Merge tag 'mac80211-for-john-2014-11-04' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43                                                    bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46                                bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57                                              struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59                                             struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61                                  unsigned long event,
62                                  void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66                                   enum i915_cache_level level)
67 {
68         return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74                 return true;
75
76         return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81         if (obj->tiling_mode)
82                 i915_gem_release_mmap(obj);
83
84         /* As we do not have an associated fence register, we will force
85          * a tiling change if we ever need to acquire one.
86          */
87         obj->fence_dirty = false;
88         obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93                                   size_t size)
94 {
95         spin_lock(&dev_priv->mm.object_stat_lock);
96         dev_priv->mm.object_count++;
97         dev_priv->mm.object_memory += size;
98         spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102                                      size_t size)
103 {
104         spin_lock(&dev_priv->mm.object_stat_lock);
105         dev_priv->mm.object_count--;
106         dev_priv->mm.object_memory -= size;
107         spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113         int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116                    i915_terminally_wedged(error))
117         if (EXIT_COND)
118                 return 0;
119
120         /*
121          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122          * userspace. If it takes that long something really bad is going on and
123          * we should simply try to bail out and fail as gracefully as possible.
124          */
125         ret = wait_event_interruptible_timeout(error->reset_queue,
126                                                EXIT_COND,
127                                                10*HZ);
128         if (ret == 0) {
129                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130                 return -EIO;
131         } else if (ret < 0) {
132                 return ret;
133         }
134 #undef EXIT_COND
135
136         return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141         struct drm_i915_private *dev_priv = dev->dev_private;
142         int ret;
143
144         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145         if (ret)
146                 return ret;
147
148         ret = mutex_lock_interruptible(&dev->struct_mutex);
149         if (ret)
150                 return ret;
151
152         WARN_ON(i915_verify_lists(dev));
153         return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159         return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_init_ioctl(struct drm_device *dev, void *data,
164                     struct drm_file *file)
165 {
166         struct drm_i915_private *dev_priv = dev->dev_private;
167         struct drm_i915_gem_init *args = data;
168
169         if (drm_core_check_feature(dev, DRIVER_MODESET))
170                 return -ENODEV;
171
172         if (args->gtt_start >= args->gtt_end ||
173             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174                 return -EINVAL;
175
176         /* GEM with user mode setting was never supported on ilk and later. */
177         if (INTEL_INFO(dev)->gen >= 5)
178                 return -ENODEV;
179
180         mutex_lock(&dev->struct_mutex);
181         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182                                   args->gtt_end);
183         dev_priv->gtt.mappable_end = args->gtt_end;
184         mutex_unlock(&dev->struct_mutex);
185
186         return 0;
187 }
188
189 int
190 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
191                             struct drm_file *file)
192 {
193         struct drm_i915_private *dev_priv = dev->dev_private;
194         struct drm_i915_gem_get_aperture *args = data;
195         struct drm_i915_gem_object *obj;
196         size_t pinned;
197
198         pinned = 0;
199         mutex_lock(&dev->struct_mutex);
200         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
201                 if (i915_gem_obj_is_pinned(obj))
202                         pinned += i915_gem_obj_ggtt_size(obj);
203         mutex_unlock(&dev->struct_mutex);
204
205         args->aper_size = dev_priv->gtt.base.total;
206         args->aper_available_size = args->aper_size - pinned;
207
208         return 0;
209 }
210
211 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
212 {
213         drm_dma_handle_t *phys = obj->phys_handle;
214
215         if (!phys)
216                 return;
217
218         if (obj->madv == I915_MADV_WILLNEED) {
219                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
220                 char *vaddr = phys->vaddr;
221                 int i;
222
223                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
224                         struct page *page = shmem_read_mapping_page(mapping, i);
225                         if (!IS_ERR(page)) {
226                                 char *dst = kmap_atomic(page);
227                                 memcpy(dst, vaddr, PAGE_SIZE);
228                                 drm_clflush_virt_range(dst, PAGE_SIZE);
229                                 kunmap_atomic(dst);
230
231                                 set_page_dirty(page);
232                                 mark_page_accessed(page);
233                                 page_cache_release(page);
234                         }
235                         vaddr += PAGE_SIZE;
236                 }
237                 i915_gem_chipset_flush(obj->base.dev);
238         }
239
240 #ifdef CONFIG_X86
241         set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
242 #endif
243         drm_pci_free(obj->base.dev, phys);
244         obj->phys_handle = NULL;
245 }
246
247 int
248 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
249                             int align)
250 {
251         drm_dma_handle_t *phys;
252         struct address_space *mapping;
253         char *vaddr;
254         int i;
255
256         if (obj->phys_handle) {
257                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
258                         return -EBUSY;
259
260                 return 0;
261         }
262
263         if (obj->madv != I915_MADV_WILLNEED)
264                 return -EFAULT;
265
266         if (obj->base.filp == NULL)
267                 return -EINVAL;
268
269         /* create a new object */
270         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
271         if (!phys)
272                 return -ENOMEM;
273
274         vaddr = phys->vaddr;
275 #ifdef CONFIG_X86
276         set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
277 #endif
278         mapping = file_inode(obj->base.filp)->i_mapping;
279         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
280                 struct page *page;
281                 char *src;
282
283                 page = shmem_read_mapping_page(mapping, i);
284                 if (IS_ERR(page)) {
285 #ifdef CONFIG_X86
286                         set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
287 #endif
288                         drm_pci_free(obj->base.dev, phys);
289                         return PTR_ERR(page);
290                 }
291
292                 src = kmap_atomic(page);
293                 memcpy(vaddr, src, PAGE_SIZE);
294                 kunmap_atomic(src);
295
296                 mark_page_accessed(page);
297                 page_cache_release(page);
298
299                 vaddr += PAGE_SIZE;
300         }
301
302         obj->phys_handle = phys;
303         return 0;
304 }
305
306 static int
307 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
308                      struct drm_i915_gem_pwrite *args,
309                      struct drm_file *file_priv)
310 {
311         struct drm_device *dev = obj->base.dev;
312         void *vaddr = obj->phys_handle->vaddr + args->offset;
313         char __user *user_data = to_user_ptr(args->data_ptr);
314
315         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
316                 unsigned long unwritten;
317
318                 /* The physical object once assigned is fixed for the lifetime
319                  * of the obj, so we can safely drop the lock and continue
320                  * to access vaddr.
321                  */
322                 mutex_unlock(&dev->struct_mutex);
323                 unwritten = copy_from_user(vaddr, user_data, args->size);
324                 mutex_lock(&dev->struct_mutex);
325                 if (unwritten)
326                         return -EFAULT;
327         }
328
329         i915_gem_chipset_flush(dev);
330         return 0;
331 }
332
333 void *i915_gem_object_alloc(struct drm_device *dev)
334 {
335         struct drm_i915_private *dev_priv = dev->dev_private;
336         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
337 }
338
339 void i915_gem_object_free(struct drm_i915_gem_object *obj)
340 {
341         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
342         kmem_cache_free(dev_priv->slab, obj);
343 }
344
345 static int
346 i915_gem_create(struct drm_file *file,
347                 struct drm_device *dev,
348                 uint64_t size,
349                 uint32_t *handle_p)
350 {
351         struct drm_i915_gem_object *obj;
352         int ret;
353         u32 handle;
354
355         size = roundup(size, PAGE_SIZE);
356         if (size == 0)
357                 return -EINVAL;
358
359         /* Allocate the new object */
360         obj = i915_gem_alloc_object(dev, size);
361         if (obj == NULL)
362                 return -ENOMEM;
363
364         ret = drm_gem_handle_create(file, &obj->base, &handle);
365         /* drop reference from allocate - handle holds it now */
366         drm_gem_object_unreference_unlocked(&obj->base);
367         if (ret)
368                 return ret;
369
370         *handle_p = handle;
371         return 0;
372 }
373
374 int
375 i915_gem_dumb_create(struct drm_file *file,
376                      struct drm_device *dev,
377                      struct drm_mode_create_dumb *args)
378 {
379         /* have to work out size/pitch and return them */
380         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
381         args->size = args->pitch * args->height;
382         return i915_gem_create(file, dev,
383                                args->size, &args->handle);
384 }
385
386 /**
387  * Creates a new mm object and returns a handle to it.
388  */
389 int
390 i915_gem_create_ioctl(struct drm_device *dev, void *data,
391                       struct drm_file *file)
392 {
393         struct drm_i915_gem_create *args = data;
394
395         return i915_gem_create(file, dev,
396                                args->size, &args->handle);
397 }
398
399 static inline int
400 __copy_to_user_swizzled(char __user *cpu_vaddr,
401                         const char *gpu_vaddr, int gpu_offset,
402                         int length)
403 {
404         int ret, cpu_offset = 0;
405
406         while (length > 0) {
407                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
408                 int this_length = min(cacheline_end - gpu_offset, length);
409                 int swizzled_gpu_offset = gpu_offset ^ 64;
410
411                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
412                                      gpu_vaddr + swizzled_gpu_offset,
413                                      this_length);
414                 if (ret)
415                         return ret + length;
416
417                 cpu_offset += this_length;
418                 gpu_offset += this_length;
419                 length -= this_length;
420         }
421
422         return 0;
423 }
424
425 static inline int
426 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
427                           const char __user *cpu_vaddr,
428                           int length)
429 {
430         int ret, cpu_offset = 0;
431
432         while (length > 0) {
433                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
434                 int this_length = min(cacheline_end - gpu_offset, length);
435                 int swizzled_gpu_offset = gpu_offset ^ 64;
436
437                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
438                                        cpu_vaddr + cpu_offset,
439                                        this_length);
440                 if (ret)
441                         return ret + length;
442
443                 cpu_offset += this_length;
444                 gpu_offset += this_length;
445                 length -= this_length;
446         }
447
448         return 0;
449 }
450
451 /*
452  * Pins the specified object's pages and synchronizes the object with
453  * GPU accesses. Sets needs_clflush to non-zero if the caller should
454  * flush the object from the CPU cache.
455  */
456 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
457                                     int *needs_clflush)
458 {
459         int ret;
460
461         *needs_clflush = 0;
462
463         if (!obj->base.filp)
464                 return -EINVAL;
465
466         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
467                 /* If we're not in the cpu read domain, set ourself into the gtt
468                  * read domain and manually flush cachelines (if required). This
469                  * optimizes for the case when the gpu will dirty the data
470                  * anyway again before the next pread happens. */
471                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
472                                                         obj->cache_level);
473                 ret = i915_gem_object_wait_rendering(obj, true);
474                 if (ret)
475                         return ret;
476
477                 i915_gem_object_retire(obj);
478         }
479
480         ret = i915_gem_object_get_pages(obj);
481         if (ret)
482                 return ret;
483
484         i915_gem_object_pin_pages(obj);
485
486         return ret;
487 }
488
489 /* Per-page copy function for the shmem pread fastpath.
490  * Flushes invalid cachelines before reading the target if
491  * needs_clflush is set. */
492 static int
493 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
494                  char __user *user_data,
495                  bool page_do_bit17_swizzling, bool needs_clflush)
496 {
497         char *vaddr;
498         int ret;
499
500         if (unlikely(page_do_bit17_swizzling))
501                 return -EINVAL;
502
503         vaddr = kmap_atomic(page);
504         if (needs_clflush)
505                 drm_clflush_virt_range(vaddr + shmem_page_offset,
506                                        page_length);
507         ret = __copy_to_user_inatomic(user_data,
508                                       vaddr + shmem_page_offset,
509                                       page_length);
510         kunmap_atomic(vaddr);
511
512         return ret ? -EFAULT : 0;
513 }
514
515 static void
516 shmem_clflush_swizzled_range(char *addr, unsigned long length,
517                              bool swizzled)
518 {
519         if (unlikely(swizzled)) {
520                 unsigned long start = (unsigned long) addr;
521                 unsigned long end = (unsigned long) addr + length;
522
523                 /* For swizzling simply ensure that we always flush both
524                  * channels. Lame, but simple and it works. Swizzled
525                  * pwrite/pread is far from a hotpath - current userspace
526                  * doesn't use it at all. */
527                 start = round_down(start, 128);
528                 end = round_up(end, 128);
529
530                 drm_clflush_virt_range((void *)start, end - start);
531         } else {
532                 drm_clflush_virt_range(addr, length);
533         }
534
535 }
536
537 /* Only difference to the fast-path function is that this can handle bit17
538  * and uses non-atomic copy and kmap functions. */
539 static int
540 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
541                  char __user *user_data,
542                  bool page_do_bit17_swizzling, bool needs_clflush)
543 {
544         char *vaddr;
545         int ret;
546
547         vaddr = kmap(page);
548         if (needs_clflush)
549                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
550                                              page_length,
551                                              page_do_bit17_swizzling);
552
553         if (page_do_bit17_swizzling)
554                 ret = __copy_to_user_swizzled(user_data,
555                                               vaddr, shmem_page_offset,
556                                               page_length);
557         else
558                 ret = __copy_to_user(user_data,
559                                      vaddr + shmem_page_offset,
560                                      page_length);
561         kunmap(page);
562
563         return ret ? - EFAULT : 0;
564 }
565
566 static int
567 i915_gem_shmem_pread(struct drm_device *dev,
568                      struct drm_i915_gem_object *obj,
569                      struct drm_i915_gem_pread *args,
570                      struct drm_file *file)
571 {
572         char __user *user_data;
573         ssize_t remain;
574         loff_t offset;
575         int shmem_page_offset, page_length, ret = 0;
576         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
577         int prefaulted = 0;
578         int needs_clflush = 0;
579         struct sg_page_iter sg_iter;
580
581         user_data = to_user_ptr(args->data_ptr);
582         remain = args->size;
583
584         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
585
586         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
587         if (ret)
588                 return ret;
589
590         offset = args->offset;
591
592         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
593                          offset >> PAGE_SHIFT) {
594                 struct page *page = sg_page_iter_page(&sg_iter);
595
596                 if (remain <= 0)
597                         break;
598
599                 /* Operation in this page
600                  *
601                  * shmem_page_offset = offset within page in shmem file
602                  * page_length = bytes to copy for this page
603                  */
604                 shmem_page_offset = offset_in_page(offset);
605                 page_length = remain;
606                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
607                         page_length = PAGE_SIZE - shmem_page_offset;
608
609                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
610                         (page_to_phys(page) & (1 << 17)) != 0;
611
612                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
613                                        user_data, page_do_bit17_swizzling,
614                                        needs_clflush);
615                 if (ret == 0)
616                         goto next_page;
617
618                 mutex_unlock(&dev->struct_mutex);
619
620                 if (likely(!i915.prefault_disable) && !prefaulted) {
621                         ret = fault_in_multipages_writeable(user_data, remain);
622                         /* Userspace is tricking us, but we've already clobbered
623                          * its pages with the prefault and promised to write the
624                          * data up to the first fault. Hence ignore any errors
625                          * and just continue. */
626                         (void)ret;
627                         prefaulted = 1;
628                 }
629
630                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
631                                        user_data, page_do_bit17_swizzling,
632                                        needs_clflush);
633
634                 mutex_lock(&dev->struct_mutex);
635
636                 if (ret)
637                         goto out;
638
639 next_page:
640                 remain -= page_length;
641                 user_data += page_length;
642                 offset += page_length;
643         }
644
645 out:
646         i915_gem_object_unpin_pages(obj);
647
648         return ret;
649 }
650
651 /**
652  * Reads data from the object referenced by handle.
653  *
654  * On error, the contents of *data are undefined.
655  */
656 int
657 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
658                      struct drm_file *file)
659 {
660         struct drm_i915_gem_pread *args = data;
661         struct drm_i915_gem_object *obj;
662         int ret = 0;
663
664         if (args->size == 0)
665                 return 0;
666
667         if (!access_ok(VERIFY_WRITE,
668                        to_user_ptr(args->data_ptr),
669                        args->size))
670                 return -EFAULT;
671
672         ret = i915_mutex_lock_interruptible(dev);
673         if (ret)
674                 return ret;
675
676         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
677         if (&obj->base == NULL) {
678                 ret = -ENOENT;
679                 goto unlock;
680         }
681
682         /* Bounds check source.  */
683         if (args->offset > obj->base.size ||
684             args->size > obj->base.size - args->offset) {
685                 ret = -EINVAL;
686                 goto out;
687         }
688
689         /* prime objects have no backing filp to GEM pread/pwrite
690          * pages from.
691          */
692         if (!obj->base.filp) {
693                 ret = -EINVAL;
694                 goto out;
695         }
696
697         trace_i915_gem_object_pread(obj, args->offset, args->size);
698
699         ret = i915_gem_shmem_pread(dev, obj, args, file);
700
701 out:
702         drm_gem_object_unreference(&obj->base);
703 unlock:
704         mutex_unlock(&dev->struct_mutex);
705         return ret;
706 }
707
708 /* This is the fast write path which cannot handle
709  * page faults in the source data
710  */
711
712 static inline int
713 fast_user_write(struct io_mapping *mapping,
714                 loff_t page_base, int page_offset,
715                 char __user *user_data,
716                 int length)
717 {
718         void __iomem *vaddr_atomic;
719         void *vaddr;
720         unsigned long unwritten;
721
722         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
723         /* We can use the cpu mem copy function because this is X86. */
724         vaddr = (void __force*)vaddr_atomic + page_offset;
725         unwritten = __copy_from_user_inatomic_nocache(vaddr,
726                                                       user_data, length);
727         io_mapping_unmap_atomic(vaddr_atomic);
728         return unwritten;
729 }
730
731 /**
732  * This is the fast pwrite path, where we copy the data directly from the
733  * user into the GTT, uncached.
734  */
735 static int
736 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
737                          struct drm_i915_gem_object *obj,
738                          struct drm_i915_gem_pwrite *args,
739                          struct drm_file *file)
740 {
741         struct drm_i915_private *dev_priv = dev->dev_private;
742         ssize_t remain;
743         loff_t offset, page_base;
744         char __user *user_data;
745         int page_offset, page_length, ret;
746
747         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
748         if (ret)
749                 goto out;
750
751         ret = i915_gem_object_set_to_gtt_domain(obj, true);
752         if (ret)
753                 goto out_unpin;
754
755         ret = i915_gem_object_put_fence(obj);
756         if (ret)
757                 goto out_unpin;
758
759         user_data = to_user_ptr(args->data_ptr);
760         remain = args->size;
761
762         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
763
764         while (remain > 0) {
765                 /* Operation in this page
766                  *
767                  * page_base = page offset within aperture
768                  * page_offset = offset within page
769                  * page_length = bytes to copy for this page
770                  */
771                 page_base = offset & PAGE_MASK;
772                 page_offset = offset_in_page(offset);
773                 page_length = remain;
774                 if ((page_offset + remain) > PAGE_SIZE)
775                         page_length = PAGE_SIZE - page_offset;
776
777                 /* If we get a fault while copying data, then (presumably) our
778                  * source page isn't available.  Return the error and we'll
779                  * retry in the slow path.
780                  */
781                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
782                                     page_offset, user_data, page_length)) {
783                         ret = -EFAULT;
784                         goto out_unpin;
785                 }
786
787                 remain -= page_length;
788                 user_data += page_length;
789                 offset += page_length;
790         }
791
792 out_unpin:
793         i915_gem_object_ggtt_unpin(obj);
794 out:
795         return ret;
796 }
797
798 /* Per-page copy function for the shmem pwrite fastpath.
799  * Flushes invalid cachelines before writing to the target if
800  * needs_clflush_before is set and flushes out any written cachelines after
801  * writing if needs_clflush is set. */
802 static int
803 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
804                   char __user *user_data,
805                   bool page_do_bit17_swizzling,
806                   bool needs_clflush_before,
807                   bool needs_clflush_after)
808 {
809         char *vaddr;
810         int ret;
811
812         if (unlikely(page_do_bit17_swizzling))
813                 return -EINVAL;
814
815         vaddr = kmap_atomic(page);
816         if (needs_clflush_before)
817                 drm_clflush_virt_range(vaddr + shmem_page_offset,
818                                        page_length);
819         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
820                                         user_data, page_length);
821         if (needs_clflush_after)
822                 drm_clflush_virt_range(vaddr + shmem_page_offset,
823                                        page_length);
824         kunmap_atomic(vaddr);
825
826         return ret ? -EFAULT : 0;
827 }
828
829 /* Only difference to the fast-path function is that this can handle bit17
830  * and uses non-atomic copy and kmap functions. */
831 static int
832 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
833                   char __user *user_data,
834                   bool page_do_bit17_swizzling,
835                   bool needs_clflush_before,
836                   bool needs_clflush_after)
837 {
838         char *vaddr;
839         int ret;
840
841         vaddr = kmap(page);
842         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
843                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
844                                              page_length,
845                                              page_do_bit17_swizzling);
846         if (page_do_bit17_swizzling)
847                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
848                                                 user_data,
849                                                 page_length);
850         else
851                 ret = __copy_from_user(vaddr + shmem_page_offset,
852                                        user_data,
853                                        page_length);
854         if (needs_clflush_after)
855                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
856                                              page_length,
857                                              page_do_bit17_swizzling);
858         kunmap(page);
859
860         return ret ? -EFAULT : 0;
861 }
862
863 static int
864 i915_gem_shmem_pwrite(struct drm_device *dev,
865                       struct drm_i915_gem_object *obj,
866                       struct drm_i915_gem_pwrite *args,
867                       struct drm_file *file)
868 {
869         ssize_t remain;
870         loff_t offset;
871         char __user *user_data;
872         int shmem_page_offset, page_length, ret = 0;
873         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
874         int hit_slowpath = 0;
875         int needs_clflush_after = 0;
876         int needs_clflush_before = 0;
877         struct sg_page_iter sg_iter;
878
879         user_data = to_user_ptr(args->data_ptr);
880         remain = args->size;
881
882         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
883
884         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
885                 /* If we're not in the cpu write domain, set ourself into the gtt
886                  * write domain and manually flush cachelines (if required). This
887                  * optimizes for the case when the gpu will use the data
888                  * right away and we therefore have to clflush anyway. */
889                 needs_clflush_after = cpu_write_needs_clflush(obj);
890                 ret = i915_gem_object_wait_rendering(obj, false);
891                 if (ret)
892                         return ret;
893
894                 i915_gem_object_retire(obj);
895         }
896         /* Same trick applies to invalidate partially written cachelines read
897          * before writing. */
898         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
899                 needs_clflush_before =
900                         !cpu_cache_is_coherent(dev, obj->cache_level);
901
902         ret = i915_gem_object_get_pages(obj);
903         if (ret)
904                 return ret;
905
906         i915_gem_object_pin_pages(obj);
907
908         offset = args->offset;
909         obj->dirty = 1;
910
911         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
912                          offset >> PAGE_SHIFT) {
913                 struct page *page = sg_page_iter_page(&sg_iter);
914                 int partial_cacheline_write;
915
916                 if (remain <= 0)
917                         break;
918
919                 /* Operation in this page
920                  *
921                  * shmem_page_offset = offset within page in shmem file
922                  * page_length = bytes to copy for this page
923                  */
924                 shmem_page_offset = offset_in_page(offset);
925
926                 page_length = remain;
927                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
928                         page_length = PAGE_SIZE - shmem_page_offset;
929
930                 /* If we don't overwrite a cacheline completely we need to be
931                  * careful to have up-to-date data by first clflushing. Don't
932                  * overcomplicate things and flush the entire patch. */
933                 partial_cacheline_write = needs_clflush_before &&
934                         ((shmem_page_offset | page_length)
935                                 & (boot_cpu_data.x86_clflush_size - 1));
936
937                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
938                         (page_to_phys(page) & (1 << 17)) != 0;
939
940                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
941                                         user_data, page_do_bit17_swizzling,
942                                         partial_cacheline_write,
943                                         needs_clflush_after);
944                 if (ret == 0)
945                         goto next_page;
946
947                 hit_slowpath = 1;
948                 mutex_unlock(&dev->struct_mutex);
949                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
950                                         user_data, page_do_bit17_swizzling,
951                                         partial_cacheline_write,
952                                         needs_clflush_after);
953
954                 mutex_lock(&dev->struct_mutex);
955
956                 if (ret)
957                         goto out;
958
959 next_page:
960                 remain -= page_length;
961                 user_data += page_length;
962                 offset += page_length;
963         }
964
965 out:
966         i915_gem_object_unpin_pages(obj);
967
968         if (hit_slowpath) {
969                 /*
970                  * Fixup: Flush cpu caches in case we didn't flush the dirty
971                  * cachelines in-line while writing and the object moved
972                  * out of the cpu write domain while we've dropped the lock.
973                  */
974                 if (!needs_clflush_after &&
975                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
976                         if (i915_gem_clflush_object(obj, obj->pin_display))
977                                 i915_gem_chipset_flush(dev);
978                 }
979         }
980
981         if (needs_clflush_after)
982                 i915_gem_chipset_flush(dev);
983
984         return ret;
985 }
986
987 /**
988  * Writes data to the object referenced by handle.
989  *
990  * On error, the contents of the buffer that were to be modified are undefined.
991  */
992 int
993 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
994                       struct drm_file *file)
995 {
996         struct drm_i915_gem_pwrite *args = data;
997         struct drm_i915_gem_object *obj;
998         int ret;
999
1000         if (args->size == 0)
1001                 return 0;
1002
1003         if (!access_ok(VERIFY_READ,
1004                        to_user_ptr(args->data_ptr),
1005                        args->size))
1006                 return -EFAULT;
1007
1008         if (likely(!i915.prefault_disable)) {
1009                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1010                                                    args->size);
1011                 if (ret)
1012                         return -EFAULT;
1013         }
1014
1015         ret = i915_mutex_lock_interruptible(dev);
1016         if (ret)
1017                 return ret;
1018
1019         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1020         if (&obj->base == NULL) {
1021                 ret = -ENOENT;
1022                 goto unlock;
1023         }
1024
1025         /* Bounds check destination. */
1026         if (args->offset > obj->base.size ||
1027             args->size > obj->base.size - args->offset) {
1028                 ret = -EINVAL;
1029                 goto out;
1030         }
1031
1032         /* prime objects have no backing filp to GEM pread/pwrite
1033          * pages from.
1034          */
1035         if (!obj->base.filp) {
1036                 ret = -EINVAL;
1037                 goto out;
1038         }
1039
1040         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1041
1042         ret = -EFAULT;
1043         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1044          * it would end up going through the fenced access, and we'll get
1045          * different detiling behavior between reading and writing.
1046          * pread/pwrite currently are reading and writing from the CPU
1047          * perspective, requiring manual detiling by the client.
1048          */
1049         if (obj->phys_handle) {
1050                 ret = i915_gem_phys_pwrite(obj, args, file);
1051                 goto out;
1052         }
1053
1054         if (obj->tiling_mode == I915_TILING_NONE &&
1055             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1056             cpu_write_needs_clflush(obj)) {
1057                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1058                 /* Note that the gtt paths might fail with non-page-backed user
1059                  * pointers (e.g. gtt mappings when moving data between
1060                  * textures). Fallback to the shmem path in that case. */
1061         }
1062
1063         if (ret == -EFAULT || ret == -ENOSPC)
1064                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1065
1066 out:
1067         drm_gem_object_unreference(&obj->base);
1068 unlock:
1069         mutex_unlock(&dev->struct_mutex);
1070         return ret;
1071 }
1072
1073 int
1074 i915_gem_check_wedge(struct i915_gpu_error *error,
1075                      bool interruptible)
1076 {
1077         if (i915_reset_in_progress(error)) {
1078                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1079                  * -EIO unconditionally for these. */
1080                 if (!interruptible)
1081                         return -EIO;
1082
1083                 /* Recovery complete, but the reset failed ... */
1084                 if (i915_terminally_wedged(error))
1085                         return -EIO;
1086
1087                 /*
1088                  * Check if GPU Reset is in progress - we need intel_ring_begin
1089                  * to work properly to reinit the hw state while the gpu is
1090                  * still marked as reset-in-progress. Handle this with a flag.
1091                  */
1092                 if (!error->reload_in_reset)
1093                         return -EAGAIN;
1094         }
1095
1096         return 0;
1097 }
1098
1099 /*
1100  * Compare seqno against outstanding lazy request. Emit a request if they are
1101  * equal.
1102  */
1103 int
1104 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1105 {
1106         int ret;
1107
1108         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1109
1110         ret = 0;
1111         if (seqno == ring->outstanding_lazy_seqno)
1112                 ret = i915_add_request(ring, NULL);
1113
1114         return ret;
1115 }
1116
1117 static void fake_irq(unsigned long data)
1118 {
1119         wake_up_process((struct task_struct *)data);
1120 }
1121
1122 static bool missed_irq(struct drm_i915_private *dev_priv,
1123                        struct intel_engine_cs *ring)
1124 {
1125         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1126 }
1127
1128 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1129 {
1130         if (file_priv == NULL)
1131                 return true;
1132
1133         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1134 }
1135
1136 /**
1137  * __wait_seqno - wait until execution of seqno has finished
1138  * @ring: the ring expected to report seqno
1139  * @seqno: duh!
1140  * @reset_counter: reset sequence associated with the given seqno
1141  * @interruptible: do an interruptible wait (normally yes)
1142  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1143  *
1144  * Note: It is of utmost importance that the passed in seqno and reset_counter
1145  * values have been read by the caller in an smp safe manner. Where read-side
1146  * locks are involved, it is sufficient to read the reset_counter before
1147  * unlocking the lock that protects the seqno. For lockless tricks, the
1148  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1149  * inserted.
1150  *
1151  * Returns 0 if the seqno was found within the alloted time. Else returns the
1152  * errno with remaining time filled in timeout argument.
1153  */
1154 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1155                         unsigned reset_counter,
1156                         bool interruptible,
1157                         s64 *timeout,
1158                         struct drm_i915_file_private *file_priv)
1159 {
1160         struct drm_device *dev = ring->dev;
1161         struct drm_i915_private *dev_priv = dev->dev_private;
1162         const bool irq_test_in_progress =
1163                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1164         DEFINE_WAIT(wait);
1165         unsigned long timeout_expire;
1166         s64 before, now;
1167         int ret;
1168
1169         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1170
1171         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1172                 return 0;
1173
1174         timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1175
1176         if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1177                 gen6_rps_boost(dev_priv);
1178                 if (file_priv)
1179                         mod_delayed_work(dev_priv->wq,
1180                                          &file_priv->mm.idle_work,
1181                                          msecs_to_jiffies(100));
1182         }
1183
1184         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1185                 return -ENODEV;
1186
1187         /* Record current time in case interrupted by signal, or wedged */
1188         trace_i915_gem_request_wait_begin(ring, seqno);
1189         before = ktime_get_raw_ns();
1190         for (;;) {
1191                 struct timer_list timer;
1192
1193                 prepare_to_wait(&ring->irq_queue, &wait,
1194                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1195
1196                 /* We need to check whether any gpu reset happened in between
1197                  * the caller grabbing the seqno and now ... */
1198                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1199                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1200                          * is truely gone. */
1201                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1202                         if (ret == 0)
1203                                 ret = -EAGAIN;
1204                         break;
1205                 }
1206
1207                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1208                         ret = 0;
1209                         break;
1210                 }
1211
1212                 if (interruptible && signal_pending(current)) {
1213                         ret = -ERESTARTSYS;
1214                         break;
1215                 }
1216
1217                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1218                         ret = -ETIME;
1219                         break;
1220                 }
1221
1222                 timer.function = NULL;
1223                 if (timeout || missed_irq(dev_priv, ring)) {
1224                         unsigned long expire;
1225
1226                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1227                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1228                         mod_timer(&timer, expire);
1229                 }
1230
1231                 io_schedule();
1232
1233                 if (timer.function) {
1234                         del_singleshot_timer_sync(&timer);
1235                         destroy_timer_on_stack(&timer);
1236                 }
1237         }
1238         now = ktime_get_raw_ns();
1239         trace_i915_gem_request_wait_end(ring, seqno);
1240
1241         if (!irq_test_in_progress)
1242                 ring->irq_put(ring);
1243
1244         finish_wait(&ring->irq_queue, &wait);
1245
1246         if (timeout) {
1247                 s64 tres = *timeout - (now - before);
1248
1249                 *timeout = tres < 0 ? 0 : tres;
1250         }
1251
1252         return ret;
1253 }
1254
1255 /**
1256  * Waits for a sequence number to be signaled, and cleans up the
1257  * request and object lists appropriately for that event.
1258  */
1259 int
1260 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1261 {
1262         struct drm_device *dev = ring->dev;
1263         struct drm_i915_private *dev_priv = dev->dev_private;
1264         bool interruptible = dev_priv->mm.interruptible;
1265         int ret;
1266
1267         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1268         BUG_ON(seqno == 0);
1269
1270         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1271         if (ret)
1272                 return ret;
1273
1274         ret = i915_gem_check_olr(ring, seqno);
1275         if (ret)
1276                 return ret;
1277
1278         return __wait_seqno(ring, seqno,
1279                             atomic_read(&dev_priv->gpu_error.reset_counter),
1280                             interruptible, NULL, NULL);
1281 }
1282
1283 static int
1284 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1285                                      struct intel_engine_cs *ring)
1286 {
1287         if (!obj->active)
1288                 return 0;
1289
1290         /* Manually manage the write flush as we may have not yet
1291          * retired the buffer.
1292          *
1293          * Note that the last_write_seqno is always the earlier of
1294          * the two (read/write) seqno, so if we haved successfully waited,
1295          * we know we have passed the last write.
1296          */
1297         obj->last_write_seqno = 0;
1298
1299         return 0;
1300 }
1301
1302 /**
1303  * Ensures that all rendering to the object has completed and the object is
1304  * safe to unbind from the GTT or access from the CPU.
1305  */
1306 static __must_check int
1307 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1308                                bool readonly)
1309 {
1310         struct intel_engine_cs *ring = obj->ring;
1311         u32 seqno;
1312         int ret;
1313
1314         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1315         if (seqno == 0)
1316                 return 0;
1317
1318         ret = i915_wait_seqno(ring, seqno);
1319         if (ret)
1320                 return ret;
1321
1322         return i915_gem_object_wait_rendering__tail(obj, ring);
1323 }
1324
1325 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1326  * as the object state may change during this call.
1327  */
1328 static __must_check int
1329 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1330                                             struct drm_i915_file_private *file_priv,
1331                                             bool readonly)
1332 {
1333         struct drm_device *dev = obj->base.dev;
1334         struct drm_i915_private *dev_priv = dev->dev_private;
1335         struct intel_engine_cs *ring = obj->ring;
1336         unsigned reset_counter;
1337         u32 seqno;
1338         int ret;
1339
1340         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1341         BUG_ON(!dev_priv->mm.interruptible);
1342
1343         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1344         if (seqno == 0)
1345                 return 0;
1346
1347         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1348         if (ret)
1349                 return ret;
1350
1351         ret = i915_gem_check_olr(ring, seqno);
1352         if (ret)
1353                 return ret;
1354
1355         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1356         mutex_unlock(&dev->struct_mutex);
1357         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1358         mutex_lock(&dev->struct_mutex);
1359         if (ret)
1360                 return ret;
1361
1362         return i915_gem_object_wait_rendering__tail(obj, ring);
1363 }
1364
1365 /**
1366  * Called when user space prepares to use an object with the CPU, either
1367  * through the mmap ioctl's mapping or a GTT mapping.
1368  */
1369 int
1370 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1371                           struct drm_file *file)
1372 {
1373         struct drm_i915_gem_set_domain *args = data;
1374         struct drm_i915_gem_object *obj;
1375         uint32_t read_domains = args->read_domains;
1376         uint32_t write_domain = args->write_domain;
1377         int ret;
1378
1379         /* Only handle setting domains to types used by the CPU. */
1380         if (write_domain & I915_GEM_GPU_DOMAINS)
1381                 return -EINVAL;
1382
1383         if (read_domains & I915_GEM_GPU_DOMAINS)
1384                 return -EINVAL;
1385
1386         /* Having something in the write domain implies it's in the read
1387          * domain, and only that read domain.  Enforce that in the request.
1388          */
1389         if (write_domain != 0 && read_domains != write_domain)
1390                 return -EINVAL;
1391
1392         ret = i915_mutex_lock_interruptible(dev);
1393         if (ret)
1394                 return ret;
1395
1396         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1397         if (&obj->base == NULL) {
1398                 ret = -ENOENT;
1399                 goto unlock;
1400         }
1401
1402         /* Try to flush the object off the GPU without holding the lock.
1403          * We will repeat the flush holding the lock in the normal manner
1404          * to catch cases where we are gazumped.
1405          */
1406         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1407                                                           file->driver_priv,
1408                                                           !write_domain);
1409         if (ret)
1410                 goto unref;
1411
1412         if (read_domains & I915_GEM_DOMAIN_GTT) {
1413                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1414
1415                 /* Silently promote "you're not bound, there was nothing to do"
1416                  * to success, since the client was just asking us to
1417                  * make sure everything was done.
1418                  */
1419                 if (ret == -EINVAL)
1420                         ret = 0;
1421         } else {
1422                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1423         }
1424
1425 unref:
1426         drm_gem_object_unreference(&obj->base);
1427 unlock:
1428         mutex_unlock(&dev->struct_mutex);
1429         return ret;
1430 }
1431
1432 /**
1433  * Called when user space has done writes to this buffer
1434  */
1435 int
1436 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1437                          struct drm_file *file)
1438 {
1439         struct drm_i915_gem_sw_finish *args = data;
1440         struct drm_i915_gem_object *obj;
1441         int ret = 0;
1442
1443         ret = i915_mutex_lock_interruptible(dev);
1444         if (ret)
1445                 return ret;
1446
1447         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1448         if (&obj->base == NULL) {
1449                 ret = -ENOENT;
1450                 goto unlock;
1451         }
1452
1453         /* Pinned buffers may be scanout, so flush the cache */
1454         if (obj->pin_display)
1455                 i915_gem_object_flush_cpu_write_domain(obj, true);
1456
1457         drm_gem_object_unreference(&obj->base);
1458 unlock:
1459         mutex_unlock(&dev->struct_mutex);
1460         return ret;
1461 }
1462
1463 /**
1464  * Maps the contents of an object, returning the address it is mapped
1465  * into.
1466  *
1467  * While the mapping holds a reference on the contents of the object, it doesn't
1468  * imply a ref on the object itself.
1469  */
1470 int
1471 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1472                     struct drm_file *file)
1473 {
1474         struct drm_i915_gem_mmap *args = data;
1475         struct drm_gem_object *obj;
1476         unsigned long addr;
1477
1478         obj = drm_gem_object_lookup(dev, file, args->handle);
1479         if (obj == NULL)
1480                 return -ENOENT;
1481
1482         /* prime objects have no backing filp to GEM mmap
1483          * pages from.
1484          */
1485         if (!obj->filp) {
1486                 drm_gem_object_unreference_unlocked(obj);
1487                 return -EINVAL;
1488         }
1489
1490         addr = vm_mmap(obj->filp, 0, args->size,
1491                        PROT_READ | PROT_WRITE, MAP_SHARED,
1492                        args->offset);
1493         drm_gem_object_unreference_unlocked(obj);
1494         if (IS_ERR((void *)addr))
1495                 return addr;
1496
1497         args->addr_ptr = (uint64_t) addr;
1498
1499         return 0;
1500 }
1501
1502 /**
1503  * i915_gem_fault - fault a page into the GTT
1504  * vma: VMA in question
1505  * vmf: fault info
1506  *
1507  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1508  * from userspace.  The fault handler takes care of binding the object to
1509  * the GTT (if needed), allocating and programming a fence register (again,
1510  * only if needed based on whether the old reg is still valid or the object
1511  * is tiled) and inserting a new PTE into the faulting process.
1512  *
1513  * Note that the faulting process may involve evicting existing objects
1514  * from the GTT and/or fence registers to make room.  So performance may
1515  * suffer if the GTT working set is large or there are few fence registers
1516  * left.
1517  */
1518 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1519 {
1520         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1521         struct drm_device *dev = obj->base.dev;
1522         struct drm_i915_private *dev_priv = dev->dev_private;
1523         pgoff_t page_offset;
1524         unsigned long pfn;
1525         int ret = 0;
1526         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1527
1528         intel_runtime_pm_get(dev_priv);
1529
1530         /* We don't use vmf->pgoff since that has the fake offset */
1531         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1532                 PAGE_SHIFT;
1533
1534         ret = i915_mutex_lock_interruptible(dev);
1535         if (ret)
1536                 goto out;
1537
1538         trace_i915_gem_object_fault(obj, page_offset, true, write);
1539
1540         /* Try to flush the object off the GPU first without holding the lock.
1541          * Upon reacquiring the lock, we will perform our sanity checks and then
1542          * repeat the flush holding the lock in the normal manner to catch cases
1543          * where we are gazumped.
1544          */
1545         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1546         if (ret)
1547                 goto unlock;
1548
1549         /* Access to snoopable pages through the GTT is incoherent. */
1550         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1551                 ret = -EFAULT;
1552                 goto unlock;
1553         }
1554
1555         /* Now bind it into the GTT if needed */
1556         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1557         if (ret)
1558                 goto unlock;
1559
1560         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1561         if (ret)
1562                 goto unpin;
1563
1564         ret = i915_gem_object_get_fence(obj);
1565         if (ret)
1566                 goto unpin;
1567
1568         /* Finally, remap it using the new GTT offset */
1569         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1570         pfn >>= PAGE_SHIFT;
1571
1572         if (!obj->fault_mappable) {
1573                 unsigned long size = min_t(unsigned long,
1574                                            vma->vm_end - vma->vm_start,
1575                                            obj->base.size);
1576                 int i;
1577
1578                 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1579                         ret = vm_insert_pfn(vma,
1580                                             (unsigned long)vma->vm_start + i * PAGE_SIZE,
1581                                             pfn + i);
1582                         if (ret)
1583                                 break;
1584                 }
1585
1586                 obj->fault_mappable = true;
1587         } else
1588                 ret = vm_insert_pfn(vma,
1589                                     (unsigned long)vmf->virtual_address,
1590                                     pfn + page_offset);
1591 unpin:
1592         i915_gem_object_ggtt_unpin(obj);
1593 unlock:
1594         mutex_unlock(&dev->struct_mutex);
1595 out:
1596         switch (ret) {
1597         case -EIO:
1598                 /*
1599                  * We eat errors when the gpu is terminally wedged to avoid
1600                  * userspace unduly crashing (gl has no provisions for mmaps to
1601                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1602                  * and so needs to be reported.
1603                  */
1604                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1605                         ret = VM_FAULT_SIGBUS;
1606                         break;
1607                 }
1608         case -EAGAIN:
1609                 /*
1610                  * EAGAIN means the gpu is hung and we'll wait for the error
1611                  * handler to reset everything when re-faulting in
1612                  * i915_mutex_lock_interruptible.
1613                  */
1614         case 0:
1615         case -ERESTARTSYS:
1616         case -EINTR:
1617         case -EBUSY:
1618                 /*
1619                  * EBUSY is ok: this just means that another thread
1620                  * already did the job.
1621                  */
1622                 ret = VM_FAULT_NOPAGE;
1623                 break;
1624         case -ENOMEM:
1625                 ret = VM_FAULT_OOM;
1626                 break;
1627         case -ENOSPC:
1628         case -EFAULT:
1629                 ret = VM_FAULT_SIGBUS;
1630                 break;
1631         default:
1632                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1633                 ret = VM_FAULT_SIGBUS;
1634                 break;
1635         }
1636
1637         intel_runtime_pm_put(dev_priv);
1638         return ret;
1639 }
1640
1641 /**
1642  * i915_gem_release_mmap - remove physical page mappings
1643  * @obj: obj in question
1644  *
1645  * Preserve the reservation of the mmapping with the DRM core code, but
1646  * relinquish ownership of the pages back to the system.
1647  *
1648  * It is vital that we remove the page mapping if we have mapped a tiled
1649  * object through the GTT and then lose the fence register due to
1650  * resource pressure. Similarly if the object has been moved out of the
1651  * aperture, than pages mapped into userspace must be revoked. Removing the
1652  * mapping will then trigger a page fault on the next user access, allowing
1653  * fixup by i915_gem_fault().
1654  */
1655 void
1656 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1657 {
1658         if (!obj->fault_mappable)
1659                 return;
1660
1661         drm_vma_node_unmap(&obj->base.vma_node,
1662                            obj->base.dev->anon_inode->i_mapping);
1663         obj->fault_mappable = false;
1664 }
1665
1666 void
1667 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1668 {
1669         struct drm_i915_gem_object *obj;
1670
1671         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1672                 i915_gem_release_mmap(obj);
1673 }
1674
1675 uint32_t
1676 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1677 {
1678         uint32_t gtt_size;
1679
1680         if (INTEL_INFO(dev)->gen >= 4 ||
1681             tiling_mode == I915_TILING_NONE)
1682                 return size;
1683
1684         /* Previous chips need a power-of-two fence region when tiling */
1685         if (INTEL_INFO(dev)->gen == 3)
1686                 gtt_size = 1024*1024;
1687         else
1688                 gtt_size = 512*1024;
1689
1690         while (gtt_size < size)
1691                 gtt_size <<= 1;
1692
1693         return gtt_size;
1694 }
1695
1696 /**
1697  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1698  * @obj: object to check
1699  *
1700  * Return the required GTT alignment for an object, taking into account
1701  * potential fence register mapping.
1702  */
1703 uint32_t
1704 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1705                            int tiling_mode, bool fenced)
1706 {
1707         /*
1708          * Minimum alignment is 4k (GTT page size), but might be greater
1709          * if a fence register is needed for the object.
1710          */
1711         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1712             tiling_mode == I915_TILING_NONE)
1713                 return 4096;
1714
1715         /*
1716          * Previous chips need to be aligned to the size of the smallest
1717          * fence register that can contain the object.
1718          */
1719         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1720 }
1721
1722 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1723 {
1724         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1725         int ret;
1726
1727         if (drm_vma_node_has_offset(&obj->base.vma_node))
1728                 return 0;
1729
1730         dev_priv->mm.shrinker_no_lock_stealing = true;
1731
1732         ret = drm_gem_create_mmap_offset(&obj->base);
1733         if (ret != -ENOSPC)
1734                 goto out;
1735
1736         /* Badly fragmented mmap space? The only way we can recover
1737          * space is by destroying unwanted objects. We can't randomly release
1738          * mmap_offsets as userspace expects them to be persistent for the
1739          * lifetime of the objects. The closest we can is to release the
1740          * offsets on purgeable objects by truncating it and marking it purged,
1741          * which prevents userspace from ever using that object again.
1742          */
1743         i915_gem_shrink(dev_priv,
1744                         obj->base.size >> PAGE_SHIFT,
1745                         I915_SHRINK_BOUND |
1746                         I915_SHRINK_UNBOUND |
1747                         I915_SHRINK_PURGEABLE);
1748         ret = drm_gem_create_mmap_offset(&obj->base);
1749         if (ret != -ENOSPC)
1750                 goto out;
1751
1752         i915_gem_shrink_all(dev_priv);
1753         ret = drm_gem_create_mmap_offset(&obj->base);
1754 out:
1755         dev_priv->mm.shrinker_no_lock_stealing = false;
1756
1757         return ret;
1758 }
1759
1760 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1761 {
1762         drm_gem_free_mmap_offset(&obj->base);
1763 }
1764
1765 int
1766 i915_gem_mmap_gtt(struct drm_file *file,
1767                   struct drm_device *dev,
1768                   uint32_t handle,
1769                   uint64_t *offset)
1770 {
1771         struct drm_i915_private *dev_priv = dev->dev_private;
1772         struct drm_i915_gem_object *obj;
1773         int ret;
1774
1775         ret = i915_mutex_lock_interruptible(dev);
1776         if (ret)
1777                 return ret;
1778
1779         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1780         if (&obj->base == NULL) {
1781                 ret = -ENOENT;
1782                 goto unlock;
1783         }
1784
1785         if (obj->base.size > dev_priv->gtt.mappable_end) {
1786                 ret = -E2BIG;
1787                 goto out;
1788         }
1789
1790         if (obj->madv != I915_MADV_WILLNEED) {
1791                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1792                 ret = -EFAULT;
1793                 goto out;
1794         }
1795
1796         ret = i915_gem_object_create_mmap_offset(obj);
1797         if (ret)
1798                 goto out;
1799
1800         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1801
1802 out:
1803         drm_gem_object_unreference(&obj->base);
1804 unlock:
1805         mutex_unlock(&dev->struct_mutex);
1806         return ret;
1807 }
1808
1809 /**
1810  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1811  * @dev: DRM device
1812  * @data: GTT mapping ioctl data
1813  * @file: GEM object info
1814  *
1815  * Simply returns the fake offset to userspace so it can mmap it.
1816  * The mmap call will end up in drm_gem_mmap(), which will set things
1817  * up so we can get faults in the handler above.
1818  *
1819  * The fault handler will take care of binding the object into the GTT
1820  * (since it may have been evicted to make room for something), allocating
1821  * a fence register, and mapping the appropriate aperture address into
1822  * userspace.
1823  */
1824 int
1825 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1826                         struct drm_file *file)
1827 {
1828         struct drm_i915_gem_mmap_gtt *args = data;
1829
1830         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1831 }
1832
1833 static inline int
1834 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1835 {
1836         return obj->madv == I915_MADV_DONTNEED;
1837 }
1838
1839 /* Immediately discard the backing storage */
1840 static void
1841 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1842 {
1843         i915_gem_object_free_mmap_offset(obj);
1844
1845         if (obj->base.filp == NULL)
1846                 return;
1847
1848         /* Our goal here is to return as much of the memory as
1849          * is possible back to the system as we are called from OOM.
1850          * To do this we must instruct the shmfs to drop all of its
1851          * backing pages, *now*.
1852          */
1853         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1854         obj->madv = __I915_MADV_PURGED;
1855 }
1856
1857 /* Try to discard unwanted pages */
1858 static void
1859 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1860 {
1861         struct address_space *mapping;
1862
1863         switch (obj->madv) {
1864         case I915_MADV_DONTNEED:
1865                 i915_gem_object_truncate(obj);
1866         case __I915_MADV_PURGED:
1867                 return;
1868         }
1869
1870         if (obj->base.filp == NULL)
1871                 return;
1872
1873         mapping = file_inode(obj->base.filp)->i_mapping,
1874         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1875 }
1876
1877 static void
1878 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1879 {
1880         struct sg_page_iter sg_iter;
1881         int ret;
1882
1883         BUG_ON(obj->madv == __I915_MADV_PURGED);
1884
1885         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1886         if (ret) {
1887                 /* In the event of a disaster, abandon all caches and
1888                  * hope for the best.
1889                  */
1890                 WARN_ON(ret != -EIO);
1891                 i915_gem_clflush_object(obj, true);
1892                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1893         }
1894
1895         if (i915_gem_object_needs_bit17_swizzle(obj))
1896                 i915_gem_object_save_bit_17_swizzle(obj);
1897
1898         if (obj->madv == I915_MADV_DONTNEED)
1899                 obj->dirty = 0;
1900
1901         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1902                 struct page *page = sg_page_iter_page(&sg_iter);
1903
1904                 if (obj->dirty)
1905                         set_page_dirty(page);
1906
1907                 if (obj->madv == I915_MADV_WILLNEED)
1908                         mark_page_accessed(page);
1909
1910                 page_cache_release(page);
1911         }
1912         obj->dirty = 0;
1913
1914         sg_free_table(obj->pages);
1915         kfree(obj->pages);
1916 }
1917
1918 int
1919 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1920 {
1921         const struct drm_i915_gem_object_ops *ops = obj->ops;
1922
1923         if (obj->pages == NULL)
1924                 return 0;
1925
1926         if (obj->pages_pin_count)
1927                 return -EBUSY;
1928
1929         BUG_ON(i915_gem_obj_bound_any(obj));
1930
1931         /* ->put_pages might need to allocate memory for the bit17 swizzle
1932          * array, hence protect them from being reaped by removing them from gtt
1933          * lists early. */
1934         list_del(&obj->global_list);
1935
1936         ops->put_pages(obj);
1937         obj->pages = NULL;
1938
1939         i915_gem_object_invalidate(obj);
1940
1941         return 0;
1942 }
1943
1944 unsigned long
1945 i915_gem_shrink(struct drm_i915_private *dev_priv,
1946                 long target, unsigned flags)
1947 {
1948         const bool purgeable_only = flags & I915_SHRINK_PURGEABLE;
1949         unsigned long count = 0;
1950
1951         /*
1952          * As we may completely rewrite the (un)bound list whilst unbinding
1953          * (due to retiring requests) we have to strictly process only
1954          * one element of the list at the time, and recheck the list
1955          * on every iteration.
1956          *
1957          * In particular, we must hold a reference whilst removing the
1958          * object as we may end up waiting for and/or retiring the objects.
1959          * This might release the final reference (held by the active list)
1960          * and result in the object being freed from under us. This is
1961          * similar to the precautions the eviction code must take whilst
1962          * removing objects.
1963          *
1964          * Also note that although these lists do not hold a reference to
1965          * the object we can safely grab one here: The final object
1966          * unreferencing and the bound_list are both protected by the
1967          * dev->struct_mutex and so we won't ever be able to observe an
1968          * object on the bound_list with a reference count equals 0.
1969          */
1970         if (flags & I915_SHRINK_UNBOUND) {
1971                 struct list_head still_in_list;
1972
1973                 INIT_LIST_HEAD(&still_in_list);
1974                 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1975                         struct drm_i915_gem_object *obj;
1976
1977                         obj = list_first_entry(&dev_priv->mm.unbound_list,
1978                                                typeof(*obj), global_list);
1979                         list_move_tail(&obj->global_list, &still_in_list);
1980
1981                         if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1982                                 continue;
1983
1984                         drm_gem_object_reference(&obj->base);
1985
1986                         if (i915_gem_object_put_pages(obj) == 0)
1987                                 count += obj->base.size >> PAGE_SHIFT;
1988
1989                         drm_gem_object_unreference(&obj->base);
1990                 }
1991                 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1992         }
1993
1994         if (flags & I915_SHRINK_BOUND) {
1995                 struct list_head still_in_list;
1996
1997                 INIT_LIST_HEAD(&still_in_list);
1998                 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1999                         struct drm_i915_gem_object *obj;
2000                         struct i915_vma *vma, *v;
2001
2002                         obj = list_first_entry(&dev_priv->mm.bound_list,
2003                                                typeof(*obj), global_list);
2004                         list_move_tail(&obj->global_list, &still_in_list);
2005
2006                         if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
2007                                 continue;
2008
2009                         drm_gem_object_reference(&obj->base);
2010
2011                         list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
2012                                 if (i915_vma_unbind(vma))
2013                                         break;
2014
2015                         if (i915_gem_object_put_pages(obj) == 0)
2016                                 count += obj->base.size >> PAGE_SHIFT;
2017
2018                         drm_gem_object_unreference(&obj->base);
2019                 }
2020                 list_splice(&still_in_list, &dev_priv->mm.bound_list);
2021         }
2022
2023         return count;
2024 }
2025
2026 static unsigned long
2027 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2028 {
2029         i915_gem_evict_everything(dev_priv->dev);
2030         return i915_gem_shrink(dev_priv, LONG_MAX,
2031                                I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2032 }
2033
2034 static int
2035 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2036 {
2037         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038         int page_count, i;
2039         struct address_space *mapping;
2040         struct sg_table *st;
2041         struct scatterlist *sg;
2042         struct sg_page_iter sg_iter;
2043         struct page *page;
2044         unsigned long last_pfn = 0;     /* suppress gcc warning */
2045         gfp_t gfp;
2046
2047         /* Assert that the object is not currently in any GPU domain. As it
2048          * wasn't in the GTT, there shouldn't be any way it could have been in
2049          * a GPU cache
2050          */
2051         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2052         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2053
2054         st = kmalloc(sizeof(*st), GFP_KERNEL);
2055         if (st == NULL)
2056                 return -ENOMEM;
2057
2058         page_count = obj->base.size / PAGE_SIZE;
2059         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2060                 kfree(st);
2061                 return -ENOMEM;
2062         }
2063
2064         /* Get the list of pages out of our struct file.  They'll be pinned
2065          * at this point until we release them.
2066          *
2067          * Fail silently without starting the shrinker
2068          */
2069         mapping = file_inode(obj->base.filp)->i_mapping;
2070         gfp = mapping_gfp_mask(mapping);
2071         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2072         gfp &= ~(__GFP_IO | __GFP_WAIT);
2073         sg = st->sgl;
2074         st->nents = 0;
2075         for (i = 0; i < page_count; i++) {
2076                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2077                 if (IS_ERR(page)) {
2078                         i915_gem_shrink(dev_priv,
2079                                         page_count,
2080                                         I915_SHRINK_BOUND |
2081                                         I915_SHRINK_UNBOUND |
2082                                         I915_SHRINK_PURGEABLE);
2083                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2084                 }
2085                 if (IS_ERR(page)) {
2086                         /* We've tried hard to allocate the memory by reaping
2087                          * our own buffer, now let the real VM do its job and
2088                          * go down in flames if truly OOM.
2089                          */
2090                         i915_gem_shrink_all(dev_priv);
2091                         page = shmem_read_mapping_page(mapping, i);
2092                         if (IS_ERR(page))
2093                                 goto err_pages;
2094                 }
2095 #ifdef CONFIG_SWIOTLB
2096                 if (swiotlb_nr_tbl()) {
2097                         st->nents++;
2098                         sg_set_page(sg, page, PAGE_SIZE, 0);
2099                         sg = sg_next(sg);
2100                         continue;
2101                 }
2102 #endif
2103                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2104                         if (i)
2105                                 sg = sg_next(sg);
2106                         st->nents++;
2107                         sg_set_page(sg, page, PAGE_SIZE, 0);
2108                 } else {
2109                         sg->length += PAGE_SIZE;
2110                 }
2111                 last_pfn = page_to_pfn(page);
2112
2113                 /* Check that the i965g/gm workaround works. */
2114                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2115         }
2116 #ifdef CONFIG_SWIOTLB
2117         if (!swiotlb_nr_tbl())
2118 #endif
2119                 sg_mark_end(sg);
2120         obj->pages = st;
2121
2122         if (i915_gem_object_needs_bit17_swizzle(obj))
2123                 i915_gem_object_do_bit_17_swizzle(obj);
2124
2125         return 0;
2126
2127 err_pages:
2128         sg_mark_end(sg);
2129         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2130                 page_cache_release(sg_page_iter_page(&sg_iter));
2131         sg_free_table(st);
2132         kfree(st);
2133
2134         /* shmemfs first checks if there is enough memory to allocate the page
2135          * and reports ENOSPC should there be insufficient, along with the usual
2136          * ENOMEM for a genuine allocation failure.
2137          *
2138          * We use ENOSPC in our driver to mean that we have run out of aperture
2139          * space and so want to translate the error from shmemfs back to our
2140          * usual understanding of ENOMEM.
2141          */
2142         if (PTR_ERR(page) == -ENOSPC)
2143                 return -ENOMEM;
2144         else
2145                 return PTR_ERR(page);
2146 }
2147
2148 /* Ensure that the associated pages are gathered from the backing storage
2149  * and pinned into our object. i915_gem_object_get_pages() may be called
2150  * multiple times before they are released by a single call to
2151  * i915_gem_object_put_pages() - once the pages are no longer referenced
2152  * either as a result of memory pressure (reaping pages under the shrinker)
2153  * or as the object is itself released.
2154  */
2155 int
2156 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2157 {
2158         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2159         const struct drm_i915_gem_object_ops *ops = obj->ops;
2160         int ret;
2161
2162         if (obj->pages)
2163                 return 0;
2164
2165         if (obj->madv != I915_MADV_WILLNEED) {
2166                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2167                 return -EFAULT;
2168         }
2169
2170         BUG_ON(obj->pages_pin_count);
2171
2172         ret = ops->get_pages(obj);
2173         if (ret)
2174                 return ret;
2175
2176         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2177         return 0;
2178 }
2179
2180 static void
2181 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2182                                struct intel_engine_cs *ring)
2183 {
2184         u32 seqno = intel_ring_get_seqno(ring);
2185
2186         BUG_ON(ring == NULL);
2187         if (obj->ring != ring && obj->last_write_seqno) {
2188                 /* Keep the seqno relative to the current ring */
2189                 obj->last_write_seqno = seqno;
2190         }
2191         obj->ring = ring;
2192
2193         /* Add a reference if we're newly entering the active list. */
2194         if (!obj->active) {
2195                 drm_gem_object_reference(&obj->base);
2196                 obj->active = 1;
2197         }
2198
2199         list_move_tail(&obj->ring_list, &ring->active_list);
2200
2201         obj->last_read_seqno = seqno;
2202 }
2203
2204 void i915_vma_move_to_active(struct i915_vma *vma,
2205                              struct intel_engine_cs *ring)
2206 {
2207         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2208         return i915_gem_object_move_to_active(vma->obj, ring);
2209 }
2210
2211 static void
2212 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2213 {
2214         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2215         struct i915_address_space *vm;
2216         struct i915_vma *vma;
2217
2218         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2219         BUG_ON(!obj->active);
2220
2221         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2222                 vma = i915_gem_obj_to_vma(obj, vm);
2223                 if (vma && !list_empty(&vma->mm_list))
2224                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2225         }
2226
2227         intel_fb_obj_flush(obj, true);
2228
2229         list_del_init(&obj->ring_list);
2230         obj->ring = NULL;
2231
2232         obj->last_read_seqno = 0;
2233         obj->last_write_seqno = 0;
2234         obj->base.write_domain = 0;
2235
2236         obj->last_fenced_seqno = 0;
2237
2238         obj->active = 0;
2239         drm_gem_object_unreference(&obj->base);
2240
2241         WARN_ON(i915_verify_lists(dev));
2242 }
2243
2244 static void
2245 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2246 {
2247         struct intel_engine_cs *ring = obj->ring;
2248
2249         if (ring == NULL)
2250                 return;
2251
2252         if (i915_seqno_passed(ring->get_seqno(ring, true),
2253                               obj->last_read_seqno))
2254                 i915_gem_object_move_to_inactive(obj);
2255 }
2256
2257 static int
2258 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2259 {
2260         struct drm_i915_private *dev_priv = dev->dev_private;
2261         struct intel_engine_cs *ring;
2262         int ret, i, j;
2263
2264         /* Carefully retire all requests without writing to the rings */
2265         for_each_ring(ring, dev_priv, i) {
2266                 ret = intel_ring_idle(ring);
2267                 if (ret)
2268                         return ret;
2269         }
2270         i915_gem_retire_requests(dev);
2271
2272         /* Finally reset hw state */
2273         for_each_ring(ring, dev_priv, i) {
2274                 intel_ring_init_seqno(ring, seqno);
2275
2276                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2277                         ring->semaphore.sync_seqno[j] = 0;
2278         }
2279
2280         return 0;
2281 }
2282
2283 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2284 {
2285         struct drm_i915_private *dev_priv = dev->dev_private;
2286         int ret;
2287
2288         if (seqno == 0)
2289                 return -EINVAL;
2290
2291         /* HWS page needs to be set less than what we
2292          * will inject to ring
2293          */
2294         ret = i915_gem_init_seqno(dev, seqno - 1);
2295         if (ret)
2296                 return ret;
2297
2298         /* Carefully set the last_seqno value so that wrap
2299          * detection still works
2300          */
2301         dev_priv->next_seqno = seqno;
2302         dev_priv->last_seqno = seqno - 1;
2303         if (dev_priv->last_seqno == 0)
2304                 dev_priv->last_seqno--;
2305
2306         return 0;
2307 }
2308
2309 int
2310 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2311 {
2312         struct drm_i915_private *dev_priv = dev->dev_private;
2313
2314         /* reserve 0 for non-seqno */
2315         if (dev_priv->next_seqno == 0) {
2316                 int ret = i915_gem_init_seqno(dev, 0);
2317                 if (ret)
2318                         return ret;
2319
2320                 dev_priv->next_seqno = 1;
2321         }
2322
2323         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2324         return 0;
2325 }
2326
2327 int __i915_add_request(struct intel_engine_cs *ring,
2328                        struct drm_file *file,
2329                        struct drm_i915_gem_object *obj,
2330                        u32 *out_seqno)
2331 {
2332         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2333         struct drm_i915_gem_request *request;
2334         struct intel_ringbuffer *ringbuf;
2335         u32 request_ring_position, request_start;
2336         int ret;
2337
2338         request = ring->preallocated_lazy_request;
2339         if (WARN_ON(request == NULL))
2340                 return -ENOMEM;
2341
2342         if (i915.enable_execlists) {
2343                 struct intel_context *ctx = request->ctx;
2344                 ringbuf = ctx->engine[ring->id].ringbuf;
2345         } else
2346                 ringbuf = ring->buffer;
2347
2348         request_start = intel_ring_get_tail(ringbuf);
2349         /*
2350          * Emit any outstanding flushes - execbuf can fail to emit the flush
2351          * after having emitted the batchbuffer command. Hence we need to fix
2352          * things up similar to emitting the lazy request. The difference here
2353          * is that the flush _must_ happen before the next request, no matter
2354          * what.
2355          */
2356         if (i915.enable_execlists) {
2357                 ret = logical_ring_flush_all_caches(ringbuf);
2358                 if (ret)
2359                         return ret;
2360         } else {
2361                 ret = intel_ring_flush_all_caches(ring);
2362                 if (ret)
2363                         return ret;
2364         }
2365
2366         /* Record the position of the start of the request so that
2367          * should we detect the updated seqno part-way through the
2368          * GPU processing the request, we never over-estimate the
2369          * position of the head.
2370          */
2371         request_ring_position = intel_ring_get_tail(ringbuf);
2372
2373         if (i915.enable_execlists) {
2374                 ret = ring->emit_request(ringbuf);
2375                 if (ret)
2376                         return ret;
2377         } else {
2378                 ret = ring->add_request(ring);
2379                 if (ret)
2380                         return ret;
2381         }
2382
2383         request->seqno = intel_ring_get_seqno(ring);
2384         request->ring = ring;
2385         request->head = request_start;
2386         request->tail = request_ring_position;
2387
2388         /* Whilst this request exists, batch_obj will be on the
2389          * active_list, and so will hold the active reference. Only when this
2390          * request is retired will the the batch_obj be moved onto the
2391          * inactive_list and lose its active reference. Hence we do not need
2392          * to explicitly hold another reference here.
2393          */
2394         request->batch_obj = obj;
2395
2396         if (!i915.enable_execlists) {
2397                 /* Hold a reference to the current context so that we can inspect
2398                  * it later in case a hangcheck error event fires.
2399                  */
2400                 request->ctx = ring->last_context;
2401                 if (request->ctx)
2402                         i915_gem_context_reference(request->ctx);
2403         }
2404
2405         request->emitted_jiffies = jiffies;
2406         list_add_tail(&request->list, &ring->request_list);
2407         request->file_priv = NULL;
2408
2409         if (file) {
2410                 struct drm_i915_file_private *file_priv = file->driver_priv;
2411
2412                 spin_lock(&file_priv->mm.lock);
2413                 request->file_priv = file_priv;
2414                 list_add_tail(&request->client_list,
2415                               &file_priv->mm.request_list);
2416                 spin_unlock(&file_priv->mm.lock);
2417         }
2418
2419         trace_i915_gem_request_add(ring, request->seqno);
2420         ring->outstanding_lazy_seqno = 0;
2421         ring->preallocated_lazy_request = NULL;
2422
2423         if (!dev_priv->ums.mm_suspended) {
2424                 i915_queue_hangcheck(ring->dev);
2425
2426                 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2427                 queue_delayed_work(dev_priv->wq,
2428                                    &dev_priv->mm.retire_work,
2429                                    round_jiffies_up_relative(HZ));
2430                 intel_mark_busy(dev_priv->dev);
2431         }
2432
2433         if (out_seqno)
2434                 *out_seqno = request->seqno;
2435         return 0;
2436 }
2437
2438 static inline void
2439 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2440 {
2441         struct drm_i915_file_private *file_priv = request->file_priv;
2442
2443         if (!file_priv)
2444                 return;
2445
2446         spin_lock(&file_priv->mm.lock);
2447         list_del(&request->client_list);
2448         request->file_priv = NULL;
2449         spin_unlock(&file_priv->mm.lock);
2450 }
2451
2452 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2453                                    const struct intel_context *ctx)
2454 {
2455         unsigned long elapsed;
2456
2457         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2458
2459         if (ctx->hang_stats.banned)
2460                 return true;
2461
2462         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2463                 if (!i915_gem_context_is_default(ctx)) {
2464                         DRM_DEBUG("context hanging too fast, banning!\n");
2465                         return true;
2466                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2467                         if (i915_stop_ring_allow_warn(dev_priv))
2468                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2469                         return true;
2470                 }
2471         }
2472
2473         return false;
2474 }
2475
2476 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2477                                   struct intel_context *ctx,
2478                                   const bool guilty)
2479 {
2480         struct i915_ctx_hang_stats *hs;
2481
2482         if (WARN_ON(!ctx))
2483                 return;
2484
2485         hs = &ctx->hang_stats;
2486
2487         if (guilty) {
2488                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2489                 hs->batch_active++;
2490                 hs->guilty_ts = get_seconds();
2491         } else {
2492                 hs->batch_pending++;
2493         }
2494 }
2495
2496 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2497 {
2498         list_del(&request->list);
2499         i915_gem_request_remove_from_client(request);
2500
2501         if (request->ctx)
2502                 i915_gem_context_unreference(request->ctx);
2503
2504         kfree(request);
2505 }
2506
2507 struct drm_i915_gem_request *
2508 i915_gem_find_active_request(struct intel_engine_cs *ring)
2509 {
2510         struct drm_i915_gem_request *request;
2511         u32 completed_seqno;
2512
2513         completed_seqno = ring->get_seqno(ring, false);
2514
2515         list_for_each_entry(request, &ring->request_list, list) {
2516                 if (i915_seqno_passed(completed_seqno, request->seqno))
2517                         continue;
2518
2519                 return request;
2520         }
2521
2522         return NULL;
2523 }
2524
2525 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2526                                        struct intel_engine_cs *ring)
2527 {
2528         struct drm_i915_gem_request *request;
2529         bool ring_hung;
2530
2531         request = i915_gem_find_active_request(ring);
2532
2533         if (request == NULL)
2534                 return;
2535
2536         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2537
2538         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2539
2540         list_for_each_entry_continue(request, &ring->request_list, list)
2541                 i915_set_reset_status(dev_priv, request->ctx, false);
2542 }
2543
2544 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2545                                         struct intel_engine_cs *ring)
2546 {
2547         while (!list_empty(&ring->active_list)) {
2548                 struct drm_i915_gem_object *obj;
2549
2550                 obj = list_first_entry(&ring->active_list,
2551                                        struct drm_i915_gem_object,
2552                                        ring_list);
2553
2554                 i915_gem_object_move_to_inactive(obj);
2555         }
2556
2557         /*
2558          * We must free the requests after all the corresponding objects have
2559          * been moved off active lists. Which is the same order as the normal
2560          * retire_requests function does. This is important if object hold
2561          * implicit references on things like e.g. ppgtt address spaces through
2562          * the request.
2563          */
2564         while (!list_empty(&ring->request_list)) {
2565                 struct drm_i915_gem_request *request;
2566
2567                 request = list_first_entry(&ring->request_list,
2568                                            struct drm_i915_gem_request,
2569                                            list);
2570
2571                 i915_gem_free_request(request);
2572         }
2573
2574         while (!list_empty(&ring->execlist_queue)) {
2575                 struct intel_ctx_submit_request *submit_req;
2576
2577                 submit_req = list_first_entry(&ring->execlist_queue,
2578                                 struct intel_ctx_submit_request,
2579                                 execlist_link);
2580                 list_del(&submit_req->execlist_link);
2581                 intel_runtime_pm_put(dev_priv);
2582                 i915_gem_context_unreference(submit_req->ctx);
2583                 kfree(submit_req);
2584         }
2585
2586         /* These may not have been flush before the reset, do so now */
2587         kfree(ring->preallocated_lazy_request);
2588         ring->preallocated_lazy_request = NULL;
2589         ring->outstanding_lazy_seqno = 0;
2590 }
2591
2592 void i915_gem_restore_fences(struct drm_device *dev)
2593 {
2594         struct drm_i915_private *dev_priv = dev->dev_private;
2595         int i;
2596
2597         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2598                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2599
2600                 /*
2601                  * Commit delayed tiling changes if we have an object still
2602                  * attached to the fence, otherwise just clear the fence.
2603                  */
2604                 if (reg->obj) {
2605                         i915_gem_object_update_fence(reg->obj, reg,
2606                                                      reg->obj->tiling_mode);
2607                 } else {
2608                         i915_gem_write_fence(dev, i, NULL);
2609                 }
2610         }
2611 }
2612
2613 void i915_gem_reset(struct drm_device *dev)
2614 {
2615         struct drm_i915_private *dev_priv = dev->dev_private;
2616         struct intel_engine_cs *ring;
2617         int i;
2618
2619         /*
2620          * Before we free the objects from the requests, we need to inspect
2621          * them for finding the guilty party. As the requests only borrow
2622          * their reference to the objects, the inspection must be done first.
2623          */
2624         for_each_ring(ring, dev_priv, i)
2625                 i915_gem_reset_ring_status(dev_priv, ring);
2626
2627         for_each_ring(ring, dev_priv, i)
2628                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2629
2630         i915_gem_context_reset(dev);
2631
2632         i915_gem_restore_fences(dev);
2633 }
2634
2635 /**
2636  * This function clears the request list as sequence numbers are passed.
2637  */
2638 void
2639 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2640 {
2641         uint32_t seqno;
2642
2643         if (list_empty(&ring->request_list))
2644                 return;
2645
2646         WARN_ON(i915_verify_lists(ring->dev));
2647
2648         seqno = ring->get_seqno(ring, true);
2649
2650         /* Move any buffers on the active list that are no longer referenced
2651          * by the ringbuffer to the flushing/inactive lists as appropriate,
2652          * before we free the context associated with the requests.
2653          */
2654         while (!list_empty(&ring->active_list)) {
2655                 struct drm_i915_gem_object *obj;
2656
2657                 obj = list_first_entry(&ring->active_list,
2658                                       struct drm_i915_gem_object,
2659                                       ring_list);
2660
2661                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2662                         break;
2663
2664                 i915_gem_object_move_to_inactive(obj);
2665         }
2666
2667
2668         while (!list_empty(&ring->request_list)) {
2669                 struct drm_i915_gem_request *request;
2670                 struct intel_ringbuffer *ringbuf;
2671
2672                 request = list_first_entry(&ring->request_list,
2673                                            struct drm_i915_gem_request,
2674                                            list);
2675
2676                 if (!i915_seqno_passed(seqno, request->seqno))
2677                         break;
2678
2679                 trace_i915_gem_request_retire(ring, request->seqno);
2680
2681                 /* This is one of the few common intersection points
2682                  * between legacy ringbuffer submission and execlists:
2683                  * we need to tell them apart in order to find the correct
2684                  * ringbuffer to which the request belongs to.
2685                  */
2686                 if (i915.enable_execlists) {
2687                         struct intel_context *ctx = request->ctx;
2688                         ringbuf = ctx->engine[ring->id].ringbuf;
2689                 } else
2690                         ringbuf = ring->buffer;
2691
2692                 /* We know the GPU must have read the request to have
2693                  * sent us the seqno + interrupt, so use the position
2694                  * of tail of the request to update the last known position
2695                  * of the GPU head.
2696                  */
2697                 ringbuf->last_retired_head = request->tail;
2698
2699                 i915_gem_free_request(request);
2700         }
2701
2702         if (unlikely(ring->trace_irq_seqno &&
2703                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2704                 ring->irq_put(ring);
2705                 ring->trace_irq_seqno = 0;
2706         }
2707
2708         WARN_ON(i915_verify_lists(ring->dev));
2709 }
2710
2711 bool
2712 i915_gem_retire_requests(struct drm_device *dev)
2713 {
2714         struct drm_i915_private *dev_priv = dev->dev_private;
2715         struct intel_engine_cs *ring;
2716         bool idle = true;
2717         int i;
2718
2719         for_each_ring(ring, dev_priv, i) {
2720                 i915_gem_retire_requests_ring(ring);
2721                 idle &= list_empty(&ring->request_list);
2722         }
2723
2724         if (idle)
2725                 mod_delayed_work(dev_priv->wq,
2726                                    &dev_priv->mm.idle_work,
2727                                    msecs_to_jiffies(100));
2728
2729         return idle;
2730 }
2731
2732 static void
2733 i915_gem_retire_work_handler(struct work_struct *work)
2734 {
2735         struct drm_i915_private *dev_priv =
2736                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2737         struct drm_device *dev = dev_priv->dev;
2738         bool idle;
2739
2740         /* Come back later if the device is busy... */
2741         idle = false;
2742         if (mutex_trylock(&dev->struct_mutex)) {
2743                 idle = i915_gem_retire_requests(dev);
2744                 mutex_unlock(&dev->struct_mutex);
2745         }
2746         if (!idle)
2747                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2748                                    round_jiffies_up_relative(HZ));
2749 }
2750
2751 static void
2752 i915_gem_idle_work_handler(struct work_struct *work)
2753 {
2754         struct drm_i915_private *dev_priv =
2755                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2756
2757         intel_mark_idle(dev_priv->dev);
2758 }
2759
2760 /**
2761  * Ensures that an object will eventually get non-busy by flushing any required
2762  * write domains, emitting any outstanding lazy request and retiring and
2763  * completed requests.
2764  */
2765 static int
2766 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2767 {
2768         int ret;
2769
2770         if (obj->active) {
2771                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2772                 if (ret)
2773                         return ret;
2774
2775                 i915_gem_retire_requests_ring(obj->ring);
2776         }
2777
2778         return 0;
2779 }
2780
2781 /**
2782  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2783  * @DRM_IOCTL_ARGS: standard ioctl arguments
2784  *
2785  * Returns 0 if successful, else an error is returned with the remaining time in
2786  * the timeout parameter.
2787  *  -ETIME: object is still busy after timeout
2788  *  -ERESTARTSYS: signal interrupted the wait
2789  *  -ENONENT: object doesn't exist
2790  * Also possible, but rare:
2791  *  -EAGAIN: GPU wedged
2792  *  -ENOMEM: damn
2793  *  -ENODEV: Internal IRQ fail
2794  *  -E?: The add request failed
2795  *
2796  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2797  * non-zero timeout parameter the wait ioctl will wait for the given number of
2798  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2799  * without holding struct_mutex the object may become re-busied before this
2800  * function completes. A similar but shorter * race condition exists in the busy
2801  * ioctl
2802  */
2803 int
2804 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2805 {
2806         struct drm_i915_private *dev_priv = dev->dev_private;
2807         struct drm_i915_gem_wait *args = data;
2808         struct drm_i915_gem_object *obj;
2809         struct intel_engine_cs *ring = NULL;
2810         unsigned reset_counter;
2811         u32 seqno = 0;
2812         int ret = 0;
2813
2814         ret = i915_mutex_lock_interruptible(dev);
2815         if (ret)
2816                 return ret;
2817
2818         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2819         if (&obj->base == NULL) {
2820                 mutex_unlock(&dev->struct_mutex);
2821                 return -ENOENT;
2822         }
2823
2824         /* Need to make sure the object gets inactive eventually. */
2825         ret = i915_gem_object_flush_active(obj);
2826         if (ret)
2827                 goto out;
2828
2829         if (obj->active) {
2830                 seqno = obj->last_read_seqno;
2831                 ring = obj->ring;
2832         }
2833
2834         if (seqno == 0)
2835                  goto out;
2836
2837         /* Do this after OLR check to make sure we make forward progress polling
2838          * on this IOCTL with a timeout <=0 (like busy ioctl)
2839          */
2840         if (args->timeout_ns <= 0) {
2841                 ret = -ETIME;
2842                 goto out;
2843         }
2844
2845         drm_gem_object_unreference(&obj->base);
2846         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2847         mutex_unlock(&dev->struct_mutex);
2848
2849         return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
2850                             file->driver_priv);
2851
2852 out:
2853         drm_gem_object_unreference(&obj->base);
2854         mutex_unlock(&dev->struct_mutex);
2855         return ret;
2856 }
2857
2858 /**
2859  * i915_gem_object_sync - sync an object to a ring.
2860  *
2861  * @obj: object which may be in use on another ring.
2862  * @to: ring we wish to use the object on. May be NULL.
2863  *
2864  * This code is meant to abstract object synchronization with the GPU.
2865  * Calling with NULL implies synchronizing the object with the CPU
2866  * rather than a particular GPU ring.
2867  *
2868  * Returns 0 if successful, else propagates up the lower layer error.
2869  */
2870 int
2871 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2872                      struct intel_engine_cs *to)
2873 {
2874         struct intel_engine_cs *from = obj->ring;
2875         u32 seqno;
2876         int ret, idx;
2877
2878         if (from == NULL || to == from)
2879                 return 0;
2880
2881         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2882                 return i915_gem_object_wait_rendering(obj, false);
2883
2884         idx = intel_ring_sync_index(from, to);
2885
2886         seqno = obj->last_read_seqno;
2887         /* Optimization: Avoid semaphore sync when we are sure we already
2888          * waited for an object with higher seqno */
2889         if (seqno <= from->semaphore.sync_seqno[idx])
2890                 return 0;
2891
2892         ret = i915_gem_check_olr(obj->ring, seqno);
2893         if (ret)
2894                 return ret;
2895
2896         trace_i915_gem_ring_sync_to(from, to, seqno);
2897         ret = to->semaphore.sync_to(to, from, seqno);
2898         if (!ret)
2899                 /* We use last_read_seqno because sync_to()
2900                  * might have just caused seqno wrap under
2901                  * the radar.
2902                  */
2903                 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2904
2905         return ret;
2906 }
2907
2908 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2909 {
2910         u32 old_write_domain, old_read_domains;
2911
2912         /* Force a pagefault for domain tracking on next user access */
2913         i915_gem_release_mmap(obj);
2914
2915         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2916                 return;
2917
2918         /* Wait for any direct GTT access to complete */
2919         mb();
2920
2921         old_read_domains = obj->base.read_domains;
2922         old_write_domain = obj->base.write_domain;
2923
2924         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2925         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2926
2927         trace_i915_gem_object_change_domain(obj,
2928                                             old_read_domains,
2929                                             old_write_domain);
2930 }
2931
2932 int i915_vma_unbind(struct i915_vma *vma)
2933 {
2934         struct drm_i915_gem_object *obj = vma->obj;
2935         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2936         int ret;
2937
2938         if (list_empty(&vma->vma_link))
2939                 return 0;
2940
2941         if (!drm_mm_node_allocated(&vma->node)) {
2942                 i915_gem_vma_destroy(vma);
2943                 return 0;
2944         }
2945
2946         if (vma->pin_count)
2947                 return -EBUSY;
2948
2949         BUG_ON(obj->pages == NULL);
2950
2951         ret = i915_gem_object_finish_gpu(obj);
2952         if (ret)
2953                 return ret;
2954         /* Continue on if we fail due to EIO, the GPU is hung so we
2955          * should be safe and we need to cleanup or else we might
2956          * cause memory corruption through use-after-free.
2957          */
2958
2959         /* Throw away the active reference before moving to the unbound list */
2960         i915_gem_object_retire(obj);
2961
2962         if (i915_is_ggtt(vma->vm)) {
2963                 i915_gem_object_finish_gtt(obj);
2964
2965                 /* release the fence reg _after_ flushing */
2966                 ret = i915_gem_object_put_fence(obj);
2967                 if (ret)
2968                         return ret;
2969         }
2970
2971         trace_i915_vma_unbind(vma);
2972
2973         vma->unbind_vma(vma);
2974
2975         list_del_init(&vma->mm_list);
2976         if (i915_is_ggtt(vma->vm))
2977                 obj->map_and_fenceable = false;
2978
2979         drm_mm_remove_node(&vma->node);
2980         i915_gem_vma_destroy(vma);
2981
2982         /* Since the unbound list is global, only move to that list if
2983          * no more VMAs exist. */
2984         if (list_empty(&obj->vma_list)) {
2985                 i915_gem_gtt_finish_object(obj);
2986                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2987         }
2988
2989         /* And finally now the object is completely decoupled from this vma,
2990          * we can drop its hold on the backing storage and allow it to be
2991          * reaped by the shrinker.
2992          */
2993         i915_gem_object_unpin_pages(obj);
2994
2995         return 0;
2996 }
2997
2998 int i915_gpu_idle(struct drm_device *dev)
2999 {
3000         struct drm_i915_private *dev_priv = dev->dev_private;
3001         struct intel_engine_cs *ring;
3002         int ret, i;
3003
3004         /* Flush everything onto the inactive list. */
3005         for_each_ring(ring, dev_priv, i) {
3006                 if (!i915.enable_execlists) {
3007                         ret = i915_switch_context(ring, ring->default_context);
3008                         if (ret)
3009                                 return ret;
3010                 }
3011
3012                 ret = intel_ring_idle(ring);
3013                 if (ret)
3014                         return ret;
3015         }
3016
3017         return 0;
3018 }
3019
3020 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3021                                  struct drm_i915_gem_object *obj)
3022 {
3023         struct drm_i915_private *dev_priv = dev->dev_private;
3024         int fence_reg;
3025         int fence_pitch_shift;
3026
3027         if (INTEL_INFO(dev)->gen >= 6) {
3028                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3029                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3030         } else {
3031                 fence_reg = FENCE_REG_965_0;
3032                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3033         }
3034
3035         fence_reg += reg * 8;
3036
3037         /* To w/a incoherency with non-atomic 64-bit register updates,
3038          * we split the 64-bit update into two 32-bit writes. In order
3039          * for a partial fence not to be evaluated between writes, we
3040          * precede the update with write to turn off the fence register,
3041          * and only enable the fence as the last step.
3042          *
3043          * For extra levels of paranoia, we make sure each step lands
3044          * before applying the next step.
3045          */
3046         I915_WRITE(fence_reg, 0);
3047         POSTING_READ(fence_reg);
3048
3049         if (obj) {
3050                 u32 size = i915_gem_obj_ggtt_size(obj);
3051                 uint64_t val;
3052
3053                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3054                                  0xfffff000) << 32;
3055                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3056                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3057                 if (obj->tiling_mode == I915_TILING_Y)
3058                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3059                 val |= I965_FENCE_REG_VALID;
3060
3061                 I915_WRITE(fence_reg + 4, val >> 32);
3062                 POSTING_READ(fence_reg + 4);
3063
3064                 I915_WRITE(fence_reg + 0, val);
3065                 POSTING_READ(fence_reg);
3066         } else {
3067                 I915_WRITE(fence_reg + 4, 0);
3068                 POSTING_READ(fence_reg + 4);
3069         }
3070 }
3071
3072 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3073                                  struct drm_i915_gem_object *obj)
3074 {
3075         struct drm_i915_private *dev_priv = dev->dev_private;
3076         u32 val;
3077
3078         if (obj) {
3079                 u32 size = i915_gem_obj_ggtt_size(obj);
3080                 int pitch_val;
3081                 int tile_width;
3082
3083                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3084                      (size & -size) != size ||
3085                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3086                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3087                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3088
3089                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3090                         tile_width = 128;
3091                 else
3092                         tile_width = 512;
3093
3094                 /* Note: pitch better be a power of two tile widths */
3095                 pitch_val = obj->stride / tile_width;
3096                 pitch_val = ffs(pitch_val) - 1;
3097
3098                 val = i915_gem_obj_ggtt_offset(obj);
3099                 if (obj->tiling_mode == I915_TILING_Y)
3100                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3101                 val |= I915_FENCE_SIZE_BITS(size);
3102                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3103                 val |= I830_FENCE_REG_VALID;
3104         } else
3105                 val = 0;
3106
3107         if (reg < 8)
3108                 reg = FENCE_REG_830_0 + reg * 4;
3109         else
3110                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3111
3112         I915_WRITE(reg, val);
3113         POSTING_READ(reg);
3114 }
3115
3116 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3117                                 struct drm_i915_gem_object *obj)
3118 {
3119         struct drm_i915_private *dev_priv = dev->dev_private;
3120         uint32_t val;
3121
3122         if (obj) {
3123                 u32 size = i915_gem_obj_ggtt_size(obj);
3124                 uint32_t pitch_val;
3125
3126                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3127                      (size & -size) != size ||
3128                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3129                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3130                      i915_gem_obj_ggtt_offset(obj), size);
3131
3132                 pitch_val = obj->stride / 128;
3133                 pitch_val = ffs(pitch_val) - 1;
3134
3135                 val = i915_gem_obj_ggtt_offset(obj);
3136                 if (obj->tiling_mode == I915_TILING_Y)
3137                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3138                 val |= I830_FENCE_SIZE_BITS(size);
3139                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3140                 val |= I830_FENCE_REG_VALID;
3141         } else
3142                 val = 0;
3143
3144         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3145         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3146 }
3147
3148 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3149 {
3150         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3151 }
3152
3153 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3154                                  struct drm_i915_gem_object *obj)
3155 {
3156         struct drm_i915_private *dev_priv = dev->dev_private;
3157
3158         /* Ensure that all CPU reads are completed before installing a fence
3159          * and all writes before removing the fence.
3160          */
3161         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3162                 mb();
3163
3164         WARN(obj && (!obj->stride || !obj->tiling_mode),
3165              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3166              obj->stride, obj->tiling_mode);
3167
3168         switch (INTEL_INFO(dev)->gen) {
3169         case 8:
3170         case 7:
3171         case 6:
3172         case 5:
3173         case 4: i965_write_fence_reg(dev, reg, obj); break;
3174         case 3: i915_write_fence_reg(dev, reg, obj); break;
3175         case 2: i830_write_fence_reg(dev, reg, obj); break;
3176         default: BUG();
3177         }
3178
3179         /* And similarly be paranoid that no direct access to this region
3180          * is reordered to before the fence is installed.
3181          */
3182         if (i915_gem_object_needs_mb(obj))
3183                 mb();
3184 }
3185
3186 static inline int fence_number(struct drm_i915_private *dev_priv,
3187                                struct drm_i915_fence_reg *fence)
3188 {
3189         return fence - dev_priv->fence_regs;
3190 }
3191
3192 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3193                                          struct drm_i915_fence_reg *fence,
3194                                          bool enable)
3195 {
3196         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3197         int reg = fence_number(dev_priv, fence);
3198
3199         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3200
3201         if (enable) {
3202                 obj->fence_reg = reg;
3203                 fence->obj = obj;
3204                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3205         } else {
3206                 obj->fence_reg = I915_FENCE_REG_NONE;
3207                 fence->obj = NULL;
3208                 list_del_init(&fence->lru_list);
3209         }
3210         obj->fence_dirty = false;
3211 }
3212
3213 static int
3214 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3215 {
3216         if (obj->last_fenced_seqno) {
3217                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3218                 if (ret)
3219                         return ret;
3220
3221                 obj->last_fenced_seqno = 0;
3222         }
3223
3224         return 0;
3225 }
3226
3227 int
3228 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3229 {
3230         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3231         struct drm_i915_fence_reg *fence;
3232         int ret;
3233
3234         ret = i915_gem_object_wait_fence(obj);
3235         if (ret)
3236                 return ret;
3237
3238         if (obj->fence_reg == I915_FENCE_REG_NONE)
3239                 return 0;
3240
3241         fence = &dev_priv->fence_regs[obj->fence_reg];
3242
3243         if (WARN_ON(fence->pin_count))
3244                 return -EBUSY;
3245
3246         i915_gem_object_fence_lost(obj);
3247         i915_gem_object_update_fence(obj, fence, false);
3248
3249         return 0;
3250 }
3251
3252 static struct drm_i915_fence_reg *
3253 i915_find_fence_reg(struct drm_device *dev)
3254 {
3255         struct drm_i915_private *dev_priv = dev->dev_private;
3256         struct drm_i915_fence_reg *reg, *avail;
3257         int i;
3258
3259         /* First try to find a free reg */
3260         avail = NULL;
3261         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3262                 reg = &dev_priv->fence_regs[i];
3263                 if (!reg->obj)
3264                         return reg;
3265
3266                 if (!reg->pin_count)
3267                         avail = reg;
3268         }
3269
3270         if (avail == NULL)
3271                 goto deadlock;
3272
3273         /* None available, try to steal one or wait for a user to finish */
3274         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3275                 if (reg->pin_count)
3276                         continue;
3277
3278                 return reg;
3279         }
3280
3281 deadlock:
3282         /* Wait for completion of pending flips which consume fences */
3283         if (intel_has_pending_fb_unpin(dev))
3284                 return ERR_PTR(-EAGAIN);
3285
3286         return ERR_PTR(-EDEADLK);
3287 }
3288
3289 /**
3290  * i915_gem_object_get_fence - set up fencing for an object
3291  * @obj: object to map through a fence reg
3292  *
3293  * When mapping objects through the GTT, userspace wants to be able to write
3294  * to them without having to worry about swizzling if the object is tiled.
3295  * This function walks the fence regs looking for a free one for @obj,
3296  * stealing one if it can't find any.
3297  *
3298  * It then sets up the reg based on the object's properties: address, pitch
3299  * and tiling format.
3300  *
3301  * For an untiled surface, this removes any existing fence.
3302  */
3303 int
3304 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3305 {
3306         struct drm_device *dev = obj->base.dev;
3307         struct drm_i915_private *dev_priv = dev->dev_private;
3308         bool enable = obj->tiling_mode != I915_TILING_NONE;
3309         struct drm_i915_fence_reg *reg;
3310         int ret;
3311
3312         /* Have we updated the tiling parameters upon the object and so
3313          * will need to serialise the write to the associated fence register?
3314          */
3315         if (obj->fence_dirty) {
3316                 ret = i915_gem_object_wait_fence(obj);
3317                 if (ret)
3318                         return ret;
3319         }
3320
3321         /* Just update our place in the LRU if our fence is getting reused. */
3322         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3323                 reg = &dev_priv->fence_regs[obj->fence_reg];
3324                 if (!obj->fence_dirty) {
3325                         list_move_tail(&reg->lru_list,
3326                                        &dev_priv->mm.fence_list);
3327                         return 0;
3328                 }
3329         } else if (enable) {
3330                 if (WARN_ON(!obj->map_and_fenceable))
3331                         return -EINVAL;
3332
3333                 reg = i915_find_fence_reg(dev);
3334                 if (IS_ERR(reg))
3335                         return PTR_ERR(reg);
3336
3337                 if (reg->obj) {
3338                         struct drm_i915_gem_object *old = reg->obj;
3339
3340                         ret = i915_gem_object_wait_fence(old);
3341                         if (ret)
3342                                 return ret;
3343
3344                         i915_gem_object_fence_lost(old);
3345                 }
3346         } else
3347                 return 0;
3348
3349         i915_gem_object_update_fence(obj, reg, enable);
3350
3351         return 0;
3352 }
3353
3354 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3355                                      unsigned long cache_level)
3356 {
3357         struct drm_mm_node *gtt_space = &vma->node;
3358         struct drm_mm_node *other;
3359
3360         /*
3361          * On some machines we have to be careful when putting differing types
3362          * of snoopable memory together to avoid the prefetcher crossing memory
3363          * domains and dying. During vm initialisation, we decide whether or not
3364          * these constraints apply and set the drm_mm.color_adjust
3365          * appropriately.
3366          */
3367         if (vma->vm->mm.color_adjust == NULL)
3368                 return true;
3369
3370         if (!drm_mm_node_allocated(gtt_space))
3371                 return true;
3372
3373         if (list_empty(&gtt_space->node_list))
3374                 return true;
3375
3376         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3377         if (other->allocated && !other->hole_follows && other->color != cache_level)
3378                 return false;
3379
3380         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3381         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3382                 return false;
3383
3384         return true;
3385 }
3386
3387 static void i915_gem_verify_gtt(struct drm_device *dev)
3388 {
3389 #if WATCH_GTT
3390         struct drm_i915_private *dev_priv = dev->dev_private;
3391         struct drm_i915_gem_object *obj;
3392         int err = 0;
3393
3394         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3395                 if (obj->gtt_space == NULL) {
3396                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3397                         err++;
3398                         continue;
3399                 }
3400
3401                 if (obj->cache_level != obj->gtt_space->color) {
3402                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3403                                i915_gem_obj_ggtt_offset(obj),
3404                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3405                                obj->cache_level,
3406                                obj->gtt_space->color);
3407                         err++;
3408                         continue;
3409                 }
3410
3411                 if (!i915_gem_valid_gtt_space(dev,
3412                                               obj->gtt_space,
3413                                               obj->cache_level)) {
3414                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3415                                i915_gem_obj_ggtt_offset(obj),
3416                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3417                                obj->cache_level);
3418                         err++;
3419                         continue;
3420                 }
3421         }
3422
3423         WARN_ON(err);
3424 #endif
3425 }
3426
3427 /**
3428  * Finds free space in the GTT aperture and binds the object there.
3429  */
3430 static struct i915_vma *
3431 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3432                            struct i915_address_space *vm,
3433                            unsigned alignment,
3434                            uint64_t flags)
3435 {
3436         struct drm_device *dev = obj->base.dev;
3437         struct drm_i915_private *dev_priv = dev->dev_private;
3438         u32 size, fence_size, fence_alignment, unfenced_alignment;
3439         unsigned long start =
3440                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3441         unsigned long end =
3442                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3443         struct i915_vma *vma;
3444         int ret;
3445
3446         fence_size = i915_gem_get_gtt_size(dev,
3447                                            obj->base.size,
3448                                            obj->tiling_mode);
3449         fence_alignment = i915_gem_get_gtt_alignment(dev,
3450                                                      obj->base.size,
3451                                                      obj->tiling_mode, true);
3452         unfenced_alignment =
3453                 i915_gem_get_gtt_alignment(dev,
3454                                            obj->base.size,
3455                                            obj->tiling_mode, false);
3456
3457         if (alignment == 0)
3458                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3459                                                 unfenced_alignment;
3460         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3461                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3462                 return ERR_PTR(-EINVAL);
3463         }
3464
3465         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3466
3467         /* If the object is bigger than the entire aperture, reject it early
3468          * before evicting everything in a vain attempt to find space.
3469          */
3470         if (obj->base.size > end) {
3471                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3472                           obj->base.size,
3473                           flags & PIN_MAPPABLE ? "mappable" : "total",
3474                           end);
3475                 return ERR_PTR(-E2BIG);
3476         }
3477
3478         ret = i915_gem_object_get_pages(obj);
3479         if (ret)
3480                 return ERR_PTR(ret);
3481
3482         i915_gem_object_pin_pages(obj);
3483
3484         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3485         if (IS_ERR(vma))
3486                 goto err_unpin;
3487
3488 search_free:
3489         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3490                                                   size, alignment,
3491                                                   obj->cache_level,
3492                                                   start, end,
3493                                                   DRM_MM_SEARCH_DEFAULT,
3494                                                   DRM_MM_CREATE_DEFAULT);
3495         if (ret) {
3496                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3497                                                obj->cache_level,
3498                                                start, end,
3499                                                flags);
3500                 if (ret == 0)
3501                         goto search_free;
3502
3503                 goto err_free_vma;
3504         }
3505         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3506                 ret = -EINVAL;
3507                 goto err_remove_node;
3508         }
3509
3510         ret = i915_gem_gtt_prepare_object(obj);
3511         if (ret)
3512                 goto err_remove_node;
3513
3514         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3515         list_add_tail(&vma->mm_list, &vm->inactive_list);
3516
3517         if (i915_is_ggtt(vm)) {
3518                 bool mappable, fenceable;
3519
3520                 fenceable = (vma->node.size == fence_size &&
3521                              (vma->node.start & (fence_alignment - 1)) == 0);
3522
3523                 mappable = (vma->node.start + obj->base.size <=
3524                             dev_priv->gtt.mappable_end);
3525
3526                 obj->map_and_fenceable = mappable && fenceable;
3527         }
3528
3529         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3530
3531         trace_i915_vma_bind(vma, flags);
3532         vma->bind_vma(vma, obj->cache_level,
3533                       flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3534
3535         i915_gem_verify_gtt(dev);
3536         return vma;
3537
3538 err_remove_node:
3539         drm_mm_remove_node(&vma->node);
3540 err_free_vma:
3541         i915_gem_vma_destroy(vma);
3542         vma = ERR_PTR(ret);
3543 err_unpin:
3544         i915_gem_object_unpin_pages(obj);
3545         return vma;
3546 }
3547
3548 bool
3549 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3550                         bool force)
3551 {
3552         /* If we don't have a page list set up, then we're not pinned
3553          * to GPU, and we can ignore the cache flush because it'll happen
3554          * again at bind time.
3555          */
3556         if (obj->pages == NULL)
3557                 return false;
3558
3559         /*
3560          * Stolen memory is always coherent with the GPU as it is explicitly
3561          * marked as wc by the system, or the system is cache-coherent.
3562          */
3563         if (obj->stolen)
3564                 return false;
3565
3566         /* If the GPU is snooping the contents of the CPU cache,
3567          * we do not need to manually clear the CPU cache lines.  However,
3568          * the caches are only snooped when the render cache is
3569          * flushed/invalidated.  As we always have to emit invalidations
3570          * and flushes when moving into and out of the RENDER domain, correct
3571          * snooping behaviour occurs naturally as the result of our domain
3572          * tracking.
3573          */
3574         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3575                 return false;
3576
3577         trace_i915_gem_object_clflush(obj);
3578         drm_clflush_sg(obj->pages);
3579
3580         return true;
3581 }
3582
3583 /** Flushes the GTT write domain for the object if it's dirty. */
3584 static void
3585 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3586 {
3587         uint32_t old_write_domain;
3588
3589         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3590                 return;
3591
3592         /* No actual flushing is required for the GTT write domain.  Writes
3593          * to it immediately go to main memory as far as we know, so there's
3594          * no chipset flush.  It also doesn't land in render cache.
3595          *
3596          * However, we do have to enforce the order so that all writes through
3597          * the GTT land before any writes to the device, such as updates to
3598          * the GATT itself.
3599          */
3600         wmb();
3601
3602         old_write_domain = obj->base.write_domain;
3603         obj->base.write_domain = 0;
3604
3605         intel_fb_obj_flush(obj, false);
3606
3607         trace_i915_gem_object_change_domain(obj,
3608                                             obj->base.read_domains,
3609                                             old_write_domain);
3610 }
3611
3612 /** Flushes the CPU write domain for the object if it's dirty. */
3613 static void
3614 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3615                                        bool force)
3616 {
3617         uint32_t old_write_domain;
3618
3619         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3620                 return;
3621
3622         if (i915_gem_clflush_object(obj, force))
3623                 i915_gem_chipset_flush(obj->base.dev);
3624
3625         old_write_domain = obj->base.write_domain;
3626         obj->base.write_domain = 0;
3627
3628         intel_fb_obj_flush(obj, false);
3629
3630         trace_i915_gem_object_change_domain(obj,
3631                                             obj->base.read_domains,
3632                                             old_write_domain);
3633 }
3634
3635 /**
3636  * Moves a single object to the GTT read, and possibly write domain.
3637  *
3638  * This function returns when the move is complete, including waiting on
3639  * flushes to occur.
3640  */
3641 int
3642 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3643 {
3644         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3645         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3646         uint32_t old_write_domain, old_read_domains;
3647         int ret;
3648
3649         /* Not valid to be called on unbound objects. */
3650         if (vma == NULL)
3651                 return -EINVAL;
3652
3653         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3654                 return 0;
3655
3656         ret = i915_gem_object_wait_rendering(obj, !write);
3657         if (ret)
3658                 return ret;
3659
3660         i915_gem_object_retire(obj);
3661         i915_gem_object_flush_cpu_write_domain(obj, false);
3662
3663         /* Serialise direct access to this object with the barriers for
3664          * coherent writes from the GPU, by effectively invalidating the
3665          * GTT domain upon first access.
3666          */
3667         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3668                 mb();
3669
3670         old_write_domain = obj->base.write_domain;
3671         old_read_domains = obj->base.read_domains;
3672
3673         /* It should now be out of any other write domains, and we can update
3674          * the domain values for our changes.
3675          */
3676         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3677         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3678         if (write) {
3679                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3680                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3681                 obj->dirty = 1;
3682         }
3683
3684         if (write)
3685                 intel_fb_obj_invalidate(obj, NULL);
3686
3687         trace_i915_gem_object_change_domain(obj,
3688                                             old_read_domains,
3689                                             old_write_domain);
3690
3691         /* And bump the LRU for this access */
3692         if (i915_gem_object_is_inactive(obj))
3693                 list_move_tail(&vma->mm_list,
3694                                &dev_priv->gtt.base.inactive_list);
3695
3696         return 0;
3697 }
3698
3699 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3700                                     enum i915_cache_level cache_level)
3701 {
3702         struct drm_device *dev = obj->base.dev;
3703         struct i915_vma *vma, *next;
3704         int ret;
3705
3706         if (obj->cache_level == cache_level)
3707                 return 0;
3708
3709         if (i915_gem_obj_is_pinned(obj)) {
3710                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3711                 return -EBUSY;
3712         }
3713
3714         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3715                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3716                         ret = i915_vma_unbind(vma);
3717                         if (ret)
3718                                 return ret;
3719                 }
3720         }
3721
3722         if (i915_gem_obj_bound_any(obj)) {
3723                 ret = i915_gem_object_finish_gpu(obj);
3724                 if (ret)
3725                         return ret;
3726
3727                 i915_gem_object_finish_gtt(obj);
3728
3729                 /* Before SandyBridge, you could not use tiling or fence
3730                  * registers with snooped memory, so relinquish any fences
3731                  * currently pointing to our region in the aperture.
3732                  */
3733                 if (INTEL_INFO(dev)->gen < 6) {
3734                         ret = i915_gem_object_put_fence(obj);
3735                         if (ret)
3736                                 return ret;
3737                 }
3738
3739                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3740                         if (drm_mm_node_allocated(&vma->node))
3741                                 vma->bind_vma(vma, cache_level,
3742                                               obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3743         }
3744
3745         list_for_each_entry(vma, &obj->vma_list, vma_link)
3746                 vma->node.color = cache_level;
3747         obj->cache_level = cache_level;
3748
3749         if (cpu_write_needs_clflush(obj)) {
3750                 u32 old_read_domains, old_write_domain;
3751
3752                 /* If we're coming from LLC cached, then we haven't
3753                  * actually been tracking whether the data is in the
3754                  * CPU cache or not, since we only allow one bit set
3755                  * in obj->write_domain and have been skipping the clflushes.
3756                  * Just set it to the CPU cache for now.
3757                  */
3758                 i915_gem_object_retire(obj);
3759                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3760
3761                 old_read_domains = obj->base.read_domains;
3762                 old_write_domain = obj->base.write_domain;
3763
3764                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3765                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3766
3767                 trace_i915_gem_object_change_domain(obj,
3768                                                     old_read_domains,
3769                                                     old_write_domain);
3770         }
3771
3772         i915_gem_verify_gtt(dev);
3773         return 0;
3774 }
3775
3776 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3777                                struct drm_file *file)
3778 {
3779         struct drm_i915_gem_caching *args = data;
3780         struct drm_i915_gem_object *obj;
3781         int ret;
3782
3783         ret = i915_mutex_lock_interruptible(dev);
3784         if (ret)
3785                 return ret;
3786
3787         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3788         if (&obj->base == NULL) {
3789                 ret = -ENOENT;
3790                 goto unlock;
3791         }
3792
3793         switch (obj->cache_level) {
3794         case I915_CACHE_LLC:
3795         case I915_CACHE_L3_LLC:
3796                 args->caching = I915_CACHING_CACHED;
3797                 break;
3798
3799         case I915_CACHE_WT:
3800                 args->caching = I915_CACHING_DISPLAY;
3801                 break;
3802
3803         default:
3804                 args->caching = I915_CACHING_NONE;
3805                 break;
3806         }
3807
3808         drm_gem_object_unreference(&obj->base);
3809 unlock:
3810         mutex_unlock(&dev->struct_mutex);
3811         return ret;
3812 }
3813
3814 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3815                                struct drm_file *file)
3816 {
3817         struct drm_i915_gem_caching *args = data;
3818         struct drm_i915_gem_object *obj;
3819         enum i915_cache_level level;
3820         int ret;
3821
3822         switch (args->caching) {
3823         case I915_CACHING_NONE:
3824                 level = I915_CACHE_NONE;
3825                 break;
3826         case I915_CACHING_CACHED:
3827                 level = I915_CACHE_LLC;
3828                 break;
3829         case I915_CACHING_DISPLAY:
3830                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3831                 break;
3832         default:
3833                 return -EINVAL;
3834         }
3835
3836         ret = i915_mutex_lock_interruptible(dev);
3837         if (ret)
3838                 return ret;
3839
3840         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3841         if (&obj->base == NULL) {
3842                 ret = -ENOENT;
3843                 goto unlock;
3844         }
3845
3846         ret = i915_gem_object_set_cache_level(obj, level);
3847
3848         drm_gem_object_unreference(&obj->base);
3849 unlock:
3850         mutex_unlock(&dev->struct_mutex);
3851         return ret;
3852 }
3853
3854 static bool is_pin_display(struct drm_i915_gem_object *obj)
3855 {
3856         struct i915_vma *vma;
3857
3858         vma = i915_gem_obj_to_ggtt(obj);
3859         if (!vma)
3860                 return false;
3861
3862         /* There are 3 sources that pin objects:
3863          *   1. The display engine (scanouts, sprites, cursors);
3864          *   2. Reservations for execbuffer;
3865          *   3. The user.
3866          *
3867          * We can ignore reservations as we hold the struct_mutex and
3868          * are only called outside of the reservation path.  The user
3869          * can only increment pin_count once, and so if after
3870          * subtracting the potential reference by the user, any pin_count
3871          * remains, it must be due to another use by the display engine.
3872          */
3873         return vma->pin_count - !!obj->user_pin_count;
3874 }
3875
3876 /*
3877  * Prepare buffer for display plane (scanout, cursors, etc).
3878  * Can be called from an uninterruptible phase (modesetting) and allows
3879  * any flushes to be pipelined (for pageflips).
3880  */
3881 int
3882 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3883                                      u32 alignment,
3884                                      struct intel_engine_cs *pipelined)
3885 {
3886         u32 old_read_domains, old_write_domain;
3887         bool was_pin_display;
3888         int ret;
3889
3890         if (pipelined != obj->ring) {
3891                 ret = i915_gem_object_sync(obj, pipelined);
3892                 if (ret)
3893                         return ret;
3894         }
3895
3896         /* Mark the pin_display early so that we account for the
3897          * display coherency whilst setting up the cache domains.
3898          */
3899         was_pin_display = obj->pin_display;
3900         obj->pin_display = true;
3901
3902         /* The display engine is not coherent with the LLC cache on gen6.  As
3903          * a result, we make sure that the pinning that is about to occur is
3904          * done with uncached PTEs. This is lowest common denominator for all
3905          * chipsets.
3906          *
3907          * However for gen6+, we could do better by using the GFDT bit instead
3908          * of uncaching, which would allow us to flush all the LLC-cached data
3909          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3910          */
3911         ret = i915_gem_object_set_cache_level(obj,
3912                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3913         if (ret)
3914                 goto err_unpin_display;
3915
3916         /* As the user may map the buffer once pinned in the display plane
3917          * (e.g. libkms for the bootup splash), we have to ensure that we
3918          * always use map_and_fenceable for all scanout buffers.
3919          */
3920         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3921         if (ret)
3922                 goto err_unpin_display;
3923
3924         i915_gem_object_flush_cpu_write_domain(obj, true);
3925
3926         old_write_domain = obj->base.write_domain;
3927         old_read_domains = obj->base.read_domains;
3928
3929         /* It should now be out of any other write domains, and we can update
3930          * the domain values for our changes.
3931          */
3932         obj->base.write_domain = 0;
3933         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3934
3935         trace_i915_gem_object_change_domain(obj,
3936                                             old_read_domains,
3937                                             old_write_domain);
3938
3939         return 0;
3940
3941 err_unpin_display:
3942         WARN_ON(was_pin_display != is_pin_display(obj));
3943         obj->pin_display = was_pin_display;
3944         return ret;
3945 }
3946
3947 void
3948 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3949 {
3950         i915_gem_object_ggtt_unpin(obj);
3951         obj->pin_display = is_pin_display(obj);
3952 }
3953
3954 int
3955 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3956 {
3957         int ret;
3958
3959         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3960                 return 0;
3961
3962         ret = i915_gem_object_wait_rendering(obj, false);
3963         if (ret)
3964                 return ret;
3965
3966         /* Ensure that we invalidate the GPU's caches and TLBs. */
3967         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3968         return 0;
3969 }
3970
3971 /**
3972  * Moves a single object to the CPU read, and possibly write domain.
3973  *
3974  * This function returns when the move is complete, including waiting on
3975  * flushes to occur.
3976  */
3977 int
3978 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3979 {
3980         uint32_t old_write_domain, old_read_domains;
3981         int ret;
3982
3983         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3984                 return 0;
3985
3986         ret = i915_gem_object_wait_rendering(obj, !write);
3987         if (ret)
3988                 return ret;
3989
3990         i915_gem_object_retire(obj);
3991         i915_gem_object_flush_gtt_write_domain(obj);
3992
3993         old_write_domain = obj->base.write_domain;
3994         old_read_domains = obj->base.read_domains;
3995
3996         /* Flush the CPU cache if it's still invalid. */
3997         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3998                 i915_gem_clflush_object(obj, false);
3999
4000                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4001         }
4002
4003         /* It should now be out of any other write domains, and we can update
4004          * the domain values for our changes.
4005          */
4006         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4007
4008         /* If we're writing through the CPU, then the GPU read domains will
4009          * need to be invalidated at next use.
4010          */
4011         if (write) {
4012                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4013                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4014         }
4015
4016         if (write)
4017                 intel_fb_obj_invalidate(obj, NULL);
4018
4019         trace_i915_gem_object_change_domain(obj,
4020                                             old_read_domains,
4021                                             old_write_domain);
4022
4023         return 0;
4024 }
4025
4026 /* Throttle our rendering by waiting until the ring has completed our requests
4027  * emitted over 20 msec ago.
4028  *
4029  * Note that if we were to use the current jiffies each time around the loop,
4030  * we wouldn't escape the function with any frames outstanding if the time to
4031  * render a frame was over 20ms.
4032  *
4033  * This should get us reasonable parallelism between CPU and GPU but also
4034  * relatively low latency when blocking on a particular request to finish.
4035  */
4036 static int
4037 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4038 {
4039         struct drm_i915_private *dev_priv = dev->dev_private;
4040         struct drm_i915_file_private *file_priv = file->driver_priv;
4041         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4042         struct drm_i915_gem_request *request;
4043         struct intel_engine_cs *ring = NULL;
4044         unsigned reset_counter;
4045         u32 seqno = 0;
4046         int ret;
4047
4048         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4049         if (ret)
4050                 return ret;
4051
4052         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4053         if (ret)
4054                 return ret;
4055
4056         spin_lock(&file_priv->mm.lock);
4057         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4058                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4059                         break;
4060
4061                 ring = request->ring;
4062                 seqno = request->seqno;
4063         }
4064         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4065         spin_unlock(&file_priv->mm.lock);
4066
4067         if (seqno == 0)
4068                 return 0;
4069
4070         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4071         if (ret == 0)
4072                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4073
4074         return ret;
4075 }
4076
4077 static bool
4078 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4079 {
4080         struct drm_i915_gem_object *obj = vma->obj;
4081
4082         if (alignment &&
4083             vma->node.start & (alignment - 1))
4084                 return true;
4085
4086         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4087                 return true;
4088
4089         if (flags & PIN_OFFSET_BIAS &&
4090             vma->node.start < (flags & PIN_OFFSET_MASK))
4091                 return true;
4092
4093         return false;
4094 }
4095
4096 int
4097 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4098                     struct i915_address_space *vm,
4099                     uint32_t alignment,
4100                     uint64_t flags)
4101 {
4102         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4103         struct i915_vma *vma;
4104         int ret;
4105
4106         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4107                 return -ENODEV;
4108
4109         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4110                 return -EINVAL;
4111
4112         vma = i915_gem_obj_to_vma(obj, vm);
4113         if (vma) {
4114                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4115                         return -EBUSY;
4116
4117                 if (i915_vma_misplaced(vma, alignment, flags)) {
4118                         WARN(vma->pin_count,
4119                              "bo is already pinned with incorrect alignment:"
4120                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4121                              " obj->map_and_fenceable=%d\n",
4122                              i915_gem_obj_offset(obj, vm), alignment,
4123                              !!(flags & PIN_MAPPABLE),
4124                              obj->map_and_fenceable);
4125                         ret = i915_vma_unbind(vma);
4126                         if (ret)
4127                                 return ret;
4128
4129                         vma = NULL;
4130                 }
4131         }
4132
4133         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4134                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4135                 if (IS_ERR(vma))
4136                         return PTR_ERR(vma);
4137         }
4138
4139         if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4140                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4141
4142         vma->pin_count++;
4143         if (flags & PIN_MAPPABLE)
4144                 obj->pin_mappable |= true;
4145
4146         return 0;
4147 }
4148
4149 void
4150 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4151 {
4152         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4153
4154         BUG_ON(!vma);
4155         BUG_ON(vma->pin_count == 0);
4156         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4157
4158         if (--vma->pin_count == 0)
4159                 obj->pin_mappable = false;
4160 }
4161
4162 bool
4163 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4164 {
4165         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4166                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4167                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4168
4169                 WARN_ON(!ggtt_vma ||
4170                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4171                         ggtt_vma->pin_count);
4172                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4173                 return true;
4174         } else
4175                 return false;
4176 }
4177
4178 void
4179 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4180 {
4181         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4182                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4183                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4184                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4185         }
4186 }
4187
4188 int
4189 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4190                    struct drm_file *file)
4191 {
4192         struct drm_i915_gem_pin *args = data;
4193         struct drm_i915_gem_object *obj;
4194         int ret;
4195
4196         if (INTEL_INFO(dev)->gen >= 6)
4197                 return -ENODEV;
4198
4199         ret = i915_mutex_lock_interruptible(dev);
4200         if (ret)
4201                 return ret;
4202
4203         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4204         if (&obj->base == NULL) {
4205                 ret = -ENOENT;
4206                 goto unlock;
4207         }
4208
4209         if (obj->madv != I915_MADV_WILLNEED) {
4210                 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4211                 ret = -EFAULT;
4212                 goto out;
4213         }
4214
4215         if (obj->pin_filp != NULL && obj->pin_filp != file) {
4216                 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4217                           args->handle);
4218                 ret = -EINVAL;
4219                 goto out;
4220         }
4221
4222         if (obj->user_pin_count == ULONG_MAX) {
4223                 ret = -EBUSY;
4224                 goto out;
4225         }
4226
4227         if (obj->user_pin_count == 0) {
4228                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4229                 if (ret)
4230                         goto out;
4231         }
4232
4233         obj->user_pin_count++;
4234         obj->pin_filp = file;
4235
4236         args->offset = i915_gem_obj_ggtt_offset(obj);
4237 out:
4238         drm_gem_object_unreference(&obj->base);
4239 unlock:
4240         mutex_unlock(&dev->struct_mutex);
4241         return ret;
4242 }
4243
4244 int
4245 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4246                      struct drm_file *file)
4247 {
4248         struct drm_i915_gem_pin *args = data;
4249         struct drm_i915_gem_object *obj;
4250         int ret;
4251
4252         ret = i915_mutex_lock_interruptible(dev);
4253         if (ret)
4254                 return ret;
4255
4256         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4257         if (&obj->base == NULL) {
4258                 ret = -ENOENT;
4259                 goto unlock;
4260         }
4261
4262         if (obj->pin_filp != file) {
4263                 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4264                           args->handle);
4265                 ret = -EINVAL;
4266                 goto out;
4267         }
4268         obj->user_pin_count--;
4269         if (obj->user_pin_count == 0) {
4270                 obj->pin_filp = NULL;
4271                 i915_gem_object_ggtt_unpin(obj);
4272         }
4273
4274 out:
4275         drm_gem_object_unreference(&obj->base);
4276 unlock:
4277         mutex_unlock(&dev->struct_mutex);
4278         return ret;
4279 }
4280
4281 int
4282 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4283                     struct drm_file *file)
4284 {
4285         struct drm_i915_gem_busy *args = data;
4286         struct drm_i915_gem_object *obj;
4287         int ret;
4288
4289         ret = i915_mutex_lock_interruptible(dev);
4290         if (ret)
4291                 return ret;
4292
4293         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4294         if (&obj->base == NULL) {
4295                 ret = -ENOENT;
4296                 goto unlock;
4297         }
4298
4299         /* Count all active objects as busy, even if they are currently not used
4300          * by the gpu. Users of this interface expect objects to eventually
4301          * become non-busy without any further actions, therefore emit any
4302          * necessary flushes here.
4303          */
4304         ret = i915_gem_object_flush_active(obj);
4305
4306         args->busy = obj->active;
4307         if (obj->ring) {
4308                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4309                 args->busy |= intel_ring_flag(obj->ring) << 16;
4310         }
4311
4312         drm_gem_object_unreference(&obj->base);
4313 unlock:
4314         mutex_unlock(&dev->struct_mutex);
4315         return ret;
4316 }
4317
4318 int
4319 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4320                         struct drm_file *file_priv)
4321 {
4322         return i915_gem_ring_throttle(dev, file_priv);
4323 }
4324
4325 int
4326 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4327                        struct drm_file *file_priv)
4328 {
4329         struct drm_i915_gem_madvise *args = data;
4330         struct drm_i915_gem_object *obj;
4331         int ret;
4332
4333         switch (args->madv) {
4334         case I915_MADV_DONTNEED:
4335         case I915_MADV_WILLNEED:
4336             break;
4337         default:
4338             return -EINVAL;
4339         }
4340
4341         ret = i915_mutex_lock_interruptible(dev);
4342         if (ret)
4343                 return ret;
4344
4345         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4346         if (&obj->base == NULL) {
4347                 ret = -ENOENT;
4348                 goto unlock;
4349         }
4350
4351         if (i915_gem_obj_is_pinned(obj)) {
4352                 ret = -EINVAL;
4353                 goto out;
4354         }
4355
4356         if (obj->madv != __I915_MADV_PURGED)
4357                 obj->madv = args->madv;
4358
4359         /* if the object is no longer attached, discard its backing storage */
4360         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4361                 i915_gem_object_truncate(obj);
4362
4363         args->retained = obj->madv != __I915_MADV_PURGED;
4364
4365 out:
4366         drm_gem_object_unreference(&obj->base);
4367 unlock:
4368         mutex_unlock(&dev->struct_mutex);
4369         return ret;
4370 }
4371
4372 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4373                           const struct drm_i915_gem_object_ops *ops)
4374 {
4375         INIT_LIST_HEAD(&obj->global_list);
4376         INIT_LIST_HEAD(&obj->ring_list);
4377         INIT_LIST_HEAD(&obj->obj_exec_link);
4378         INIT_LIST_HEAD(&obj->vma_list);
4379
4380         obj->ops = ops;
4381
4382         obj->fence_reg = I915_FENCE_REG_NONE;
4383         obj->madv = I915_MADV_WILLNEED;
4384
4385         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4386 }
4387
4388 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4389         .get_pages = i915_gem_object_get_pages_gtt,
4390         .put_pages = i915_gem_object_put_pages_gtt,
4391 };
4392
4393 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4394                                                   size_t size)
4395 {
4396         struct drm_i915_gem_object *obj;
4397         struct address_space *mapping;
4398         gfp_t mask;
4399
4400         obj = i915_gem_object_alloc(dev);
4401         if (obj == NULL)
4402                 return NULL;
4403
4404         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4405                 i915_gem_object_free(obj);
4406                 return NULL;
4407         }
4408
4409         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4410         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4411                 /* 965gm cannot relocate objects above 4GiB. */
4412                 mask &= ~__GFP_HIGHMEM;
4413                 mask |= __GFP_DMA32;
4414         }
4415
4416         mapping = file_inode(obj->base.filp)->i_mapping;
4417         mapping_set_gfp_mask(mapping, mask);
4418
4419         i915_gem_object_init(obj, &i915_gem_object_ops);
4420
4421         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4422         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4423
4424         if (HAS_LLC(dev)) {
4425                 /* On some devices, we can have the GPU use the LLC (the CPU
4426                  * cache) for about a 10% performance improvement
4427                  * compared to uncached.  Graphics requests other than
4428                  * display scanout are coherent with the CPU in
4429                  * accessing this cache.  This means in this mode we
4430                  * don't need to clflush on the CPU side, and on the
4431                  * GPU side we only need to flush internal caches to
4432                  * get data visible to the CPU.
4433                  *
4434                  * However, we maintain the display planes as UC, and so
4435                  * need to rebind when first used as such.
4436                  */
4437                 obj->cache_level = I915_CACHE_LLC;
4438         } else
4439                 obj->cache_level = I915_CACHE_NONE;
4440
4441         trace_i915_gem_object_create(obj);
4442
4443         return obj;
4444 }
4445
4446 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4447 {
4448         /* If we are the last user of the backing storage (be it shmemfs
4449          * pages or stolen etc), we know that the pages are going to be
4450          * immediately released. In this case, we can then skip copying
4451          * back the contents from the GPU.
4452          */
4453
4454         if (obj->madv != I915_MADV_WILLNEED)
4455                 return false;
4456
4457         if (obj->base.filp == NULL)
4458                 return true;
4459
4460         /* At first glance, this looks racy, but then again so would be
4461          * userspace racing mmap against close. However, the first external
4462          * reference to the filp can only be obtained through the
4463          * i915_gem_mmap_ioctl() which safeguards us against the user
4464          * acquiring such a reference whilst we are in the middle of
4465          * freeing the object.
4466          */
4467         return atomic_long_read(&obj->base.filp->f_count) == 1;
4468 }
4469
4470 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4471 {
4472         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4473         struct drm_device *dev = obj->base.dev;
4474         struct drm_i915_private *dev_priv = dev->dev_private;
4475         struct i915_vma *vma, *next;
4476
4477         intel_runtime_pm_get(dev_priv);
4478
4479         trace_i915_gem_object_destroy(obj);
4480
4481         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4482                 int ret;
4483
4484                 vma->pin_count = 0;
4485                 ret = i915_vma_unbind(vma);
4486                 if (WARN_ON(ret == -ERESTARTSYS)) {
4487                         bool was_interruptible;
4488
4489                         was_interruptible = dev_priv->mm.interruptible;
4490                         dev_priv->mm.interruptible = false;
4491
4492                         WARN_ON(i915_vma_unbind(vma));
4493
4494                         dev_priv->mm.interruptible = was_interruptible;
4495                 }
4496         }
4497
4498         i915_gem_object_detach_phys(obj);
4499
4500         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4501          * before progressing. */
4502         if (obj->stolen)
4503                 i915_gem_object_unpin_pages(obj);
4504
4505         WARN_ON(obj->frontbuffer_bits);
4506
4507         if (WARN_ON(obj->pages_pin_count))
4508                 obj->pages_pin_count = 0;
4509         if (discard_backing_storage(obj))
4510                 obj->madv = I915_MADV_DONTNEED;
4511         i915_gem_object_put_pages(obj);
4512         i915_gem_object_free_mmap_offset(obj);
4513
4514         BUG_ON(obj->pages);
4515
4516         if (obj->base.import_attach)
4517                 drm_prime_gem_destroy(&obj->base, NULL);
4518
4519         if (obj->ops->release)
4520                 obj->ops->release(obj);
4521
4522         drm_gem_object_release(&obj->base);
4523         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4524
4525         kfree(obj->bit_17);
4526         i915_gem_object_free(obj);
4527
4528         intel_runtime_pm_put(dev_priv);
4529 }
4530
4531 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4532                                      struct i915_address_space *vm)
4533 {
4534         struct i915_vma *vma;
4535         list_for_each_entry(vma, &obj->vma_list, vma_link)
4536                 if (vma->vm == vm)
4537                         return vma;
4538
4539         return NULL;
4540 }
4541
4542 void i915_gem_vma_destroy(struct i915_vma *vma)
4543 {
4544         struct i915_address_space *vm = NULL;
4545         WARN_ON(vma->node.allocated);
4546
4547         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4548         if (!list_empty(&vma->exec_list))
4549                 return;
4550
4551         vm = vma->vm;
4552
4553         if (!i915_is_ggtt(vm))
4554                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4555
4556         list_del(&vma->vma_link);
4557
4558         kfree(vma);
4559 }
4560
4561 static void
4562 i915_gem_stop_ringbuffers(struct drm_device *dev)
4563 {
4564         struct drm_i915_private *dev_priv = dev->dev_private;
4565         struct intel_engine_cs *ring;
4566         int i;
4567
4568         for_each_ring(ring, dev_priv, i)
4569                 dev_priv->gt.stop_ring(ring);
4570 }
4571
4572 int
4573 i915_gem_suspend(struct drm_device *dev)
4574 {
4575         struct drm_i915_private *dev_priv = dev->dev_private;
4576         int ret = 0;
4577
4578         mutex_lock(&dev->struct_mutex);
4579         if (dev_priv->ums.mm_suspended)
4580                 goto err;
4581
4582         ret = i915_gpu_idle(dev);
4583         if (ret)
4584                 goto err;
4585
4586         i915_gem_retire_requests(dev);
4587
4588         /* Under UMS, be paranoid and evict. */
4589         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4590                 i915_gem_evict_everything(dev);
4591
4592         i915_kernel_lost_context(dev);
4593         i915_gem_stop_ringbuffers(dev);
4594
4595         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4596          * We need to replace this with a semaphore, or something.
4597          * And not confound ums.mm_suspended!
4598          */
4599         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4600                                                              DRIVER_MODESET);
4601         mutex_unlock(&dev->struct_mutex);
4602
4603         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4604         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4605         flush_delayed_work(&dev_priv->mm.idle_work);
4606
4607         return 0;
4608
4609 err:
4610         mutex_unlock(&dev->struct_mutex);
4611         return ret;
4612 }
4613
4614 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4615 {
4616         struct drm_device *dev = ring->dev;
4617         struct drm_i915_private *dev_priv = dev->dev_private;
4618         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4619         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4620         int i, ret;
4621
4622         if (!HAS_L3_DPF(dev) || !remap_info)
4623                 return 0;
4624
4625         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4626         if (ret)
4627                 return ret;
4628
4629         /*
4630          * Note: We do not worry about the concurrent register cacheline hang
4631          * here because no other code should access these registers other than
4632          * at initialization time.
4633          */
4634         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4635                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4636                 intel_ring_emit(ring, reg_base + i);
4637                 intel_ring_emit(ring, remap_info[i/4]);
4638         }
4639
4640         intel_ring_advance(ring);
4641
4642         return ret;
4643 }
4644
4645 void i915_gem_init_swizzling(struct drm_device *dev)
4646 {
4647         struct drm_i915_private *dev_priv = dev->dev_private;
4648
4649         if (INTEL_INFO(dev)->gen < 5 ||
4650             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4651                 return;
4652
4653         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4654                                  DISP_TILE_SURFACE_SWIZZLING);
4655
4656         if (IS_GEN5(dev))
4657                 return;
4658
4659         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4660         if (IS_GEN6(dev))
4661                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4662         else if (IS_GEN7(dev))
4663                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4664         else if (IS_GEN8(dev))
4665                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4666         else
4667                 BUG();
4668 }
4669
4670 static bool
4671 intel_enable_blt(struct drm_device *dev)
4672 {
4673         if (!HAS_BLT(dev))
4674                 return false;
4675
4676         /* The blitter was dysfunctional on early prototypes */
4677         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4678                 DRM_INFO("BLT not supported on this pre-production hardware;"
4679                          " graphics performance will be degraded.\n");
4680                 return false;
4681         }
4682
4683         return true;
4684 }
4685
4686 static void init_unused_ring(struct drm_device *dev, u32 base)
4687 {
4688         struct drm_i915_private *dev_priv = dev->dev_private;
4689
4690         I915_WRITE(RING_CTL(base), 0);
4691         I915_WRITE(RING_HEAD(base), 0);
4692         I915_WRITE(RING_TAIL(base), 0);
4693         I915_WRITE(RING_START(base), 0);
4694 }
4695
4696 static void init_unused_rings(struct drm_device *dev)
4697 {
4698         if (IS_I830(dev)) {
4699                 init_unused_ring(dev, PRB1_BASE);
4700                 init_unused_ring(dev, SRB0_BASE);
4701                 init_unused_ring(dev, SRB1_BASE);
4702                 init_unused_ring(dev, SRB2_BASE);
4703                 init_unused_ring(dev, SRB3_BASE);
4704         } else if (IS_GEN2(dev)) {
4705                 init_unused_ring(dev, SRB0_BASE);
4706                 init_unused_ring(dev, SRB1_BASE);
4707         } else if (IS_GEN3(dev)) {
4708                 init_unused_ring(dev, PRB1_BASE);
4709                 init_unused_ring(dev, PRB2_BASE);
4710         }
4711 }
4712
4713 int i915_gem_init_rings(struct drm_device *dev)
4714 {
4715         struct drm_i915_private *dev_priv = dev->dev_private;
4716         int ret;
4717
4718         /*
4719          * At least 830 can leave some of the unused rings
4720          * "active" (ie. head != tail) after resume which
4721          * will prevent c3 entry. Makes sure all unused rings
4722          * are totally idle.
4723          */
4724         init_unused_rings(dev);
4725
4726         ret = intel_init_render_ring_buffer(dev);
4727         if (ret)
4728                 return ret;
4729
4730         if (HAS_BSD(dev)) {
4731                 ret = intel_init_bsd_ring_buffer(dev);
4732                 if (ret)
4733                         goto cleanup_render_ring;
4734         }
4735
4736         if (intel_enable_blt(dev)) {
4737                 ret = intel_init_blt_ring_buffer(dev);
4738                 if (ret)
4739                         goto cleanup_bsd_ring;
4740         }
4741
4742         if (HAS_VEBOX(dev)) {
4743                 ret = intel_init_vebox_ring_buffer(dev);
4744                 if (ret)
4745                         goto cleanup_blt_ring;
4746         }
4747
4748         if (HAS_BSD2(dev)) {
4749                 ret = intel_init_bsd2_ring_buffer(dev);
4750                 if (ret)
4751                         goto cleanup_vebox_ring;
4752         }
4753
4754         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4755         if (ret)
4756                 goto cleanup_bsd2_ring;
4757
4758         return 0;
4759
4760 cleanup_bsd2_ring:
4761         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4762 cleanup_vebox_ring:
4763         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4764 cleanup_blt_ring:
4765         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4766 cleanup_bsd_ring:
4767         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4768 cleanup_render_ring:
4769         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4770
4771         return ret;
4772 }
4773
4774 int
4775 i915_gem_init_hw(struct drm_device *dev)
4776 {
4777         struct drm_i915_private *dev_priv = dev->dev_private;
4778         int ret, i;
4779
4780         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4781                 return -EIO;
4782
4783         if (dev_priv->ellc_size)
4784                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4785
4786         if (IS_HASWELL(dev))
4787                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4788                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4789
4790         if (HAS_PCH_NOP(dev)) {
4791                 if (IS_IVYBRIDGE(dev)) {
4792                         u32 temp = I915_READ(GEN7_MSG_CTL);
4793                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4794                         I915_WRITE(GEN7_MSG_CTL, temp);
4795                 } else if (INTEL_INFO(dev)->gen >= 7) {
4796                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4797                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4798                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4799                 }
4800         }
4801
4802         i915_gem_init_swizzling(dev);
4803
4804         ret = dev_priv->gt.init_rings(dev);
4805         if (ret)
4806                 return ret;
4807
4808         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4809                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4810
4811         /*
4812          * XXX: Contexts should only be initialized once. Doing a switch to the
4813          * default context switch however is something we'd like to do after
4814          * reset or thaw (the latter may not actually be necessary for HW, but
4815          * goes with our code better). Context switching requires rings (for
4816          * the do_switch), but before enabling PPGTT. So don't move this.
4817          */
4818         ret = i915_gem_context_enable(dev_priv);
4819         if (ret && ret != -EIO) {
4820                 DRM_ERROR("Context enable failed %d\n", ret);
4821                 i915_gem_cleanup_ringbuffer(dev);
4822
4823                 return ret;
4824         }
4825
4826         ret = i915_ppgtt_init_hw(dev);
4827         if (ret && ret != -EIO) {
4828                 DRM_ERROR("PPGTT enable failed %d\n", ret);
4829                 i915_gem_cleanup_ringbuffer(dev);
4830         }
4831
4832         return ret;
4833 }
4834
4835 int i915_gem_init(struct drm_device *dev)
4836 {
4837         struct drm_i915_private *dev_priv = dev->dev_private;
4838         int ret;
4839
4840         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4841                         i915.enable_execlists);
4842
4843         mutex_lock(&dev->struct_mutex);
4844
4845         if (IS_VALLEYVIEW(dev)) {
4846                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4847                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4848                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4849                               VLV_GTLC_ALLOWWAKEACK), 10))
4850                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4851         }
4852
4853         if (!i915.enable_execlists) {
4854                 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4855                 dev_priv->gt.init_rings = i915_gem_init_rings;
4856                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4857                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4858         } else {
4859                 dev_priv->gt.do_execbuf = intel_execlists_submission;
4860                 dev_priv->gt.init_rings = intel_logical_rings_init;
4861                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4862                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4863         }
4864
4865         ret = i915_gem_init_userptr(dev);
4866         if (ret) {
4867                 mutex_unlock(&dev->struct_mutex);
4868                 return ret;
4869         }
4870
4871         i915_gem_init_global_gtt(dev);
4872
4873         ret = i915_gem_context_init(dev);
4874         if (ret) {
4875                 mutex_unlock(&dev->struct_mutex);
4876                 return ret;
4877         }
4878
4879         ret = i915_gem_init_hw(dev);
4880         if (ret == -EIO) {
4881                 /* Allow ring initialisation to fail by marking the GPU as
4882                  * wedged. But we only want to do this where the GPU is angry,
4883                  * for all other failure, such as an allocation failure, bail.
4884                  */
4885                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4886                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4887                 ret = 0;
4888         }
4889         mutex_unlock(&dev->struct_mutex);
4890
4891         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4892         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4893                 dev_priv->dri1.allow_batchbuffer = 1;
4894         return ret;
4895 }
4896
4897 void
4898 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4899 {
4900         struct drm_i915_private *dev_priv = dev->dev_private;
4901         struct intel_engine_cs *ring;
4902         int i;
4903
4904         for_each_ring(ring, dev_priv, i)
4905                 dev_priv->gt.cleanup_ring(ring);
4906 }
4907
4908 int
4909 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4910                        struct drm_file *file_priv)
4911 {
4912         struct drm_i915_private *dev_priv = dev->dev_private;
4913         int ret;
4914
4915         if (drm_core_check_feature(dev, DRIVER_MODESET))
4916                 return 0;
4917
4918         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4919                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4920                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4921         }
4922
4923         mutex_lock(&dev->struct_mutex);
4924         dev_priv->ums.mm_suspended = 0;
4925
4926         ret = i915_gem_init_hw(dev);
4927         if (ret != 0) {
4928                 mutex_unlock(&dev->struct_mutex);
4929                 return ret;
4930         }
4931
4932         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4933
4934         ret = drm_irq_install(dev, dev->pdev->irq);
4935         if (ret)
4936                 goto cleanup_ringbuffer;
4937         mutex_unlock(&dev->struct_mutex);
4938
4939         return 0;
4940
4941 cleanup_ringbuffer:
4942         i915_gem_cleanup_ringbuffer(dev);
4943         dev_priv->ums.mm_suspended = 1;
4944         mutex_unlock(&dev->struct_mutex);
4945
4946         return ret;
4947 }
4948
4949 int
4950 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4951                        struct drm_file *file_priv)
4952 {
4953         if (drm_core_check_feature(dev, DRIVER_MODESET))
4954                 return 0;
4955
4956         mutex_lock(&dev->struct_mutex);
4957         drm_irq_uninstall(dev);
4958         mutex_unlock(&dev->struct_mutex);
4959
4960         return i915_gem_suspend(dev);
4961 }
4962
4963 void
4964 i915_gem_lastclose(struct drm_device *dev)
4965 {
4966         int ret;
4967
4968         if (drm_core_check_feature(dev, DRIVER_MODESET))
4969                 return;
4970
4971         ret = i915_gem_suspend(dev);
4972         if (ret)
4973                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4974 }
4975
4976 static void
4977 init_ring_lists(struct intel_engine_cs *ring)
4978 {
4979         INIT_LIST_HEAD(&ring->active_list);
4980         INIT_LIST_HEAD(&ring->request_list);
4981 }
4982
4983 void i915_init_vm(struct drm_i915_private *dev_priv,
4984                   struct i915_address_space *vm)
4985 {
4986         if (!i915_is_ggtt(vm))
4987                 drm_mm_init(&vm->mm, vm->start, vm->total);
4988         vm->dev = dev_priv->dev;
4989         INIT_LIST_HEAD(&vm->active_list);
4990         INIT_LIST_HEAD(&vm->inactive_list);
4991         INIT_LIST_HEAD(&vm->global_link);
4992         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4993 }
4994
4995 void
4996 i915_gem_load(struct drm_device *dev)
4997 {
4998         struct drm_i915_private *dev_priv = dev->dev_private;
4999         int i;
5000
5001         dev_priv->slab =
5002                 kmem_cache_create("i915_gem_object",
5003                                   sizeof(struct drm_i915_gem_object), 0,
5004                                   SLAB_HWCACHE_ALIGN,
5005                                   NULL);
5006
5007         INIT_LIST_HEAD(&dev_priv->vm_list);
5008         i915_init_vm(dev_priv, &dev_priv->gtt.base);
5009
5010         INIT_LIST_HEAD(&dev_priv->context_list);
5011         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5012         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5013         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5014         for (i = 0; i < I915_NUM_RINGS; i++)
5015                 init_ring_lists(&dev_priv->ring[i]);
5016         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5017                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5018         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5019                           i915_gem_retire_work_handler);
5020         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5021                           i915_gem_idle_work_handler);
5022         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5023
5024         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5025         if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5026                 I915_WRITE(MI_ARB_STATE,
5027                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5028         }
5029
5030         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5031
5032         /* Old X drivers will take 0-2 for front, back, depth buffers */
5033         if (!drm_core_check_feature(dev, DRIVER_MODESET))
5034                 dev_priv->fence_reg_start = 3;
5035
5036         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5037                 dev_priv->num_fence_regs = 32;
5038         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5039                 dev_priv->num_fence_regs = 16;
5040         else
5041                 dev_priv->num_fence_regs = 8;
5042
5043         /* Initialize fence registers to zero */
5044         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5045         i915_gem_restore_fences(dev);
5046
5047         i915_gem_detect_bit_6_swizzle(dev);
5048         init_waitqueue_head(&dev_priv->pending_flip_queue);
5049
5050         dev_priv->mm.interruptible = true;
5051
5052         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5053         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5054         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5055         register_shrinker(&dev_priv->mm.shrinker);
5056
5057         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5058         register_oom_notifier(&dev_priv->mm.oom_notifier);
5059
5060         mutex_init(&dev_priv->fb_tracking.lock);
5061 }
5062
5063 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5064 {
5065         struct drm_i915_file_private *file_priv = file->driver_priv;
5066
5067         cancel_delayed_work_sync(&file_priv->mm.idle_work);
5068
5069         /* Clean up our request list when the client is going away, so that
5070          * later retire_requests won't dereference our soon-to-be-gone
5071          * file_priv.
5072          */
5073         spin_lock(&file_priv->mm.lock);
5074         while (!list_empty(&file_priv->mm.request_list)) {
5075                 struct drm_i915_gem_request *request;
5076
5077                 request = list_first_entry(&file_priv->mm.request_list,
5078                                            struct drm_i915_gem_request,
5079                                            client_list);
5080                 list_del(&request->client_list);
5081                 request->file_priv = NULL;
5082         }
5083         spin_unlock(&file_priv->mm.lock);
5084 }
5085
5086 static void
5087 i915_gem_file_idle_work_handler(struct work_struct *work)
5088 {
5089         struct drm_i915_file_private *file_priv =
5090                 container_of(work, typeof(*file_priv), mm.idle_work.work);
5091
5092         atomic_set(&file_priv->rps_wait_boost, false);
5093 }
5094
5095 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5096 {
5097         struct drm_i915_file_private *file_priv;
5098         int ret;
5099
5100         DRM_DEBUG_DRIVER("\n");
5101
5102         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5103         if (!file_priv)
5104                 return -ENOMEM;
5105
5106         file->driver_priv = file_priv;
5107         file_priv->dev_priv = dev->dev_private;
5108         file_priv->file = file;
5109
5110         spin_lock_init(&file_priv->mm.lock);
5111         INIT_LIST_HEAD(&file_priv->mm.request_list);
5112         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5113                           i915_gem_file_idle_work_handler);
5114
5115         ret = i915_gem_context_open(dev, file);
5116         if (ret)
5117                 kfree(file_priv);
5118
5119         return ret;
5120 }
5121
5122 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5123                        struct drm_i915_gem_object *new,
5124                        unsigned frontbuffer_bits)
5125 {
5126         if (old) {
5127                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5128                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5129                 old->frontbuffer_bits &= ~frontbuffer_bits;
5130         }
5131
5132         if (new) {
5133                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5134                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5135                 new->frontbuffer_bits |= frontbuffer_bits;
5136         }
5137 }
5138
5139 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5140 {
5141         if (!mutex_is_locked(mutex))
5142                 return false;
5143
5144 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5145         return mutex->owner == task;
5146 #else
5147         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5148         return false;
5149 #endif
5150 }
5151
5152 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5153 {
5154         if (!mutex_trylock(&dev->struct_mutex)) {
5155                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5156                         return false;
5157
5158                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5159                         return false;
5160
5161                 *unlock = false;
5162         } else
5163                 *unlock = true;
5164
5165         return true;
5166 }
5167
5168 static int num_vma_bound(struct drm_i915_gem_object *obj)
5169 {
5170         struct i915_vma *vma;
5171         int count = 0;
5172
5173         list_for_each_entry(vma, &obj->vma_list, vma_link)
5174                 if (drm_mm_node_allocated(&vma->node))
5175                         count++;
5176
5177         return count;
5178 }
5179
5180 static unsigned long
5181 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5182 {
5183         struct drm_i915_private *dev_priv =
5184                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5185         struct drm_device *dev = dev_priv->dev;
5186         struct drm_i915_gem_object *obj;
5187         unsigned long count;
5188         bool unlock;
5189
5190         if (!i915_gem_shrinker_lock(dev, &unlock))
5191                 return 0;
5192
5193         count = 0;
5194         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5195                 if (obj->pages_pin_count == 0)
5196                         count += obj->base.size >> PAGE_SHIFT;
5197
5198         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5199                 if (!i915_gem_obj_is_pinned(obj) &&
5200                     obj->pages_pin_count == num_vma_bound(obj))
5201                         count += obj->base.size >> PAGE_SHIFT;
5202         }
5203
5204         if (unlock)
5205                 mutex_unlock(&dev->struct_mutex);
5206
5207         return count;
5208 }
5209
5210 /* All the new VM stuff */
5211 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5212                                   struct i915_address_space *vm)
5213 {
5214         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5215         struct i915_vma *vma;
5216
5217         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5218
5219         list_for_each_entry(vma, &o->vma_list, vma_link) {
5220                 if (vma->vm == vm)
5221                         return vma->node.start;
5222
5223         }
5224         WARN(1, "%s vma for this object not found.\n",
5225              i915_is_ggtt(vm) ? "global" : "ppgtt");
5226         return -1;
5227 }
5228
5229 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5230                         struct i915_address_space *vm)
5231 {
5232         struct i915_vma *vma;
5233
5234         list_for_each_entry(vma, &o->vma_list, vma_link)
5235                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5236                         return true;
5237
5238         return false;
5239 }
5240
5241 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5242 {
5243         struct i915_vma *vma;
5244
5245         list_for_each_entry(vma, &o->vma_list, vma_link)
5246                 if (drm_mm_node_allocated(&vma->node))
5247                         return true;
5248
5249         return false;
5250 }
5251
5252 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5253                                 struct i915_address_space *vm)
5254 {
5255         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5256         struct i915_vma *vma;
5257
5258         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5259
5260         BUG_ON(list_empty(&o->vma_list));
5261
5262         list_for_each_entry(vma, &o->vma_list, vma_link)
5263                 if (vma->vm == vm)
5264                         return vma->node.size;
5265
5266         return 0;
5267 }
5268
5269 static unsigned long
5270 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5271 {
5272         struct drm_i915_private *dev_priv =
5273                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5274         struct drm_device *dev = dev_priv->dev;
5275         unsigned long freed;
5276         bool unlock;
5277
5278         if (!i915_gem_shrinker_lock(dev, &unlock))
5279                 return SHRINK_STOP;
5280
5281         freed = i915_gem_shrink(dev_priv,
5282                                 sc->nr_to_scan,
5283                                 I915_SHRINK_BOUND |
5284                                 I915_SHRINK_UNBOUND |
5285                                 I915_SHRINK_PURGEABLE);
5286         if (freed < sc->nr_to_scan)
5287                 freed += i915_gem_shrink(dev_priv,
5288                                          sc->nr_to_scan - freed,
5289                                          I915_SHRINK_BOUND |
5290                                          I915_SHRINK_UNBOUND);
5291         if (unlock)
5292                 mutex_unlock(&dev->struct_mutex);
5293
5294         return freed;
5295 }
5296
5297 static int
5298 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5299 {
5300         struct drm_i915_private *dev_priv =
5301                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5302         struct drm_device *dev = dev_priv->dev;
5303         struct drm_i915_gem_object *obj;
5304         unsigned long timeout = msecs_to_jiffies(5000) + 1;
5305         unsigned long pinned, bound, unbound, freed;
5306         bool was_interruptible;
5307         bool unlock;
5308
5309         while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5310                 schedule_timeout_killable(1);
5311                 if (fatal_signal_pending(current))
5312                         return NOTIFY_DONE;
5313         }
5314         if (timeout == 0) {
5315                 pr_err("Unable to purge GPU memory due lock contention.\n");
5316                 return NOTIFY_DONE;
5317         }
5318
5319         was_interruptible = dev_priv->mm.interruptible;
5320         dev_priv->mm.interruptible = false;
5321
5322         freed = i915_gem_shrink_all(dev_priv);
5323
5324         dev_priv->mm.interruptible = was_interruptible;
5325
5326         /* Because we may be allocating inside our own driver, we cannot
5327          * assert that there are no objects with pinned pages that are not
5328          * being pointed to by hardware.
5329          */
5330         unbound = bound = pinned = 0;
5331         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5332                 if (!obj->base.filp) /* not backed by a freeable object */
5333                         continue;
5334
5335                 if (obj->pages_pin_count)
5336                         pinned += obj->base.size;
5337                 else
5338                         unbound += obj->base.size;
5339         }
5340         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5341                 if (!obj->base.filp)
5342                         continue;
5343
5344                 if (obj->pages_pin_count)
5345                         pinned += obj->base.size;
5346                 else
5347                         bound += obj->base.size;
5348         }
5349
5350         if (unlock)
5351                 mutex_unlock(&dev->struct_mutex);
5352
5353         pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5354                 freed, pinned);
5355         if (unbound || bound)
5356                 pr_err("%lu and %lu bytes still available in the "
5357                        "bound and unbound GPU page lists.\n",
5358                        bound, unbound);
5359
5360         *(unsigned long *)ptr += freed;
5361         return NOTIFY_DONE;
5362 }
5363
5364 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5365 {
5366         struct i915_vma *vma;
5367
5368         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5369         if (vma->vm != i915_obj_to_ggtt(obj))
5370                 return NULL;
5371
5372         return vma;
5373 }