Merge branch 'irqchip/mvebu64' into irqchip/core
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50                                   enum i915_cache_level level)
51 {
52         return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58                 return false;
59
60         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61                 return true;
62
63         return obj->pin_display;
64 }
65
66 static int
67 insert_mappable_node(struct drm_i915_private *i915,
68                      struct drm_mm_node *node, u32 size)
69 {
70         memset(node, 0, sizeof(*node));
71         return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
72                                                    size, 0, 0, 0,
73                                                    i915->ggtt.mappable_end,
74                                                    DRM_MM_SEARCH_DEFAULT,
75                                                    DRM_MM_CREATE_DEFAULT);
76 }
77
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81         drm_mm_remove_node(node);
82 }
83
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86                                   size_t size)
87 {
88         spin_lock(&dev_priv->mm.object_stat_lock);
89         dev_priv->mm.object_count++;
90         dev_priv->mm.object_memory += size;
91         spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95                                      size_t size)
96 {
97         spin_lock(&dev_priv->mm.object_stat_lock);
98         dev_priv->mm.object_count--;
99         dev_priv->mm.object_memory -= size;
100         spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106         int ret;
107
108         if (!i915_reset_in_progress(error))
109                 return 0;
110
111         /*
112          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
113          * userspace. If it takes that long something really bad is going on and
114          * we should simply try to bail out and fail as gracefully as possible.
115          */
116         ret = wait_event_interruptible_timeout(error->reset_queue,
117                                                !i915_reset_in_progress(error),
118                                                10*HZ);
119         if (ret == 0) {
120                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
121                 return -EIO;
122         } else if (ret < 0) {
123                 return ret;
124         } else {
125                 return 0;
126         }
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = to_i915(dev);
132         int ret;
133
134         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135         if (ret)
136                 return ret;
137
138         ret = mutex_lock_interruptible(&dev->struct_mutex);
139         if (ret)
140                 return ret;
141
142         WARN_ON(i915_verify_lists(dev));
143         return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148                             struct drm_file *file)
149 {
150         struct drm_i915_private *dev_priv = to_i915(dev);
151         struct i915_ggtt *ggtt = &dev_priv->ggtt;
152         struct drm_i915_gem_get_aperture *args = data;
153         struct i915_vma *vma;
154         size_t pinned;
155
156         pinned = 0;
157         mutex_lock(&dev->struct_mutex);
158         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159                 if (vma->pin_count)
160                         pinned += vma->node.size;
161         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162                 if (vma->pin_count)
163                         pinned += vma->node.size;
164         mutex_unlock(&dev->struct_mutex);
165
166         args->aper_size = ggtt->base.total;
167         args->aper_available_size = args->aper_size - pinned;
168
169         return 0;
170 }
171
172 static int
173 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174 {
175         struct address_space *mapping = obj->base.filp->f_mapping;
176         char *vaddr = obj->phys_handle->vaddr;
177         struct sg_table *st;
178         struct scatterlist *sg;
179         int i;
180
181         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182                 return -EINVAL;
183
184         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185                 struct page *page;
186                 char *src;
187
188                 page = shmem_read_mapping_page(mapping, i);
189                 if (IS_ERR(page))
190                         return PTR_ERR(page);
191
192                 src = kmap_atomic(page);
193                 memcpy(vaddr, src, PAGE_SIZE);
194                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195                 kunmap_atomic(src);
196
197                 put_page(page);
198                 vaddr += PAGE_SIZE;
199         }
200
201         i915_gem_chipset_flush(to_i915(obj->base.dev));
202
203         st = kmalloc(sizeof(*st), GFP_KERNEL);
204         if (st == NULL)
205                 return -ENOMEM;
206
207         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208                 kfree(st);
209                 return -ENOMEM;
210         }
211
212         sg = st->sgl;
213         sg->offset = 0;
214         sg->length = obj->base.size;
215
216         sg_dma_address(sg) = obj->phys_handle->busaddr;
217         sg_dma_len(sg) = obj->base.size;
218
219         obj->pages = st;
220         return 0;
221 }
222
223 static void
224 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
225 {
226         int ret;
227
228         BUG_ON(obj->madv == __I915_MADV_PURGED);
229
230         ret = i915_gem_object_set_to_cpu_domain(obj, true);
231         if (WARN_ON(ret)) {
232                 /* In the event of a disaster, abandon all caches and
233                  * hope for the best.
234                  */
235                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
236         }
237
238         if (obj->madv == I915_MADV_DONTNEED)
239                 obj->dirty = 0;
240
241         if (obj->dirty) {
242                 struct address_space *mapping = obj->base.filp->f_mapping;
243                 char *vaddr = obj->phys_handle->vaddr;
244                 int i;
245
246                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247                         struct page *page;
248                         char *dst;
249
250                         page = shmem_read_mapping_page(mapping, i);
251                         if (IS_ERR(page))
252                                 continue;
253
254                         dst = kmap_atomic(page);
255                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
256                         memcpy(dst, vaddr, PAGE_SIZE);
257                         kunmap_atomic(dst);
258
259                         set_page_dirty(page);
260                         if (obj->madv == I915_MADV_WILLNEED)
261                                 mark_page_accessed(page);
262                         put_page(page);
263                         vaddr += PAGE_SIZE;
264                 }
265                 obj->dirty = 0;
266         }
267
268         sg_free_table(obj->pages);
269         kfree(obj->pages);
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275         drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279         .get_pages = i915_gem_object_get_pages_phys,
280         .put_pages = i915_gem_object_put_pages_phys,
281         .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287         struct i915_vma *vma, *next;
288         int ret;
289
290         drm_gem_object_reference(&obj->base);
291         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292                 if (i915_vma_unbind(vma))
293                         break;
294
295         ret = i915_gem_object_put_pages(obj);
296         drm_gem_object_unreference(&obj->base);
297
298         return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303                             int align)
304 {
305         drm_dma_handle_t *phys;
306         int ret;
307
308         if (obj->phys_handle) {
309                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310                         return -EBUSY;
311
312                 return 0;
313         }
314
315         if (obj->madv != I915_MADV_WILLNEED)
316                 return -EFAULT;
317
318         if (obj->base.filp == NULL)
319                 return -EINVAL;
320
321         ret = drop_pages(obj);
322         if (ret)
323                 return ret;
324
325         /* create a new object */
326         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327         if (!phys)
328                 return -ENOMEM;
329
330         obj->phys_handle = phys;
331         obj->ops = &i915_gem_phys_ops;
332
333         return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338                      struct drm_i915_gem_pwrite *args,
339                      struct drm_file *file_priv)
340 {
341         struct drm_device *dev = obj->base.dev;
342         void *vaddr = obj->phys_handle->vaddr + args->offset;
343         char __user *user_data = u64_to_user_ptr(args->data_ptr);
344         int ret = 0;
345
346         /* We manually control the domain here and pretend that it
347          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348          */
349         ret = i915_gem_object_wait_rendering(obj, false);
350         if (ret)
351                 return ret;
352
353         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355                 unsigned long unwritten;
356
357                 /* The physical object once assigned is fixed for the lifetime
358                  * of the obj, so we can safely drop the lock and continue
359                  * to access vaddr.
360                  */
361                 mutex_unlock(&dev->struct_mutex);
362                 unwritten = copy_from_user(vaddr, user_data, args->size);
363                 mutex_lock(&dev->struct_mutex);
364                 if (unwritten) {
365                         ret = -EFAULT;
366                         goto out;
367                 }
368         }
369
370         drm_clflush_virt_range(vaddr, args->size);
371         i915_gem_chipset_flush(to_i915(dev));
372
373 out:
374         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375         return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380         struct drm_i915_private *dev_priv = to_i915(dev);
381         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
387         kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392                 struct drm_device *dev,
393                 uint64_t size,
394                 uint32_t *handle_p)
395 {
396         struct drm_i915_gem_object *obj;
397         int ret;
398         u32 handle;
399
400         size = roundup(size, PAGE_SIZE);
401         if (size == 0)
402                 return -EINVAL;
403
404         /* Allocate the new object */
405         obj = i915_gem_object_create(dev, size);
406         if (IS_ERR(obj))
407                 return PTR_ERR(obj);
408
409         ret = drm_gem_handle_create(file, &obj->base, &handle);
410         /* drop reference from allocate - handle holds it now */
411         drm_gem_object_unreference_unlocked(&obj->base);
412         if (ret)
413                 return ret;
414
415         *handle_p = handle;
416         return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421                      struct drm_device *dev,
422                      struct drm_mode_create_dumb *args)
423 {
424         /* have to work out size/pitch and return them */
425         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426         args->size = args->pitch * args->height;
427         return i915_gem_create(file, dev,
428                                args->size, &args->handle);
429 }
430
431 /**
432  * Creates a new mm object and returns a handle to it.
433  * @dev: drm device pointer
434  * @data: ioctl data blob
435  * @file: drm file pointer
436  */
437 int
438 i915_gem_create_ioctl(struct drm_device *dev, void *data,
439                       struct drm_file *file)
440 {
441         struct drm_i915_gem_create *args = data;
442
443         return i915_gem_create(file, dev,
444                                args->size, &args->handle);
445 }
446
447 static inline int
448 __copy_to_user_swizzled(char __user *cpu_vaddr,
449                         const char *gpu_vaddr, int gpu_offset,
450                         int length)
451 {
452         int ret, cpu_offset = 0;
453
454         while (length > 0) {
455                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
456                 int this_length = min(cacheline_end - gpu_offset, length);
457                 int swizzled_gpu_offset = gpu_offset ^ 64;
458
459                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
460                                      gpu_vaddr + swizzled_gpu_offset,
461                                      this_length);
462                 if (ret)
463                         return ret + length;
464
465                 cpu_offset += this_length;
466                 gpu_offset += this_length;
467                 length -= this_length;
468         }
469
470         return 0;
471 }
472
473 static inline int
474 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
475                           const char __user *cpu_vaddr,
476                           int length)
477 {
478         int ret, cpu_offset = 0;
479
480         while (length > 0) {
481                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
482                 int this_length = min(cacheline_end - gpu_offset, length);
483                 int swizzled_gpu_offset = gpu_offset ^ 64;
484
485                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
486                                        cpu_vaddr + cpu_offset,
487                                        this_length);
488                 if (ret)
489                         return ret + length;
490
491                 cpu_offset += this_length;
492                 gpu_offset += this_length;
493                 length -= this_length;
494         }
495
496         return 0;
497 }
498
499 /*
500  * Pins the specified object's pages and synchronizes the object with
501  * GPU accesses. Sets needs_clflush to non-zero if the caller should
502  * flush the object from the CPU cache.
503  */
504 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
505                                     int *needs_clflush)
506 {
507         int ret;
508
509         *needs_clflush = 0;
510
511         if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512                 return -EINVAL;
513
514         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
515                 /* If we're not in the cpu read domain, set ourself into the gtt
516                  * read domain and manually flush cachelines (if required). This
517                  * optimizes for the case when the gpu will dirty the data
518                  * anyway again before the next pread happens. */
519                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
520                                                         obj->cache_level);
521                 ret = i915_gem_object_wait_rendering(obj, true);
522                 if (ret)
523                         return ret;
524         }
525
526         ret = i915_gem_object_get_pages(obj);
527         if (ret)
528                 return ret;
529
530         i915_gem_object_pin_pages(obj);
531
532         return ret;
533 }
534
535 /* Per-page copy function for the shmem pread fastpath.
536  * Flushes invalid cachelines before reading the target if
537  * needs_clflush is set. */
538 static int
539 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
540                  char __user *user_data,
541                  bool page_do_bit17_swizzling, bool needs_clflush)
542 {
543         char *vaddr;
544         int ret;
545
546         if (unlikely(page_do_bit17_swizzling))
547                 return -EINVAL;
548
549         vaddr = kmap_atomic(page);
550         if (needs_clflush)
551                 drm_clflush_virt_range(vaddr + shmem_page_offset,
552                                        page_length);
553         ret = __copy_to_user_inatomic(user_data,
554                                       vaddr + shmem_page_offset,
555                                       page_length);
556         kunmap_atomic(vaddr);
557
558         return ret ? -EFAULT : 0;
559 }
560
561 static void
562 shmem_clflush_swizzled_range(char *addr, unsigned long length,
563                              bool swizzled)
564 {
565         if (unlikely(swizzled)) {
566                 unsigned long start = (unsigned long) addr;
567                 unsigned long end = (unsigned long) addr + length;
568
569                 /* For swizzling simply ensure that we always flush both
570                  * channels. Lame, but simple and it works. Swizzled
571                  * pwrite/pread is far from a hotpath - current userspace
572                  * doesn't use it at all. */
573                 start = round_down(start, 128);
574                 end = round_up(end, 128);
575
576                 drm_clflush_virt_range((void *)start, end - start);
577         } else {
578                 drm_clflush_virt_range(addr, length);
579         }
580
581 }
582
583 /* Only difference to the fast-path function is that this can handle bit17
584  * and uses non-atomic copy and kmap functions. */
585 static int
586 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
587                  char __user *user_data,
588                  bool page_do_bit17_swizzling, bool needs_clflush)
589 {
590         char *vaddr;
591         int ret;
592
593         vaddr = kmap(page);
594         if (needs_clflush)
595                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
596                                              page_length,
597                                              page_do_bit17_swizzling);
598
599         if (page_do_bit17_swizzling)
600                 ret = __copy_to_user_swizzled(user_data,
601                                               vaddr, shmem_page_offset,
602                                               page_length);
603         else
604                 ret = __copy_to_user(user_data,
605                                      vaddr + shmem_page_offset,
606                                      page_length);
607         kunmap(page);
608
609         return ret ? - EFAULT : 0;
610 }
611
612 static inline unsigned long
613 slow_user_access(struct io_mapping *mapping,
614                  uint64_t page_base, int page_offset,
615                  char __user *user_data,
616                  unsigned long length, bool pwrite)
617 {
618         void __iomem *ioaddr;
619         void *vaddr;
620         uint64_t unwritten;
621
622         ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
623         /* We can use the cpu mem copy function because this is X86. */
624         vaddr = (void __force *)ioaddr + page_offset;
625         if (pwrite)
626                 unwritten = __copy_from_user(vaddr, user_data, length);
627         else
628                 unwritten = __copy_to_user(user_data, vaddr, length);
629
630         io_mapping_unmap(ioaddr);
631         return unwritten;
632 }
633
634 static int
635 i915_gem_gtt_pread(struct drm_device *dev,
636                    struct drm_i915_gem_object *obj, uint64_t size,
637                    uint64_t data_offset, uint64_t data_ptr)
638 {
639         struct drm_i915_private *dev_priv = to_i915(dev);
640         struct i915_ggtt *ggtt = &dev_priv->ggtt;
641         struct drm_mm_node node;
642         char __user *user_data;
643         uint64_t remain;
644         uint64_t offset;
645         int ret;
646
647         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
648         if (ret) {
649                 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
650                 if (ret)
651                         goto out;
652
653                 ret = i915_gem_object_get_pages(obj);
654                 if (ret) {
655                         remove_mappable_node(&node);
656                         goto out;
657                 }
658
659                 i915_gem_object_pin_pages(obj);
660         } else {
661                 node.start = i915_gem_obj_ggtt_offset(obj);
662                 node.allocated = false;
663                 ret = i915_gem_object_put_fence(obj);
664                 if (ret)
665                         goto out_unpin;
666         }
667
668         ret = i915_gem_object_set_to_gtt_domain(obj, false);
669         if (ret)
670                 goto out_unpin;
671
672         user_data = u64_to_user_ptr(data_ptr);
673         remain = size;
674         offset = data_offset;
675
676         mutex_unlock(&dev->struct_mutex);
677         if (likely(!i915.prefault_disable)) {
678                 ret = fault_in_multipages_writeable(user_data, remain);
679                 if (ret) {
680                         mutex_lock(&dev->struct_mutex);
681                         goto out_unpin;
682                 }
683         }
684
685         while (remain > 0) {
686                 /* Operation in this page
687                  *
688                  * page_base = page offset within aperture
689                  * page_offset = offset within page
690                  * page_length = bytes to copy for this page
691                  */
692                 u32 page_base = node.start;
693                 unsigned page_offset = offset_in_page(offset);
694                 unsigned page_length = PAGE_SIZE - page_offset;
695                 page_length = remain < page_length ? remain : page_length;
696                 if (node.allocated) {
697                         wmb();
698                         ggtt->base.insert_page(&ggtt->base,
699                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
700                                                node.start,
701                                                I915_CACHE_NONE, 0);
702                         wmb();
703                 } else {
704                         page_base += offset & PAGE_MASK;
705                 }
706                 /* This is a slow read/write as it tries to read from
707                  * and write to user memory which may result into page
708                  * faults, and so we cannot perform this under struct_mutex.
709                  */
710                 if (slow_user_access(ggtt->mappable, page_base,
711                                      page_offset, user_data,
712                                      page_length, false)) {
713                         ret = -EFAULT;
714                         break;
715                 }
716
717                 remain -= page_length;
718                 user_data += page_length;
719                 offset += page_length;
720         }
721
722         mutex_lock(&dev->struct_mutex);
723         if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
724                 /* The user has modified the object whilst we tried
725                  * reading from it, and we now have no idea what domain
726                  * the pages should be in. As we have just been touching
727                  * them directly, flush everything back to the GTT
728                  * domain.
729                  */
730                 ret = i915_gem_object_set_to_gtt_domain(obj, false);
731         }
732
733 out_unpin:
734         if (node.allocated) {
735                 wmb();
736                 ggtt->base.clear_range(&ggtt->base,
737                                        node.start, node.size,
738                                        true);
739                 i915_gem_object_unpin_pages(obj);
740                 remove_mappable_node(&node);
741         } else {
742                 i915_gem_object_ggtt_unpin(obj);
743         }
744 out:
745         return ret;
746 }
747
748 static int
749 i915_gem_shmem_pread(struct drm_device *dev,
750                      struct drm_i915_gem_object *obj,
751                      struct drm_i915_gem_pread *args,
752                      struct drm_file *file)
753 {
754         char __user *user_data;
755         ssize_t remain;
756         loff_t offset;
757         int shmem_page_offset, page_length, ret = 0;
758         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759         int prefaulted = 0;
760         int needs_clflush = 0;
761         struct sg_page_iter sg_iter;
762
763         if (!i915_gem_object_has_struct_page(obj))
764                 return -ENODEV;
765
766         user_data = u64_to_user_ptr(args->data_ptr);
767         remain = args->size;
768
769         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770
771         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772         if (ret)
773                 return ret;
774
775         offset = args->offset;
776
777         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
778                          offset >> PAGE_SHIFT) {
779                 struct page *page = sg_page_iter_page(&sg_iter);
780
781                 if (remain <= 0)
782                         break;
783
784                 /* Operation in this page
785                  *
786                  * shmem_page_offset = offset within page in shmem file
787                  * page_length = bytes to copy for this page
788                  */
789                 shmem_page_offset = offset_in_page(offset);
790                 page_length = remain;
791                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792                         page_length = PAGE_SIZE - shmem_page_offset;
793
794                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
795                         (page_to_phys(page) & (1 << 17)) != 0;
796
797                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
798                                        user_data, page_do_bit17_swizzling,
799                                        needs_clflush);
800                 if (ret == 0)
801                         goto next_page;
802
803                 mutex_unlock(&dev->struct_mutex);
804
805                 if (likely(!i915.prefault_disable) && !prefaulted) {
806                         ret = fault_in_multipages_writeable(user_data, remain);
807                         /* Userspace is tricking us, but we've already clobbered
808                          * its pages with the prefault and promised to write the
809                          * data up to the first fault. Hence ignore any errors
810                          * and just continue. */
811                         (void)ret;
812                         prefaulted = 1;
813                 }
814
815                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
816                                        user_data, page_do_bit17_swizzling,
817                                        needs_clflush);
818
819                 mutex_lock(&dev->struct_mutex);
820
821                 if (ret)
822                         goto out;
823
824 next_page:
825                 remain -= page_length;
826                 user_data += page_length;
827                 offset += page_length;
828         }
829
830 out:
831         i915_gem_object_unpin_pages(obj);
832
833         return ret;
834 }
835
836 /**
837  * Reads data from the object referenced by handle.
838  * @dev: drm device pointer
839  * @data: ioctl data blob
840  * @file: drm file pointer
841  *
842  * On error, the contents of *data are undefined.
843  */
844 int
845 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846                      struct drm_file *file)
847 {
848         struct drm_i915_gem_pread *args = data;
849         struct drm_i915_gem_object *obj;
850         int ret = 0;
851
852         if (args->size == 0)
853                 return 0;
854
855         if (!access_ok(VERIFY_WRITE,
856                        u64_to_user_ptr(args->data_ptr),
857                        args->size))
858                 return -EFAULT;
859
860         ret = i915_mutex_lock_interruptible(dev);
861         if (ret)
862                 return ret;
863
864         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865         if (&obj->base == NULL) {
866                 ret = -ENOENT;
867                 goto unlock;
868         }
869
870         /* Bounds check source.  */
871         if (args->offset > obj->base.size ||
872             args->size > obj->base.size - args->offset) {
873                 ret = -EINVAL;
874                 goto out;
875         }
876
877         trace_i915_gem_object_pread(obj, args->offset, args->size);
878
879         ret = i915_gem_shmem_pread(dev, obj, args, file);
880
881         /* pread for non shmem backed objects */
882         if (ret == -EFAULT || ret == -ENODEV)
883                 ret = i915_gem_gtt_pread(dev, obj, args->size,
884                                         args->offset, args->data_ptr);
885
886 out:
887         drm_gem_object_unreference(&obj->base);
888 unlock:
889         mutex_unlock(&dev->struct_mutex);
890         return ret;
891 }
892
893 /* This is the fast write path which cannot handle
894  * page faults in the source data
895  */
896
897 static inline int
898 fast_user_write(struct io_mapping *mapping,
899                 loff_t page_base, int page_offset,
900                 char __user *user_data,
901                 int length)
902 {
903         void __iomem *vaddr_atomic;
904         void *vaddr;
905         unsigned long unwritten;
906
907         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
908         /* We can use the cpu mem copy function because this is X86. */
909         vaddr = (void __force*)vaddr_atomic + page_offset;
910         unwritten = __copy_from_user_inatomic_nocache(vaddr,
911                                                       user_data, length);
912         io_mapping_unmap_atomic(vaddr_atomic);
913         return unwritten;
914 }
915
916 /**
917  * This is the fast pwrite path, where we copy the data directly from the
918  * user into the GTT, uncached.
919  * @dev: drm device pointer
920  * @obj: i915 gem object
921  * @args: pwrite arguments structure
922  * @file: drm file pointer
923  */
924 static int
925 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
926                          struct drm_i915_gem_object *obj,
927                          struct drm_i915_gem_pwrite *args,
928                          struct drm_file *file)
929 {
930         struct i915_ggtt *ggtt = &i915->ggtt;
931         struct drm_device *dev = obj->base.dev;
932         struct drm_mm_node node;
933         uint64_t remain, offset;
934         char __user *user_data;
935         int ret;
936         bool hit_slow_path = false;
937
938         if (obj->tiling_mode != I915_TILING_NONE)
939                 return -EFAULT;
940
941         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
942         if (ret) {
943                 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
944                 if (ret)
945                         goto out;
946
947                 ret = i915_gem_object_get_pages(obj);
948                 if (ret) {
949                         remove_mappable_node(&node);
950                         goto out;
951                 }
952
953                 i915_gem_object_pin_pages(obj);
954         } else {
955                 node.start = i915_gem_obj_ggtt_offset(obj);
956                 node.allocated = false;
957                 ret = i915_gem_object_put_fence(obj);
958                 if (ret)
959                         goto out_unpin;
960         }
961
962         ret = i915_gem_object_set_to_gtt_domain(obj, true);
963         if (ret)
964                 goto out_unpin;
965
966         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
967         obj->dirty = true;
968
969         user_data = u64_to_user_ptr(args->data_ptr);
970         offset = args->offset;
971         remain = args->size;
972         while (remain) {
973                 /* Operation in this page
974                  *
975                  * page_base = page offset within aperture
976                  * page_offset = offset within page
977                  * page_length = bytes to copy for this page
978                  */
979                 u32 page_base = node.start;
980                 unsigned page_offset = offset_in_page(offset);
981                 unsigned page_length = PAGE_SIZE - page_offset;
982                 page_length = remain < page_length ? remain : page_length;
983                 if (node.allocated) {
984                         wmb(); /* flush the write before we modify the GGTT */
985                         ggtt->base.insert_page(&ggtt->base,
986                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
987                                                node.start, I915_CACHE_NONE, 0);
988                         wmb(); /* flush modifications to the GGTT (insert_page) */
989                 } else {
990                         page_base += offset & PAGE_MASK;
991                 }
992                 /* If we get a fault while copying data, then (presumably) our
993                  * source page isn't available.  Return the error and we'll
994                  * retry in the slow path.
995                  * If the object is non-shmem backed, we retry again with the
996                  * path that handles page fault.
997                  */
998                 if (fast_user_write(ggtt->mappable, page_base,
999                                     page_offset, user_data, page_length)) {
1000                         hit_slow_path = true;
1001                         mutex_unlock(&dev->struct_mutex);
1002                         if (slow_user_access(ggtt->mappable,
1003                                              page_base,
1004                                              page_offset, user_data,
1005                                              page_length, true)) {
1006                                 ret = -EFAULT;
1007                                 mutex_lock(&dev->struct_mutex);
1008                                 goto out_flush;
1009                         }
1010
1011                         mutex_lock(&dev->struct_mutex);
1012                 }
1013
1014                 remain -= page_length;
1015                 user_data += page_length;
1016                 offset += page_length;
1017         }
1018
1019 out_flush:
1020         if (hit_slow_path) {
1021                 if (ret == 0 &&
1022                     (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1023                         /* The user has modified the object whilst we tried
1024                          * reading from it, and we now have no idea what domain
1025                          * the pages should be in. As we have just been touching
1026                          * them directly, flush everything back to the GTT
1027                          * domain.
1028                          */
1029                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030                 }
1031         }
1032
1033         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
1034 out_unpin:
1035         if (node.allocated) {
1036                 wmb();
1037                 ggtt->base.clear_range(&ggtt->base,
1038                                        node.start, node.size,
1039                                        true);
1040                 i915_gem_object_unpin_pages(obj);
1041                 remove_mappable_node(&node);
1042         } else {
1043                 i915_gem_object_ggtt_unpin(obj);
1044         }
1045 out:
1046         return ret;
1047 }
1048
1049 /* Per-page copy function for the shmem pwrite fastpath.
1050  * Flushes invalid cachelines before writing to the target if
1051  * needs_clflush_before is set and flushes out any written cachelines after
1052  * writing if needs_clflush is set. */
1053 static int
1054 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1055                   char __user *user_data,
1056                   bool page_do_bit17_swizzling,
1057                   bool needs_clflush_before,
1058                   bool needs_clflush_after)
1059 {
1060         char *vaddr;
1061         int ret;
1062
1063         if (unlikely(page_do_bit17_swizzling))
1064                 return -EINVAL;
1065
1066         vaddr = kmap_atomic(page);
1067         if (needs_clflush_before)
1068                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1069                                        page_length);
1070         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1071                                         user_data, page_length);
1072         if (needs_clflush_after)
1073                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1074                                        page_length);
1075         kunmap_atomic(vaddr);
1076
1077         return ret ? -EFAULT : 0;
1078 }
1079
1080 /* Only difference to the fast-path function is that this can handle bit17
1081  * and uses non-atomic copy and kmap functions. */
1082 static int
1083 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1084                   char __user *user_data,
1085                   bool page_do_bit17_swizzling,
1086                   bool needs_clflush_before,
1087                   bool needs_clflush_after)
1088 {
1089         char *vaddr;
1090         int ret;
1091
1092         vaddr = kmap(page);
1093         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1094                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1095                                              page_length,
1096                                              page_do_bit17_swizzling);
1097         if (page_do_bit17_swizzling)
1098                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1099                                                 user_data,
1100                                                 page_length);
1101         else
1102                 ret = __copy_from_user(vaddr + shmem_page_offset,
1103                                        user_data,
1104                                        page_length);
1105         if (needs_clflush_after)
1106                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1107                                              page_length,
1108                                              page_do_bit17_swizzling);
1109         kunmap(page);
1110
1111         return ret ? -EFAULT : 0;
1112 }
1113
1114 static int
1115 i915_gem_shmem_pwrite(struct drm_device *dev,
1116                       struct drm_i915_gem_object *obj,
1117                       struct drm_i915_gem_pwrite *args,
1118                       struct drm_file *file)
1119 {
1120         ssize_t remain;
1121         loff_t offset;
1122         char __user *user_data;
1123         int shmem_page_offset, page_length, ret = 0;
1124         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1125         int hit_slowpath = 0;
1126         int needs_clflush_after = 0;
1127         int needs_clflush_before = 0;
1128         struct sg_page_iter sg_iter;
1129
1130         user_data = u64_to_user_ptr(args->data_ptr);
1131         remain = args->size;
1132
1133         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1134
1135         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1136                 /* If we're not in the cpu write domain, set ourself into the gtt
1137                  * write domain and manually flush cachelines (if required). This
1138                  * optimizes for the case when the gpu will use the data
1139                  * right away and we therefore have to clflush anyway. */
1140                 needs_clflush_after = cpu_write_needs_clflush(obj);
1141                 ret = i915_gem_object_wait_rendering(obj, false);
1142                 if (ret)
1143                         return ret;
1144         }
1145         /* Same trick applies to invalidate partially written cachelines read
1146          * before writing. */
1147         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1148                 needs_clflush_before =
1149                         !cpu_cache_is_coherent(dev, obj->cache_level);
1150
1151         ret = i915_gem_object_get_pages(obj);
1152         if (ret)
1153                 return ret;
1154
1155         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1156
1157         i915_gem_object_pin_pages(obj);
1158
1159         offset = args->offset;
1160         obj->dirty = 1;
1161
1162         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1163                          offset >> PAGE_SHIFT) {
1164                 struct page *page = sg_page_iter_page(&sg_iter);
1165                 int partial_cacheline_write;
1166
1167                 if (remain <= 0)
1168                         break;
1169
1170                 /* Operation in this page
1171                  *
1172                  * shmem_page_offset = offset within page in shmem file
1173                  * page_length = bytes to copy for this page
1174                  */
1175                 shmem_page_offset = offset_in_page(offset);
1176
1177                 page_length = remain;
1178                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1179                         page_length = PAGE_SIZE - shmem_page_offset;
1180
1181                 /* If we don't overwrite a cacheline completely we need to be
1182                  * careful to have up-to-date data by first clflushing. Don't
1183                  * overcomplicate things and flush the entire patch. */
1184                 partial_cacheline_write = needs_clflush_before &&
1185                         ((shmem_page_offset | page_length)
1186                                 & (boot_cpu_data.x86_clflush_size - 1));
1187
1188                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1189                         (page_to_phys(page) & (1 << 17)) != 0;
1190
1191                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1192                                         user_data, page_do_bit17_swizzling,
1193                                         partial_cacheline_write,
1194                                         needs_clflush_after);
1195                 if (ret == 0)
1196                         goto next_page;
1197
1198                 hit_slowpath = 1;
1199                 mutex_unlock(&dev->struct_mutex);
1200                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1201                                         user_data, page_do_bit17_swizzling,
1202                                         partial_cacheline_write,
1203                                         needs_clflush_after);
1204
1205                 mutex_lock(&dev->struct_mutex);
1206
1207                 if (ret)
1208                         goto out;
1209
1210 next_page:
1211                 remain -= page_length;
1212                 user_data += page_length;
1213                 offset += page_length;
1214         }
1215
1216 out:
1217         i915_gem_object_unpin_pages(obj);
1218
1219         if (hit_slowpath) {
1220                 /*
1221                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1222                  * cachelines in-line while writing and the object moved
1223                  * out of the cpu write domain while we've dropped the lock.
1224                  */
1225                 if (!needs_clflush_after &&
1226                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1227                         if (i915_gem_clflush_object(obj, obj->pin_display))
1228                                 needs_clflush_after = true;
1229                 }
1230         }
1231
1232         if (needs_clflush_after)
1233                 i915_gem_chipset_flush(to_i915(dev));
1234         else
1235                 obj->cache_dirty = true;
1236
1237         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1238         return ret;
1239 }
1240
1241 /**
1242  * Writes data to the object referenced by handle.
1243  * @dev: drm device
1244  * @data: ioctl data blob
1245  * @file: drm file
1246  *
1247  * On error, the contents of the buffer that were to be modified are undefined.
1248  */
1249 int
1250 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1251                       struct drm_file *file)
1252 {
1253         struct drm_i915_private *dev_priv = to_i915(dev);
1254         struct drm_i915_gem_pwrite *args = data;
1255         struct drm_i915_gem_object *obj;
1256         int ret;
1257
1258         if (args->size == 0)
1259                 return 0;
1260
1261         if (!access_ok(VERIFY_READ,
1262                        u64_to_user_ptr(args->data_ptr),
1263                        args->size))
1264                 return -EFAULT;
1265
1266         if (likely(!i915.prefault_disable)) {
1267                 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1268                                                    args->size);
1269                 if (ret)
1270                         return -EFAULT;
1271         }
1272
1273         intel_runtime_pm_get(dev_priv);
1274
1275         ret = i915_mutex_lock_interruptible(dev);
1276         if (ret)
1277                 goto put_rpm;
1278
1279         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1280         if (&obj->base == NULL) {
1281                 ret = -ENOENT;
1282                 goto unlock;
1283         }
1284
1285         /* Bounds check destination. */
1286         if (args->offset > obj->base.size ||
1287             args->size > obj->base.size - args->offset) {
1288                 ret = -EINVAL;
1289                 goto out;
1290         }
1291
1292         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1293
1294         ret = -EFAULT;
1295         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1296          * it would end up going through the fenced access, and we'll get
1297          * different detiling behavior between reading and writing.
1298          * pread/pwrite currently are reading and writing from the CPU
1299          * perspective, requiring manual detiling by the client.
1300          */
1301         if (!i915_gem_object_has_struct_page(obj) ||
1302             cpu_write_needs_clflush(obj)) {
1303                 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1304                 /* Note that the gtt paths might fail with non-page-backed user
1305                  * pointers (e.g. gtt mappings when moving data between
1306                  * textures). Fallback to the shmem path in that case. */
1307         }
1308
1309         if (ret == -EFAULT) {
1310                 if (obj->phys_handle)
1311                         ret = i915_gem_phys_pwrite(obj, args, file);
1312                 else if (i915_gem_object_has_struct_page(obj))
1313                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1314                 else
1315                         ret = -ENODEV;
1316         }
1317
1318 out:
1319         drm_gem_object_unreference(&obj->base);
1320 unlock:
1321         mutex_unlock(&dev->struct_mutex);
1322 put_rpm:
1323         intel_runtime_pm_put(dev_priv);
1324
1325         return ret;
1326 }
1327
1328 static int
1329 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1330 {
1331         if (__i915_terminally_wedged(reset_counter))
1332                 return -EIO;
1333
1334         if (__i915_reset_in_progress(reset_counter)) {
1335                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1336                  * -EIO unconditionally for these. */
1337                 if (!interruptible)
1338                         return -EIO;
1339
1340                 return -EAGAIN;
1341         }
1342
1343         return 0;
1344 }
1345
1346 static unsigned long local_clock_us(unsigned *cpu)
1347 {
1348         unsigned long t;
1349
1350         /* Cheaply and approximately convert from nanoseconds to microseconds.
1351          * The result and subsequent calculations are also defined in the same
1352          * approximate microseconds units. The principal source of timing
1353          * error here is from the simple truncation.
1354          *
1355          * Note that local_clock() is only defined wrt to the current CPU;
1356          * the comparisons are no longer valid if we switch CPUs. Instead of
1357          * blocking preemption for the entire busywait, we can detect the CPU
1358          * switch and use that as indicator of system load and a reason to
1359          * stop busywaiting, see busywait_stop().
1360          */
1361         *cpu = get_cpu();
1362         t = local_clock() >> 10;
1363         put_cpu();
1364
1365         return t;
1366 }
1367
1368 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1369 {
1370         unsigned this_cpu;
1371
1372         if (time_after(local_clock_us(&this_cpu), timeout))
1373                 return true;
1374
1375         return this_cpu != cpu;
1376 }
1377
1378 bool __i915_spin_request(const struct drm_i915_gem_request *req,
1379                          int state, unsigned long timeout_us)
1380 {
1381         unsigned cpu;
1382
1383         /* When waiting for high frequency requests, e.g. during synchronous
1384          * rendering split between the CPU and GPU, the finite amount of time
1385          * required to set up the irq and wait upon it limits the response
1386          * rate. By busywaiting on the request completion for a short while we
1387          * can service the high frequency waits as quick as possible. However,
1388          * if it is a slow request, we want to sleep as quickly as possible.
1389          * The tradeoff between waiting and sleeping is roughly the time it
1390          * takes to sleep on a request, on the order of a microsecond.
1391          */
1392
1393         timeout_us += local_clock_us(&cpu);
1394         do {
1395                 if (i915_gem_request_completed(req))
1396                         return true;
1397
1398                 if (signal_pending_state(state, current))
1399                         break;
1400
1401                 if (busywait_stop(timeout_us, cpu))
1402                         break;
1403
1404                 cpu_relax_lowlatency();
1405         } while (!need_resched());
1406
1407         return false;
1408 }
1409
1410 /**
1411  * __i915_wait_request - wait until execution of request has finished
1412  * @req: duh!
1413  * @interruptible: do an interruptible wait (normally yes)
1414  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1415  * @rps: RPS client
1416  *
1417  * Note: It is of utmost importance that the passed in seqno and reset_counter
1418  * values have been read by the caller in an smp safe manner. Where read-side
1419  * locks are involved, it is sufficient to read the reset_counter before
1420  * unlocking the lock that protects the seqno. For lockless tricks, the
1421  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1422  * inserted.
1423  *
1424  * Returns 0 if the request was found within the alloted time. Else returns the
1425  * errno with remaining time filled in timeout argument.
1426  */
1427 int __i915_wait_request(struct drm_i915_gem_request *req,
1428                         bool interruptible,
1429                         s64 *timeout,
1430                         struct intel_rps_client *rps)
1431 {
1432         int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1433         DEFINE_WAIT(reset);
1434         struct intel_wait wait;
1435         unsigned long timeout_remain;
1436         s64 before = 0; /* Only to silence a compiler warning. */
1437         int ret = 0;
1438
1439         might_sleep();
1440
1441         if (list_empty(&req->list))
1442                 return 0;
1443
1444         if (i915_gem_request_completed(req))
1445                 return 0;
1446
1447         timeout_remain = MAX_SCHEDULE_TIMEOUT;
1448         if (timeout) {
1449                 if (WARN_ON(*timeout < 0))
1450                         return -EINVAL;
1451
1452                 if (*timeout == 0)
1453                         return -ETIME;
1454
1455                 timeout_remain = nsecs_to_jiffies_timeout(*timeout);
1456
1457                 /*
1458                  * Record current time in case interrupted by signal, or wedged.
1459                  */
1460                 before = ktime_get_raw_ns();
1461         }
1462
1463         trace_i915_gem_request_wait_begin(req);
1464
1465         /* This client is about to stall waiting for the GPU. In many cases
1466          * this is undesirable and limits the throughput of the system, as
1467          * many clients cannot continue processing user input/output whilst
1468          * blocked. RPS autotuning may take tens of milliseconds to respond
1469          * to the GPU load and thus incurs additional latency for the client.
1470          * We can circumvent that by promoting the GPU frequency to maximum
1471          * before we wait. This makes the GPU throttle up much more quickly
1472          * (good for benchmarks and user experience, e.g. window animations),
1473          * but at a cost of spending more power processing the workload
1474          * (bad for battery). Not all clients even want their results
1475          * immediately and for them we should just let the GPU select its own
1476          * frequency to maximise efficiency. To prevent a single client from
1477          * forcing the clocks too high for the whole system, we only allow
1478          * each client to waitboost once in a busy period.
1479          */
1480         if (INTEL_INFO(req->i915)->gen >= 6)
1481                 gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
1482
1483         /* Optimistic spin for the next ~jiffie before touching IRQs */
1484         if (i915_spin_request(req, state, 5))
1485                 goto complete;
1486
1487         set_current_state(state);
1488         add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1489
1490         intel_wait_init(&wait, req->seqno);
1491         if (intel_engine_add_wait(req->engine, &wait))
1492                 /* In order to check that we haven't missed the interrupt
1493                  * as we enabled it, we need to kick ourselves to do a
1494                  * coherent check on the seqno before we sleep.
1495                  */
1496                 goto wakeup;
1497
1498         for (;;) {
1499                 if (signal_pending_state(state, current)) {
1500                         ret = -ERESTARTSYS;
1501                         break;
1502                 }
1503
1504                 timeout_remain = io_schedule_timeout(timeout_remain);
1505                 if (timeout_remain == 0) {
1506                         ret = -ETIME;
1507                         break;
1508                 }
1509
1510                 if (intel_wait_complete(&wait))
1511                         break;
1512
1513                 set_current_state(state);
1514
1515 wakeup:
1516                 /* Carefully check if the request is complete, giving time
1517                  * for the seqno to be visible following the interrupt.
1518                  * We also have to check in case we are kicked by the GPU
1519                  * reset in order to drop the struct_mutex.
1520                  */
1521                 if (__i915_request_irq_complete(req))
1522                         break;
1523
1524                 /* Only spin if we know the GPU is processing this request */
1525                 if (i915_spin_request(req, state, 2))
1526                         break;
1527         }
1528         remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1529
1530         intel_engine_remove_wait(req->engine, &wait);
1531         __set_current_state(TASK_RUNNING);
1532 complete:
1533         trace_i915_gem_request_wait_end(req);
1534
1535         if (timeout) {
1536                 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1537
1538                 *timeout = tres < 0 ? 0 : tres;
1539
1540                 /*
1541                  * Apparently ktime isn't accurate enough and occasionally has a
1542                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1543                  * things up to make the test happy. We allow up to 1 jiffy.
1544                  *
1545                  * This is a regrssion from the timespec->ktime conversion.
1546                  */
1547                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1548                         *timeout = 0;
1549         }
1550
1551         if (rps && req->seqno == req->engine->last_submitted_seqno) {
1552                 /* The GPU is now idle and this client has stalled.
1553                  * Since no other client has submitted a request in the
1554                  * meantime, assume that this client is the only one
1555                  * supplying work to the GPU but is unable to keep that
1556                  * work supplied because it is waiting. Since the GPU is
1557                  * then never kept fully busy, RPS autoclocking will
1558                  * keep the clocks relatively low, causing further delays.
1559                  * Compensate by giving the synchronous client credit for
1560                  * a waitboost next time.
1561                  */
1562                 spin_lock(&req->i915->rps.client_lock);
1563                 list_del_init(&rps->link);
1564                 spin_unlock(&req->i915->rps.client_lock);
1565         }
1566
1567         return ret;
1568 }
1569
1570 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1571                                    struct drm_file *file)
1572 {
1573         struct drm_i915_file_private *file_priv;
1574
1575         WARN_ON(!req || !file || req->file_priv);
1576
1577         if (!req || !file)
1578                 return -EINVAL;
1579
1580         if (req->file_priv)
1581                 return -EINVAL;
1582
1583         file_priv = file->driver_priv;
1584
1585         spin_lock(&file_priv->mm.lock);
1586         req->file_priv = file_priv;
1587         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1588         spin_unlock(&file_priv->mm.lock);
1589
1590         req->pid = get_pid(task_pid(current));
1591
1592         return 0;
1593 }
1594
1595 static inline void
1596 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1597 {
1598         struct drm_i915_file_private *file_priv = request->file_priv;
1599
1600         if (!file_priv)
1601                 return;
1602
1603         spin_lock(&file_priv->mm.lock);
1604         list_del(&request->client_list);
1605         request->file_priv = NULL;
1606         spin_unlock(&file_priv->mm.lock);
1607
1608         put_pid(request->pid);
1609         request->pid = NULL;
1610 }
1611
1612 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1613 {
1614         trace_i915_gem_request_retire(request);
1615
1616         /* We know the GPU must have read the request to have
1617          * sent us the seqno + interrupt, so use the position
1618          * of tail of the request to update the last known position
1619          * of the GPU head.
1620          *
1621          * Note this requires that we are always called in request
1622          * completion order.
1623          */
1624         request->ringbuf->last_retired_head = request->postfix;
1625
1626         list_del_init(&request->list);
1627         i915_gem_request_remove_from_client(request);
1628
1629         if (request->previous_context) {
1630                 if (i915.enable_execlists)
1631                         intel_lr_context_unpin(request->previous_context,
1632                                                request->engine);
1633         }
1634
1635         i915_gem_context_unreference(request->ctx);
1636         i915_gem_request_unreference(request);
1637 }
1638
1639 static void
1640 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1641 {
1642         struct intel_engine_cs *engine = req->engine;
1643         struct drm_i915_gem_request *tmp;
1644
1645         lockdep_assert_held(&engine->i915->drm.struct_mutex);
1646
1647         if (list_empty(&req->list))
1648                 return;
1649
1650         do {
1651                 tmp = list_first_entry(&engine->request_list,
1652                                        typeof(*tmp), list);
1653
1654                 i915_gem_request_retire(tmp);
1655         } while (tmp != req);
1656
1657         WARN_ON(i915_verify_lists(engine->dev));
1658 }
1659
1660 /**
1661  * Waits for a request to be signaled, and cleans up the
1662  * request and object lists appropriately for that event.
1663  * @req: request to wait on
1664  */
1665 int
1666 i915_wait_request(struct drm_i915_gem_request *req)
1667 {
1668         struct drm_i915_private *dev_priv = req->i915;
1669         bool interruptible;
1670         int ret;
1671
1672         interruptible = dev_priv->mm.interruptible;
1673
1674         BUG_ON(!mutex_is_locked(&dev_priv->drm.struct_mutex));
1675
1676         ret = __i915_wait_request(req, interruptible, NULL, NULL);
1677         if (ret)
1678                 return ret;
1679
1680         /* If the GPU hung, we want to keep the requests to find the guilty. */
1681         if (!i915_reset_in_progress(&dev_priv->gpu_error))
1682                 __i915_gem_request_retire__upto(req);
1683
1684         return 0;
1685 }
1686
1687 /**
1688  * Ensures that all rendering to the object has completed and the object is
1689  * safe to unbind from the GTT or access from the CPU.
1690  * @obj: i915 gem object
1691  * @readonly: waiting for read access or write
1692  */
1693 int
1694 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1695                                bool readonly)
1696 {
1697         int ret, i;
1698
1699         if (!obj->active)
1700                 return 0;
1701
1702         if (readonly) {
1703                 if (obj->last_write_req != NULL) {
1704                         ret = i915_wait_request(obj->last_write_req);
1705                         if (ret)
1706                                 return ret;
1707
1708                         i = obj->last_write_req->engine->id;
1709                         if (obj->last_read_req[i] == obj->last_write_req)
1710                                 i915_gem_object_retire__read(obj, i);
1711                         else
1712                                 i915_gem_object_retire__write(obj);
1713                 }
1714         } else {
1715                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1716                         if (obj->last_read_req[i] == NULL)
1717                                 continue;
1718
1719                         ret = i915_wait_request(obj->last_read_req[i]);
1720                         if (ret)
1721                                 return ret;
1722
1723                         i915_gem_object_retire__read(obj, i);
1724                 }
1725                 GEM_BUG_ON(obj->active);
1726         }
1727
1728         return 0;
1729 }
1730
1731 static void
1732 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1733                                struct drm_i915_gem_request *req)
1734 {
1735         int ring = req->engine->id;
1736
1737         if (obj->last_read_req[ring] == req)
1738                 i915_gem_object_retire__read(obj, ring);
1739         else if (obj->last_write_req == req)
1740                 i915_gem_object_retire__write(obj);
1741
1742         if (!i915_reset_in_progress(&req->i915->gpu_error))
1743                 __i915_gem_request_retire__upto(req);
1744 }
1745
1746 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1747  * as the object state may change during this call.
1748  */
1749 static __must_check int
1750 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1751                                             struct intel_rps_client *rps,
1752                                             bool readonly)
1753 {
1754         struct drm_device *dev = obj->base.dev;
1755         struct drm_i915_private *dev_priv = to_i915(dev);
1756         struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1757         int ret, i, n = 0;
1758
1759         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1760         BUG_ON(!dev_priv->mm.interruptible);
1761
1762         if (!obj->active)
1763                 return 0;
1764
1765         if (readonly) {
1766                 struct drm_i915_gem_request *req;
1767
1768                 req = obj->last_write_req;
1769                 if (req == NULL)
1770                         return 0;
1771
1772                 requests[n++] = i915_gem_request_reference(req);
1773         } else {
1774                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1775                         struct drm_i915_gem_request *req;
1776
1777                         req = obj->last_read_req[i];
1778                         if (req == NULL)
1779                                 continue;
1780
1781                         requests[n++] = i915_gem_request_reference(req);
1782                 }
1783         }
1784
1785         mutex_unlock(&dev->struct_mutex);
1786         ret = 0;
1787         for (i = 0; ret == 0 && i < n; i++)
1788                 ret = __i915_wait_request(requests[i], true, NULL, rps);
1789         mutex_lock(&dev->struct_mutex);
1790
1791         for (i = 0; i < n; i++) {
1792                 if (ret == 0)
1793                         i915_gem_object_retire_request(obj, requests[i]);
1794                 i915_gem_request_unreference(requests[i]);
1795         }
1796
1797         return ret;
1798 }
1799
1800 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1801 {
1802         struct drm_i915_file_private *fpriv = file->driver_priv;
1803         return &fpriv->rps;
1804 }
1805
1806 static enum fb_op_origin
1807 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1808 {
1809         return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1810                ORIGIN_GTT : ORIGIN_CPU;
1811 }
1812
1813 /**
1814  * Called when user space prepares to use an object with the CPU, either
1815  * through the mmap ioctl's mapping or a GTT mapping.
1816  * @dev: drm device
1817  * @data: ioctl data blob
1818  * @file: drm file
1819  */
1820 int
1821 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1822                           struct drm_file *file)
1823 {
1824         struct drm_i915_gem_set_domain *args = data;
1825         struct drm_i915_gem_object *obj;
1826         uint32_t read_domains = args->read_domains;
1827         uint32_t write_domain = args->write_domain;
1828         int ret;
1829
1830         /* Only handle setting domains to types used by the CPU. */
1831         if (write_domain & I915_GEM_GPU_DOMAINS)
1832                 return -EINVAL;
1833
1834         if (read_domains & I915_GEM_GPU_DOMAINS)
1835                 return -EINVAL;
1836
1837         /* Having something in the write domain implies it's in the read
1838          * domain, and only that read domain.  Enforce that in the request.
1839          */
1840         if (write_domain != 0 && read_domains != write_domain)
1841                 return -EINVAL;
1842
1843         ret = i915_mutex_lock_interruptible(dev);
1844         if (ret)
1845                 return ret;
1846
1847         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1848         if (&obj->base == NULL) {
1849                 ret = -ENOENT;
1850                 goto unlock;
1851         }
1852
1853         /* Try to flush the object off the GPU without holding the lock.
1854          * We will repeat the flush holding the lock in the normal manner
1855          * to catch cases where we are gazumped.
1856          */
1857         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1858                                                           to_rps_client(file),
1859                                                           !write_domain);
1860         if (ret)
1861                 goto unref;
1862
1863         if (read_domains & I915_GEM_DOMAIN_GTT)
1864                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1865         else
1866                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1867
1868         if (write_domain != 0)
1869                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1870
1871 unref:
1872         drm_gem_object_unreference(&obj->base);
1873 unlock:
1874         mutex_unlock(&dev->struct_mutex);
1875         return ret;
1876 }
1877
1878 /**
1879  * Called when user space has done writes to this buffer
1880  * @dev: drm device
1881  * @data: ioctl data blob
1882  * @file: drm file
1883  */
1884 int
1885 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1886                          struct drm_file *file)
1887 {
1888         struct drm_i915_gem_sw_finish *args = data;
1889         struct drm_i915_gem_object *obj;
1890         int ret = 0;
1891
1892         ret = i915_mutex_lock_interruptible(dev);
1893         if (ret)
1894                 return ret;
1895
1896         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1897         if (&obj->base == NULL) {
1898                 ret = -ENOENT;
1899                 goto unlock;
1900         }
1901
1902         /* Pinned buffers may be scanout, so flush the cache */
1903         if (obj->pin_display)
1904                 i915_gem_object_flush_cpu_write_domain(obj);
1905
1906         drm_gem_object_unreference(&obj->base);
1907 unlock:
1908         mutex_unlock(&dev->struct_mutex);
1909         return ret;
1910 }
1911
1912 /**
1913  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1914  *                       it is mapped to.
1915  * @dev: drm device
1916  * @data: ioctl data blob
1917  * @file: drm file
1918  *
1919  * While the mapping holds a reference on the contents of the object, it doesn't
1920  * imply a ref on the object itself.
1921  *
1922  * IMPORTANT:
1923  *
1924  * DRM driver writers who look a this function as an example for how to do GEM
1925  * mmap support, please don't implement mmap support like here. The modern way
1926  * to implement DRM mmap support is with an mmap offset ioctl (like
1927  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1928  * That way debug tooling like valgrind will understand what's going on, hiding
1929  * the mmap call in a driver private ioctl will break that. The i915 driver only
1930  * does cpu mmaps this way because we didn't know better.
1931  */
1932 int
1933 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1934                     struct drm_file *file)
1935 {
1936         struct drm_i915_gem_mmap *args = data;
1937         struct drm_gem_object *obj;
1938         unsigned long addr;
1939
1940         if (args->flags & ~(I915_MMAP_WC))
1941                 return -EINVAL;
1942
1943         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1944                 return -ENODEV;
1945
1946         obj = drm_gem_object_lookup(file, args->handle);
1947         if (obj == NULL)
1948                 return -ENOENT;
1949
1950         /* prime objects have no backing filp to GEM mmap
1951          * pages from.
1952          */
1953         if (!obj->filp) {
1954                 drm_gem_object_unreference_unlocked(obj);
1955                 return -EINVAL;
1956         }
1957
1958         addr = vm_mmap(obj->filp, 0, args->size,
1959                        PROT_READ | PROT_WRITE, MAP_SHARED,
1960                        args->offset);
1961         if (args->flags & I915_MMAP_WC) {
1962                 struct mm_struct *mm = current->mm;
1963                 struct vm_area_struct *vma;
1964
1965                 if (down_write_killable(&mm->mmap_sem)) {
1966                         drm_gem_object_unreference_unlocked(obj);
1967                         return -EINTR;
1968                 }
1969                 vma = find_vma(mm, addr);
1970                 if (vma)
1971                         vma->vm_page_prot =
1972                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1973                 else
1974                         addr = -ENOMEM;
1975                 up_write(&mm->mmap_sem);
1976
1977                 /* This may race, but that's ok, it only gets set */
1978                 WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1979         }
1980         drm_gem_object_unreference_unlocked(obj);
1981         if (IS_ERR((void *)addr))
1982                 return addr;
1983
1984         args->addr_ptr = (uint64_t) addr;
1985
1986         return 0;
1987 }
1988
1989 /**
1990  * i915_gem_fault - fault a page into the GTT
1991  * @vma: VMA in question
1992  * @vmf: fault info
1993  *
1994  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1995  * from userspace.  The fault handler takes care of binding the object to
1996  * the GTT (if needed), allocating and programming a fence register (again,
1997  * only if needed based on whether the old reg is still valid or the object
1998  * is tiled) and inserting a new PTE into the faulting process.
1999  *
2000  * Note that the faulting process may involve evicting existing objects
2001  * from the GTT and/or fence registers to make room.  So performance may
2002  * suffer if the GTT working set is large or there are few fence registers
2003  * left.
2004  */
2005 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2006 {
2007         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
2008         struct drm_device *dev = obj->base.dev;
2009         struct drm_i915_private *dev_priv = to_i915(dev);
2010         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2011         struct i915_ggtt_view view = i915_ggtt_view_normal;
2012         pgoff_t page_offset;
2013         unsigned long pfn;
2014         int ret = 0;
2015         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2016
2017         intel_runtime_pm_get(dev_priv);
2018
2019         /* We don't use vmf->pgoff since that has the fake offset */
2020         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2021                 PAGE_SHIFT;
2022
2023         ret = i915_mutex_lock_interruptible(dev);
2024         if (ret)
2025                 goto out;
2026
2027         trace_i915_gem_object_fault(obj, page_offset, true, write);
2028
2029         /* Try to flush the object off the GPU first without holding the lock.
2030          * Upon reacquiring the lock, we will perform our sanity checks and then
2031          * repeat the flush holding the lock in the normal manner to catch cases
2032          * where we are gazumped.
2033          */
2034         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2035         if (ret)
2036                 goto unlock;
2037
2038         /* Access to snoopable pages through the GTT is incoherent. */
2039         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2040                 ret = -EFAULT;
2041                 goto unlock;
2042         }
2043
2044         /* Use a partial view if the object is bigger than the aperture. */
2045         if (obj->base.size >= ggtt->mappable_end &&
2046             obj->tiling_mode == I915_TILING_NONE) {
2047                 static const unsigned int chunk_size = 256; // 1 MiB
2048
2049                 memset(&view, 0, sizeof(view));
2050                 view.type = I915_GGTT_VIEW_PARTIAL;
2051                 view.params.partial.offset = rounddown(page_offset, chunk_size);
2052                 view.params.partial.size =
2053                         min_t(unsigned int,
2054                               chunk_size,
2055                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
2056                               view.params.partial.offset);
2057         }
2058
2059         /* Now pin it into the GTT if needed */
2060         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2061         if (ret)
2062                 goto unlock;
2063
2064         ret = i915_gem_object_set_to_gtt_domain(obj, write);
2065         if (ret)
2066                 goto unpin;
2067
2068         ret = i915_gem_object_get_fence(obj);
2069         if (ret)
2070                 goto unpin;
2071
2072         /* Finally, remap it using the new GTT offset */
2073         pfn = ggtt->mappable_base +
2074                 i915_gem_obj_ggtt_offset_view(obj, &view);
2075         pfn >>= PAGE_SHIFT;
2076
2077         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
2078                 /* Overriding existing pages in partial view does not cause
2079                  * us any trouble as TLBs are still valid because the fault
2080                  * is due to userspace losing part of the mapping or never
2081                  * having accessed it before (at this partials' range).
2082                  */
2083                 unsigned long base = vma->vm_start +
2084                                      (view.params.partial.offset << PAGE_SHIFT);
2085                 unsigned int i;
2086
2087                 for (i = 0; i < view.params.partial.size; i++) {
2088                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2089                         if (ret)
2090                                 break;
2091                 }
2092
2093                 obj->fault_mappable = true;
2094         } else {
2095                 if (!obj->fault_mappable) {
2096                         unsigned long size = min_t(unsigned long,
2097                                                    vma->vm_end - vma->vm_start,
2098                                                    obj->base.size);
2099                         int i;
2100
2101                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
2102                                 ret = vm_insert_pfn(vma,
2103                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
2104                                                     pfn + i);
2105                                 if (ret)
2106                                         break;
2107                         }
2108
2109                         obj->fault_mappable = true;
2110                 } else
2111                         ret = vm_insert_pfn(vma,
2112                                             (unsigned long)vmf->virtual_address,
2113                                             pfn + page_offset);
2114         }
2115 unpin:
2116         i915_gem_object_ggtt_unpin_view(obj, &view);
2117 unlock:
2118         mutex_unlock(&dev->struct_mutex);
2119 out:
2120         switch (ret) {
2121         case -EIO:
2122                 /*
2123                  * We eat errors when the gpu is terminally wedged to avoid
2124                  * userspace unduly crashing (gl has no provisions for mmaps to
2125                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
2126                  * and so needs to be reported.
2127                  */
2128                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2129                         ret = VM_FAULT_SIGBUS;
2130                         break;
2131                 }
2132         case -EAGAIN:
2133                 /*
2134                  * EAGAIN means the gpu is hung and we'll wait for the error
2135                  * handler to reset everything when re-faulting in
2136                  * i915_mutex_lock_interruptible.
2137                  */
2138         case 0:
2139         case -ERESTARTSYS:
2140         case -EINTR:
2141         case -EBUSY:
2142                 /*
2143                  * EBUSY is ok: this just means that another thread
2144                  * already did the job.
2145                  */
2146                 ret = VM_FAULT_NOPAGE;
2147                 break;
2148         case -ENOMEM:
2149                 ret = VM_FAULT_OOM;
2150                 break;
2151         case -ENOSPC:
2152         case -EFAULT:
2153                 ret = VM_FAULT_SIGBUS;
2154                 break;
2155         default:
2156                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2157                 ret = VM_FAULT_SIGBUS;
2158                 break;
2159         }
2160
2161         intel_runtime_pm_put(dev_priv);
2162         return ret;
2163 }
2164
2165 /**
2166  * i915_gem_release_mmap - remove physical page mappings
2167  * @obj: obj in question
2168  *
2169  * Preserve the reservation of the mmapping with the DRM core code, but
2170  * relinquish ownership of the pages back to the system.
2171  *
2172  * It is vital that we remove the page mapping if we have mapped a tiled
2173  * object through the GTT and then lose the fence register due to
2174  * resource pressure. Similarly if the object has been moved out of the
2175  * aperture, than pages mapped into userspace must be revoked. Removing the
2176  * mapping will then trigger a page fault on the next user access, allowing
2177  * fixup by i915_gem_fault().
2178  */
2179 void
2180 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2181 {
2182         /* Serialisation between user GTT access and our code depends upon
2183          * revoking the CPU's PTE whilst the mutex is held. The next user
2184          * pagefault then has to wait until we release the mutex.
2185          */
2186         lockdep_assert_held(&obj->base.dev->struct_mutex);
2187
2188         if (!obj->fault_mappable)
2189                 return;
2190
2191         drm_vma_node_unmap(&obj->base.vma_node,
2192                            obj->base.dev->anon_inode->i_mapping);
2193
2194         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2195          * memory transactions from userspace before we return. The TLB
2196          * flushing implied above by changing the PTE above *should* be
2197          * sufficient, an extra barrier here just provides us with a bit
2198          * of paranoid documentation about our requirement to serialise
2199          * memory writes before touching registers / GSM.
2200          */
2201         wmb();
2202
2203         obj->fault_mappable = false;
2204 }
2205
2206 void
2207 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2208 {
2209         struct drm_i915_gem_object *obj;
2210
2211         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2212                 i915_gem_release_mmap(obj);
2213 }
2214
2215 uint32_t
2216 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2217 {
2218         uint32_t gtt_size;
2219
2220         if (INTEL_INFO(dev)->gen >= 4 ||
2221             tiling_mode == I915_TILING_NONE)
2222                 return size;
2223
2224         /* Previous chips need a power-of-two fence region when tiling */
2225         if (IS_GEN3(dev))
2226                 gtt_size = 1024*1024;
2227         else
2228                 gtt_size = 512*1024;
2229
2230         while (gtt_size < size)
2231                 gtt_size <<= 1;
2232
2233         return gtt_size;
2234 }
2235
2236 /**
2237  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2238  * @dev: drm device
2239  * @size: object size
2240  * @tiling_mode: tiling mode
2241  * @fenced: is fenced alignemned required or not
2242  *
2243  * Return the required GTT alignment for an object, taking into account
2244  * potential fence register mapping.
2245  */
2246 uint32_t
2247 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2248                            int tiling_mode, bool fenced)
2249 {
2250         /*
2251          * Minimum alignment is 4k (GTT page size), but might be greater
2252          * if a fence register is needed for the object.
2253          */
2254         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2255             tiling_mode == I915_TILING_NONE)
2256                 return 4096;
2257
2258         /*
2259          * Previous chips need to be aligned to the size of the smallest
2260          * fence register that can contain the object.
2261          */
2262         return i915_gem_get_gtt_size(dev, size, tiling_mode);
2263 }
2264
2265 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2266 {
2267         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2268         int ret;
2269
2270         dev_priv->mm.shrinker_no_lock_stealing = true;
2271
2272         ret = drm_gem_create_mmap_offset(&obj->base);
2273         if (ret != -ENOSPC)
2274                 goto out;
2275
2276         /* Badly fragmented mmap space? The only way we can recover
2277          * space is by destroying unwanted objects. We can't randomly release
2278          * mmap_offsets as userspace expects them to be persistent for the
2279          * lifetime of the objects. The closest we can is to release the
2280          * offsets on purgeable objects by truncating it and marking it purged,
2281          * which prevents userspace from ever using that object again.
2282          */
2283         i915_gem_shrink(dev_priv,
2284                         obj->base.size >> PAGE_SHIFT,
2285                         I915_SHRINK_BOUND |
2286                         I915_SHRINK_UNBOUND |
2287                         I915_SHRINK_PURGEABLE);
2288         ret = drm_gem_create_mmap_offset(&obj->base);
2289         if (ret != -ENOSPC)
2290                 goto out;
2291
2292         i915_gem_shrink_all(dev_priv);
2293         ret = drm_gem_create_mmap_offset(&obj->base);
2294 out:
2295         dev_priv->mm.shrinker_no_lock_stealing = false;
2296
2297         return ret;
2298 }
2299
2300 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2301 {
2302         drm_gem_free_mmap_offset(&obj->base);
2303 }
2304
2305 int
2306 i915_gem_mmap_gtt(struct drm_file *file,
2307                   struct drm_device *dev,
2308                   uint32_t handle,
2309                   uint64_t *offset)
2310 {
2311         struct drm_i915_gem_object *obj;
2312         int ret;
2313
2314         ret = i915_mutex_lock_interruptible(dev);
2315         if (ret)
2316                 return ret;
2317
2318         obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2319         if (&obj->base == NULL) {
2320                 ret = -ENOENT;
2321                 goto unlock;
2322         }
2323
2324         if (obj->madv != I915_MADV_WILLNEED) {
2325                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2326                 ret = -EFAULT;
2327                 goto out;
2328         }
2329
2330         ret = i915_gem_object_create_mmap_offset(obj);
2331         if (ret)
2332                 goto out;
2333
2334         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2335
2336 out:
2337         drm_gem_object_unreference(&obj->base);
2338 unlock:
2339         mutex_unlock(&dev->struct_mutex);
2340         return ret;
2341 }
2342
2343 /**
2344  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2345  * @dev: DRM device
2346  * @data: GTT mapping ioctl data
2347  * @file: GEM object info
2348  *
2349  * Simply returns the fake offset to userspace so it can mmap it.
2350  * The mmap call will end up in drm_gem_mmap(), which will set things
2351  * up so we can get faults in the handler above.
2352  *
2353  * The fault handler will take care of binding the object into the GTT
2354  * (since it may have been evicted to make room for something), allocating
2355  * a fence register, and mapping the appropriate aperture address into
2356  * userspace.
2357  */
2358 int
2359 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2360                         struct drm_file *file)
2361 {
2362         struct drm_i915_gem_mmap_gtt *args = data;
2363
2364         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2365 }
2366
2367 /* Immediately discard the backing storage */
2368 static void
2369 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2370 {
2371         i915_gem_object_free_mmap_offset(obj);
2372
2373         if (obj->base.filp == NULL)
2374                 return;
2375
2376         /* Our goal here is to return as much of the memory as
2377          * is possible back to the system as we are called from OOM.
2378          * To do this we must instruct the shmfs to drop all of its
2379          * backing pages, *now*.
2380          */
2381         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2382         obj->madv = __I915_MADV_PURGED;
2383 }
2384
2385 /* Try to discard unwanted pages */
2386 static void
2387 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2388 {
2389         struct address_space *mapping;
2390
2391         switch (obj->madv) {
2392         case I915_MADV_DONTNEED:
2393                 i915_gem_object_truncate(obj);
2394         case __I915_MADV_PURGED:
2395                 return;
2396         }
2397
2398         if (obj->base.filp == NULL)
2399                 return;
2400
2401         mapping = obj->base.filp->f_mapping,
2402         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2403 }
2404
2405 static void
2406 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2407 {
2408         struct sgt_iter sgt_iter;
2409         struct page *page;
2410         int ret;
2411
2412         BUG_ON(obj->madv == __I915_MADV_PURGED);
2413
2414         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2415         if (WARN_ON(ret)) {
2416                 /* In the event of a disaster, abandon all caches and
2417                  * hope for the best.
2418                  */
2419                 i915_gem_clflush_object(obj, true);
2420                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2421         }
2422
2423         i915_gem_gtt_finish_object(obj);
2424
2425         if (i915_gem_object_needs_bit17_swizzle(obj))
2426                 i915_gem_object_save_bit_17_swizzle(obj);
2427
2428         if (obj->madv == I915_MADV_DONTNEED)
2429                 obj->dirty = 0;
2430
2431         for_each_sgt_page(page, sgt_iter, obj->pages) {
2432                 if (obj->dirty)
2433                         set_page_dirty(page);
2434
2435                 if (obj->madv == I915_MADV_WILLNEED)
2436                         mark_page_accessed(page);
2437
2438                 put_page(page);
2439         }
2440         obj->dirty = 0;
2441
2442         sg_free_table(obj->pages);
2443         kfree(obj->pages);
2444 }
2445
2446 int
2447 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2448 {
2449         const struct drm_i915_gem_object_ops *ops = obj->ops;
2450
2451         if (obj->pages == NULL)
2452                 return 0;
2453
2454         if (obj->pages_pin_count)
2455                 return -EBUSY;
2456
2457         BUG_ON(i915_gem_obj_bound_any(obj));
2458
2459         /* ->put_pages might need to allocate memory for the bit17 swizzle
2460          * array, hence protect them from being reaped by removing them from gtt
2461          * lists early. */
2462         list_del(&obj->global_list);
2463
2464         if (obj->mapping) {
2465                 if (is_vmalloc_addr(obj->mapping))
2466                         vunmap(obj->mapping);
2467                 else
2468                         kunmap(kmap_to_page(obj->mapping));
2469                 obj->mapping = NULL;
2470         }
2471
2472         ops->put_pages(obj);
2473         obj->pages = NULL;
2474
2475         i915_gem_object_invalidate(obj);
2476
2477         return 0;
2478 }
2479
2480 static int
2481 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2482 {
2483         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2484         int page_count, i;
2485         struct address_space *mapping;
2486         struct sg_table *st;
2487         struct scatterlist *sg;
2488         struct sgt_iter sgt_iter;
2489         struct page *page;
2490         unsigned long last_pfn = 0;     /* suppress gcc warning */
2491         int ret;
2492         gfp_t gfp;
2493
2494         /* Assert that the object is not currently in any GPU domain. As it
2495          * wasn't in the GTT, there shouldn't be any way it could have been in
2496          * a GPU cache
2497          */
2498         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2499         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2500
2501         st = kmalloc(sizeof(*st), GFP_KERNEL);
2502         if (st == NULL)
2503                 return -ENOMEM;
2504
2505         page_count = obj->base.size / PAGE_SIZE;
2506         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2507                 kfree(st);
2508                 return -ENOMEM;
2509         }
2510
2511         /* Get the list of pages out of our struct file.  They'll be pinned
2512          * at this point until we release them.
2513          *
2514          * Fail silently without starting the shrinker
2515          */
2516         mapping = obj->base.filp->f_mapping;
2517         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2518         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2519         sg = st->sgl;
2520         st->nents = 0;
2521         for (i = 0; i < page_count; i++) {
2522                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2523                 if (IS_ERR(page)) {
2524                         i915_gem_shrink(dev_priv,
2525                                         page_count,
2526                                         I915_SHRINK_BOUND |
2527                                         I915_SHRINK_UNBOUND |
2528                                         I915_SHRINK_PURGEABLE);
2529                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2530                 }
2531                 if (IS_ERR(page)) {
2532                         /* We've tried hard to allocate the memory by reaping
2533                          * our own buffer, now let the real VM do its job and
2534                          * go down in flames if truly OOM.
2535                          */
2536                         i915_gem_shrink_all(dev_priv);
2537                         page = shmem_read_mapping_page(mapping, i);
2538                         if (IS_ERR(page)) {
2539                                 ret = PTR_ERR(page);
2540                                 goto err_pages;
2541                         }
2542                 }
2543 #ifdef CONFIG_SWIOTLB
2544                 if (swiotlb_nr_tbl()) {
2545                         st->nents++;
2546                         sg_set_page(sg, page, PAGE_SIZE, 0);
2547                         sg = sg_next(sg);
2548                         continue;
2549                 }
2550 #endif
2551                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2552                         if (i)
2553                                 sg = sg_next(sg);
2554                         st->nents++;
2555                         sg_set_page(sg, page, PAGE_SIZE, 0);
2556                 } else {
2557                         sg->length += PAGE_SIZE;
2558                 }
2559                 last_pfn = page_to_pfn(page);
2560
2561                 /* Check that the i965g/gm workaround works. */
2562                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2563         }
2564 #ifdef CONFIG_SWIOTLB
2565         if (!swiotlb_nr_tbl())
2566 #endif
2567                 sg_mark_end(sg);
2568         obj->pages = st;
2569
2570         ret = i915_gem_gtt_prepare_object(obj);
2571         if (ret)
2572                 goto err_pages;
2573
2574         if (i915_gem_object_needs_bit17_swizzle(obj))
2575                 i915_gem_object_do_bit_17_swizzle(obj);
2576
2577         if (obj->tiling_mode != I915_TILING_NONE &&
2578             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2579                 i915_gem_object_pin_pages(obj);
2580
2581         return 0;
2582
2583 err_pages:
2584         sg_mark_end(sg);
2585         for_each_sgt_page(page, sgt_iter, st)
2586                 put_page(page);
2587         sg_free_table(st);
2588         kfree(st);
2589
2590         /* shmemfs first checks if there is enough memory to allocate the page
2591          * and reports ENOSPC should there be insufficient, along with the usual
2592          * ENOMEM for a genuine allocation failure.
2593          *
2594          * We use ENOSPC in our driver to mean that we have run out of aperture
2595          * space and so want to translate the error from shmemfs back to our
2596          * usual understanding of ENOMEM.
2597          */
2598         if (ret == -ENOSPC)
2599                 ret = -ENOMEM;
2600
2601         return ret;
2602 }
2603
2604 /* Ensure that the associated pages are gathered from the backing storage
2605  * and pinned into our object. i915_gem_object_get_pages() may be called
2606  * multiple times before they are released by a single call to
2607  * i915_gem_object_put_pages() - once the pages are no longer referenced
2608  * either as a result of memory pressure (reaping pages under the shrinker)
2609  * or as the object is itself released.
2610  */
2611 int
2612 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2613 {
2614         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2615         const struct drm_i915_gem_object_ops *ops = obj->ops;
2616         int ret;
2617
2618         if (obj->pages)
2619                 return 0;
2620
2621         if (obj->madv != I915_MADV_WILLNEED) {
2622                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2623                 return -EFAULT;
2624         }
2625
2626         BUG_ON(obj->pages_pin_count);
2627
2628         ret = ops->get_pages(obj);
2629         if (ret)
2630                 return ret;
2631
2632         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2633
2634         obj->get_page.sg = obj->pages->sgl;
2635         obj->get_page.last = 0;
2636
2637         return 0;
2638 }
2639
2640 /* The 'mapping' part of i915_gem_object_pin_map() below */
2641 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2642 {
2643         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2644         struct sg_table *sgt = obj->pages;
2645         struct sgt_iter sgt_iter;
2646         struct page *page;
2647         struct page *stack_pages[32];
2648         struct page **pages = stack_pages;
2649         unsigned long i = 0;
2650         void *addr;
2651
2652         /* A single page can always be kmapped */
2653         if (n_pages == 1)
2654                 return kmap(sg_page(sgt->sgl));
2655
2656         if (n_pages > ARRAY_SIZE(stack_pages)) {
2657                 /* Too big for stack -- allocate temporary array instead */
2658                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2659                 if (!pages)
2660                         return NULL;
2661         }
2662
2663         for_each_sgt_page(page, sgt_iter, sgt)
2664                 pages[i++] = page;
2665
2666         /* Check that we have the expected number of pages */
2667         GEM_BUG_ON(i != n_pages);
2668
2669         addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2670
2671         if (pages != stack_pages)
2672                 drm_free_large(pages);
2673
2674         return addr;
2675 }
2676
2677 /* get, pin, and map the pages of the object into kernel space */
2678 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2679 {
2680         int ret;
2681
2682         lockdep_assert_held(&obj->base.dev->struct_mutex);
2683
2684         ret = i915_gem_object_get_pages(obj);
2685         if (ret)
2686                 return ERR_PTR(ret);
2687
2688         i915_gem_object_pin_pages(obj);
2689
2690         if (!obj->mapping) {
2691                 obj->mapping = i915_gem_object_map(obj);
2692                 if (!obj->mapping) {
2693                         i915_gem_object_unpin_pages(obj);
2694                         return ERR_PTR(-ENOMEM);
2695                 }
2696         }
2697
2698         return obj->mapping;
2699 }
2700
2701 void i915_vma_move_to_active(struct i915_vma *vma,
2702                              struct drm_i915_gem_request *req)
2703 {
2704         struct drm_i915_gem_object *obj = vma->obj;
2705         struct intel_engine_cs *engine;
2706
2707         engine = i915_gem_request_get_engine(req);
2708
2709         /* Add a reference if we're newly entering the active list. */
2710         if (obj->active == 0)
2711                 drm_gem_object_reference(&obj->base);
2712         obj->active |= intel_engine_flag(engine);
2713
2714         list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2715         i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2716
2717         list_move_tail(&vma->vm_link, &vma->vm->active_list);
2718 }
2719
2720 static void
2721 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2722 {
2723         GEM_BUG_ON(obj->last_write_req == NULL);
2724         GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2725
2726         i915_gem_request_assign(&obj->last_write_req, NULL);
2727         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2728 }
2729
2730 static void
2731 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2732 {
2733         struct i915_vma *vma;
2734
2735         GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2736         GEM_BUG_ON(!(obj->active & (1 << ring)));
2737
2738         list_del_init(&obj->engine_list[ring]);
2739         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2740
2741         if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2742                 i915_gem_object_retire__write(obj);
2743
2744         obj->active &= ~(1 << ring);
2745         if (obj->active)
2746                 return;
2747
2748         /* Bump our place on the bound list to keep it roughly in LRU order
2749          * so that we don't steal from recently used but inactive objects
2750          * (unless we are forced to ofc!)
2751          */
2752         list_move_tail(&obj->global_list,
2753                        &to_i915(obj->base.dev)->mm.bound_list);
2754
2755         list_for_each_entry(vma, &obj->vma_list, obj_link) {
2756                 if (!list_empty(&vma->vm_link))
2757                         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2758         }
2759
2760         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2761         drm_gem_object_unreference(&obj->base);
2762 }
2763
2764 static int
2765 i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2766 {
2767         struct intel_engine_cs *engine;
2768         int ret;
2769
2770         /* Carefully retire all requests without writing to the rings */
2771         for_each_engine(engine, dev_priv) {
2772                 ret = intel_engine_idle(engine);
2773                 if (ret)
2774                         return ret;
2775         }
2776         i915_gem_retire_requests(dev_priv);
2777
2778         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
2779         if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
2780                 while (intel_kick_waiters(dev_priv) ||
2781                        intel_kick_signalers(dev_priv))
2782                         yield();
2783         }
2784
2785         /* Finally reset hw state */
2786         for_each_engine(engine, dev_priv)
2787                 intel_ring_init_seqno(engine, seqno);
2788
2789         return 0;
2790 }
2791
2792 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2793 {
2794         struct drm_i915_private *dev_priv = to_i915(dev);
2795         int ret;
2796
2797         if (seqno == 0)
2798                 return -EINVAL;
2799
2800         /* HWS page needs to be set less than what we
2801          * will inject to ring
2802          */
2803         ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2804         if (ret)
2805                 return ret;
2806
2807         /* Carefully set the last_seqno value so that wrap
2808          * detection still works
2809          */
2810         dev_priv->next_seqno = seqno;
2811         dev_priv->last_seqno = seqno - 1;
2812         if (dev_priv->last_seqno == 0)
2813                 dev_priv->last_seqno--;
2814
2815         return 0;
2816 }
2817
2818 int
2819 i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2820 {
2821         /* reserve 0 for non-seqno */
2822         if (dev_priv->next_seqno == 0) {
2823                 int ret = i915_gem_init_seqno(dev_priv, 0);
2824                 if (ret)
2825                         return ret;
2826
2827                 dev_priv->next_seqno = 1;
2828         }
2829
2830         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2831         return 0;
2832 }
2833
2834 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
2835 {
2836         struct drm_i915_private *dev_priv = engine->i915;
2837
2838         dev_priv->gt.active_engines |= intel_engine_flag(engine);
2839         if (dev_priv->gt.awake)
2840                 return;
2841
2842         intel_runtime_pm_get_noresume(dev_priv);
2843         dev_priv->gt.awake = true;
2844
2845         i915_update_gfx_val(dev_priv);
2846         if (INTEL_GEN(dev_priv) >= 6)
2847                 gen6_rps_busy(dev_priv);
2848
2849         queue_delayed_work(dev_priv->wq,
2850                            &dev_priv->gt.retire_work,
2851                            round_jiffies_up_relative(HZ));
2852 }
2853
2854 /*
2855  * NB: This function is not allowed to fail. Doing so would mean the the
2856  * request is not being tracked for completion but the work itself is
2857  * going to happen on the hardware. This would be a Bad Thing(tm).
2858  */
2859 void __i915_add_request(struct drm_i915_gem_request *request,
2860                         struct drm_i915_gem_object *obj,
2861                         bool flush_caches)
2862 {
2863         struct intel_engine_cs *engine;
2864         struct intel_ringbuffer *ringbuf;
2865         u32 request_start;
2866         u32 reserved_tail;
2867         int ret;
2868
2869         if (WARN_ON(request == NULL))
2870                 return;
2871
2872         engine = request->engine;
2873         ringbuf = request->ringbuf;
2874
2875         /*
2876          * To ensure that this call will not fail, space for its emissions
2877          * should already have been reserved in the ring buffer. Let the ring
2878          * know that it is time to use that space up.
2879          */
2880         request_start = intel_ring_get_tail(ringbuf);
2881         reserved_tail = request->reserved_space;
2882         request->reserved_space = 0;
2883
2884         /*
2885          * Emit any outstanding flushes - execbuf can fail to emit the flush
2886          * after having emitted the batchbuffer command. Hence we need to fix
2887          * things up similar to emitting the lazy request. The difference here
2888          * is that the flush _must_ happen before the next request, no matter
2889          * what.
2890          */
2891         if (flush_caches) {
2892                 if (i915.enable_execlists)
2893                         ret = logical_ring_flush_all_caches(request);
2894                 else
2895                         ret = intel_ring_flush_all_caches(request);
2896                 /* Not allowed to fail! */
2897                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2898         }
2899
2900         trace_i915_gem_request_add(request);
2901
2902         request->head = request_start;
2903
2904         /* Whilst this request exists, batch_obj will be on the
2905          * active_list, and so will hold the active reference. Only when this
2906          * request is retired will the the batch_obj be moved onto the
2907          * inactive_list and lose its active reference. Hence we do not need
2908          * to explicitly hold another reference here.
2909          */
2910         request->batch_obj = obj;
2911
2912         /* Seal the request and mark it as pending execution. Note that
2913          * we may inspect this state, without holding any locks, during
2914          * hangcheck. Hence we apply the barrier to ensure that we do not
2915          * see a more recent value in the hws than we are tracking.
2916          */
2917         request->emitted_jiffies = jiffies;
2918         request->previous_seqno = engine->last_submitted_seqno;
2919         smp_store_mb(engine->last_submitted_seqno, request->seqno);
2920         list_add_tail(&request->list, &engine->request_list);
2921
2922         /* Record the position of the start of the request so that
2923          * should we detect the updated seqno part-way through the
2924          * GPU processing the request, we never over-estimate the
2925          * position of the head.
2926          */
2927         request->postfix = intel_ring_get_tail(ringbuf);
2928
2929         if (i915.enable_execlists)
2930                 ret = engine->emit_request(request);
2931         else {
2932                 ret = engine->add_request(request);
2933
2934                 request->tail = intel_ring_get_tail(ringbuf);
2935         }
2936         /* Not allowed to fail! */
2937         WARN(ret, "emit|add_request failed: %d!\n", ret);
2938         /* Sanity check that the reserved size was large enough. */
2939         ret = intel_ring_get_tail(ringbuf) - request_start;
2940         if (ret < 0)
2941                 ret += ringbuf->size;
2942         WARN_ONCE(ret > reserved_tail,
2943                   "Not enough space reserved (%d bytes) "
2944                   "for adding the request (%d bytes)\n",
2945                   reserved_tail, ret);
2946
2947         i915_gem_mark_busy(engine);
2948 }
2949
2950 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2951 {
2952         unsigned long elapsed;
2953
2954         if (ctx->hang_stats.banned)
2955                 return true;
2956
2957         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2958         if (ctx->hang_stats.ban_period_seconds &&
2959             elapsed <= ctx->hang_stats.ban_period_seconds) {
2960                 DRM_DEBUG("context hanging too fast, banning!\n");
2961                 return true;
2962         }
2963
2964         return false;
2965 }
2966
2967 static void i915_set_reset_status(struct i915_gem_context *ctx,
2968                                   const bool guilty)
2969 {
2970         struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2971
2972         if (guilty) {
2973                 hs->banned = i915_context_is_banned(ctx);
2974                 hs->batch_active++;
2975                 hs->guilty_ts = get_seconds();
2976         } else {
2977                 hs->batch_pending++;
2978         }
2979 }
2980
2981 void i915_gem_request_free(struct kref *req_ref)
2982 {
2983         struct drm_i915_gem_request *req = container_of(req_ref,
2984                                                  typeof(*req), ref);
2985         kmem_cache_free(req->i915->requests, req);
2986 }
2987
2988 static inline int
2989 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2990                          struct i915_gem_context *ctx,
2991                          struct drm_i915_gem_request **req_out)
2992 {
2993         struct drm_i915_private *dev_priv = engine->i915;
2994         unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2995         struct drm_i915_gem_request *req;
2996         int ret;
2997
2998         if (!req_out)
2999                 return -EINVAL;
3000
3001         *req_out = NULL;
3002
3003         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
3004          * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
3005          * and restart.
3006          */
3007         ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
3008         if (ret)
3009                 return ret;
3010
3011         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
3012         if (req == NULL)
3013                 return -ENOMEM;
3014
3015         ret = i915_gem_get_seqno(engine->i915, &req->seqno);
3016         if (ret)
3017                 goto err;
3018
3019         kref_init(&req->ref);
3020         req->i915 = dev_priv;
3021         req->engine = engine;
3022         req->ctx  = ctx;
3023         i915_gem_context_reference(req->ctx);
3024
3025         /*
3026          * Reserve space in the ring buffer for all the commands required to
3027          * eventually emit this request. This is to guarantee that the
3028          * i915_add_request() call can't fail. Note that the reserve may need
3029          * to be redone if the request is not actually submitted straight
3030          * away, e.g. because a GPU scheduler has deferred it.
3031          */
3032         req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3033
3034         if (i915.enable_execlists)
3035                 ret = intel_logical_ring_alloc_request_extras(req);
3036         else
3037                 ret = intel_ring_alloc_request_extras(req);
3038         if (ret)
3039                 goto err_ctx;
3040
3041         *req_out = req;
3042         return 0;
3043
3044 err_ctx:
3045         i915_gem_context_unreference(ctx);
3046 err:
3047         kmem_cache_free(dev_priv->requests, req);
3048         return ret;
3049 }
3050
3051 /**
3052  * i915_gem_request_alloc - allocate a request structure
3053  *
3054  * @engine: engine that we wish to issue the request on.
3055  * @ctx: context that the request will be associated with.
3056  *       This can be NULL if the request is not directly related to
3057  *       any specific user context, in which case this function will
3058  *       choose an appropriate context to use.
3059  *
3060  * Returns a pointer to the allocated request if successful,
3061  * or an error code if not.
3062  */
3063 struct drm_i915_gem_request *
3064 i915_gem_request_alloc(struct intel_engine_cs *engine,
3065                        struct i915_gem_context *ctx)
3066 {
3067         struct drm_i915_gem_request *req;
3068         int err;
3069
3070         if (ctx == NULL)
3071                 ctx = engine->i915->kernel_context;
3072         err = __i915_gem_request_alloc(engine, ctx, &req);
3073         return err ? ERR_PTR(err) : req;
3074 }
3075
3076 struct drm_i915_gem_request *
3077 i915_gem_find_active_request(struct intel_engine_cs *engine)
3078 {
3079         struct drm_i915_gem_request *request;
3080
3081         /* We are called by the error capture and reset at a random
3082          * point in time. In particular, note that neither is crucially
3083          * ordered with an interrupt. After a hang, the GPU is dead and we
3084          * assume that no more writes can happen (we waited long enough for
3085          * all writes that were in transaction to be flushed) - adding an
3086          * extra delay for a recent interrupt is pointless. Hence, we do
3087          * not need an engine->irq_seqno_barrier() before the seqno reads.
3088          */
3089         list_for_each_entry(request, &engine->request_list, list) {
3090                 if (i915_gem_request_completed(request))
3091                         continue;
3092
3093                 return request;
3094         }
3095
3096         return NULL;
3097 }
3098
3099 static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
3100 {
3101         struct drm_i915_gem_request *request;
3102         bool ring_hung;
3103
3104         request = i915_gem_find_active_request(engine);
3105         if (request == NULL)
3106                 return;
3107
3108         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3109
3110         i915_set_reset_status(request->ctx, ring_hung);
3111         list_for_each_entry_continue(request, &engine->request_list, list)
3112                 i915_set_reset_status(request->ctx, false);
3113 }
3114
3115 static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
3116 {
3117         struct intel_ringbuffer *buffer;
3118
3119         while (!list_empty(&engine->active_list)) {
3120                 struct drm_i915_gem_object *obj;
3121
3122                 obj = list_first_entry(&engine->active_list,
3123                                        struct drm_i915_gem_object,
3124                                        engine_list[engine->id]);
3125
3126                 i915_gem_object_retire__read(obj, engine->id);
3127         }
3128
3129         /*
3130          * Clear the execlists queue up before freeing the requests, as those
3131          * are the ones that keep the context and ringbuffer backing objects
3132          * pinned in place.
3133          */
3134
3135         if (i915.enable_execlists) {
3136                 /* Ensure irq handler finishes or is cancelled. */
3137                 tasklet_kill(&engine->irq_tasklet);
3138
3139                 intel_execlists_cancel_requests(engine);
3140         }
3141
3142         /*
3143          * We must free the requests after all the corresponding objects have
3144          * been moved off active lists. Which is the same order as the normal
3145          * retire_requests function does. This is important if object hold
3146          * implicit references on things like e.g. ppgtt address spaces through
3147          * the request.
3148          */
3149         while (!list_empty(&engine->request_list)) {
3150                 struct drm_i915_gem_request *request;
3151
3152                 request = list_first_entry(&engine->request_list,
3153                                            struct drm_i915_gem_request,
3154                                            list);
3155
3156                 i915_gem_request_retire(request);
3157         }
3158
3159         /* Having flushed all requests from all queues, we know that all
3160          * ringbuffers must now be empty. However, since we do not reclaim
3161          * all space when retiring the request (to prevent HEADs colliding
3162          * with rapid ringbuffer wraparound) the amount of available space
3163          * upon reset is less than when we start. Do one more pass over
3164          * all the ringbuffers to reset last_retired_head.
3165          */
3166         list_for_each_entry(buffer, &engine->buffers, link) {
3167                 buffer->last_retired_head = buffer->tail;
3168                 intel_ring_update_space(buffer);
3169         }
3170
3171         intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3172 }
3173
3174 void i915_gem_reset(struct drm_device *dev)
3175 {
3176         struct drm_i915_private *dev_priv = to_i915(dev);
3177         struct intel_engine_cs *engine;
3178
3179         /*
3180          * Before we free the objects from the requests, we need to inspect
3181          * them for finding the guilty party. As the requests only borrow
3182          * their reference to the objects, the inspection must be done first.
3183          */
3184         for_each_engine(engine, dev_priv)
3185                 i915_gem_reset_engine_status(engine);
3186
3187         for_each_engine(engine, dev_priv)
3188                 i915_gem_reset_engine_cleanup(engine);
3189
3190         i915_gem_context_reset(dev);
3191
3192         i915_gem_restore_fences(dev);
3193
3194         WARN_ON(i915_verify_lists(dev));
3195 }
3196
3197 /**
3198  * This function clears the request list as sequence numbers are passed.
3199  * @engine: engine to retire requests on
3200  */
3201 void
3202 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3203 {
3204         WARN_ON(i915_verify_lists(engine->dev));
3205
3206         /* Retire requests first as we use it above for the early return.
3207          * If we retire requests last, we may use a later seqno and so clear
3208          * the requests lists without clearing the active list, leading to
3209          * confusion.
3210          */
3211         while (!list_empty(&engine->request_list)) {
3212                 struct drm_i915_gem_request *request;
3213
3214                 request = list_first_entry(&engine->request_list,
3215                                            struct drm_i915_gem_request,
3216                                            list);
3217
3218                 if (!i915_gem_request_completed(request))
3219                         break;
3220
3221                 i915_gem_request_retire(request);
3222         }
3223
3224         /* Move any buffers on the active list that are no longer referenced
3225          * by the ringbuffer to the flushing/inactive lists as appropriate,
3226          * before we free the context associated with the requests.
3227          */
3228         while (!list_empty(&engine->active_list)) {
3229                 struct drm_i915_gem_object *obj;
3230
3231                 obj = list_first_entry(&engine->active_list,
3232                                        struct drm_i915_gem_object,
3233                                        engine_list[engine->id]);
3234
3235                 if (!list_empty(&obj->last_read_req[engine->id]->list))
3236                         break;
3237
3238                 i915_gem_object_retire__read(obj, engine->id);
3239         }
3240
3241         WARN_ON(i915_verify_lists(engine->dev));
3242 }
3243
3244 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3245 {
3246         struct intel_engine_cs *engine;
3247
3248         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3249
3250         if (dev_priv->gt.active_engines == 0)
3251                 return;
3252
3253         GEM_BUG_ON(!dev_priv->gt.awake);
3254
3255         for_each_engine(engine, dev_priv) {
3256                 i915_gem_retire_requests_ring(engine);
3257                 if (list_empty(&engine->request_list))
3258                         dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
3259         }
3260
3261         if (dev_priv->gt.active_engines == 0)
3262                 queue_delayed_work(dev_priv->wq,
3263                                    &dev_priv->gt.idle_work,
3264                                    msecs_to_jiffies(100));
3265 }
3266
3267 static void
3268 i915_gem_retire_work_handler(struct work_struct *work)
3269 {
3270         struct drm_i915_private *dev_priv =
3271                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3272         struct drm_device *dev = &dev_priv->drm;
3273
3274         /* Come back later if the device is busy... */
3275         if (mutex_trylock(&dev->struct_mutex)) {
3276                 i915_gem_retire_requests(dev_priv);
3277                 mutex_unlock(&dev->struct_mutex);
3278         }
3279
3280         /* Keep the retire handler running until we are finally idle.
3281          * We do not need to do this test under locking as in the worst-case
3282          * we queue the retire worker once too often.
3283          */
3284         if (READ_ONCE(dev_priv->gt.awake))
3285                 queue_delayed_work(dev_priv->wq,
3286                                    &dev_priv->gt.retire_work,
3287                                    round_jiffies_up_relative(HZ));
3288 }
3289
3290 static void
3291 i915_gem_idle_work_handler(struct work_struct *work)
3292 {
3293         struct drm_i915_private *dev_priv =
3294                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3295         struct drm_device *dev = &dev_priv->drm;
3296         struct intel_engine_cs *engine;
3297         unsigned int stuck_engines;
3298         bool rearm_hangcheck;
3299
3300         if (!READ_ONCE(dev_priv->gt.awake))
3301                 return;
3302
3303         if (READ_ONCE(dev_priv->gt.active_engines))
3304                 return;
3305
3306         rearm_hangcheck =
3307                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3308
3309         if (!mutex_trylock(&dev->struct_mutex)) {
3310                 /* Currently busy, come back later */
3311                 mod_delayed_work(dev_priv->wq,
3312                                  &dev_priv->gt.idle_work,
3313                                  msecs_to_jiffies(50));
3314                 goto out_rearm;
3315         }
3316
3317         if (dev_priv->gt.active_engines)
3318                 goto out_unlock;
3319
3320         for_each_engine(engine, dev_priv)
3321                 i915_gem_batch_pool_fini(&engine->batch_pool);
3322
3323         GEM_BUG_ON(!dev_priv->gt.awake);
3324         dev_priv->gt.awake = false;
3325         rearm_hangcheck = false;
3326
3327         stuck_engines = intel_kick_waiters(dev_priv);
3328         if (unlikely(stuck_engines)) {
3329                 DRM_DEBUG_DRIVER("kicked stuck waiters...missed irq\n");
3330                 dev_priv->gpu_error.missed_irq_rings |= stuck_engines;
3331         }
3332
3333         if (INTEL_GEN(dev_priv) >= 6)
3334                 gen6_rps_idle(dev_priv);
3335         intel_runtime_pm_put(dev_priv);
3336 out_unlock:
3337         mutex_unlock(&dev->struct_mutex);
3338
3339 out_rearm:
3340         if (rearm_hangcheck) {
3341                 GEM_BUG_ON(!dev_priv->gt.awake);
3342                 i915_queue_hangcheck(dev_priv);
3343         }
3344 }
3345
3346 /**
3347  * Ensures that an object will eventually get non-busy by flushing any required
3348  * write domains, emitting any outstanding lazy request and retiring and
3349  * completed requests.
3350  * @obj: object to flush
3351  */
3352 static int
3353 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3354 {
3355         int i;
3356
3357         if (!obj->active)
3358                 return 0;
3359
3360         for (i = 0; i < I915_NUM_ENGINES; i++) {
3361                 struct drm_i915_gem_request *req;
3362
3363                 req = obj->last_read_req[i];
3364                 if (req == NULL)
3365                         continue;
3366
3367                 if (i915_gem_request_completed(req))
3368                         i915_gem_object_retire__read(obj, i);
3369         }
3370
3371         return 0;
3372 }
3373
3374 /**
3375  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3376  * @dev: drm device pointer
3377  * @data: ioctl data blob
3378  * @file: drm file pointer
3379  *
3380  * Returns 0 if successful, else an error is returned with the remaining time in
3381  * the timeout parameter.
3382  *  -ETIME: object is still busy after timeout
3383  *  -ERESTARTSYS: signal interrupted the wait
3384  *  -ENONENT: object doesn't exist
3385  * Also possible, but rare:
3386  *  -EAGAIN: GPU wedged
3387  *  -ENOMEM: damn
3388  *  -ENODEV: Internal IRQ fail
3389  *  -E?: The add request failed
3390  *
3391  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3392  * non-zero timeout parameter the wait ioctl will wait for the given number of
3393  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3394  * without holding struct_mutex the object may become re-busied before this
3395  * function completes. A similar but shorter * race condition exists in the busy
3396  * ioctl
3397  */
3398 int
3399 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3400 {
3401         struct drm_i915_gem_wait *args = data;
3402         struct drm_i915_gem_object *obj;
3403         struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3404         int i, n = 0;
3405         int ret;
3406
3407         if (args->flags != 0)
3408                 return -EINVAL;
3409
3410         ret = i915_mutex_lock_interruptible(dev);
3411         if (ret)
3412                 return ret;
3413
3414         obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3415         if (&obj->base == NULL) {
3416                 mutex_unlock(&dev->struct_mutex);
3417                 return -ENOENT;
3418         }
3419
3420         /* Need to make sure the object gets inactive eventually. */
3421         ret = i915_gem_object_flush_active(obj);
3422         if (ret)
3423                 goto out;
3424
3425         if (!obj->active)
3426                 goto out;
3427
3428         /* Do this after OLR check to make sure we make forward progress polling
3429          * on this IOCTL with a timeout == 0 (like busy ioctl)
3430          */
3431         if (args->timeout_ns == 0) {
3432                 ret = -ETIME;
3433                 goto out;
3434         }
3435
3436         drm_gem_object_unreference(&obj->base);
3437
3438         for (i = 0; i < I915_NUM_ENGINES; i++) {
3439                 if (obj->last_read_req[i] == NULL)
3440                         continue;
3441
3442                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3443         }
3444
3445         mutex_unlock(&dev->struct_mutex);
3446
3447         for (i = 0; i < n; i++) {
3448                 if (ret == 0)
3449                         ret = __i915_wait_request(req[i], true,
3450                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3451                                                   to_rps_client(file));
3452                 i915_gem_request_unreference(req[i]);
3453         }
3454         return ret;
3455
3456 out:
3457         drm_gem_object_unreference(&obj->base);
3458         mutex_unlock(&dev->struct_mutex);
3459         return ret;
3460 }
3461
3462 static int
3463 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3464                        struct intel_engine_cs *to,
3465                        struct drm_i915_gem_request *from_req,
3466                        struct drm_i915_gem_request **to_req)
3467 {
3468         struct intel_engine_cs *from;
3469         int ret;
3470
3471         from = i915_gem_request_get_engine(from_req);
3472         if (to == from)
3473                 return 0;
3474
3475         if (i915_gem_request_completed(from_req))
3476                 return 0;
3477
3478         if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3479                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3480                 ret = __i915_wait_request(from_req,
3481                                           i915->mm.interruptible,
3482                                           NULL,
3483                                           &i915->rps.semaphores);
3484                 if (ret)
3485                         return ret;
3486
3487                 i915_gem_object_retire_request(obj, from_req);
3488         } else {
3489                 int idx = intel_ring_sync_index(from, to);
3490                 u32 seqno = i915_gem_request_get_seqno(from_req);
3491
3492                 WARN_ON(!to_req);
3493
3494                 if (seqno <= from->semaphore.sync_seqno[idx])
3495                         return 0;
3496
3497                 if (*to_req == NULL) {
3498                         struct drm_i915_gem_request *req;
3499
3500                         req = i915_gem_request_alloc(to, NULL);
3501                         if (IS_ERR(req))
3502                                 return PTR_ERR(req);
3503
3504                         *to_req = req;
3505                 }
3506
3507                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3508                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3509                 if (ret)
3510                         return ret;
3511
3512                 /* We use last_read_req because sync_to()
3513                  * might have just caused seqno wrap under
3514                  * the radar.
3515                  */
3516                 from->semaphore.sync_seqno[idx] =
3517                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3518         }
3519
3520         return 0;
3521 }
3522
3523 /**
3524  * i915_gem_object_sync - sync an object to a ring.
3525  *
3526  * @obj: object which may be in use on another ring.
3527  * @to: ring we wish to use the object on. May be NULL.
3528  * @to_req: request we wish to use the object for. See below.
3529  *          This will be allocated and returned if a request is
3530  *          required but not passed in.
3531  *
3532  * This code is meant to abstract object synchronization with the GPU.
3533  * Calling with NULL implies synchronizing the object with the CPU
3534  * rather than a particular GPU ring. Conceptually we serialise writes
3535  * between engines inside the GPU. We only allow one engine to write
3536  * into a buffer at any time, but multiple readers. To ensure each has
3537  * a coherent view of memory, we must:
3538  *
3539  * - If there is an outstanding write request to the object, the new
3540  *   request must wait for it to complete (either CPU or in hw, requests
3541  *   on the same ring will be naturally ordered).
3542  *
3543  * - If we are a write request (pending_write_domain is set), the new
3544  *   request must wait for outstanding read requests to complete.
3545  *
3546  * For CPU synchronisation (NULL to) no request is required. For syncing with
3547  * rings to_req must be non-NULL. However, a request does not have to be
3548  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3549  * request will be allocated automatically and returned through *to_req. Note
3550  * that it is not guaranteed that commands will be emitted (because the system
3551  * might already be idle). Hence there is no need to create a request that
3552  * might never have any work submitted. Note further that if a request is
3553  * returned in *to_req, it is the responsibility of the caller to submit
3554  * that request (after potentially adding more work to it).
3555  *
3556  * Returns 0 if successful, else propagates up the lower layer error.
3557  */
3558 int
3559 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3560                      struct intel_engine_cs *to,
3561                      struct drm_i915_gem_request **to_req)
3562 {
3563         const bool readonly = obj->base.pending_write_domain == 0;
3564         struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3565         int ret, i, n;
3566
3567         if (!obj->active)
3568                 return 0;
3569
3570         if (to == NULL)
3571                 return i915_gem_object_wait_rendering(obj, readonly);
3572
3573         n = 0;
3574         if (readonly) {
3575                 if (obj->last_write_req)
3576                         req[n++] = obj->last_write_req;
3577         } else {
3578                 for (i = 0; i < I915_NUM_ENGINES; i++)
3579                         if (obj->last_read_req[i])
3580                                 req[n++] = obj->last_read_req[i];
3581         }
3582         for (i = 0; i < n; i++) {
3583                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3584                 if (ret)
3585                         return ret;
3586         }
3587
3588         return 0;
3589 }
3590
3591 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3592 {
3593         u32 old_write_domain, old_read_domains;
3594
3595         /* Force a pagefault for domain tracking on next user access */
3596         i915_gem_release_mmap(obj);
3597
3598         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3599                 return;
3600
3601         old_read_domains = obj->base.read_domains;
3602         old_write_domain = obj->base.write_domain;
3603
3604         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3605         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3606
3607         trace_i915_gem_object_change_domain(obj,
3608                                             old_read_domains,
3609                                             old_write_domain);
3610 }
3611
3612 static void __i915_vma_iounmap(struct i915_vma *vma)
3613 {
3614         GEM_BUG_ON(vma->pin_count);
3615
3616         if (vma->iomap == NULL)
3617                 return;
3618
3619         io_mapping_unmap(vma->iomap);
3620         vma->iomap = NULL;
3621 }
3622
3623 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3624 {
3625         struct drm_i915_gem_object *obj = vma->obj;
3626         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3627         int ret;
3628
3629         if (list_empty(&vma->obj_link))
3630                 return 0;
3631
3632         if (!drm_mm_node_allocated(&vma->node)) {
3633                 i915_gem_vma_destroy(vma);
3634                 return 0;
3635         }
3636
3637         if (vma->pin_count)
3638                 return -EBUSY;
3639
3640         BUG_ON(obj->pages == NULL);
3641
3642         if (wait) {
3643                 ret = i915_gem_object_wait_rendering(obj, false);
3644                 if (ret)
3645                         return ret;
3646         }
3647
3648         if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3649                 i915_gem_object_finish_gtt(obj);
3650
3651                 /* release the fence reg _after_ flushing */
3652                 ret = i915_gem_object_put_fence(obj);
3653                 if (ret)
3654                         return ret;
3655
3656                 __i915_vma_iounmap(vma);
3657         }
3658
3659         trace_i915_vma_unbind(vma);
3660
3661         vma->vm->unbind_vma(vma);
3662         vma->bound = 0;
3663
3664         list_del_init(&vma->vm_link);
3665         if (vma->is_ggtt) {
3666                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3667                         obj->map_and_fenceable = false;
3668                 } else if (vma->ggtt_view.pages) {
3669                         sg_free_table(vma->ggtt_view.pages);
3670                         kfree(vma->ggtt_view.pages);
3671                 }
3672                 vma->ggtt_view.pages = NULL;
3673         }
3674
3675         drm_mm_remove_node(&vma->node);
3676         i915_gem_vma_destroy(vma);
3677
3678         /* Since the unbound list is global, only move to that list if
3679          * no more VMAs exist. */
3680         if (list_empty(&obj->vma_list))
3681                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3682
3683         /* And finally now the object is completely decoupled from this vma,
3684          * we can drop its hold on the backing storage and allow it to be
3685          * reaped by the shrinker.
3686          */
3687         i915_gem_object_unpin_pages(obj);
3688
3689         return 0;
3690 }
3691
3692 int i915_vma_unbind(struct i915_vma *vma)
3693 {
3694         return __i915_vma_unbind(vma, true);
3695 }
3696
3697 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3698 {
3699         return __i915_vma_unbind(vma, false);
3700 }
3701
3702 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3703 {
3704         struct intel_engine_cs *engine;
3705         int ret;
3706
3707         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3708
3709         for_each_engine(engine, dev_priv) {
3710                 if (engine->last_context == NULL)
3711                         continue;
3712
3713                 ret = intel_engine_idle(engine);
3714                 if (ret)
3715                         return ret;
3716         }
3717
3718         WARN_ON(i915_verify_lists(dev));
3719         return 0;
3720 }
3721
3722 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3723                                      unsigned long cache_level)
3724 {
3725         struct drm_mm_node *gtt_space = &vma->node;
3726         struct drm_mm_node *other;
3727
3728         /*
3729          * On some machines we have to be careful when putting differing types
3730          * of snoopable memory together to avoid the prefetcher crossing memory
3731          * domains and dying. During vm initialisation, we decide whether or not
3732          * these constraints apply and set the drm_mm.color_adjust
3733          * appropriately.
3734          */
3735         if (vma->vm->mm.color_adjust == NULL)
3736                 return true;
3737
3738         if (!drm_mm_node_allocated(gtt_space))
3739                 return true;
3740
3741         if (list_empty(&gtt_space->node_list))
3742                 return true;
3743
3744         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3745         if (other->allocated && !other->hole_follows && other->color != cache_level)
3746                 return false;
3747
3748         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3749         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3750                 return false;
3751
3752         return true;
3753 }
3754
3755 /**
3756  * Finds free space in the GTT aperture and binds the object or a view of it
3757  * there.
3758  * @obj: object to bind
3759  * @vm: address space to bind into
3760  * @ggtt_view: global gtt view if applicable
3761  * @alignment: requested alignment
3762  * @flags: mask of PIN_* flags to use
3763  */
3764 static struct i915_vma *
3765 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3766                            struct i915_address_space *vm,
3767                            const struct i915_ggtt_view *ggtt_view,
3768                            unsigned alignment,
3769                            uint64_t flags)
3770 {
3771         struct drm_device *dev = obj->base.dev;
3772         struct drm_i915_private *dev_priv = to_i915(dev);
3773         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3774         u32 fence_alignment, unfenced_alignment;
3775         u32 search_flag, alloc_flag;
3776         u64 start, end;
3777         u64 size, fence_size;
3778         struct i915_vma *vma;
3779         int ret;
3780
3781         if (i915_is_ggtt(vm)) {
3782                 u32 view_size;
3783
3784                 if (WARN_ON(!ggtt_view))
3785                         return ERR_PTR(-EINVAL);
3786
3787                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3788
3789                 fence_size = i915_gem_get_gtt_size(dev,
3790                                                    view_size,
3791                                                    obj->tiling_mode);
3792                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3793                                                              view_size,
3794                                                              obj->tiling_mode,
3795                                                              true);
3796                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3797                                                                 view_size,
3798                                                                 obj->tiling_mode,
3799                                                                 false);
3800                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3801         } else {
3802                 fence_size = i915_gem_get_gtt_size(dev,
3803                                                    obj->base.size,
3804                                                    obj->tiling_mode);
3805                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3806                                                              obj->base.size,
3807                                                              obj->tiling_mode,
3808                                                              true);
3809                 unfenced_alignment =
3810                         i915_gem_get_gtt_alignment(dev,
3811                                                    obj->base.size,
3812                                                    obj->tiling_mode,
3813                                                    false);
3814                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3815         }
3816
3817         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3818         end = vm->total;
3819         if (flags & PIN_MAPPABLE)
3820                 end = min_t(u64, end, ggtt->mappable_end);
3821         if (flags & PIN_ZONE_4G)
3822                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3823
3824         if (alignment == 0)
3825                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3826                                                 unfenced_alignment;
3827         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3828                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3829                           ggtt_view ? ggtt_view->type : 0,
3830                           alignment);
3831                 return ERR_PTR(-EINVAL);
3832         }
3833
3834         /* If binding the object/GGTT view requires more space than the entire
3835          * aperture has, reject it early before evicting everything in a vain
3836          * attempt to find space.
3837          */
3838         if (size > end) {
3839                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3840                           ggtt_view ? ggtt_view->type : 0,
3841                           size,
3842                           flags & PIN_MAPPABLE ? "mappable" : "total",
3843                           end);
3844                 return ERR_PTR(-E2BIG);
3845         }
3846
3847         ret = i915_gem_object_get_pages(obj);
3848         if (ret)
3849                 return ERR_PTR(ret);
3850
3851         i915_gem_object_pin_pages(obj);
3852
3853         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3854                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3855
3856         if (IS_ERR(vma))
3857                 goto err_unpin;
3858
3859         if (flags & PIN_OFFSET_FIXED) {
3860                 uint64_t offset = flags & PIN_OFFSET_MASK;
3861
3862                 if (offset & (alignment - 1) || offset + size > end) {
3863                         ret = -EINVAL;
3864                         goto err_free_vma;
3865                 }
3866                 vma->node.start = offset;
3867                 vma->node.size = size;
3868                 vma->node.color = obj->cache_level;
3869                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3870                 if (ret) {
3871                         ret = i915_gem_evict_for_vma(vma);
3872                         if (ret == 0)
3873                                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3874                 }
3875                 if (ret)
3876                         goto err_free_vma;
3877         } else {
3878                 if (flags & PIN_HIGH) {
3879                         search_flag = DRM_MM_SEARCH_BELOW;
3880                         alloc_flag = DRM_MM_CREATE_TOP;
3881                 } else {
3882                         search_flag = DRM_MM_SEARCH_DEFAULT;
3883                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3884                 }
3885
3886 search_free:
3887                 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3888                                                           size, alignment,
3889                                                           obj->cache_level,
3890                                                           start, end,
3891                                                           search_flag,
3892                                                           alloc_flag);
3893                 if (ret) {
3894                         ret = i915_gem_evict_something(dev, vm, size, alignment,
3895                                                        obj->cache_level,
3896                                                        start, end,
3897                                                        flags);
3898                         if (ret == 0)
3899                                 goto search_free;
3900
3901                         goto err_free_vma;
3902                 }
3903         }
3904         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3905                 ret = -EINVAL;
3906                 goto err_remove_node;
3907         }
3908
3909         trace_i915_vma_bind(vma, flags);
3910         ret = i915_vma_bind(vma, obj->cache_level, flags);
3911         if (ret)
3912                 goto err_remove_node;
3913
3914         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3915         list_add_tail(&vma->vm_link, &vm->inactive_list);
3916
3917         return vma;
3918
3919 err_remove_node:
3920         drm_mm_remove_node(&vma->node);
3921 err_free_vma:
3922         i915_gem_vma_destroy(vma);
3923         vma = ERR_PTR(ret);
3924 err_unpin:
3925         i915_gem_object_unpin_pages(obj);
3926         return vma;
3927 }
3928
3929 bool
3930 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3931                         bool force)
3932 {
3933         /* If we don't have a page list set up, then we're not pinned
3934          * to GPU, and we can ignore the cache flush because it'll happen
3935          * again at bind time.
3936          */
3937         if (obj->pages == NULL)
3938                 return false;
3939
3940         /*
3941          * Stolen memory is always coherent with the GPU as it is explicitly
3942          * marked as wc by the system, or the system is cache-coherent.
3943          */
3944         if (obj->stolen || obj->phys_handle)
3945                 return false;
3946
3947         /* If the GPU is snooping the contents of the CPU cache,
3948          * we do not need to manually clear the CPU cache lines.  However,
3949          * the caches are only snooped when the render cache is
3950          * flushed/invalidated.  As we always have to emit invalidations
3951          * and flushes when moving into and out of the RENDER domain, correct
3952          * snooping behaviour occurs naturally as the result of our domain
3953          * tracking.
3954          */
3955         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3956                 obj->cache_dirty = true;
3957                 return false;
3958         }
3959
3960         trace_i915_gem_object_clflush(obj);
3961         drm_clflush_sg(obj->pages);
3962         obj->cache_dirty = false;
3963
3964         return true;
3965 }
3966
3967 /** Flushes the GTT write domain for the object if it's dirty. */
3968 static void
3969 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3970 {
3971         uint32_t old_write_domain;
3972
3973         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3974                 return;
3975
3976         /* No actual flushing is required for the GTT write domain.  Writes
3977          * to it immediately go to main memory as far as we know, so there's
3978          * no chipset flush.  It also doesn't land in render cache.
3979          *
3980          * However, we do have to enforce the order so that all writes through
3981          * the GTT land before any writes to the device, such as updates to
3982          * the GATT itself.
3983          */
3984         wmb();
3985
3986         old_write_domain = obj->base.write_domain;
3987         obj->base.write_domain = 0;
3988
3989         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3990
3991         trace_i915_gem_object_change_domain(obj,
3992                                             obj->base.read_domains,
3993                                             old_write_domain);
3994 }
3995
3996 /** Flushes the CPU write domain for the object if it's dirty. */
3997 static void
3998 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3999 {
4000         uint32_t old_write_domain;
4001
4002         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4003                 return;
4004
4005         if (i915_gem_clflush_object(obj, obj->pin_display))
4006                 i915_gem_chipset_flush(to_i915(obj->base.dev));
4007
4008         old_write_domain = obj->base.write_domain;
4009         obj->base.write_domain = 0;
4010
4011         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
4012
4013         trace_i915_gem_object_change_domain(obj,
4014                                             obj->base.read_domains,
4015                                             old_write_domain);
4016 }
4017
4018 /**
4019  * Moves a single object to the GTT read, and possibly write domain.
4020  * @obj: object to act on
4021  * @write: ask for write access or read only
4022  *
4023  * This function returns when the move is complete, including waiting on
4024  * flushes to occur.
4025  */
4026 int
4027 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4028 {
4029         struct drm_device *dev = obj->base.dev;
4030         struct drm_i915_private *dev_priv = to_i915(dev);
4031         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4032         uint32_t old_write_domain, old_read_domains;
4033         struct i915_vma *vma;
4034         int ret;
4035
4036         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4037                 return 0;
4038
4039         ret = i915_gem_object_wait_rendering(obj, !write);
4040         if (ret)
4041                 return ret;
4042
4043         /* Flush and acquire obj->pages so that we are coherent through
4044          * direct access in memory with previous cached writes through
4045          * shmemfs and that our cache domain tracking remains valid.
4046          * For example, if the obj->filp was moved to swap without us
4047          * being notified and releasing the pages, we would mistakenly
4048          * continue to assume that the obj remained out of the CPU cached
4049          * domain.
4050          */
4051         ret = i915_gem_object_get_pages(obj);
4052         if (ret)
4053                 return ret;
4054
4055         i915_gem_object_flush_cpu_write_domain(obj);
4056
4057         /* Serialise direct access to this object with the barriers for
4058          * coherent writes from the GPU, by effectively invalidating the
4059          * GTT domain upon first access.
4060          */
4061         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4062                 mb();
4063
4064         old_write_domain = obj->base.write_domain;
4065         old_read_domains = obj->base.read_domains;
4066
4067         /* It should now be out of any other write domains, and we can update
4068          * the domain values for our changes.
4069          */
4070         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4071         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4072         if (write) {
4073                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4074                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4075                 obj->dirty = 1;
4076         }
4077
4078         trace_i915_gem_object_change_domain(obj,
4079                                             old_read_domains,
4080                                             old_write_domain);
4081
4082         /* And bump the LRU for this access */
4083         vma = i915_gem_obj_to_ggtt(obj);
4084         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4085                 list_move_tail(&vma->vm_link,
4086                                &ggtt->base.inactive_list);
4087
4088         return 0;
4089 }
4090
4091 /**
4092  * Changes the cache-level of an object across all VMA.
4093  * @obj: object to act on
4094  * @cache_level: new cache level to set for the object
4095  *
4096  * After this function returns, the object will be in the new cache-level
4097  * across all GTT and the contents of the backing storage will be coherent,
4098  * with respect to the new cache-level. In order to keep the backing storage
4099  * coherent for all users, we only allow a single cache level to be set
4100  * globally on the object and prevent it from being changed whilst the
4101  * hardware is reading from the object. That is if the object is currently
4102  * on the scanout it will be set to uncached (or equivalent display
4103  * cache coherency) and all non-MOCS GPU access will also be uncached so
4104  * that all direct access to the scanout remains coherent.
4105  */
4106 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4107                                     enum i915_cache_level cache_level)
4108 {
4109         struct drm_device *dev = obj->base.dev;
4110         struct i915_vma *vma, *next;
4111         bool bound = false;
4112         int ret = 0;
4113
4114         if (obj->cache_level == cache_level)
4115                 goto out;
4116
4117         /* Inspect the list of currently bound VMA and unbind any that would
4118          * be invalid given the new cache-level. This is principally to
4119          * catch the issue of the CS prefetch crossing page boundaries and
4120          * reading an invalid PTE on older architectures.
4121          */
4122         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4123                 if (!drm_mm_node_allocated(&vma->node))
4124                         continue;
4125
4126                 if (vma->pin_count) {
4127                         DRM_DEBUG("can not change the cache level of pinned objects\n");
4128                         return -EBUSY;
4129                 }
4130
4131                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4132                         ret = i915_vma_unbind(vma);
4133                         if (ret)
4134                                 return ret;
4135                 } else
4136                         bound = true;
4137         }
4138
4139         /* We can reuse the existing drm_mm nodes but need to change the
4140          * cache-level on the PTE. We could simply unbind them all and
4141          * rebind with the correct cache-level on next use. However since
4142          * we already have a valid slot, dma mapping, pages etc, we may as
4143          * rewrite the PTE in the belief that doing so tramples upon less
4144          * state and so involves less work.
4145          */
4146         if (bound) {
4147                 /* Before we change the PTE, the GPU must not be accessing it.
4148                  * If we wait upon the object, we know that all the bound
4149                  * VMA are no longer active.
4150                  */
4151                 ret = i915_gem_object_wait_rendering(obj, false);
4152                 if (ret)
4153                         return ret;
4154
4155                 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
4156                         /* Access to snoopable pages through the GTT is
4157                          * incoherent and on some machines causes a hard
4158                          * lockup. Relinquish the CPU mmaping to force
4159                          * userspace to refault in the pages and we can
4160                          * then double check if the GTT mapping is still
4161                          * valid for that pointer access.
4162                          */
4163                         i915_gem_release_mmap(obj);
4164
4165                         /* As we no longer need a fence for GTT access,
4166                          * we can relinquish it now (and so prevent having
4167                          * to steal a fence from someone else on the next
4168                          * fence request). Note GPU activity would have
4169                          * dropped the fence as all snoopable access is
4170                          * supposed to be linear.
4171                          */
4172                         ret = i915_gem_object_put_fence(obj);
4173                         if (ret)
4174                                 return ret;
4175                 } else {
4176                         /* We either have incoherent backing store and
4177                          * so no GTT access or the architecture is fully
4178                          * coherent. In such cases, existing GTT mmaps
4179                          * ignore the cache bit in the PTE and we can
4180                          * rewrite it without confusing the GPU or having
4181                          * to force userspace to fault back in its mmaps.
4182                          */
4183                 }
4184
4185                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4186                         if (!drm_mm_node_allocated(&vma->node))
4187                                 continue;
4188
4189                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4190                         if (ret)
4191                                 return ret;
4192                 }
4193         }
4194
4195         list_for_each_entry(vma, &obj->vma_list, obj_link)
4196                 vma->node.color = cache_level;
4197         obj->cache_level = cache_level;
4198
4199 out:
4200         /* Flush the dirty CPU caches to the backing storage so that the
4201          * object is now coherent at its new cache level (with respect
4202          * to the access domain).
4203          */
4204         if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4205                 if (i915_gem_clflush_object(obj, true))
4206                         i915_gem_chipset_flush(to_i915(obj->base.dev));
4207         }
4208
4209         return 0;
4210 }
4211
4212 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4213                                struct drm_file *file)
4214 {
4215         struct drm_i915_gem_caching *args = data;
4216         struct drm_i915_gem_object *obj;
4217
4218         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4219         if (&obj->base == NULL)
4220                 return -ENOENT;
4221
4222         switch (obj->cache_level) {
4223         case I915_CACHE_LLC:
4224         case I915_CACHE_L3_LLC:
4225                 args->caching = I915_CACHING_CACHED;
4226                 break;
4227
4228         case I915_CACHE_WT:
4229                 args->caching = I915_CACHING_DISPLAY;
4230                 break;
4231
4232         default:
4233                 args->caching = I915_CACHING_NONE;
4234                 break;
4235         }
4236
4237         drm_gem_object_unreference_unlocked(&obj->base);
4238         return 0;
4239 }
4240
4241 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4242                                struct drm_file *file)
4243 {
4244         struct drm_i915_private *dev_priv = to_i915(dev);
4245         struct drm_i915_gem_caching *args = data;
4246         struct drm_i915_gem_object *obj;
4247         enum i915_cache_level level;
4248         int ret;
4249
4250         switch (args->caching) {
4251         case I915_CACHING_NONE:
4252                 level = I915_CACHE_NONE;
4253                 break;
4254         case I915_CACHING_CACHED:
4255                 /*
4256                  * Due to a HW issue on BXT A stepping, GPU stores via a
4257                  * snooped mapping may leave stale data in a corresponding CPU
4258                  * cacheline, whereas normally such cachelines would get
4259                  * invalidated.
4260                  */
4261                 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4262                         return -ENODEV;
4263
4264                 level = I915_CACHE_LLC;
4265                 break;
4266         case I915_CACHING_DISPLAY:
4267                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4268                 break;
4269         default:
4270                 return -EINVAL;
4271         }
4272
4273         intel_runtime_pm_get(dev_priv);
4274
4275         ret = i915_mutex_lock_interruptible(dev);
4276         if (ret)
4277                 goto rpm_put;
4278
4279         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4280         if (&obj->base == NULL) {
4281                 ret = -ENOENT;
4282                 goto unlock;
4283         }
4284
4285         ret = i915_gem_object_set_cache_level(obj, level);
4286
4287         drm_gem_object_unreference(&obj->base);
4288 unlock:
4289         mutex_unlock(&dev->struct_mutex);
4290 rpm_put:
4291         intel_runtime_pm_put(dev_priv);
4292
4293         return ret;
4294 }
4295
4296 /*
4297  * Prepare buffer for display plane (scanout, cursors, etc).
4298  * Can be called from an uninterruptible phase (modesetting) and allows
4299  * any flushes to be pipelined (for pageflips).
4300  */
4301 int
4302 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4303                                      u32 alignment,
4304                                      const struct i915_ggtt_view *view)
4305 {
4306         u32 old_read_domains, old_write_domain;
4307         int ret;
4308
4309         /* Mark the pin_display early so that we account for the
4310          * display coherency whilst setting up the cache domains.
4311          */
4312         obj->pin_display++;
4313
4314         /* The display engine is not coherent with the LLC cache on gen6.  As
4315          * a result, we make sure that the pinning that is about to occur is
4316          * done with uncached PTEs. This is lowest common denominator for all
4317          * chipsets.
4318          *
4319          * However for gen6+, we could do better by using the GFDT bit instead
4320          * of uncaching, which would allow us to flush all the LLC-cached data
4321          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4322          */
4323         ret = i915_gem_object_set_cache_level(obj,
4324                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4325         if (ret)
4326                 goto err_unpin_display;
4327
4328         /* As the user may map the buffer once pinned in the display plane
4329          * (e.g. libkms for the bootup splash), we have to ensure that we
4330          * always use map_and_fenceable for all scanout buffers.
4331          */
4332         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4333                                        view->type == I915_GGTT_VIEW_NORMAL ?
4334                                        PIN_MAPPABLE : 0);
4335         if (ret)
4336                 goto err_unpin_display;
4337
4338         i915_gem_object_flush_cpu_write_domain(obj);
4339
4340         old_write_domain = obj->base.write_domain;
4341         old_read_domains = obj->base.read_domains;
4342
4343         /* It should now be out of any other write domains, and we can update
4344          * the domain values for our changes.
4345          */
4346         obj->base.write_domain = 0;
4347         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4348
4349         trace_i915_gem_object_change_domain(obj,
4350                                             old_read_domains,
4351                                             old_write_domain);
4352
4353         return 0;
4354
4355 err_unpin_display:
4356         obj->pin_display--;
4357         return ret;
4358 }
4359
4360 void
4361 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4362                                          const struct i915_ggtt_view *view)
4363 {
4364         if (WARN_ON(obj->pin_display == 0))
4365                 return;
4366
4367         i915_gem_object_ggtt_unpin_view(obj, view);
4368
4369         obj->pin_display--;
4370 }
4371
4372 /**
4373  * Moves a single object to the CPU read, and possibly write domain.
4374  * @obj: object to act on
4375  * @write: requesting write or read-only access
4376  *
4377  * This function returns when the move is complete, including waiting on
4378  * flushes to occur.
4379  */
4380 int
4381 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4382 {
4383         uint32_t old_write_domain, old_read_domains;
4384         int ret;
4385
4386         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4387                 return 0;
4388
4389         ret = i915_gem_object_wait_rendering(obj, !write);
4390         if (ret)
4391                 return ret;
4392
4393         i915_gem_object_flush_gtt_write_domain(obj);
4394
4395         old_write_domain = obj->base.write_domain;
4396         old_read_domains = obj->base.read_domains;
4397
4398         /* Flush the CPU cache if it's still invalid. */
4399         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4400                 i915_gem_clflush_object(obj, false);
4401
4402                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4403         }
4404
4405         /* It should now be out of any other write domains, and we can update
4406          * the domain values for our changes.
4407          */
4408         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4409
4410         /* If we're writing through the CPU, then the GPU read domains will
4411          * need to be invalidated at next use.
4412          */
4413         if (write) {
4414                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4415                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4416         }
4417
4418         trace_i915_gem_object_change_domain(obj,
4419                                             old_read_domains,
4420                                             old_write_domain);
4421
4422         return 0;
4423 }
4424
4425 /* Throttle our rendering by waiting until the ring has completed our requests
4426  * emitted over 20 msec ago.
4427  *
4428  * Note that if we were to use the current jiffies each time around the loop,
4429  * we wouldn't escape the function with any frames outstanding if the time to
4430  * render a frame was over 20ms.
4431  *
4432  * This should get us reasonable parallelism between CPU and GPU but also
4433  * relatively low latency when blocking on a particular request to finish.
4434  */
4435 static int
4436 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4437 {
4438         struct drm_i915_private *dev_priv = to_i915(dev);
4439         struct drm_i915_file_private *file_priv = file->driver_priv;
4440         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4441         struct drm_i915_gem_request *request, *target = NULL;
4442         int ret;
4443
4444         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4445         if (ret)
4446                 return ret;
4447
4448         /* ABI: return -EIO if already wedged */
4449         if (i915_terminally_wedged(&dev_priv->gpu_error))
4450                 return -EIO;
4451
4452         spin_lock(&file_priv->mm.lock);
4453         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4454                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4455                         break;
4456
4457                 /*
4458                  * Note that the request might not have been submitted yet.
4459                  * In which case emitted_jiffies will be zero.
4460                  */
4461                 if (!request->emitted_jiffies)
4462                         continue;
4463
4464                 target = request;
4465         }
4466         if (target)
4467                 i915_gem_request_reference(target);
4468         spin_unlock(&file_priv->mm.lock);
4469
4470         if (target == NULL)
4471                 return 0;
4472
4473         ret = __i915_wait_request(target, true, NULL, NULL);
4474         i915_gem_request_unreference(target);
4475
4476         return ret;
4477 }
4478
4479 static bool
4480 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4481 {
4482         struct drm_i915_gem_object *obj = vma->obj;
4483
4484         if (alignment &&
4485             vma->node.start & (alignment - 1))
4486                 return true;
4487
4488         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4489                 return true;
4490
4491         if (flags & PIN_OFFSET_BIAS &&
4492             vma->node.start < (flags & PIN_OFFSET_MASK))
4493                 return true;
4494
4495         if (flags & PIN_OFFSET_FIXED &&
4496             vma->node.start != (flags & PIN_OFFSET_MASK))
4497                 return true;
4498
4499         return false;
4500 }
4501
4502 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4503 {
4504         struct drm_i915_gem_object *obj = vma->obj;
4505         bool mappable, fenceable;
4506         u32 fence_size, fence_alignment;
4507
4508         fence_size = i915_gem_get_gtt_size(obj->base.dev,
4509                                            obj->base.size,
4510                                            obj->tiling_mode);
4511         fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4512                                                      obj->base.size,
4513                                                      obj->tiling_mode,
4514                                                      true);
4515
4516         fenceable = (vma->node.size == fence_size &&
4517                      (vma->node.start & (fence_alignment - 1)) == 0);
4518
4519         mappable = (vma->node.start + fence_size <=
4520                     to_i915(obj->base.dev)->ggtt.mappable_end);
4521
4522         obj->map_and_fenceable = mappable && fenceable;
4523 }
4524
4525 static int
4526 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4527                        struct i915_address_space *vm,
4528                        const struct i915_ggtt_view *ggtt_view,
4529                        uint32_t alignment,
4530                        uint64_t flags)
4531 {
4532         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4533         struct i915_vma *vma;
4534         unsigned bound;
4535         int ret;
4536
4537         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4538                 return -ENODEV;
4539
4540         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4541                 return -EINVAL;
4542
4543         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4544                 return -EINVAL;
4545
4546         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4547                 return -EINVAL;
4548
4549         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4550                           i915_gem_obj_to_vma(obj, vm);
4551
4552         if (vma) {
4553                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4554                         return -EBUSY;
4555
4556                 if (i915_vma_misplaced(vma, alignment, flags)) {
4557                         WARN(vma->pin_count,
4558                              "bo is already pinned in %s with incorrect alignment:"
4559                              " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4560                              " obj->map_and_fenceable=%d\n",
4561                              ggtt_view ? "ggtt" : "ppgtt",
4562                              upper_32_bits(vma->node.start),
4563                              lower_32_bits(vma->node.start),
4564                              alignment,
4565                              !!(flags & PIN_MAPPABLE),
4566                              obj->map_and_fenceable);
4567                         ret = i915_vma_unbind(vma);
4568                         if (ret)
4569                                 return ret;
4570
4571                         vma = NULL;
4572                 }
4573         }
4574
4575         bound = vma ? vma->bound : 0;
4576         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4577                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4578                                                  flags);
4579                 if (IS_ERR(vma))
4580                         return PTR_ERR(vma);
4581         } else {
4582                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4583                 if (ret)
4584                         return ret;
4585         }
4586
4587         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4588             (bound ^ vma->bound) & GLOBAL_BIND) {
4589                 __i915_vma_set_map_and_fenceable(vma);
4590                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4591         }
4592
4593         vma->pin_count++;
4594         return 0;
4595 }
4596
4597 int
4598 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4599                     struct i915_address_space *vm,
4600                     uint32_t alignment,
4601                     uint64_t flags)
4602 {
4603         return i915_gem_object_do_pin(obj, vm,
4604                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4605                                       alignment, flags);
4606 }
4607
4608 int
4609 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4610                          const struct i915_ggtt_view *view,
4611                          uint32_t alignment,
4612                          uint64_t flags)
4613 {
4614         struct drm_device *dev = obj->base.dev;
4615         struct drm_i915_private *dev_priv = to_i915(dev);
4616         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4617
4618         BUG_ON(!view);
4619
4620         return i915_gem_object_do_pin(obj, &ggtt->base, view,
4621                                       alignment, flags | PIN_GLOBAL);
4622 }
4623
4624 void
4625 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4626                                 const struct i915_ggtt_view *view)
4627 {
4628         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4629
4630         WARN_ON(vma->pin_count == 0);
4631         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4632
4633         --vma->pin_count;
4634 }
4635
4636 int
4637 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4638                     struct drm_file *file)
4639 {
4640         struct drm_i915_gem_busy *args = data;
4641         struct drm_i915_gem_object *obj;
4642         int ret;
4643
4644         ret = i915_mutex_lock_interruptible(dev);
4645         if (ret)
4646                 return ret;
4647
4648         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4649         if (&obj->base == NULL) {
4650                 ret = -ENOENT;
4651                 goto unlock;
4652         }
4653
4654         /* Count all active objects as busy, even if they are currently not used
4655          * by the gpu. Users of this interface expect objects to eventually
4656          * become non-busy without any further actions, therefore emit any
4657          * necessary flushes here.
4658          */
4659         ret = i915_gem_object_flush_active(obj);
4660         if (ret)
4661                 goto unref;
4662
4663         args->busy = 0;
4664         if (obj->active) {
4665                 int i;
4666
4667                 for (i = 0; i < I915_NUM_ENGINES; i++) {
4668                         struct drm_i915_gem_request *req;
4669
4670                         req = obj->last_read_req[i];
4671                         if (req)
4672                                 args->busy |= 1 << (16 + req->engine->exec_id);
4673                 }
4674                 if (obj->last_write_req)
4675                         args->busy |= obj->last_write_req->engine->exec_id;
4676         }
4677
4678 unref:
4679         drm_gem_object_unreference(&obj->base);
4680 unlock:
4681         mutex_unlock(&dev->struct_mutex);
4682         return ret;
4683 }
4684
4685 int
4686 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4687                         struct drm_file *file_priv)
4688 {
4689         return i915_gem_ring_throttle(dev, file_priv);
4690 }
4691
4692 int
4693 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4694                        struct drm_file *file_priv)
4695 {
4696         struct drm_i915_private *dev_priv = to_i915(dev);
4697         struct drm_i915_gem_madvise *args = data;
4698         struct drm_i915_gem_object *obj;
4699         int ret;
4700
4701         switch (args->madv) {
4702         case I915_MADV_DONTNEED:
4703         case I915_MADV_WILLNEED:
4704             break;
4705         default:
4706             return -EINVAL;
4707         }
4708
4709         ret = i915_mutex_lock_interruptible(dev);
4710         if (ret)
4711                 return ret;
4712
4713         obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4714         if (&obj->base == NULL) {
4715                 ret = -ENOENT;
4716                 goto unlock;
4717         }
4718
4719         if (i915_gem_obj_is_pinned(obj)) {
4720                 ret = -EINVAL;
4721                 goto out;
4722         }
4723
4724         if (obj->pages &&
4725             obj->tiling_mode != I915_TILING_NONE &&
4726             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4727                 if (obj->madv == I915_MADV_WILLNEED)
4728                         i915_gem_object_unpin_pages(obj);
4729                 if (args->madv == I915_MADV_WILLNEED)
4730                         i915_gem_object_pin_pages(obj);
4731         }
4732
4733         if (obj->madv != __I915_MADV_PURGED)
4734                 obj->madv = args->madv;
4735
4736         /* if the object is no longer attached, discard its backing storage */
4737         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4738                 i915_gem_object_truncate(obj);
4739
4740         args->retained = obj->madv != __I915_MADV_PURGED;
4741
4742 out:
4743         drm_gem_object_unreference(&obj->base);
4744 unlock:
4745         mutex_unlock(&dev->struct_mutex);
4746         return ret;
4747 }
4748
4749 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4750                           const struct drm_i915_gem_object_ops *ops)
4751 {
4752         int i;
4753
4754         INIT_LIST_HEAD(&obj->global_list);
4755         for (i = 0; i < I915_NUM_ENGINES; i++)
4756                 INIT_LIST_HEAD(&obj->engine_list[i]);
4757         INIT_LIST_HEAD(&obj->obj_exec_link);
4758         INIT_LIST_HEAD(&obj->vma_list);
4759         INIT_LIST_HEAD(&obj->batch_pool_link);
4760
4761         obj->ops = ops;
4762
4763         obj->fence_reg = I915_FENCE_REG_NONE;
4764         obj->madv = I915_MADV_WILLNEED;
4765
4766         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4767 }
4768
4769 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4770         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4771         .get_pages = i915_gem_object_get_pages_gtt,
4772         .put_pages = i915_gem_object_put_pages_gtt,
4773 };
4774
4775 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4776                                                   size_t size)
4777 {
4778         struct drm_i915_gem_object *obj;
4779         struct address_space *mapping;
4780         gfp_t mask;
4781         int ret;
4782
4783         obj = i915_gem_object_alloc(dev);
4784         if (obj == NULL)
4785                 return ERR_PTR(-ENOMEM);
4786
4787         ret = drm_gem_object_init(dev, &obj->base, size);
4788         if (ret)
4789                 goto fail;
4790
4791         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4792         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4793                 /* 965gm cannot relocate objects above 4GiB. */
4794                 mask &= ~__GFP_HIGHMEM;
4795                 mask |= __GFP_DMA32;
4796         }
4797
4798         mapping = obj->base.filp->f_mapping;
4799         mapping_set_gfp_mask(mapping, mask);
4800
4801         i915_gem_object_init(obj, &i915_gem_object_ops);
4802
4803         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4804         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4805
4806         if (HAS_LLC(dev)) {
4807                 /* On some devices, we can have the GPU use the LLC (the CPU
4808                  * cache) for about a 10% performance improvement
4809                  * compared to uncached.  Graphics requests other than
4810                  * display scanout are coherent with the CPU in
4811                  * accessing this cache.  This means in this mode we
4812                  * don't need to clflush on the CPU side, and on the
4813                  * GPU side we only need to flush internal caches to
4814                  * get data visible to the CPU.
4815                  *
4816                  * However, we maintain the display planes as UC, and so
4817                  * need to rebind when first used as such.
4818                  */
4819                 obj->cache_level = I915_CACHE_LLC;
4820         } else
4821                 obj->cache_level = I915_CACHE_NONE;
4822
4823         trace_i915_gem_object_create(obj);
4824
4825         return obj;
4826
4827 fail:
4828         i915_gem_object_free(obj);
4829
4830         return ERR_PTR(ret);
4831 }
4832
4833 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4834 {
4835         /* If we are the last user of the backing storage (be it shmemfs
4836          * pages or stolen etc), we know that the pages are going to be
4837          * immediately released. In this case, we can then skip copying
4838          * back the contents from the GPU.
4839          */
4840
4841         if (obj->madv != I915_MADV_WILLNEED)
4842                 return false;
4843
4844         if (obj->base.filp == NULL)
4845                 return true;
4846
4847         /* At first glance, this looks racy, but then again so would be
4848          * userspace racing mmap against close. However, the first external
4849          * reference to the filp can only be obtained through the
4850          * i915_gem_mmap_ioctl() which safeguards us against the user
4851          * acquiring such a reference whilst we are in the middle of
4852          * freeing the object.
4853          */
4854         return atomic_long_read(&obj->base.filp->f_count) == 1;
4855 }
4856
4857 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4858 {
4859         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4860         struct drm_device *dev = obj->base.dev;
4861         struct drm_i915_private *dev_priv = to_i915(dev);
4862         struct i915_vma *vma, *next;
4863
4864         intel_runtime_pm_get(dev_priv);
4865
4866         trace_i915_gem_object_destroy(obj);
4867
4868         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4869                 int ret;
4870
4871                 vma->pin_count = 0;
4872                 ret = i915_vma_unbind(vma);
4873                 if (WARN_ON(ret == -ERESTARTSYS)) {
4874                         bool was_interruptible;
4875
4876                         was_interruptible = dev_priv->mm.interruptible;
4877                         dev_priv->mm.interruptible = false;
4878
4879                         WARN_ON(i915_vma_unbind(vma));
4880
4881                         dev_priv->mm.interruptible = was_interruptible;
4882                 }
4883         }
4884
4885         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4886          * before progressing. */
4887         if (obj->stolen)
4888                 i915_gem_object_unpin_pages(obj);
4889
4890         WARN_ON(obj->frontbuffer_bits);
4891
4892         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4893             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4894             obj->tiling_mode != I915_TILING_NONE)
4895                 i915_gem_object_unpin_pages(obj);
4896
4897         if (WARN_ON(obj->pages_pin_count))
4898                 obj->pages_pin_count = 0;
4899         if (discard_backing_storage(obj))
4900                 obj->madv = I915_MADV_DONTNEED;
4901         i915_gem_object_put_pages(obj);
4902         i915_gem_object_free_mmap_offset(obj);
4903
4904         BUG_ON(obj->pages);
4905
4906         if (obj->base.import_attach)
4907                 drm_prime_gem_destroy(&obj->base, NULL);
4908
4909         if (obj->ops->release)
4910                 obj->ops->release(obj);
4911
4912         drm_gem_object_release(&obj->base);
4913         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4914
4915         kfree(obj->bit_17);
4916         i915_gem_object_free(obj);
4917
4918         intel_runtime_pm_put(dev_priv);
4919 }
4920
4921 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4922                                      struct i915_address_space *vm)
4923 {
4924         struct i915_vma *vma;
4925         list_for_each_entry(vma, &obj->vma_list, obj_link) {
4926                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4927                     vma->vm == vm)
4928                         return vma;
4929         }
4930         return NULL;
4931 }
4932
4933 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4934                                            const struct i915_ggtt_view *view)
4935 {
4936         struct i915_vma *vma;
4937
4938         GEM_BUG_ON(!view);
4939
4940         list_for_each_entry(vma, &obj->vma_list, obj_link)
4941                 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4942                         return vma;
4943         return NULL;
4944 }
4945
4946 void i915_gem_vma_destroy(struct i915_vma *vma)
4947 {
4948         WARN_ON(vma->node.allocated);
4949
4950         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4951         if (!list_empty(&vma->exec_list))
4952                 return;
4953
4954         if (!vma->is_ggtt)
4955                 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4956
4957         list_del(&vma->obj_link);
4958
4959         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4960 }
4961
4962 static void
4963 i915_gem_stop_engines(struct drm_device *dev)
4964 {
4965         struct drm_i915_private *dev_priv = to_i915(dev);
4966         struct intel_engine_cs *engine;
4967
4968         for_each_engine(engine, dev_priv)
4969                 dev_priv->gt.stop_engine(engine);
4970 }
4971
4972 int
4973 i915_gem_suspend(struct drm_device *dev)
4974 {
4975         struct drm_i915_private *dev_priv = to_i915(dev);
4976         int ret = 0;
4977
4978         mutex_lock(&dev->struct_mutex);
4979         ret = i915_gem_wait_for_idle(dev_priv);
4980         if (ret)
4981                 goto err;
4982
4983         i915_gem_retire_requests(dev_priv);
4984
4985         i915_gem_stop_engines(dev);
4986         i915_gem_context_lost(dev_priv);
4987         mutex_unlock(&dev->struct_mutex);
4988
4989         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4990         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4991         flush_delayed_work(&dev_priv->gt.idle_work);
4992
4993         /* Assert that we sucessfully flushed all the work and
4994          * reset the GPU back to its idle, low power state.
4995          */
4996         WARN_ON(dev_priv->gt.awake);
4997
4998         return 0;
4999
5000 err:
5001         mutex_unlock(&dev->struct_mutex);
5002         return ret;
5003 }
5004
5005 void i915_gem_init_swizzling(struct drm_device *dev)
5006 {
5007         struct drm_i915_private *dev_priv = to_i915(dev);
5008
5009         if (INTEL_INFO(dev)->gen < 5 ||
5010             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5011                 return;
5012
5013         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5014                                  DISP_TILE_SURFACE_SWIZZLING);
5015
5016         if (IS_GEN5(dev))
5017                 return;
5018
5019         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5020         if (IS_GEN6(dev))
5021                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5022         else if (IS_GEN7(dev))
5023                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5024         else if (IS_GEN8(dev))
5025                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5026         else
5027                 BUG();
5028 }
5029
5030 static void init_unused_ring(struct drm_device *dev, u32 base)
5031 {
5032         struct drm_i915_private *dev_priv = to_i915(dev);
5033
5034         I915_WRITE(RING_CTL(base), 0);
5035         I915_WRITE(RING_HEAD(base), 0);
5036         I915_WRITE(RING_TAIL(base), 0);
5037         I915_WRITE(RING_START(base), 0);
5038 }
5039
5040 static void init_unused_rings(struct drm_device *dev)
5041 {
5042         if (IS_I830(dev)) {
5043                 init_unused_ring(dev, PRB1_BASE);
5044                 init_unused_ring(dev, SRB0_BASE);
5045                 init_unused_ring(dev, SRB1_BASE);
5046                 init_unused_ring(dev, SRB2_BASE);
5047                 init_unused_ring(dev, SRB3_BASE);
5048         } else if (IS_GEN2(dev)) {
5049                 init_unused_ring(dev, SRB0_BASE);
5050                 init_unused_ring(dev, SRB1_BASE);
5051         } else if (IS_GEN3(dev)) {
5052                 init_unused_ring(dev, PRB1_BASE);
5053                 init_unused_ring(dev, PRB2_BASE);
5054         }
5055 }
5056
5057 int i915_gem_init_engines(struct drm_device *dev)
5058 {
5059         struct drm_i915_private *dev_priv = to_i915(dev);
5060         int ret;
5061
5062         ret = intel_init_render_ring_buffer(dev);
5063         if (ret)
5064                 return ret;
5065
5066         if (HAS_BSD(dev)) {
5067                 ret = intel_init_bsd_ring_buffer(dev);
5068                 if (ret)
5069                         goto cleanup_render_ring;
5070         }
5071
5072         if (HAS_BLT(dev)) {
5073                 ret = intel_init_blt_ring_buffer(dev);
5074                 if (ret)
5075                         goto cleanup_bsd_ring;
5076         }
5077
5078         if (HAS_VEBOX(dev)) {
5079                 ret = intel_init_vebox_ring_buffer(dev);
5080                 if (ret)
5081                         goto cleanup_blt_ring;
5082         }
5083
5084         if (HAS_BSD2(dev)) {
5085                 ret = intel_init_bsd2_ring_buffer(dev);
5086                 if (ret)
5087                         goto cleanup_vebox_ring;
5088         }
5089
5090         return 0;
5091
5092 cleanup_vebox_ring:
5093         intel_cleanup_engine(&dev_priv->engine[VECS]);
5094 cleanup_blt_ring:
5095         intel_cleanup_engine(&dev_priv->engine[BCS]);
5096 cleanup_bsd_ring:
5097         intel_cleanup_engine(&dev_priv->engine[VCS]);
5098 cleanup_render_ring:
5099         intel_cleanup_engine(&dev_priv->engine[RCS]);
5100
5101         return ret;
5102 }
5103
5104 int
5105 i915_gem_init_hw(struct drm_device *dev)
5106 {
5107         struct drm_i915_private *dev_priv = to_i915(dev);
5108         struct intel_engine_cs *engine;
5109         int ret;
5110
5111         /* Double layer security blanket, see i915_gem_init() */
5112         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5113
5114         if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5115                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5116
5117         if (IS_HASWELL(dev))
5118                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5119                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5120
5121         if (HAS_PCH_NOP(dev)) {
5122                 if (IS_IVYBRIDGE(dev)) {
5123                         u32 temp = I915_READ(GEN7_MSG_CTL);
5124                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5125                         I915_WRITE(GEN7_MSG_CTL, temp);
5126                 } else if (INTEL_INFO(dev)->gen >= 7) {
5127                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5128                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5129                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5130                 }
5131         }
5132
5133         i915_gem_init_swizzling(dev);
5134
5135         /*
5136          * At least 830 can leave some of the unused rings
5137          * "active" (ie. head != tail) after resume which
5138          * will prevent c3 entry. Makes sure all unused rings
5139          * are totally idle.
5140          */
5141         init_unused_rings(dev);
5142
5143         BUG_ON(!dev_priv->kernel_context);
5144
5145         ret = i915_ppgtt_init_hw(dev);
5146         if (ret) {
5147                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5148                 goto out;
5149         }
5150
5151         /* Need to do basic initialisation of all rings first: */
5152         for_each_engine(engine, dev_priv) {
5153                 ret = engine->init_hw(engine);
5154                 if (ret)
5155                         goto out;
5156         }
5157
5158         intel_mocs_init_l3cc_table(dev);
5159
5160         /* We can't enable contexts until all firmware is loaded */
5161         ret = intel_guc_setup(dev);
5162         if (ret)
5163                 goto out;
5164
5165 out:
5166         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5167         return ret;
5168 }
5169
5170 int i915_gem_init(struct drm_device *dev)
5171 {
5172         struct drm_i915_private *dev_priv = to_i915(dev);
5173         int ret;
5174
5175         mutex_lock(&dev->struct_mutex);
5176
5177         if (!i915.enable_execlists) {
5178                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5179                 dev_priv->gt.init_engines = i915_gem_init_engines;
5180                 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5181                 dev_priv->gt.stop_engine = intel_stop_engine;
5182         } else {
5183                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5184                 dev_priv->gt.init_engines = intel_logical_rings_init;
5185                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5186                 dev_priv->gt.stop_engine = intel_logical_ring_stop;
5187         }
5188
5189         /* This is just a security blanket to placate dragons.
5190          * On some systems, we very sporadically observe that the first TLBs
5191          * used by the CS may be stale, despite us poking the TLB reset. If
5192          * we hold the forcewake during initialisation these problems
5193          * just magically go away.
5194          */
5195         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5196
5197         i915_gem_init_userptr(dev_priv);
5198         i915_gem_init_ggtt(dev);
5199
5200         ret = i915_gem_context_init(dev);
5201         if (ret)
5202                 goto out_unlock;
5203
5204         ret = dev_priv->gt.init_engines(dev);
5205         if (ret)
5206                 goto out_unlock;
5207
5208         ret = i915_gem_init_hw(dev);
5209         if (ret == -EIO) {
5210                 /* Allow ring initialisation to fail by marking the GPU as
5211                  * wedged. But we only want to do this where the GPU is angry,
5212                  * for all other failure, such as an allocation failure, bail.
5213                  */
5214                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5215                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5216                 ret = 0;
5217         }
5218
5219 out_unlock:
5220         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5221         mutex_unlock(&dev->struct_mutex);
5222
5223         return ret;
5224 }
5225
5226 void
5227 i915_gem_cleanup_engines(struct drm_device *dev)
5228 {
5229         struct drm_i915_private *dev_priv = to_i915(dev);
5230         struct intel_engine_cs *engine;
5231
5232         for_each_engine(engine, dev_priv)
5233                 dev_priv->gt.cleanup_engine(engine);
5234 }
5235
5236 static void
5237 init_engine_lists(struct intel_engine_cs *engine)
5238 {
5239         INIT_LIST_HEAD(&engine->active_list);
5240         INIT_LIST_HEAD(&engine->request_list);
5241 }
5242
5243 void
5244 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5245 {
5246         struct drm_device *dev = &dev_priv->drm;
5247
5248         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5249             !IS_CHERRYVIEW(dev_priv))
5250                 dev_priv->num_fence_regs = 32;
5251         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5252                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
5253                 dev_priv->num_fence_regs = 16;
5254         else
5255                 dev_priv->num_fence_regs = 8;
5256
5257         if (intel_vgpu_active(dev_priv))
5258                 dev_priv->num_fence_regs =
5259                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5260
5261         /* Initialize fence registers to zero */
5262         i915_gem_restore_fences(dev);
5263
5264         i915_gem_detect_bit_6_swizzle(dev);
5265 }
5266
5267 void
5268 i915_gem_load_init(struct drm_device *dev)
5269 {
5270         struct drm_i915_private *dev_priv = to_i915(dev);
5271         int i;
5272
5273         dev_priv->objects =
5274                 kmem_cache_create("i915_gem_object",
5275                                   sizeof(struct drm_i915_gem_object), 0,
5276                                   SLAB_HWCACHE_ALIGN,
5277                                   NULL);
5278         dev_priv->vmas =
5279                 kmem_cache_create("i915_gem_vma",
5280                                   sizeof(struct i915_vma), 0,
5281                                   SLAB_HWCACHE_ALIGN,
5282                                   NULL);
5283         dev_priv->requests =
5284                 kmem_cache_create("i915_gem_request",
5285                                   sizeof(struct drm_i915_gem_request), 0,
5286                                   SLAB_HWCACHE_ALIGN,
5287                                   NULL);
5288
5289         INIT_LIST_HEAD(&dev_priv->vm_list);
5290         INIT_LIST_HEAD(&dev_priv->context_list);
5291         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5292         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5293         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5294         for (i = 0; i < I915_NUM_ENGINES; i++)
5295                 init_engine_lists(&dev_priv->engine[i]);
5296         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5297                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5298         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5299                           i915_gem_retire_work_handler);
5300         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5301                           i915_gem_idle_work_handler);
5302         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5303         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5304
5305         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5306
5307         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5308
5309         init_waitqueue_head(&dev_priv->pending_flip_queue);
5310
5311         dev_priv->mm.interruptible = true;
5312
5313         mutex_init(&dev_priv->fb_tracking.lock);
5314 }
5315
5316 void i915_gem_load_cleanup(struct drm_device *dev)
5317 {
5318         struct drm_i915_private *dev_priv = to_i915(dev);
5319
5320         kmem_cache_destroy(dev_priv->requests);
5321         kmem_cache_destroy(dev_priv->vmas);
5322         kmem_cache_destroy(dev_priv->objects);
5323 }
5324
5325 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5326 {
5327         struct drm_i915_gem_object *obj;
5328
5329         /* Called just before we write the hibernation image.
5330          *
5331          * We need to update the domain tracking to reflect that the CPU
5332          * will be accessing all the pages to create and restore from the
5333          * hibernation, and so upon restoration those pages will be in the
5334          * CPU domain.
5335          *
5336          * To make sure the hibernation image contains the latest state,
5337          * we update that state just before writing out the image.
5338          */
5339
5340         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5341                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5342                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5343         }
5344
5345         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5346                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5347                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5348         }
5349
5350         return 0;
5351 }
5352
5353 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5354 {
5355         struct drm_i915_file_private *file_priv = file->driver_priv;
5356
5357         /* Clean up our request list when the client is going away, so that
5358          * later retire_requests won't dereference our soon-to-be-gone
5359          * file_priv.
5360          */
5361         spin_lock(&file_priv->mm.lock);
5362         while (!list_empty(&file_priv->mm.request_list)) {
5363                 struct drm_i915_gem_request *request;
5364
5365                 request = list_first_entry(&file_priv->mm.request_list,
5366                                            struct drm_i915_gem_request,
5367                                            client_list);
5368                 list_del(&request->client_list);
5369                 request->file_priv = NULL;
5370         }
5371         spin_unlock(&file_priv->mm.lock);
5372
5373         if (!list_empty(&file_priv->rps.link)) {
5374                 spin_lock(&to_i915(dev)->rps.client_lock);
5375                 list_del(&file_priv->rps.link);
5376                 spin_unlock(&to_i915(dev)->rps.client_lock);
5377         }
5378 }
5379
5380 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5381 {
5382         struct drm_i915_file_private *file_priv;
5383         int ret;
5384
5385         DRM_DEBUG_DRIVER("\n");
5386
5387         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5388         if (!file_priv)
5389                 return -ENOMEM;
5390
5391         file->driver_priv = file_priv;
5392         file_priv->dev_priv = to_i915(dev);
5393         file_priv->file = file;
5394         INIT_LIST_HEAD(&file_priv->rps.link);
5395
5396         spin_lock_init(&file_priv->mm.lock);
5397         INIT_LIST_HEAD(&file_priv->mm.request_list);
5398
5399         file_priv->bsd_ring = -1;
5400
5401         ret = i915_gem_context_open(dev, file);
5402         if (ret)
5403                 kfree(file_priv);
5404
5405         return ret;
5406 }
5407
5408 /**
5409  * i915_gem_track_fb - update frontbuffer tracking
5410  * @old: current GEM buffer for the frontbuffer slots
5411  * @new: new GEM buffer for the frontbuffer slots
5412  * @frontbuffer_bits: bitmask of frontbuffer slots
5413  *
5414  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5415  * from @old and setting them in @new. Both @old and @new can be NULL.
5416  */
5417 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5418                        struct drm_i915_gem_object *new,
5419                        unsigned frontbuffer_bits)
5420 {
5421         if (old) {
5422                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5423                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5424                 old->frontbuffer_bits &= ~frontbuffer_bits;
5425         }
5426
5427         if (new) {
5428                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5429                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5430                 new->frontbuffer_bits |= frontbuffer_bits;
5431         }
5432 }
5433
5434 /* All the new VM stuff */
5435 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5436                         struct i915_address_space *vm)
5437 {
5438         struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5439         struct i915_vma *vma;
5440
5441         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5442
5443         list_for_each_entry(vma, &o->vma_list, obj_link) {
5444                 if (vma->is_ggtt &&
5445                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5446                         continue;
5447                 if (vma->vm == vm)
5448                         return vma->node.start;
5449         }
5450
5451         WARN(1, "%s vma for this object not found.\n",
5452              i915_is_ggtt(vm) ? "global" : "ppgtt");
5453         return -1;
5454 }
5455
5456 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5457                                   const struct i915_ggtt_view *view)
5458 {
5459         struct i915_vma *vma;
5460
5461         list_for_each_entry(vma, &o->vma_list, obj_link)
5462                 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5463                         return vma->node.start;
5464
5465         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5466         return -1;
5467 }
5468
5469 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5470                         struct i915_address_space *vm)
5471 {
5472         struct i915_vma *vma;
5473
5474         list_for_each_entry(vma, &o->vma_list, obj_link) {
5475                 if (vma->is_ggtt &&
5476                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5477                         continue;
5478                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5479                         return true;
5480         }
5481
5482         return false;
5483 }
5484
5485 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5486                                   const struct i915_ggtt_view *view)
5487 {
5488         struct i915_vma *vma;
5489
5490         list_for_each_entry(vma, &o->vma_list, obj_link)
5491                 if (vma->is_ggtt &&
5492                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5493                     drm_mm_node_allocated(&vma->node))
5494                         return true;
5495
5496         return false;
5497 }
5498
5499 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5500 {
5501         struct i915_vma *vma;
5502
5503         list_for_each_entry(vma, &o->vma_list, obj_link)
5504                 if (drm_mm_node_allocated(&vma->node))
5505                         return true;
5506
5507         return false;
5508 }
5509
5510 unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5511 {
5512         struct i915_vma *vma;
5513
5514         GEM_BUG_ON(list_empty(&o->vma_list));
5515
5516         list_for_each_entry(vma, &o->vma_list, obj_link) {
5517                 if (vma->is_ggtt &&
5518                     vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5519                         return vma->node.size;
5520         }
5521
5522         return 0;
5523 }
5524
5525 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5526 {
5527         struct i915_vma *vma;
5528         list_for_each_entry(vma, &obj->vma_list, obj_link)
5529                 if (vma->pin_count > 0)
5530                         return true;
5531
5532         return false;
5533 }
5534
5535 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5536 struct page *
5537 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5538 {
5539         struct page *page;
5540
5541         /* Only default objects have per-page dirty tracking */
5542         if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5543                 return NULL;
5544
5545         page = i915_gem_object_get_page(obj, n);
5546         set_page_dirty(page);
5547         return page;
5548 }
5549
5550 /* Allocate a new GEM object and fill it with the supplied data */
5551 struct drm_i915_gem_object *
5552 i915_gem_object_create_from_data(struct drm_device *dev,
5553                                  const void *data, size_t size)
5554 {
5555         struct drm_i915_gem_object *obj;
5556         struct sg_table *sg;
5557         size_t bytes;
5558         int ret;
5559
5560         obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5561         if (IS_ERR(obj))
5562                 return obj;
5563
5564         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5565         if (ret)
5566                 goto fail;
5567
5568         ret = i915_gem_object_get_pages(obj);
5569         if (ret)
5570                 goto fail;
5571
5572         i915_gem_object_pin_pages(obj);
5573         sg = obj->pages;
5574         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5575         obj->dirty = 1;         /* Backing store is now out of date */
5576         i915_gem_object_unpin_pages(obj);
5577
5578         if (WARN_ON(bytes != size)) {
5579                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5580                 ret = -EFAULT;
5581                 goto fail;
5582         }
5583
5584         return obj;
5585
5586 fail:
5587         drm_gem_object_unreference(&obj->base);
5588         return ERR_PTR(ret);
5589 }