine_cs *ring;
2084         struct drm_file *file;
2085         int i;
2086
2087         if (INTEL_INFO(dev)->gen == 6)
2088                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2089
2090         for_each_ring(ring, dev_priv, i) {
2091                 seq_printf(m, "%s\n", ring->name);
2092                 if (INTEL_INFO(dev)->gen == 7)
2093                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2094                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2095                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2096                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2097         }
2098         if (dev_priv->mm.aliasing_ppgtt) {
2099                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2100
2101                 seq_puts(m, "aliasing PPGTT:\n");
2102                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
2103
2104                 ppgtt->debug_dump(ppgtt, m);
2105         }
2106
2107         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2108                 struct drm_i915_file_private *file_priv = file->driver_priv;
2109
2110                 seq_printf(m, "proc: %s\n",
2111                            get_pid_task(file->pid, PIDTYPE_PID)->comm);
2112                 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2113         }
2114         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2115 }
2116
2117 static int i915_ppgtt_info(struct seq_file *m, void *data)
2118 {
2119         struct drm_info_node *node = m->private;
2120         struct drm_device *dev = node->minor->dev;
2121         struct drm_i915_private *dev_priv = dev->dev_private;
2122
2123         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2124         if (ret)
2125                 return ret;
2126         intel_runtime_pm_get(dev_priv);
2127
2128         if (INTEL_INFO(dev)->gen >= 8)
2129                 gen8_ppgtt_info(m, dev);
2130         else if (INTEL_INFO(dev)->gen >= 6)
2131                 gen6_ppgtt_info(m, dev);
2132
2133         intel_runtime_pm_put(dev_priv);
2134         mutex_unlock(&dev->struct_mutex);
2135
2136         return 0;
2137 }
2138
2139 static int i915_llc(struct seq_file *m, void *data)
2140 {
2141         struct drm_info_node *node = m->private;
2142         struct drm_device *dev = node->minor->dev;
2143         struct drm_i915_private *dev_priv = dev->dev_private;
2144
2145         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2146         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2147         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2148
2149         return 0;
2150 }
2151
2152 static int i915_edp_psr_status(struct seq_file *m, void *data)
2153 {
2154         struct drm_info_node *node = m->private;
2155         struct drm_device *dev = node->minor->dev;
2156         struct drm_i915_private *dev_priv = dev->dev_private;
2157         u32 psrperf = 0;
2158         bool enabled = false;
2159
2160         intel_runtime_pm_get(dev_priv);
2161
2162         mutex_lock(&dev_priv->psr.lock);
2163         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2164         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2165         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2166         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2167         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2168                    dev_priv->psr.busy_frontbuffer_bits);
2169         seq_printf(m, "Re-enable work scheduled: %s\n",
2170                    yesno(work_busy(&dev_priv->psr.work.work)));
2171
2172         enabled = HAS_PSR(dev) &&
2173                 I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2174         seq_printf(m, "HW Enabled & Active bit: %s\n", yesno(enabled));
2175
2176         if (HAS_PSR(dev))
2177                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2178                         EDP_PSR_PERF_CNT_MASK;
2179         seq_printf(m, "Performance_Counter: %u\n", psrperf);
2180         mutex_unlock(&dev_priv->psr.lock);
2181
2182         intel_runtime_pm_put(dev_priv);
2183         return 0;
2184 }
2185
2186 static int i915_sink_crc(struct seq_file *m, void *data)
2187 {
2188         struct drm_info_node *node = m->private;
2189         struct drm_device *dev = node->minor->dev;
2190         struct intel_encoder *encoder;
2191         struct intel_connector *connector;
2192         struct intel_dp *intel_dp = NULL;
2193         int ret;
2194         u8 crc[6];
2195
2196         drm_modeset_lock_all(dev);
2197         list_for_each_entry(connector, &dev->mode_config.connector_list,
2198                             base.head) {
2199
2200                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2201                         continue;
2202
2203                 if (!connector->base.encoder)
2204                         continue;
2205
2206                 encoder = to_intel_encoder(connector->base.encoder);
2207                 if (encoder->type != INTEL_OUTPUT_EDP)
2208                         continue;
2209
2210                 intel_dp = enc_to_intel_dp(&encoder->base);
2211
2212                 ret = intel_dp_sink_crc(intel_dp, crc);
2213                 if (ret)
2214                         goto out;
2215
2216                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2217                            crc[0], crc[1], crc[2],
2218                            crc[3], crc[4], crc[5]);
2219                 goto out;
2220         }
2221         ret = -ENODEV;
2222 out:
2223         drm_modeset_unlock_all(dev);
2224         return ret;
2225 }
2226
2227 static int i915_energy_uJ(struct seq_file *m, void *data)
2228 {
2229         struct drm_info_node *node = m->private;
2230         struct drm_device *dev = node->minor->dev;
2231         struct drm_i915_private *dev_priv = dev->dev_private;
2232         u64 power;
2233         u32 units;
2234
2235         if (INTEL_INFO(dev)->gen < 6)
2236                 return -ENODEV;
2237
2238         intel_runtime_pm_get(dev_priv);
2239
2240         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2241         power = (power & 0x1f00) >> 8;
2242         units = 1000000 / (1 << power); /* convert to uJ */
2243         power = I915_READ(MCH_SECP_NRG_STTS);
2244         power *= units;
2245
2246         intel_runtime_pm_put(dev_priv);
2247
2248         seq_printf(m, "%llu", (long long unsigned)power);
2249
2250         return 0;
2251 }
2252
2253 static int i915_pc8_status(struct seq_file *m, void *unused)
2254 {
2255         struct drm_info_node *node = m->private;
2256         struct drm_device *dev = node->minor->dev;
2257         struct drm_i915_private *dev_priv = dev->dev_private;
2258
2259         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2260                 seq_puts(m, "not supported\n");
2261                 return 0;
2262         }
2263
2264         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2265         seq_printf(m, "IRQs disabled: %s\n",
2266                    yesno(!intel_irqs_enabled(dev_priv)));
2267
2268         return 0;
2269 }
2270
2271 static const char *power_domain_str(enum intel_display_power_domain domain)
2272 {
2273         switch (domain) {
2274         case POWER_DOMAIN_PIPE_A:
2275                 return "PIPE_A";
2276         case POWER_DOMAIN_PIPE_B:
2277                 return "PIPE_B";
2278         case POWER_DOMAIN_PIPE_C:
2279                 return "PIPE_C";
2280         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2281                 return "PIPE_A_PANEL_FITTER";
2282         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2283                 return "PIPE_B_PANEL_FITTER";
2284         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2285                 return "PIPE_C_PANEL_FITTER";
2286         case POWER_DOMAIN_TRANSCODER_A:
2287                 return "TRANSCODER_A";
2288         case POWER_DOMAIN_TRANSCODER_B:
2289                 return "TRANSCODER_B";
2290         case POWER_DOMAIN_TRANSCODER_C:
2291                 return "TRANSCODER_C";
2292         case POWER_DOMAIN_TRANSCODER_EDP:
2293                 return "TRANSCODER_EDP";
2294         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2295                 return "PORT_DDI_A_2_LANES";
2296         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2297                 return "PORT_DDI_A_4_LANES";
2298         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2299                 return "PORT_DDI_B_2_LANES";
2300         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2301                 return "PORT_DDI_B_4_LANES";
2302         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2303                 return "PORT_DDI_C_2_LANES";
2304         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2305                 return "PORT_DDI_C_4_LANES";
2306         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2307                 return "PORT_DDI_D_2_LANES";
2308         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2309                 return "PORT_DDI_D_4_LANES";
2310         case POWER_DOMAIN_PORT_DSI:
2311                 return "PORT_DSI";
2312         case POWER_DOMAIN_PORT_CRT:
2313                 return "PORT_CRT";
2314         case POWER_DOMAIN_PORT_OTHER:
2315                 return "PORT_OTHER";
2316         case POWER_DOMAIN_VGA:
2317                 return "VGA";
2318         case POWER_DOMAIN_AUDIO:
2319                 return "AUDIO";
2320         case POWER_DOMAIN_PLLS:
2321                 return "PLLS";
2322         case POWER_DOMAIN_INIT:
2323                 return "INIT";
2324         default:
2325                 WARN_ON(1);
2326                 return "?";
2327         }
2328 }
2329
2330 static int i915_power_domain_info(struct seq_file *m, void *unused)
2331 {
2332         struct drm_info_node *node = m->private;
2333         struct drm_device *dev = node->minor->dev;
2334         struct drm_i915_private *dev_priv = dev->dev_private;
2335         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2336         int i;
2337
2338         mutex_lock(&power_domains->lock);
2339
2340         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2341         for (i = 0; i < power_domains->power_well_count; i++) {
2342                 struct i915_power_well *power_well;
2343                 enum intel_display_power_domain power_domain;
2344
2345                 power_well = &power_domains->power_wells[i];
2346                 seq_printf(m, "%-25s %d\n", power_well->name,
2347                            power_well->count);
2348
2349                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2350                      power_domain++) {
2351                         if (!(BIT(power_domain) & power_well->domains))
2352                                 continue;
2353
2354                         seq_printf(m, "  %-23s %d\n",
2355                                  power_domain_str(power_domain),
2356                                  power_domains->domain_use_count[power_domain]);
2357                 }
2358         }
2359
2360         mutex_unlock(&power_domains->lock);
2361
2362         return 0;
2363 }
2364
2365 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2366                                  struct drm_display_mode *mode)
2367 {
2368         int i;
2369
2370         for (i = 0; i < tabs; i++)
2371                 seq_putc(m, '\t');
2372
2373         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2374                    mode->base.id, mode->name,
2375                    mode->vrefresh, mode->clock,
2376                    mode->hdisplay, mode->hsync_start,
2377                    mode->hsync_end, mode->htotal,
2378                    mode->vdisplay, mode->vsync_start,
2379                    mode->vsync_end, mode->vtotal,
2380                    mode->type, mode->flags);
2381 }
2382
2383 static void intel_encoder_info(struct seq_file *m,
2384                                struct intel_crtc *intel_crtc,
2385                                struct intel_encoder *intel_encoder)
2386 {
2387         struct drm_info_node *node = m->private;
2388         struct drm_device *dev = node->minor->dev;
2389         struct drm_crtc *crtc = &intel_crtc->base;
2390         struct intel_connector *intel_connector;
2391         struct drm_encoder *encoder;
2392
2393         encoder = &intel_encoder->base;
2394         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2395                    encoder->base.id, encoder->name);
2396         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2397                 struct drm_connector *connector = &intel_connector->base;
2398                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2399                            connector->base.id,
2400                            connector->name,
2401                            drm_get_connector_status_name(connector->status));
2402                 if (connector->status == connector_status_connected) {
2403                         struct drm_display_mode *mode = &crtc->mode;
2404                         seq_printf(m, ", mode:\n");
2405                         intel_seq_print_mode(m, 2, mode);
2406                 } else {
2407                         seq_putc(m, '\n');
2408                 }
2409         }
2410 }
2411
2412 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2413 {
2414         struct drm_info_node *node = m->private;
2415         struct drm_device *dev = node->minor->dev;
2416         struct drm_crtc *crtc = &intel_crtc->base;
2417         struct intel_encoder *intel_encoder;
2418
2419         if (crtc->primary->fb)
2420                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2421                            crtc->primary->fb->base.id, crtc->x, crtc->y,
2422                            crtc->primary->fb->width, crtc->primary->fb->height);
2423         else
2424                 seq_puts(m, "\tprimary plane disabled\n");
2425         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2426                 intel_encoder_info(m, intel_crtc, intel_encoder);
2427 }
2428
2429 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2430 {
2431         struct drm_display_mode *mode = panel->fixed_mode;
2432
2433         seq_printf(m, "\tfixed mode:\n");
2434         intel_seq_print_mode(m, 2, mode);
2435 }
2436
2437 static void intel_dp_info(struct seq_file *m,
2438                           struct intel_connector *intel_connector)
2439 {
2440         struct intel_encoder *intel_encoder = intel_connector->encoder;
2441         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2442
2443         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2444         seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2445                    "no");
2446         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2447                 intel_panel_info(m, &intel_connector->panel);
2448 }
2449
2450 static void intel_hdmi_info(struct seq_file *m,
2451                             struct intel_connector *intel_connector)
2452 {
2453         struct intel_encoder *intel_encoder = intel_connector->encoder;
2454         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2455
2456         seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2457                    "no");
2458 }
2459
2460 static void intel_lvds_info(struct seq_file *m,
2461                             struct intel_connector *intel_connector)
2462 {
2463         intel_panel_info(m, &intel_connector->panel);
2464 }
2465
2466 static void intel_connector_info(struct seq_file *m,
2467                                  struct drm_connector *connector)
2468 {
2469         struct intel_connector *intel_connector = to_intel_connector(connector);
2470         struct intel_encoder *intel_encoder = intel_connector->encoder;
2471         struct drm_display_mode *mode;
2472
2473         seq_printf(m, "connector %d: type %s, status: %s\n",
2474                    connector->base.id, connector->name,
2475                    drm_get_connector_status_name(connector->status));
2476         if (connector->status == connector_status_connected) {
2477                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2478                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2479                            connector->display_info.width_mm,
2480                            connector->display_info.height_mm);
2481                 seq_printf(m, "\tsubpixel order: %s\n",
2482                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2483                 seq_printf(m, "\tCEA rev: %d\n",
2484                            connector->display_info.cea_rev);
2485         }
2486         if (intel_encoder) {
2487                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2488                     intel_encoder->type == INTEL_OUTPUT_EDP)
2489                         intel_dp_info(m, intel_connector);
2490                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2491                         intel_hdmi_info(m, intel_connector);
2492                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2493                         intel_lvds_info(m, intel_connector);
2494         }
2495
2496         seq_printf(m, "\tmodes:\n");
2497         list_for_each_entry(mode, &connector->modes, head)
2498                 intel_seq_print_mode(m, 2, mode);
2499 }
2500
2501 static bool cursor_active(struct drm_device *dev, int pipe)
2502 {
2503         struct drm_i915_private *dev_priv = dev->dev_private;
2504         u32 state;
2505
2506         if (IS_845G(dev) || IS_I865G(dev))
2507                 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2508         else
2509                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2510
2511         return state;
2512 }
2513
2514 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2515 {
2516         struct drm_i915_private *dev_priv = dev->dev_private;
2517         u32 pos;
2518
2519         pos = I915_READ(CURPOS(pipe));
2520
2521         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2522         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2523                 *x = -*x;
2524
2525         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2526         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2527                 *y = -*y;
2528
2529         return cursor_active(dev, pipe);
2530 }
2531
2532 static int i915_display_info(struct seq_file *m, void *unused)
2533 {
2534         struct drm_info_node *node = m->private;
2535         struct drm_device *dev = node->minor->dev;
2536         struct drm_i915_private *dev_priv = dev->dev_private;
2537         struct intel_crtc *crtc;
2538         struct drm_connector *connector;
2539
2540         intel_runtime_pm_get(dev_priv);
2541         drm_modeset_lock_all(dev);
2542         seq_printf(m, "CRTC info\n");
2543         seq_printf(m, "---------\n");
2544         for_each_intel_crtc(dev, crtc) {
2545                 bool active;
2546                 int x, y;
2547
2548                 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2549                            crtc->base.base.id, pipe_name(crtc->pipe),
2550                            yesno(crtc->active), crtc->config.pipe_src_w, crtc->config.pipe_src_h);
2551                 if (crtc->active) {
2552                         intel_crtc_info(m, crtc);
2553
2554                         active = cursor_position(dev, crtc->pipe, &x, &y);
2555                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2556                                    yesno(crtc->cursor_base),
2557                                    x, y, crtc->cursor_width, crtc->cursor_height,
2558                                    crtc->cursor_addr, yesno(active));
2559                 }
2560
2561                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2562                            yesno(!crtc->cpu_fifo_underrun_disabled),
2563                            yesno(!crtc->pch_fifo_underrun_disabled));
2564         }
2565
2566         seq_printf(m, "\n");
2567         seq_printf(m, "Connector info\n");
2568         seq_printf(m, "--------------\n");
2569         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2570                 intel_connector_info(m, connector);
2571         }
2572         drm_modeset_unlock_all(dev);
2573         intel_runtime_pm_put(dev_priv);
2574
2575         return 0;
2576 }
2577
2578 static int i915_semaphore_status(struct seq_file *m, void *unused)
2579 {
2580         struct drm_info_node *node = (struct drm_info_node *) m->private;
2581         struct drm_device *dev = node->minor->dev;
2582         struct drm_i915_private *dev_priv = dev->dev_private;
2583         struct intel_engine_cs *ring;
2584         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2585         int i, j, ret;
2586
2587         if (!i915_semaphore_is_enabled(dev)) {
2588                 seq_puts(m, "Semaphores are disabled\n");
2589                 return 0;
2590         }
2591
2592         ret = mutex_lock_interruptible(&dev->struct_mutex);
2593         if (ret)
2594                 return ret;
2595         intel_runtime_pm_get(dev_priv);
2596
2597         if (IS_BROADWELL(dev)) {
2598                 struct page *page;
2599                 uint64_t *seqno;
2600
2601                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2602
2603                 seqno = (uint64_t *)kmap_atomic(page);
2604                 for_each_ring(ring, dev_priv, i) {
2605                         uint64_t offset;
2606
2607                         seq_printf(m, "%s\n", ring->name);
2608
2609                         seq_puts(m, "  Last signal:");
2610                         for (j = 0; j < num_rings; j++) {
2611                                 offset = i * I915_NUM_RINGS + j;
2612                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2613                                            seqno[offset], offset * 8);
2614                         }
2615                         seq_putc(m, '\n');
2616
2617                         seq_puts(m, "  Last wait:  ");
2618                         for (j = 0; j < num_rings; j++) {
2619                                 offset = i + (j * I915_NUM_RINGS);
2620                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2621                                            seqno[offset], offset * 8);
2622                         }
2623                         seq_putc(m, '\n');
2624
2625                 }
2626                 kunmap_atomic(seqno);
2627         } else {
2628                 seq_puts(m, "  Last signal:");
2629                 for_each_ring(ring, dev_priv, i)
2630                         for (j = 0; j < num_rings; j++)
2631                                 seq_printf(m, "0x%08x\n",
2632                                            I915_READ(ring->semaphore.mbox.signal[j]));
2633                 seq_putc(m, '\n');
2634         }
2635
2636         seq_puts(m, "\nSync seqno:\n");
2637         for_each_ring(ring, dev_priv, i) {
2638                 for (j = 0; j < num_rings; j++) {
2639                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
2640                 }
2641                 seq_putc(m, '\n');
2642         }
2643         seq_putc(m, '\n');
2644
2645         intel_runtime_pm_put(dev_priv);
2646         mutex_unlock(&dev->struct_mutex);
2647         return 0;
2648 }
2649
2650 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2651 {
2652         struct drm_info_node *node = (struct drm_info_node *) m->private;
2653         struct drm_device *dev = node->minor->dev;
2654         struct drm_i915_private *dev_priv = dev->dev_private;
2655         int i;
2656
2657         drm_modeset_lock_all(dev);
2658         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2659                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2660
2661                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2662                 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
2663                            pll->config.crtc_mask, pll->active, yesno(pll->on));
2664                 seq_printf(m, " tracked hardware state:\n");
2665                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
2666                 seq_printf(m, " dpll_md: 0x%08x\n",
2667                            pll->config.hw_state.dpll_md);
2668                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
2669                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
2670                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
2671         }
2672         drm_modeset_unlock_all(dev);
2673
2674         return 0;
2675 }
2676
2677 static int i915_wa_registers(struct seq_file *m, void *unused)
2678 {
2679         int i;
2680         int ret;
2681         struct drm_info_node *node = (struct drm_info_node *) m->private;
2682         struct drm_device *dev = node->minor->dev;
2683         struct drm_i915_private *dev_priv = dev->dev_private;
2684
2685         ret = mutex_lock_interruptible(&dev->struct_mutex);
2686         if (ret)
2687                 return ret;
2688
2689         intel_runtime_pm_get(dev_priv);
2690
2691         seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
2692         for (i = 0; i < dev_priv->workarounds.count; ++i) {
2693                 u32 addr, mask, value, read;
2694                 bool ok;
2695
2696                 addr = dev_priv->workarounds.reg[i].addr;
2697                 mask = dev_priv->workarounds.reg[i].mask;
2698                 value = dev_priv->workarounds.reg[i].value;
2699                 read = I915_READ(addr);
2700                 ok = (value & mask) == (read & mask);
2701                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
2702                            addr, value, mask, read, ok ? "OK" : "FAIL");
2703         }
2704
2705         intel_runtime_pm_put(dev_priv);
2706         mutex_unlock(&dev->struct_mutex);
2707
2708         return 0;
2709 }
2710
2711 static int i915_ddb_info(struct seq_file *m, void *unused)
2712 {
2713         struct drm_info_node *node = m->private;
2714         struct drm_device *dev = node->minor->dev;
2715         struct drm_i915_private *dev_priv = dev->dev_private;
2716         struct skl_ddb_allocation *ddb;
2717         struct skl_ddb_entry *entry;
2718         enum pipe pipe;
2719         int plane;
2720
2721         drm_modeset_lock_all(dev);
2722
2723         ddb = &dev_priv->wm.skl_hw.ddb;
2724
2725         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
2726
2727         for_each_pipe(dev_priv, pipe) {
2728                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
2729
2730                 for_each_plane(pipe, plane) {
2731                         entry = &ddb->plane[pipe][plane];
2732                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
2733                                    entry->start, entry->end,
2734                                    skl_ddb_entry_size(entry));
2735                 }
2736
2737                 entry = &ddb->cursor[pipe];
2738                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
2739                            entry->end, skl_ddb_entry_size(entry));
2740         }
2741
2742         drm_modeset_unlock_all(dev);
2743
2744         return 0;
2745 }
2746
2747 struct pipe_crc_info {
2748         const char *name;
2749         struct drm_device *dev;
2750         enum pipe pipe;
2751 };
2752
2753 static int i915_dp_mst_info(struct seq_file *m, void *unused)
2754 {
2755         struct drm_info_node *node = (struct drm_info_node *) m->private;
2756         struct drm_device *dev = node->minor->dev;
2757         struct drm_encoder *encoder;
2758         struct intel_encoder *intel_encoder;
2759         struct intel_digital_port *intel_dig_port;
2760         drm_modeset_lock_all(dev);
2761         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2762                 intel_encoder = to_intel_encoder(encoder);
2763                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
2764                         continue;
2765                 intel_dig_port = enc_to_dig_port(encoder);
2766                 if (!intel_dig_port->dp.can_mst)
2767                         continue;
2768
2769                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
2770         }
2771         drm_modeset_unlock_all(dev);
2772         return 0;
2773 }
2774
2775 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2776 {
2777         struct pipe_crc_info *info = inode->i_private;
2778         struct drm_i915_private *dev_priv = info->dev->dev_private;
2779         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2780
2781         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2782                 return -ENODEV;
2783
2784         spin_lock_irq(&pipe_crc->lock);
2785
2786         if (pipe_crc->opened) {
2787                 spin_unlock_irq(&pipe_crc->lock);
2788                 return -EBUSY; /* already open */
2789         }
2790
2791         pipe_crc->opened = true;
2792         filep->private_data = inode->i_private;
2793
2794         spin_unlock_irq(&pipe_crc->lock);
2795
2796         return 0;
2797 }
2798
2799 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2800 {
2801         struct pipe_crc_info *info = inode->i_private;
2802         struct drm_i915_private *dev_priv = info->dev->dev_private;
2803         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2804
2805         spin_lock_irq(&pipe_crc->lock);
2806         pipe_crc->opened = false;
2807         spin_unlock_irq(&pipe_crc->lock);
2808
2809         return 0;
2810 }
2811
2812 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2813 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
2814 /* account for \'0' */
2815 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
2816
2817 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2818 {
2819         assert_spin_locked(&pipe_crc->lock);
2820         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2821                         INTEL_PIPE_CRC_ENTRIES_NR);
2822 }
2823
2824 static ssize_t
2825 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2826                    loff_t *pos)
2827 {
2828         struct pipe_crc_info *info = filep->private_data;
2829         struct drm_device *dev = info->dev;
2830         struct drm_i915_private *dev_priv = dev->dev_private;
2831         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2832         char buf[PIPE_CRC_BUFFER_LEN];
2833         int head, tail, n_entries, n;
2834         ssize_t bytes_read;
2835
2836         /*
2837          * Don't allow user space to provide buffers not big enough to hold
2838          * a line of data.
2839          */
2840         if (count < PIPE_CRC_LINE_LEN)
2841                 return -EINVAL;
2842
2843         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2844                 return 0;
2845
2846         /* nothing to read */
2847         spin_lock_irq(&pipe_crc->lock);
2848         while (pipe_crc_data_count(pipe_crc) == 0) {
2849                 int ret;
2850
2851                 if (filep->f_flags & O_NONBLOCK) {
2852                         spin_unlock_irq(&pipe_crc->lock);
2853                         return -EAGAIN;
2854                 }
2855
2856                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2857                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2858                 if (ret) {
2859                         spin_unlock_irq(&pipe_crc->lock);
2860                         return ret;
2861                 }
2862         }
2863
2864         /* We now have one or more entries to read */
2865         head = pipe_crc->head;
2866         tail = pipe_crc->tail;
2867         n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
2868                         count / PIPE_CRC_LINE_LEN);
2869         spin_unlock_irq(&pipe_crc->lock);
2870
2871         bytes_read = 0;
2872         n = 0;
2873         do {
2874                 struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
2875                 int ret;
2876
2877                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2878                                        "%8u %8x %8x %8x %8x %8x\n",
2879                                        entry->frame, entry->crc[0],
2880                                        entry->crc[1], entry->crc[2],
2881                                        entry->crc[3], entry->crc[4]);
2882
2883                 ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
2884                                    buf, PIPE_CRC_LINE_LEN);
2885                 if (ret == PIPE_CRC_LINE_LEN)
2886                         return -EFAULT;
2887
2888                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2889                 tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2890                 n++;
2891         } while (--n_entries);
2892
2893         spin_lock_irq(&pipe_crc->lock);
2894         pipe_crc->tail = tail;
2895         spin_unlock_irq(&pipe_crc->lock);
2896
2897         return bytes_read;
2898 }
2899
2900 static const struct file_operations i915_pipe_crc_fops = {
2901         .owner = THIS_MODULE,
2902         .open = i915_pipe_crc_open,
2903         .read = i915_pipe_crc_read,
2904         .release = i915_pipe_crc_release,
2905 };
2906
2907 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2908         {
2909                 .name = "i915_pipe_A_crc",
2910                 .pipe = PIPE_A,
2911         },
2912         {
2913                 .name = "i915_pipe_B_crc",
2914                 .pipe = PIPE_B,
2915         },
2916         {
2917                 .name = "i915_pipe_C_crc",
2918                 .pipe = PIPE_C,
2919         },
2920 };
2921
2922 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
2923                                 enum pipe pipe)
2924 {
2925         struct drm_device *dev = minor->dev;
2926         struct dentry *ent;
2927         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2928
2929         info->dev = dev;
2930         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2931                                   &i915_pipe_crc_fops);
2932         if (!ent)
2933                 return -ENOMEM;
2934
2935         return drm_add_fake_info_node(minor, ent, info);
2936 }
2937
2938 static const char * const pipe_crc_sources[] = {
2939         "none",
2940         "plane1",
2941         "plane2",
2942         "pf",
2943         "pipe",
2944         "TV",
2945         "DP-B",
2946         "DP-C",
2947         "DP-D",
2948         "auto",
2949 };
2950
2951 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2952 {
2953         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2954         return pipe_crc_sources[source];
2955 }
2956
2957 static int display_crc_ctl_show(struct seq_file *m, void *data)
2958 {
2959         struct drm_device *dev = m->private;
2960         struct drm_i915_private *dev_priv = dev->dev_private;
2961         int i;
2962
2963         for (i = 0; i < I915_MAX_PIPES; i++)
2964                 seq_printf(m, "%c %s\n", pipe_name(i),
2965                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2966
2967         return 0;
2968 }
2969
2970 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2971 {
2972         struct drm_device *dev = inode->i_private;
2973
2974         return single_open(file, display_crc_ctl_show, dev);
2975 }
2976
2977 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2978                                  uint32_t *val)
2979 {
2980         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2981                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2982
2983         switch (*source) {
2984         case INTEL_PIPE_CRC_SOURCE_PIPE:
2985                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
2986                 break;
2987         case INTEL_PIPE_CRC_SOURCE_NONE:
2988                 *val = 0;
2989                 break;
2990         default:
2991                 return -EINVAL;
2992         }
2993
2994         return 0;
2995 }
2996
2997 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
2998                                      enum intel_pipe_crc_source *source)
2999 {
3000         struct intel_encoder *encoder;
3001         struct intel_crtc *crtc;
3002         struct intel_digital_port *dig_port;
3003         int ret = 0;
3004
3005         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3006
3007         drm_modeset_lock_all(dev);
3008         for_each_intel_encoder(dev, encoder) {
3009                 if (!encoder->base.crtc)
3010                         continue;
3011
3012                 crtc = to_intel_crtc(encoder->base.crtc);
3013
3014                 if (crtc->pipe != pipe)
3015                         continue;
3016
3017                 switch (encoder->type) {
3018                 case INTEL_OUTPUT_TVOUT:
3019                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3020                         break;
3021                 case INTEL_OUTPUT_DISPLAYPORT:
3022                 case INTEL_OUTPUT_EDP:
3023                         dig_port = enc_to_dig_port(&encoder->base);
3024                         switch (dig_port->port) {
3025                         case PORT_B:
3026                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3027                                 break;
3028                         case PORT_C:
3029                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3030                                 break;
3031                         case PORT_D:
3032                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3033                                 break;
3034                         default:
3035                                 WARN(1, "nonexisting DP port %c\n",
3036                                      port_name(dig_port->port));
3037                                 break;
3038                         }
3039                         break;
3040                 default:
3041                         break;
3042                 }
3043         }
3044         drm_modeset_unlock_all(dev);
3045
3046         return ret;
3047 }
3048
3049 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3050                                 enum pipe pipe,
3051                                 enum intel_pipe_crc_source *source,
3052                                 uint32_t *val)
3053 {
3054         struct drm_i915_private *dev_priv = dev->dev_private;
3055         bool need_stable_symbols = false;
3056
3057         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3058                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3059                 if (ret)
3060                         return ret;
3061         }
3062
3063         switch (*source) {
3064         case INTEL_PIPE_CRC_SOURCE_PIPE:
3065                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3066                 break;
3067         case INTEL_PIPE_CRC_SOURCE_DP_B:
3068                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3069                 need_stable_symbols = true;
3070                 break;
3071         case INTEL_PIPE_CRC_SOURCE_DP_C:
3072                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3073                 need_stable_symbols = true;
3074                 break;
3075         case INTEL_PIPE_CRC_SOURCE_NONE:
3076                 *val = 0;
3077                 break;
3078         default:
3079                 return -EINVAL;
3080         }
3081
3082         /*
3083          * When the pipe CRC tap point is after the transcoders we need
3084          * to tweak symbol-level features to produce a deterministic series of
3085          * symbols for a given frame. We need to reset those features only once
3086          * a frame (instead of every nth symbol):
3087          *   - DC-balance: used to ensure a better clock recovery from the data
3088          *     link (SDVO)
3089          *   - DisplayPort scrambling: used for EMI reduction
3090          */
3091         if (need_stable_symbols) {
3092                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3093
3094                 tmp |= DC_BALANCE_RESET_VLV;
3095                 if (pipe == PIPE_A)
3096                         tmp |= PIPE_A_SCRAMBLE_RESET;
3097                 else
3098                         tmp |= PIPE_B_SCRAMBLE_RESET;
3099
3100                 I915_WRITE(PORT_DFT2_G4X, tmp);
3101         }
3102
3103         return 0;
3104 }
3105
3106 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3107                                  enum pipe pipe,
3108                                  enum intel_pipe_crc_source *source,
3109                                  uint32_t *val)
3110 {
3111         struct drm_i915_private *dev_priv = dev->dev_private;
3112         bool need_stable_symbols = false;
3113
3114         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3115                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3116                 if (ret)
3117                         return ret;
3118         }
3119
3120         switch (*source) {
3121         case INTEL_PIPE_CRC_SOURCE_PIPE:
3122                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3123                 break;
3124         case INTEL_PIPE_CRC_SOURCE_TV:
3125                 if (!SUPPORTS_TV(dev))
3126                         return -EINVAL;
3127                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3128                 break;
3129         case INTEL_PIPE_CRC_SOURCE_DP_B:
3130                 if (!IS_G4X(dev))
3131                         return -EINVAL;
3132                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3133                 need_stable_symbols = true;
3134                 break;
3135         case INTEL_PIPE_CRC_SOURCE_DP_C:
3136                 if (!IS_G4X(dev))
3137                         return -EINVAL;
3138                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3139                 need_stable_symbols = true;
3140                 break;
3141         case INTEL_PIPE_CRC_SOURCE_DP_D:
3142                 if (!IS_G4X(dev))
3143                         return -EINVAL;
3144                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3145                 need_stable_symbols = true;
3146                 break;
3147         case INTEL_PIPE_CRC_SOURCE_NONE:
3148                 *val = 0;
3149                 break;
3150         default:
3151                 return -EINVAL;
3152         }
3153
3154         /*
3155          * When the pipe CRC tap point is after the transcoders we need
3156          * to tweak symbol-level features to produce a deterministic series of
3157          * symbols for a given frame. We need to reset those features only once
3158          * a frame (instead of every nth symbol):
3159          *   - DC-balance: used to ensure a better clock recovery from the data
3160          *     link (SDVO)
3161          *   - DisplayPort scrambling: used for EMI reduction
3162          */
3163         if (need_stable_symbols) {
3164                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3165
3166                 WARN_ON(!IS_G4X(dev));
3167
3168                 I915_WRITE(PORT_DFT_I9XX,
3169                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3170
3171                 if (pipe == PIPE_A)
3172                         tmp |= PIPE_A_SCRAMBLE_RESET;
3173                 else
3174                         tmp |= PIPE_B_SCRAMBLE_RESET;
3175
3176                 I915_WRITE(PORT_DFT2_G4X, tmp);
3177         }
3178
3179         return 0;
3180 }
3181
3182 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3183                                          enum pipe pipe)
3184 {
3185         struct drm_i915_private *dev_priv = dev->dev_private;
3186         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3187
3188         if (pipe == PIPE_A)
3189                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3190         else
3191                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3192         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3193                 tmp &= ~DC_BALANCE_RESET_VLV;
3194         I915_WRITE(PORT_DFT2_G4X, tmp);
3195
3196 }
3197
3198 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3199                                          enum pipe pipe)
3200 {
3201         struct drm_i915_private *dev_priv = dev->dev_private;
3202         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3203
3204         if (pipe == PIPE_A)
3205                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3206         else
3207                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3208         I915_WRITE(PORT_DFT2_G4X, tmp);
3209
3210         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3211                 I915_WRITE(PORT_DFT_I9XX,
3212                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3213         }
3214 }
3215
3216 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3217                                 uint32_t *val)
3218 {
3219         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3220                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3221
3222         switch (*source) {
3223         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3224                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3225                 break;
3226         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3227                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3228                 break;
3229         case INTEL_PIPE_CRC_SOURCE_PIPE:
3230                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3231                 break;
3232         case INTEL_PIPE_CRC_SOURCE_NONE:
3233                 *val = 0;
3234                 break;
3235         default:
3236                 return -EINVAL;
3237         }
3238
3239         return 0;
3240 }
3241
3242 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3243 {
3244         struct drm_i915_private *dev_priv = dev->dev_private;
3245         struct intel_crtc *crtc =
3246                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3247
3248         drm_modeset_lock_all(dev);
3249         /*
3250          * If we use the eDP transcoder we need to make sure that we don't
3251          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3252          * relevant on hsw with pipe A when using the always-on power well
3253          * routing.
3254          */
3255         if (crtc->config.cpu_transcoder == TRANSCODER_EDP &&
3256             !crtc->config.pch_pfit.enabled) {
3257                 crtc->config.pch_pfit.force_thru = true;
3258
3259                 intel_display_power_get(dev_priv,
3260                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3261
3262                 dev_priv->display.crtc_disable(&crtc->base);
3263                 dev_priv->display.crtc_enable(&crtc->base);
3264         }
3265         drm_modeset_unlock_all(dev);
3266 }
3267
3268 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3269 {
3270         struct drm_i915_private *dev_priv = dev->dev_private;
3271         struct intel_crtc *crtc =
3272                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3273
3274         drm_modeset_lock_all(dev);
3275         /*
3276          * If we use the eDP transcoder we need to make sure that we don't
3277          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3278          * relevant on hsw with pipe A when using the always-on power well
3279          * routing.
3280          */
3281         if (crtc->config.pch_pfit.force_thru) {
3282                 crtc->config.pch_pfit.force_thru = false;
3283
3284                 dev_priv->display.crtc_disable(&crtc->base);
3285                 dev_priv->display.crtc_enable(&crtc->base);
3286
3287                 intel_display_power_put(dev_priv,
3288                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3289         }
3290         drm_modeset_unlock_all(dev);
3291 }
3292
3293 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3294                                 enum pipe pipe,
3295                                 enum intel_pipe_crc_source *source,
3296                                 uint32_t *val)
3297 {
3298         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3299                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3300
3301         switch (*source) {
3302         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3303                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3304                 break;
3305         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3306                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3307                 break;
3308         case INTEL_PIPE_CRC_SOURCE_PF:
3309                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3310                         hsw_trans_edp_pipe_A_crc_wa(dev);
3311
3312                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3313                 break;
3314         case INTEL_PIPE_CRC_SOURCE_NONE:
3315                 *val = 0;
3316                 break;
3317         default:
3318                 return -EINVAL;
3319         }
3320
3321         return 0;
3322 }
3323
3324 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3325                                enum intel_pipe_crc_source source)
3326 {
3327         struct drm_i915_private *dev_priv = dev->dev_private;
3328         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3329         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3330                                                                         pipe));
3331         u32 val = 0; /* shut up gcc */
3332         int ret;
3333
3334         if (pipe_crc->source == source)
3335                 return 0;
3336
3337         /* forbid changing the source without going back to 'none' */
3338         if (pipe_crc->source && source)
3339                 return -EINVAL;
3340
3341         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3342                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3343                 return -EIO;
3344         }
3345
3346         if (IS_GEN2(dev))
3347                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3348         else if (INTEL_INFO(dev)->gen < 5)
3349                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3350         else if (IS_VALLEYVIEW(dev))
3351                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3352         else if (IS_GEN5(dev) || IS_GEN6(dev))
3353                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3354         else
3355                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3356
3357         if (ret != 0)
3358                 return ret;
3359
3360         /* none -> real source transition */
3361         if (source) {
3362                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3363                                  pipe_name(pipe), pipe_crc_source_name(source));
3364
3365                 pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
3366                                             INTEL_PIPE_CRC_ENTRIES_NR,
3367                                             GFP_KERNEL);
3368                 if (!pipe_crc->entries)
3369                         return -ENOMEM;
3370
3371                 /*
3372                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3373                  * enabled and disabled dynamically based on package C states,
3374                  * user space can't make reliable use of the CRCs, so let's just
3375                  * completely disable it.
3376                  */
3377                 hsw_disable_ips(crtc);
3378
3379                 spin_lock_irq(&pipe_crc->lock);
3380                 pipe_crc->head = 0;
3381                 pipe_crc->tail = 0;
3382                 spin_unlock_irq(&pipe_crc->lock);
3383         }
3384
3385         pipe_crc->source = source;
3386
3387         I915_WRITE(PIPE_CRC_CTL(pipe), val);
3388         POSTING_READ(PIPE_CRC_CTL(pipe));
3389
3390         /* real source -> none transition */
3391         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3392                 struct intel_pipe_crc_entry *entries;
3393                 struct intel_crtc *crtc =
3394                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3395
3396                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3397                                  pipe_name(pipe));
3398
3399                 drm_modeset_lock(&crtc->base.mutex, NULL);
3400                 if (crtc->active)
3401                         intel_wait_for_vblank(dev, pipe);
3402                 drm_modeset_unlock(&crtc->base.mutex);
3403
3404                 spin_lock_irq(&pipe_crc->lock);
3405                 entries = pipe_crc->entries;
3406                 pipe_crc->entries = NULL;
3407                 spin_unlock_irq(&pipe_crc->lock);
3408
3409                 kfree(entries);
3410
3411                 if (IS_G4X(dev))
3412                         g4x_undo_pipe_scramble_reset(dev, pipe);
3413                 else if (IS_VALLEYVIEW(dev))
3414                         vlv_undo_pipe_scramble_reset(dev, pipe);
3415                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3416                         hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3417
3418                 hsw_enable_ips(crtc);
3419         }
3420
3421         return 0;
3422 }
3423
3424 /*
3425  * Parse pipe CRC command strings:
3426  *   command: wsp* object wsp+ name wsp+ source wsp*
3427  *   object: 'pipe'
3428  *   name: (A | B | C)
3429  *   source: (none | plane1 | plane2 | pf)
3430  *   wsp: (#0x20 | #0x9 | #0xA)+
3431  *
3432  * eg.:
3433  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3434  *  "pipe A none"    ->  Stop CRC
3435  */
3436 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3437 {
3438         int n_words = 0;
3439
3440         while (*buf) {
3441                 char *end;
3442
3443                 /* skip leading white space */
3444                 buf = skip_spaces(buf);
3445                 if (!*buf)
3446                         break;  /* end of buffer */
3447
3448                 /* find end of word */
3449                 for (end = buf; *end && !isspace(*end); end++)
3450                         ;
3451
3452                 if (n_words == max_words) {
3453                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3454                                          max_words);
3455                         return -EINVAL; /* ran out of words[] before bytes */
3456                 }
3457
3458                 if (*end)
3459                         *end++ = '\0';
3460                 words[n_words++] = buf;
3461                 buf = end;
3462         }
3463
3464         return n_words;
3465 }
3466
3467 enum intel_pipe_crc_object {
3468         PIPE_CRC_OBJECT_PIPE,
3469 };
3470
3471 static const char * const pipe_crc_objects[] = {
3472         "pipe",
3473 };
3474
3475 static int
3476 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3477 {
3478         int i;
3479
3480         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3481                 if (!strcmp(buf, pipe_crc_objects[i])) {
3482                         *o = i;
3483                         return 0;
3484                     }
3485
3486         return -EINVAL;
3487 }
3488
3489 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3490 {
3491         const char name = buf[0];
3492
3493         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3494                 return -EINVAL;
3495
3496         *pipe = name - 'A';
3497
3498         return 0;
3499 }
3500
3501 static int
3502 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3503 {
3504         int i;
3505
3506         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3507                 if (!strcmp(buf, pipe_crc_sources[i])) {
3508                         *s = i;
3509                         return 0;
3510                     }
3511
3512         return -EINVAL;
3513 }
3514
3515 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3516 {
3517 #define N_WORDS 3
3518         int n_words;
3519         char *words[N_WORDS];
3520         enum pipe pipe;
3521         enum intel_pipe_crc_object object;
3522         enum intel_pipe_crc_source source;
3523
3524         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3525         if (n_words != N_WORDS) {
3526                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3527                                  N_WORDS);
3528                 return -EINVAL;
3529         }
3530
3531         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3532                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3533                 return -EINVAL;
3534         }
3535
3536         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3537                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3538                 return -EINVAL;
3539         }
3540
3541         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3542                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3543                 return -EINVAL;
3544         }
3545
3546         return pipe_crc_set_source(dev, pipe, source);
3547 }
3548
3549 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3550                                      size_t len, loff_t *offp)
3551 {
3552         struct seq_file *m = file->private_data;
3553         struct drm_device *dev = m->private;
3554         char *tmpbuf;
3555         int ret;
3556
3557         if (len == 0)
3558                 return 0;
3559
3560         if (len > PAGE_SIZE - 1) {
3561                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3562                                  PAGE_SIZE);
3563                 return -E2BIG;
3564         }
3565
3566         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3567         if (!tmpbuf)
3568                 return -ENOMEM;
3569
3570         if (copy_from_user(tmpbuf, ubuf, len)) {
3571                 ret = -EFAULT;
3572                 goto out;
3573         }
3574         tmpbuf[len] = '\0';
3575
3576         ret = display_crc_ctl_parse(dev, tmpbuf, len);
3577
3578 out:
3579         kfree(tmpbuf);
3580         if (ret < 0)
3581                 return ret;
3582
3583         *offp += len;
3584         return len;
3585 }
3586
3587 static const struct file_operations i915_display_crc_ctl_fops = {
3588         .owner = THIS_MODULE,
3589         .open = display_crc_ctl_open,
3590         .read = seq_read,
3591         .llseek = seq_lseek,
3592         .release = single_release,
3593         .write = display_crc_ctl_write
3594 };
3595
3596 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3597 {
3598         struct drm_device *dev = m->private;
3599         int num_levels = ilk_wm_max_level(dev) + 1;
3600         int level;
3601
3602         drm_modeset_lock_all(dev);
3603
3604         for (level = 0; level < num_levels; level++) {
3605                 unsigned int latency = wm[level];
3606
3607                 /*
3608                  * - WM1+ latency values in 0.5us units
3609                  * - latencies are in us on gen9
3610                  */
3611                 if (INTEL_INFO(dev)->gen >= 9)
3612                         latency *= 10;
3613                 else if (level > 0)
3614                         latency *= 5;
3615
3616                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3617                            level, wm[level], latency / 10, latency % 10);
3618         }
3619
3620         drm_modeset_unlock_all(dev);
3621 }
3622
3623 static int pri_wm_latency_show(struct seq_file *m, void *data)
3624 {
3625         struct drm_device *dev = m->private;
3626         struct drm_i915_private *dev_priv = dev->dev_private;
3627         const uint16_t *latencies;
3628
3629         if (INTEL_INFO(dev)->gen >= 9)
3630                 latencies = dev_priv->wm.skl_latency;
3631         else
3632                 latencies = to_i915(dev)->wm.pri_latency;
3633
3634         wm_latency_show(m, latencies);
3635
3636         return 0;
3637 }
3638
3639 static int spr_wm_latency_show(struct seq_file *m, void *data)
3640 {
3641         struct drm_device *dev = m->private;
3642         struct drm_i915_private *dev_priv = dev->dev_private;
3643         const uint16_t *latencies;
3644
3645         if (INTEL_INFO(dev)->gen >= 9)
3646                 latencies = dev_priv->wm.skl_latency;
3647         else
3648                 latencies = to_i915(dev)->wm.spr_latency;
3649
3650         wm_latency_show(m, latencies);
3651
3652         return 0;
3653 }
3654
3655 static int cur_wm_latency_show(struct seq_file *m, void *data)
3656 {
3657         struct drm_device *dev = m->private;
3658         struct drm_i915_private *dev_priv = dev->dev_private;
3659         const uint16_t *latencies;
3660
3661         if (INTEL_INFO(dev)->gen >= 9)
3662                 latencies = dev_priv->wm.skl_latency;
3663         else
3664                 latencies = to_i915(dev)->wm.cur_latency;
3665
3666         wm_latency_show(m, latencies);
3667
3668         return 0;
3669 }
3670
3671 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3672 {
3673         struct drm_device *dev = inode->i_private;
3674
3675         if (HAS_GMCH_DISPLAY(dev))
3676                 return -ENODEV;
3677
3678         return single_open(file, pri_wm_latency_show, dev);
3679 }
3680
3681 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3682 {
3683         struct drm_device *dev = inode->i_private;
3684
3685         if (HAS_GMCH_DISPLAY(dev))
3686                 return -ENODEV;
3687
3688         return single_open(file, spr_wm_latency_show, dev);
3689 }
3690
3691 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3692 {
3693         struct drm_device *dev = inode->i_private;
3694
3695         if (HAS_GMCH_DISPLAY(dev))
3696                 return -ENODEV;
3697
3698         return single_open(file, cur_wm_latency_show, dev);
3699 }
3700
3701 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3702                                 size_t len, loff_t *offp, uint16_t wm[8])
3703 {
3704         struct seq_file *m = file->private_data;
3705         struct drm_device *dev = m->private;
3706         uint16_t new[8] = { 0 };
3707         int num_levels = ilk_wm_max_level(dev) + 1;
3708         int level;
3709         int ret;
3710         char tmp[32];
3711
3712         if (len >= sizeof(tmp))
3713                 return -EINVAL;
3714
3715         if (copy_from_user(tmp, ubuf, len))
3716                 return -EFAULT;
3717
3718         tmp[len] = '\0';
3719
3720         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
3721                      &new[0], &new[1], &new[2], &new[3],
3722                      &new[4], &new[5], &new[6], &new[7]);
3723         if (ret != num_levels)
3724                 return -EINVAL;
3725
3726         drm_modeset_lock_all(dev);
3727
3728         for (level = 0; level < num_levels; level++)
3729                 wm[level] = new[level];
3730
3731         drm_modeset_unlock_all(dev);
3732
3733         return len;
3734 }
3735
3736
3737 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3738                                     size_t len, loff_t *offp)
3739 {
3740         struct seq_file *m = file->private_data;
3741         struct drm_device *dev = m->private;
3742         struct drm_i915_private *dev_priv = dev->dev_private;
3743         uint16_t *latencies;
3744
3745         if (INTEL_INFO(dev)->gen >= 9)
3746                 latencies = dev_priv->wm.skl_latency;
3747         else
3748                 latencies = to_i915(dev)->wm.pri_latency;
3749
3750         return wm_latency_write(file, ubuf, len, offp, latencies);
3751 }
3752
3753 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3754                                     size_t len, loff_t *offp)
3755 {
3756         struct seq_file *m = file->private_data;
3757         struct drm_device *dev = m->private;
3758         struct drm_i915_private *dev_priv = dev->dev_private;
3759         uint16_t *latencies;
3760
3761         if (INTEL_INFO(dev)->gen >= 9)
3762                 latencies = dev_priv->wm.skl_latency;
3763         else
3764                 latencies = to_i915(dev)->wm.spr_latency;
3765
3766         return wm_latency_write(file, ubuf, len, offp, latencies);
3767 }
3768
3769 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3770                                     size_t len, loff_t *offp)
3771 {
3772         struct seq_file *m = file->private_data;
3773         struct drm_device *dev = m->private;
3774         struct drm_i915_private *dev_priv = dev->dev_private;
3775         uint16_t *latencies;
3776
3777         if (INTEL_INFO(dev)->gen >= 9)
3778                 latencies = dev_priv->wm.skl_latency;
3779         else
3780                 latencies = to_i915(dev)->wm.cur_latency;
3781
3782         return wm_latency_write(file, ubuf, len, offp, latencies);
3783 }
3784
3785 static const struct file_operations i915_pri_wm_latency_fops = {
3786         .owner = THIS_MODULE,
3787         .open = pri_wm_latency_open,
3788         .read = seq_read,
3789         .llseek = seq_lseek,
3790         .release = single_release,
3791         .write = pri_wm_latency_write
3792 };
3793
3794 static const struct file_operations i915_spr_wm_latency_fops = {
3795         .owner = THIS_MODULE,
3796         .open = spr_wm_latency_open,
3797         .read = seq_read,
3798         .llseek = seq_lseek,
3799         .release = single_release,
3800         .write = spr_wm_latency_write
3801 };
3802
3803 static const struct file_operations i915_cur_wm_latency_fops = {
3804         .owner = THIS_MODULE,
3805         .open = cur_wm_latency_open,
3806         .read = seq_read,
3807         .llseek = seq_lseek,
3808         .release = single_release,
3809         .write = cur_wm_latency_write
3810 };
3811
3812 static int
3813 i915_wedged_get(void *data, u64 *val)
3814 {
3815         struct drm_device *dev = data;
3816         struct drm_i915_private *dev_priv = dev->dev_private;
3817
3818         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
3819
3820         return 0;
3821 }
3822
3823 static int
3824 i915_wedged_set(void *data, u64 val)
3825 {
3826         struct drm_device *dev = data;
3827         struct drm_i915_private *dev_priv = dev->dev_private;
3828
3829         intel_runtime_pm_get(dev_priv);
3830
3831         i915_handle_error(dev, val,
3832                           "Manually setting wedged to %llu", val);
3833
3834         intel_runtime_pm_put(dev_priv);
3835
3836         return 0;
3837 }
3838
3839 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3840                         i915_wedged_get, i915_wedged_set,
3841                         "%llu\n");
3842
3843 static int
3844 i915_ring_stop_get(void *data, u64 *val)
3845 {
3846         struct drm_device *dev = data;
3847         struct drm_i915_private *dev_priv = dev->dev_private;
3848
3849         *val = dev_priv->gpu_error.stop_rings;
3850
3851         return 0;
3852 }
3853
3854 static int
3855 i915_ring_stop_set(void *data, u64 val)
3856 {
3857         struct drm_device *dev = data;
3858         struct drm_i915_private *dev_priv = dev->dev_private;
3859         int ret;
3860
3861         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
3862
3863         ret = mutex_lock_interruptible(&dev->struct_mutex);
3864         if (ret)
3865                 return ret;
3866
3867         dev_priv->gpu_error.stop_rings = val;
3868         mutex_unlock(&dev->struct_mutex);
3869
3870         return 0;
3871 }
3872
3873 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
3874                         i915_ring_stop_get, i915_ring_stop_set,
3875                         "0x%08llx\n");
3876
3877 static int
3878 i915_ring_missed_irq_get(void *data, u64 *val)
3879 {
3880         struct drm_device *dev = data;
3881         struct drm_i915_private *dev_priv = dev->dev_private;
3882
3883         *val = dev_priv->gpu_error.missed_irq_rings;
3884         return 0;
3885 }
3886
3887 static int
3888 i915_ring_missed_irq_set(void *data, u64 val)
3889 {
3890         struct drm_device *dev = data;
3891         struct drm_i915_private *dev_priv = dev->dev_private;
3892         int ret;
3893
3894         /* Lock against concurrent debugfs callers */
3895         ret = mutex_lock_interruptible(&dev->struct_mutex);
3896         if (ret)
3897                 return ret;
3898         dev_priv->gpu_error.missed_irq_rings = val;
3899         mutex_unlock(&dev->struct_mutex);
3900
3901         return 0;
3902 }
3903
3904 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3905                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3906                         "0x%08llx\n");
3907
3908 static int
3909 i915_ring_test_irq_get(void *data, u64 *val)
3910 {
3911         struct drm_device *dev = data;
3912         struct drm_i915_private *dev_priv = dev->dev_private;
3913
3914         *val = dev_priv->gpu_error.test_irq_rings;
3915
3916         return 0;
3917 }
3918
3919 static int
3920 i915_ring_test_irq_set(void *data, u64 val)
3921 {
3922         struct drm_device *dev = data;
3923         struct drm_i915_private *dev_priv = dev->dev_private;
3924         int ret;
3925
3926         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
3927
3928         /* Lock against concurrent debugfs callers */
3929         ret = mutex_lock_interruptible(&dev->struct_mutex);
3930         if (ret)
3931                 return ret;
3932
3933         dev_priv->gpu_error.test_irq_rings = val;
3934         mutex_unlock(&dev->struct_mutex);
3935
3936         return 0;
3937 }
3938
3939 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
3940                         i915_ring_test_irq_get, i915_ring_test_irq_set,
3941                         "0x%08llx\n");
3942
3943 #define DROP_UNBOUND 0x1
3944 #define DROP_BOUND 0x2
3945 #define DROP_RETIRE 0x4
3946 #define DROP_ACTIVE 0x8
3947 #define DROP_ALL (DROP_UNBOUND | \
3948                   DROP_BOUND | \
3949                   DROP_RETIRE | \
3950                   DROP_ACTIVE)
3951 static int
3952 i915_drop_caches_get(void *data, u64 *val)
3953 {
3954         *val = DROP_ALL;
3955
3956         return 0;
3957 }
3958
3959 static int
3960 i915_drop_caches_set(void *data, u64 val)
3961 {
3962         struct drm_device *dev = data;
3963         struct drm_i915_private *dev_priv = dev->dev_private;
3964         int ret;
3965
3966         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
3967
3968         /* No need to check and wait for gpu resets, only libdrm auto-restarts
3969          * on ioctls on -EAGAIN. */
3970         ret = mutex_lock_interruptible(&dev->struct_mutex);
3971         if (ret)
3972                 return ret;
3973
3974         if (val & DROP_ACTIVE) {
3975                 ret = i915_gpu_idle(dev);
3976                 if (ret)
3977                         goto unlock;
3978         }
3979
3980         if (val & (DROP_RETIRE | DROP_ACTIVE))
3981                 i915_gem_retire_requests(dev);
3982
3983         if (val & DROP_BOUND)
3984                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
3985
3986         if (val & DROP_UNBOUND)
3987                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
3988
3989 unlock:
3990         mutex_unlock(&dev->struct_mutex);
3991
3992         return ret;
3993 }
3994
3995 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
3996                         i915_drop_caches_get, i915_drop_caches_set,
3997                         "0x%08llx\n");
3998
3999 static int
4000 i915_max_freq_get(void *data, u64 *val)
4001 {
4002         struct drm_device *dev = data;
4003         struct drm_i915_private *dev_priv = dev->dev_private;
4004         int ret;
4005
4006         if (INTEL_INFO(dev)->gen < 6)
4007                 return -ENODEV;
4008
4009         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4010
4011         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4012         if (ret)
4013                 return ret;
4014
4015         if (IS_VALLEYVIEW(dev))
4016                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4017         else
4018                 *val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
4019         mutex_unlock(&dev_priv->rps.hw_lock);
4020
4021         return 0;
4022 }
4023
4024 static int
4025 i915_max_freq_set(void *data, u64 val)
4026 {
4027         struct drm_device *dev = data;
4028         struct drm_i915_private *dev_priv = dev->dev_private;
4029         u32 rp_state_cap, hw_max, hw_min;
4030         int ret;
4031
4032         if (INTEL_INFO(dev)->gen < 6)
4033                 return -ENODEV;
4034
4035         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4036
4037         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4038
4039         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4040         if (ret)
4041                 return ret;
4042
4043         /*
4044          * Turbo will still be enabled, but won't go above the set value.
4045          */
4046         if (IS_VALLEYVIEW(dev)) {
4047                 val = vlv_freq_opcode(dev_priv, val);
4048
4049                 hw_max = dev_priv->rps.max_freq;
4050                 hw_min = dev_priv->rps.min_freq;
4051         } else {
4052                 do_div(val, GT_FREQUENCY_MULTIPLIER);
4053
4054                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4055                 hw_max = dev_priv->rps.max_freq;
4056                 hw_min = (rp_state_cap >> 16) & 0xff;
4057         }
4058
4059         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4060                 mutex_unlock(&dev_priv->rps.hw_lock);
4061                 return -EINVAL;
4062         }
4063
4064         dev_priv->rps.max_freq_softlimit = val;
4065
4066         if (IS_VALLEYVIEW(dev))
4067                 valleyview_set_rps(dev, val);
4068         else
4069                 gen6_set_rps(dev, val);
4070
4071         mutex_unlock(&dev_priv->rps.hw_lock);
4072
4073         return 0;
4074 }
4075
4076 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4077                         i915_max_freq_get, i915_max_freq_set,
4078                         "%llu\n");
4079
4080 static int
4081 i915_min_freq_get(void *data, u64 *val)
4082 {
4083         struct drm_device *dev = data;
4084         struct drm_i915_private *dev_priv = dev->dev_private;
4085         int ret;
4086
4087         if (INTEL_INFO(dev)->gen < 6)
4088                 return -ENODEV;
4089
4090         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4091
4092         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4093         if (ret)
4094                 return ret;
4095
4096         if (IS_VALLEYVIEW(dev))
4097                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4098         else
4099                 *val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
4100         mutex_unlock(&dev_priv->rps.hw_lock);
4101
4102         return 0;
4103 }
4104
4105 static int
4106 i915_min_freq_set(void *data, u64 val)
4107 {
4108         struct drm_device *dev = data;
4109         struct drm_i915_private *dev_priv = dev->dev_private;
4110         u32 rp_state_cap, hw_max, hw_min;
4111         int ret;
4112
4113         if (INTEL_INFO(dev)->gen < 6)
4114                 return -ENODEV;
4115
4116         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4117
4118         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4119
4120         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4121         if (ret)
4122                 return ret;
4123
4124         /*
4125          * Turbo will still be enabled, but won't go below the set value.
4126          */
4127         if (IS_VALLEYVIEW(dev)) {
4128                 val = vlv_freq_opcode(dev_priv, val);
4129
4130                 hw_max = dev_priv->rps.max_freq;
4131                 hw_min = dev_priv->rps.min_freq;
4132         } else {
4133                 do_div(val, GT_FREQUENCY_MULTIPLIER);
4134
4135                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4136                 hw_max = dev_priv->rps.max_freq;
4137                 hw_min = (rp_state_cap >> 16) & 0xff;
4138         }
4139
4140         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4141                 mutex_unlock(&dev_priv->rps.hw_lock);
4142                 return -EINVAL;
4143         }
4144
4145         dev_priv->rps.min_freq_softlimit = val;
4146
4147         if (IS_VALLEYVIEW(dev))
4148                 valleyview_set_rps(dev, val);
4149         else
4150                 gen6_set_rps(dev, val);
4151
4152         mutex_unlock(&dev_priv->rps.hw_lock);
4153
4154         return 0;
4155 }
4156
4157 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4158                         i915_min_freq_get, i915_min_freq_set,
4159                         "%llu\n");
4160
4161 static int
4162 i915_cache_sharing_get(void *data, u64 *val)
4163 {
4164         struct drm_device *dev = data;
4165         struct drm_i915_private *dev_priv = dev->dev_private;
4166         u32 snpcr;
4167         int ret;
4168
4169         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4170                 return -ENODEV;
4171
4172         ret = mutex_lock_interruptible(&dev->struct_mutex);
4173         if (ret)
4174                 return ret;
4175         intel_runtime_pm_get(dev_priv);
4176
4177         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4178
4179         intel_runtime_pm_put(dev_priv);
4180         mutex_unlock(&dev_priv->dev->struct_mutex);
4181
4182         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4183
4184         return 0;
4185 }
4186
4187 static int
4188 i915_cache_sharing_set(void *data, u64 val)
4189 {
4190         struct drm_device *dev = data;
4191         struct drm_i915_private *dev_priv = dev->dev_private;
4192         u32 snpcr;
4193
4194         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4195                 return -ENODEV;
4196
4197         if (val > 3)
4198                 return -EINVAL;
4199
4200         intel_runtime_pm_get(dev_priv);
4201         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4202
4203         /* Update the cache sharing policy here as well */
4204         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4205         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4206         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4207         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4208
4209         intel_runtime_pm_put(dev_priv);
4210         return 0;
4211 }
4212
4213 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4214                         i915_cache_sharing_get, i915_cache_sharing_set,
4215                         "%llu\n");
4216
4217 static int i915_forcewake_open(struct inode *inode, struct file *file)
4218 {
4219         struct drm_device *dev = inode->i_private;
4220         struct drm_i915_private *dev_priv = dev->dev_private;
4221
4222         if (INTEL_INFO(dev)->gen < 6)
4223                 return 0;
4224
4225         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4226
4227         return 0;
4228 }
4229
4230 static int i915_forcewake_release(struct inode *inode, struct file *file)
4231 {
4232         struct drm_device *dev = inode->i_private;
4233         struct drm_i915_private *dev_priv = dev->dev_private;
4234
4235         if (INTEL_INFO(dev)->gen < 6)
4236                 return 0;
4237
4238         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4239
4240         return 0;
4241 }
4242
4243 static const struct file_operations i915_forcewake_fops = {
4244         .owner = THIS_MODULE,
4245         .open = i915_forcewake_open,
4246         .release = i915_forcewake_release,
4247 };
4248
4249 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4250 {
4251         struct drm_device *dev = minor->dev;
4252         struct dentry *ent;
4253
4254         ent = debugfs_create_file("i915_forcewake_user",
4255                                   S_IRUSR,
4256                                   root, dev,
4257                                   &i915_forcewake_fops);
4258         if (!ent)
4259                 return -ENOMEM;
4260
4261         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4262 }
4263
4264 static int i915_debugfs_create(struct dentry *root,
4265                                struct drm_minor *minor,
4266                                const char *name,
4267                                const struct file_operations *fops)
4268 {
4269         struct drm_device *dev = minor->dev;
4270         struct dentry *ent;
4271
4272         ent = debugfs_create_file(name,
4273                                   S_IRUGO | S_IWUSR,
4274                                   root, dev,
4275                                   fops);
4276         if (!ent)
4277                 return -ENOMEM;
4278
4279         return drm_add_fake_info_node(minor, ent, fops);
4280 }
4281
4282 static const struct drm_info_list i915_debugfs_list[] = {
4283         {"i915_capabilities", i915_capabilities, 0},
4284         {"i915_gem_objects", i915_gem_object_info, 0},
4285         {"i915_gem_gtt", i915_gem_gtt_info, 0},
4286         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
4287         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
4288         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
4289         {"i915_gem_stolen", i915_gem_stolen_list_info },
4290         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4291         {"i915_gem_request", i915_gem_request_info, 0},
4292         {"i915_gem_seqno", i915_gem_seqno_info, 0},
4293         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4294         {"i915_gem_interrupt", i915_interrupt_info, 0},
4295         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
4296         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
4297         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
4298         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
4299         {"i915_frequency_info", i915_frequency_info, 0},
4300         {"i915_drpc_info", i915_drpc_info, 0},
4301         {"i915_emon_status", i915_emon_status, 0},
4302         {"i915_ring_freq_table", i915_ring_freq_table, 0},
4303         {"i915_fbc_status", i915_fbc_status, 0},
4304         {"i915_ips_status", i915_ips_status, 0},
4305         {"i915_sr_status", i915_sr_status, 0},
4306         {"i915_opregion", i915_opregion, 0},
4307         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4308         {"i915_context_status", i915_context_status, 0},
4309         {"i915_dump_lrc", i915_dump_lrc, 0},
4310         {"i915_execlists", i915_execlists, 0},
4311         {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
4312         {"i915_swizzle_info", i915_swizzle_info, 0},
4313         {"i915_ppgtt_info", i915_ppgtt_info, 0},
4314         {"i915_llc", i915_llc, 0},
4315         {"i915_edp_psr_status", i915_edp_psr_status, 0},
4316         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
4317         {"i915_energy_uJ", i915_energy_uJ, 0},
4318         {"i915_pc8_status", i915_pc8_status, 0},
4319         {"i915_power_domain_info", i915_power_domain_info, 0},
4320         {"i915_display_info", i915_display_info, 0},
4321         {"i915_semaphore_status", i915_semaphore_status, 0},
4322         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4323         {"i915_dp_mst_info", i915_dp_mst_info, 0},
4324         {"i915_wa_registers", i915_wa_registers, 0},
4325         {"i915_ddb_info", i915_ddb_info, 0},
4326 };
4327 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4328
4329 static const struct i915_debugfs_files {
4330         const char *name;
4331         const struct file_operations *fops;
4332 } i915_debugfs_files[] = {
4333         {"i915_wedged", &i915_wedged_fops},
4334         {"i915_max_freq", &i915_max_freq_fops},
4335         {"i915_min_freq", &i915_min_freq_fops},
4336         {"i915_cache_sharing", &i915_cache_sharing_fops},
4337         {"i915_ring_stop", &i915_ring_stop_fops},
4338         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4339         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
4340         {"i915_gem_drop_caches", &i915_drop_caches_fops},
4341         {"i915_error_state", &i915_error_state_fops},
4342         {"i915_next_seqno", &i915_next_seqno_fops},
4343         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4344         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4345         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4346         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4347         {"i915_fbc_false_color", &i915_fbc_fc_fops},
4348 };
4349
4350 void intel_display_crc_init(struct drm_device *dev)
4351 {
4352         struct drm_i915_private *dev_priv = dev->dev_private;
4353         enum pipe pipe;
4354
4355         for_each_pipe(dev_priv, pipe) {
4356                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4357
4358                 pipe_crc->opened = false;
4359                 spin_lock_init(&pipe_crc->lock);
4360                 init_waitqueue_head(&pipe_crc->wq);
4361         }
4362 }
4363
4364 int i915_debugfs_init(struct drm_minor *minor)
4365 {
4366         int ret, i;
4367
4368         ret = i915_forcewake_create(minor->debugfs_root, minor);
4369         if (ret)
4370                 return ret;
4371
4372         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4373                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
4374                 if (ret)
4375                         return ret;
4376         }
4377
4378         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4379                 ret = i915_debugfs_create(minor->debugfs_root, minor,
4380                                           i915_debugfs_files[i].name,
4381                                           i915_debugfs_files[i].fops);
4382                 if (ret)
4383                         return ret;
4384         }
4385
4386         return drm_debugfs_create_files(i915_debugfs_list,
4387                                         I915_DEBUGFS_ENTRIES,
4388                                         minor->debugfs_root, minor);
4389 }
4390
4391 void i915_debugfs_cleanup(struct drm_minor *minor)
4392 {
4393         int i;
4394
4395         drm_debugfs_remove_files(i915_debugfs_list,
4396                                  I915_DEBUGFS_ENTRIES, minor);
4397
4398         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
4399                                  1, minor);
4400
4401         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4402                 struct drm_info_list *info_list =
4403                         (struct drm_info_list *)&i915_pipe_crc_data[i];
4404
4405                 drm_debugfs_remove_files(info_list, 1, minor);
4406         }
4407
4408         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4409                 struct drm_info_list *info_list =
4410                         (struct drm_info_list *) i915_debugfs_files[i].fops;
4411
4412                 drm_debugfs_remove_files(info_list, 1, minor);
4413         }
4414 }