Merge tag 'drm-intel-next-fixes-2016-05-25' of git://anongit.freedesktop.org/drm...
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50                                   enum i915_cache_level level)
51 {
52         return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58                 return true;
59
60         return obj->pin_display;
61 }
62
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65                                   size_t size)
66 {
67         spin_lock(&dev_priv->mm.object_stat_lock);
68         dev_priv->mm.object_count++;
69         dev_priv->mm.object_memory += size;
70         spin_unlock(&dev_priv->mm.object_stat_lock);
71 }
72
73 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
74                                      size_t size)
75 {
76         spin_lock(&dev_priv->mm.object_stat_lock);
77         dev_priv->mm.object_count--;
78         dev_priv->mm.object_memory -= size;
79         spin_unlock(&dev_priv->mm.object_stat_lock);
80 }
81
82 static int
83 i915_gem_wait_for_error(struct i915_gpu_error *error)
84 {
85         int ret;
86
87         if (!i915_reset_in_progress(error))
88                 return 0;
89
90         /*
91          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
92          * userspace. If it takes that long something really bad is going on and
93          * we should simply try to bail out and fail as gracefully as possible.
94          */
95         ret = wait_event_interruptible_timeout(error->reset_queue,
96                                                !i915_reset_in_progress(error),
97                                                10*HZ);
98         if (ret == 0) {
99                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
100                 return -EIO;
101         } else if (ret < 0) {
102                 return ret;
103         } else {
104                 return 0;
105         }
106 }
107
108 int i915_mutex_lock_interruptible(struct drm_device *dev)
109 {
110         struct drm_i915_private *dev_priv = dev->dev_private;
111         int ret;
112
113         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
114         if (ret)
115                 return ret;
116
117         ret = mutex_lock_interruptible(&dev->struct_mutex);
118         if (ret)
119                 return ret;
120
121         WARN_ON(i915_verify_lists(dev));
122         return 0;
123 }
124
125 int
126 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
127                             struct drm_file *file)
128 {
129         struct drm_i915_private *dev_priv = to_i915(dev);
130         struct i915_ggtt *ggtt = &dev_priv->ggtt;
131         struct drm_i915_gem_get_aperture *args = data;
132         struct i915_vma *vma;
133         size_t pinned;
134
135         pinned = 0;
136         mutex_lock(&dev->struct_mutex);
137         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
138                 if (vma->pin_count)
139                         pinned += vma->node.size;
140         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
141                 if (vma->pin_count)
142                         pinned += vma->node.size;
143         mutex_unlock(&dev->struct_mutex);
144
145         args->aper_size = ggtt->base.total;
146         args->aper_available_size = args->aper_size - pinned;
147
148         return 0;
149 }
150
151 static int
152 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
153 {
154         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
155         char *vaddr = obj->phys_handle->vaddr;
156         struct sg_table *st;
157         struct scatterlist *sg;
158         int i;
159
160         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
161                 return -EINVAL;
162
163         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
164                 struct page *page;
165                 char *src;
166
167                 page = shmem_read_mapping_page(mapping, i);
168                 if (IS_ERR(page))
169                         return PTR_ERR(page);
170
171                 src = kmap_atomic(page);
172                 memcpy(vaddr, src, PAGE_SIZE);
173                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
174                 kunmap_atomic(src);
175
176                 put_page(page);
177                 vaddr += PAGE_SIZE;
178         }
179
180         i915_gem_chipset_flush(obj->base.dev);
181
182         st = kmalloc(sizeof(*st), GFP_KERNEL);
183         if (st == NULL)
184                 return -ENOMEM;
185
186         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
187                 kfree(st);
188                 return -ENOMEM;
189         }
190
191         sg = st->sgl;
192         sg->offset = 0;
193         sg->length = obj->base.size;
194
195         sg_dma_address(sg) = obj->phys_handle->busaddr;
196         sg_dma_len(sg) = obj->base.size;
197
198         obj->pages = st;
199         return 0;
200 }
201
202 static void
203 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
204 {
205         int ret;
206
207         BUG_ON(obj->madv == __I915_MADV_PURGED);
208
209         ret = i915_gem_object_set_to_cpu_domain(obj, true);
210         if (WARN_ON(ret)) {
211                 /* In the event of a disaster, abandon all caches and
212                  * hope for the best.
213                  */
214                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
215         }
216
217         if (obj->madv == I915_MADV_DONTNEED)
218                 obj->dirty = 0;
219
220         if (obj->dirty) {
221                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
222                 char *vaddr = obj->phys_handle->vaddr;
223                 int i;
224
225                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
226                         struct page *page;
227                         char *dst;
228
229                         page = shmem_read_mapping_page(mapping, i);
230                         if (IS_ERR(page))
231                                 continue;
232
233                         dst = kmap_atomic(page);
234                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
235                         memcpy(dst, vaddr, PAGE_SIZE);
236                         kunmap_atomic(dst);
237
238                         set_page_dirty(page);
239                         if (obj->madv == I915_MADV_WILLNEED)
240                                 mark_page_accessed(page);
241                         put_page(page);
242                         vaddr += PAGE_SIZE;
243                 }
244                 obj->dirty = 0;
245         }
246
247         sg_free_table(obj->pages);
248         kfree(obj->pages);
249 }
250
251 static void
252 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
253 {
254         drm_pci_free(obj->base.dev, obj->phys_handle);
255 }
256
257 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
258         .get_pages = i915_gem_object_get_pages_phys,
259         .put_pages = i915_gem_object_put_pages_phys,
260         .release = i915_gem_object_release_phys,
261 };
262
263 static int
264 drop_pages(struct drm_i915_gem_object *obj)
265 {
266         struct i915_vma *vma, *next;
267         int ret;
268
269         drm_gem_object_reference(&obj->base);
270         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
271                 if (i915_vma_unbind(vma))
272                         break;
273
274         ret = i915_gem_object_put_pages(obj);
275         drm_gem_object_unreference(&obj->base);
276
277         return ret;
278 }
279
280 int
281 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
282                             int align)
283 {
284         drm_dma_handle_t *phys;
285         int ret;
286
287         if (obj->phys_handle) {
288                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
289                         return -EBUSY;
290
291                 return 0;
292         }
293
294         if (obj->madv != I915_MADV_WILLNEED)
295                 return -EFAULT;
296
297         if (obj->base.filp == NULL)
298                 return -EINVAL;
299
300         ret = drop_pages(obj);
301         if (ret)
302                 return ret;
303
304         /* create a new object */
305         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
306         if (!phys)
307                 return -ENOMEM;
308
309         obj->phys_handle = phys;
310         obj->ops = &i915_gem_phys_ops;
311
312         return i915_gem_object_get_pages(obj);
313 }
314
315 static int
316 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
317                      struct drm_i915_gem_pwrite *args,
318                      struct drm_file *file_priv)
319 {
320         struct drm_device *dev = obj->base.dev;
321         void *vaddr = obj->phys_handle->vaddr + args->offset;
322         char __user *user_data = u64_to_user_ptr(args->data_ptr);
323         int ret = 0;
324
325         /* We manually control the domain here and pretend that it
326          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
327          */
328         ret = i915_gem_object_wait_rendering(obj, false);
329         if (ret)
330                 return ret;
331
332         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
333         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
334                 unsigned long unwritten;
335
336                 /* The physical object once assigned is fixed for the lifetime
337                  * of the obj, so we can safely drop the lock and continue
338                  * to access vaddr.
339                  */
340                 mutex_unlock(&dev->struct_mutex);
341                 unwritten = copy_from_user(vaddr, user_data, args->size);
342                 mutex_lock(&dev->struct_mutex);
343                 if (unwritten) {
344                         ret = -EFAULT;
345                         goto out;
346                 }
347         }
348
349         drm_clflush_virt_range(vaddr, args->size);
350         i915_gem_chipset_flush(dev);
351
352 out:
353         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
354         return ret;
355 }
356
357 void *i915_gem_object_alloc(struct drm_device *dev)
358 {
359         struct drm_i915_private *dev_priv = dev->dev_private;
360         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
361 }
362
363 void i915_gem_object_free(struct drm_i915_gem_object *obj)
364 {
365         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
366         kmem_cache_free(dev_priv->objects, obj);
367 }
368
369 static int
370 i915_gem_create(struct drm_file *file,
371                 struct drm_device *dev,
372                 uint64_t size,
373                 uint32_t *handle_p)
374 {
375         struct drm_i915_gem_object *obj;
376         int ret;
377         u32 handle;
378
379         size = roundup(size, PAGE_SIZE);
380         if (size == 0)
381                 return -EINVAL;
382
383         /* Allocate the new object */
384         obj = i915_gem_alloc_object(dev, size);
385         if (obj == NULL)
386                 return -ENOMEM;
387
388         ret = drm_gem_handle_create(file, &obj->base, &handle);
389         /* drop reference from allocate - handle holds it now */
390         drm_gem_object_unreference_unlocked(&obj->base);
391         if (ret)
392                 return ret;
393
394         *handle_p = handle;
395         return 0;
396 }
397
398 int
399 i915_gem_dumb_create(struct drm_file *file,
400                      struct drm_device *dev,
401                      struct drm_mode_create_dumb *args)
402 {
403         /* have to work out size/pitch and return them */
404         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
405         args->size = args->pitch * args->height;
406         return i915_gem_create(file, dev,
407                                args->size, &args->handle);
408 }
409
410 /**
411  * Creates a new mm object and returns a handle to it.
412  */
413 int
414 i915_gem_create_ioctl(struct drm_device *dev, void *data,
415                       struct drm_file *file)
416 {
417         struct drm_i915_gem_create *args = data;
418
419         return i915_gem_create(file, dev,
420                                args->size, &args->handle);
421 }
422
423 static inline int
424 __copy_to_user_swizzled(char __user *cpu_vaddr,
425                         const char *gpu_vaddr, int gpu_offset,
426                         int length)
427 {
428         int ret, cpu_offset = 0;
429
430         while (length > 0) {
431                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
432                 int this_length = min(cacheline_end - gpu_offset, length);
433                 int swizzled_gpu_offset = gpu_offset ^ 64;
434
435                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
436                                      gpu_vaddr + swizzled_gpu_offset,
437                                      this_length);
438                 if (ret)
439                         return ret + length;
440
441                 cpu_offset += this_length;
442                 gpu_offset += this_length;
443                 length -= this_length;
444         }
445
446         return 0;
447 }
448
449 static inline int
450 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
451                           const char __user *cpu_vaddr,
452                           int length)
453 {
454         int ret, cpu_offset = 0;
455
456         while (length > 0) {
457                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
458                 int this_length = min(cacheline_end - gpu_offset, length);
459                 int swizzled_gpu_offset = gpu_offset ^ 64;
460
461                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
462                                        cpu_vaddr + cpu_offset,
463                                        this_length);
464                 if (ret)
465                         return ret + length;
466
467                 cpu_offset += this_length;
468                 gpu_offset += this_length;
469                 length -= this_length;
470         }
471
472         return 0;
473 }
474
475 /*
476  * Pins the specified object's pages and synchronizes the object with
477  * GPU accesses. Sets needs_clflush to non-zero if the caller should
478  * flush the object from the CPU cache.
479  */
480 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
481                                     int *needs_clflush)
482 {
483         int ret;
484
485         *needs_clflush = 0;
486
487         if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
488                 return -EINVAL;
489
490         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
491                 /* If we're not in the cpu read domain, set ourself into the gtt
492                  * read domain and manually flush cachelines (if required). This
493                  * optimizes for the case when the gpu will dirty the data
494                  * anyway again before the next pread happens. */
495                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
496                                                         obj->cache_level);
497                 ret = i915_gem_object_wait_rendering(obj, true);
498                 if (ret)
499                         return ret;
500         }
501
502         ret = i915_gem_object_get_pages(obj);
503         if (ret)
504                 return ret;
505
506         i915_gem_object_pin_pages(obj);
507
508         return ret;
509 }
510
511 /* Per-page copy function for the shmem pread fastpath.
512  * Flushes invalid cachelines before reading the target if
513  * needs_clflush is set. */
514 static int
515 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
516                  char __user *user_data,
517                  bool page_do_bit17_swizzling, bool needs_clflush)
518 {
519         char *vaddr;
520         int ret;
521
522         if (unlikely(page_do_bit17_swizzling))
523                 return -EINVAL;
524
525         vaddr = kmap_atomic(page);
526         if (needs_clflush)
527                 drm_clflush_virt_range(vaddr + shmem_page_offset,
528                                        page_length);
529         ret = __copy_to_user_inatomic(user_data,
530                                       vaddr + shmem_page_offset,
531                                       page_length);
532         kunmap_atomic(vaddr);
533
534         return ret ? -EFAULT : 0;
535 }
536
537 static void
538 shmem_clflush_swizzled_range(char *addr, unsigned long length,
539                              bool swizzled)
540 {
541         if (unlikely(swizzled)) {
542                 unsigned long start = (unsigned long) addr;
543                 unsigned long end = (unsigned long) addr + length;
544
545                 /* For swizzling simply ensure that we always flush both
546                  * channels. Lame, but simple and it works. Swizzled
547                  * pwrite/pread is far from a hotpath - current userspace
548                  * doesn't use it at all. */
549                 start = round_down(start, 128);
550                 end = round_up(end, 128);
551
552                 drm_clflush_virt_range((void *)start, end - start);
553         } else {
554                 drm_clflush_virt_range(addr, length);
555         }
556
557 }
558
559 /* Only difference to the fast-path function is that this can handle bit17
560  * and uses non-atomic copy and kmap functions. */
561 static int
562 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
563                  char __user *user_data,
564                  bool page_do_bit17_swizzling, bool needs_clflush)
565 {
566         char *vaddr;
567         int ret;
568
569         vaddr = kmap(page);
570         if (needs_clflush)
571                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
572                                              page_length,
573                                              page_do_bit17_swizzling);
574
575         if (page_do_bit17_swizzling)
576                 ret = __copy_to_user_swizzled(user_data,
577                                               vaddr, shmem_page_offset,
578                                               page_length);
579         else
580                 ret = __copy_to_user(user_data,
581                                      vaddr + shmem_page_offset,
582                                      page_length);
583         kunmap(page);
584
585         return ret ? - EFAULT : 0;
586 }
587
588 static int
589 i915_gem_shmem_pread(struct drm_device *dev,
590                      struct drm_i915_gem_object *obj,
591                      struct drm_i915_gem_pread *args,
592                      struct drm_file *file)
593 {
594         char __user *user_data;
595         ssize_t remain;
596         loff_t offset;
597         int shmem_page_offset, page_length, ret = 0;
598         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
599         int prefaulted = 0;
600         int needs_clflush = 0;
601         struct sg_page_iter sg_iter;
602
603         user_data = u64_to_user_ptr(args->data_ptr);
604         remain = args->size;
605
606         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
607
608         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
609         if (ret)
610                 return ret;
611
612         offset = args->offset;
613
614         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
615                          offset >> PAGE_SHIFT) {
616                 struct page *page = sg_page_iter_page(&sg_iter);
617
618                 if (remain <= 0)
619                         break;
620
621                 /* Operation in this page
622                  *
623                  * shmem_page_offset = offset within page in shmem file
624                  * page_length = bytes to copy for this page
625                  */
626                 shmem_page_offset = offset_in_page(offset);
627                 page_length = remain;
628                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
629                         page_length = PAGE_SIZE - shmem_page_offset;
630
631                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
632                         (page_to_phys(page) & (1 << 17)) != 0;
633
634                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
635                                        user_data, page_do_bit17_swizzling,
636                                        needs_clflush);
637                 if (ret == 0)
638                         goto next_page;
639
640                 mutex_unlock(&dev->struct_mutex);
641
642                 if (likely(!i915.prefault_disable) && !prefaulted) {
643                         ret = fault_in_multipages_writeable(user_data, remain);
644                         /* Userspace is tricking us, but we've already clobbered
645                          * its pages with the prefault and promised to write the
646                          * data up to the first fault. Hence ignore any errors
647                          * and just continue. */
648                         (void)ret;
649                         prefaulted = 1;
650                 }
651
652                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
653                                        user_data, page_do_bit17_swizzling,
654                                        needs_clflush);
655
656                 mutex_lock(&dev->struct_mutex);
657
658                 if (ret)
659                         goto out;
660
661 next_page:
662                 remain -= page_length;
663                 user_data += page_length;
664                 offset += page_length;
665         }
666
667 out:
668         i915_gem_object_unpin_pages(obj);
669
670         return ret;
671 }
672
673 /**
674  * Reads data from the object referenced by handle.
675  *
676  * On error, the contents of *data are undefined.
677  */
678 int
679 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
680                      struct drm_file *file)
681 {
682         struct drm_i915_gem_pread *args = data;
683         struct drm_i915_gem_object *obj;
684         int ret = 0;
685
686         if (args->size == 0)
687                 return 0;
688
689         if (!access_ok(VERIFY_WRITE,
690                        u64_to_user_ptr(args->data_ptr),
691                        args->size))
692                 return -EFAULT;
693
694         ret = i915_mutex_lock_interruptible(dev);
695         if (ret)
696                 return ret;
697
698         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
699         if (&obj->base == NULL) {
700                 ret = -ENOENT;
701                 goto unlock;
702         }
703
704         /* Bounds check source.  */
705         if (args->offset > obj->base.size ||
706             args->size > obj->base.size - args->offset) {
707                 ret = -EINVAL;
708                 goto out;
709         }
710
711         /* prime objects have no backing filp to GEM pread/pwrite
712          * pages from.
713          */
714         if (!obj->base.filp) {
715                 ret = -EINVAL;
716                 goto out;
717         }
718
719         trace_i915_gem_object_pread(obj, args->offset, args->size);
720
721         ret = i915_gem_shmem_pread(dev, obj, args, file);
722
723 out:
724         drm_gem_object_unreference(&obj->base);
725 unlock:
726         mutex_unlock(&dev->struct_mutex);
727         return ret;
728 }
729
730 /* This is the fast write path which cannot handle
731  * page faults in the source data
732  */
733
734 static inline int
735 fast_user_write(struct io_mapping *mapping,
736                 loff_t page_base, int page_offset,
737                 char __user *user_data,
738                 int length)
739 {
740         void __iomem *vaddr_atomic;
741         void *vaddr;
742         unsigned long unwritten;
743
744         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
745         /* We can use the cpu mem copy function because this is X86. */
746         vaddr = (void __force*)vaddr_atomic + page_offset;
747         unwritten = __copy_from_user_inatomic_nocache(vaddr,
748                                                       user_data, length);
749         io_mapping_unmap_atomic(vaddr_atomic);
750         return unwritten;
751 }
752
753 /**
754  * This is the fast pwrite path, where we copy the data directly from the
755  * user into the GTT, uncached.
756  */
757 static int
758 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
759                          struct drm_i915_gem_object *obj,
760                          struct drm_i915_gem_pwrite *args,
761                          struct drm_file *file)
762 {
763         struct drm_i915_private *dev_priv = to_i915(dev);
764         struct i915_ggtt *ggtt = &dev_priv->ggtt;
765         ssize_t remain;
766         loff_t offset, page_base;
767         char __user *user_data;
768         int page_offset, page_length, ret;
769
770         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
771         if (ret)
772                 goto out;
773
774         ret = i915_gem_object_set_to_gtt_domain(obj, true);
775         if (ret)
776                 goto out_unpin;
777
778         ret = i915_gem_object_put_fence(obj);
779         if (ret)
780                 goto out_unpin;
781
782         user_data = u64_to_user_ptr(args->data_ptr);
783         remain = args->size;
784
785         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
786
787         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
788
789         while (remain > 0) {
790                 /* Operation in this page
791                  *
792                  * page_base = page offset within aperture
793                  * page_offset = offset within page
794                  * page_length = bytes to copy for this page
795                  */
796                 page_base = offset & PAGE_MASK;
797                 page_offset = offset_in_page(offset);
798                 page_length = remain;
799                 if ((page_offset + remain) > PAGE_SIZE)
800                         page_length = PAGE_SIZE - page_offset;
801
802                 /* If we get a fault while copying data, then (presumably) our
803                  * source page isn't available.  Return the error and we'll
804                  * retry in the slow path.
805                  */
806                 if (fast_user_write(ggtt->mappable, page_base,
807                                     page_offset, user_data, page_length)) {
808                         ret = -EFAULT;
809                         goto out_flush;
810                 }
811
812                 remain -= page_length;
813                 user_data += page_length;
814                 offset += page_length;
815         }
816
817 out_flush:
818         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
819 out_unpin:
820         i915_gem_object_ggtt_unpin(obj);
821 out:
822         return ret;
823 }
824
825 /* Per-page copy function for the shmem pwrite fastpath.
826  * Flushes invalid cachelines before writing to the target if
827  * needs_clflush_before is set and flushes out any written cachelines after
828  * writing if needs_clflush is set. */
829 static int
830 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
831                   char __user *user_data,
832                   bool page_do_bit17_swizzling,
833                   bool needs_clflush_before,
834                   bool needs_clflush_after)
835 {
836         char *vaddr;
837         int ret;
838
839         if (unlikely(page_do_bit17_swizzling))
840                 return -EINVAL;
841
842         vaddr = kmap_atomic(page);
843         if (needs_clflush_before)
844                 drm_clflush_virt_range(vaddr + shmem_page_offset,
845                                        page_length);
846         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
847                                         user_data, page_length);
848         if (needs_clflush_after)
849                 drm_clflush_virt_range(vaddr + shmem_page_offset,
850                                        page_length);
851         kunmap_atomic(vaddr);
852
853         return ret ? -EFAULT : 0;
854 }
855
856 /* Only difference to the fast-path function is that this can handle bit17
857  * and uses non-atomic copy and kmap functions. */
858 static int
859 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
860                   char __user *user_data,
861                   bool page_do_bit17_swizzling,
862                   bool needs_clflush_before,
863                   bool needs_clflush_after)
864 {
865         char *vaddr;
866         int ret;
867
868         vaddr = kmap(page);
869         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
870                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
871                                              page_length,
872                                              page_do_bit17_swizzling);
873         if (page_do_bit17_swizzling)
874                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
875                                                 user_data,
876                                                 page_length);
877         else
878                 ret = __copy_from_user(vaddr + shmem_page_offset,
879                                        user_data,
880                                        page_length);
881         if (needs_clflush_after)
882                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
883                                              page_length,
884                                              page_do_bit17_swizzling);
885         kunmap(page);
886
887         return ret ? -EFAULT : 0;
888 }
889
890 static int
891 i915_gem_shmem_pwrite(struct drm_device *dev,
892                       struct drm_i915_gem_object *obj,
893                       struct drm_i915_gem_pwrite *args,
894                       struct drm_file *file)
895 {
896         ssize_t remain;
897         loff_t offset;
898         char __user *user_data;
899         int shmem_page_offset, page_length, ret = 0;
900         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
901         int hit_slowpath = 0;
902         int needs_clflush_after = 0;
903         int needs_clflush_before = 0;
904         struct sg_page_iter sg_iter;
905
906         user_data = u64_to_user_ptr(args->data_ptr);
907         remain = args->size;
908
909         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
910
911         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912                 /* If we're not in the cpu write domain, set ourself into the gtt
913                  * write domain and manually flush cachelines (if required). This
914                  * optimizes for the case when the gpu will use the data
915                  * right away and we therefore have to clflush anyway. */
916                 needs_clflush_after = cpu_write_needs_clflush(obj);
917                 ret = i915_gem_object_wait_rendering(obj, false);
918                 if (ret)
919                         return ret;
920         }
921         /* Same trick applies to invalidate partially written cachelines read
922          * before writing. */
923         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
924                 needs_clflush_before =
925                         !cpu_cache_is_coherent(dev, obj->cache_level);
926
927         ret = i915_gem_object_get_pages(obj);
928         if (ret)
929                 return ret;
930
931         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
932
933         i915_gem_object_pin_pages(obj);
934
935         offset = args->offset;
936         obj->dirty = 1;
937
938         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
939                          offset >> PAGE_SHIFT) {
940                 struct page *page = sg_page_iter_page(&sg_iter);
941                 int partial_cacheline_write;
942
943                 if (remain <= 0)
944                         break;
945
946                 /* Operation in this page
947                  *
948                  * shmem_page_offset = offset within page in shmem file
949                  * page_length = bytes to copy for this page
950                  */
951                 shmem_page_offset = offset_in_page(offset);
952
953                 page_length = remain;
954                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
955                         page_length = PAGE_SIZE - shmem_page_offset;
956
957                 /* If we don't overwrite a cacheline completely we need to be
958                  * careful to have up-to-date data by first clflushing. Don't
959                  * overcomplicate things and flush the entire patch. */
960                 partial_cacheline_write = needs_clflush_before &&
961                         ((shmem_page_offset | page_length)
962                                 & (boot_cpu_data.x86_clflush_size - 1));
963
964                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
965                         (page_to_phys(page) & (1 << 17)) != 0;
966
967                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
968                                         user_data, page_do_bit17_swizzling,
969                                         partial_cacheline_write,
970                                         needs_clflush_after);
971                 if (ret == 0)
972                         goto next_page;
973
974                 hit_slowpath = 1;
975                 mutex_unlock(&dev->struct_mutex);
976                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
977                                         user_data, page_do_bit17_swizzling,
978                                         partial_cacheline_write,
979                                         needs_clflush_after);
980
981                 mutex_lock(&dev->struct_mutex);
982
983                 if (ret)
984                         goto out;
985
986 next_page:
987                 remain -= page_length;
988                 user_data += page_length;
989                 offset += page_length;
990         }
991
992 out:
993         i915_gem_object_unpin_pages(obj);
994
995         if (hit_slowpath) {
996                 /*
997                  * Fixup: Flush cpu caches in case we didn't flush the dirty
998                  * cachelines in-line while writing and the object moved
999                  * out of the cpu write domain while we've dropped the lock.
1000                  */
1001                 if (!needs_clflush_after &&
1002                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003                         if (i915_gem_clflush_object(obj, obj->pin_display))
1004                                 needs_clflush_after = true;
1005                 }
1006         }
1007
1008         if (needs_clflush_after)
1009                 i915_gem_chipset_flush(dev);
1010         else
1011                 obj->cache_dirty = true;
1012
1013         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1014         return ret;
1015 }
1016
1017 /**
1018  * Writes data to the object referenced by handle.
1019  *
1020  * On error, the contents of the buffer that were to be modified are undefined.
1021  */
1022 int
1023 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1024                       struct drm_file *file)
1025 {
1026         struct drm_i915_private *dev_priv = dev->dev_private;
1027         struct drm_i915_gem_pwrite *args = data;
1028         struct drm_i915_gem_object *obj;
1029         int ret;
1030
1031         if (args->size == 0)
1032                 return 0;
1033
1034         if (!access_ok(VERIFY_READ,
1035                        u64_to_user_ptr(args->data_ptr),
1036                        args->size))
1037                 return -EFAULT;
1038
1039         if (likely(!i915.prefault_disable)) {
1040                 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1041                                                    args->size);
1042                 if (ret)
1043                         return -EFAULT;
1044         }
1045
1046         intel_runtime_pm_get(dev_priv);
1047
1048         ret = i915_mutex_lock_interruptible(dev);
1049         if (ret)
1050                 goto put_rpm;
1051
1052         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1053         if (&obj->base == NULL) {
1054                 ret = -ENOENT;
1055                 goto unlock;
1056         }
1057
1058         /* Bounds check destination. */
1059         if (args->offset > obj->base.size ||
1060             args->size > obj->base.size - args->offset) {
1061                 ret = -EINVAL;
1062                 goto out;
1063         }
1064
1065         /* prime objects have no backing filp to GEM pread/pwrite
1066          * pages from.
1067          */
1068         if (!obj->base.filp) {
1069                 ret = -EINVAL;
1070                 goto out;
1071         }
1072
1073         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1074
1075         ret = -EFAULT;
1076         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077          * it would end up going through the fenced access, and we'll get
1078          * different detiling behavior between reading and writing.
1079          * pread/pwrite currently are reading and writing from the CPU
1080          * perspective, requiring manual detiling by the client.
1081          */
1082         if (obj->tiling_mode == I915_TILING_NONE &&
1083             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1084             cpu_write_needs_clflush(obj)) {
1085                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1086                 /* Note that the gtt paths might fail with non-page-backed user
1087                  * pointers (e.g. gtt mappings when moving data between
1088                  * textures). Fallback to the shmem path in that case. */
1089         }
1090
1091         if (ret == -EFAULT || ret == -ENOSPC) {
1092                 if (obj->phys_handle)
1093                         ret = i915_gem_phys_pwrite(obj, args, file);
1094                 else
1095                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1096         }
1097
1098 out:
1099         drm_gem_object_unreference(&obj->base);
1100 unlock:
1101         mutex_unlock(&dev->struct_mutex);
1102 put_rpm:
1103         intel_runtime_pm_put(dev_priv);
1104
1105         return ret;
1106 }
1107
1108 static int
1109 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1110 {
1111         if (__i915_terminally_wedged(reset_counter))
1112                 return -EIO;
1113
1114         if (__i915_reset_in_progress(reset_counter)) {
1115                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116                  * -EIO unconditionally for these. */
1117                 if (!interruptible)
1118                         return -EIO;
1119
1120                 return -EAGAIN;
1121         }
1122
1123         return 0;
1124 }
1125
1126 static void fake_irq(unsigned long data)
1127 {
1128         wake_up_process((struct task_struct *)data);
1129 }
1130
1131 static bool missed_irq(struct drm_i915_private *dev_priv,
1132                        struct intel_engine_cs *engine)
1133 {
1134         return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1135 }
1136
1137 static unsigned long local_clock_us(unsigned *cpu)
1138 {
1139         unsigned long t;
1140
1141         /* Cheaply and approximately convert from nanoseconds to microseconds.
1142          * The result and subsequent calculations are also defined in the same
1143          * approximate microseconds units. The principal source of timing
1144          * error here is from the simple truncation.
1145          *
1146          * Note that local_clock() is only defined wrt to the current CPU;
1147          * the comparisons are no longer valid if we switch CPUs. Instead of
1148          * blocking preemption for the entire busywait, we can detect the CPU
1149          * switch and use that as indicator of system load and a reason to
1150          * stop busywaiting, see busywait_stop().
1151          */
1152         *cpu = get_cpu();
1153         t = local_clock() >> 10;
1154         put_cpu();
1155
1156         return t;
1157 }
1158
1159 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1160 {
1161         unsigned this_cpu;
1162
1163         if (time_after(local_clock_us(&this_cpu), timeout))
1164                 return true;
1165
1166         return this_cpu != cpu;
1167 }
1168
1169 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1170 {
1171         unsigned long timeout;
1172         unsigned cpu;
1173
1174         /* When waiting for high frequency requests, e.g. during synchronous
1175          * rendering split between the CPU and GPU, the finite amount of time
1176          * required to set up the irq and wait upon it limits the response
1177          * rate. By busywaiting on the request completion for a short while we
1178          * can service the high frequency waits as quick as possible. However,
1179          * if it is a slow request, we want to sleep as quickly as possible.
1180          * The tradeoff between waiting and sleeping is roughly the time it
1181          * takes to sleep on a request, on the order of a microsecond.
1182          */
1183
1184         if (req->engine->irq_refcount)
1185                 return -EBUSY;
1186
1187         /* Only spin if we know the GPU is processing this request */
1188         if (!i915_gem_request_started(req, true))
1189                 return -EAGAIN;
1190
1191         timeout = local_clock_us(&cpu) + 5;
1192         while (!need_resched()) {
1193                 if (i915_gem_request_completed(req, true))
1194                         return 0;
1195
1196                 if (signal_pending_state(state, current))
1197                         break;
1198
1199                 if (busywait_stop(timeout, cpu))
1200                         break;
1201
1202                 cpu_relax_lowlatency();
1203         }
1204
1205         if (i915_gem_request_completed(req, false))
1206                 return 0;
1207
1208         return -EAGAIN;
1209 }
1210
1211 /**
1212  * __i915_wait_request - wait until execution of request has finished
1213  * @req: duh!
1214  * @interruptible: do an interruptible wait (normally yes)
1215  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1216  *
1217  * Note: It is of utmost importance that the passed in seqno and reset_counter
1218  * values have been read by the caller in an smp safe manner. Where read-side
1219  * locks are involved, it is sufficient to read the reset_counter before
1220  * unlocking the lock that protects the seqno. For lockless tricks, the
1221  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1222  * inserted.
1223  *
1224  * Returns 0 if the request was found within the alloted time. Else returns the
1225  * errno with remaining time filled in timeout argument.
1226  */
1227 int __i915_wait_request(struct drm_i915_gem_request *req,
1228                         bool interruptible,
1229                         s64 *timeout,
1230                         struct intel_rps_client *rps)
1231 {
1232         struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1233         struct drm_device *dev = engine->dev;
1234         struct drm_i915_private *dev_priv = dev->dev_private;
1235         const bool irq_test_in_progress =
1236                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1237         int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1238         DEFINE_WAIT(wait);
1239         unsigned long timeout_expire;
1240         s64 before = 0; /* Only to silence a compiler warning. */
1241         int ret;
1242
1243         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1244
1245         if (list_empty(&req->list))
1246                 return 0;
1247
1248         if (i915_gem_request_completed(req, true))
1249                 return 0;
1250
1251         timeout_expire = 0;
1252         if (timeout) {
1253                 if (WARN_ON(*timeout < 0))
1254                         return -EINVAL;
1255
1256                 if (*timeout == 0)
1257                         return -ETIME;
1258
1259                 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1260
1261                 /*
1262                  * Record current time in case interrupted by signal, or wedged.
1263                  */
1264                 before = ktime_get_raw_ns();
1265         }
1266
1267         if (INTEL_INFO(dev_priv)->gen >= 6)
1268                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1269
1270         trace_i915_gem_request_wait_begin(req);
1271
1272         /* Optimistic spin for the next jiffie before touching IRQs */
1273         ret = __i915_spin_request(req, state);
1274         if (ret == 0)
1275                 goto out;
1276
1277         if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1278                 ret = -ENODEV;
1279                 goto out;
1280         }
1281
1282         for (;;) {
1283                 struct timer_list timer;
1284
1285                 prepare_to_wait(&engine->irq_queue, &wait, state);
1286
1287                 /* We need to check whether any gpu reset happened in between
1288                  * the request being submitted and now. If a reset has occurred,
1289                  * the request is effectively complete (we either are in the
1290                  * process of or have discarded the rendering and completely
1291                  * reset the GPU. The results of the request are lost and we
1292                  * are free to continue on with the original operation.
1293                  */
1294                 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1295                         ret = 0;
1296                         break;
1297                 }
1298
1299                 if (i915_gem_request_completed(req, false)) {
1300                         ret = 0;
1301                         break;
1302                 }
1303
1304                 if (signal_pending_state(state, current)) {
1305                         ret = -ERESTARTSYS;
1306                         break;
1307                 }
1308
1309                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1310                         ret = -ETIME;
1311                         break;
1312                 }
1313
1314                 timer.function = NULL;
1315                 if (timeout || missed_irq(dev_priv, engine)) {
1316                         unsigned long expire;
1317
1318                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1319                         expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1320                         mod_timer(&timer, expire);
1321                 }
1322
1323                 io_schedule();
1324
1325                 if (timer.function) {
1326                         del_singleshot_timer_sync(&timer);
1327                         destroy_timer_on_stack(&timer);
1328                 }
1329         }
1330         if (!irq_test_in_progress)
1331                 engine->irq_put(engine);
1332
1333         finish_wait(&engine->irq_queue, &wait);
1334
1335 out:
1336         trace_i915_gem_request_wait_end(req);
1337
1338         if (timeout) {
1339                 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1340
1341                 *timeout = tres < 0 ? 0 : tres;
1342
1343                 /*
1344                  * Apparently ktime isn't accurate enough and occasionally has a
1345                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1346                  * things up to make the test happy. We allow up to 1 jiffy.
1347                  *
1348                  * This is a regrssion from the timespec->ktime conversion.
1349                  */
1350                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1351                         *timeout = 0;
1352         }
1353
1354         return ret;
1355 }
1356
1357 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1358                                    struct drm_file *file)
1359 {
1360         struct drm_i915_file_private *file_priv;
1361
1362         WARN_ON(!req || !file || req->file_priv);
1363
1364         if (!req || !file)
1365                 return -EINVAL;
1366
1367         if (req->file_priv)
1368                 return -EINVAL;
1369
1370         file_priv = file->driver_priv;
1371
1372         spin_lock(&file_priv->mm.lock);
1373         req->file_priv = file_priv;
1374         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1375         spin_unlock(&file_priv->mm.lock);
1376
1377         req->pid = get_pid(task_pid(current));
1378
1379         return 0;
1380 }
1381
1382 static inline void
1383 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1384 {
1385         struct drm_i915_file_private *file_priv = request->file_priv;
1386
1387         if (!file_priv)
1388                 return;
1389
1390         spin_lock(&file_priv->mm.lock);
1391         list_del(&request->client_list);
1392         request->file_priv = NULL;
1393         spin_unlock(&file_priv->mm.lock);
1394
1395         put_pid(request->pid);
1396         request->pid = NULL;
1397 }
1398
1399 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1400 {
1401         trace_i915_gem_request_retire(request);
1402
1403         /* We know the GPU must have read the request to have
1404          * sent us the seqno + interrupt, so use the position
1405          * of tail of the request to update the last known position
1406          * of the GPU head.
1407          *
1408          * Note this requires that we are always called in request
1409          * completion order.
1410          */
1411         request->ringbuf->last_retired_head = request->postfix;
1412
1413         list_del_init(&request->list);
1414         i915_gem_request_remove_from_client(request);
1415
1416         i915_gem_request_unreference(request);
1417 }
1418
1419 static void
1420 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1421 {
1422         struct intel_engine_cs *engine = req->engine;
1423         struct drm_i915_gem_request *tmp;
1424
1425         lockdep_assert_held(&engine->dev->struct_mutex);
1426
1427         if (list_empty(&req->list))
1428                 return;
1429
1430         do {
1431                 tmp = list_first_entry(&engine->request_list,
1432                                        typeof(*tmp), list);
1433
1434                 i915_gem_request_retire(tmp);
1435         } while (tmp != req);
1436
1437         WARN_ON(i915_verify_lists(engine->dev));
1438 }
1439
1440 /**
1441  * Waits for a request to be signaled, and cleans up the
1442  * request and object lists appropriately for that event.
1443  */
1444 int
1445 i915_wait_request(struct drm_i915_gem_request *req)
1446 {
1447         struct drm_i915_private *dev_priv = req->i915;
1448         bool interruptible;
1449         int ret;
1450
1451         interruptible = dev_priv->mm.interruptible;
1452
1453         BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1454
1455         ret = __i915_wait_request(req, interruptible, NULL, NULL);
1456         if (ret)
1457                 return ret;
1458
1459         /* If the GPU hung, we want to keep the requests to find the guilty. */
1460         if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
1461                 __i915_gem_request_retire__upto(req);
1462
1463         return 0;
1464 }
1465
1466 /**
1467  * Ensures that all rendering to the object has completed and the object is
1468  * safe to unbind from the GTT or access from the CPU.
1469  */
1470 int
1471 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1472                                bool readonly)
1473 {
1474         int ret, i;
1475
1476         if (!obj->active)
1477                 return 0;
1478
1479         if (readonly) {
1480                 if (obj->last_write_req != NULL) {
1481                         ret = i915_wait_request(obj->last_write_req);
1482                         if (ret)
1483                                 return ret;
1484
1485                         i = obj->last_write_req->engine->id;
1486                         if (obj->last_read_req[i] == obj->last_write_req)
1487                                 i915_gem_object_retire__read(obj, i);
1488                         else
1489                                 i915_gem_object_retire__write(obj);
1490                 }
1491         } else {
1492                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1493                         if (obj->last_read_req[i] == NULL)
1494                                 continue;
1495
1496                         ret = i915_wait_request(obj->last_read_req[i]);
1497                         if (ret)
1498                                 return ret;
1499
1500                         i915_gem_object_retire__read(obj, i);
1501                 }
1502                 GEM_BUG_ON(obj->active);
1503         }
1504
1505         return 0;
1506 }
1507
1508 static void
1509 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1510                                struct drm_i915_gem_request *req)
1511 {
1512         int ring = req->engine->id;
1513
1514         if (obj->last_read_req[ring] == req)
1515                 i915_gem_object_retire__read(obj, ring);
1516         else if (obj->last_write_req == req)
1517                 i915_gem_object_retire__write(obj);
1518
1519         if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
1520                 __i915_gem_request_retire__upto(req);
1521 }
1522
1523 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1524  * as the object state may change during this call.
1525  */
1526 static __must_check int
1527 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1528                                             struct intel_rps_client *rps,
1529                                             bool readonly)
1530 {
1531         struct drm_device *dev = obj->base.dev;
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533         struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1534         int ret, i, n = 0;
1535
1536         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1537         BUG_ON(!dev_priv->mm.interruptible);
1538
1539         if (!obj->active)
1540                 return 0;
1541
1542         if (readonly) {
1543                 struct drm_i915_gem_request *req;
1544
1545                 req = obj->last_write_req;
1546                 if (req == NULL)
1547                         return 0;
1548
1549                 requests[n++] = i915_gem_request_reference(req);
1550         } else {
1551                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1552                         struct drm_i915_gem_request *req;
1553
1554                         req = obj->last_read_req[i];
1555                         if (req == NULL)
1556                                 continue;
1557
1558                         requests[n++] = i915_gem_request_reference(req);
1559                 }
1560         }
1561
1562         mutex_unlock(&dev->struct_mutex);
1563         ret = 0;
1564         for (i = 0; ret == 0 && i < n; i++)
1565                 ret = __i915_wait_request(requests[i], true, NULL, rps);
1566         mutex_lock(&dev->struct_mutex);
1567
1568         for (i = 0; i < n; i++) {
1569                 if (ret == 0)
1570                         i915_gem_object_retire_request(obj, requests[i]);
1571                 i915_gem_request_unreference(requests[i]);
1572         }
1573
1574         return ret;
1575 }
1576
1577 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1578 {
1579         struct drm_i915_file_private *fpriv = file->driver_priv;
1580         return &fpriv->rps;
1581 }
1582
1583 /**
1584  * Called when user space prepares to use an object with the CPU, either
1585  * through the mmap ioctl's mapping or a GTT mapping.
1586  */
1587 int
1588 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1589                           struct drm_file *file)
1590 {
1591         struct drm_i915_gem_set_domain *args = data;
1592         struct drm_i915_gem_object *obj;
1593         uint32_t read_domains = args->read_domains;
1594         uint32_t write_domain = args->write_domain;
1595         int ret;
1596
1597         /* Only handle setting domains to types used by the CPU. */
1598         if (write_domain & I915_GEM_GPU_DOMAINS)
1599                 return -EINVAL;
1600
1601         if (read_domains & I915_GEM_GPU_DOMAINS)
1602                 return -EINVAL;
1603
1604         /* Having something in the write domain implies it's in the read
1605          * domain, and only that read domain.  Enforce that in the request.
1606          */
1607         if (write_domain != 0 && read_domains != write_domain)
1608                 return -EINVAL;
1609
1610         ret = i915_mutex_lock_interruptible(dev);
1611         if (ret)
1612                 return ret;
1613
1614         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1615         if (&obj->base == NULL) {
1616                 ret = -ENOENT;
1617                 goto unlock;
1618         }
1619
1620         /* Try to flush the object off the GPU without holding the lock.
1621          * We will repeat the flush holding the lock in the normal manner
1622          * to catch cases where we are gazumped.
1623          */
1624         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1625                                                           to_rps_client(file),
1626                                                           !write_domain);
1627         if (ret)
1628                 goto unref;
1629
1630         if (read_domains & I915_GEM_DOMAIN_GTT)
1631                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1632         else
1633                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1634
1635         if (write_domain != 0)
1636                 intel_fb_obj_invalidate(obj,
1637                                         write_domain == I915_GEM_DOMAIN_GTT ?
1638                                         ORIGIN_GTT : ORIGIN_CPU);
1639
1640 unref:
1641         drm_gem_object_unreference(&obj->base);
1642 unlock:
1643         mutex_unlock(&dev->struct_mutex);
1644         return ret;
1645 }
1646
1647 /**
1648  * Called when user space has done writes to this buffer
1649  */
1650 int
1651 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1652                          struct drm_file *file)
1653 {
1654         struct drm_i915_gem_sw_finish *args = data;
1655         struct drm_i915_gem_object *obj;
1656         int ret = 0;
1657
1658         ret = i915_mutex_lock_interruptible(dev);
1659         if (ret)
1660                 return ret;
1661
1662         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1663         if (&obj->base == NULL) {
1664                 ret = -ENOENT;
1665                 goto unlock;
1666         }
1667
1668         /* Pinned buffers may be scanout, so flush the cache */
1669         if (obj->pin_display)
1670                 i915_gem_object_flush_cpu_write_domain(obj);
1671
1672         drm_gem_object_unreference(&obj->base);
1673 unlock:
1674         mutex_unlock(&dev->struct_mutex);
1675         return ret;
1676 }
1677
1678 /**
1679  * Maps the contents of an object, returning the address it is mapped
1680  * into.
1681  *
1682  * While the mapping holds a reference on the contents of the object, it doesn't
1683  * imply a ref on the object itself.
1684  *
1685  * IMPORTANT:
1686  *
1687  * DRM driver writers who look a this function as an example for how to do GEM
1688  * mmap support, please don't implement mmap support like here. The modern way
1689  * to implement DRM mmap support is with an mmap offset ioctl (like
1690  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1691  * That way debug tooling like valgrind will understand what's going on, hiding
1692  * the mmap call in a driver private ioctl will break that. The i915 driver only
1693  * does cpu mmaps this way because we didn't know better.
1694  */
1695 int
1696 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1697                     struct drm_file *file)
1698 {
1699         struct drm_i915_gem_mmap *args = data;
1700         struct drm_gem_object *obj;
1701         unsigned long addr;
1702
1703         if (args->flags & ~(I915_MMAP_WC))
1704                 return -EINVAL;
1705
1706         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1707                 return -ENODEV;
1708
1709         obj = drm_gem_object_lookup(file, args->handle);
1710         if (obj == NULL)
1711                 return -ENOENT;
1712
1713         /* prime objects have no backing filp to GEM mmap
1714          * pages from.
1715          */
1716         if (!obj->filp) {
1717                 drm_gem_object_unreference_unlocked(obj);
1718                 return -EINVAL;
1719         }
1720
1721         addr = vm_mmap(obj->filp, 0, args->size,
1722                        PROT_READ | PROT_WRITE, MAP_SHARED,
1723                        args->offset);
1724         if (args->flags & I915_MMAP_WC) {
1725                 struct mm_struct *mm = current->mm;
1726                 struct vm_area_struct *vma;
1727
1728                 if (down_write_killable(&mm->mmap_sem)) {
1729                         drm_gem_object_unreference_unlocked(obj);
1730                         return -EINTR;
1731                 }
1732                 vma = find_vma(mm, addr);
1733                 if (vma)
1734                         vma->vm_page_prot =
1735                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1736                 else
1737                         addr = -ENOMEM;
1738                 up_write(&mm->mmap_sem);
1739         }
1740         drm_gem_object_unreference_unlocked(obj);
1741         if (IS_ERR((void *)addr))
1742                 return addr;
1743
1744         args->addr_ptr = (uint64_t) addr;
1745
1746         return 0;
1747 }
1748
1749 /**
1750  * i915_gem_fault - fault a page into the GTT
1751  * @vma: VMA in question
1752  * @vmf: fault info
1753  *
1754  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1755  * from userspace.  The fault handler takes care of binding the object to
1756  * the GTT (if needed), allocating and programming a fence register (again,
1757  * only if needed based on whether the old reg is still valid or the object
1758  * is tiled) and inserting a new PTE into the faulting process.
1759  *
1760  * Note that the faulting process may involve evicting existing objects
1761  * from the GTT and/or fence registers to make room.  So performance may
1762  * suffer if the GTT working set is large or there are few fence registers
1763  * left.
1764  */
1765 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1766 {
1767         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1768         struct drm_device *dev = obj->base.dev;
1769         struct drm_i915_private *dev_priv = to_i915(dev);
1770         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1771         struct i915_ggtt_view view = i915_ggtt_view_normal;
1772         pgoff_t page_offset;
1773         unsigned long pfn;
1774         int ret = 0;
1775         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1776
1777         intel_runtime_pm_get(dev_priv);
1778
1779         /* We don't use vmf->pgoff since that has the fake offset */
1780         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1781                 PAGE_SHIFT;
1782
1783         ret = i915_mutex_lock_interruptible(dev);
1784         if (ret)
1785                 goto out;
1786
1787         trace_i915_gem_object_fault(obj, page_offset, true, write);
1788
1789         /* Try to flush the object off the GPU first without holding the lock.
1790          * Upon reacquiring the lock, we will perform our sanity checks and then
1791          * repeat the flush holding the lock in the normal manner to catch cases
1792          * where we are gazumped.
1793          */
1794         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1795         if (ret)
1796                 goto unlock;
1797
1798         /* Access to snoopable pages through the GTT is incoherent. */
1799         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1800                 ret = -EFAULT;
1801                 goto unlock;
1802         }
1803
1804         /* Use a partial view if the object is bigger than the aperture. */
1805         if (obj->base.size >= ggtt->mappable_end &&
1806             obj->tiling_mode == I915_TILING_NONE) {
1807                 static const unsigned int chunk_size = 256; // 1 MiB
1808
1809                 memset(&view, 0, sizeof(view));
1810                 view.type = I915_GGTT_VIEW_PARTIAL;
1811                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1812                 view.params.partial.size =
1813                         min_t(unsigned int,
1814                               chunk_size,
1815                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1816                               view.params.partial.offset);
1817         }
1818
1819         /* Now pin it into the GTT if needed */
1820         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1821         if (ret)
1822                 goto unlock;
1823
1824         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1825         if (ret)
1826                 goto unpin;
1827
1828         ret = i915_gem_object_get_fence(obj);
1829         if (ret)
1830                 goto unpin;
1831
1832         /* Finally, remap it using the new GTT offset */
1833         pfn = ggtt->mappable_base +
1834                 i915_gem_obj_ggtt_offset_view(obj, &view);
1835         pfn >>= PAGE_SHIFT;
1836
1837         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1838                 /* Overriding existing pages in partial view does not cause
1839                  * us any trouble as TLBs are still valid because the fault
1840                  * is due to userspace losing part of the mapping or never
1841                  * having accessed it before (at this partials' range).
1842                  */
1843                 unsigned long base = vma->vm_start +
1844                                      (view.params.partial.offset << PAGE_SHIFT);
1845                 unsigned int i;
1846
1847                 for (i = 0; i < view.params.partial.size; i++) {
1848                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1849                         if (ret)
1850                                 break;
1851                 }
1852
1853                 obj->fault_mappable = true;
1854         } else {
1855                 if (!obj->fault_mappable) {
1856                         unsigned long size = min_t(unsigned long,
1857                                                    vma->vm_end - vma->vm_start,
1858                                                    obj->base.size);
1859                         int i;
1860
1861                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1862                                 ret = vm_insert_pfn(vma,
1863                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1864                                                     pfn + i);
1865                                 if (ret)
1866                                         break;
1867                         }
1868
1869                         obj->fault_mappable = true;
1870                 } else
1871                         ret = vm_insert_pfn(vma,
1872                                             (unsigned long)vmf->virtual_address,
1873                                             pfn + page_offset);
1874         }
1875 unpin:
1876         i915_gem_object_ggtt_unpin_view(obj, &view);
1877 unlock:
1878         mutex_unlock(&dev->struct_mutex);
1879 out:
1880         switch (ret) {
1881         case -EIO:
1882                 /*
1883                  * We eat errors when the gpu is terminally wedged to avoid
1884                  * userspace unduly crashing (gl has no provisions for mmaps to
1885                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1886                  * and so needs to be reported.
1887                  */
1888                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1889                         ret = VM_FAULT_SIGBUS;
1890                         break;
1891                 }
1892         case -EAGAIN:
1893                 /*
1894                  * EAGAIN means the gpu is hung and we'll wait for the error
1895                  * handler to reset everything when re-faulting in
1896                  * i915_mutex_lock_interruptible.
1897                  */
1898         case 0:
1899         case -ERESTARTSYS:
1900         case -EINTR:
1901         case -EBUSY:
1902                 /*
1903                  * EBUSY is ok: this just means that another thread
1904                  * already did the job.
1905                  */
1906                 ret = VM_FAULT_NOPAGE;
1907                 break;
1908         case -ENOMEM:
1909                 ret = VM_FAULT_OOM;
1910                 break;
1911         case -ENOSPC:
1912         case -EFAULT:
1913                 ret = VM_FAULT_SIGBUS;
1914                 break;
1915         default:
1916                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1917                 ret = VM_FAULT_SIGBUS;
1918                 break;
1919         }
1920
1921         intel_runtime_pm_put(dev_priv);
1922         return ret;
1923 }
1924
1925 /**
1926  * i915_gem_release_mmap - remove physical page mappings
1927  * @obj: obj in question
1928  *
1929  * Preserve the reservation of the mmapping with the DRM core code, but
1930  * relinquish ownership of the pages back to the system.
1931  *
1932  * It is vital that we remove the page mapping if we have mapped a tiled
1933  * object through the GTT and then lose the fence register due to
1934  * resource pressure. Similarly if the object has been moved out of the
1935  * aperture, than pages mapped into userspace must be revoked. Removing the
1936  * mapping will then trigger a page fault on the next user access, allowing
1937  * fixup by i915_gem_fault().
1938  */
1939 void
1940 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1941 {
1942         /* Serialisation between user GTT access and our code depends upon
1943          * revoking the CPU's PTE whilst the mutex is held. The next user
1944          * pagefault then has to wait until we release the mutex.
1945          */
1946         lockdep_assert_held(&obj->base.dev->struct_mutex);
1947
1948         if (!obj->fault_mappable)
1949                 return;
1950
1951         drm_vma_node_unmap(&obj->base.vma_node,
1952                            obj->base.dev->anon_inode->i_mapping);
1953
1954         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1955          * memory transactions from userspace before we return. The TLB
1956          * flushing implied above by changing the PTE above *should* be
1957          * sufficient, an extra barrier here just provides us with a bit
1958          * of paranoid documentation about our requirement to serialise
1959          * memory writes before touching registers / GSM.
1960          */
1961         wmb();
1962
1963         obj->fault_mappable = false;
1964 }
1965
1966 void
1967 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1968 {
1969         struct drm_i915_gem_object *obj;
1970
1971         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1972                 i915_gem_release_mmap(obj);
1973 }
1974
1975 uint32_t
1976 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1977 {
1978         uint32_t gtt_size;
1979
1980         if (INTEL_INFO(dev)->gen >= 4 ||
1981             tiling_mode == I915_TILING_NONE)
1982                 return size;
1983
1984         /* Previous chips need a power-of-two fence region when tiling */
1985         if (INTEL_INFO(dev)->gen == 3)
1986                 gtt_size = 1024*1024;
1987         else
1988                 gtt_size = 512*1024;
1989
1990         while (gtt_size < size)
1991                 gtt_size <<= 1;
1992
1993         return gtt_size;
1994 }
1995
1996 /**
1997  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1998  * @obj: object to check
1999  *
2000  * Return the required GTT alignment for an object, taking into account
2001  * potential fence register mapping.
2002  */
2003 uint32_t
2004 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2005                            int tiling_mode, bool fenced)
2006 {
2007         /*
2008          * Minimum alignment is 4k (GTT page size), but might be greater
2009          * if a fence register is needed for the object.
2010          */
2011         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2012             tiling_mode == I915_TILING_NONE)
2013                 return 4096;
2014
2015         /*
2016          * Previous chips need to be aligned to the size of the smallest
2017          * fence register that can contain the object.
2018          */
2019         return i915_gem_get_gtt_size(dev, size, tiling_mode);
2020 }
2021
2022 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2023 {
2024         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2025         int ret;
2026
2027         dev_priv->mm.shrinker_no_lock_stealing = true;
2028
2029         ret = drm_gem_create_mmap_offset(&obj->base);
2030         if (ret != -ENOSPC)
2031                 goto out;
2032
2033         /* Badly fragmented mmap space? The only way we can recover
2034          * space is by destroying unwanted objects. We can't randomly release
2035          * mmap_offsets as userspace expects them to be persistent for the
2036          * lifetime of the objects. The closest we can is to release the
2037          * offsets on purgeable objects by truncating it and marking it purged,
2038          * which prevents userspace from ever using that object again.
2039          */
2040         i915_gem_shrink(dev_priv,
2041                         obj->base.size >> PAGE_SHIFT,
2042                         I915_SHRINK_BOUND |
2043                         I915_SHRINK_UNBOUND |
2044                         I915_SHRINK_PURGEABLE);
2045         ret = drm_gem_create_mmap_offset(&obj->base);
2046         if (ret != -ENOSPC)
2047                 goto out;
2048
2049         i915_gem_shrink_all(dev_priv);
2050         ret = drm_gem_create_mmap_offset(&obj->base);
2051 out:
2052         dev_priv->mm.shrinker_no_lock_stealing = false;
2053
2054         return ret;
2055 }
2056
2057 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2058 {
2059         drm_gem_free_mmap_offset(&obj->base);
2060 }
2061
2062 int
2063 i915_gem_mmap_gtt(struct drm_file *file,
2064                   struct drm_device *dev,
2065                   uint32_t handle,
2066                   uint64_t *offset)
2067 {
2068         struct drm_i915_gem_object *obj;
2069         int ret;
2070
2071         ret = i915_mutex_lock_interruptible(dev);
2072         if (ret)
2073                 return ret;
2074
2075         obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2076         if (&obj->base == NULL) {
2077                 ret = -ENOENT;
2078                 goto unlock;
2079         }
2080
2081         if (obj->madv != I915_MADV_WILLNEED) {
2082                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2083                 ret = -EFAULT;
2084                 goto out;
2085         }
2086
2087         ret = i915_gem_object_create_mmap_offset(obj);
2088         if (ret)
2089                 goto out;
2090
2091         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2092
2093 out:
2094         drm_gem_object_unreference(&obj->base);
2095 unlock:
2096         mutex_unlock(&dev->struct_mutex);
2097         return ret;
2098 }
2099
2100 /**
2101  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2102  * @dev: DRM device
2103  * @data: GTT mapping ioctl data
2104  * @file: GEM object info
2105  *
2106  * Simply returns the fake offset to userspace so it can mmap it.
2107  * The mmap call will end up in drm_gem_mmap(), which will set things
2108  * up so we can get faults in the handler above.
2109  *
2110  * The fault handler will take care of binding the object into the GTT
2111  * (since it may have been evicted to make room for something), allocating
2112  * a fence register, and mapping the appropriate aperture address into
2113  * userspace.
2114  */
2115 int
2116 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2117                         struct drm_file *file)
2118 {
2119         struct drm_i915_gem_mmap_gtt *args = data;
2120
2121         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2122 }
2123
2124 /* Immediately discard the backing storage */
2125 static void
2126 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2127 {
2128         i915_gem_object_free_mmap_offset(obj);
2129
2130         if (obj->base.filp == NULL)
2131                 return;
2132
2133         /* Our goal here is to return as much of the memory as
2134          * is possible back to the system as we are called from OOM.
2135          * To do this we must instruct the shmfs to drop all of its
2136          * backing pages, *now*.
2137          */
2138         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2139         obj->madv = __I915_MADV_PURGED;
2140 }
2141
2142 /* Try to discard unwanted pages */
2143 static void
2144 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2145 {
2146         struct address_space *mapping;
2147
2148         switch (obj->madv) {
2149         case I915_MADV_DONTNEED:
2150                 i915_gem_object_truncate(obj);
2151         case __I915_MADV_PURGED:
2152                 return;
2153         }
2154
2155         if (obj->base.filp == NULL)
2156                 return;
2157
2158         mapping = file_inode(obj->base.filp)->i_mapping,
2159         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2160 }
2161
2162 static void
2163 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2164 {
2165         struct sg_page_iter sg_iter;
2166         int ret;
2167
2168         BUG_ON(obj->madv == __I915_MADV_PURGED);
2169
2170         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2171         if (WARN_ON(ret)) {
2172                 /* In the event of a disaster, abandon all caches and
2173                  * hope for the best.
2174                  */
2175                 i915_gem_clflush_object(obj, true);
2176                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2177         }
2178
2179         i915_gem_gtt_finish_object(obj);
2180
2181         if (i915_gem_object_needs_bit17_swizzle(obj))
2182                 i915_gem_object_save_bit_17_swizzle(obj);
2183
2184         if (obj->madv == I915_MADV_DONTNEED)
2185                 obj->dirty = 0;
2186
2187         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2188                 struct page *page = sg_page_iter_page(&sg_iter);
2189
2190                 if (obj->dirty)
2191                         set_page_dirty(page);
2192
2193                 if (obj->madv == I915_MADV_WILLNEED)
2194                         mark_page_accessed(page);
2195
2196                 put_page(page);
2197         }
2198         obj->dirty = 0;
2199
2200         sg_free_table(obj->pages);
2201         kfree(obj->pages);
2202 }
2203
2204 int
2205 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2206 {
2207         const struct drm_i915_gem_object_ops *ops = obj->ops;
2208
2209         if (obj->pages == NULL)
2210                 return 0;
2211
2212         if (obj->pages_pin_count)
2213                 return -EBUSY;
2214
2215         BUG_ON(i915_gem_obj_bound_any(obj));
2216
2217         /* ->put_pages might need to allocate memory for the bit17 swizzle
2218          * array, hence protect them from being reaped by removing them from gtt
2219          * lists early. */
2220         list_del(&obj->global_list);
2221
2222         if (obj->mapping) {
2223                 if (is_vmalloc_addr(obj->mapping))
2224                         vunmap(obj->mapping);
2225                 else
2226                         kunmap(kmap_to_page(obj->mapping));
2227                 obj->mapping = NULL;
2228         }
2229
2230         ops->put_pages(obj);
2231         obj->pages = NULL;
2232
2233         i915_gem_object_invalidate(obj);
2234
2235         return 0;
2236 }
2237
2238 static int
2239 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2240 {
2241         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2242         int page_count, i;
2243         struct address_space *mapping;
2244         struct sg_table *st;
2245         struct scatterlist *sg;
2246         struct sg_page_iter sg_iter;
2247         struct page *page;
2248         unsigned long last_pfn = 0;     /* suppress gcc warning */
2249         int ret;
2250         gfp_t gfp;
2251
2252         /* Assert that the object is not currently in any GPU domain. As it
2253          * wasn't in the GTT, there shouldn't be any way it could have been in
2254          * a GPU cache
2255          */
2256         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2257         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2258
2259         st = kmalloc(sizeof(*st), GFP_KERNEL);
2260         if (st == NULL)
2261                 return -ENOMEM;
2262
2263         page_count = obj->base.size / PAGE_SIZE;
2264         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2265                 kfree(st);
2266                 return -ENOMEM;
2267         }
2268
2269         /* Get the list of pages out of our struct file.  They'll be pinned
2270          * at this point until we release them.
2271          *
2272          * Fail silently without starting the shrinker
2273          */
2274         mapping = file_inode(obj->base.filp)->i_mapping;
2275         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2276         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2277         sg = st->sgl;
2278         st->nents = 0;
2279         for (i = 0; i < page_count; i++) {
2280                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2281                 if (IS_ERR(page)) {
2282                         i915_gem_shrink(dev_priv,
2283                                         page_count,
2284                                         I915_SHRINK_BOUND |
2285                                         I915_SHRINK_UNBOUND |
2286                                         I915_SHRINK_PURGEABLE);
2287                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2288                 }
2289                 if (IS_ERR(page)) {
2290                         /* We've tried hard to allocate the memory by reaping
2291                          * our own buffer, now let the real VM do its job and
2292                          * go down in flames if truly OOM.
2293                          */
2294                         i915_gem_shrink_all(dev_priv);
2295                         page = shmem_read_mapping_page(mapping, i);
2296                         if (IS_ERR(page)) {
2297                                 ret = PTR_ERR(page);
2298                                 goto err_pages;
2299                         }
2300                 }
2301 #ifdef CONFIG_SWIOTLB
2302                 if (swiotlb_nr_tbl()) {
2303                         st->nents++;
2304                         sg_set_page(sg, page, PAGE_SIZE, 0);
2305                         sg = sg_next(sg);
2306                         continue;
2307                 }
2308 #endif
2309                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2310                         if (i)
2311                                 sg = sg_next(sg);
2312                         st->nents++;
2313                         sg_set_page(sg, page, PAGE_SIZE, 0);
2314                 } else {
2315                         sg->length += PAGE_SIZE;
2316                 }
2317                 last_pfn = page_to_pfn(page);
2318
2319                 /* Check that the i965g/gm workaround works. */
2320                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2321         }
2322 #ifdef CONFIG_SWIOTLB
2323         if (!swiotlb_nr_tbl())
2324 #endif
2325                 sg_mark_end(sg);
2326         obj->pages = st;
2327
2328         ret = i915_gem_gtt_prepare_object(obj);
2329         if (ret)
2330                 goto err_pages;
2331
2332         if (i915_gem_object_needs_bit17_swizzle(obj))
2333                 i915_gem_object_do_bit_17_swizzle(obj);
2334
2335         if (obj->tiling_mode != I915_TILING_NONE &&
2336             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2337                 i915_gem_object_pin_pages(obj);
2338
2339         return 0;
2340
2341 err_pages:
2342         sg_mark_end(sg);
2343         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2344                 put_page(sg_page_iter_page(&sg_iter));
2345         sg_free_table(st);
2346         kfree(st);
2347
2348         /* shmemfs first checks if there is enough memory to allocate the page
2349          * and reports ENOSPC should there be insufficient, along with the usual
2350          * ENOMEM for a genuine allocation failure.
2351          *
2352          * We use ENOSPC in our driver to mean that we have run out of aperture
2353          * space and so want to translate the error from shmemfs back to our
2354          * usual understanding of ENOMEM.
2355          */
2356         if (ret == -ENOSPC)
2357                 ret = -ENOMEM;
2358
2359         return ret;
2360 }
2361
2362 /* Ensure that the associated pages are gathered from the backing storage
2363  * and pinned into our object. i915_gem_object_get_pages() may be called
2364  * multiple times before they are released by a single call to
2365  * i915_gem_object_put_pages() - once the pages are no longer referenced
2366  * either as a result of memory pressure (reaping pages under the shrinker)
2367  * or as the object is itself released.
2368  */
2369 int
2370 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2371 {
2372         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2373         const struct drm_i915_gem_object_ops *ops = obj->ops;
2374         int ret;
2375
2376         if (obj->pages)
2377                 return 0;
2378
2379         if (obj->madv != I915_MADV_WILLNEED) {
2380                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2381                 return -EFAULT;
2382         }
2383
2384         BUG_ON(obj->pages_pin_count);
2385
2386         ret = ops->get_pages(obj);
2387         if (ret)
2388                 return ret;
2389
2390         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2391
2392         obj->get_page.sg = obj->pages->sgl;
2393         obj->get_page.last = 0;
2394
2395         return 0;
2396 }
2397
2398 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2399 {
2400         int ret;
2401
2402         lockdep_assert_held(&obj->base.dev->struct_mutex);
2403
2404         ret = i915_gem_object_get_pages(obj);
2405         if (ret)
2406                 return ERR_PTR(ret);
2407
2408         i915_gem_object_pin_pages(obj);
2409
2410         if (obj->mapping == NULL) {
2411                 struct page **pages;
2412
2413                 pages = NULL;
2414                 if (obj->base.size == PAGE_SIZE)
2415                         obj->mapping = kmap(sg_page(obj->pages->sgl));
2416                 else
2417                         pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
2418                                                sizeof(*pages),
2419                                                GFP_TEMPORARY);
2420                 if (pages != NULL) {
2421                         struct sg_page_iter sg_iter;
2422                         int n;
2423
2424                         n = 0;
2425                         for_each_sg_page(obj->pages->sgl, &sg_iter,
2426                                          obj->pages->nents, 0)
2427                                 pages[n++] = sg_page_iter_page(&sg_iter);
2428
2429                         obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
2430                         drm_free_large(pages);
2431                 }
2432                 if (obj->mapping == NULL) {
2433                         i915_gem_object_unpin_pages(obj);
2434                         return ERR_PTR(-ENOMEM);
2435                 }
2436         }
2437
2438         return obj->mapping;
2439 }
2440
2441 void i915_vma_move_to_active(struct i915_vma *vma,
2442                              struct drm_i915_gem_request *req)
2443 {
2444         struct drm_i915_gem_object *obj = vma->obj;
2445         struct intel_engine_cs *engine;
2446
2447         engine = i915_gem_request_get_engine(req);
2448
2449         /* Add a reference if we're newly entering the active list. */
2450         if (obj->active == 0)
2451                 drm_gem_object_reference(&obj->base);
2452         obj->active |= intel_engine_flag(engine);
2453
2454         list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2455         i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2456
2457         list_move_tail(&vma->vm_link, &vma->vm->active_list);
2458 }
2459
2460 static void
2461 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2462 {
2463         GEM_BUG_ON(obj->last_write_req == NULL);
2464         GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2465
2466         i915_gem_request_assign(&obj->last_write_req, NULL);
2467         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2468 }
2469
2470 static void
2471 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2472 {
2473         struct i915_vma *vma;
2474
2475         GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2476         GEM_BUG_ON(!(obj->active & (1 << ring)));
2477
2478         list_del_init(&obj->engine_list[ring]);
2479         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2480
2481         if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2482                 i915_gem_object_retire__write(obj);
2483
2484         obj->active &= ~(1 << ring);
2485         if (obj->active)
2486                 return;
2487
2488         /* Bump our place on the bound list to keep it roughly in LRU order
2489          * so that we don't steal from recently used but inactive objects
2490          * (unless we are forced to ofc!)
2491          */
2492         list_move_tail(&obj->global_list,
2493                        &to_i915(obj->base.dev)->mm.bound_list);
2494
2495         list_for_each_entry(vma, &obj->vma_list, obj_link) {
2496                 if (!list_empty(&vma->vm_link))
2497                         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2498         }
2499
2500         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2501         drm_gem_object_unreference(&obj->base);
2502 }
2503
2504 static int
2505 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2506 {
2507         struct drm_i915_private *dev_priv = dev->dev_private;
2508         struct intel_engine_cs *engine;
2509         int ret;
2510
2511         /* Carefully retire all requests without writing to the rings */
2512         for_each_engine(engine, dev_priv) {
2513                 ret = intel_engine_idle(engine);
2514                 if (ret)
2515                         return ret;
2516         }
2517         i915_gem_retire_requests(dev);
2518
2519         /* Finally reset hw state */
2520         for_each_engine(engine, dev_priv)
2521                 intel_ring_init_seqno(engine, seqno);
2522
2523         return 0;
2524 }
2525
2526 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2527 {
2528         struct drm_i915_private *dev_priv = dev->dev_private;
2529         int ret;
2530
2531         if (seqno == 0)
2532                 return -EINVAL;
2533
2534         /* HWS page needs to be set less than what we
2535          * will inject to ring
2536          */
2537         ret = i915_gem_init_seqno(dev, seqno - 1);
2538         if (ret)
2539                 return ret;
2540
2541         /* Carefully set the last_seqno value so that wrap
2542          * detection still works
2543          */
2544         dev_priv->next_seqno = seqno;
2545         dev_priv->last_seqno = seqno - 1;
2546         if (dev_priv->last_seqno == 0)
2547                 dev_priv->last_seqno--;
2548
2549         return 0;
2550 }
2551
2552 int
2553 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2554 {
2555         struct drm_i915_private *dev_priv = dev->dev_private;
2556
2557         /* reserve 0 for non-seqno */
2558         if (dev_priv->next_seqno == 0) {
2559                 int ret = i915_gem_init_seqno(dev, 0);
2560                 if (ret)
2561                         return ret;
2562
2563                 dev_priv->next_seqno = 1;
2564         }
2565
2566         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2567         return 0;
2568 }
2569
2570 /*
2571  * NB: This function is not allowed to fail. Doing so would mean the the
2572  * request is not being tracked for completion but the work itself is
2573  * going to happen on the hardware. This would be a Bad Thing(tm).
2574  */
2575 void __i915_add_request(struct drm_i915_gem_request *request,
2576                         struct drm_i915_gem_object *obj,
2577                         bool flush_caches)
2578 {
2579         struct intel_engine_cs *engine;
2580         struct drm_i915_private *dev_priv;
2581         struct intel_ringbuffer *ringbuf;
2582         u32 request_start;
2583         int ret;
2584
2585         if (WARN_ON(request == NULL))
2586                 return;
2587
2588         engine = request->engine;
2589         dev_priv = request->i915;
2590         ringbuf = request->ringbuf;
2591
2592         /*
2593          * To ensure that this call will not fail, space for its emissions
2594          * should already have been reserved in the ring buffer. Let the ring
2595          * know that it is time to use that space up.
2596          */
2597         intel_ring_reserved_space_use(ringbuf);
2598
2599         request_start = intel_ring_get_tail(ringbuf);
2600         /*
2601          * Emit any outstanding flushes - execbuf can fail to emit the flush
2602          * after having emitted the batchbuffer command. Hence we need to fix
2603          * things up similar to emitting the lazy request. The difference here
2604          * is that the flush _must_ happen before the next request, no matter
2605          * what.
2606          */
2607         if (flush_caches) {
2608                 if (i915.enable_execlists)
2609                         ret = logical_ring_flush_all_caches(request);
2610                 else
2611                         ret = intel_ring_flush_all_caches(request);
2612                 /* Not allowed to fail! */
2613                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2614         }
2615
2616         trace_i915_gem_request_add(request);
2617
2618         request->head = request_start;
2619
2620         /* Whilst this request exists, batch_obj will be on the
2621          * active_list, and so will hold the active reference. Only when this
2622          * request is retired will the the batch_obj be moved onto the
2623          * inactive_list and lose its active reference. Hence we do not need
2624          * to explicitly hold another reference here.
2625          */
2626         request->batch_obj = obj;
2627
2628         /* Seal the request and mark it as pending execution. Note that
2629          * we may inspect this state, without holding any locks, during
2630          * hangcheck. Hence we apply the barrier to ensure that we do not
2631          * see a more recent value in the hws than we are tracking.
2632          */
2633         request->emitted_jiffies = jiffies;
2634         request->previous_seqno = engine->last_submitted_seqno;
2635         smp_store_mb(engine->last_submitted_seqno, request->seqno);
2636         list_add_tail(&request->list, &engine->request_list);
2637
2638         /* Record the position of the start of the request so that
2639          * should we detect the updated seqno part-way through the
2640          * GPU processing the request, we never over-estimate the
2641          * position of the head.
2642          */
2643         request->postfix = intel_ring_get_tail(ringbuf);
2644
2645         if (i915.enable_execlists)
2646                 ret = engine->emit_request(request);
2647         else {
2648                 ret = engine->add_request(request);
2649
2650                 request->tail = intel_ring_get_tail(ringbuf);
2651         }
2652         /* Not allowed to fail! */
2653         WARN(ret, "emit|add_request failed: %d!\n", ret);
2654
2655         i915_queue_hangcheck(engine->dev);
2656
2657         queue_delayed_work(dev_priv->wq,
2658                            &dev_priv->mm.retire_work,
2659                            round_jiffies_up_relative(HZ));
2660         intel_mark_busy(dev_priv->dev);
2661
2662         /* Sanity check that the reserved size was large enough. */
2663         intel_ring_reserved_space_end(ringbuf);
2664 }
2665
2666 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2667                                    const struct intel_context *ctx)
2668 {
2669         unsigned long elapsed;
2670
2671         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2672
2673         if (ctx->hang_stats.banned)
2674                 return true;
2675
2676         if (ctx->hang_stats.ban_period_seconds &&
2677             elapsed <= ctx->hang_stats.ban_period_seconds) {
2678                 if (!i915_gem_context_is_default(ctx)) {
2679                         DRM_DEBUG("context hanging too fast, banning!\n");
2680                         return true;
2681                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2682                         if (i915_stop_ring_allow_warn(dev_priv))
2683                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2684                         return true;
2685                 }
2686         }
2687
2688         return false;
2689 }
2690
2691 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2692                                   struct intel_context *ctx,
2693                                   const bool guilty)
2694 {
2695         struct i915_ctx_hang_stats *hs;
2696
2697         if (WARN_ON(!ctx))
2698                 return;
2699
2700         hs = &ctx->hang_stats;
2701
2702         if (guilty) {
2703                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2704                 hs->batch_active++;
2705                 hs->guilty_ts = get_seconds();
2706         } else {
2707                 hs->batch_pending++;
2708         }
2709 }
2710
2711 void i915_gem_request_free(struct kref *req_ref)
2712 {
2713         struct drm_i915_gem_request *req = container_of(req_ref,
2714                                                  typeof(*req), ref);
2715         struct intel_context *ctx = req->ctx;
2716
2717         if (req->file_priv)
2718                 i915_gem_request_remove_from_client(req);
2719
2720         if (ctx) {
2721                 if (i915.enable_execlists && ctx != req->i915->kernel_context)
2722                         intel_lr_context_unpin(ctx, req->engine);
2723
2724                 i915_gem_context_unreference(ctx);
2725         }
2726
2727         kmem_cache_free(req->i915->requests, req);
2728 }
2729
2730 static inline int
2731 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2732                          struct intel_context *ctx,
2733                          struct drm_i915_gem_request **req_out)
2734 {
2735         struct drm_i915_private *dev_priv = to_i915(engine->dev);
2736         unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2737         struct drm_i915_gem_request *req;
2738         int ret;
2739
2740         if (!req_out)
2741                 return -EINVAL;
2742
2743         *req_out = NULL;
2744
2745         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2746          * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2747          * and restart.
2748          */
2749         ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2750         if (ret)
2751                 return ret;
2752
2753         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2754         if (req == NULL)
2755                 return -ENOMEM;
2756
2757         ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2758         if (ret)
2759                 goto err;
2760
2761         kref_init(&req->ref);
2762         req->i915 = dev_priv;
2763         req->engine = engine;
2764         req->reset_counter = reset_counter;
2765         req->ctx  = ctx;
2766         i915_gem_context_reference(req->ctx);
2767
2768         if (i915.enable_execlists)
2769                 ret = intel_logical_ring_alloc_request_extras(req);
2770         else
2771                 ret = intel_ring_alloc_request_extras(req);
2772         if (ret) {
2773                 i915_gem_context_unreference(req->ctx);
2774                 goto err;
2775         }
2776
2777         /*
2778          * Reserve space in the ring buffer for all the commands required to
2779          * eventually emit this request. This is to guarantee that the
2780          * i915_add_request() call can't fail. Note that the reserve may need
2781          * to be redone if the request is not actually submitted straight
2782          * away, e.g. because a GPU scheduler has deferred it.
2783          */
2784         if (i915.enable_execlists)
2785                 ret = intel_logical_ring_reserve_space(req);
2786         else
2787                 ret = intel_ring_reserve_space(req);
2788         if (ret) {
2789                 /*
2790                  * At this point, the request is fully allocated even if not
2791                  * fully prepared. Thus it can be cleaned up using the proper
2792                  * free code.
2793                  */
2794                 intel_ring_reserved_space_cancel(req->ringbuf);
2795                 i915_gem_request_unreference(req);
2796                 return ret;
2797         }
2798
2799         *req_out = req;
2800         return 0;
2801
2802 err:
2803         kmem_cache_free(dev_priv->requests, req);
2804         return ret;
2805 }
2806
2807 /**
2808  * i915_gem_request_alloc - allocate a request structure
2809  *
2810  * @engine: engine that we wish to issue the request on.
2811  * @ctx: context that the request will be associated with.
2812  *       This can be NULL if the request is not directly related to
2813  *       any specific user context, in which case this function will
2814  *       choose an appropriate context to use.
2815  *
2816  * Returns a pointer to the allocated request if successful,
2817  * or an error code if not.
2818  */
2819 struct drm_i915_gem_request *
2820 i915_gem_request_alloc(struct intel_engine_cs *engine,
2821                        struct intel_context *ctx)
2822 {
2823         struct drm_i915_gem_request *req;
2824         int err;
2825
2826         if (ctx == NULL)
2827                 ctx = to_i915(engine->dev)->kernel_context;
2828         err = __i915_gem_request_alloc(engine, ctx, &req);
2829         return err ? ERR_PTR(err) : req;
2830 }
2831
2832 struct drm_i915_gem_request *
2833 i915_gem_find_active_request(struct intel_engine_cs *engine)
2834 {
2835         struct drm_i915_gem_request *request;
2836
2837         list_for_each_entry(request, &engine->request_list, list) {
2838                 if (i915_gem_request_completed(request, false))
2839                         continue;
2840
2841                 return request;
2842         }
2843
2844         return NULL;
2845 }
2846
2847 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2848                                        struct intel_engine_cs *engine)
2849 {
2850         struct drm_i915_gem_request *request;
2851         bool ring_hung;
2852
2853         request = i915_gem_find_active_request(engine);
2854
2855         if (request == NULL)
2856                 return;
2857
2858         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2859
2860         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2861
2862         list_for_each_entry_continue(request, &engine->request_list, list)
2863                 i915_set_reset_status(dev_priv, request->ctx, false);
2864 }
2865
2866 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2867                                         struct intel_engine_cs *engine)
2868 {
2869         struct intel_ringbuffer *buffer;
2870
2871         while (!list_empty(&engine->active_list)) {
2872                 struct drm_i915_gem_object *obj;
2873
2874                 obj = list_first_entry(&engine->active_list,
2875                                        struct drm_i915_gem_object,
2876                                        engine_list[engine->id]);
2877
2878                 i915_gem_object_retire__read(obj, engine->id);
2879         }
2880
2881         /*
2882          * Clear the execlists queue up before freeing the requests, as those
2883          * are the ones that keep the context and ringbuffer backing objects
2884          * pinned in place.
2885          */
2886
2887         if (i915.enable_execlists) {
2888                 /* Ensure irq handler finishes or is cancelled. */
2889                 tasklet_kill(&engine->irq_tasklet);
2890
2891                 spin_lock_bh(&engine->execlist_lock);
2892                 /* list_splice_tail_init checks for empty lists */
2893                 list_splice_tail_init(&engine->execlist_queue,
2894                                       &engine->execlist_retired_req_list);
2895                 spin_unlock_bh(&engine->execlist_lock);
2896
2897                 intel_execlists_retire_requests(engine);
2898         }
2899
2900         /*
2901          * We must free the requests after all the corresponding objects have
2902          * been moved off active lists. Which is the same order as the normal
2903          * retire_requests function does. This is important if object hold
2904          * implicit references on things like e.g. ppgtt address spaces through
2905          * the request.
2906          */
2907         while (!list_empty(&engine->request_list)) {
2908                 struct drm_i915_gem_request *request;
2909
2910                 request = list_first_entry(&engine->request_list,
2911                                            struct drm_i915_gem_request,
2912                                            list);
2913
2914                 i915_gem_request_retire(request);
2915         }
2916
2917         /* Having flushed all requests from all queues, we know that all
2918          * ringbuffers must now be empty. However, since we do not reclaim
2919          * all space when retiring the request (to prevent HEADs colliding
2920          * with rapid ringbuffer wraparound) the amount of available space
2921          * upon reset is less than when we start. Do one more pass over
2922          * all the ringbuffers to reset last_retired_head.
2923          */
2924         list_for_each_entry(buffer, &engine->buffers, link) {
2925                 buffer->last_retired_head = buffer->tail;
2926                 intel_ring_update_space(buffer);
2927         }
2928
2929         intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2930 }
2931
2932 void i915_gem_reset(struct drm_device *dev)
2933 {
2934         struct drm_i915_private *dev_priv = dev->dev_private;
2935         struct intel_engine_cs *engine;
2936
2937         /*
2938          * Before we free the objects from the requests, we need to inspect
2939          * them for finding the guilty party. As the requests only borrow
2940          * their reference to the objects, the inspection must be done first.
2941          */
2942         for_each_engine(engine, dev_priv)
2943                 i915_gem_reset_engine_status(dev_priv, engine);
2944
2945         for_each_engine(engine, dev_priv)
2946                 i915_gem_reset_engine_cleanup(dev_priv, engine);
2947
2948         i915_gem_context_reset(dev);
2949
2950         i915_gem_restore_fences(dev);
2951
2952         WARN_ON(i915_verify_lists(dev));
2953 }
2954
2955 /**
2956  * This function clears the request list as sequence numbers are passed.
2957  */
2958 void
2959 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2960 {
2961         WARN_ON(i915_verify_lists(engine->dev));
2962
2963         /* Retire requests first as we use it above for the early return.
2964          * If we retire requests last, we may use a later seqno and so clear
2965          * the requests lists without clearing the active list, leading to
2966          * confusion.
2967          */
2968         while (!list_empty(&engine->request_list)) {
2969                 struct drm_i915_gem_request *request;
2970
2971                 request = list_first_entry(&engine->request_list,
2972                                            struct drm_i915_gem_request,
2973                                            list);
2974
2975                 if (!i915_gem_request_completed(request, true))
2976                         break;
2977
2978                 i915_gem_request_retire(request);
2979         }
2980
2981         /* Move any buffers on the active list that are no longer referenced
2982          * by the ringbuffer to the flushing/inactive lists as appropriate,
2983          * before we free the context associated with the requests.
2984          */
2985         while (!list_empty(&engine->active_list)) {
2986                 struct drm_i915_gem_object *obj;
2987
2988                 obj = list_first_entry(&engine->active_list,
2989                                        struct drm_i915_gem_object,
2990                                        engine_list[engine->id]);
2991
2992                 if (!list_empty(&obj->last_read_req[engine->id]->list))
2993                         break;
2994
2995                 i915_gem_object_retire__read(obj, engine->id);
2996         }
2997
2998         if (unlikely(engine->trace_irq_req &&
2999                      i915_gem_request_completed(engine->trace_irq_req, true))) {
3000                 engine->irq_put(engine);
3001                 i915_gem_request_assign(&engine->trace_irq_req, NULL);
3002         }
3003
3004         WARN_ON(i915_verify_lists(engine->dev));
3005 }
3006
3007 bool
3008 i915_gem_retire_requests(struct drm_device *dev)
3009 {
3010         struct drm_i915_private *dev_priv = dev->dev_private;
3011         struct intel_engine_cs *engine;
3012         bool idle = true;
3013
3014         for_each_engine(engine, dev_priv) {
3015                 i915_gem_retire_requests_ring(engine);
3016                 idle &= list_empty(&engine->request_list);
3017                 if (i915.enable_execlists) {
3018                         spin_lock_bh(&engine->execlist_lock);
3019                         idle &= list_empty(&engine->execlist_queue);
3020                         spin_unlock_bh(&engine->execlist_lock);
3021
3022                         intel_execlists_retire_requests(engine);
3023                 }
3024         }
3025
3026         if (idle)
3027                 mod_delayed_work(dev_priv->wq,
3028                                    &dev_priv->mm.idle_work,
3029                                    msecs_to_jiffies(100));
3030
3031         return idle;
3032 }
3033
3034 static void
3035 i915_gem_retire_work_handler(struct work_struct *work)
3036 {
3037         struct drm_i915_private *dev_priv =
3038                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3039         struct drm_device *dev = dev_priv->dev;
3040         bool idle;
3041
3042         /* Come back later if the device is busy... */
3043         idle = false;
3044         if (mutex_trylock(&dev->struct_mutex)) {
3045                 idle = i915_gem_retire_requests(dev);
3046                 mutex_unlock(&dev->struct_mutex);
3047         }
3048         if (!idle)
3049                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3050                                    round_jiffies_up_relative(HZ));
3051 }
3052
3053 static void
3054 i915_gem_idle_work_handler(struct work_struct *work)
3055 {
3056         struct drm_i915_private *dev_priv =
3057                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3058         struct drm_device *dev = dev_priv->dev;
3059         struct intel_engine_cs *engine;
3060
3061         for_each_engine(engine, dev_priv)
3062                 if (!list_empty(&engine->request_list))
3063                         return;
3064
3065         /* we probably should sync with hangcheck here, using cancel_work_sync.
3066          * Also locking seems to be fubar here, engine->request_list is protected
3067          * by dev->struct_mutex. */
3068
3069         intel_mark_idle(dev);
3070
3071         if (mutex_trylock(&dev->struct_mutex)) {
3072                 for_each_engine(engine, dev_priv)
3073                         i915_gem_batch_pool_fini(&engine->batch_pool);
3074
3075                 mutex_unlock(&dev->struct_mutex);
3076         }
3077 }
3078
3079 /**
3080  * Ensures that an object will eventually get non-busy by flushing any required
3081  * write domains, emitting any outstanding lazy request and retiring and
3082  * completed requests.
3083  */
3084 static int
3085 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3086 {
3087         int i;
3088
3089         if (!obj->active)
3090                 return 0;
3091
3092         for (i = 0; i < I915_NUM_ENGINES; i++) {
3093                 struct drm_i915_gem_request *req;
3094
3095                 req = obj->last_read_req[i];
3096                 if (req == NULL)
3097                         continue;
3098
3099                 if (list_empty(&req->list))
3100                         goto retire;
3101
3102                 if (i915_gem_request_completed(req, true)) {
3103                         __i915_gem_request_retire__upto(req);
3104 retire:
3105                         i915_gem_object_retire__read(obj, i);
3106                 }
3107         }
3108
3109         return 0;
3110 }
3111
3112 /**
3113  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3114  * @DRM_IOCTL_ARGS: standard ioctl arguments
3115  *
3116  * Returns 0 if successful, else an error is returned with the remaining time in
3117  * the timeout parameter.
3118  *  -ETIME: object is still busy after timeout
3119  *  -ERESTARTSYS: signal interrupted the wait
3120  *  -ENONENT: object doesn't exist
3121  * Also possible, but rare:
3122  *  -EAGAIN: GPU wedged
3123  *  -ENOMEM: damn
3124  *  -ENODEV: Internal IRQ fail
3125  *  -E?: The add request failed
3126  *
3127  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3128  * non-zero timeout parameter the wait ioctl will wait for the given number of
3129  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3130  * without holding struct_mutex the object may become re-busied before this
3131  * function completes. A similar but shorter * race condition exists in the busy
3132  * ioctl
3133  */
3134 int
3135 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3136 {
3137         struct drm_i915_gem_wait *args = data;
3138         struct drm_i915_gem_object *obj;
3139         struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3140         int i, n = 0;
3141         int ret;
3142
3143         if (args->flags != 0)
3144                 return -EINVAL;
3145
3146         ret = i915_mutex_lock_interruptible(dev);
3147         if (ret)
3148                 return ret;
3149
3150         obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3151         if (&obj->base == NULL) {
3152                 mutex_unlock(&dev->struct_mutex);
3153                 return -ENOENT;
3154         }
3155
3156         /* Need to make sure the object gets inactive eventually. */
3157         ret = i915_gem_object_flush_active(obj);
3158         if (ret)
3159                 goto out;
3160
3161         if (!obj->active)
3162                 goto out;
3163
3164         /* Do this after OLR check to make sure we make forward progress polling
3165          * on this IOCTL with a timeout == 0 (like busy ioctl)
3166          */
3167         if (args->timeout_ns == 0) {
3168                 ret = -ETIME;
3169                 goto out;
3170         }
3171
3172         drm_gem_object_unreference(&obj->base);
3173
3174         for (i = 0; i < I915_NUM_ENGINES; i++) {
3175                 if (obj->last_read_req[i] == NULL)
3176                         continue;
3177
3178                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3179         }
3180
3181         mutex_unlock(&dev->struct_mutex);
3182
3183         for (i = 0; i < n; i++) {
3184                 if (ret == 0)
3185                         ret = __i915_wait_request(req[i], true,
3186                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3187                                                   to_rps_client(file));
3188                 i915_gem_request_unreference__unlocked(req[i]);
3189         }
3190         return ret;
3191
3192 out:
3193         drm_gem_object_unreference(&obj->base);
3194         mutex_unlock(&dev->struct_mutex);
3195         return ret;
3196 }
3197
3198 static int
3199 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3200                        struct intel_engine_cs *to,
3201                        struct drm_i915_gem_request *from_req,
3202                        struct drm_i915_gem_request **to_req)
3203 {
3204         struct intel_engine_cs *from;
3205         int ret;
3206
3207         from = i915_gem_request_get_engine(from_req);
3208         if (to == from)
3209                 return 0;
3210
3211         if (i915_gem_request_completed(from_req, true))
3212                 return 0;
3213
3214         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3215                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3216                 ret = __i915_wait_request(from_req,
3217                                           i915->mm.interruptible,
3218                                           NULL,
3219                                           &i915->rps.semaphores);
3220                 if (ret)
3221                         return ret;
3222
3223                 i915_gem_object_retire_request(obj, from_req);
3224         } else {
3225                 int idx = intel_ring_sync_index(from, to);
3226                 u32 seqno = i915_gem_request_get_seqno(from_req);
3227
3228                 WARN_ON(!to_req);
3229
3230                 if (seqno <= from->semaphore.sync_seqno[idx])
3231                         return 0;
3232
3233                 if (*to_req == NULL) {
3234                         struct drm_i915_gem_request *req;
3235
3236                         req = i915_gem_request_alloc(to, NULL);
3237                         if (IS_ERR(req))
3238                                 return PTR_ERR(req);
3239
3240                         *to_req = req;
3241                 }
3242
3243                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3244                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3245                 if (ret)
3246                         return ret;
3247
3248                 /* We use last_read_req because sync_to()
3249                  * might have just caused seqno wrap under
3250                  * the radar.
3251                  */
3252                 from->semaphore.sync_seqno[idx] =
3253                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3254         }
3255
3256         return 0;
3257 }
3258
3259 /**
3260  * i915_gem_object_sync - sync an object to a ring.
3261  *
3262  * @obj: object which may be in use on another ring.
3263  * @to: ring we wish to use the object on. May be NULL.
3264  * @to_req: request we wish to use the object for. See below.
3265  *          This will be allocated and returned if a request is
3266  *          required but not passed in.
3267  *
3268  * This code is meant to abstract object synchronization with the GPU.
3269  * Calling with NULL implies synchronizing the object with the CPU
3270  * rather than a particular GPU ring. Conceptually we serialise writes
3271  * between engines inside the GPU. We only allow one engine to write
3272  * into a buffer at any time, but multiple readers. To ensure each has
3273  * a coherent view of memory, we must:
3274  *
3275  * - If there is an outstanding write request to the object, the new
3276  *   request must wait for it to complete (either CPU or in hw, requests
3277  *   on the same ring will be naturally ordered).
3278  *
3279  * - If we are a write request (pending_write_domain is set), the new
3280  *   request must wait for outstanding read requests to complete.
3281  *
3282  * For CPU synchronisation (NULL to) no request is required. For syncing with
3283  * rings to_req must be non-NULL. However, a request does not have to be
3284  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3285  * request will be allocated automatically and returned through *to_req. Note
3286  * that it is not guaranteed that commands will be emitted (because the system
3287  * might already be idle). Hence there is no need to create a request that
3288  * might never have any work submitted. Note further that if a request is
3289  * returned in *to_req, it is the responsibility of the caller to submit
3290  * that request (after potentially adding more work to it).
3291  *
3292  * Returns 0 if successful, else propagates up the lower layer error.
3293  */
3294 int
3295 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3296                      struct intel_engine_cs *to,
3297                      struct drm_i915_gem_request **to_req)
3298 {
3299         const bool readonly = obj->base.pending_write_domain == 0;
3300         struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3301         int ret, i, n;
3302
3303         if (!obj->active)
3304                 return 0;
3305
3306         if (to == NULL)
3307                 return i915_gem_object_wait_rendering(obj, readonly);
3308
3309         n = 0;
3310         if (readonly) {
3311                 if (obj->last_write_req)
3312                         req[n++] = obj->last_write_req;
3313         } else {
3314                 for (i = 0; i < I915_NUM_ENGINES; i++)
3315                         if (obj->last_read_req[i])
3316                                 req[n++] = obj->last_read_req[i];
3317         }
3318         for (i = 0; i < n; i++) {
3319                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3320                 if (ret)
3321                         return ret;
3322         }
3323
3324         return 0;
3325 }
3326
3327 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3328 {
3329         u32 old_write_domain, old_read_domains;
3330
3331         /* Force a pagefault for domain tracking on next user access */
3332         i915_gem_release_mmap(obj);
3333
3334         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3335                 return;
3336
3337         old_read_domains = obj->base.read_domains;
3338         old_write_domain = obj->base.write_domain;
3339
3340         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3341         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3342
3343         trace_i915_gem_object_change_domain(obj,
3344                                             old_read_domains,
3345                                             old_write_domain);
3346 }
3347
3348 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3349 {
3350         struct drm_i915_gem_object *obj = vma->obj;
3351         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3352         int ret;
3353
3354         if (list_empty(&vma->obj_link))
3355                 return 0;
3356
3357         if (!drm_mm_node_allocated(&vma->node)) {
3358                 i915_gem_vma_destroy(vma);
3359                 return 0;
3360         }
3361
3362         if (vma->pin_count)
3363                 return -EBUSY;
3364
3365         BUG_ON(obj->pages == NULL);
3366
3367         if (wait) {
3368                 ret = i915_gem_object_wait_rendering(obj, false);
3369                 if (ret)
3370                         return ret;
3371         }
3372
3373         if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3374                 i915_gem_object_finish_gtt(obj);
3375
3376                 /* release the fence reg _after_ flushing */
3377                 ret = i915_gem_object_put_fence(obj);
3378                 if (ret)
3379                         return ret;
3380         }
3381
3382         trace_i915_vma_unbind(vma);
3383
3384         vma->vm->unbind_vma(vma);
3385         vma->bound = 0;
3386
3387         list_del_init(&vma->vm_link);
3388         if (vma->is_ggtt) {
3389                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3390                         obj->map_and_fenceable = false;
3391                 } else if (vma->ggtt_view.pages) {
3392                         sg_free_table(vma->ggtt_view.pages);
3393                         kfree(vma->ggtt_view.pages);
3394                 }
3395                 vma->ggtt_view.pages = NULL;
3396         }
3397
3398         drm_mm_remove_node(&vma->node);
3399         i915_gem_vma_destroy(vma);
3400
3401         /* Since the unbound list is global, only move to that list if
3402          * no more VMAs exist. */
3403         if (list_empty(&obj->vma_list))
3404                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3405
3406         /* And finally now the object is completely decoupled from this vma,
3407          * we can drop its hold on the backing storage and allow it to be
3408          * reaped by the shrinker.
3409          */
3410         i915_gem_object_unpin_pages(obj);
3411
3412         return 0;
3413 }
3414
3415 int i915_vma_unbind(struct i915_vma *vma)
3416 {
3417         return __i915_vma_unbind(vma, true);
3418 }
3419
3420 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3421 {
3422         return __i915_vma_unbind(vma, false);
3423 }
3424
3425 int i915_gpu_idle(struct drm_device *dev)
3426 {
3427         struct drm_i915_private *dev_priv = dev->dev_private;
3428         struct intel_engine_cs *engine;
3429         int ret;
3430
3431         /* Flush everything onto the inactive list. */
3432         for_each_engine(engine, dev_priv) {
3433                 if (!i915.enable_execlists) {
3434                         struct drm_i915_gem_request *req;
3435
3436                         req = i915_gem_request_alloc(engine, NULL);
3437                         if (IS_ERR(req))
3438                                 return PTR_ERR(req);
3439
3440                         ret = i915_switch_context(req);
3441                         i915_add_request_no_flush(req);
3442                         if (ret)
3443                                 return ret;
3444                 }
3445
3446                 ret = intel_engine_idle(engine);
3447                 if (ret)
3448                         return ret;
3449         }
3450
3451         WARN_ON(i915_verify_lists(dev));
3452         return 0;
3453 }
3454
3455 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3456                                      unsigned long cache_level)
3457 {
3458         struct drm_mm_node *gtt_space = &vma->node;
3459         struct drm_mm_node *other;
3460
3461         /*
3462          * On some machines we have to be careful when putting differing types
3463          * of snoopable memory together to avoid the prefetcher crossing memory
3464          * domains and dying. During vm initialisation, we decide whether or not
3465          * these constraints apply and set the drm_mm.color_adjust
3466          * appropriately.
3467          */
3468         if (vma->vm->mm.color_adjust == NULL)
3469                 return true;
3470
3471         if (!drm_mm_node_allocated(gtt_space))
3472                 return true;
3473
3474         if (list_empty(&gtt_space->node_list))
3475                 return true;
3476
3477         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3478         if (other->allocated && !other->hole_follows && other->color != cache_level)
3479                 return false;
3480
3481         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3482         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3483                 return false;
3484
3485         return true;
3486 }
3487
3488 /**
3489  * Finds free space in the GTT aperture and binds the object or a view of it
3490  * there.
3491  */
3492 static struct i915_vma *
3493 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3494                            struct i915_address_space *vm,
3495                            const struct i915_ggtt_view *ggtt_view,
3496                            unsigned alignment,
3497                            uint64_t flags)
3498 {
3499         struct drm_device *dev = obj->base.dev;
3500         struct drm_i915_private *dev_priv = to_i915(dev);
3501         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3502         u32 fence_alignment, unfenced_alignment;
3503         u32 search_flag, alloc_flag;
3504         u64 start, end;
3505         u64 size, fence_size;
3506         struct i915_vma *vma;
3507         int ret;
3508
3509         if (i915_is_ggtt(vm)) {
3510                 u32 view_size;
3511
3512                 if (WARN_ON(!ggtt_view))
3513                         return ERR_PTR(-EINVAL);
3514
3515                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3516
3517                 fence_size = i915_gem_get_gtt_size(dev,
3518                                                    view_size,
3519                                                    obj->tiling_mode);
3520                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3521                                                              view_size,
3522                                                              obj->tiling_mode,
3523                                                              true);
3524                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3525                                                                 view_size,
3526                                                                 obj->tiling_mode,
3527                                                                 false);
3528                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3529         } else {
3530                 fence_size = i915_gem_get_gtt_size(dev,
3531                                                    obj->base.size,
3532                                                    obj->tiling_mode);
3533                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3534                                                              obj->base.size,
3535                                                              obj->tiling_mode,
3536                                                              true);
3537                 unfenced_alignment =
3538                         i915_gem_get_gtt_alignment(dev,
3539                                                    obj->base.size,
3540                                                    obj->tiling_mode,
3541                                                    false);
3542                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3543         }
3544
3545         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3546         end = vm->total;
3547         if (flags & PIN_MAPPABLE)
3548                 end = min_t(u64, end, ggtt->mappable_end);
3549         if (flags & PIN_ZONE_4G)
3550                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3551
3552         if (alignment == 0)
3553                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3554                                                 unfenced_alignment;
3555         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3556                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3557                           ggtt_view ? ggtt_view->type : 0,
3558                           alignment);
3559                 return ERR_PTR(-EINVAL);
3560         }
3561
3562         /* If binding the object/GGTT view requires more space than the entire
3563          * aperture has, reject it early before evicting everything in a vain
3564          * attempt to find space.
3565          */
3566         if (size > end) {
3567                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3568                           ggtt_view ? ggtt_view->type : 0,
3569                           size,
3570                           flags & PIN_MAPPABLE ? "mappable" : "total",
3571                           end);
3572                 return ERR_PTR(-E2BIG);
3573         }
3574
3575         ret = i915_gem_object_get_pages(obj);
3576         if (ret)
3577                 return ERR_PTR(ret);
3578
3579         i915_gem_object_pin_pages(obj);
3580
3581         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3582                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3583
3584         if (IS_ERR(vma))
3585                 goto err_unpin;
3586
3587         if (flags & PIN_OFFSET_FIXED) {
3588                 uint64_t offset = flags & PIN_OFFSET_MASK;
3589
3590                 if (offset & (alignment - 1) || offset + size > end) {
3591                         ret = -EINVAL;
3592                         goto err_free_vma;
3593                 }
3594                 vma->node.start = offset;
3595                 vma->node.size = size;
3596                 vma->node.color = obj->cache_level;
3597                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3598                 if (ret) {
3599                         ret = i915_gem_evict_for_vma(vma);
3600                         if (ret == 0)
3601                                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3602                 }
3603                 if (ret)
3604                         goto err_free_vma;
3605         } else {
3606                 if (flags & PIN_HIGH) {
3607                         search_flag = DRM_MM_SEARCH_BELOW;
3608                         alloc_flag = DRM_MM_CREATE_TOP;
3609                 } else {
3610                         search_flag = DRM_MM_SEARCH_DEFAULT;
3611                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3612                 }
3613
3614 search_free:
3615                 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3616                                                           size, alignment,
3617                                                           obj->cache_level,
3618                                                           start, end,
3619                                                           search_flag,
3620                                                           alloc_flag);
3621                 if (ret) {
3622                         ret = i915_gem_evict_something(dev, vm, size, alignment,
3623                                                        obj->cache_level,
3624                                                        start, end,
3625                                                        flags);
3626                         if (ret == 0)
3627                                 goto search_free;
3628
3629                         goto err_free_vma;
3630                 }
3631         }
3632         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3633                 ret = -EINVAL;
3634                 goto err_remove_node;
3635         }
3636
3637         trace_i915_vma_bind(vma, flags);
3638         ret = i915_vma_bind(vma, obj->cache_level, flags);
3639         if (ret)
3640                 goto err_remove_node;
3641
3642         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3643         list_add_tail(&vma->vm_link, &vm->inactive_list);
3644
3645         return vma;
3646
3647 err_remove_node:
3648         drm_mm_remove_node(&vma->node);
3649 err_free_vma:
3650         i915_gem_vma_destroy(vma);
3651         vma = ERR_PTR(ret);
3652 err_unpin:
3653         i915_gem_object_unpin_pages(obj);
3654         return vma;
3655 }
3656
3657 bool
3658 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3659                         bool force)
3660 {
3661         /* If we don't have a page list set up, then we're not pinned
3662          * to GPU, and we can ignore the cache flush because it'll happen
3663          * again at bind time.
3664          */
3665         if (obj->pages == NULL)
3666                 return false;
3667
3668         /*
3669          * Stolen memory is always coherent with the GPU as it is explicitly
3670          * marked as wc by the system, or the system is cache-coherent.
3671          */
3672         if (obj->stolen || obj->phys_handle)
3673                 return false;
3674
3675         /* If the GPU is snooping the contents of the CPU cache,
3676          * we do not need to manually clear the CPU cache lines.  However,
3677          * the caches are only snooped when the render cache is
3678          * flushed/invalidated.  As we always have to emit invalidations
3679          * and flushes when moving into and out of the RENDER domain, correct
3680          * snooping behaviour occurs naturally as the result of our domain
3681          * tracking.
3682          */
3683         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3684                 obj->cache_dirty = true;
3685                 return false;
3686         }
3687
3688         trace_i915_gem_object_clflush(obj);
3689         drm_clflush_sg(obj->pages);
3690         obj->cache_dirty = false;
3691
3692         return true;
3693 }
3694
3695 /** Flushes the GTT write domain for the object if it's dirty. */
3696 static void
3697 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3698 {
3699         uint32_t old_write_domain;
3700
3701         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3702                 return;
3703
3704         /* No actual flushing is required for the GTT write domain.  Writes
3705          * to it immediately go to main memory as far as we know, so there's
3706          * no chipset flush.  It also doesn't land in render cache.
3707          *
3708          * However, we do have to enforce the order so that all writes through
3709          * the GTT land before any writes to the device, such as updates to
3710          * the GATT itself.
3711          */
3712         wmb();
3713
3714         old_write_domain = obj->base.write_domain;
3715         obj->base.write_domain = 0;
3716
3717         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3718
3719         trace_i915_gem_object_change_domain(obj,
3720                                             obj->base.read_domains,
3721                                             old_write_domain);
3722 }
3723
3724 /** Flushes the CPU write domain for the object if it's dirty. */
3725 static void
3726 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3727 {
3728         uint32_t old_write_domain;
3729
3730         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3731                 return;
3732
3733         if (i915_gem_clflush_object(obj, obj->pin_display))
3734                 i915_gem_chipset_flush(obj->base.dev);
3735
3736         old_write_domain = obj->base.write_domain;
3737         obj->base.write_domain = 0;
3738
3739         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3740
3741         trace_i915_gem_object_change_domain(obj,
3742                                             obj->base.read_domains,
3743                                             old_write_domain);
3744 }
3745
3746 /**
3747  * Moves a single object to the GTT read, and possibly write domain.
3748  *
3749  * This function returns when the move is complete, including waiting on
3750  * flushes to occur.
3751  */
3752 int
3753 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3754 {
3755         struct drm_device *dev = obj->base.dev;
3756         struct drm_i915_private *dev_priv = to_i915(dev);
3757         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3758         uint32_t old_write_domain, old_read_domains;
3759         struct i915_vma *vma;
3760         int ret;
3761
3762         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3763                 return 0;
3764
3765         ret = i915_gem_object_wait_rendering(obj, !write);
3766         if (ret)
3767                 return ret;
3768
3769         /* Flush and acquire obj->pages so that we are coherent through
3770          * direct access in memory with previous cached writes through
3771          * shmemfs and that our cache domain tracking remains valid.
3772          * For example, if the obj->filp was moved to swap without us
3773          * being notified and releasing the pages, we would mistakenly
3774          * continue to assume that the obj remained out of the CPU cached
3775          * domain.
3776          */
3777         ret = i915_gem_object_get_pages(obj);
3778         if (ret)
3779                 return ret;
3780
3781         i915_gem_object_flush_cpu_write_domain(obj);
3782
3783         /* Serialise direct access to this object with the barriers for
3784          * coherent writes from the GPU, by effectively invalidating the
3785          * GTT domain upon first access.
3786          */
3787         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3788                 mb();
3789
3790         old_write_domain = obj->base.write_domain;
3791         old_read_domains = obj->base.read_domains;
3792
3793         /* It should now be out of any other write domains, and we can update
3794          * the domain values for our changes.
3795          */
3796         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3797         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3798         if (write) {
3799                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3800                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3801                 obj->dirty = 1;
3802         }
3803
3804         trace_i915_gem_object_change_domain(obj,
3805                                             old_read_domains,
3806                                             old_write_domain);
3807
3808         /* And bump the LRU for this access */
3809         vma = i915_gem_obj_to_ggtt(obj);
3810         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3811                 list_move_tail(&vma->vm_link,
3812                                &ggtt->base.inactive_list);
3813
3814         return 0;
3815 }
3816
3817 /**
3818  * Changes the cache-level of an object across all VMA.
3819  *
3820  * After this function returns, the object will be in the new cache-level
3821  * across all GTT and the contents of the backing storage will be coherent,
3822  * with respect to the new cache-level. In order to keep the backing storage
3823  * coherent for all users, we only allow a single cache level to be set
3824  * globally on the object and prevent it from being changed whilst the
3825  * hardware is reading from the object. That is if the object is currently
3826  * on the scanout it will be set to uncached (or equivalent display
3827  * cache coherency) and all non-MOCS GPU access will also be uncached so
3828  * that all direct access to the scanout remains coherent.
3829  */
3830 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3831                                     enum i915_cache_level cache_level)
3832 {
3833         struct drm_device *dev = obj->base.dev;
3834         struct i915_vma *vma, *next;
3835         bool bound = false;
3836         int ret = 0;
3837
3838         if (obj->cache_level == cache_level)
3839                 goto out;
3840
3841         /* Inspect the list of currently bound VMA and unbind any that would
3842          * be invalid given the new cache-level. This is principally to
3843          * catch the issue of the CS prefetch crossing page boundaries and
3844          * reading an invalid PTE on older architectures.
3845          */
3846         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3847                 if (!drm_mm_node_allocated(&vma->node))
3848                         continue;
3849
3850                 if (vma->pin_count) {
3851                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3852                         return -EBUSY;
3853                 }
3854
3855                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3856                         ret = i915_vma_unbind(vma);
3857                         if (ret)
3858                                 return ret;
3859                 } else
3860                         bound = true;
3861         }
3862
3863         /* We can reuse the existing drm_mm nodes but need to change the
3864          * cache-level on the PTE. We could simply unbind them all and
3865          * rebind with the correct cache-level on next use. However since
3866          * we already have a valid slot, dma mapping, pages etc, we may as
3867          * rewrite the PTE in the belief that doing so tramples upon less
3868          * state and so involves less work.
3869          */
3870         if (bound) {
3871                 /* Before we change the PTE, the GPU must not be accessing it.
3872                  * If we wait upon the object, we know that all the bound
3873                  * VMA are no longer active.
3874                  */
3875                 ret = i915_gem_object_wait_rendering(obj, false);
3876                 if (ret)
3877                         return ret;
3878
3879                 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3880                         /* Access to snoopable pages through the GTT is
3881                          * incoherent and on some machines causes a hard
3882                          * lockup. Relinquish the CPU mmaping to force
3883                          * userspace to refault in the pages and we can
3884                          * then double check if the GTT mapping is still
3885                          * valid for that pointer access.
3886                          */
3887                         i915_gem_release_mmap(obj);
3888
3889                         /* As we no longer need a fence for GTT access,
3890                          * we can relinquish it now (and so prevent having
3891                          * to steal a fence from someone else on the next
3892                          * fence request). Note GPU activity would have
3893                          * dropped the fence as all snoopable access is
3894                          * supposed to be linear.
3895                          */
3896                         ret = i915_gem_object_put_fence(obj);
3897                         if (ret)
3898                                 return ret;
3899                 } else {
3900                         /* We either have incoherent backing store and
3901                          * so no GTT access or the architecture is fully
3902                          * coherent. In such cases, existing GTT mmaps
3903                          * ignore the cache bit in the PTE and we can
3904                          * rewrite it without confusing the GPU or having
3905                          * to force userspace to fault back in its mmaps.
3906                          */
3907                 }
3908
3909                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3910                         if (!drm_mm_node_allocated(&vma->node))
3911                                 continue;
3912
3913                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3914                         if (ret)
3915                                 return ret;
3916                 }
3917         }
3918
3919         list_for_each_entry(vma, &obj->vma_list, obj_link)
3920                 vma->node.color = cache_level;
3921         obj->cache_level = cache_level;
3922
3923 out:
3924         /* Flush the dirty CPU caches to the backing storage so that the
3925          * object is now coherent at its new cache level (with respect
3926          * to the access domain).
3927          */
3928         if (obj->cache_dirty &&
3929             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3930             cpu_write_needs_clflush(obj)) {
3931                 if (i915_gem_clflush_object(obj, true))
3932                         i915_gem_chipset_flush(obj->base.dev);
3933         }
3934
3935         return 0;
3936 }
3937
3938 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3939                                struct drm_file *file)
3940 {
3941         struct drm_i915_gem_caching *args = data;
3942         struct drm_i915_gem_object *obj;
3943
3944         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
3945         if (&obj->base == NULL)
3946                 return -ENOENT;
3947
3948         switch (obj->cache_level) {
3949         case I915_CACHE_LLC:
3950         case I915_CACHE_L3_LLC:
3951                 args->caching = I915_CACHING_CACHED;
3952                 break;
3953
3954         case I915_CACHE_WT:
3955                 args->caching = I915_CACHING_DISPLAY;
3956                 break;
3957
3958         default:
3959                 args->caching = I915_CACHING_NONE;
3960                 break;
3961         }
3962
3963         drm_gem_object_unreference_unlocked(&obj->base);
3964         return 0;
3965 }
3966
3967 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3968                                struct drm_file *file)
3969 {
3970         struct drm_i915_private *dev_priv = dev->dev_private;
3971         struct drm_i915_gem_caching *args = data;
3972         struct drm_i915_gem_object *obj;
3973         enum i915_cache_level level;
3974         int ret;
3975
3976         switch (args->caching) {
3977         case I915_CACHING_NONE:
3978                 level = I915_CACHE_NONE;
3979                 break;
3980         case I915_CACHING_CACHED:
3981                 /*
3982                  * Due to a HW issue on BXT A stepping, GPU stores via a
3983                  * snooped mapping may leave stale data in a corresponding CPU
3984                  * cacheline, whereas normally such cachelines would get
3985                  * invalidated.
3986                  */
3987                 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3988                         return -ENODEV;
3989
3990                 level = I915_CACHE_LLC;
3991                 break;
3992         case I915_CACHING_DISPLAY:
3993                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3994                 break;
3995         default:
3996                 return -EINVAL;
3997         }
3998
3999         intel_runtime_pm_get(dev_priv);
4000
4001         ret = i915_mutex_lock_interruptible(dev);
4002         if (ret)
4003                 goto rpm_put;
4004
4005         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4006         if (&obj->base == NULL) {
4007                 ret = -ENOENT;
4008                 goto unlock;
4009         }
4010
4011         ret = i915_gem_object_set_cache_level(obj, level);
4012
4013         drm_gem_object_unreference(&obj->base);
4014 unlock:
4015         mutex_unlock(&dev->struct_mutex);
4016 rpm_put:
4017         intel_runtime_pm_put(dev_priv);
4018
4019         return ret;
4020 }
4021
4022 /*
4023  * Prepare buffer for display plane (scanout, cursors, etc).
4024  * Can be called from an uninterruptible phase (modesetting) and allows
4025  * any flushes to be pipelined (for pageflips).
4026  */
4027 int
4028 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4029                                      u32 alignment,
4030                                      const struct i915_ggtt_view *view)
4031 {
4032         u32 old_read_domains, old_write_domain;
4033         int ret;
4034
4035         /* Mark the pin_display early so that we account for the
4036          * display coherency whilst setting up the cache domains.
4037          */
4038         obj->pin_display++;
4039
4040         /* The display engine is not coherent with the LLC cache on gen6.  As
4041          * a result, we make sure that the pinning that is about to occur is
4042          * done with uncached PTEs. This is lowest common denominator for all
4043          * chipsets.
4044          *
4045          * However for gen6+, we could do better by using the GFDT bit instead
4046          * of uncaching, which would allow us to flush all the LLC-cached data
4047          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4048          */
4049         ret = i915_gem_object_set_cache_level(obj,
4050                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4051         if (ret)
4052                 goto err_unpin_display;
4053
4054         /* As the user may map the buffer once pinned in the display plane
4055          * (e.g. libkms for the bootup splash), we have to ensure that we
4056          * always use map_and_fenceable for all scanout buffers.
4057          */
4058         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4059                                        view->type == I915_GGTT_VIEW_NORMAL ?
4060                                        PIN_MAPPABLE : 0);
4061         if (ret)
4062                 goto err_unpin_display;
4063
4064         i915_gem_object_flush_cpu_write_domain(obj);
4065
4066         old_write_domain = obj->base.write_domain;
4067         old_read_domains = obj->base.read_domains;
4068
4069         /* It should now be out of any other write domains, and we can update
4070          * the domain values for our changes.
4071          */
4072         obj->base.write_domain = 0;
4073         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4074
4075         trace_i915_gem_object_change_domain(obj,
4076                                             old_read_domains,
4077                                             old_write_domain);
4078
4079         return 0;
4080
4081 err_unpin_display:
4082         obj->pin_display--;
4083         return ret;
4084 }
4085
4086 void
4087 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4088                                          const struct i915_ggtt_view *view)
4089 {
4090         if (WARN_ON(obj->pin_display == 0))
4091                 return;
4092
4093         i915_gem_object_ggtt_unpin_view(obj, view);
4094
4095         obj->pin_display--;
4096 }
4097
4098 /**
4099  * Moves a single object to the CPU read, and possibly write domain.
4100  *
4101  * This function returns when the move is complete, including waiting on
4102  * flushes to occur.
4103  */
4104 int
4105 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4106 {
4107         uint32_t old_write_domain, old_read_domains;
4108         int ret;
4109
4110         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4111                 return 0;
4112
4113         ret = i915_gem_object_wait_rendering(obj, !write);
4114         if (ret)
4115                 return ret;
4116
4117         i915_gem_object_flush_gtt_write_domain(obj);
4118
4119         old_write_domain = obj->base.write_domain;
4120         old_read_domains = obj->base.read_domains;
4121
4122         /* Flush the CPU cache if it's still invalid. */
4123         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4124                 i915_gem_clflush_object(obj, false);
4125
4126                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4127         }
4128
4129         /* It should now be out of any other write domains, and we can update
4130          * the domain values for our changes.
4131          */
4132         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4133
4134         /* If we're writing through the CPU, then the GPU read domains will
4135          * need to be invalidated at next use.
4136          */
4137         if (write) {
4138                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4139                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4140         }
4141
4142         trace_i915_gem_object_change_domain(obj,
4143                                             old_read_domains,
4144                                             old_write_domain);
4145
4146         return 0;
4147 }
4148
4149 /* Throttle our rendering by waiting until the ring has completed our requests
4150  * emitted over 20 msec ago.
4151  *
4152  * Note that if we were to use the current jiffies each time around the loop,
4153  * we wouldn't escape the function with any frames outstanding if the time to
4154  * render a frame was over 20ms.
4155  *
4156  * This should get us reasonable parallelism between CPU and GPU but also
4157  * relatively low latency when blocking on a particular request to finish.
4158  */
4159 static int
4160 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4161 {
4162         struct drm_i915_private *dev_priv = dev->dev_private;
4163         struct drm_i915_file_private *file_priv = file->driver_priv;
4164         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4165         struct drm_i915_gem_request *request, *target = NULL;
4166         int ret;
4167
4168         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4169         if (ret)
4170                 return ret;
4171
4172         /* ABI: return -EIO if already wedged */
4173         if (i915_terminally_wedged(&dev_priv->gpu_error))
4174                 return -EIO;
4175
4176         spin_lock(&file_priv->mm.lock);
4177         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4178                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4179                         break;
4180
4181                 /*
4182                  * Note that the request might not have been submitted yet.
4183                  * In which case emitted_jiffies will be zero.
4184                  */
4185                 if (!request->emitted_jiffies)
4186                         continue;
4187
4188                 target = request;
4189         }
4190         if (target)
4191                 i915_gem_request_reference(target);
4192         spin_unlock(&file_priv->mm.lock);
4193
4194         if (target == NULL)
4195                 return 0;
4196
4197         ret = __i915_wait_request(target, true, NULL, NULL);
4198         if (ret == 0)
4199                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4200
4201         i915_gem_request_unreference__unlocked(target);
4202
4203         return ret;
4204 }
4205
4206 static bool
4207 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4208 {
4209         struct drm_i915_gem_object *obj = vma->obj;
4210
4211         if (alignment &&
4212             vma->node.start & (alignment - 1))
4213                 return true;
4214
4215         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4216                 return true;
4217
4218         if (flags & PIN_OFFSET_BIAS &&
4219             vma->node.start < (flags & PIN_OFFSET_MASK))
4220                 return true;
4221
4222         if (flags & PIN_OFFSET_FIXED &&
4223             vma->node.start != (flags & PIN_OFFSET_MASK))
4224                 return true;
4225
4226         return false;
4227 }
4228
4229 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4230 {
4231         struct drm_i915_gem_object *obj = vma->obj;
4232         bool mappable, fenceable;
4233         u32 fence_size, fence_alignment;
4234
4235         fence_size = i915_gem_get_gtt_size(obj->base.dev,
4236                                            obj->base.size,
4237                                            obj->tiling_mode);
4238         fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4239                                                      obj->base.size,
4240                                                      obj->tiling_mode,
4241                                                      true);
4242
4243         fenceable = (vma->node.size == fence_size &&
4244                      (vma->node.start & (fence_alignment - 1)) == 0);
4245
4246         mappable = (vma->node.start + fence_size <=
4247                     to_i915(obj->base.dev)->ggtt.mappable_end);
4248
4249         obj->map_and_fenceable = mappable && fenceable;
4250 }
4251
4252 static int
4253 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4254                        struct i915_address_space *vm,
4255                        const struct i915_ggtt_view *ggtt_view,
4256                        uint32_t alignment,
4257                        uint64_t flags)
4258 {
4259         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4260         struct i915_vma *vma;
4261         unsigned bound;
4262         int ret;
4263
4264         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4265                 return -ENODEV;
4266
4267         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4268                 return -EINVAL;
4269
4270         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4271                 return -EINVAL;
4272
4273         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4274                 return -EINVAL;
4275
4276         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4277                           i915_gem_obj_to_vma(obj, vm);
4278
4279         if (vma) {
4280                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4281                         return -EBUSY;
4282
4283                 if (i915_vma_misplaced(vma, alignment, flags)) {
4284                         WARN(vma->pin_count,
4285                              "bo is already pinned in %s with incorrect alignment:"
4286                              " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4287                              " obj->map_and_fenceable=%d\n",
4288                              ggtt_view ? "ggtt" : "ppgtt",
4289                              upper_32_bits(vma->node.start),
4290                              lower_32_bits(vma->node.start),
4291                              alignment,
4292                              !!(flags & PIN_MAPPABLE),
4293                              obj->map_and_fenceable);
4294                         ret = i915_vma_unbind(vma);
4295                         if (ret)
4296                                 return ret;
4297
4298                         vma = NULL;
4299                 }
4300         }
4301
4302         bound = vma ? vma->bound : 0;
4303         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4304                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4305                                                  flags);
4306                 if (IS_ERR(vma))
4307                         return PTR_ERR(vma);
4308         } else {
4309                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4310                 if (ret)
4311                         return ret;
4312         }
4313
4314         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4315             (bound ^ vma->bound) & GLOBAL_BIND) {
4316                 __i915_vma_set_map_and_fenceable(vma);
4317                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4318         }
4319
4320         vma->pin_count++;
4321         return 0;
4322 }
4323
4324 int
4325 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4326                     struct i915_address_space *vm,
4327                     uint32_t alignment,
4328                     uint64_t flags)
4329 {
4330         return i915_gem_object_do_pin(obj, vm,
4331                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4332                                       alignment, flags);
4333 }
4334
4335 int
4336 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4337                          const struct i915_ggtt_view *view,
4338                          uint32_t alignment,
4339                          uint64_t flags)
4340 {
4341         struct drm_device *dev = obj->base.dev;
4342         struct drm_i915_private *dev_priv = to_i915(dev);
4343         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4344
4345         BUG_ON(!view);
4346
4347         return i915_gem_object_do_pin(obj, &ggtt->base, view,
4348                                       alignment, flags | PIN_GLOBAL);
4349 }
4350
4351 void
4352 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4353                                 const struct i915_ggtt_view *view)
4354 {
4355         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4356
4357         WARN_ON(vma->pin_count == 0);
4358         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4359
4360         --vma->pin_count;
4361 }
4362
4363 int
4364 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4365                     struct drm_file *file)
4366 {
4367         struct drm_i915_gem_busy *args = data;
4368         struct drm_i915_gem_object *obj;
4369         int ret;
4370
4371         ret = i915_mutex_lock_interruptible(dev);
4372         if (ret)
4373                 return ret;
4374
4375         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4376         if (&obj->base == NULL) {
4377                 ret = -ENOENT;
4378                 goto unlock;
4379         }
4380
4381         /* Count all active objects as busy, even if they are currently not used
4382          * by the gpu. Users of this interface expect objects to eventually
4383          * become non-busy without any further actions, therefore emit any
4384          * necessary flushes here.
4385          */
4386         ret = i915_gem_object_flush_active(obj);
4387         if (ret)
4388                 goto unref;
4389
4390         args->busy = 0;
4391         if (obj->active) {
4392                 int i;
4393
4394                 for (i = 0; i < I915_NUM_ENGINES; i++) {
4395                         struct drm_i915_gem_request *req;
4396
4397                         req = obj->last_read_req[i];
4398                         if (req)
4399                                 args->busy |= 1 << (16 + req->engine->exec_id);
4400                 }
4401                 if (obj->last_write_req)
4402                         args->busy |= obj->last_write_req->engine->exec_id;
4403         }
4404
4405 unref:
4406         drm_gem_object_unreference(&obj->base);
4407 unlock:
4408         mutex_unlock(&dev->struct_mutex);
4409         return ret;
4410 }
4411
4412 int
4413 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4414                         struct drm_file *file_priv)
4415 {
4416         return i915_gem_ring_throttle(dev, file_priv);
4417 }
4418
4419 int
4420 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4421                        struct drm_file *file_priv)
4422 {
4423         struct drm_i915_private *dev_priv = dev->dev_private;
4424         struct drm_i915_gem_madvise *args = data;
4425         struct drm_i915_gem_object *obj;
4426         int ret;
4427
4428         switch (args->madv) {
4429         case I915_MADV_DONTNEED:
4430         case I915_MADV_WILLNEED:
4431             break;
4432         default:
4433             return -EINVAL;
4434         }
4435
4436         ret = i915_mutex_lock_interruptible(dev);
4437         if (ret)
4438                 return ret;
4439
4440         obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4441         if (&obj->base == NULL) {
4442                 ret = -ENOENT;
4443                 goto unlock;
4444         }
4445
4446         if (i915_gem_obj_is_pinned(obj)) {
4447                 ret = -EINVAL;
4448                 goto out;
4449         }
4450
4451         if (obj->pages &&
4452             obj->tiling_mode != I915_TILING_NONE &&
4453             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4454                 if (obj->madv == I915_MADV_WILLNEED)
4455                         i915_gem_object_unpin_pages(obj);
4456                 if (args->madv == I915_MADV_WILLNEED)
4457                         i915_gem_object_pin_pages(obj);
4458         }
4459
4460         if (obj->madv != __I915_MADV_PURGED)
4461                 obj->madv = args->madv;
4462
4463         /* if the object is no longer attached, discard its backing storage */
4464         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4465                 i915_gem_object_truncate(obj);
4466
4467         args->retained = obj->madv != __I915_MADV_PURGED;
4468
4469 out:
4470         drm_gem_object_unreference(&obj->base);
4471 unlock:
4472         mutex_unlock(&dev->struct_mutex);
4473         return ret;
4474 }
4475
4476 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4477                           const struct drm_i915_gem_object_ops *ops)
4478 {
4479         int i;
4480
4481         INIT_LIST_HEAD(&obj->global_list);
4482         for (i = 0; i < I915_NUM_ENGINES; i++)
4483                 INIT_LIST_HEAD(&obj->engine_list[i]);
4484         INIT_LIST_HEAD(&obj->obj_exec_link);
4485         INIT_LIST_HEAD(&obj->vma_list);
4486         INIT_LIST_HEAD(&obj->batch_pool_link);
4487
4488         obj->ops = ops;
4489
4490         obj->fence_reg = I915_FENCE_REG_NONE;
4491         obj->madv = I915_MADV_WILLNEED;
4492
4493         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4494 }
4495
4496 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4497         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4498         .get_pages = i915_gem_object_get_pages_gtt,
4499         .put_pages = i915_gem_object_put_pages_gtt,
4500 };
4501
4502 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4503                                                   size_t size)
4504 {
4505         struct drm_i915_gem_object *obj;
4506         struct address_space *mapping;
4507         gfp_t mask;
4508
4509         obj = i915_gem_object_alloc(dev);
4510         if (obj == NULL)
4511                 return NULL;
4512
4513         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4514                 i915_gem_object_free(obj);
4515                 return NULL;
4516         }
4517
4518         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4519         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4520                 /* 965gm cannot relocate objects above 4GiB. */
4521                 mask &= ~__GFP_HIGHMEM;
4522                 mask |= __GFP_DMA32;
4523         }
4524
4525         mapping = file_inode(obj->base.filp)->i_mapping;
4526         mapping_set_gfp_mask(mapping, mask);
4527
4528         i915_gem_object_init(obj, &i915_gem_object_ops);
4529
4530         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4531         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4532
4533         if (HAS_LLC(dev)) {
4534                 /* On some devices, we can have the GPU use the LLC (the CPU
4535                  * cache) for about a 10% performance improvement
4536                  * compared to uncached.  Graphics requests other than
4537                  * display scanout are coherent with the CPU in
4538                  * accessing this cache.  This means in this mode we
4539                  * don't need to clflush on the CPU side, and on the
4540                  * GPU side we only need to flush internal caches to
4541                  * get data visible to the CPU.
4542                  *
4543                  * However, we maintain the display planes as UC, and so
4544                  * need to rebind when first used as such.
4545                  */
4546                 obj->cache_level = I915_CACHE_LLC;
4547         } else
4548                 obj->cache_level = I915_CACHE_NONE;
4549
4550         trace_i915_gem_object_create(obj);
4551
4552         return obj;
4553 }
4554
4555 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4556 {
4557         /* If we are the last user of the backing storage (be it shmemfs
4558          * pages or stolen etc), we know that the pages are going to be
4559          * immediately released. In this case, we can then skip copying
4560          * back the contents from the GPU.
4561          */
4562
4563         if (obj->madv != I915_MADV_WILLNEED)
4564                 return false;
4565
4566         if (obj->base.filp == NULL)
4567                 return true;
4568
4569         /* At first glance, this looks racy, but then again so would be
4570          * userspace racing mmap against close. However, the first external
4571          * reference to the filp can only be obtained through the
4572          * i915_gem_mmap_ioctl() which safeguards us against the user
4573          * acquiring such a reference whilst we are in the middle of
4574          * freeing the object.
4575          */
4576         return atomic_long_read(&obj->base.filp->f_count) == 1;
4577 }
4578
4579 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4580 {
4581         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4582         struct drm_device *dev = obj->base.dev;
4583         struct drm_i915_private *dev_priv = dev->dev_private;
4584         struct i915_vma *vma, *next;
4585
4586         intel_runtime_pm_get(dev_priv);
4587
4588         trace_i915_gem_object_destroy(obj);
4589
4590         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4591                 int ret;
4592
4593                 vma->pin_count = 0;
4594                 ret = i915_vma_unbind(vma);
4595                 if (WARN_ON(ret == -ERESTARTSYS)) {
4596                         bool was_interruptible;
4597
4598                         was_interruptible = dev_priv->mm.interruptible;
4599                         dev_priv->mm.interruptible = false;
4600
4601                         WARN_ON(i915_vma_unbind(vma));
4602
4603                         dev_priv->mm.interruptible = was_interruptible;
4604                 }
4605         }
4606
4607         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4608          * before progressing. */
4609         if (obj->stolen)
4610                 i915_gem_object_unpin_pages(obj);
4611
4612         WARN_ON(obj->frontbuffer_bits);
4613
4614         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4615             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4616             obj->tiling_mode != I915_TILING_NONE)
4617                 i915_gem_object_unpin_pages(obj);
4618
4619         if (WARN_ON(obj->pages_pin_count))
4620                 obj->pages_pin_count = 0;
4621         if (discard_backing_storage(obj))
4622                 obj->madv = I915_MADV_DONTNEED;
4623         i915_gem_object_put_pages(obj);
4624         i915_gem_object_free_mmap_offset(obj);
4625
4626         BUG_ON(obj->pages);
4627
4628         if (obj->base.import_attach)
4629                 drm_prime_gem_destroy(&obj->base, NULL);
4630
4631         if (obj->ops->release)
4632                 obj->ops->release(obj);
4633
4634         drm_gem_object_release(&obj->base);
4635         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4636
4637         kfree(obj->bit_17);
4638         i915_gem_object_free(obj);
4639
4640         intel_runtime_pm_put(dev_priv);
4641 }
4642
4643 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4644                                      struct i915_address_space *vm)
4645 {
4646         struct i915_vma *vma;
4647         list_for_each_entry(vma, &obj->vma_list, obj_link) {
4648                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4649                     vma->vm == vm)
4650                         return vma;
4651         }
4652         return NULL;
4653 }
4654
4655 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4656                                            const struct i915_ggtt_view *view)
4657 {
4658         struct drm_device *dev = obj->base.dev;
4659         struct drm_i915_private *dev_priv = to_i915(dev);
4660         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4661         struct i915_vma *vma;
4662
4663         BUG_ON(!view);
4664
4665         list_for_each_entry(vma, &obj->vma_list, obj_link)
4666                 if (vma->vm == &ggtt->base &&
4667                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4668                         return vma;
4669         return NULL;
4670 }
4671
4672 void i915_gem_vma_destroy(struct i915_vma *vma)
4673 {
4674         WARN_ON(vma->node.allocated);
4675
4676         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4677         if (!list_empty(&vma->exec_list))
4678                 return;
4679
4680         if (!vma->is_ggtt)
4681                 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4682
4683         list_del(&vma->obj_link);
4684
4685         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4686 }
4687
4688 static void
4689 i915_gem_stop_engines(struct drm_device *dev)
4690 {
4691         struct drm_i915_private *dev_priv = dev->dev_private;
4692         struct intel_engine_cs *engine;
4693
4694         for_each_engine(engine, dev_priv)
4695                 dev_priv->gt.stop_engine(engine);
4696 }
4697
4698 int
4699 i915_gem_suspend(struct drm_device *dev)
4700 {
4701         struct drm_i915_private *dev_priv = dev->dev_private;
4702         int ret = 0;
4703
4704         mutex_lock(&dev->struct_mutex);
4705         ret = i915_gpu_idle(dev);
4706         if (ret)
4707                 goto err;
4708
4709         i915_gem_retire_requests(dev);
4710
4711         i915_gem_stop_engines(dev);
4712         mutex_unlock(&dev->struct_mutex);
4713
4714         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4715         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4716         flush_delayed_work(&dev_priv->mm.idle_work);
4717
4718         /* Assert that we sucessfully flushed all the work and
4719          * reset the GPU back to its idle, low power state.
4720          */
4721         WARN_ON(dev_priv->mm.busy);
4722
4723         return 0;
4724
4725 err:
4726         mutex_unlock(&dev->struct_mutex);
4727         return ret;
4728 }
4729
4730 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4731 {
4732         struct intel_engine_cs *engine = req->engine;
4733         struct drm_device *dev = engine->dev;
4734         struct drm_i915_private *dev_priv = dev->dev_private;
4735         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4736         int i, ret;
4737
4738         if (!HAS_L3_DPF(dev) || !remap_info)
4739                 return 0;
4740
4741         ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4742         if (ret)
4743                 return ret;
4744
4745         /*
4746          * Note: We do not worry about the concurrent register cacheline hang
4747          * here because no other code should access these registers other than
4748          * at initialization time.
4749          */
4750         for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4751                 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
4752                 intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
4753                 intel_ring_emit(engine, remap_info[i]);
4754         }
4755
4756         intel_ring_advance(engine);
4757
4758         return ret;
4759 }
4760
4761 void i915_gem_init_swizzling(struct drm_device *dev)
4762 {
4763         struct drm_i915_private *dev_priv = dev->dev_private;
4764
4765         if (INTEL_INFO(dev)->gen < 5 ||
4766             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4767                 return;
4768
4769         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4770                                  DISP_TILE_SURFACE_SWIZZLING);
4771
4772         if (IS_GEN5(dev))
4773                 return;
4774
4775         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4776         if (IS_GEN6(dev))
4777                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4778         else if (IS_GEN7(dev))
4779                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4780         else if (IS_GEN8(dev))
4781                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4782         else
4783                 BUG();
4784 }
4785
4786 static void init_unused_ring(struct drm_device *dev, u32 base)
4787 {
4788         struct drm_i915_private *dev_priv = dev->dev_private;
4789
4790         I915_WRITE(RING_CTL(base), 0);
4791         I915_WRITE(RING_HEAD(base), 0);
4792         I915_WRITE(RING_TAIL(base), 0);
4793         I915_WRITE(RING_START(base), 0);
4794 }
4795
4796 static void init_unused_rings(struct drm_device *dev)
4797 {
4798         if (IS_I830(dev)) {
4799                 init_unused_ring(dev, PRB1_BASE);
4800                 init_unused_ring(dev, SRB0_BASE);
4801                 init_unused_ring(dev, SRB1_BASE);
4802                 init_unused_ring(dev, SRB2_BASE);
4803                 init_unused_ring(dev, SRB3_BASE);
4804         } else if (IS_GEN2(dev)) {
4805                 init_unused_ring(dev, SRB0_BASE);
4806                 init_unused_ring(dev, SRB1_BASE);
4807         } else if (IS_GEN3(dev)) {
4808                 init_unused_ring(dev, PRB1_BASE);
4809                 init_unused_ring(dev, PRB2_BASE);
4810         }
4811 }
4812
4813 int i915_gem_init_engines(struct drm_device *dev)
4814 {
4815         struct drm_i915_private *dev_priv = dev->dev_private;
4816         int ret;
4817
4818         ret = intel_init_render_ring_buffer(dev);
4819         if (ret)
4820                 return ret;
4821
4822         if (HAS_BSD(dev)) {
4823                 ret = intel_init_bsd_ring_buffer(dev);
4824                 if (ret)
4825                         goto cleanup_render_ring;
4826         }
4827
4828         if (HAS_BLT(dev)) {
4829                 ret = intel_init_blt_ring_buffer(dev);
4830                 if (ret)
4831                         goto cleanup_bsd_ring;
4832         }
4833
4834         if (HAS_VEBOX(dev)) {
4835                 ret = intel_init_vebox_ring_buffer(dev);
4836                 if (ret)
4837                         goto cleanup_blt_ring;
4838         }
4839
4840         if (HAS_BSD2(dev)) {
4841                 ret = intel_init_bsd2_ring_buffer(dev);
4842                 if (ret)
4843                         goto cleanup_vebox_ring;
4844         }
4845
4846         return 0;
4847
4848 cleanup_vebox_ring:
4849         intel_cleanup_engine(&dev_priv->engine[VECS]);
4850 cleanup_blt_ring:
4851         intel_cleanup_engine(&dev_priv->engine[BCS]);
4852 cleanup_bsd_ring:
4853         intel_cleanup_engine(&dev_priv->engine[VCS]);
4854 cleanup_render_ring:
4855         intel_cleanup_engine(&dev_priv->engine[RCS]);
4856
4857         return ret;
4858 }
4859
4860 int
4861 i915_gem_init_hw(struct drm_device *dev)
4862 {
4863         struct drm_i915_private *dev_priv = dev->dev_private;
4864         struct intel_engine_cs *engine;
4865         int ret, j;
4866
4867         /* Double layer security blanket, see i915_gem_init() */
4868         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4869
4870         if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4871                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4872
4873         if (IS_HASWELL(dev))
4874                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4875                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4876
4877         if (HAS_PCH_NOP(dev)) {
4878                 if (IS_IVYBRIDGE(dev)) {
4879                         u32 temp = I915_READ(GEN7_MSG_CTL);
4880                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4881                         I915_WRITE(GEN7_MSG_CTL, temp);
4882                 } else if (INTEL_INFO(dev)->gen >= 7) {
4883                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4884                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4885                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4886                 }
4887         }
4888
4889         i915_gem_init_swizzling(dev);
4890
4891         /*
4892          * At least 830 can leave some of the unused rings
4893          * "active" (ie. head != tail) after resume which
4894          * will prevent c3 entry. Makes sure all unused rings
4895          * are totally idle.
4896          */
4897         init_unused_rings(dev);
4898
4899         BUG_ON(!dev_priv->kernel_context);
4900
4901         ret = i915_ppgtt_init_hw(dev);
4902         if (ret) {
4903                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4904                 goto out;
4905         }
4906
4907         /* Need to do basic initialisation of all rings first: */
4908         for_each_engine(engine, dev_priv) {
4909                 ret = engine->init_hw(engine);
4910                 if (ret)
4911                         goto out;
4912         }
4913
4914         intel_mocs_init_l3cc_table(dev);
4915
4916         /* We can't enable contexts until all firmware is loaded */
4917         if (HAS_GUC_UCODE(dev)) {
4918                 ret = intel_guc_ucode_load(dev);
4919                 if (ret) {
4920                         DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4921                         ret = -EIO;
4922                         goto out;
4923                 }
4924         }
4925
4926         /*
4927          * Increment the next seqno by 0x100 so we have a visible break
4928          * on re-initialisation
4929          */
4930         ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4931         if (ret)
4932                 goto out;
4933
4934         /* Now it is safe to go back round and do everything else: */
4935         for_each_engine(engine, dev_priv) {
4936                 struct drm_i915_gem_request *req;
4937
4938                 req = i915_gem_request_alloc(engine, NULL);
4939                 if (IS_ERR(req)) {
4940                         ret = PTR_ERR(req);
4941                         break;
4942                 }
4943
4944                 if (engine->id == RCS) {
4945                         for (j = 0; j < NUM_L3_SLICES(dev); j++) {
4946                                 ret = i915_gem_l3_remap(req, j);
4947                                 if (ret)
4948                                         goto err_request;
4949                         }
4950                 }
4951
4952                 ret = i915_ppgtt_init_ring(req);
4953                 if (ret)
4954                         goto err_request;
4955
4956                 ret = i915_gem_context_enable(req);
4957                 if (ret)
4958                         goto err_request;
4959
4960 err_request:
4961                 i915_add_request_no_flush(req);
4962                 if (ret) {
4963                         DRM_ERROR("Failed to enable %s, error=%d\n",
4964                                   engine->name, ret);
4965                         i915_gem_cleanup_engines(dev);
4966                         break;
4967                 }
4968         }
4969
4970 out:
4971         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4972         return ret;
4973 }
4974
4975 int i915_gem_init(struct drm_device *dev)
4976 {
4977         struct drm_i915_private *dev_priv = dev->dev_private;
4978         int ret;
4979
4980         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4981                         i915.enable_execlists);
4982
4983         mutex_lock(&dev->struct_mutex);
4984
4985         if (!i915.enable_execlists) {
4986                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4987                 dev_priv->gt.init_engines = i915_gem_init_engines;
4988                 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4989                 dev_priv->gt.stop_engine = intel_stop_engine;
4990         } else {
4991                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4992                 dev_priv->gt.init_engines = intel_logical_rings_init;
4993                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4994                 dev_priv->gt.stop_engine = intel_logical_ring_stop;
4995         }
4996
4997         /* This is just a security blanket to placate dragons.
4998          * On some systems, we very sporadically observe that the first TLBs
4999          * used by the CS may be stale, despite us poking the TLB reset. If
5000          * we hold the forcewake during initialisation these problems
5001          * just magically go away.
5002          */
5003         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5004
5005         ret = i915_gem_init_userptr(dev);
5006         if (ret)
5007                 goto out_unlock;
5008
5009         i915_gem_init_ggtt(dev);
5010
5011         ret = i915_gem_context_init(dev);
5012         if (ret)
5013                 goto out_unlock;
5014
5015         ret = dev_priv->gt.init_engines(dev);
5016         if (ret)
5017                 goto out_unlock;
5018
5019         ret = i915_gem_init_hw(dev);
5020         if (ret == -EIO) {
5021                 /* Allow ring initialisation to fail by marking the GPU as
5022                  * wedged. But we only want to do this where the GPU is angry,
5023                  * for all other failure, such as an allocation failure, bail.
5024                  */
5025                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5026                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5027                 ret = 0;
5028         }
5029
5030 out_unlock:
5031         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5032         mutex_unlock(&dev->struct_mutex);
5033
5034         return ret;
5035 }
5036
5037 void
5038 i915_gem_cleanup_engines(struct drm_device *dev)
5039 {
5040         struct drm_i915_private *dev_priv = dev->dev_private;
5041         struct intel_engine_cs *engine;
5042
5043         for_each_engine(engine, dev_priv)
5044                 dev_priv->gt.cleanup_engine(engine);
5045
5046         if (i915.enable_execlists)
5047                 /*
5048                  * Neither the BIOS, ourselves or any other kernel
5049                  * expects the system to be in execlists mode on startup,
5050                  * so we need to reset the GPU back to legacy mode.
5051                  */
5052                 intel_gpu_reset(dev, ALL_ENGINES);
5053 }
5054
5055 static void
5056 init_engine_lists(struct intel_engine_cs *engine)
5057 {
5058         INIT_LIST_HEAD(&engine->active_list);
5059         INIT_LIST_HEAD(&engine->request_list);
5060 }
5061
5062 void
5063 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5064 {
5065         struct drm_device *dev = dev_priv->dev;
5066
5067         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5068             !IS_CHERRYVIEW(dev_priv))
5069                 dev_priv->num_fence_regs = 32;
5070         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5071                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
5072                 dev_priv->num_fence_regs = 16;
5073         else
5074                 dev_priv->num_fence_regs = 8;
5075
5076         if (intel_vgpu_active(dev))
5077                 dev_priv->num_fence_regs =
5078                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5079
5080         /* Initialize fence registers to zero */
5081         i915_gem_restore_fences(dev);
5082
5083         i915_gem_detect_bit_6_swizzle(dev);
5084 }
5085
5086 void
5087 i915_gem_load_init(struct drm_device *dev)
5088 {
5089         struct drm_i915_private *dev_priv = dev->dev_private;
5090         int i;
5091
5092         dev_priv->objects =
5093                 kmem_cache_create("i915_gem_object",
5094                                   sizeof(struct drm_i915_gem_object), 0,
5095                                   SLAB_HWCACHE_ALIGN,
5096                                   NULL);
5097         dev_priv->vmas =
5098                 kmem_cache_create("i915_gem_vma",
5099                                   sizeof(struct i915_vma), 0,
5100                                   SLAB_HWCACHE_ALIGN,
5101                                   NULL);
5102         dev_priv->requests =
5103                 kmem_cache_create("i915_gem_request",
5104                                   sizeof(struct drm_i915_gem_request), 0,
5105                                   SLAB_HWCACHE_ALIGN,
5106                                   NULL);
5107
5108         INIT_LIST_HEAD(&dev_priv->vm_list);
5109         INIT_LIST_HEAD(&dev_priv->context_list);
5110         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5111         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5112         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5113         for (i = 0; i < I915_NUM_ENGINES; i++)
5114                 init_engine_lists(&dev_priv->engine[i]);
5115         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5116                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5117         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5118                           i915_gem_retire_work_handler);
5119         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5120                           i915_gem_idle_work_handler);
5121         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5122
5123         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5124
5125         /*
5126          * Set initial sequence number for requests.
5127          * Using this number allows the wraparound to happen early,
5128          * catching any obvious problems.
5129          */
5130         dev_priv->next_seqno = ((u32)~0 - 0x1100);
5131         dev_priv->last_seqno = ((u32)~0 - 0x1101);
5132
5133         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5134
5135         init_waitqueue_head(&dev_priv->pending_flip_queue);
5136
5137         dev_priv->mm.interruptible = true;
5138
5139         mutex_init(&dev_priv->fb_tracking.lock);
5140 }
5141
5142 void i915_gem_load_cleanup(struct drm_device *dev)
5143 {
5144         struct drm_i915_private *dev_priv = to_i915(dev);
5145
5146         kmem_cache_destroy(dev_priv->requests);
5147         kmem_cache_destroy(dev_priv->vmas);
5148         kmem_cache_destroy(dev_priv->objects);
5149 }
5150
5151 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5152 {
5153         struct drm_i915_file_private *file_priv = file->driver_priv;
5154
5155         /* Clean up our request list when the client is going away, so that
5156          * later retire_requests won't dereference our soon-to-be-gone
5157          * file_priv.
5158          */
5159         spin_lock(&file_priv->mm.lock);
5160         while (!list_empty(&file_priv->mm.request_list)) {
5161                 struct drm_i915_gem_request *request;
5162
5163                 request = list_first_entry(&file_priv->mm.request_list,
5164                                            struct drm_i915_gem_request,
5165                                            client_list);
5166                 list_del(&request->client_list);
5167                 request->file_priv = NULL;
5168         }
5169         spin_unlock(&file_priv->mm.lock);
5170
5171         if (!list_empty(&file_priv->rps.link)) {
5172                 spin_lock(&to_i915(dev)->rps.client_lock);
5173                 list_del(&file_priv->rps.link);
5174                 spin_unlock(&to_i915(dev)->rps.client_lock);
5175         }
5176 }
5177
5178 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5179 {
5180         struct drm_i915_file_private *file_priv;
5181         int ret;
5182
5183         DRM_DEBUG_DRIVER("\n");
5184
5185         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5186         if (!file_priv)
5187                 return -ENOMEM;
5188
5189         file->driver_priv = file_priv;
5190         file_priv->dev_priv = dev->dev_private;
5191         file_priv->file = file;
5192         INIT_LIST_HEAD(&file_priv->rps.link);
5193
5194         spin_lock_init(&file_priv->mm.lock);
5195         INIT_LIST_HEAD(&file_priv->mm.request_list);
5196
5197         file_priv->bsd_ring = -1;
5198
5199         ret = i915_gem_context_open(dev, file);
5200         if (ret)
5201                 kfree(file_priv);
5202
5203         return ret;
5204 }
5205
5206 /**
5207  * i915_gem_track_fb - update frontbuffer tracking
5208  * @old: current GEM buffer for the frontbuffer slots
5209  * @new: new GEM buffer for the frontbuffer slots
5210  * @frontbuffer_bits: bitmask of frontbuffer slots
5211  *
5212  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5213  * from @old and setting them in @new. Both @old and @new can be NULL.
5214  */
5215 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5216                        struct drm_i915_gem_object *new,
5217                        unsigned frontbuffer_bits)
5218 {
5219         if (old) {
5220                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5221                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5222                 old->frontbuffer_bits &= ~frontbuffer_bits;
5223         }
5224
5225         if (new) {
5226                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5227                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5228                 new->frontbuffer_bits |= frontbuffer_bits;
5229         }
5230 }
5231
5232 /* All the new VM stuff */
5233 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5234                         struct i915_address_space *vm)
5235 {
5236         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5237         struct i915_vma *vma;
5238
5239         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5240
5241         list_for_each_entry(vma, &o->vma_list, obj_link) {
5242                 if (vma->is_ggtt &&
5243                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5244                         continue;
5245                 if (vma->vm == vm)
5246                         return vma->node.start;
5247         }
5248
5249         WARN(1, "%s vma for this object not found.\n",
5250              i915_is_ggtt(vm) ? "global" : "ppgtt");
5251         return -1;
5252 }
5253
5254 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5255                                   const struct i915_ggtt_view *view)
5256 {
5257         struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5258         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5259         struct i915_vma *vma;
5260
5261         list_for_each_entry(vma, &o->vma_list, obj_link)
5262                 if (vma->vm == &ggtt->base &&
5263                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5264                         return vma->node.start;
5265
5266         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5267         return -1;
5268 }
5269
5270 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5271                         struct i915_address_space *vm)
5272 {
5273         struct i915_vma *vma;
5274
5275         list_for_each_entry(vma, &o->vma_list, obj_link) {
5276                 if (vma->is_ggtt &&
5277                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5278                         continue;
5279                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5280                         return true;
5281         }
5282
5283         return false;
5284 }
5285
5286 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5287                                   const struct i915_ggtt_view *view)
5288 {
5289         struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5290         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5291         struct i915_vma *vma;
5292
5293         list_for_each_entry(vma, &o->vma_list, obj_link)
5294                 if (vma->vm == &ggtt->base &&
5295                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5296                     drm_mm_node_allocated(&vma->node))
5297                         return true;
5298
5299         return false;
5300 }
5301
5302 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5303 {
5304         struct i915_vma *vma;
5305
5306         list_for_each_entry(vma, &o->vma_list, obj_link)
5307                 if (drm_mm_node_allocated(&vma->node))
5308                         return true;
5309
5310         return false;
5311 }
5312
5313 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5314                                 struct i915_address_space *vm)
5315 {
5316         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5317         struct i915_vma *vma;
5318
5319         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5320
5321         BUG_ON(list_empty(&o->vma_list));
5322
5323         list_for_each_entry(vma, &o->vma_list, obj_link) {
5324                 if (vma->is_ggtt &&
5325                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5326                         continue;
5327                 if (vma->vm == vm)
5328                         return vma->node.size;
5329         }
5330         return 0;
5331 }
5332
5333 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5334 {
5335         struct i915_vma *vma;
5336         list_for_each_entry(vma, &obj->vma_list, obj_link)
5337                 if (vma->pin_count > 0)
5338                         return true;
5339
5340         return false;
5341 }
5342
5343 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5344 struct page *
5345 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5346 {
5347         struct page *page;
5348
5349         /* Only default objects have per-page dirty tracking */
5350         if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5351                 return NULL;
5352
5353         page = i915_gem_object_get_page(obj, n);
5354         set_page_dirty(page);
5355         return page;
5356 }
5357
5358 /* Allocate a new GEM object and fill it with the supplied data */
5359 struct drm_i915_gem_object *
5360 i915_gem_object_create_from_data(struct drm_device *dev,
5361                                  const void *data, size_t size)
5362 {
5363         struct drm_i915_gem_object *obj;
5364         struct sg_table *sg;
5365         size_t bytes;
5366         int ret;
5367
5368         obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5369         if (IS_ERR_OR_NULL(obj))
5370                 return obj;
5371
5372         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5373         if (ret)
5374                 goto fail;
5375
5376         ret = i915_gem_object_get_pages(obj);
5377         if (ret)
5378                 goto fail;
5379
5380         i915_gem_object_pin_pages(obj);
5381         sg = obj->pages;
5382         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5383         obj->dirty = 1;         /* Backing store is now out of date */
5384         i915_gem_object_unpin_pages(obj);
5385
5386         if (WARN_ON(bytes != size)) {
5387                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5388                 ret = -EFAULT;
5389                 goto fail;
5390         }
5391
5392         return obj;
5393
5394 fail:
5395         drm_gem_object_unreference(&obj->base);
5396         return ERR_PTR(ret);
5397 }