Merge tag 'topic/i915-hda-componentized-2015-01-12' into drm-intel-next-queued
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43                                                    bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46                                bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57                                              struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59                                             struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61                                  unsigned long event,
62                                  void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66                                   enum i915_cache_level level)
67 {
68         return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74                 return true;
75
76         return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81         if (obj->tiling_mode)
82                 i915_gem_release_mmap(obj);
83
84         /* As we do not have an associated fence register, we will force
85          * a tiling change if we ever need to acquire one.
86          */
87         obj->fence_dirty = false;
88         obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93                                   size_t size)
94 {
95         spin_lock(&dev_priv->mm.object_stat_lock);
96         dev_priv->mm.object_count++;
97         dev_priv->mm.object_memory += size;
98         spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102                                      size_t size)
103 {
104         spin_lock(&dev_priv->mm.object_stat_lock);
105         dev_priv->mm.object_count--;
106         dev_priv->mm.object_memory -= size;
107         spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113         int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116                    i915_terminally_wedged(error))
117         if (EXIT_COND)
118                 return 0;
119
120         /*
121          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122          * userspace. If it takes that long something really bad is going on and
123          * we should simply try to bail out and fail as gracefully as possible.
124          */
125         ret = wait_event_interruptible_timeout(error->reset_queue,
126                                                EXIT_COND,
127                                                10*HZ);
128         if (ret == 0) {
129                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130                 return -EIO;
131         } else if (ret < 0) {
132                 return ret;
133         }
134 #undef EXIT_COND
135
136         return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141         struct drm_i915_private *dev_priv = dev->dev_private;
142         int ret;
143
144         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145         if (ret)
146                 return ret;
147
148         ret = mutex_lock_interruptible(&dev->struct_mutex);
149         if (ret)
150                 return ret;
151
152         WARN_ON(i915_verify_lists(dev));
153         return 0;
154 }
155
156 int
157 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
158                             struct drm_file *file)
159 {
160         struct drm_i915_private *dev_priv = dev->dev_private;
161         struct drm_i915_gem_get_aperture *args = data;
162         struct drm_i915_gem_object *obj;
163         size_t pinned;
164
165         pinned = 0;
166         mutex_lock(&dev->struct_mutex);
167         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
168                 if (i915_gem_obj_is_pinned(obj))
169                         pinned += i915_gem_obj_ggtt_size(obj);
170         mutex_unlock(&dev->struct_mutex);
171
172         args->aper_size = dev_priv->gtt.base.total;
173         args->aper_available_size = args->aper_size - pinned;
174
175         return 0;
176 }
177
178 static int
179 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
180 {
181         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
182         char *vaddr = obj->phys_handle->vaddr;
183         struct sg_table *st;
184         struct scatterlist *sg;
185         int i;
186
187         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
188                 return -EINVAL;
189
190         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
191                 struct page *page;
192                 char *src;
193
194                 page = shmem_read_mapping_page(mapping, i);
195                 if (IS_ERR(page))
196                         return PTR_ERR(page);
197
198                 src = kmap_atomic(page);
199                 memcpy(vaddr, src, PAGE_SIZE);
200                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201                 kunmap_atomic(src);
202
203                 page_cache_release(page);
204                 vaddr += PAGE_SIZE;
205         }
206
207         i915_gem_chipset_flush(obj->base.dev);
208
209         st = kmalloc(sizeof(*st), GFP_KERNEL);
210         if (st == NULL)
211                 return -ENOMEM;
212
213         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
214                 kfree(st);
215                 return -ENOMEM;
216         }
217
218         sg = st->sgl;
219         sg->offset = 0;
220         sg->length = obj->base.size;
221
222         sg_dma_address(sg) = obj->phys_handle->busaddr;
223         sg_dma_len(sg) = obj->base.size;
224
225         obj->pages = st;
226         obj->has_dma_mapping = true;
227         return 0;
228 }
229
230 static void
231 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
232 {
233         int ret;
234
235         BUG_ON(obj->madv == __I915_MADV_PURGED);
236
237         ret = i915_gem_object_set_to_cpu_domain(obj, true);
238         if (ret) {
239                 /* In the event of a disaster, abandon all caches and
240                  * hope for the best.
241                  */
242                 WARN_ON(ret != -EIO);
243                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
244         }
245
246         if (obj->madv == I915_MADV_DONTNEED)
247                 obj->dirty = 0;
248
249         if (obj->dirty) {
250                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
251                 char *vaddr = obj->phys_handle->vaddr;
252                 int i;
253
254                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
255                         struct page *page;
256                         char *dst;
257
258                         page = shmem_read_mapping_page(mapping, i);
259                         if (IS_ERR(page))
260                                 continue;
261
262                         dst = kmap_atomic(page);
263                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
264                         memcpy(dst, vaddr, PAGE_SIZE);
265                         kunmap_atomic(dst);
266
267                         set_page_dirty(page);
268                         if (obj->madv == I915_MADV_WILLNEED)
269                                 mark_page_accessed(page);
270                         page_cache_release(page);
271                         vaddr += PAGE_SIZE;
272                 }
273                 obj->dirty = 0;
274         }
275
276         sg_free_table(obj->pages);
277         kfree(obj->pages);
278
279         obj->has_dma_mapping = false;
280 }
281
282 static void
283 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
284 {
285         drm_pci_free(obj->base.dev, obj->phys_handle);
286 }
287
288 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
289         .get_pages = i915_gem_object_get_pages_phys,
290         .put_pages = i915_gem_object_put_pages_phys,
291         .release = i915_gem_object_release_phys,
292 };
293
294 static int
295 drop_pages(struct drm_i915_gem_object *obj)
296 {
297         struct i915_vma *vma, *next;
298         int ret;
299
300         drm_gem_object_reference(&obj->base);
301         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
302                 if (i915_vma_unbind(vma))
303                         break;
304
305         ret = i915_gem_object_put_pages(obj);
306         drm_gem_object_unreference(&obj->base);
307
308         return ret;
309 }
310
311 int
312 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
313                             int align)
314 {
315         drm_dma_handle_t *phys;
316         int ret;
317
318         if (obj->phys_handle) {
319                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
320                         return -EBUSY;
321
322                 return 0;
323         }
324
325         if (obj->madv != I915_MADV_WILLNEED)
326                 return -EFAULT;
327
328         if (obj->base.filp == NULL)
329                 return -EINVAL;
330
331         ret = drop_pages(obj);
332         if (ret)
333                 return ret;
334
335         /* create a new object */
336         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
337         if (!phys)
338                 return -ENOMEM;
339
340         obj->phys_handle = phys;
341         obj->ops = &i915_gem_phys_ops;
342
343         return i915_gem_object_get_pages(obj);
344 }
345
346 static int
347 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
348                      struct drm_i915_gem_pwrite *args,
349                      struct drm_file *file_priv)
350 {
351         struct drm_device *dev = obj->base.dev;
352         void *vaddr = obj->phys_handle->vaddr + args->offset;
353         char __user *user_data = to_user_ptr(args->data_ptr);
354         int ret;
355
356         /* We manually control the domain here and pretend that it
357          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
358          */
359         ret = i915_gem_object_wait_rendering(obj, false);
360         if (ret)
361                 return ret;
362
363         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
364                 unsigned long unwritten;
365
366                 /* The physical object once assigned is fixed for the lifetime
367                  * of the obj, so we can safely drop the lock and continue
368                  * to access vaddr.
369                  */
370                 mutex_unlock(&dev->struct_mutex);
371                 unwritten = copy_from_user(vaddr, user_data, args->size);
372                 mutex_lock(&dev->struct_mutex);
373                 if (unwritten)
374                         return -EFAULT;
375         }
376
377         drm_clflush_virt_range(vaddr, args->size);
378         i915_gem_chipset_flush(dev);
379         return 0;
380 }
381
382 void *i915_gem_object_alloc(struct drm_device *dev)
383 {
384         struct drm_i915_private *dev_priv = dev->dev_private;
385         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
386 }
387
388 void i915_gem_object_free(struct drm_i915_gem_object *obj)
389 {
390         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
391         kmem_cache_free(dev_priv->slab, obj);
392 }
393
394 static int
395 i915_gem_create(struct drm_file *file,
396                 struct drm_device *dev,
397                 uint64_t size,
398                 uint32_t *handle_p)
399 {
400         struct drm_i915_gem_object *obj;
401         int ret;
402         u32 handle;
403
404         size = roundup(size, PAGE_SIZE);
405         if (size == 0)
406                 return -EINVAL;
407
408         /* Allocate the new object */
409         obj = i915_gem_alloc_object(dev, size);
410         if (obj == NULL)
411                 return -ENOMEM;
412
413         ret = drm_gem_handle_create(file, &obj->base, &handle);
414         /* drop reference from allocate - handle holds it now */
415         drm_gem_object_unreference_unlocked(&obj->base);
416         if (ret)
417                 return ret;
418
419         *handle_p = handle;
420         return 0;
421 }
422
423 int
424 i915_gem_dumb_create(struct drm_file *file,
425                      struct drm_device *dev,
426                      struct drm_mode_create_dumb *args)
427 {
428         /* have to work out size/pitch and return them */
429         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
430         args->size = args->pitch * args->height;
431         return i915_gem_create(file, dev,
432                                args->size, &args->handle);
433 }
434
435 /**
436  * Creates a new mm object and returns a handle to it.
437  */
438 int
439 i915_gem_create_ioctl(struct drm_device *dev, void *data,
440                       struct drm_file *file)
441 {
442         struct drm_i915_gem_create *args = data;
443
444         return i915_gem_create(file, dev,
445                                args->size, &args->handle);
446 }
447
448 static inline int
449 __copy_to_user_swizzled(char __user *cpu_vaddr,
450                         const char *gpu_vaddr, int gpu_offset,
451                         int length)
452 {
453         int ret, cpu_offset = 0;
454
455         while (length > 0) {
456                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
457                 int this_length = min(cacheline_end - gpu_offset, length);
458                 int swizzled_gpu_offset = gpu_offset ^ 64;
459
460                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
461                                      gpu_vaddr + swizzled_gpu_offset,
462                                      this_length);
463                 if (ret)
464                         return ret + length;
465
466                 cpu_offset += this_length;
467                 gpu_offset += this_length;
468                 length -= this_length;
469         }
470
471         return 0;
472 }
473
474 static inline int
475 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
476                           const char __user *cpu_vaddr,
477                           int length)
478 {
479         int ret, cpu_offset = 0;
480
481         while (length > 0) {
482                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
483                 int this_length = min(cacheline_end - gpu_offset, length);
484                 int swizzled_gpu_offset = gpu_offset ^ 64;
485
486                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
487                                        cpu_vaddr + cpu_offset,
488                                        this_length);
489                 if (ret)
490                         return ret + length;
491
492                 cpu_offset += this_length;
493                 gpu_offset += this_length;
494                 length -= this_length;
495         }
496
497         return 0;
498 }
499
500 /*
501  * Pins the specified object's pages and synchronizes the object with
502  * GPU accesses. Sets needs_clflush to non-zero if the caller should
503  * flush the object from the CPU cache.
504  */
505 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
506                                     int *needs_clflush)
507 {
508         int ret;
509
510         *needs_clflush = 0;
511
512         if (!obj->base.filp)
513                 return -EINVAL;
514
515         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
516                 /* If we're not in the cpu read domain, set ourself into the gtt
517                  * read domain and manually flush cachelines (if required). This
518                  * optimizes for the case when the gpu will dirty the data
519                  * anyway again before the next pread happens. */
520                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
521                                                         obj->cache_level);
522                 ret = i915_gem_object_wait_rendering(obj, true);
523                 if (ret)
524                         return ret;
525
526                 i915_gem_object_retire(obj);
527         }
528
529         ret = i915_gem_object_get_pages(obj);
530         if (ret)
531                 return ret;
532
533         i915_gem_object_pin_pages(obj);
534
535         return ret;
536 }
537
538 /* Per-page copy function for the shmem pread fastpath.
539  * Flushes invalid cachelines before reading the target if
540  * needs_clflush is set. */
541 static int
542 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
543                  char __user *user_data,
544                  bool page_do_bit17_swizzling, bool needs_clflush)
545 {
546         char *vaddr;
547         int ret;
548
549         if (unlikely(page_do_bit17_swizzling))
550                 return -EINVAL;
551
552         vaddr = kmap_atomic(page);
553         if (needs_clflush)
554                 drm_clflush_virt_range(vaddr + shmem_page_offset,
555                                        page_length);
556         ret = __copy_to_user_inatomic(user_data,
557                                       vaddr + shmem_page_offset,
558                                       page_length);
559         kunmap_atomic(vaddr);
560
561         return ret ? -EFAULT : 0;
562 }
563
564 static void
565 shmem_clflush_swizzled_range(char *addr, unsigned long length,
566                              bool swizzled)
567 {
568         if (unlikely(swizzled)) {
569                 unsigned long start = (unsigned long) addr;
570                 unsigned long end = (unsigned long) addr + length;
571
572                 /* For swizzling simply ensure that we always flush both
573                  * channels. Lame, but simple and it works. Swizzled
574                  * pwrite/pread is far from a hotpath - current userspace
575                  * doesn't use it at all. */
576                 start = round_down(start, 128);
577                 end = round_up(end, 128);
578
579                 drm_clflush_virt_range((void *)start, end - start);
580         } else {
581                 drm_clflush_virt_range(addr, length);
582         }
583
584 }
585
586 /* Only difference to the fast-path function is that this can handle bit17
587  * and uses non-atomic copy and kmap functions. */
588 static int
589 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
590                  char __user *user_data,
591                  bool page_do_bit17_swizzling, bool needs_clflush)
592 {
593         char *vaddr;
594         int ret;
595
596         vaddr = kmap(page);
597         if (needs_clflush)
598                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
599                                              page_length,
600                                              page_do_bit17_swizzling);
601
602         if (page_do_bit17_swizzling)
603                 ret = __copy_to_user_swizzled(user_data,
604                                               vaddr, shmem_page_offset,
605                                               page_length);
606         else
607                 ret = __copy_to_user(user_data,
608                                      vaddr + shmem_page_offset,
609                                      page_length);
610         kunmap(page);
611
612         return ret ? - EFAULT : 0;
613 }
614
615 static int
616 i915_gem_shmem_pread(struct drm_device *dev,
617                      struct drm_i915_gem_object *obj,
618                      struct drm_i915_gem_pread *args,
619                      struct drm_file *file)
620 {
621         char __user *user_data;
622         ssize_t remain;
623         loff_t offset;
624         int shmem_page_offset, page_length, ret = 0;
625         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
626         int prefaulted = 0;
627         int needs_clflush = 0;
628         struct sg_page_iter sg_iter;
629
630         user_data = to_user_ptr(args->data_ptr);
631         remain = args->size;
632
633         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
634
635         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
636         if (ret)
637                 return ret;
638
639         offset = args->offset;
640
641         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
642                          offset >> PAGE_SHIFT) {
643                 struct page *page = sg_page_iter_page(&sg_iter);
644
645                 if (remain <= 0)
646                         break;
647
648                 /* Operation in this page
649                  *
650                  * shmem_page_offset = offset within page in shmem file
651                  * page_length = bytes to copy for this page
652                  */
653                 shmem_page_offset = offset_in_page(offset);
654                 page_length = remain;
655                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
656                         page_length = PAGE_SIZE - shmem_page_offset;
657
658                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
659                         (page_to_phys(page) & (1 << 17)) != 0;
660
661                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
662                                        user_data, page_do_bit17_swizzling,
663                                        needs_clflush);
664                 if (ret == 0)
665                         goto next_page;
666
667                 mutex_unlock(&dev->struct_mutex);
668
669                 if (likely(!i915.prefault_disable) && !prefaulted) {
670                         ret = fault_in_multipages_writeable(user_data, remain);
671                         /* Userspace is tricking us, but we've already clobbered
672                          * its pages with the prefault and promised to write the
673                          * data up to the first fault. Hence ignore any errors
674                          * and just continue. */
675                         (void)ret;
676                         prefaulted = 1;
677                 }
678
679                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
680                                        user_data, page_do_bit17_swizzling,
681                                        needs_clflush);
682
683                 mutex_lock(&dev->struct_mutex);
684
685                 if (ret)
686                         goto out;
687
688 next_page:
689                 remain -= page_length;
690                 user_data += page_length;
691                 offset += page_length;
692         }
693
694 out:
695         i915_gem_object_unpin_pages(obj);
696
697         return ret;
698 }
699
700 /**
701  * Reads data from the object referenced by handle.
702  *
703  * On error, the contents of *data are undefined.
704  */
705 int
706 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
707                      struct drm_file *file)
708 {
709         struct drm_i915_gem_pread *args = data;
710         struct drm_i915_gem_object *obj;
711         int ret = 0;
712
713         if (args->size == 0)
714                 return 0;
715
716         if (!access_ok(VERIFY_WRITE,
717                        to_user_ptr(args->data_ptr),
718                        args->size))
719                 return -EFAULT;
720
721         ret = i915_mutex_lock_interruptible(dev);
722         if (ret)
723                 return ret;
724
725         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
726         if (&obj->base == NULL) {
727                 ret = -ENOENT;
728                 goto unlock;
729         }
730
731         /* Bounds check source.  */
732         if (args->offset > obj->base.size ||
733             args->size > obj->base.size - args->offset) {
734                 ret = -EINVAL;
735                 goto out;
736         }
737
738         /* prime objects have no backing filp to GEM pread/pwrite
739          * pages from.
740          */
741         if (!obj->base.filp) {
742                 ret = -EINVAL;
743                 goto out;
744         }
745
746         trace_i915_gem_object_pread(obj, args->offset, args->size);
747
748         ret = i915_gem_shmem_pread(dev, obj, args, file);
749
750 out:
751         drm_gem_object_unreference(&obj->base);
752 unlock:
753         mutex_unlock(&dev->struct_mutex);
754         return ret;
755 }
756
757 /* This is the fast write path which cannot handle
758  * page faults in the source data
759  */
760
761 static inline int
762 fast_user_write(struct io_mapping *mapping,
763                 loff_t page_base, int page_offset,
764                 char __user *user_data,
765                 int length)
766 {
767         void __iomem *vaddr_atomic;
768         void *vaddr;
769         unsigned long unwritten;
770
771         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
772         /* We can use the cpu mem copy function because this is X86. */
773         vaddr = (void __force*)vaddr_atomic + page_offset;
774         unwritten = __copy_from_user_inatomic_nocache(vaddr,
775                                                       user_data, length);
776         io_mapping_unmap_atomic(vaddr_atomic);
777         return unwritten;
778 }
779
780 /**
781  * This is the fast pwrite path, where we copy the data directly from the
782  * user into the GTT, uncached.
783  */
784 static int
785 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
786                          struct drm_i915_gem_object *obj,
787                          struct drm_i915_gem_pwrite *args,
788                          struct drm_file *file)
789 {
790         struct drm_i915_private *dev_priv = dev->dev_private;
791         ssize_t remain;
792         loff_t offset, page_base;
793         char __user *user_data;
794         int page_offset, page_length, ret;
795
796         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
797         if (ret)
798                 goto out;
799
800         ret = i915_gem_object_set_to_gtt_domain(obj, true);
801         if (ret)
802                 goto out_unpin;
803
804         ret = i915_gem_object_put_fence(obj);
805         if (ret)
806                 goto out_unpin;
807
808         user_data = to_user_ptr(args->data_ptr);
809         remain = args->size;
810
811         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
812
813         while (remain > 0) {
814                 /* Operation in this page
815                  *
816                  * page_base = page offset within aperture
817                  * page_offset = offset within page
818                  * page_length = bytes to copy for this page
819                  */
820                 page_base = offset & PAGE_MASK;
821                 page_offset = offset_in_page(offset);
822                 page_length = remain;
823                 if ((page_offset + remain) > PAGE_SIZE)
824                         page_length = PAGE_SIZE - page_offset;
825
826                 /* If we get a fault while copying data, then (presumably) our
827                  * source page isn't available.  Return the error and we'll
828                  * retry in the slow path.
829                  */
830                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
831                                     page_offset, user_data, page_length)) {
832                         ret = -EFAULT;
833                         goto out_unpin;
834                 }
835
836                 remain -= page_length;
837                 user_data += page_length;
838                 offset += page_length;
839         }
840
841 out_unpin:
842         i915_gem_object_ggtt_unpin(obj);
843 out:
844         return ret;
845 }
846
847 /* Per-page copy function for the shmem pwrite fastpath.
848  * Flushes invalid cachelines before writing to the target if
849  * needs_clflush_before is set and flushes out any written cachelines after
850  * writing if needs_clflush is set. */
851 static int
852 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853                   char __user *user_data,
854                   bool page_do_bit17_swizzling,
855                   bool needs_clflush_before,
856                   bool needs_clflush_after)
857 {
858         char *vaddr;
859         int ret;
860
861         if (unlikely(page_do_bit17_swizzling))
862                 return -EINVAL;
863
864         vaddr = kmap_atomic(page);
865         if (needs_clflush_before)
866                 drm_clflush_virt_range(vaddr + shmem_page_offset,
867                                        page_length);
868         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869                                         user_data, page_length);
870         if (needs_clflush_after)
871                 drm_clflush_virt_range(vaddr + shmem_page_offset,
872                                        page_length);
873         kunmap_atomic(vaddr);
874
875         return ret ? -EFAULT : 0;
876 }
877
878 /* Only difference to the fast-path function is that this can handle bit17
879  * and uses non-atomic copy and kmap functions. */
880 static int
881 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882                   char __user *user_data,
883                   bool page_do_bit17_swizzling,
884                   bool needs_clflush_before,
885                   bool needs_clflush_after)
886 {
887         char *vaddr;
888         int ret;
889
890         vaddr = kmap(page);
891         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893                                              page_length,
894                                              page_do_bit17_swizzling);
895         if (page_do_bit17_swizzling)
896                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897                                                 user_data,
898                                                 page_length);
899         else
900                 ret = __copy_from_user(vaddr + shmem_page_offset,
901                                        user_data,
902                                        page_length);
903         if (needs_clflush_after)
904                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905                                              page_length,
906                                              page_do_bit17_swizzling);
907         kunmap(page);
908
909         return ret ? -EFAULT : 0;
910 }
911
912 static int
913 i915_gem_shmem_pwrite(struct drm_device *dev,
914                       struct drm_i915_gem_object *obj,
915                       struct drm_i915_gem_pwrite *args,
916                       struct drm_file *file)
917 {
918         ssize_t remain;
919         loff_t offset;
920         char __user *user_data;
921         int shmem_page_offset, page_length, ret = 0;
922         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923         int hit_slowpath = 0;
924         int needs_clflush_after = 0;
925         int needs_clflush_before = 0;
926         struct sg_page_iter sg_iter;
927
928         user_data = to_user_ptr(args->data_ptr);
929         remain = args->size;
930
931         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932
933         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934                 /* If we're not in the cpu write domain, set ourself into the gtt
935                  * write domain and manually flush cachelines (if required). This
936                  * optimizes for the case when the gpu will use the data
937                  * right away and we therefore have to clflush anyway. */
938                 needs_clflush_after = cpu_write_needs_clflush(obj);
939                 ret = i915_gem_object_wait_rendering(obj, false);
940                 if (ret)
941                         return ret;
942
943                 i915_gem_object_retire(obj);
944         }
945         /* Same trick applies to invalidate partially written cachelines read
946          * before writing. */
947         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948                 needs_clflush_before =
949                         !cpu_cache_is_coherent(dev, obj->cache_level);
950
951         ret = i915_gem_object_get_pages(obj);
952         if (ret)
953                 return ret;
954
955         i915_gem_object_pin_pages(obj);
956
957         offset = args->offset;
958         obj->dirty = 1;
959
960         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
961                          offset >> PAGE_SHIFT) {
962                 struct page *page = sg_page_iter_page(&sg_iter);
963                 int partial_cacheline_write;
964
965                 if (remain <= 0)
966                         break;
967
968                 /* Operation in this page
969                  *
970                  * shmem_page_offset = offset within page in shmem file
971                  * page_length = bytes to copy for this page
972                  */
973                 shmem_page_offset = offset_in_page(offset);
974
975                 page_length = remain;
976                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
977                         page_length = PAGE_SIZE - shmem_page_offset;
978
979                 /* If we don't overwrite a cacheline completely we need to be
980                  * careful to have up-to-date data by first clflushing. Don't
981                  * overcomplicate things and flush the entire patch. */
982                 partial_cacheline_write = needs_clflush_before &&
983                         ((shmem_page_offset | page_length)
984                                 & (boot_cpu_data.x86_clflush_size - 1));
985
986                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
987                         (page_to_phys(page) & (1 << 17)) != 0;
988
989                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
990                                         user_data, page_do_bit17_swizzling,
991                                         partial_cacheline_write,
992                                         needs_clflush_after);
993                 if (ret == 0)
994                         goto next_page;
995
996                 hit_slowpath = 1;
997                 mutex_unlock(&dev->struct_mutex);
998                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
999                                         user_data, page_do_bit17_swizzling,
1000                                         partial_cacheline_write,
1001                                         needs_clflush_after);
1002
1003                 mutex_lock(&dev->struct_mutex);
1004
1005                 if (ret)
1006                         goto out;
1007
1008 next_page:
1009                 remain -= page_length;
1010                 user_data += page_length;
1011                 offset += page_length;
1012         }
1013
1014 out:
1015         i915_gem_object_unpin_pages(obj);
1016
1017         if (hit_slowpath) {
1018                 /*
1019                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1020                  * cachelines in-line while writing and the object moved
1021                  * out of the cpu write domain while we've dropped the lock.
1022                  */
1023                 if (!needs_clflush_after &&
1024                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1025                         if (i915_gem_clflush_object(obj, obj->pin_display))
1026                                 i915_gem_chipset_flush(dev);
1027                 }
1028         }
1029
1030         if (needs_clflush_after)
1031                 i915_gem_chipset_flush(dev);
1032
1033         return ret;
1034 }
1035
1036 /**
1037  * Writes data to the object referenced by handle.
1038  *
1039  * On error, the contents of the buffer that were to be modified are undefined.
1040  */
1041 int
1042 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1043                       struct drm_file *file)
1044 {
1045         struct drm_i915_private *dev_priv = dev->dev_private;
1046         struct drm_i915_gem_pwrite *args = data;
1047         struct drm_i915_gem_object *obj;
1048         int ret;
1049
1050         if (args->size == 0)
1051                 return 0;
1052
1053         if (!access_ok(VERIFY_READ,
1054                        to_user_ptr(args->data_ptr),
1055                        args->size))
1056                 return -EFAULT;
1057
1058         if (likely(!i915.prefault_disable)) {
1059                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1060                                                    args->size);
1061                 if (ret)
1062                         return -EFAULT;
1063         }
1064
1065         intel_runtime_pm_get(dev_priv);
1066
1067         ret = i915_mutex_lock_interruptible(dev);
1068         if (ret)
1069                 goto put_rpm;
1070
1071         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1072         if (&obj->base == NULL) {
1073                 ret = -ENOENT;
1074                 goto unlock;
1075         }
1076
1077         /* Bounds check destination. */
1078         if (args->offset > obj->base.size ||
1079             args->size > obj->base.size - args->offset) {
1080                 ret = -EINVAL;
1081                 goto out;
1082         }
1083
1084         /* prime objects have no backing filp to GEM pread/pwrite
1085          * pages from.
1086          */
1087         if (!obj->base.filp) {
1088                 ret = -EINVAL;
1089                 goto out;
1090         }
1091
1092         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1093
1094         ret = -EFAULT;
1095         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1096          * it would end up going through the fenced access, and we'll get
1097          * different detiling behavior between reading and writing.
1098          * pread/pwrite currently are reading and writing from the CPU
1099          * perspective, requiring manual detiling by the client.
1100          */
1101         if (obj->tiling_mode == I915_TILING_NONE &&
1102             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1103             cpu_write_needs_clflush(obj)) {
1104                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1105                 /* Note that the gtt paths might fail with non-page-backed user
1106                  * pointers (e.g. gtt mappings when moving data between
1107                  * textures). Fallback to the shmem path in that case. */
1108         }
1109
1110         if (ret == -EFAULT || ret == -ENOSPC) {
1111                 if (obj->phys_handle)
1112                         ret = i915_gem_phys_pwrite(obj, args, file);
1113                 else
1114                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1115         }
1116
1117 out:
1118         drm_gem_object_unreference(&obj->base);
1119 unlock:
1120         mutex_unlock(&dev->struct_mutex);
1121 put_rpm:
1122         intel_runtime_pm_put(dev_priv);
1123
1124         return ret;
1125 }
1126
1127 int
1128 i915_gem_check_wedge(struct i915_gpu_error *error,
1129                      bool interruptible)
1130 {
1131         if (i915_reset_in_progress(error)) {
1132                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1133                  * -EIO unconditionally for these. */
1134                 if (!interruptible)
1135                         return -EIO;
1136
1137                 /* Recovery complete, but the reset failed ... */
1138                 if (i915_terminally_wedged(error))
1139                         return -EIO;
1140
1141                 /*
1142                  * Check if GPU Reset is in progress - we need intel_ring_begin
1143                  * to work properly to reinit the hw state while the gpu is
1144                  * still marked as reset-in-progress. Handle this with a flag.
1145                  */
1146                 if (!error->reload_in_reset)
1147                         return -EAGAIN;
1148         }
1149
1150         return 0;
1151 }
1152
1153 /*
1154  * Compare arbitrary request against outstanding lazy request. Emit on match.
1155  */
1156 int
1157 i915_gem_check_olr(struct drm_i915_gem_request *req)
1158 {
1159         int ret;
1160
1161         WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1162
1163         ret = 0;
1164         if (req == req->ring->outstanding_lazy_request)
1165                 ret = i915_add_request(req->ring);
1166
1167         return ret;
1168 }
1169
1170 static void fake_irq(unsigned long data)
1171 {
1172         wake_up_process((struct task_struct *)data);
1173 }
1174
1175 static bool missed_irq(struct drm_i915_private *dev_priv,
1176                        struct intel_engine_cs *ring)
1177 {
1178         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1179 }
1180
1181 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1182 {
1183         if (file_priv == NULL)
1184                 return true;
1185
1186         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1187 }
1188
1189 /**
1190  * __i915_wait_request - wait until execution of request has finished
1191  * @req: duh!
1192  * @reset_counter: reset sequence associated with the given request
1193  * @interruptible: do an interruptible wait (normally yes)
1194  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1195  *
1196  * Note: It is of utmost importance that the passed in seqno and reset_counter
1197  * values have been read by the caller in an smp safe manner. Where read-side
1198  * locks are involved, it is sufficient to read the reset_counter before
1199  * unlocking the lock that protects the seqno. For lockless tricks, the
1200  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1201  * inserted.
1202  *
1203  * Returns 0 if the request was found within the alloted time. Else returns the
1204  * errno with remaining time filled in timeout argument.
1205  */
1206 int __i915_wait_request(struct drm_i915_gem_request *req,
1207                         unsigned reset_counter,
1208                         bool interruptible,
1209                         s64 *timeout,
1210                         struct drm_i915_file_private *file_priv)
1211 {
1212         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1213         struct drm_device *dev = ring->dev;
1214         struct drm_i915_private *dev_priv = dev->dev_private;
1215         const bool irq_test_in_progress =
1216                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1217         DEFINE_WAIT(wait);
1218         unsigned long timeout_expire;
1219         s64 before, now;
1220         int ret;
1221
1222         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1223
1224         if (i915_gem_request_completed(req, true))
1225                 return 0;
1226
1227         timeout_expire = timeout ?
1228                 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1229
1230         if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1231                 gen6_rps_boost(dev_priv);
1232                 if (file_priv)
1233                         mod_delayed_work(dev_priv->wq,
1234                                          &file_priv->mm.idle_work,
1235                                          msecs_to_jiffies(100));
1236         }
1237
1238         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1239                 return -ENODEV;
1240
1241         /* Record current time in case interrupted by signal, or wedged */
1242         trace_i915_gem_request_wait_begin(req);
1243         before = ktime_get_raw_ns();
1244         for (;;) {
1245                 struct timer_list timer;
1246
1247                 prepare_to_wait(&ring->irq_queue, &wait,
1248                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1249
1250                 /* We need to check whether any gpu reset happened in between
1251                  * the caller grabbing the seqno and now ... */
1252                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1253                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1254                          * is truely gone. */
1255                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1256                         if (ret == 0)
1257                                 ret = -EAGAIN;
1258                         break;
1259                 }
1260
1261                 if (i915_gem_request_completed(req, false)) {
1262                         ret = 0;
1263                         break;
1264                 }
1265
1266                 if (interruptible && signal_pending(current)) {
1267                         ret = -ERESTARTSYS;
1268                         break;
1269                 }
1270
1271                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1272                         ret = -ETIME;
1273                         break;
1274                 }
1275
1276                 timer.function = NULL;
1277                 if (timeout || missed_irq(dev_priv, ring)) {
1278                         unsigned long expire;
1279
1280                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1281                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1282                         mod_timer(&timer, expire);
1283                 }
1284
1285                 io_schedule();
1286
1287                 if (timer.function) {
1288                         del_singleshot_timer_sync(&timer);
1289                         destroy_timer_on_stack(&timer);
1290                 }
1291         }
1292         now = ktime_get_raw_ns();
1293         trace_i915_gem_request_wait_end(req);
1294
1295         if (!irq_test_in_progress)
1296                 ring->irq_put(ring);
1297
1298         finish_wait(&ring->irq_queue, &wait);
1299
1300         if (timeout) {
1301                 s64 tres = *timeout - (now - before);
1302
1303                 *timeout = tres < 0 ? 0 : tres;
1304
1305                 /*
1306                  * Apparently ktime isn't accurate enough and occasionally has a
1307                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1308                  * things up to make the test happy. We allow up to 1 jiffy.
1309                  *
1310                  * This is a regrssion from the timespec->ktime conversion.
1311                  */
1312                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1313                         *timeout = 0;
1314         }
1315
1316         return ret;
1317 }
1318
1319 /**
1320  * Waits for a request to be signaled, and cleans up the
1321  * request and object lists appropriately for that event.
1322  */
1323 int
1324 i915_wait_request(struct drm_i915_gem_request *req)
1325 {
1326         struct drm_device *dev;
1327         struct drm_i915_private *dev_priv;
1328         bool interruptible;
1329         unsigned reset_counter;
1330         int ret;
1331
1332         BUG_ON(req == NULL);
1333
1334         dev = req->ring->dev;
1335         dev_priv = dev->dev_private;
1336         interruptible = dev_priv->mm.interruptible;
1337
1338         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1339
1340         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1341         if (ret)
1342                 return ret;
1343
1344         ret = i915_gem_check_olr(req);
1345         if (ret)
1346                 return ret;
1347
1348         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1349         i915_gem_request_reference(req);
1350         ret = __i915_wait_request(req, reset_counter,
1351                                   interruptible, NULL, NULL);
1352         i915_gem_request_unreference(req);
1353         return ret;
1354 }
1355
1356 static int
1357 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1358 {
1359         if (!obj->active)
1360                 return 0;
1361
1362         /* Manually manage the write flush as we may have not yet
1363          * retired the buffer.
1364          *
1365          * Note that the last_write_req is always the earlier of
1366          * the two (read/write) requests, so if we haved successfully waited,
1367          * we know we have passed the last write.
1368          */
1369         i915_gem_request_assign(&obj->last_write_req, NULL);
1370
1371         return 0;
1372 }
1373
1374 /**
1375  * Ensures that all rendering to the object has completed and the object is
1376  * safe to unbind from the GTT or access from the CPU.
1377  */
1378 static __must_check int
1379 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1380                                bool readonly)
1381 {
1382         struct drm_i915_gem_request *req;
1383         int ret;
1384
1385         req = readonly ? obj->last_write_req : obj->last_read_req;
1386         if (!req)
1387                 return 0;
1388
1389         ret = i915_wait_request(req);
1390         if (ret)
1391                 return ret;
1392
1393         return i915_gem_object_wait_rendering__tail(obj);
1394 }
1395
1396 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1397  * as the object state may change during this call.
1398  */
1399 static __must_check int
1400 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1401                                             struct drm_i915_file_private *file_priv,
1402                                             bool readonly)
1403 {
1404         struct drm_i915_gem_request *req;
1405         struct drm_device *dev = obj->base.dev;
1406         struct drm_i915_private *dev_priv = dev->dev_private;
1407         unsigned reset_counter;
1408         int ret;
1409
1410         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1411         BUG_ON(!dev_priv->mm.interruptible);
1412
1413         req = readonly ? obj->last_write_req : obj->last_read_req;
1414         if (!req)
1415                 return 0;
1416
1417         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1418         if (ret)
1419                 return ret;
1420
1421         ret = i915_gem_check_olr(req);
1422         if (ret)
1423                 return ret;
1424
1425         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1426         i915_gem_request_reference(req);
1427         mutex_unlock(&dev->struct_mutex);
1428         ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1429         mutex_lock(&dev->struct_mutex);
1430         i915_gem_request_unreference(req);
1431         if (ret)
1432                 return ret;
1433
1434         return i915_gem_object_wait_rendering__tail(obj);
1435 }
1436
1437 /**
1438  * Called when user space prepares to use an object with the CPU, either
1439  * through the mmap ioctl's mapping or a GTT mapping.
1440  */
1441 int
1442 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1443                           struct drm_file *file)
1444 {
1445         struct drm_i915_gem_set_domain *args = data;
1446         struct drm_i915_gem_object *obj;
1447         uint32_t read_domains = args->read_domains;
1448         uint32_t write_domain = args->write_domain;
1449         int ret;
1450
1451         /* Only handle setting domains to types used by the CPU. */
1452         if (write_domain & I915_GEM_GPU_DOMAINS)
1453                 return -EINVAL;
1454
1455         if (read_domains & I915_GEM_GPU_DOMAINS)
1456                 return -EINVAL;
1457
1458         /* Having something in the write domain implies it's in the read
1459          * domain, and only that read domain.  Enforce that in the request.
1460          */
1461         if (write_domain != 0 && read_domains != write_domain)
1462                 return -EINVAL;
1463
1464         ret = i915_mutex_lock_interruptible(dev);
1465         if (ret)
1466                 return ret;
1467
1468         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1469         if (&obj->base == NULL) {
1470                 ret = -ENOENT;
1471                 goto unlock;
1472         }
1473
1474         /* Try to flush the object off the GPU without holding the lock.
1475          * We will repeat the flush holding the lock in the normal manner
1476          * to catch cases where we are gazumped.
1477          */
1478         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1479                                                           file->driver_priv,
1480                                                           !write_domain);
1481         if (ret)
1482                 goto unref;
1483
1484         if (read_domains & I915_GEM_DOMAIN_GTT)
1485                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1486         else
1487                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1488
1489 unref:
1490         drm_gem_object_unreference(&obj->base);
1491 unlock:
1492         mutex_unlock(&dev->struct_mutex);
1493         return ret;
1494 }
1495
1496 /**
1497  * Called when user space has done writes to this buffer
1498  */
1499 int
1500 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1501                          struct drm_file *file)
1502 {
1503         struct drm_i915_gem_sw_finish *args = data;
1504         struct drm_i915_gem_object *obj;
1505         int ret = 0;
1506
1507         ret = i915_mutex_lock_interruptible(dev);
1508         if (ret)
1509                 return ret;
1510
1511         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1512         if (&obj->base == NULL) {
1513                 ret = -ENOENT;
1514                 goto unlock;
1515         }
1516
1517         /* Pinned buffers may be scanout, so flush the cache */
1518         if (obj->pin_display)
1519                 i915_gem_object_flush_cpu_write_domain(obj, true);
1520
1521         drm_gem_object_unreference(&obj->base);
1522 unlock:
1523         mutex_unlock(&dev->struct_mutex);
1524         return ret;
1525 }
1526
1527 /**
1528  * Maps the contents of an object, returning the address it is mapped
1529  * into.
1530  *
1531  * While the mapping holds a reference on the contents of the object, it doesn't
1532  * imply a ref on the object itself.
1533  *
1534  * IMPORTANT:
1535  *
1536  * DRM driver writers who look a this function as an example for how to do GEM
1537  * mmap support, please don't implement mmap support like here. The modern way
1538  * to implement DRM mmap support is with an mmap offset ioctl (like
1539  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1540  * That way debug tooling like valgrind will understand what's going on, hiding
1541  * the mmap call in a driver private ioctl will break that. The i915 driver only
1542  * does cpu mmaps this way because we didn't know better.
1543  */
1544 int
1545 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1546                     struct drm_file *file)
1547 {
1548         struct drm_i915_gem_mmap *args = data;
1549         struct drm_gem_object *obj;
1550         unsigned long addr;
1551
1552         if (args->flags & ~(I915_MMAP_WC))
1553                 return -EINVAL;
1554
1555         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1556                 return -ENODEV;
1557
1558         obj = drm_gem_object_lookup(dev, file, args->handle);
1559         if (obj == NULL)
1560                 return -ENOENT;
1561
1562         /* prime objects have no backing filp to GEM mmap
1563          * pages from.
1564          */
1565         if (!obj->filp) {
1566                 drm_gem_object_unreference_unlocked(obj);
1567                 return -EINVAL;
1568         }
1569
1570         addr = vm_mmap(obj->filp, 0, args->size,
1571                        PROT_READ | PROT_WRITE, MAP_SHARED,
1572                        args->offset);
1573         if (args->flags & I915_MMAP_WC) {
1574                 struct mm_struct *mm = current->mm;
1575                 struct vm_area_struct *vma;
1576
1577                 down_write(&mm->mmap_sem);
1578                 vma = find_vma(mm, addr);
1579                 if (vma)
1580                         vma->vm_page_prot =
1581                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1582                 else
1583                         addr = -ENOMEM;
1584                 up_write(&mm->mmap_sem);
1585         }
1586         drm_gem_object_unreference_unlocked(obj);
1587         if (IS_ERR((void *)addr))
1588                 return addr;
1589
1590         args->addr_ptr = (uint64_t) addr;
1591
1592         return 0;
1593 }
1594
1595 /**
1596  * i915_gem_fault - fault a page into the GTT
1597  * vma: VMA in question
1598  * vmf: fault info
1599  *
1600  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1601  * from userspace.  The fault handler takes care of binding the object to
1602  * the GTT (if needed), allocating and programming a fence register (again,
1603  * only if needed based on whether the old reg is still valid or the object
1604  * is tiled) and inserting a new PTE into the faulting process.
1605  *
1606  * Note that the faulting process may involve evicting existing objects
1607  * from the GTT and/or fence registers to make room.  So performance may
1608  * suffer if the GTT working set is large or there are few fence registers
1609  * left.
1610  */
1611 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1612 {
1613         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1614         struct drm_device *dev = obj->base.dev;
1615         struct drm_i915_private *dev_priv = dev->dev_private;
1616         pgoff_t page_offset;
1617         unsigned long pfn;
1618         int ret = 0;
1619         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1620
1621         intel_runtime_pm_get(dev_priv);
1622
1623         /* We don't use vmf->pgoff since that has the fake offset */
1624         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1625                 PAGE_SHIFT;
1626
1627         ret = i915_mutex_lock_interruptible(dev);
1628         if (ret)
1629                 goto out;
1630
1631         trace_i915_gem_object_fault(obj, page_offset, true, write);
1632
1633         /* Try to flush the object off the GPU first without holding the lock.
1634          * Upon reacquiring the lock, we will perform our sanity checks and then
1635          * repeat the flush holding the lock in the normal manner to catch cases
1636          * where we are gazumped.
1637          */
1638         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1639         if (ret)
1640                 goto unlock;
1641
1642         /* Access to snoopable pages through the GTT is incoherent. */
1643         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1644                 ret = -EFAULT;
1645                 goto unlock;
1646         }
1647
1648         /* Now bind it into the GTT if needed */
1649         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1650         if (ret)
1651                 goto unlock;
1652
1653         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1654         if (ret)
1655                 goto unpin;
1656
1657         ret = i915_gem_object_get_fence(obj);
1658         if (ret)
1659                 goto unpin;
1660
1661         /* Finally, remap it using the new GTT offset */
1662         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1663         pfn >>= PAGE_SHIFT;
1664
1665         if (!obj->fault_mappable) {
1666                 unsigned long size = min_t(unsigned long,
1667                                            vma->vm_end - vma->vm_start,
1668                                            obj->base.size);
1669                 int i;
1670
1671                 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1672                         ret = vm_insert_pfn(vma,
1673                                             (unsigned long)vma->vm_start + i * PAGE_SIZE,
1674                                             pfn + i);
1675                         if (ret)
1676                                 break;
1677                 }
1678
1679                 obj->fault_mappable = true;
1680         } else
1681                 ret = vm_insert_pfn(vma,
1682                                     (unsigned long)vmf->virtual_address,
1683                                     pfn + page_offset);
1684 unpin:
1685         i915_gem_object_ggtt_unpin(obj);
1686 unlock:
1687         mutex_unlock(&dev->struct_mutex);
1688 out:
1689         switch (ret) {
1690         case -EIO:
1691                 /*
1692                  * We eat errors when the gpu is terminally wedged to avoid
1693                  * userspace unduly crashing (gl has no provisions for mmaps to
1694                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1695                  * and so needs to be reported.
1696                  */
1697                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1698                         ret = VM_FAULT_SIGBUS;
1699                         break;
1700                 }
1701         case -EAGAIN:
1702                 /*
1703                  * EAGAIN means the gpu is hung and we'll wait for the error
1704                  * handler to reset everything when re-faulting in
1705                  * i915_mutex_lock_interruptible.
1706                  */
1707         case 0:
1708         case -ERESTARTSYS:
1709         case -EINTR:
1710         case -EBUSY:
1711                 /*
1712                  * EBUSY is ok: this just means that another thread
1713                  * already did the job.
1714                  */
1715                 ret = VM_FAULT_NOPAGE;
1716                 break;
1717         case -ENOMEM:
1718                 ret = VM_FAULT_OOM;
1719                 break;
1720         case -ENOSPC:
1721         case -EFAULT:
1722                 ret = VM_FAULT_SIGBUS;
1723                 break;
1724         default:
1725                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1726                 ret = VM_FAULT_SIGBUS;
1727                 break;
1728         }
1729
1730         intel_runtime_pm_put(dev_priv);
1731         return ret;
1732 }
1733
1734 /**
1735  * i915_gem_release_mmap - remove physical page mappings
1736  * @obj: obj in question
1737  *
1738  * Preserve the reservation of the mmapping with the DRM core code, but
1739  * relinquish ownership of the pages back to the system.
1740  *
1741  * It is vital that we remove the page mapping if we have mapped a tiled
1742  * object through the GTT and then lose the fence register due to
1743  * resource pressure. Similarly if the object has been moved out of the
1744  * aperture, than pages mapped into userspace must be revoked. Removing the
1745  * mapping will then trigger a page fault on the next user access, allowing
1746  * fixup by i915_gem_fault().
1747  */
1748 void
1749 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1750 {
1751         if (!obj->fault_mappable)
1752                 return;
1753
1754         drm_vma_node_unmap(&obj->base.vma_node,
1755                            obj->base.dev->anon_inode->i_mapping);
1756         obj->fault_mappable = false;
1757 }
1758
1759 void
1760 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1761 {
1762         struct drm_i915_gem_object *obj;
1763
1764         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1765                 i915_gem_release_mmap(obj);
1766 }
1767
1768 uint32_t
1769 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1770 {
1771         uint32_t gtt_size;
1772
1773         if (INTEL_INFO(dev)->gen >= 4 ||
1774             tiling_mode == I915_TILING_NONE)
1775                 return size;
1776
1777         /* Previous chips need a power-of-two fence region when tiling */
1778         if (INTEL_INFO(dev)->gen == 3)
1779                 gtt_size = 1024*1024;
1780         else
1781                 gtt_size = 512*1024;
1782
1783         while (gtt_size < size)
1784                 gtt_size <<= 1;
1785
1786         return gtt_size;
1787 }
1788
1789 /**
1790  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1791  * @obj: object to check
1792  *
1793  * Return the required GTT alignment for an object, taking into account
1794  * potential fence register mapping.
1795  */
1796 uint32_t
1797 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1798                            int tiling_mode, bool fenced)
1799 {
1800         /*
1801          * Minimum alignment is 4k (GTT page size), but might be greater
1802          * if a fence register is needed for the object.
1803          */
1804         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1805             tiling_mode == I915_TILING_NONE)
1806                 return 4096;
1807
1808         /*
1809          * Previous chips need to be aligned to the size of the smallest
1810          * fence register that can contain the object.
1811          */
1812         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1813 }
1814
1815 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1816 {
1817         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1818         int ret;
1819
1820         if (drm_vma_node_has_offset(&obj->base.vma_node))
1821                 return 0;
1822
1823         dev_priv->mm.shrinker_no_lock_stealing = true;
1824
1825         ret = drm_gem_create_mmap_offset(&obj->base);
1826         if (ret != -ENOSPC)
1827                 goto out;
1828
1829         /* Badly fragmented mmap space? The only way we can recover
1830          * space is by destroying unwanted objects. We can't randomly release
1831          * mmap_offsets as userspace expects them to be persistent for the
1832          * lifetime of the objects. The closest we can is to release the
1833          * offsets on purgeable objects by truncating it and marking it purged,
1834          * which prevents userspace from ever using that object again.
1835          */
1836         i915_gem_shrink(dev_priv,
1837                         obj->base.size >> PAGE_SHIFT,
1838                         I915_SHRINK_BOUND |
1839                         I915_SHRINK_UNBOUND |
1840                         I915_SHRINK_PURGEABLE);
1841         ret = drm_gem_create_mmap_offset(&obj->base);
1842         if (ret != -ENOSPC)
1843                 goto out;
1844
1845         i915_gem_shrink_all(dev_priv);
1846         ret = drm_gem_create_mmap_offset(&obj->base);
1847 out:
1848         dev_priv->mm.shrinker_no_lock_stealing = false;
1849
1850         return ret;
1851 }
1852
1853 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1854 {
1855         drm_gem_free_mmap_offset(&obj->base);
1856 }
1857
1858 int
1859 i915_gem_mmap_gtt(struct drm_file *file,
1860                   struct drm_device *dev,
1861                   uint32_t handle,
1862                   uint64_t *offset)
1863 {
1864         struct drm_i915_private *dev_priv = dev->dev_private;
1865         struct drm_i915_gem_object *obj;
1866         int ret;
1867
1868         ret = i915_mutex_lock_interruptible(dev);
1869         if (ret)
1870                 return ret;
1871
1872         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1873         if (&obj->base == NULL) {
1874                 ret = -ENOENT;
1875                 goto unlock;
1876         }
1877
1878         if (obj->base.size > dev_priv->gtt.mappable_end) {
1879                 ret = -E2BIG;
1880                 goto out;
1881         }
1882
1883         if (obj->madv != I915_MADV_WILLNEED) {
1884                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1885                 ret = -EFAULT;
1886                 goto out;
1887         }
1888
1889         ret = i915_gem_object_create_mmap_offset(obj);
1890         if (ret)
1891                 goto out;
1892
1893         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1894
1895 out:
1896         drm_gem_object_unreference(&obj->base);
1897 unlock:
1898         mutex_unlock(&dev->struct_mutex);
1899         return ret;
1900 }
1901
1902 /**
1903  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1904  * @dev: DRM device
1905  * @data: GTT mapping ioctl data
1906  * @file: GEM object info
1907  *
1908  * Simply returns the fake offset to userspace so it can mmap it.
1909  * The mmap call will end up in drm_gem_mmap(), which will set things
1910  * up so we can get faults in the handler above.
1911  *
1912  * The fault handler will take care of binding the object into the GTT
1913  * (since it may have been evicted to make room for something), allocating
1914  * a fence register, and mapping the appropriate aperture address into
1915  * userspace.
1916  */
1917 int
1918 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1919                         struct drm_file *file)
1920 {
1921         struct drm_i915_gem_mmap_gtt *args = data;
1922
1923         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1924 }
1925
1926 static inline int
1927 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1928 {
1929         return obj->madv == I915_MADV_DONTNEED;
1930 }
1931
1932 /* Immediately discard the backing storage */
1933 static void
1934 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1935 {
1936         i915_gem_object_free_mmap_offset(obj);
1937
1938         if (obj->base.filp == NULL)
1939                 return;
1940
1941         /* Our goal here is to return as much of the memory as
1942          * is possible back to the system as we are called from OOM.
1943          * To do this we must instruct the shmfs to drop all of its
1944          * backing pages, *now*.
1945          */
1946         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1947         obj->madv = __I915_MADV_PURGED;
1948 }
1949
1950 /* Try to discard unwanted pages */
1951 static void
1952 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1953 {
1954         struct address_space *mapping;
1955
1956         switch (obj->madv) {
1957         case I915_MADV_DONTNEED:
1958                 i915_gem_object_truncate(obj);
1959         case __I915_MADV_PURGED:
1960                 return;
1961         }
1962
1963         if (obj->base.filp == NULL)
1964                 return;
1965
1966         mapping = file_inode(obj->base.filp)->i_mapping,
1967         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1968 }
1969
1970 static void
1971 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1972 {
1973         struct sg_page_iter sg_iter;
1974         int ret;
1975
1976         BUG_ON(obj->madv == __I915_MADV_PURGED);
1977
1978         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1979         if (ret) {
1980                 /* In the event of a disaster, abandon all caches and
1981                  * hope for the best.
1982                  */
1983                 WARN_ON(ret != -EIO);
1984                 i915_gem_clflush_object(obj, true);
1985                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1986         }
1987
1988         if (i915_gem_object_needs_bit17_swizzle(obj))
1989                 i915_gem_object_save_bit_17_swizzle(obj);
1990
1991         if (obj->madv == I915_MADV_DONTNEED)
1992                 obj->dirty = 0;
1993
1994         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1995                 struct page *page = sg_page_iter_page(&sg_iter);
1996
1997                 if (obj->dirty)
1998                         set_page_dirty(page);
1999
2000                 if (obj->madv == I915_MADV_WILLNEED)
2001                         mark_page_accessed(page);
2002
2003                 page_cache_release(page);
2004         }
2005         obj->dirty = 0;
2006
2007         sg_free_table(obj->pages);
2008         kfree(obj->pages);
2009 }
2010
2011 int
2012 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2013 {
2014         const struct drm_i915_gem_object_ops *ops = obj->ops;
2015
2016         if (obj->pages == NULL)
2017                 return 0;
2018
2019         if (obj->pages_pin_count)
2020                 return -EBUSY;
2021
2022         BUG_ON(i915_gem_obj_bound_any(obj));
2023
2024         /* ->put_pages might need to allocate memory for the bit17 swizzle
2025          * array, hence protect them from being reaped by removing them from gtt
2026          * lists early. */
2027         list_del(&obj->global_list);
2028
2029         ops->put_pages(obj);
2030         obj->pages = NULL;
2031
2032         i915_gem_object_invalidate(obj);
2033
2034         return 0;
2035 }
2036
2037 unsigned long
2038 i915_gem_shrink(struct drm_i915_private *dev_priv,
2039                 long target, unsigned flags)
2040 {
2041         const struct {
2042                 struct list_head *list;
2043                 unsigned int bit;
2044         } phases[] = {
2045                 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2046                 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2047                 { NULL, 0 },
2048         }, *phase;
2049         unsigned long count = 0;
2050
2051         /*
2052          * As we may completely rewrite the (un)bound list whilst unbinding
2053          * (due to retiring requests) we have to strictly process only
2054          * one element of the list at the time, and recheck the list
2055          * on every iteration.
2056          *
2057          * In particular, we must hold a reference whilst removing the
2058          * object as we may end up waiting for and/or retiring the objects.
2059          * This might release the final reference (held by the active list)
2060          * and result in the object being freed from under us. This is
2061          * similar to the precautions the eviction code must take whilst
2062          * removing objects.
2063          *
2064          * Also note that although these lists do not hold a reference to
2065          * the object we can safely grab one here: The final object
2066          * unreferencing and the bound_list are both protected by the
2067          * dev->struct_mutex and so we won't ever be able to observe an
2068          * object on the bound_list with a reference count equals 0.
2069          */
2070         for (phase = phases; phase->list; phase++) {
2071                 struct list_head still_in_list;
2072
2073                 if ((flags & phase->bit) == 0)
2074                         continue;
2075
2076                 INIT_LIST_HEAD(&still_in_list);
2077                 while (count < target && !list_empty(phase->list)) {
2078                         struct drm_i915_gem_object *obj;
2079                         struct i915_vma *vma, *v;
2080
2081                         obj = list_first_entry(phase->list,
2082                                                typeof(*obj), global_list);
2083                         list_move_tail(&obj->global_list, &still_in_list);
2084
2085                         if (flags & I915_SHRINK_PURGEABLE &&
2086                             !i915_gem_object_is_purgeable(obj))
2087                                 continue;
2088
2089                         drm_gem_object_reference(&obj->base);
2090
2091                         /* For the unbound phase, this should be a no-op! */
2092                         list_for_each_entry_safe(vma, v,
2093                                                  &obj->vma_list, vma_link)
2094                                 if (i915_vma_unbind(vma))
2095                                         break;
2096
2097                         if (i915_gem_object_put_pages(obj) == 0)
2098                                 count += obj->base.size >> PAGE_SHIFT;
2099
2100                         drm_gem_object_unreference(&obj->base);
2101                 }
2102                 list_splice(&still_in_list, phase->list);
2103         }
2104
2105         return count;
2106 }
2107
2108 static unsigned long
2109 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2110 {
2111         i915_gem_evict_everything(dev_priv->dev);
2112         return i915_gem_shrink(dev_priv, LONG_MAX,
2113                                I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2114 }
2115
2116 static int
2117 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2118 {
2119         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2120         int page_count, i;
2121         struct address_space *mapping;
2122         struct sg_table *st;
2123         struct scatterlist *sg;
2124         struct sg_page_iter sg_iter;
2125         struct page *page;
2126         unsigned long last_pfn = 0;     /* suppress gcc warning */
2127         gfp_t gfp;
2128
2129         /* Assert that the object is not currently in any GPU domain. As it
2130          * wasn't in the GTT, there shouldn't be any way it could have been in
2131          * a GPU cache
2132          */
2133         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2134         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2135
2136         st = kmalloc(sizeof(*st), GFP_KERNEL);
2137         if (st == NULL)
2138                 return -ENOMEM;
2139
2140         page_count = obj->base.size / PAGE_SIZE;
2141         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2142                 kfree(st);
2143                 return -ENOMEM;
2144         }
2145
2146         /* Get the list of pages out of our struct file.  They'll be pinned
2147          * at this point until we release them.
2148          *
2149          * Fail silently without starting the shrinker
2150          */
2151         mapping = file_inode(obj->base.filp)->i_mapping;
2152         gfp = mapping_gfp_mask(mapping);
2153         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2154         gfp &= ~(__GFP_IO | __GFP_WAIT);
2155         sg = st->sgl;
2156         st->nents = 0;
2157         for (i = 0; i < page_count; i++) {
2158                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2159                 if (IS_ERR(page)) {
2160                         i915_gem_shrink(dev_priv,
2161                                         page_count,
2162                                         I915_SHRINK_BOUND |
2163                                         I915_SHRINK_UNBOUND |
2164                                         I915_SHRINK_PURGEABLE);
2165                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2166                 }
2167                 if (IS_ERR(page)) {
2168                         /* We've tried hard to allocate the memory by reaping
2169                          * our own buffer, now let the real VM do its job and
2170                          * go down in flames if truly OOM.
2171                          */
2172                         i915_gem_shrink_all(dev_priv);
2173                         page = shmem_read_mapping_page(mapping, i);
2174                         if (IS_ERR(page))
2175                                 goto err_pages;
2176                 }
2177 #ifdef CONFIG_SWIOTLB
2178                 if (swiotlb_nr_tbl()) {
2179                         st->nents++;
2180                         sg_set_page(sg, page, PAGE_SIZE, 0);
2181                         sg = sg_next(sg);
2182                         continue;
2183                 }
2184 #endif
2185                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2186                         if (i)
2187                                 sg = sg_next(sg);
2188                         st->nents++;
2189                         sg_set_page(sg, page, PAGE_SIZE, 0);
2190                 } else {
2191                         sg->length += PAGE_SIZE;
2192                 }
2193                 last_pfn = page_to_pfn(page);
2194
2195                 /* Check that the i965g/gm workaround works. */
2196                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2197         }
2198 #ifdef CONFIG_SWIOTLB
2199         if (!swiotlb_nr_tbl())
2200 #endif
2201                 sg_mark_end(sg);
2202         obj->pages = st;
2203
2204         if (i915_gem_object_needs_bit17_swizzle(obj))
2205                 i915_gem_object_do_bit_17_swizzle(obj);
2206
2207         if (obj->tiling_mode != I915_TILING_NONE &&
2208             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2209                 i915_gem_object_pin_pages(obj);
2210
2211         return 0;
2212
2213 err_pages:
2214         sg_mark_end(sg);
2215         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2216                 page_cache_release(sg_page_iter_page(&sg_iter));
2217         sg_free_table(st);
2218         kfree(st);
2219
2220         /* shmemfs first checks if there is enough memory to allocate the page
2221          * and reports ENOSPC should there be insufficient, along with the usual
2222          * ENOMEM for a genuine allocation failure.
2223          *
2224          * We use ENOSPC in our driver to mean that we have run out of aperture
2225          * space and so want to translate the error from shmemfs back to our
2226          * usual understanding of ENOMEM.
2227          */
2228         if (PTR_ERR(page) == -ENOSPC)
2229                 return -ENOMEM;
2230         else
2231                 return PTR_ERR(page);
2232 }
2233
2234 /* Ensure that the associated pages are gathered from the backing storage
2235  * and pinned into our object. i915_gem_object_get_pages() may be called
2236  * multiple times before they are released by a single call to
2237  * i915_gem_object_put_pages() - once the pages are no longer referenced
2238  * either as a result of memory pressure (reaping pages under the shrinker)
2239  * or as the object is itself released.
2240  */
2241 int
2242 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2243 {
2244         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245         const struct drm_i915_gem_object_ops *ops = obj->ops;
2246         int ret;
2247
2248         if (obj->pages)
2249                 return 0;
2250
2251         if (obj->madv != I915_MADV_WILLNEED) {
2252                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2253                 return -EFAULT;
2254         }
2255
2256         BUG_ON(obj->pages_pin_count);
2257
2258         ret = ops->get_pages(obj);
2259         if (ret)
2260                 return ret;
2261
2262         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2263         return 0;
2264 }
2265
2266 static void
2267 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2268                                struct intel_engine_cs *ring)
2269 {
2270         struct drm_i915_gem_request *req;
2271         struct intel_engine_cs *old_ring;
2272
2273         BUG_ON(ring == NULL);
2274
2275         req = intel_ring_get_request(ring);
2276         old_ring = i915_gem_request_get_ring(obj->last_read_req);
2277
2278         if (old_ring != ring && obj->last_write_req) {
2279                 /* Keep the request relative to the current ring */
2280                 i915_gem_request_assign(&obj->last_write_req, req);
2281         }
2282
2283         /* Add a reference if we're newly entering the active list. */
2284         if (!obj->active) {
2285                 drm_gem_object_reference(&obj->base);
2286                 obj->active = 1;
2287         }
2288
2289         list_move_tail(&obj->ring_list, &ring->active_list);
2290
2291         i915_gem_request_assign(&obj->last_read_req, req);
2292 }
2293
2294 void i915_vma_move_to_active(struct i915_vma *vma,
2295                              struct intel_engine_cs *ring)
2296 {
2297         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2298         return i915_gem_object_move_to_active(vma->obj, ring);
2299 }
2300
2301 static void
2302 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2303 {
2304         struct i915_vma *vma;
2305
2306         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2307         BUG_ON(!obj->active);
2308
2309         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2310                 if (!list_empty(&vma->mm_list))
2311                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2312         }
2313
2314         intel_fb_obj_flush(obj, true);
2315
2316         list_del_init(&obj->ring_list);
2317
2318         i915_gem_request_assign(&obj->last_read_req, NULL);
2319         i915_gem_request_assign(&obj->last_write_req, NULL);
2320         obj->base.write_domain = 0;
2321
2322         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2323
2324         obj->active = 0;
2325         drm_gem_object_unreference(&obj->base);
2326
2327         WARN_ON(i915_verify_lists(dev));
2328 }
2329
2330 static void
2331 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2332 {
2333         if (obj->last_read_req == NULL)
2334                 return;
2335
2336         if (i915_gem_request_completed(obj->last_read_req, true))
2337                 i915_gem_object_move_to_inactive(obj);
2338 }
2339
2340 static int
2341 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2342 {
2343         struct drm_i915_private *dev_priv = dev->dev_private;
2344         struct intel_engine_cs *ring;
2345         int ret, i, j;
2346
2347         /* Carefully retire all requests without writing to the rings */
2348         for_each_ring(ring, dev_priv, i) {
2349                 ret = intel_ring_idle(ring);
2350                 if (ret)
2351                         return ret;
2352         }
2353         i915_gem_retire_requests(dev);
2354
2355         /* Finally reset hw state */
2356         for_each_ring(ring, dev_priv, i) {
2357                 intel_ring_init_seqno(ring, seqno);
2358
2359                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2360                         ring->semaphore.sync_seqno[j] = 0;
2361         }
2362
2363         return 0;
2364 }
2365
2366 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2367 {
2368         struct drm_i915_private *dev_priv = dev->dev_private;
2369         int ret;
2370
2371         if (seqno == 0)
2372                 return -EINVAL;
2373
2374         /* HWS page needs to be set less than what we
2375          * will inject to ring
2376          */
2377         ret = i915_gem_init_seqno(dev, seqno - 1);
2378         if (ret)
2379                 return ret;
2380
2381         /* Carefully set the last_seqno value so that wrap
2382          * detection still works
2383          */
2384         dev_priv->next_seqno = seqno;
2385         dev_priv->last_seqno = seqno - 1;
2386         if (dev_priv->last_seqno == 0)
2387                 dev_priv->last_seqno--;
2388
2389         return 0;
2390 }
2391
2392 int
2393 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2394 {
2395         struct drm_i915_private *dev_priv = dev->dev_private;
2396
2397         /* reserve 0 for non-seqno */
2398         if (dev_priv->next_seqno == 0) {
2399                 int ret = i915_gem_init_seqno(dev, 0);
2400                 if (ret)
2401                         return ret;
2402
2403                 dev_priv->next_seqno = 1;
2404         }
2405
2406         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2407         return 0;
2408 }
2409
2410 int __i915_add_request(struct intel_engine_cs *ring,
2411                        struct drm_file *file,
2412                        struct drm_i915_gem_object *obj)
2413 {
2414         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2415         struct drm_i915_gem_request *request;
2416         struct intel_ringbuffer *ringbuf;
2417         u32 request_ring_position, request_start;
2418         int ret;
2419
2420         request = ring->outstanding_lazy_request;
2421         if (WARN_ON(request == NULL))
2422                 return -ENOMEM;
2423
2424         if (i915.enable_execlists) {
2425                 struct intel_context *ctx = request->ctx;
2426                 ringbuf = ctx->engine[ring->id].ringbuf;
2427         } else
2428                 ringbuf = ring->buffer;
2429
2430         request_start = intel_ring_get_tail(ringbuf);
2431         /*
2432          * Emit any outstanding flushes - execbuf can fail to emit the flush
2433          * after having emitted the batchbuffer command. Hence we need to fix
2434          * things up similar to emitting the lazy request. The difference here
2435          * is that the flush _must_ happen before the next request, no matter
2436          * what.
2437          */
2438         if (i915.enable_execlists) {
2439                 ret = logical_ring_flush_all_caches(ringbuf);
2440                 if (ret)
2441                         return ret;
2442         } else {
2443                 ret = intel_ring_flush_all_caches(ring);
2444                 if (ret)
2445                         return ret;
2446         }
2447
2448         /* Record the position of the start of the request so that
2449          * should we detect the updated seqno part-way through the
2450          * GPU processing the request, we never over-estimate the
2451          * position of the head.
2452          */
2453         request_ring_position = intel_ring_get_tail(ringbuf);
2454
2455         if (i915.enable_execlists) {
2456                 ret = ring->emit_request(ringbuf);
2457                 if (ret)
2458                         return ret;
2459         } else {
2460                 ret = ring->add_request(ring);
2461                 if (ret)
2462                         return ret;
2463         }
2464
2465         request->head = request_start;
2466         request->tail = request_ring_position;
2467
2468         /* Whilst this request exists, batch_obj will be on the
2469          * active_list, and so will hold the active reference. Only when this
2470          * request is retired will the the batch_obj be moved onto the
2471          * inactive_list and lose its active reference. Hence we do not need
2472          * to explicitly hold another reference here.
2473          */
2474         request->batch_obj = obj;
2475
2476         if (!i915.enable_execlists) {
2477                 /* Hold a reference to the current context so that we can inspect
2478                  * it later in case a hangcheck error event fires.
2479                  */
2480                 request->ctx = ring->last_context;
2481                 if (request->ctx)
2482                         i915_gem_context_reference(request->ctx);
2483         }
2484
2485         request->emitted_jiffies = jiffies;
2486         list_add_tail(&request->list, &ring->request_list);
2487         request->file_priv = NULL;
2488
2489         if (file) {
2490                 struct drm_i915_file_private *file_priv = file->driver_priv;
2491
2492                 spin_lock(&file_priv->mm.lock);
2493                 request->file_priv = file_priv;
2494                 list_add_tail(&request->client_list,
2495                               &file_priv->mm.request_list);
2496                 spin_unlock(&file_priv->mm.lock);
2497         }
2498
2499         trace_i915_gem_request_add(request);
2500         ring->outstanding_lazy_request = NULL;
2501
2502         i915_queue_hangcheck(ring->dev);
2503
2504         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2505         queue_delayed_work(dev_priv->wq,
2506                            &dev_priv->mm.retire_work,
2507                            round_jiffies_up_relative(HZ));
2508         intel_mark_busy(dev_priv->dev);
2509
2510         return 0;
2511 }
2512
2513 static inline void
2514 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2515 {
2516         struct drm_i915_file_private *file_priv = request->file_priv;
2517
2518         if (!file_priv)
2519                 return;
2520
2521         spin_lock(&file_priv->mm.lock);
2522         list_del(&request->client_list);
2523         request->file_priv = NULL;
2524         spin_unlock(&file_priv->mm.lock);
2525 }
2526
2527 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2528                                    const struct intel_context *ctx)
2529 {
2530         unsigned long elapsed;
2531
2532         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2533
2534         if (ctx->hang_stats.banned)
2535                 return true;
2536
2537         if (ctx->hang_stats.ban_period_seconds &&
2538             elapsed <= ctx->hang_stats.ban_period_seconds) {
2539                 if (!i915_gem_context_is_default(ctx)) {
2540                         DRM_DEBUG("context hanging too fast, banning!\n");
2541                         return true;
2542                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2543                         if (i915_stop_ring_allow_warn(dev_priv))
2544                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2545                         return true;
2546                 }
2547         }
2548
2549         return false;
2550 }
2551
2552 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2553                                   struct intel_context *ctx,
2554                                   const bool guilty)
2555 {
2556         struct i915_ctx_hang_stats *hs;
2557
2558         if (WARN_ON(!ctx))
2559                 return;
2560
2561         hs = &ctx->hang_stats;
2562
2563         if (guilty) {
2564                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2565                 hs->batch_active++;
2566                 hs->guilty_ts = get_seconds();
2567         } else {
2568                 hs->batch_pending++;
2569         }
2570 }
2571
2572 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2573 {
2574         list_del(&request->list);
2575         i915_gem_request_remove_from_client(request);
2576
2577         i915_gem_request_unreference(request);
2578 }
2579
2580 void i915_gem_request_free(struct kref *req_ref)
2581 {
2582         struct drm_i915_gem_request *req = container_of(req_ref,
2583                                                  typeof(*req), ref);
2584         struct intel_context *ctx = req->ctx;
2585
2586         if (ctx) {
2587                 if (i915.enable_execlists) {
2588                         struct intel_engine_cs *ring = req->ring;
2589
2590                         if (ctx != ring->default_context)
2591                                 intel_lr_context_unpin(ring, ctx);
2592                 }
2593
2594                 i915_gem_context_unreference(ctx);
2595         }
2596
2597         kfree(req);
2598 }
2599
2600 struct drm_i915_gem_request *
2601 i915_gem_find_active_request(struct intel_engine_cs *ring)
2602 {
2603         struct drm_i915_gem_request *request;
2604
2605         list_for_each_entry(request, &ring->request_list, list) {
2606                 if (i915_gem_request_completed(request, false))
2607                         continue;
2608
2609                 return request;
2610         }
2611
2612         return NULL;
2613 }
2614
2615 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2616                                        struct intel_engine_cs *ring)
2617 {
2618         struct drm_i915_gem_request *request;
2619         bool ring_hung;
2620
2621         request = i915_gem_find_active_request(ring);
2622
2623         if (request == NULL)
2624                 return;
2625
2626         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2627
2628         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2629
2630         list_for_each_entry_continue(request, &ring->request_list, list)
2631                 i915_set_reset_status(dev_priv, request->ctx, false);
2632 }
2633
2634 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2635                                         struct intel_engine_cs *ring)
2636 {
2637         while (!list_empty(&ring->active_list)) {
2638                 struct drm_i915_gem_object *obj;
2639
2640                 obj = list_first_entry(&ring->active_list,
2641                                        struct drm_i915_gem_object,
2642                                        ring_list);
2643
2644                 i915_gem_object_move_to_inactive(obj);
2645         }
2646
2647         /*
2648          * Clear the execlists queue up before freeing the requests, as those
2649          * are the ones that keep the context and ringbuffer backing objects
2650          * pinned in place.
2651          */
2652         while (!list_empty(&ring->execlist_queue)) {
2653                 struct intel_ctx_submit_request *submit_req;
2654
2655                 submit_req = list_first_entry(&ring->execlist_queue,
2656                                 struct intel_ctx_submit_request,
2657                                 execlist_link);
2658                 list_del(&submit_req->execlist_link);
2659                 intel_runtime_pm_put(dev_priv);
2660                 i915_gem_context_unreference(submit_req->ctx);
2661                 kfree(submit_req);
2662         }
2663
2664         /*
2665          * We must free the requests after all the corresponding objects have
2666          * been moved off active lists. Which is the same order as the normal
2667          * retire_requests function does. This is important if object hold
2668          * implicit references on things like e.g. ppgtt address spaces through
2669          * the request.
2670          */
2671         while (!list_empty(&ring->request_list)) {
2672                 struct drm_i915_gem_request *request;
2673
2674                 request = list_first_entry(&ring->request_list,
2675                                            struct drm_i915_gem_request,
2676                                            list);
2677
2678                 i915_gem_free_request(request);
2679         }
2680
2681         /* This may not have been flushed before the reset, so clean it now */
2682         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2683 }
2684
2685 void i915_gem_restore_fences(struct drm_device *dev)
2686 {
2687         struct drm_i915_private *dev_priv = dev->dev_private;
2688         int i;
2689
2690         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2691                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2692
2693                 /*
2694                  * Commit delayed tiling changes if we have an object still
2695                  * attached to the fence, otherwise just clear the fence.
2696                  */
2697                 if (reg->obj) {
2698                         i915_gem_object_update_fence(reg->obj, reg,
2699                                                      reg->obj->tiling_mode);
2700                 } else {
2701                         i915_gem_write_fence(dev, i, NULL);
2702                 }
2703         }
2704 }
2705
2706 void i915_gem_reset(struct drm_device *dev)
2707 {
2708         struct drm_i915_private *dev_priv = dev->dev_private;
2709         struct intel_engine_cs *ring;
2710         int i;
2711
2712         /*
2713          * Before we free the objects from the requests, we need to inspect
2714          * them for finding the guilty party. As the requests only borrow
2715          * their reference to the objects, the inspection must be done first.
2716          */
2717         for_each_ring(ring, dev_priv, i)
2718                 i915_gem_reset_ring_status(dev_priv, ring);
2719
2720         for_each_ring(ring, dev_priv, i)
2721                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2722
2723         i915_gem_context_reset(dev);
2724
2725         i915_gem_restore_fences(dev);
2726 }
2727
2728 /**
2729  * This function clears the request list as sequence numbers are passed.
2730  */
2731 void
2732 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2733 {
2734         if (list_empty(&ring->request_list))
2735                 return;
2736
2737         WARN_ON(i915_verify_lists(ring->dev));
2738
2739         /* Move any buffers on the active list that are no longer referenced
2740          * by the ringbuffer to the flushing/inactive lists as appropriate,
2741          * before we free the context associated with the requests.
2742          */
2743         while (!list_empty(&ring->active_list)) {
2744                 struct drm_i915_gem_object *obj;
2745
2746                 obj = list_first_entry(&ring->active_list,
2747                                       struct drm_i915_gem_object,
2748                                       ring_list);
2749
2750                 if (!i915_gem_request_completed(obj->last_read_req, true))
2751                         break;
2752
2753                 i915_gem_object_move_to_inactive(obj);
2754         }
2755
2756
2757         while (!list_empty(&ring->request_list)) {
2758                 struct drm_i915_gem_request *request;
2759                 struct intel_ringbuffer *ringbuf;
2760
2761                 request = list_first_entry(&ring->request_list,
2762                                            struct drm_i915_gem_request,
2763                                            list);
2764
2765                 if (!i915_gem_request_completed(request, true))
2766                         break;
2767
2768                 trace_i915_gem_request_retire(request);
2769
2770                 /* This is one of the few common intersection points
2771                  * between legacy ringbuffer submission and execlists:
2772                  * we need to tell them apart in order to find the correct
2773                  * ringbuffer to which the request belongs to.
2774                  */
2775                 if (i915.enable_execlists) {
2776                         struct intel_context *ctx = request->ctx;
2777                         ringbuf = ctx->engine[ring->id].ringbuf;
2778                 } else
2779                         ringbuf = ring->buffer;
2780
2781                 /* We know the GPU must have read the request to have
2782                  * sent us the seqno + interrupt, so use the position
2783                  * of tail of the request to update the last known position
2784                  * of the GPU head.
2785                  */
2786                 ringbuf->last_retired_head = request->tail;
2787
2788                 i915_gem_free_request(request);
2789         }
2790
2791         if (unlikely(ring->trace_irq_req &&
2792                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2793                 ring->irq_put(ring);
2794                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2795         }
2796
2797         WARN_ON(i915_verify_lists(ring->dev));
2798 }
2799
2800 bool
2801 i915_gem_retire_requests(struct drm_device *dev)
2802 {
2803         struct drm_i915_private *dev_priv = dev->dev_private;
2804         struct intel_engine_cs *ring;
2805         bool idle = true;
2806         int i;
2807
2808         for_each_ring(ring, dev_priv, i) {
2809                 i915_gem_retire_requests_ring(ring);
2810                 idle &= list_empty(&ring->request_list);
2811                 if (i915.enable_execlists) {
2812                         unsigned long flags;
2813
2814                         spin_lock_irqsave(&ring->execlist_lock, flags);
2815                         idle &= list_empty(&ring->execlist_queue);
2816                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2817
2818                         intel_execlists_retire_requests(ring);
2819                 }
2820         }
2821
2822         if (idle)
2823                 mod_delayed_work(dev_priv->wq,
2824                                    &dev_priv->mm.idle_work,
2825                                    msecs_to_jiffies(100));
2826
2827         return idle;
2828 }
2829
2830 static void
2831 i915_gem_retire_work_handler(struct work_struct *work)
2832 {
2833         struct drm_i915_private *dev_priv =
2834                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2835         struct drm_device *dev = dev_priv->dev;
2836         bool idle;
2837
2838         /* Come back later if the device is busy... */
2839         idle = false;
2840         if (mutex_trylock(&dev->struct_mutex)) {
2841                 idle = i915_gem_retire_requests(dev);
2842                 mutex_unlock(&dev->struct_mutex);
2843         }
2844         if (!idle)
2845                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2846                                    round_jiffies_up_relative(HZ));
2847 }
2848
2849 static void
2850 i915_gem_idle_work_handler(struct work_struct *work)
2851 {
2852         struct drm_i915_private *dev_priv =
2853                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2854
2855         intel_mark_idle(dev_priv->dev);
2856 }
2857
2858 /**
2859  * Ensures that an object will eventually get non-busy by flushing any required
2860  * write domains, emitting any outstanding lazy request and retiring and
2861  * completed requests.
2862  */
2863 static int
2864 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2865 {
2866         struct intel_engine_cs *ring;
2867         int ret;
2868
2869         if (obj->active) {
2870                 ring = i915_gem_request_get_ring(obj->last_read_req);
2871
2872                 ret = i915_gem_check_olr(obj->last_read_req);
2873                 if (ret)
2874                         return ret;
2875
2876                 i915_gem_retire_requests_ring(ring);
2877         }
2878
2879         return 0;
2880 }
2881
2882 /**
2883  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2884  * @DRM_IOCTL_ARGS: standard ioctl arguments
2885  *
2886  * Returns 0 if successful, else an error is returned with the remaining time in
2887  * the timeout parameter.
2888  *  -ETIME: object is still busy after timeout
2889  *  -ERESTARTSYS: signal interrupted the wait
2890  *  -ENONENT: object doesn't exist
2891  * Also possible, but rare:
2892  *  -EAGAIN: GPU wedged
2893  *  -ENOMEM: damn
2894  *  -ENODEV: Internal IRQ fail
2895  *  -E?: The add request failed
2896  *
2897  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2898  * non-zero timeout parameter the wait ioctl will wait for the given number of
2899  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2900  * without holding struct_mutex the object may become re-busied before this
2901  * function completes. A similar but shorter * race condition exists in the busy
2902  * ioctl
2903  */
2904 int
2905 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2906 {
2907         struct drm_i915_private *dev_priv = dev->dev_private;
2908         struct drm_i915_gem_wait *args = data;
2909         struct drm_i915_gem_object *obj;
2910         struct drm_i915_gem_request *req;
2911         unsigned reset_counter;
2912         int ret = 0;
2913
2914         if (args->flags != 0)
2915                 return -EINVAL;
2916
2917         ret = i915_mutex_lock_interruptible(dev);
2918         if (ret)
2919                 return ret;
2920
2921         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2922         if (&obj->base == NULL) {
2923                 mutex_unlock(&dev->struct_mutex);
2924                 return -ENOENT;
2925         }
2926
2927         /* Need to make sure the object gets inactive eventually. */
2928         ret = i915_gem_object_flush_active(obj);
2929         if (ret)
2930                 goto out;
2931
2932         if (!obj->active || !obj->last_read_req)
2933                 goto out;
2934
2935         req = obj->last_read_req;
2936
2937         /* Do this after OLR check to make sure we make forward progress polling
2938          * on this IOCTL with a timeout <=0 (like busy ioctl)
2939          */
2940         if (args->timeout_ns <= 0) {
2941                 ret = -ETIME;
2942                 goto out;
2943         }
2944
2945         drm_gem_object_unreference(&obj->base);
2946         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2947         i915_gem_request_reference(req);
2948         mutex_unlock(&dev->struct_mutex);
2949
2950         ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
2951                                   file->driver_priv);
2952         mutex_lock(&dev->struct_mutex);
2953         i915_gem_request_unreference(req);
2954         mutex_unlock(&dev->struct_mutex);
2955         return ret;
2956
2957 out:
2958         drm_gem_object_unreference(&obj->base);
2959         mutex_unlock(&dev->struct_mutex);
2960         return ret;
2961 }
2962
2963 /**
2964  * i915_gem_object_sync - sync an object to a ring.
2965  *
2966  * @obj: object which may be in use on another ring.
2967  * @to: ring we wish to use the object on. May be NULL.
2968  *
2969  * This code is meant to abstract object synchronization with the GPU.
2970  * Calling with NULL implies synchronizing the object with the CPU
2971  * rather than a particular GPU ring.
2972  *
2973  * Returns 0 if successful, else propagates up the lower layer error.
2974  */
2975 int
2976 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2977                      struct intel_engine_cs *to)
2978 {
2979         struct intel_engine_cs *from;
2980         u32 seqno;
2981         int ret, idx;
2982
2983         from = i915_gem_request_get_ring(obj->last_read_req);
2984
2985         if (from == NULL || to == from)
2986                 return 0;
2987
2988         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2989                 return i915_gem_object_wait_rendering(obj, false);
2990
2991         idx = intel_ring_sync_index(from, to);
2992
2993         seqno = i915_gem_request_get_seqno(obj->last_read_req);
2994         /* Optimization: Avoid semaphore sync when we are sure we already
2995          * waited for an object with higher seqno */
2996         if (seqno <= from->semaphore.sync_seqno[idx])
2997                 return 0;
2998
2999         ret = i915_gem_check_olr(obj->last_read_req);
3000         if (ret)
3001                 return ret;
3002
3003         trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
3004         ret = to->semaphore.sync_to(to, from, seqno);
3005         if (!ret)
3006                 /* We use last_read_req because sync_to()
3007                  * might have just caused seqno wrap under
3008                  * the radar.
3009                  */
3010                 from->semaphore.sync_seqno[idx] =
3011                                 i915_gem_request_get_seqno(obj->last_read_req);
3012
3013         return ret;
3014 }
3015
3016 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3017 {
3018         u32 old_write_domain, old_read_domains;
3019
3020         /* Force a pagefault for domain tracking on next user access */
3021         i915_gem_release_mmap(obj);
3022
3023         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3024                 return;
3025
3026         /* Wait for any direct GTT access to complete */
3027         mb();
3028
3029         old_read_domains = obj->base.read_domains;
3030         old_write_domain = obj->base.write_domain;
3031
3032         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3033         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3034
3035         trace_i915_gem_object_change_domain(obj,
3036                                             old_read_domains,
3037                                             old_write_domain);
3038 }
3039
3040 int i915_vma_unbind(struct i915_vma *vma)
3041 {
3042         struct drm_i915_gem_object *obj = vma->obj;
3043         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3044         int ret;
3045
3046         if (list_empty(&vma->vma_link))
3047                 return 0;
3048
3049         if (!drm_mm_node_allocated(&vma->node)) {
3050                 i915_gem_vma_destroy(vma);
3051                 return 0;
3052         }
3053
3054         if (vma->pin_count)
3055                 return -EBUSY;
3056
3057         BUG_ON(obj->pages == NULL);
3058
3059         ret = i915_gem_object_finish_gpu(obj);
3060         if (ret)
3061                 return ret;
3062         /* Continue on if we fail due to EIO, the GPU is hung so we
3063          * should be safe and we need to cleanup or else we might
3064          * cause memory corruption through use-after-free.
3065          */
3066
3067         if (i915_is_ggtt(vma->vm) &&
3068             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3069                 i915_gem_object_finish_gtt(obj);
3070
3071                 /* release the fence reg _after_ flushing */
3072                 ret = i915_gem_object_put_fence(obj);
3073                 if (ret)
3074                         return ret;
3075         }
3076
3077         trace_i915_vma_unbind(vma);
3078
3079         vma->unbind_vma(vma);
3080
3081         list_del_init(&vma->mm_list);
3082         if (i915_is_ggtt(vma->vm)) {
3083                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3084                         obj->map_and_fenceable = false;
3085                 } else if (vma->ggtt_view.pages) {
3086                         sg_free_table(vma->ggtt_view.pages);
3087                         kfree(vma->ggtt_view.pages);
3088                         vma->ggtt_view.pages = NULL;
3089                 }
3090         }
3091
3092         drm_mm_remove_node(&vma->node);
3093         i915_gem_vma_destroy(vma);
3094
3095         /* Since the unbound list is global, only move to that list if
3096          * no more VMAs exist. */
3097         if (list_empty(&obj->vma_list)) {
3098                 /* Throw away the active reference before
3099                  * moving to the unbound list. */
3100                 i915_gem_object_retire(obj);
3101
3102                 i915_gem_gtt_finish_object(obj);
3103                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3104         }
3105
3106         /* And finally now the object is completely decoupled from this vma,
3107          * we can drop its hold on the backing storage and allow it to be
3108          * reaped by the shrinker.
3109          */
3110         i915_gem_object_unpin_pages(obj);
3111
3112         return 0;
3113 }
3114
3115 int i915_gpu_idle(struct drm_device *dev)
3116 {
3117         struct drm_i915_private *dev_priv = dev->dev_private;
3118         struct intel_engine_cs *ring;
3119         int ret, i;
3120
3121         /* Flush everything onto the inactive list. */
3122         for_each_ring(ring, dev_priv, i) {
3123                 if (!i915.enable_execlists) {
3124                         ret = i915_switch_context(ring, ring->default_context);
3125                         if (ret)
3126                                 return ret;
3127                 }
3128
3129                 ret = intel_ring_idle(ring);
3130                 if (ret)
3131                         return ret;
3132         }
3133
3134         return 0;
3135 }
3136
3137 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3138                                  struct drm_i915_gem_object *obj)
3139 {
3140         struct drm_i915_private *dev_priv = dev->dev_private;
3141         int fence_reg;
3142         int fence_pitch_shift;
3143
3144         if (INTEL_INFO(dev)->gen >= 6) {
3145                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3146                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3147         } else {
3148                 fence_reg = FENCE_REG_965_0;
3149                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3150         }
3151
3152         fence_reg += reg * 8;
3153
3154         /* To w/a incoherency with non-atomic 64-bit register updates,
3155          * we split the 64-bit update into two 32-bit writes. In order
3156          * for a partial fence not to be evaluated between writes, we
3157          * precede the update with write to turn off the fence register,
3158          * and only enable the fence as the last step.
3159          *
3160          * For extra levels of paranoia, we make sure each step lands
3161          * before applying the next step.
3162          */
3163         I915_WRITE(fence_reg, 0);
3164         POSTING_READ(fence_reg);
3165
3166         if (obj) {
3167                 u32 size = i915_gem_obj_ggtt_size(obj);
3168                 uint64_t val;
3169
3170                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3171                                  0xfffff000) << 32;
3172                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3173                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3174                 if (obj->tiling_mode == I915_TILING_Y)
3175                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3176                 val |= I965_FENCE_REG_VALID;
3177
3178                 I915_WRITE(fence_reg + 4, val >> 32);
3179                 POSTING_READ(fence_reg + 4);
3180
3181                 I915_WRITE(fence_reg + 0, val);
3182                 POSTING_READ(fence_reg);
3183         } else {
3184                 I915_WRITE(fence_reg + 4, 0);
3185                 POSTING_READ(fence_reg + 4);
3186         }
3187 }
3188
3189 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3190                                  struct drm_i915_gem_object *obj)
3191 {
3192         struct drm_i915_private *dev_priv = dev->dev_private;
3193         u32 val;
3194
3195         if (obj) {
3196                 u32 size = i915_gem_obj_ggtt_size(obj);
3197                 int pitch_val;
3198                 int tile_width;
3199
3200                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3201                      (size & -size) != size ||
3202                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3203                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3204                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3205
3206                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3207                         tile_width = 128;
3208                 else
3209                         tile_width = 512;
3210
3211                 /* Note: pitch better be a power of two tile widths */
3212                 pitch_val = obj->stride / tile_width;
3213                 pitch_val = ffs(pitch_val) - 1;
3214
3215                 val = i915_gem_obj_ggtt_offset(obj);
3216                 if (obj->tiling_mode == I915_TILING_Y)
3217                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3218                 val |= I915_FENCE_SIZE_BITS(size);
3219                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3220                 val |= I830_FENCE_REG_VALID;
3221         } else
3222                 val = 0;
3223
3224         if (reg < 8)
3225                 reg = FENCE_REG_830_0 + reg * 4;
3226         else
3227                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3228
3229         I915_WRITE(reg, val);
3230         POSTING_READ(reg);
3231 }
3232
3233 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3234                                 struct drm_i915_gem_object *obj)
3235 {
3236         struct drm_i915_private *dev_priv = dev->dev_private;
3237         uint32_t val;
3238
3239         if (obj) {
3240                 u32 size = i915_gem_obj_ggtt_size(obj);
3241                 uint32_t pitch_val;
3242
3243                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3244                      (size & -size) != size ||
3245                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3246                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3247                      i915_gem_obj_ggtt_offset(obj), size);
3248
3249                 pitch_val = obj->stride / 128;
3250                 pitch_val = ffs(pitch_val) - 1;
3251
3252                 val = i915_gem_obj_ggtt_offset(obj);
3253                 if (obj->tiling_mode == I915_TILING_Y)
3254                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3255                 val |= I830_FENCE_SIZE_BITS(size);
3256                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3257                 val |= I830_FENCE_REG_VALID;
3258         } else
3259                 val = 0;
3260
3261         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3262         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3263 }
3264
3265 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3266 {
3267         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3268 }
3269
3270 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3271                                  struct drm_i915_gem_object *obj)
3272 {
3273         struct drm_i915_private *dev_priv = dev->dev_private;
3274
3275         /* Ensure that all CPU reads are completed before installing a fence
3276          * and all writes before removing the fence.
3277          */
3278         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3279                 mb();
3280
3281         WARN(obj && (!obj->stride || !obj->tiling_mode),
3282              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3283              obj->stride, obj->tiling_mode);
3284
3285         if (IS_GEN2(dev))
3286                 i830_write_fence_reg(dev, reg, obj);
3287         else if (IS_GEN3(dev))
3288                 i915_write_fence_reg(dev, reg, obj);
3289         else if (INTEL_INFO(dev)->gen >= 4)
3290                 i965_write_fence_reg(dev, reg, obj);
3291
3292         /* And similarly be paranoid that no direct access to this region
3293          * is reordered to before the fence is installed.
3294          */
3295         if (i915_gem_object_needs_mb(obj))
3296                 mb();
3297 }
3298
3299 static inline int fence_number(struct drm_i915_private *dev_priv,
3300                                struct drm_i915_fence_reg *fence)
3301 {
3302         return fence - dev_priv->fence_regs;
3303 }
3304
3305 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3306                                          struct drm_i915_fence_reg *fence,
3307                                          bool enable)
3308 {
3309         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3310         int reg = fence_number(dev_priv, fence);
3311
3312         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3313
3314         if (enable) {
3315                 obj->fence_reg = reg;
3316                 fence->obj = obj;
3317                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3318         } else {
3319                 obj->fence_reg = I915_FENCE_REG_NONE;
3320                 fence->obj = NULL;
3321                 list_del_init(&fence->lru_list);
3322         }
3323         obj->fence_dirty = false;
3324 }
3325
3326 static int
3327 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3328 {
3329         if (obj->last_fenced_req) {
3330                 int ret = i915_wait_request(obj->last_fenced_req);
3331                 if (ret)
3332                         return ret;
3333
3334                 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3335         }
3336
3337         return 0;
3338 }
3339
3340 int
3341 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3342 {
3343         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3344         struct drm_i915_fence_reg *fence;
3345         int ret;
3346
3347         ret = i915_gem_object_wait_fence(obj);
3348         if (ret)
3349                 return ret;
3350
3351         if (obj->fence_reg == I915_FENCE_REG_NONE)
3352                 return 0;
3353
3354         fence = &dev_priv->fence_regs[obj->fence_reg];
3355
3356         if (WARN_ON(fence->pin_count))
3357                 return -EBUSY;
3358
3359         i915_gem_object_fence_lost(obj);
3360         i915_gem_object_update_fence(obj, fence, false);
3361
3362         return 0;
3363 }
3364
3365 static struct drm_i915_fence_reg *
3366 i915_find_fence_reg(struct drm_device *dev)
3367 {
3368         struct drm_i915_private *dev_priv = dev->dev_private;
3369         struct drm_i915_fence_reg *reg, *avail;
3370         int i;
3371
3372         /* First try to find a free reg */
3373         avail = NULL;
3374         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3375                 reg = &dev_priv->fence_regs[i];
3376                 if (!reg->obj)
3377                         return reg;
3378
3379                 if (!reg->pin_count)
3380                         avail = reg;
3381         }
3382
3383         if (avail == NULL)
3384                 goto deadlock;
3385
3386         /* None available, try to steal one or wait for a user to finish */
3387         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3388                 if (reg->pin_count)
3389                         continue;
3390
3391                 return reg;
3392         }
3393
3394 deadlock:
3395         /* Wait for completion of pending flips which consume fences */
3396         if (intel_has_pending_fb_unpin(dev))
3397                 return ERR_PTR(-EAGAIN);
3398
3399         return ERR_PTR(-EDEADLK);
3400 }
3401
3402 /**
3403  * i915_gem_object_get_fence - set up fencing for an object
3404  * @obj: object to map through a fence reg
3405  *
3406  * When mapping objects through the GTT, userspace wants to be able to write
3407  * to them without having to worry about swizzling if the object is tiled.
3408  * This function walks the fence regs looking for a free one for @obj,
3409  * stealing one if it can't find any.
3410  *
3411  * It then sets up the reg based on the object's properties: address, pitch
3412  * and tiling format.
3413  *
3414  * For an untiled surface, this removes any existing fence.
3415  */
3416 int
3417 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3418 {
3419         struct drm_device *dev = obj->base.dev;
3420         struct drm_i915_private *dev_priv = dev->dev_private;
3421         bool enable = obj->tiling_mode != I915_TILING_NONE;
3422         struct drm_i915_fence_reg *reg;
3423         int ret;
3424
3425         /* Have we updated the tiling parameters upon the object and so
3426          * will need to serialise the write to the associated fence register?
3427          */
3428         if (obj->fence_dirty) {
3429                 ret = i915_gem_object_wait_fence(obj);
3430                 if (ret)
3431                         return ret;
3432         }
3433
3434         /* Just update our place in the LRU if our fence is getting reused. */
3435         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3436                 reg = &dev_priv->fence_regs[obj->fence_reg];
3437                 if (!obj->fence_dirty) {
3438                         list_move_tail(&reg->lru_list,
3439                                        &dev_priv->mm.fence_list);
3440                         return 0;
3441                 }
3442         } else if (enable) {
3443                 if (WARN_ON(!obj->map_and_fenceable))
3444                         return -EINVAL;
3445
3446                 reg = i915_find_fence_reg(dev);
3447                 if (IS_ERR(reg))
3448                         return PTR_ERR(reg);
3449
3450                 if (reg->obj) {
3451                         struct drm_i915_gem_object *old = reg->obj;
3452
3453                         ret = i915_gem_object_wait_fence(old);
3454                         if (ret)
3455                                 return ret;
3456
3457                         i915_gem_object_fence_lost(old);
3458                 }
3459         } else
3460                 return 0;
3461
3462         i915_gem_object_update_fence(obj, reg, enable);
3463
3464         return 0;
3465 }
3466
3467 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3468                                      unsigned long cache_level)
3469 {
3470         struct drm_mm_node *gtt_space = &vma->node;
3471         struct drm_mm_node *other;
3472
3473         /*
3474          * On some machines we have to be careful when putting differing types
3475          * of snoopable memory together to avoid the prefetcher crossing memory
3476          * domains and dying. During vm initialisation, we decide whether or not
3477          * these constraints apply and set the drm_mm.color_adjust
3478          * appropriately.
3479          */
3480         if (vma->vm->mm.color_adjust == NULL)
3481                 return true;
3482
3483         if (!drm_mm_node_allocated(gtt_space))
3484                 return true;
3485
3486         if (list_empty(&gtt_space->node_list))
3487                 return true;
3488
3489         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3490         if (other->allocated && !other->hole_follows && other->color != cache_level)
3491                 return false;
3492
3493         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3494         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3495                 return false;
3496
3497         return true;
3498 }
3499
3500 /**
3501  * Finds free space in the GTT aperture and binds the object there.
3502  */
3503 static struct i915_vma *
3504 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3505                            struct i915_address_space *vm,
3506                            unsigned alignment,
3507                            uint64_t flags,
3508                            const struct i915_ggtt_view *view)
3509 {
3510         struct drm_device *dev = obj->base.dev;
3511         struct drm_i915_private *dev_priv = dev->dev_private;
3512         u32 size, fence_size, fence_alignment, unfenced_alignment;
3513         unsigned long start =
3514                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3515         unsigned long end =
3516                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3517         struct i915_vma *vma;
3518         int ret;
3519
3520         fence_size = i915_gem_get_gtt_size(dev,
3521                                            obj->base.size,
3522                                            obj->tiling_mode);
3523         fence_alignment = i915_gem_get_gtt_alignment(dev,
3524                                                      obj->base.size,
3525                                                      obj->tiling_mode, true);
3526         unfenced_alignment =
3527                 i915_gem_get_gtt_alignment(dev,
3528                                            obj->base.size,
3529                                            obj->tiling_mode, false);
3530
3531         if (alignment == 0)
3532                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3533                                                 unfenced_alignment;
3534         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3535                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3536                 return ERR_PTR(-EINVAL);
3537         }
3538
3539         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3540
3541         /* If the object is bigger than the entire aperture, reject it early
3542          * before evicting everything in a vain attempt to find space.
3543          */
3544         if (obj->base.size > end) {
3545                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3546                           obj->base.size,
3547                           flags & PIN_MAPPABLE ? "mappable" : "total",
3548                           end);
3549                 return ERR_PTR(-E2BIG);
3550         }
3551
3552         ret = i915_gem_object_get_pages(obj);
3553         if (ret)
3554                 return ERR_PTR(ret);
3555
3556         i915_gem_object_pin_pages(obj);
3557
3558         vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
3559         if (IS_ERR(vma))
3560                 goto err_unpin;
3561
3562 search_free:
3563         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3564                                                   size, alignment,
3565                                                   obj->cache_level,
3566                                                   start, end,
3567                                                   DRM_MM_SEARCH_DEFAULT,
3568                                                   DRM_MM_CREATE_DEFAULT);
3569         if (ret) {
3570                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3571                                                obj->cache_level,
3572                                                start, end,
3573                                                flags);
3574                 if (ret == 0)
3575                         goto search_free;
3576
3577                 goto err_free_vma;
3578         }
3579         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3580                 ret = -EINVAL;
3581                 goto err_remove_node;
3582         }
3583
3584         ret = i915_gem_gtt_prepare_object(obj);
3585         if (ret)
3586                 goto err_remove_node;
3587
3588         trace_i915_vma_bind(vma, flags);
3589         ret = i915_vma_bind(vma, obj->cache_level,
3590                             flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3591         if (ret)
3592                 goto err_finish_gtt;
3593
3594         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3595         list_add_tail(&vma->mm_list, &vm->inactive_list);
3596
3597         return vma;
3598
3599 err_finish_gtt:
3600         i915_gem_gtt_finish_object(obj);
3601 err_remove_node:
3602         drm_mm_remove_node(&vma->node);
3603 err_free_vma:
3604         i915_gem_vma_destroy(vma);
3605         vma = ERR_PTR(ret);
3606 err_unpin:
3607         i915_gem_object_unpin_pages(obj);
3608         return vma;
3609 }
3610
3611 bool
3612 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3613                         bool force)
3614 {
3615         /* If we don't have a page list set up, then we're not pinned
3616          * to GPU, and we can ignore the cache flush because it'll happen
3617          * again at bind time.
3618          */
3619         if (obj->pages == NULL)
3620                 return false;
3621
3622         /*
3623          * Stolen memory is always coherent with the GPU as it is explicitly
3624          * marked as wc by the system, or the system is cache-coherent.
3625          */
3626         if (obj->stolen || obj->phys_handle)
3627                 return false;
3628
3629         /* If the GPU is snooping the contents of the CPU cache,
3630          * we do not need to manually clear the CPU cache lines.  However,
3631          * the caches are only snooped when the render cache is
3632          * flushed/invalidated.  As we always have to emit invalidations
3633          * and flushes when moving into and out of the RENDER domain, correct
3634          * snooping behaviour occurs naturally as the result of our domain
3635          * tracking.
3636          */
3637         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3638                 return false;
3639
3640         trace_i915_gem_object_clflush(obj);
3641         drm_clflush_sg(obj->pages);
3642
3643         return true;
3644 }
3645
3646 /** Flushes the GTT write domain for the object if it's dirty. */
3647 static void
3648 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3649 {
3650         uint32_t old_write_domain;
3651
3652         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3653                 return;
3654
3655         /* No actual flushing is required for the GTT write domain.  Writes
3656          * to it immediately go to main memory as far as we know, so there's
3657          * no chipset flush.  It also doesn't land in render cache.
3658          *
3659          * However, we do have to enforce the order so that all writes through
3660          * the GTT land before any writes to the device, such as updates to
3661          * the GATT itself.
3662          */
3663         wmb();
3664
3665         old_write_domain = obj->base.write_domain;
3666         obj->base.write_domain = 0;
3667
3668         intel_fb_obj_flush(obj, false);
3669
3670         trace_i915_gem_object_change_domain(obj,
3671                                             obj->base.read_domains,
3672                                             old_write_domain);
3673 }
3674
3675 /** Flushes the CPU write domain for the object if it's dirty. */
3676 static void
3677 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3678                                        bool force)
3679 {
3680         uint32_t old_write_domain;
3681
3682         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3683                 return;
3684
3685         if (i915_gem_clflush_object(obj, force))
3686                 i915_gem_chipset_flush(obj->base.dev);
3687
3688         old_write_domain = obj->base.write_domain;
3689         obj->base.write_domain = 0;
3690
3691         intel_fb_obj_flush(obj, false);
3692
3693         trace_i915_gem_object_change_domain(obj,
3694                                             obj->base.read_domains,
3695                                             old_write_domain);
3696 }
3697
3698 /**
3699  * Moves a single object to the GTT read, and possibly write domain.
3700  *
3701  * This function returns when the move is complete, including waiting on
3702  * flushes to occur.
3703  */
3704 int
3705 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3706 {
3707         uint32_t old_write_domain, old_read_domains;
3708         struct i915_vma *vma;
3709         int ret;
3710
3711         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3712                 return 0;
3713
3714         ret = i915_gem_object_wait_rendering(obj, !write);
3715         if (ret)
3716                 return ret;
3717
3718         i915_gem_object_retire(obj);
3719
3720         /* Flush and acquire obj->pages so that we are coherent through
3721          * direct access in memory with previous cached writes through
3722          * shmemfs and that our cache domain tracking remains valid.
3723          * For example, if the obj->filp was moved to swap without us
3724          * being notified and releasing the pages, we would mistakenly
3725          * continue to assume that the obj remained out of the CPU cached
3726          * domain.
3727          */
3728         ret = i915_gem_object_get_pages(obj);
3729         if (ret)
3730                 return ret;
3731
3732         i915_gem_object_flush_cpu_write_domain(obj, false);
3733
3734         /* Serialise direct access to this object with the barriers for
3735          * coherent writes from the GPU, by effectively invalidating the
3736          * GTT domain upon first access.
3737          */
3738         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3739                 mb();
3740
3741         old_write_domain = obj->base.write_domain;
3742         old_read_domains = obj->base.read_domains;
3743
3744         /* It should now be out of any other write domains, and we can update
3745          * the domain values for our changes.
3746          */
3747         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3748         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3749         if (write) {
3750                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3751                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3752                 obj->dirty = 1;
3753         }
3754
3755         if (write)
3756                 intel_fb_obj_invalidate(obj, NULL);
3757
3758         trace_i915_gem_object_change_domain(obj,
3759                                             old_read_domains,
3760                                             old_write_domain);
3761
3762         /* And bump the LRU for this access */
3763         vma = i915_gem_obj_to_ggtt(obj);
3764         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3765                 list_move_tail(&vma->mm_list,
3766                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3767
3768         return 0;
3769 }
3770
3771 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3772                                     enum i915_cache_level cache_level)
3773 {
3774         struct drm_device *dev = obj->base.dev;
3775         struct i915_vma *vma, *next;
3776         int ret;
3777
3778         if (obj->cache_level == cache_level)
3779                 return 0;
3780
3781         if (i915_gem_obj_is_pinned(obj)) {
3782                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3783                 return -EBUSY;
3784         }
3785
3786         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3787                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3788                         ret = i915_vma_unbind(vma);
3789                         if (ret)
3790                                 return ret;
3791                 }
3792         }
3793
3794         if (i915_gem_obj_bound_any(obj)) {
3795                 ret = i915_gem_object_finish_gpu(obj);
3796                 if (ret)
3797                         return ret;
3798
3799                 i915_gem_object_finish_gtt(obj);
3800
3801                 /* Before SandyBridge, you could not use tiling or fence
3802                  * registers with snooped memory, so relinquish any fences
3803                  * currently pointing to our region in the aperture.
3804                  */
3805                 if (INTEL_INFO(dev)->gen < 6) {
3806                         ret = i915_gem_object_put_fence(obj);
3807                         if (ret)
3808                                 return ret;
3809                 }
3810
3811                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3812                         if (drm_mm_node_allocated(&vma->node)) {
3813                                 ret = i915_vma_bind(vma, cache_level,
3814                                                     vma->bound & GLOBAL_BIND);
3815                                 if (ret)
3816                                         return ret;
3817                         }
3818         }
3819
3820         list_for_each_entry(vma, &obj->vma_list, vma_link)
3821                 vma->node.color = cache_level;
3822         obj->cache_level = cache_level;
3823
3824         if (cpu_write_needs_clflush(obj)) {
3825                 u32 old_read_domains, old_write_domain;
3826
3827                 /* If we're coming from LLC cached, then we haven't
3828                  * actually been tracking whether the data is in the
3829                  * CPU cache or not, since we only allow one bit set
3830                  * in obj->write_domain and have been skipping the clflushes.
3831                  * Just set it to the CPU cache for now.
3832                  */
3833                 i915_gem_object_retire(obj);
3834                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3835
3836                 old_read_domains = obj->base.read_domains;
3837                 old_write_domain = obj->base.write_domain;
3838
3839                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3840                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3841
3842                 trace_i915_gem_object_change_domain(obj,
3843                                                     old_read_domains,
3844                                                     old_write_domain);
3845         }
3846
3847         return 0;
3848 }
3849
3850 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3851                                struct drm_file *file)
3852 {
3853         struct drm_i915_gem_caching *args = data;
3854         struct drm_i915_gem_object *obj;
3855         int ret;
3856
3857         ret = i915_mutex_lock_interruptible(dev);
3858         if (ret)
3859                 return ret;
3860
3861         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3862         if (&obj->base == NULL) {
3863                 ret = -ENOENT;
3864                 goto unlock;
3865         }
3866
3867         switch (obj->cache_level) {
3868         case I915_CACHE_LLC:
3869         case I915_CACHE_L3_LLC:
3870                 args->caching = I915_CACHING_CACHED;
3871                 break;
3872
3873         case I915_CACHE_WT:
3874                 args->caching = I915_CACHING_DISPLAY;
3875                 break;
3876
3877         default:
3878                 args->caching = I915_CACHING_NONE;
3879                 break;
3880         }
3881
3882         drm_gem_object_unreference(&obj->base);
3883 unlock:
3884         mutex_unlock(&dev->struct_mutex);
3885         return ret;
3886 }
3887
3888 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3889                                struct drm_file *file)
3890 {
3891         struct drm_i915_gem_caching *args = data;
3892         struct drm_i915_gem_object *obj;
3893         enum i915_cache_level level;
3894         int ret;
3895
3896         switch (args->caching) {
3897         case I915_CACHING_NONE:
3898                 level = I915_CACHE_NONE;
3899                 break;
3900         case I915_CACHING_CACHED:
3901                 level = I915_CACHE_LLC;
3902                 break;
3903         case I915_CACHING_DISPLAY:
3904                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3905                 break;
3906         default:
3907                 return -EINVAL;
3908         }
3909
3910         ret = i915_mutex_lock_interruptible(dev);
3911         if (ret)
3912                 return ret;
3913
3914         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3915         if (&obj->base == NULL) {
3916                 ret = -ENOENT;
3917                 goto unlock;
3918         }
3919
3920         ret = i915_gem_object_set_cache_level(obj, level);
3921
3922         drm_gem_object_unreference(&obj->base);
3923 unlock:
3924         mutex_unlock(&dev->struct_mutex);
3925         return ret;
3926 }
3927
3928 static bool is_pin_display(struct drm_i915_gem_object *obj)
3929 {
3930         struct i915_vma *vma;
3931
3932         vma = i915_gem_obj_to_ggtt(obj);
3933         if (!vma)
3934                 return false;
3935
3936         /* There are 2 sources that pin objects:
3937          *   1. The display engine (scanouts, sprites, cursors);
3938          *   2. Reservations for execbuffer;
3939          *
3940          * We can ignore reservations as we hold the struct_mutex and
3941          * are only called outside of the reservation path.
3942          */
3943         return vma->pin_count;
3944 }
3945
3946 /*
3947  * Prepare buffer for display plane (scanout, cursors, etc).
3948  * Can be called from an uninterruptible phase (modesetting) and allows
3949  * any flushes to be pipelined (for pageflips).
3950  */
3951 int
3952 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3953                                      u32 alignment,
3954                                      struct intel_engine_cs *pipelined)
3955 {
3956         u32 old_read_domains, old_write_domain;
3957         bool was_pin_display;
3958         int ret;
3959
3960         if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3961                 ret = i915_gem_object_sync(obj, pipelined);
3962                 if (ret)
3963                         return ret;
3964         }
3965
3966         /* Mark the pin_display early so that we account for the
3967          * display coherency whilst setting up the cache domains.
3968          */
3969         was_pin_display = obj->pin_display;
3970         obj->pin_display = true;
3971
3972         /* The display engine is not coherent with the LLC cache on gen6.  As
3973          * a result, we make sure that the pinning that is about to occur is
3974          * done with uncached PTEs. This is lowest common denominator for all
3975          * chipsets.
3976          *
3977          * However for gen6+, we could do better by using the GFDT bit instead
3978          * of uncaching, which would allow us to flush all the LLC-cached data
3979          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3980          */
3981         ret = i915_gem_object_set_cache_level(obj,
3982                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3983         if (ret)
3984                 goto err_unpin_display;
3985
3986         /* As the user may map the buffer once pinned in the display plane
3987          * (e.g. libkms for the bootup splash), we have to ensure that we
3988          * always use map_and_fenceable for all scanout buffers.
3989          */
3990         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3991         if (ret)
3992                 goto err_unpin_display;
3993
3994         i915_gem_object_flush_cpu_write_domain(obj, true);
3995
3996         old_write_domain = obj->base.write_domain;
3997         old_read_domains = obj->base.read_domains;
3998
3999         /* It should now be out of any other write domains, and we can update
4000          * the domain values for our changes.
4001          */
4002         obj->base.write_domain = 0;
4003         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4004
4005         trace_i915_gem_object_change_domain(obj,
4006                                             old_read_domains,
4007                                             old_write_domain);
4008
4009         return 0;
4010
4011 err_unpin_display:
4012         WARN_ON(was_pin_display != is_pin_display(obj));
4013         obj->pin_display = was_pin_display;
4014         return ret;
4015 }
4016
4017 void
4018 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4019 {
4020         i915_gem_object_ggtt_unpin(obj);
4021         obj->pin_display = is_pin_display(obj);
4022 }
4023
4024 int
4025 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4026 {
4027         int ret;
4028
4029         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4030                 return 0;
4031
4032         ret = i915_gem_object_wait_rendering(obj, false);
4033         if (ret)
4034                 return ret;
4035
4036         /* Ensure that we invalidate the GPU's caches and TLBs. */
4037         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4038         return 0;
4039 }
4040
4041 /**
4042  * Moves a single object to the CPU read, and possibly write domain.
4043  *
4044  * This function returns when the move is complete, including waiting on
4045  * flushes to occur.
4046  */
4047 int
4048 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4049 {
4050         uint32_t old_write_domain, old_read_domains;
4051         int ret;
4052
4053         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4054                 return 0;
4055
4056         ret = i915_gem_object_wait_rendering(obj, !write);
4057         if (ret)
4058                 return ret;
4059
4060         i915_gem_object_retire(obj);
4061         i915_gem_object_flush_gtt_write_domain(obj);
4062
4063         old_write_domain = obj->base.write_domain;
4064         old_read_domains = obj->base.read_domains;
4065
4066         /* Flush the CPU cache if it's still invalid. */
4067         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4068                 i915_gem_clflush_object(obj, false);
4069
4070                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4071         }
4072
4073         /* It should now be out of any other write domains, and we can update
4074          * the domain values for our changes.
4075          */
4076         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4077
4078         /* If we're writing through the CPU, then the GPU read domains will
4079          * need to be invalidated at next use.
4080          */
4081         if (write) {
4082                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4083                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4084         }
4085
4086         if (write)
4087                 intel_fb_obj_invalidate(obj, NULL);
4088
4089         trace_i915_gem_object_change_domain(obj,
4090                                             old_read_domains,
4091                                             old_write_domain);
4092
4093         return 0;
4094 }
4095
4096 /* Throttle our rendering by waiting until the ring has completed our requests
4097  * emitted over 20 msec ago.
4098  *
4099  * Note that if we were to use the current jiffies each time around the loop,
4100  * we wouldn't escape the function with any frames outstanding if the time to
4101  * render a frame was over 20ms.
4102  *
4103  * This should get us reasonable parallelism between CPU and GPU but also
4104  * relatively low latency when blocking on a particular request to finish.
4105  */
4106 static int
4107 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4108 {
4109         struct drm_i915_private *dev_priv = dev->dev_private;
4110         struct drm_i915_file_private *file_priv = file->driver_priv;
4111         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4112         struct drm_i915_gem_request *request, *target = NULL;
4113         unsigned reset_counter;
4114         int ret;
4115
4116         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4117         if (ret)
4118                 return ret;
4119
4120         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4121         if (ret)
4122                 return ret;
4123
4124         spin_lock(&file_priv->mm.lock);
4125         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4126                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4127                         break;
4128
4129                 target = request;
4130         }
4131         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4132         if (target)
4133                 i915_gem_request_reference(target);
4134         spin_unlock(&file_priv->mm.lock);
4135
4136         if (target == NULL)
4137                 return 0;
4138
4139         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4140         if (ret == 0)
4141                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4142
4143         mutex_lock(&dev->struct_mutex);
4144         i915_gem_request_unreference(target);
4145         mutex_unlock(&dev->struct_mutex);
4146
4147         return ret;
4148 }
4149
4150 static bool
4151 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4152 {
4153         struct drm_i915_gem_object *obj = vma->obj;
4154
4155         if (alignment &&
4156             vma->node.start & (alignment - 1))
4157                 return true;
4158
4159         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4160                 return true;
4161
4162         if (flags & PIN_OFFSET_BIAS &&
4163             vma->node.start < (flags & PIN_OFFSET_MASK))
4164                 return true;
4165
4166         return false;
4167 }
4168
4169 int
4170 i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
4171                          struct i915_address_space *vm,
4172                          uint32_t alignment,
4173                          uint64_t flags,
4174                          const struct i915_ggtt_view *view)
4175 {
4176         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4177         struct i915_vma *vma;
4178         unsigned bound;
4179         int ret;
4180
4181         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4182                 return -ENODEV;
4183
4184         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4185                 return -EINVAL;
4186
4187         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4188                 return -EINVAL;
4189
4190         vma = i915_gem_obj_to_vma_view(obj, vm, view);
4191         if (vma) {
4192                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4193                         return -EBUSY;
4194
4195                 if (i915_vma_misplaced(vma, alignment, flags)) {
4196                         WARN(vma->pin_count,
4197                              "bo is already pinned with incorrect alignment:"
4198                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4199                              " obj->map_and_fenceable=%d\n",
4200                              i915_gem_obj_offset_view(obj, vm, view->type),
4201                              alignment,
4202                              !!(flags & PIN_MAPPABLE),
4203                              obj->map_and_fenceable);
4204                         ret = i915_vma_unbind(vma);
4205                         if (ret)
4206                                 return ret;
4207
4208                         vma = NULL;
4209                 }
4210         }
4211
4212         bound = vma ? vma->bound : 0;
4213         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4214                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
4215                                                  flags, view);
4216                 if (IS_ERR(vma))
4217                         return PTR_ERR(vma);
4218         }
4219
4220         if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4221                 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4222                 if (ret)
4223                         return ret;
4224         }
4225
4226         if ((bound ^ vma->bound) & GLOBAL_BIND) {
4227                 bool mappable, fenceable;
4228                 u32 fence_size, fence_alignment;
4229
4230                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4231                                                    obj->base.size,
4232                                                    obj->tiling_mode);
4233                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4234                                                              obj->base.size,
4235                                                              obj->tiling_mode,
4236                                                              true);
4237
4238                 fenceable = (vma->node.size == fence_size &&
4239                              (vma->node.start & (fence_alignment - 1)) == 0);
4240
4241                 mappable = (vma->node.start + obj->base.size <=
4242                             dev_priv->gtt.mappable_end);
4243
4244                 obj->map_and_fenceable = mappable && fenceable;
4245         }
4246
4247         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4248
4249         vma->pin_count++;
4250         if (flags & PIN_MAPPABLE)
4251                 obj->pin_mappable |= true;
4252
4253         return 0;
4254 }
4255
4256 void
4257 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4258 {
4259         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4260
4261         BUG_ON(!vma);
4262         BUG_ON(vma->pin_count == 0);
4263         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4264
4265         if (--vma->pin_count == 0)
4266                 obj->pin_mappable = false;
4267 }
4268
4269 bool
4270 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4271 {
4272         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4273                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4274                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4275
4276                 WARN_ON(!ggtt_vma ||
4277                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4278                         ggtt_vma->pin_count);
4279                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4280                 return true;
4281         } else
4282                 return false;
4283 }
4284
4285 void
4286 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4287 {
4288         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4289                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4290                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4291                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4292         }
4293 }
4294
4295 int
4296 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4297                     struct drm_file *file)
4298 {
4299         struct drm_i915_gem_busy *args = data;
4300         struct drm_i915_gem_object *obj;
4301         int ret;
4302
4303         ret = i915_mutex_lock_interruptible(dev);
4304         if (ret)
4305                 return ret;
4306
4307         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4308         if (&obj->base == NULL) {
4309                 ret = -ENOENT;
4310                 goto unlock;
4311         }
4312
4313         /* Count all active objects as busy, even if they are currently not used
4314          * by the gpu. Users of this interface expect objects to eventually
4315          * become non-busy without any further actions, therefore emit any
4316          * necessary flushes here.
4317          */
4318         ret = i915_gem_object_flush_active(obj);
4319
4320         args->busy = obj->active;
4321         if (obj->last_read_req) {
4322                 struct intel_engine_cs *ring;
4323                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4324                 ring = i915_gem_request_get_ring(obj->last_read_req);
4325                 args->busy |= intel_ring_flag(ring) << 16;
4326         }
4327
4328         drm_gem_object_unreference(&obj->base);
4329 unlock:
4330         mutex_unlock(&dev->struct_mutex);
4331         return ret;
4332 }
4333
4334 int
4335 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4336                         struct drm_file *file_priv)
4337 {
4338         return i915_gem_ring_throttle(dev, file_priv);
4339 }
4340
4341 int
4342 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4343                        struct drm_file *file_priv)
4344 {
4345         struct drm_i915_private *dev_priv = dev->dev_private;
4346         struct drm_i915_gem_madvise *args = data;
4347         struct drm_i915_gem_object *obj;
4348         int ret;
4349
4350         switch (args->madv) {
4351         case I915_MADV_DONTNEED:
4352         case I915_MADV_WILLNEED:
4353             break;
4354         default:
4355             return -EINVAL;
4356         }
4357
4358         ret = i915_mutex_lock_interruptible(dev);
4359         if (ret)
4360                 return ret;
4361
4362         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4363         if (&obj->base == NULL) {
4364                 ret = -ENOENT;
4365                 goto unlock;
4366         }
4367
4368         if (i915_gem_obj_is_pinned(obj)) {
4369                 ret = -EINVAL;
4370                 goto out;
4371         }
4372
4373         if (obj->pages &&
4374             obj->tiling_mode != I915_TILING_NONE &&
4375             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4376                 if (obj->madv == I915_MADV_WILLNEED)
4377                         i915_gem_object_unpin_pages(obj);
4378                 if (args->madv == I915_MADV_WILLNEED)
4379                         i915_gem_object_pin_pages(obj);
4380         }
4381
4382         if (obj->madv != __I915_MADV_PURGED)
4383                 obj->madv = args->madv;
4384
4385         /* if the object is no longer attached, discard its backing storage */
4386         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4387                 i915_gem_object_truncate(obj);
4388
4389         args->retained = obj->madv != __I915_MADV_PURGED;
4390
4391 out:
4392         drm_gem_object_unreference(&obj->base);
4393 unlock:
4394         mutex_unlock(&dev->struct_mutex);
4395         return ret;
4396 }
4397
4398 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4399                           const struct drm_i915_gem_object_ops *ops)
4400 {
4401         INIT_LIST_HEAD(&obj->global_list);
4402         INIT_LIST_HEAD(&obj->ring_list);
4403         INIT_LIST_HEAD(&obj->obj_exec_link);
4404         INIT_LIST_HEAD(&obj->vma_list);
4405         INIT_LIST_HEAD(&obj->batch_pool_list);
4406
4407         obj->ops = ops;
4408
4409         obj->fence_reg = I915_FENCE_REG_NONE;
4410         obj->madv = I915_MADV_WILLNEED;
4411
4412         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4413 }
4414
4415 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4416         .get_pages = i915_gem_object_get_pages_gtt,
4417         .put_pages = i915_gem_object_put_pages_gtt,
4418 };
4419
4420 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4421                                                   size_t size)
4422 {
4423         struct drm_i915_gem_object *obj;
4424         struct address_space *mapping;
4425         gfp_t mask;
4426
4427         obj = i915_gem_object_alloc(dev);
4428         if (obj == NULL)
4429                 return NULL;
4430
4431         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4432                 i915_gem_object_free(obj);
4433                 return NULL;
4434         }
4435
4436         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4437         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4438                 /* 965gm cannot relocate objects above 4GiB. */
4439                 mask &= ~__GFP_HIGHMEM;
4440                 mask |= __GFP_DMA32;
4441         }
4442
4443         mapping = file_inode(obj->base.filp)->i_mapping;
4444         mapping_set_gfp_mask(mapping, mask);
4445
4446         i915_gem_object_init(obj, &i915_gem_object_ops);
4447
4448         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4449         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4450
4451         if (HAS_LLC(dev)) {
4452                 /* On some devices, we can have the GPU use the LLC (the CPU
4453                  * cache) for about a 10% performance improvement
4454                  * compared to uncached.  Graphics requests other than
4455                  * display scanout are coherent with the CPU in
4456                  * accessing this cache.  This means in this mode we
4457                  * don't need to clflush on the CPU side, and on the
4458                  * GPU side we only need to flush internal caches to
4459                  * get data visible to the CPU.
4460                  *
4461                  * However, we maintain the display planes as UC, and so
4462                  * need to rebind when first used as such.
4463                  */
4464                 obj->cache_level = I915_CACHE_LLC;
4465         } else
4466                 obj->cache_level = I915_CACHE_NONE;
4467
4468         trace_i915_gem_object_create(obj);
4469
4470         return obj;
4471 }
4472
4473 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4474 {
4475         /* If we are the last user of the backing storage (be it shmemfs
4476          * pages or stolen etc), we know that the pages are going to be
4477          * immediately released. In this case, we can then skip copying
4478          * back the contents from the GPU.
4479          */
4480
4481         if (obj->madv != I915_MADV_WILLNEED)
4482                 return false;
4483
4484         if (obj->base.filp == NULL)
4485                 return true;
4486
4487         /* At first glance, this looks racy, but then again so would be
4488          * userspace racing mmap against close. However, the first external
4489          * reference to the filp can only be obtained through the
4490          * i915_gem_mmap_ioctl() which safeguards us against the user
4491          * acquiring such a reference whilst we are in the middle of
4492          * freeing the object.
4493          */
4494         return atomic_long_read(&obj->base.filp->f_count) == 1;
4495 }
4496
4497 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4498 {
4499         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4500         struct drm_device *dev = obj->base.dev;
4501         struct drm_i915_private *dev_priv = dev->dev_private;
4502         struct i915_vma *vma, *next;
4503
4504         intel_runtime_pm_get(dev_priv);
4505
4506         trace_i915_gem_object_destroy(obj);
4507
4508         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4509                 int ret;
4510
4511                 vma->pin_count = 0;
4512                 ret = i915_vma_unbind(vma);
4513                 if (WARN_ON(ret == -ERESTARTSYS)) {
4514                         bool was_interruptible;
4515
4516                         was_interruptible = dev_priv->mm.interruptible;
4517                         dev_priv->mm.interruptible = false;
4518
4519                         WARN_ON(i915_vma_unbind(vma));
4520
4521                         dev_priv->mm.interruptible = was_interruptible;
4522                 }
4523         }
4524
4525         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4526          * before progressing. */
4527         if (obj->stolen)
4528                 i915_gem_object_unpin_pages(obj);
4529
4530         WARN_ON(obj->frontbuffer_bits);
4531
4532         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4533             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4534             obj->tiling_mode != I915_TILING_NONE)
4535                 i915_gem_object_unpin_pages(obj);
4536
4537         if (WARN_ON(obj->pages_pin_count))
4538                 obj->pages_pin_count = 0;
4539         if (discard_backing_storage(obj))
4540                 obj->madv = I915_MADV_DONTNEED;
4541         i915_gem_object_put_pages(obj);
4542         i915_gem_object_free_mmap_offset(obj);
4543
4544         BUG_ON(obj->pages);
4545
4546         if (obj->base.import_attach)
4547                 drm_prime_gem_destroy(&obj->base, NULL);
4548
4549         if (obj->ops->release)
4550                 obj->ops->release(obj);
4551
4552         drm_gem_object_release(&obj->base);
4553         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4554
4555         kfree(obj->bit_17);
4556         i915_gem_object_free(obj);
4557
4558         intel_runtime_pm_put(dev_priv);
4559 }
4560
4561 struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
4562                                           struct i915_address_space *vm,
4563                                           const struct i915_ggtt_view *view)
4564 {
4565         struct i915_vma *vma;
4566         list_for_each_entry(vma, &obj->vma_list, vma_link)
4567                 if (vma->vm == vm && vma->ggtt_view.type == view->type)
4568                         return vma;
4569
4570         return NULL;
4571 }
4572
4573 void i915_gem_vma_destroy(struct i915_vma *vma)
4574 {
4575         struct i915_address_space *vm = NULL;
4576         WARN_ON(vma->node.allocated);
4577
4578         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4579         if (!list_empty(&vma->exec_list))
4580                 return;
4581
4582         vm = vma->vm;
4583
4584         if (!i915_is_ggtt(vm))
4585                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4586
4587         list_del(&vma->vma_link);
4588
4589         kfree(vma);
4590 }
4591
4592 static void
4593 i915_gem_stop_ringbuffers(struct drm_device *dev)
4594 {
4595         struct drm_i915_private *dev_priv = dev->dev_private;
4596         struct intel_engine_cs *ring;
4597         int i;
4598
4599         for_each_ring(ring, dev_priv, i)
4600                 dev_priv->gt.stop_ring(ring);
4601 }
4602
4603 int
4604 i915_gem_suspend(struct drm_device *dev)
4605 {
4606         struct drm_i915_private *dev_priv = dev->dev_private;
4607         int ret = 0;
4608
4609         mutex_lock(&dev->struct_mutex);
4610         ret = i915_gpu_idle(dev);
4611         if (ret)
4612                 goto err;
4613
4614         i915_gem_retire_requests(dev);
4615
4616         /* Under UMS, be paranoid and evict. */
4617         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4618                 i915_gem_evict_everything(dev);
4619
4620         i915_gem_stop_ringbuffers(dev);
4621         mutex_unlock(&dev->struct_mutex);
4622
4623         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4624         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4625         flush_delayed_work(&dev_priv->mm.idle_work);
4626
4627         /* Assert that we sucessfully flushed all the work and
4628          * reset the GPU back to its idle, low power state.
4629          */
4630         WARN_ON(dev_priv->mm.busy);
4631
4632         return 0;
4633
4634 err:
4635         mutex_unlock(&dev->struct_mutex);
4636         return ret;
4637 }
4638
4639 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4640 {
4641         struct drm_device *dev = ring->dev;
4642         struct drm_i915_private *dev_priv = dev->dev_private;
4643         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4644         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4645         int i, ret;
4646
4647         if (!HAS_L3_DPF(dev) || !remap_info)
4648                 return 0;
4649
4650         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4651         if (ret)
4652                 return ret;
4653
4654         /*
4655          * Note: We do not worry about the concurrent register cacheline hang
4656          * here because no other code should access these registers other than
4657          * at initialization time.
4658          */
4659         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4660                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4661                 intel_ring_emit(ring, reg_base + i);
4662                 intel_ring_emit(ring, remap_info[i/4]);
4663         }
4664
4665         intel_ring_advance(ring);
4666
4667         return ret;
4668 }
4669
4670 void i915_gem_init_swizzling(struct drm_device *dev)
4671 {
4672         struct drm_i915_private *dev_priv = dev->dev_private;
4673
4674         if (INTEL_INFO(dev)->gen < 5 ||
4675             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4676                 return;
4677
4678         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4679                                  DISP_TILE_SURFACE_SWIZZLING);
4680
4681         if (IS_GEN5(dev))
4682                 return;
4683
4684         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4685         if (IS_GEN6(dev))
4686                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4687         else if (IS_GEN7(dev))
4688                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4689         else if (IS_GEN8(dev))
4690                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4691         else
4692                 BUG();
4693 }
4694
4695 static bool
4696 intel_enable_blt(struct drm_device *dev)
4697 {
4698         if (!HAS_BLT(dev))
4699                 return false;
4700
4701         /* The blitter was dysfunctional on early prototypes */
4702         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4703                 DRM_INFO("BLT not supported on this pre-production hardware;"
4704                          " graphics performance will be degraded.\n");
4705                 return false;
4706         }
4707
4708         return true;
4709 }
4710
4711 static void init_unused_ring(struct drm_device *dev, u32 base)
4712 {
4713         struct drm_i915_private *dev_priv = dev->dev_private;
4714
4715         I915_WRITE(RING_CTL(base), 0);
4716         I915_WRITE(RING_HEAD(base), 0);
4717         I915_WRITE(RING_TAIL(base), 0);
4718         I915_WRITE(RING_START(base), 0);
4719 }
4720
4721 static void init_unused_rings(struct drm_device *dev)
4722 {
4723         if (IS_I830(dev)) {
4724                 init_unused_ring(dev, PRB1_BASE);
4725                 init_unused_ring(dev, SRB0_BASE);
4726                 init_unused_ring(dev, SRB1_BASE);
4727                 init_unused_ring(dev, SRB2_BASE);
4728                 init_unused_ring(dev, SRB3_BASE);
4729         } else if (IS_GEN2(dev)) {
4730                 init_unused_ring(dev, SRB0_BASE);
4731                 init_unused_ring(dev, SRB1_BASE);
4732         } else if (IS_GEN3(dev)) {
4733                 init_unused_ring(dev, PRB1_BASE);
4734                 init_unused_ring(dev, PRB2_BASE);
4735         }
4736 }
4737
4738 int i915_gem_init_rings(struct drm_device *dev)
4739 {
4740         struct drm_i915_private *dev_priv = dev->dev_private;
4741         int ret;
4742
4743         ret = intel_init_render_ring_buffer(dev);
4744         if (ret)
4745                 return ret;
4746
4747         if (HAS_BSD(dev)) {
4748                 ret = intel_init_bsd_ring_buffer(dev);
4749                 if (ret)
4750                         goto cleanup_render_ring;
4751         }
4752
4753         if (intel_enable_blt(dev)) {
4754                 ret = intel_init_blt_ring_buffer(dev);
4755                 if (ret)
4756                         goto cleanup_bsd_ring;
4757         }
4758
4759         if (HAS_VEBOX(dev)) {
4760                 ret = intel_init_vebox_ring_buffer(dev);
4761                 if (ret)
4762                         goto cleanup_blt_ring;
4763         }
4764
4765         if (HAS_BSD2(dev)) {
4766                 ret = intel_init_bsd2_ring_buffer(dev);
4767                 if (ret)
4768                         goto cleanup_vebox_ring;
4769         }
4770
4771         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4772         if (ret)
4773                 goto cleanup_bsd2_ring;
4774
4775         return 0;
4776
4777 cleanup_bsd2_ring:
4778         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4779 cleanup_vebox_ring:
4780         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4781 cleanup_blt_ring:
4782         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4783 cleanup_bsd_ring:
4784         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4785 cleanup_render_ring:
4786         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4787
4788         return ret;
4789 }
4790
4791 int
4792 i915_gem_init_hw(struct drm_device *dev)
4793 {
4794         struct drm_i915_private *dev_priv = dev->dev_private;
4795         struct intel_engine_cs *ring;
4796         int ret, i;
4797
4798         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4799                 return -EIO;
4800
4801         if (dev_priv->ellc_size)
4802                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4803
4804         if (IS_HASWELL(dev))
4805                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4806                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4807
4808         if (HAS_PCH_NOP(dev)) {
4809                 if (IS_IVYBRIDGE(dev)) {
4810                         u32 temp = I915_READ(GEN7_MSG_CTL);
4811                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4812                         I915_WRITE(GEN7_MSG_CTL, temp);
4813                 } else if (INTEL_INFO(dev)->gen >= 7) {
4814                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4815                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4816                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4817                 }
4818         }
4819
4820         i915_gem_init_swizzling(dev);
4821
4822         /*
4823          * At least 830 can leave some of the unused rings
4824          * "active" (ie. head != tail) after resume which
4825          * will prevent c3 entry. Makes sure all unused rings
4826          * are totally idle.
4827          */
4828         init_unused_rings(dev);
4829
4830         for_each_ring(ring, dev_priv, i) {
4831                 ret = ring->init_hw(ring);
4832                 if (ret)
4833                         return ret;
4834         }
4835
4836         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4837                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4838
4839         /*
4840          * XXX: Contexts should only be initialized once. Doing a switch to the
4841          * default context switch however is something we'd like to do after
4842          * reset or thaw (the latter may not actually be necessary for HW, but
4843          * goes with our code better). Context switching requires rings (for
4844          * the do_switch), but before enabling PPGTT. So don't move this.
4845          */
4846         ret = i915_gem_context_enable(dev_priv);
4847         if (ret && ret != -EIO) {
4848                 DRM_ERROR("Context enable failed %d\n", ret);
4849                 i915_gem_cleanup_ringbuffer(dev);
4850
4851                 return ret;
4852         }
4853
4854         ret = i915_ppgtt_init_hw(dev);
4855         if (ret && ret != -EIO) {
4856                 DRM_ERROR("PPGTT enable failed %d\n", ret);
4857                 i915_gem_cleanup_ringbuffer(dev);
4858         }
4859
4860         return ret;
4861 }
4862
4863 int i915_gem_init(struct drm_device *dev)
4864 {
4865         struct drm_i915_private *dev_priv = dev->dev_private;
4866         int ret;
4867
4868         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4869                         i915.enable_execlists);
4870
4871         mutex_lock(&dev->struct_mutex);
4872
4873         if (IS_VALLEYVIEW(dev)) {
4874                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4875                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4876                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4877                               VLV_GTLC_ALLOWWAKEACK), 10))
4878                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4879         }
4880
4881         if (!i915.enable_execlists) {
4882                 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4883                 dev_priv->gt.init_rings = i915_gem_init_rings;
4884                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4885                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4886         } else {
4887                 dev_priv->gt.do_execbuf = intel_execlists_submission;
4888                 dev_priv->gt.init_rings = intel_logical_rings_init;
4889                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4890                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4891         }
4892
4893         ret = i915_gem_init_userptr(dev);
4894         if (ret)
4895                 goto out_unlock;
4896
4897         i915_gem_init_global_gtt(dev);
4898
4899         ret = i915_gem_context_init(dev);
4900         if (ret)
4901                 goto out_unlock;
4902
4903         ret = dev_priv->gt.init_rings(dev);
4904         if (ret)
4905                 goto out_unlock;
4906
4907         ret = i915_gem_init_hw(dev);
4908         if (ret == -EIO) {
4909                 /* Allow ring initialisation to fail by marking the GPU as
4910                  * wedged. But we only want to do this where the GPU is angry,
4911                  * for all other failure, such as an allocation failure, bail.
4912                  */
4913                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4914                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4915                 ret = 0;
4916         }
4917
4918 out_unlock:
4919         mutex_unlock(&dev->struct_mutex);
4920
4921         return ret;
4922 }
4923
4924 void
4925 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4926 {
4927         struct drm_i915_private *dev_priv = dev->dev_private;
4928         struct intel_engine_cs *ring;
4929         int i;
4930
4931         for_each_ring(ring, dev_priv, i)
4932                 dev_priv->gt.cleanup_ring(ring);
4933 }
4934
4935 static void
4936 init_ring_lists(struct intel_engine_cs *ring)
4937 {
4938         INIT_LIST_HEAD(&ring->active_list);
4939         INIT_LIST_HEAD(&ring->request_list);
4940 }
4941
4942 void i915_init_vm(struct drm_i915_private *dev_priv,
4943                   struct i915_address_space *vm)
4944 {
4945         if (!i915_is_ggtt(vm))
4946                 drm_mm_init(&vm->mm, vm->start, vm->total);
4947         vm->dev = dev_priv->dev;
4948         INIT_LIST_HEAD(&vm->active_list);
4949         INIT_LIST_HEAD(&vm->inactive_list);
4950         INIT_LIST_HEAD(&vm->global_link);
4951         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4952 }
4953
4954 void
4955 i915_gem_load(struct drm_device *dev)
4956 {
4957         struct drm_i915_private *dev_priv = dev->dev_private;
4958         int i;
4959
4960         dev_priv->slab =
4961                 kmem_cache_create("i915_gem_object",
4962                                   sizeof(struct drm_i915_gem_object), 0,
4963                                   SLAB_HWCACHE_ALIGN,
4964                                   NULL);
4965
4966         INIT_LIST_HEAD(&dev_priv->vm_list);
4967         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4968
4969         INIT_LIST_HEAD(&dev_priv->context_list);
4970         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4971         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4972         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4973         for (i = 0; i < I915_NUM_RINGS; i++)
4974                 init_ring_lists(&dev_priv->ring[i]);
4975         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4976                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4977         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4978                           i915_gem_retire_work_handler);
4979         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4980                           i915_gem_idle_work_handler);
4981         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4982
4983         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4984         if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4985                 I915_WRITE(MI_ARB_STATE,
4986                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4987         }
4988
4989         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4990
4991         /* Old X drivers will take 0-2 for front, back, depth buffers */
4992         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4993                 dev_priv->fence_reg_start = 3;
4994
4995         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4996                 dev_priv->num_fence_regs = 32;
4997         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4998                 dev_priv->num_fence_regs = 16;
4999         else
5000                 dev_priv->num_fence_regs = 8;
5001
5002         /* Initialize fence registers to zero */
5003         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5004         i915_gem_restore_fences(dev);
5005
5006         i915_gem_detect_bit_6_swizzle(dev);
5007         init_waitqueue_head(&dev_priv->pending_flip_queue);
5008
5009         dev_priv->mm.interruptible = true;
5010
5011         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5012         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5013         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5014         register_shrinker(&dev_priv->mm.shrinker);
5015
5016         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5017         register_oom_notifier(&dev_priv->mm.oom_notifier);
5018
5019         i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
5020
5021         mutex_init(&dev_priv->fb_tracking.lock);
5022 }
5023
5024 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5025 {
5026         struct drm_i915_file_private *file_priv = file->driver_priv;
5027
5028         cancel_delayed_work_sync(&file_priv->mm.idle_work);
5029
5030         /* Clean up our request list when the client is going away, so that
5031          * later retire_requests won't dereference our soon-to-be-gone
5032          * file_priv.
5033          */
5034         spin_lock(&file_priv->mm.lock);
5035         while (!list_empty(&file_priv->mm.request_list)) {
5036                 struct drm_i915_gem_request *request;
5037
5038                 request = list_first_entry(&file_priv->mm.request_list,
5039                                            struct drm_i915_gem_request,
5040                                            client_list);
5041                 list_del(&request->client_list);
5042                 request->file_priv = NULL;
5043         }
5044         spin_unlock(&file_priv->mm.lock);
5045 }
5046
5047 static void
5048 i915_gem_file_idle_work_handler(struct work_struct *work)
5049 {
5050         struct drm_i915_file_private *file_priv =
5051                 container_of(work, typeof(*file_priv), mm.idle_work.work);
5052
5053         atomic_set(&file_priv->rps_wait_boost, false);
5054 }
5055
5056 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5057 {
5058         struct drm_i915_file_private *file_priv;
5059         int ret;
5060
5061         DRM_DEBUG_DRIVER("\n");
5062
5063         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5064         if (!file_priv)
5065                 return -ENOMEM;
5066
5067         file->driver_priv = file_priv;
5068         file_priv->dev_priv = dev->dev_private;
5069         file_priv->file = file;
5070
5071         spin_lock_init(&file_priv->mm.lock);
5072         INIT_LIST_HEAD(&file_priv->mm.request_list);
5073         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5074                           i915_gem_file_idle_work_handler);
5075
5076         ret = i915_gem_context_open(dev, file);
5077         if (ret)
5078                 kfree(file_priv);
5079
5080         return ret;
5081 }
5082
5083 /**
5084  * i915_gem_track_fb - update frontbuffer tracking
5085  * old: current GEM buffer for the frontbuffer slots
5086  * new: new GEM buffer for the frontbuffer slots
5087  * frontbuffer_bits: bitmask of frontbuffer slots
5088  *
5089  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5090  * from @old and setting them in @new. Both @old and @new can be NULL.
5091  */
5092 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5093                        struct drm_i915_gem_object *new,
5094                        unsigned frontbuffer_bits)
5095 {
5096         if (old) {
5097                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5098                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5099                 old->frontbuffer_bits &= ~frontbuffer_bits;
5100         }
5101
5102         if (new) {
5103                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5104                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5105                 new->frontbuffer_bits |= frontbuffer_bits;
5106         }
5107 }
5108
5109 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5110 {
5111         if (!mutex_is_locked(mutex))
5112                 return false;
5113
5114 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5115         return mutex->owner == task;
5116 #else
5117         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5118         return false;
5119 #endif
5120 }
5121
5122 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5123 {
5124         if (!mutex_trylock(&dev->struct_mutex)) {
5125                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5126                         return false;
5127
5128                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5129                         return false;
5130
5131                 *unlock = false;
5132         } else
5133                 *unlock = true;
5134
5135         return true;
5136 }
5137
5138 static int num_vma_bound(struct drm_i915_gem_object *obj)
5139 {
5140         struct i915_vma *vma;
5141         int count = 0;
5142
5143         list_for_each_entry(vma, &obj->vma_list, vma_link)
5144                 if (drm_mm_node_allocated(&vma->node))
5145                         count++;
5146
5147         return count;
5148 }
5149
5150 static unsigned long
5151 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5152 {
5153         struct drm_i915_private *dev_priv =
5154                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5155         struct drm_device *dev = dev_priv->dev;
5156         struct drm_i915_gem_object *obj;
5157         unsigned long count;
5158         bool unlock;
5159
5160         if (!i915_gem_shrinker_lock(dev, &unlock))
5161                 return 0;
5162
5163         count = 0;
5164         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5165                 if (obj->pages_pin_count == 0)
5166                         count += obj->base.size >> PAGE_SHIFT;
5167
5168         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5169                 if (!i915_gem_obj_is_pinned(obj) &&
5170                     obj->pages_pin_count == num_vma_bound(obj))
5171                         count += obj->base.size >> PAGE_SHIFT;
5172         }
5173
5174         if (unlock)
5175                 mutex_unlock(&dev->struct_mutex);
5176
5177         return count;
5178 }
5179
5180 /* All the new VM stuff */
5181 unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
5182                                        struct i915_address_space *vm,
5183                                        enum i915_ggtt_view_type view)
5184 {
5185         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5186         struct i915_vma *vma;
5187
5188         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5189
5190         list_for_each_entry(vma, &o->vma_list, vma_link) {
5191                 if (vma->vm == vm && vma->ggtt_view.type == view)
5192                         return vma->node.start;
5193
5194         }
5195         WARN(1, "%s vma for this object not found.\n",
5196              i915_is_ggtt(vm) ? "global" : "ppgtt");
5197         return -1;
5198 }
5199
5200 bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
5201                              struct i915_address_space *vm,
5202                              enum i915_ggtt_view_type view)
5203 {
5204         struct i915_vma *vma;
5205
5206         list_for_each_entry(vma, &o->vma_list, vma_link)
5207                 if (vma->vm == vm &&
5208                     vma->ggtt_view.type == view &&
5209                     drm_mm_node_allocated(&vma->node))
5210                         return true;
5211
5212         return false;
5213 }
5214
5215 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5216 {
5217         struct i915_vma *vma;
5218
5219         list_for_each_entry(vma, &o->vma_list, vma_link)
5220                 if (drm_mm_node_allocated(&vma->node))
5221                         return true;
5222
5223         return false;
5224 }
5225
5226 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5227                                 struct i915_address_space *vm)
5228 {
5229         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5230         struct i915_vma *vma;
5231
5232         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5233
5234         BUG_ON(list_empty(&o->vma_list));
5235
5236         list_for_each_entry(vma, &o->vma_list, vma_link)
5237                 if (vma->vm == vm)
5238                         return vma->node.size;
5239
5240         return 0;
5241 }
5242
5243 static unsigned long
5244 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5245 {
5246         struct drm_i915_private *dev_priv =
5247                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5248         struct drm_device *dev = dev_priv->dev;
5249         unsigned long freed;
5250         bool unlock;
5251
5252         if (!i915_gem_shrinker_lock(dev, &unlock))
5253                 return SHRINK_STOP;
5254
5255         freed = i915_gem_shrink(dev_priv,
5256                                 sc->nr_to_scan,
5257                                 I915_SHRINK_BOUND |
5258                                 I915_SHRINK_UNBOUND |
5259                                 I915_SHRINK_PURGEABLE);
5260         if (freed < sc->nr_to_scan)
5261                 freed += i915_gem_shrink(dev_priv,
5262                                          sc->nr_to_scan - freed,
5263                                          I915_SHRINK_BOUND |
5264                                          I915_SHRINK_UNBOUND);
5265         if (unlock)
5266                 mutex_unlock(&dev->struct_mutex);
5267
5268         return freed;
5269 }
5270
5271 static int
5272 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5273 {
5274         struct drm_i915_private *dev_priv =
5275                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5276         struct drm_device *dev = dev_priv->dev;
5277         struct drm_i915_gem_object *obj;
5278         unsigned long timeout = msecs_to_jiffies(5000) + 1;
5279         unsigned long pinned, bound, unbound, freed_pages;
5280         bool was_interruptible;
5281         bool unlock;
5282
5283         while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5284                 schedule_timeout_killable(1);
5285                 if (fatal_signal_pending(current))
5286                         return NOTIFY_DONE;
5287         }
5288         if (timeout == 0) {
5289                 pr_err("Unable to purge GPU memory due lock contention.\n");
5290                 return NOTIFY_DONE;
5291         }
5292
5293         was_interruptible = dev_priv->mm.interruptible;
5294         dev_priv->mm.interruptible = false;
5295
5296         freed_pages = i915_gem_shrink_all(dev_priv);
5297
5298         dev_priv->mm.interruptible = was_interruptible;
5299
5300         /* Because we may be allocating inside our own driver, we cannot
5301          * assert that there are no objects with pinned pages that are not
5302          * being pointed to by hardware.
5303          */
5304         unbound = bound = pinned = 0;
5305         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5306                 if (!obj->base.filp) /* not backed by a freeable object */
5307                         continue;
5308
5309                 if (obj->pages_pin_count)
5310                         pinned += obj->base.size;
5311                 else
5312                         unbound += obj->base.size;
5313         }
5314         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5315                 if (!obj->base.filp)
5316                         continue;
5317
5318                 if (obj->pages_pin_count)
5319                         pinned += obj->base.size;
5320                 else
5321                         bound += obj->base.size;
5322         }
5323
5324         if (unlock)
5325                 mutex_unlock(&dev->struct_mutex);
5326
5327         if (freed_pages || unbound || bound)
5328                 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5329                         freed_pages << PAGE_SHIFT, pinned);
5330         if (unbound || bound)
5331                 pr_err("%lu and %lu bytes still available in the "
5332                        "bound and unbound GPU page lists.\n",
5333                        bound, unbound);
5334
5335         *(unsigned long *)ptr += freed_pages;
5336         return NOTIFY_DONE;
5337 }
5338
5339 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5340 {
5341         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5342         struct i915_vma *vma;
5343
5344         list_for_each_entry(vma, &obj->vma_list, vma_link)
5345                 if (vma->vm == ggtt &&
5346                     vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5347                         return vma;
5348
5349         return NULL;
5350 }