Merge branches 'pm-avs', 'pm-clk', 'pm-devfreq' and 'pm-sleep'
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51                                   enum i915_cache_level level)
52 {
53         return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59                 return true;
60
61         return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66                                   size_t size)
67 {
68         spin_lock(&dev_priv->mm.object_stat_lock);
69         dev_priv->mm.object_count++;
70         dev_priv->mm.object_memory += size;
71         spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75                                      size_t size)
76 {
77         spin_lock(&dev_priv->mm.object_stat_lock);
78         dev_priv->mm.object_count--;
79         dev_priv->mm.object_memory -= size;
80         spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86         int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89                    i915_terminally_wedged(error))
90         if (EXIT_COND)
91                 return 0;
92
93         /*
94          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95          * userspace. If it takes that long something really bad is going on and
96          * we should simply try to bail out and fail as gracefully as possible.
97          */
98         ret = wait_event_interruptible_timeout(error->reset_queue,
99                                                EXIT_COND,
100                                                10*HZ);
101         if (ret == 0) {
102                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103                 return -EIO;
104         } else if (ret < 0) {
105                 return ret;
106         }
107 #undef EXIT_COND
108
109         return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114         struct drm_i915_private *dev_priv = dev->dev_private;
115         int ret;
116
117         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118         if (ret)
119                 return ret;
120
121         ret = mutex_lock_interruptible(&dev->struct_mutex);
122         if (ret)
123                 return ret;
124
125         WARN_ON(i915_verify_lists(dev));
126         return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131                             struct drm_file *file)
132 {
133         struct drm_i915_private *dev_priv = dev->dev_private;
134         struct drm_i915_gem_get_aperture *args = data;
135         struct i915_gtt *ggtt = &dev_priv->gtt;
136         struct i915_vma *vma;
137         size_t pinned;
138
139         pinned = 0;
140         mutex_lock(&dev->struct_mutex);
141         list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142                 if (vma->pin_count)
143                         pinned += vma->node.size;
144         list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145                 if (vma->pin_count)
146                         pinned += vma->node.size;
147         mutex_unlock(&dev->struct_mutex);
148
149         args->aper_size = dev_priv->gtt.base.total;
150         args->aper_available_size = args->aper_size - pinned;
151
152         return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159         char *vaddr = obj->phys_handle->vaddr;
160         struct sg_table *st;
161         struct scatterlist *sg;
162         int i;
163
164         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165                 return -EINVAL;
166
167         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168                 struct page *page;
169                 char *src;
170
171                 page = shmem_read_mapping_page(mapping, i);
172                 if (IS_ERR(page))
173                         return PTR_ERR(page);
174
175                 src = kmap_atomic(page);
176                 memcpy(vaddr, src, PAGE_SIZE);
177                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178                 kunmap_atomic(src);
179
180                 page_cache_release(page);
181                 vaddr += PAGE_SIZE;
182         }
183
184         i915_gem_chipset_flush(obj->base.dev);
185
186         st = kmalloc(sizeof(*st), GFP_KERNEL);
187         if (st == NULL)
188                 return -ENOMEM;
189
190         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191                 kfree(st);
192                 return -ENOMEM;
193         }
194
195         sg = st->sgl;
196         sg->offset = 0;
197         sg->length = obj->base.size;
198
199         sg_dma_address(sg) = obj->phys_handle->busaddr;
200         sg_dma_len(sg) = obj->base.size;
201
202         obj->pages = st;
203         return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209         int ret;
210
211         BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213         ret = i915_gem_object_set_to_cpu_domain(obj, true);
214         if (ret) {
215                 /* In the event of a disaster, abandon all caches and
216                  * hope for the best.
217                  */
218                 WARN_ON(ret != -EIO);
219                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220         }
221
222         if (obj->madv == I915_MADV_DONTNEED)
223                 obj->dirty = 0;
224
225         if (obj->dirty) {
226                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227                 char *vaddr = obj->phys_handle->vaddr;
228                 int i;
229
230                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231                         struct page *page;
232                         char *dst;
233
234                         page = shmem_read_mapping_page(mapping, i);
235                         if (IS_ERR(page))
236                                 continue;
237
238                         dst = kmap_atomic(page);
239                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
240                         memcpy(dst, vaddr, PAGE_SIZE);
241                         kunmap_atomic(dst);
242
243                         set_page_dirty(page);
244                         if (obj->madv == I915_MADV_WILLNEED)
245                                 mark_page_accessed(page);
246                         page_cache_release(page);
247                         vaddr += PAGE_SIZE;
248                 }
249                 obj->dirty = 0;
250         }
251
252         sg_free_table(obj->pages);
253         kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259         drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263         .get_pages = i915_gem_object_get_pages_phys,
264         .put_pages = i915_gem_object_put_pages_phys,
265         .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271         struct i915_vma *vma, *next;
272         int ret;
273
274         drm_gem_object_reference(&obj->base);
275         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276                 if (i915_vma_unbind(vma))
277                         break;
278
279         ret = i915_gem_object_put_pages(obj);
280         drm_gem_object_unreference(&obj->base);
281
282         return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287                             int align)
288 {
289         drm_dma_handle_t *phys;
290         int ret;
291
292         if (obj->phys_handle) {
293                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294                         return -EBUSY;
295
296                 return 0;
297         }
298
299         if (obj->madv != I915_MADV_WILLNEED)
300                 return -EFAULT;
301
302         if (obj->base.filp == NULL)
303                 return -EINVAL;
304
305         ret = drop_pages(obj);
306         if (ret)
307                 return ret;
308
309         /* create a new object */
310         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311         if (!phys)
312                 return -ENOMEM;
313
314         obj->phys_handle = phys;
315         obj->ops = &i915_gem_phys_ops;
316
317         return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322                      struct drm_i915_gem_pwrite *args,
323                      struct drm_file *file_priv)
324 {
325         struct drm_device *dev = obj->base.dev;
326         void *vaddr = obj->phys_handle->vaddr + args->offset;
327         char __user *user_data = to_user_ptr(args->data_ptr);
328         int ret = 0;
329
330         /* We manually control the domain here and pretend that it
331          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332          */
333         ret = i915_gem_object_wait_rendering(obj, false);
334         if (ret)
335                 return ret;
336
337         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339                 unsigned long unwritten;
340
341                 /* The physical object once assigned is fixed for the lifetime
342                  * of the obj, so we can safely drop the lock and continue
343                  * to access vaddr.
344                  */
345                 mutex_unlock(&dev->struct_mutex);
346                 unwritten = copy_from_user(vaddr, user_data, args->size);
347                 mutex_lock(&dev->struct_mutex);
348                 if (unwritten) {
349                         ret = -EFAULT;
350                         goto out;
351                 }
352         }
353
354         drm_clflush_virt_range(vaddr, args->size);
355         i915_gem_chipset_flush(dev);
356
357 out:
358         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359         return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364         struct drm_i915_private *dev_priv = dev->dev_private;
365         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371         kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376                 struct drm_device *dev,
377                 uint64_t size,
378                 uint32_t *handle_p)
379 {
380         struct drm_i915_gem_object *obj;
381         int ret;
382         u32 handle;
383
384         size = roundup(size, PAGE_SIZE);
385         if (size == 0)
386                 return -EINVAL;
387
388         /* Allocate the new object */
389         obj = i915_gem_alloc_object(dev, size);
390         if (obj == NULL)
391                 return -ENOMEM;
392
393         ret = drm_gem_handle_create(file, &obj->base, &handle);
394         /* drop reference from allocate - handle holds it now */
395         drm_gem_object_unreference_unlocked(&obj->base);
396         if (ret)
397                 return ret;
398
399         *handle_p = handle;
400         return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405                      struct drm_device *dev,
406                      struct drm_mode_create_dumb *args)
407 {
408         /* have to work out size/pitch and return them */
409         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410         args->size = args->pitch * args->height;
411         return i915_gem_create(file, dev,
412                                args->size, &args->handle);
413 }
414
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420                       struct drm_file *file)
421 {
422         struct drm_i915_gem_create *args = data;
423
424         return i915_gem_create(file, dev,
425                                args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430                         const char *gpu_vaddr, int gpu_offset,
431                         int length)
432 {
433         int ret, cpu_offset = 0;
434
435         while (length > 0) {
436                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437                 int this_length = min(cacheline_end - gpu_offset, length);
438                 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441                                      gpu_vaddr + swizzled_gpu_offset,
442                                      this_length);
443                 if (ret)
444                         return ret + length;
445
446                 cpu_offset += this_length;
447                 gpu_offset += this_length;
448                 length -= this_length;
449         }
450
451         return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456                           const char __user *cpu_vaddr,
457                           int length)
458 {
459         int ret, cpu_offset = 0;
460
461         while (length > 0) {
462                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463                 int this_length = min(cacheline_end - gpu_offset, length);
464                 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467                                        cpu_vaddr + cpu_offset,
468                                        this_length);
469                 if (ret)
470                         return ret + length;
471
472                 cpu_offset += this_length;
473                 gpu_offset += this_length;
474                 length -= this_length;
475         }
476
477         return 0;
478 }
479
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486                                     int *needs_clflush)
487 {
488         int ret;
489
490         *needs_clflush = 0;
491
492         if (!obj->base.filp)
493                 return -EINVAL;
494
495         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496                 /* If we're not in the cpu read domain, set ourself into the gtt
497                  * read domain and manually flush cachelines (if required). This
498                  * optimizes for the case when the gpu will dirty the data
499                  * anyway again before the next pread happens. */
500                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501                                                         obj->cache_level);
502                 ret = i915_gem_object_wait_rendering(obj, true);
503                 if (ret)
504                         return ret;
505         }
506
507         ret = i915_gem_object_get_pages(obj);
508         if (ret)
509                 return ret;
510
511         i915_gem_object_pin_pages(obj);
512
513         return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521                  char __user *user_data,
522                  bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524         char *vaddr;
525         int ret;
526
527         if (unlikely(page_do_bit17_swizzling))
528                 return -EINVAL;
529
530         vaddr = kmap_atomic(page);
531         if (needs_clflush)
532                 drm_clflush_virt_range(vaddr + shmem_page_offset,
533                                        page_length);
534         ret = __copy_to_user_inatomic(user_data,
535                                       vaddr + shmem_page_offset,
536                                       page_length);
537         kunmap_atomic(vaddr);
538
539         return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544                              bool swizzled)
545 {
546         if (unlikely(swizzled)) {
547                 unsigned long start = (unsigned long) addr;
548                 unsigned long end = (unsigned long) addr + length;
549
550                 /* For swizzling simply ensure that we always flush both
551                  * channels. Lame, but simple and it works. Swizzled
552                  * pwrite/pread is far from a hotpath - current userspace
553                  * doesn't use it at all. */
554                 start = round_down(start, 128);
555                 end = round_up(end, 128);
556
557                 drm_clflush_virt_range((void *)start, end - start);
558         } else {
559                 drm_clflush_virt_range(addr, length);
560         }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568                  char __user *user_data,
569                  bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571         char *vaddr;
572         int ret;
573
574         vaddr = kmap(page);
575         if (needs_clflush)
576                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577                                              page_length,
578                                              page_do_bit17_swizzling);
579
580         if (page_do_bit17_swizzling)
581                 ret = __copy_to_user_swizzled(user_data,
582                                               vaddr, shmem_page_offset,
583                                               page_length);
584         else
585                 ret = __copy_to_user(user_data,
586                                      vaddr + shmem_page_offset,
587                                      page_length);
588         kunmap(page);
589
590         return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595                      struct drm_i915_gem_object *obj,
596                      struct drm_i915_gem_pread *args,
597                      struct drm_file *file)
598 {
599         char __user *user_data;
600         ssize_t remain;
601         loff_t offset;
602         int shmem_page_offset, page_length, ret = 0;
603         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604         int prefaulted = 0;
605         int needs_clflush = 0;
606         struct sg_page_iter sg_iter;
607
608         user_data = to_user_ptr(args->data_ptr);
609         remain = args->size;
610
611         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614         if (ret)
615                 return ret;
616
617         offset = args->offset;
618
619         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620                          offset >> PAGE_SHIFT) {
621                 struct page *page = sg_page_iter_page(&sg_iter);
622
623                 if (remain <= 0)
624                         break;
625
626                 /* Operation in this page
627                  *
628                  * shmem_page_offset = offset within page in shmem file
629                  * page_length = bytes to copy for this page
630                  */
631                 shmem_page_offset = offset_in_page(offset);
632                 page_length = remain;
633                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634                         page_length = PAGE_SIZE - shmem_page_offset;
635
636                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637                         (page_to_phys(page) & (1 << 17)) != 0;
638
639                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640                                        user_data, page_do_bit17_swizzling,
641                                        needs_clflush);
642                 if (ret == 0)
643                         goto next_page;
644
645                 mutex_unlock(&dev->struct_mutex);
646
647                 if (likely(!i915.prefault_disable) && !prefaulted) {
648                         ret = fault_in_multipages_writeable(user_data, remain);
649                         /* Userspace is tricking us, but we've already clobbered
650                          * its pages with the prefault and promised to write the
651                          * data up to the first fault. Hence ignore any errors
652                          * and just continue. */
653                         (void)ret;
654                         prefaulted = 1;
655                 }
656
657                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658                                        user_data, page_do_bit17_swizzling,
659                                        needs_clflush);
660
661                 mutex_lock(&dev->struct_mutex);
662
663                 if (ret)
664                         goto out;
665
666 next_page:
667                 remain -= page_length;
668                 user_data += page_length;
669                 offset += page_length;
670         }
671
672 out:
673         i915_gem_object_unpin_pages(obj);
674
675         return ret;
676 }
677
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685                      struct drm_file *file)
686 {
687         struct drm_i915_gem_pread *args = data;
688         struct drm_i915_gem_object *obj;
689         int ret = 0;
690
691         if (args->size == 0)
692                 return 0;
693
694         if (!access_ok(VERIFY_WRITE,
695                        to_user_ptr(args->data_ptr),
696                        args->size))
697                 return -EFAULT;
698
699         ret = i915_mutex_lock_interruptible(dev);
700         if (ret)
701                 return ret;
702
703         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704         if (&obj->base == NULL) {
705                 ret = -ENOENT;
706                 goto unlock;
707         }
708
709         /* Bounds check source.  */
710         if (args->offset > obj->base.size ||
711             args->size > obj->base.size - args->offset) {
712                 ret = -EINVAL;
713                 goto out;
714         }
715
716         /* prime objects have no backing filp to GEM pread/pwrite
717          * pages from.
718          */
719         if (!obj->base.filp) {
720                 ret = -EINVAL;
721                 goto out;
722         }
723
724         trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726         ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729         drm_gem_object_unreference(&obj->base);
730 unlock:
731         mutex_unlock(&dev->struct_mutex);
732         return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741                 loff_t page_base, int page_offset,
742                 char __user *user_data,
743                 int length)
744 {
745         void __iomem *vaddr_atomic;
746         void *vaddr;
747         unsigned long unwritten;
748
749         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750         /* We can use the cpu mem copy function because this is X86. */
751         vaddr = (void __force*)vaddr_atomic + page_offset;
752         unwritten = __copy_from_user_inatomic_nocache(vaddr,
753                                                       user_data, length);
754         io_mapping_unmap_atomic(vaddr_atomic);
755         return unwritten;
756 }
757
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764                          struct drm_i915_gem_object *obj,
765                          struct drm_i915_gem_pwrite *args,
766                          struct drm_file *file)
767 {
768         struct drm_i915_private *dev_priv = dev->dev_private;
769         ssize_t remain;
770         loff_t offset, page_base;
771         char __user *user_data;
772         int page_offset, page_length, ret;
773
774         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775         if (ret)
776                 goto out;
777
778         ret = i915_gem_object_set_to_gtt_domain(obj, true);
779         if (ret)
780                 goto out_unpin;
781
782         ret = i915_gem_object_put_fence(obj);
783         if (ret)
784                 goto out_unpin;
785
786         user_data = to_user_ptr(args->data_ptr);
787         remain = args->size;
788
789         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793         while (remain > 0) {
794                 /* Operation in this page
795                  *
796                  * page_base = page offset within aperture
797                  * page_offset = offset within page
798                  * page_length = bytes to copy for this page
799                  */
800                 page_base = offset & PAGE_MASK;
801                 page_offset = offset_in_page(offset);
802                 page_length = remain;
803                 if ((page_offset + remain) > PAGE_SIZE)
804                         page_length = PAGE_SIZE - page_offset;
805
806                 /* If we get a fault while copying data, then (presumably) our
807                  * source page isn't available.  Return the error and we'll
808                  * retry in the slow path.
809                  */
810                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811                                     page_offset, user_data, page_length)) {
812                         ret = -EFAULT;
813                         goto out_flush;
814                 }
815
816                 remain -= page_length;
817                 user_data += page_length;
818                 offset += page_length;
819         }
820
821 out_flush:
822         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824         i915_gem_object_ggtt_unpin(obj);
825 out:
826         return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835                   char __user *user_data,
836                   bool page_do_bit17_swizzling,
837                   bool needs_clflush_before,
838                   bool needs_clflush_after)
839 {
840         char *vaddr;
841         int ret;
842
843         if (unlikely(page_do_bit17_swizzling))
844                 return -EINVAL;
845
846         vaddr = kmap_atomic(page);
847         if (needs_clflush_before)
848                 drm_clflush_virt_range(vaddr + shmem_page_offset,
849                                        page_length);
850         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851                                         user_data, page_length);
852         if (needs_clflush_after)
853                 drm_clflush_virt_range(vaddr + shmem_page_offset,
854                                        page_length);
855         kunmap_atomic(vaddr);
856
857         return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864                   char __user *user_data,
865                   bool page_do_bit17_swizzling,
866                   bool needs_clflush_before,
867                   bool needs_clflush_after)
868 {
869         char *vaddr;
870         int ret;
871
872         vaddr = kmap(page);
873         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875                                              page_length,
876                                              page_do_bit17_swizzling);
877         if (page_do_bit17_swizzling)
878                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879                                                 user_data,
880                                                 page_length);
881         else
882                 ret = __copy_from_user(vaddr + shmem_page_offset,
883                                        user_data,
884                                        page_length);
885         if (needs_clflush_after)
886                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887                                              page_length,
888                                              page_do_bit17_swizzling);
889         kunmap(page);
890
891         return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896                       struct drm_i915_gem_object *obj,
897                       struct drm_i915_gem_pwrite *args,
898                       struct drm_file *file)
899 {
900         ssize_t remain;
901         loff_t offset;
902         char __user *user_data;
903         int shmem_page_offset, page_length, ret = 0;
904         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905         int hit_slowpath = 0;
906         int needs_clflush_after = 0;
907         int needs_clflush_before = 0;
908         struct sg_page_iter sg_iter;
909
910         user_data = to_user_ptr(args->data_ptr);
911         remain = args->size;
912
913         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916                 /* If we're not in the cpu write domain, set ourself into the gtt
917                  * write domain and manually flush cachelines (if required). This
918                  * optimizes for the case when the gpu will use the data
919                  * right away and we therefore have to clflush anyway. */
920                 needs_clflush_after = cpu_write_needs_clflush(obj);
921                 ret = i915_gem_object_wait_rendering(obj, false);
922                 if (ret)
923                         return ret;
924         }
925         /* Same trick applies to invalidate partially written cachelines read
926          * before writing. */
927         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928                 needs_clflush_before =
929                         !cpu_cache_is_coherent(dev, obj->cache_level);
930
931         ret = i915_gem_object_get_pages(obj);
932         if (ret)
933                 return ret;
934
935         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937         i915_gem_object_pin_pages(obj);
938
939         offset = args->offset;
940         obj->dirty = 1;
941
942         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943                          offset >> PAGE_SHIFT) {
944                 struct page *page = sg_page_iter_page(&sg_iter);
945                 int partial_cacheline_write;
946
947                 if (remain <= 0)
948                         break;
949
950                 /* Operation in this page
951                  *
952                  * shmem_page_offset = offset within page in shmem file
953                  * page_length = bytes to copy for this page
954                  */
955                 shmem_page_offset = offset_in_page(offset);
956
957                 page_length = remain;
958                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959                         page_length = PAGE_SIZE - shmem_page_offset;
960
961                 /* If we don't overwrite a cacheline completely we need to be
962                  * careful to have up-to-date data by first clflushing. Don't
963                  * overcomplicate things and flush the entire patch. */
964                 partial_cacheline_write = needs_clflush_before &&
965                         ((shmem_page_offset | page_length)
966                                 & (boot_cpu_data.x86_clflush_size - 1));
967
968                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969                         (page_to_phys(page) & (1 << 17)) != 0;
970
971                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972                                         user_data, page_do_bit17_swizzling,
973                                         partial_cacheline_write,
974                                         needs_clflush_after);
975                 if (ret == 0)
976                         goto next_page;
977
978                 hit_slowpath = 1;
979                 mutex_unlock(&dev->struct_mutex);
980                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981                                         user_data, page_do_bit17_swizzling,
982                                         partial_cacheline_write,
983                                         needs_clflush_after);
984
985                 mutex_lock(&dev->struct_mutex);
986
987                 if (ret)
988                         goto out;
989
990 next_page:
991                 remain -= page_length;
992                 user_data += page_length;
993                 offset += page_length;
994         }
995
996 out:
997         i915_gem_object_unpin_pages(obj);
998
999         if (hit_slowpath) {
1000                 /*
1001                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1002                  * cachelines in-line while writing and the object moved
1003                  * out of the cpu write domain while we've dropped the lock.
1004                  */
1005                 if (!needs_clflush_after &&
1006                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007                         if (i915_gem_clflush_object(obj, obj->pin_display))
1008                                 needs_clflush_after = true;
1009                 }
1010         }
1011
1012         if (needs_clflush_after)
1013                 i915_gem_chipset_flush(dev);
1014         else
1015                 obj->cache_dirty = true;
1016
1017         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018         return ret;
1019 }
1020
1021 /**
1022  * Writes data to the object referenced by handle.
1023  *
1024  * On error, the contents of the buffer that were to be modified are undefined.
1025  */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028                       struct drm_file *file)
1029 {
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         struct drm_i915_gem_pwrite *args = data;
1032         struct drm_i915_gem_object *obj;
1033         int ret;
1034
1035         if (args->size == 0)
1036                 return 0;
1037
1038         if (!access_ok(VERIFY_READ,
1039                        to_user_ptr(args->data_ptr),
1040                        args->size))
1041                 return -EFAULT;
1042
1043         if (likely(!i915.prefault_disable)) {
1044                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045                                                    args->size);
1046                 if (ret)
1047                         return -EFAULT;
1048         }
1049
1050         intel_runtime_pm_get(dev_priv);
1051
1052         ret = i915_mutex_lock_interruptible(dev);
1053         if (ret)
1054                 goto put_rpm;
1055
1056         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057         if (&obj->base == NULL) {
1058                 ret = -ENOENT;
1059                 goto unlock;
1060         }
1061
1062         /* Bounds check destination. */
1063         if (args->offset > obj->base.size ||
1064             args->size > obj->base.size - args->offset) {
1065                 ret = -EINVAL;
1066                 goto out;
1067         }
1068
1069         /* prime objects have no backing filp to GEM pread/pwrite
1070          * pages from.
1071          */
1072         if (!obj->base.filp) {
1073                 ret = -EINVAL;
1074                 goto out;
1075         }
1076
1077         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079         ret = -EFAULT;
1080         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081          * it would end up going through the fenced access, and we'll get
1082          * different detiling behavior between reading and writing.
1083          * pread/pwrite currently are reading and writing from the CPU
1084          * perspective, requiring manual detiling by the client.
1085          */
1086         if (obj->tiling_mode == I915_TILING_NONE &&
1087             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088             cpu_write_needs_clflush(obj)) {
1089                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090                 /* Note that the gtt paths might fail with non-page-backed user
1091                  * pointers (e.g. gtt mappings when moving data between
1092                  * textures). Fallback to the shmem path in that case. */
1093         }
1094
1095         if (ret == -EFAULT || ret == -ENOSPC) {
1096                 if (obj->phys_handle)
1097                         ret = i915_gem_phys_pwrite(obj, args, file);
1098                 else
1099                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100         }
1101
1102 out:
1103         drm_gem_object_unreference(&obj->base);
1104 unlock:
1105         mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107         intel_runtime_pm_put(dev_priv);
1108
1109         return ret;
1110 }
1111
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114                      bool interruptible)
1115 {
1116         if (i915_reset_in_progress(error)) {
1117                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118                  * -EIO unconditionally for these. */
1119                 if (!interruptible)
1120                         return -EIO;
1121
1122                 /* Recovery complete, but the reset failed ... */
1123                 if (i915_terminally_wedged(error))
1124                         return -EIO;
1125
1126                 /*
1127                  * Check if GPU Reset is in progress - we need intel_ring_begin
1128                  * to work properly to reinit the hw state while the gpu is
1129                  * still marked as reset-in-progress. Handle this with a flag.
1130                  */
1131                 if (!error->reload_in_reset)
1132                         return -EAGAIN;
1133         }
1134
1135         return 0;
1136 }
1137
1138 static void fake_irq(unsigned long data)
1139 {
1140         wake_up_process((struct task_struct *)data);
1141 }
1142
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144                        struct intel_engine_cs *ring)
1145 {
1146         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
1149 static unsigned long local_clock_us(unsigned *cpu)
1150 {
1151         unsigned long t;
1152
1153         /* Cheaply and approximately convert from nanoseconds to microseconds.
1154          * The result and subsequent calculations are also defined in the same
1155          * approximate microseconds units. The principal source of timing
1156          * error here is from the simple truncation.
1157          *
1158          * Note that local_clock() is only defined wrt to the current CPU;
1159          * the comparisons are no longer valid if we switch CPUs. Instead of
1160          * blocking preemption for the entire busywait, we can detect the CPU
1161          * switch and use that as indicator of system load and a reason to
1162          * stop busywaiting, see busywait_stop().
1163          */
1164         *cpu = get_cpu();
1165         t = local_clock() >> 10;
1166         put_cpu();
1167
1168         return t;
1169 }
1170
1171 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172 {
1173         unsigned this_cpu;
1174
1175         if (time_after(local_clock_us(&this_cpu), timeout))
1176                 return true;
1177
1178         return this_cpu != cpu;
1179 }
1180
1181 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182 {
1183         unsigned long timeout;
1184         unsigned cpu;
1185
1186         /* When waiting for high frequency requests, e.g. during synchronous
1187          * rendering split between the CPU and GPU, the finite amount of time
1188          * required to set up the irq and wait upon it limits the response
1189          * rate. By busywaiting on the request completion for a short while we
1190          * can service the high frequency waits as quick as possible. However,
1191          * if it is a slow request, we want to sleep as quickly as possible.
1192          * The tradeoff between waiting and sleeping is roughly the time it
1193          * takes to sleep on a request, on the order of a microsecond.
1194          */
1195
1196         if (req->ring->irq_refcount)
1197                 return -EBUSY;
1198
1199         /* Only spin if we know the GPU is processing this request */
1200         if (!i915_gem_request_started(req, true))
1201                 return -EAGAIN;
1202
1203         timeout = local_clock_us(&cpu) + 5;
1204         while (!need_resched()) {
1205                 if (i915_gem_request_completed(req, true))
1206                         return 0;
1207
1208                 if (signal_pending_state(state, current))
1209                         break;
1210
1211                 if (busywait_stop(timeout, cpu))
1212                         break;
1213
1214                 cpu_relax_lowlatency();
1215         }
1216
1217         if (i915_gem_request_completed(req, false))
1218                 return 0;
1219
1220         return -EAGAIN;
1221 }
1222
1223 /**
1224  * __i915_wait_request - wait until execution of request has finished
1225  * @req: duh!
1226  * @reset_counter: reset sequence associated with the given request
1227  * @interruptible: do an interruptible wait (normally yes)
1228  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229  *
1230  * Note: It is of utmost importance that the passed in seqno and reset_counter
1231  * values have been read by the caller in an smp safe manner. Where read-side
1232  * locks are involved, it is sufficient to read the reset_counter before
1233  * unlocking the lock that protects the seqno. For lockless tricks, the
1234  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235  * inserted.
1236  *
1237  * Returns 0 if the request was found within the alloted time. Else returns the
1238  * errno with remaining time filled in timeout argument.
1239  */
1240 int __i915_wait_request(struct drm_i915_gem_request *req,
1241                         unsigned reset_counter,
1242                         bool interruptible,
1243                         s64 *timeout,
1244                         struct intel_rps_client *rps)
1245 {
1246         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247         struct drm_device *dev = ring->dev;
1248         struct drm_i915_private *dev_priv = dev->dev_private;
1249         const bool irq_test_in_progress =
1250                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251         int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252         DEFINE_WAIT(wait);
1253         unsigned long timeout_expire;
1254         s64 before, now;
1255         int ret;
1256
1257         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258
1259         if (list_empty(&req->list))
1260                 return 0;
1261
1262         if (i915_gem_request_completed(req, true))
1263                 return 0;
1264
1265         timeout_expire = 0;
1266         if (timeout) {
1267                 if (WARN_ON(*timeout < 0))
1268                         return -EINVAL;
1269
1270                 if (*timeout == 0)
1271                         return -ETIME;
1272
1273                 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274         }
1275
1276         if (INTEL_INFO(dev_priv)->gen >= 6)
1277                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1278
1279         /* Record current time in case interrupted by signal, or wedged */
1280         trace_i915_gem_request_wait_begin(req);
1281         before = ktime_get_raw_ns();
1282
1283         /* Optimistic spin for the next jiffie before touching IRQs */
1284         ret = __i915_spin_request(req, state);
1285         if (ret == 0)
1286                 goto out;
1287
1288         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1289                 ret = -ENODEV;
1290                 goto out;
1291         }
1292
1293         for (;;) {
1294                 struct timer_list timer;
1295
1296                 prepare_to_wait(&ring->irq_queue, &wait, state);
1297
1298                 /* We need to check whether any gpu reset happened in between
1299                  * the caller grabbing the seqno and now ... */
1300                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1301                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1302                          * is truely gone. */
1303                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1304                         if (ret == 0)
1305                                 ret = -EAGAIN;
1306                         break;
1307                 }
1308
1309                 if (i915_gem_request_completed(req, false)) {
1310                         ret = 0;
1311                         break;
1312                 }
1313
1314                 if (signal_pending_state(state, current)) {
1315                         ret = -ERESTARTSYS;
1316                         break;
1317                 }
1318
1319                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1320                         ret = -ETIME;
1321                         break;
1322                 }
1323
1324                 timer.function = NULL;
1325                 if (timeout || missed_irq(dev_priv, ring)) {
1326                         unsigned long expire;
1327
1328                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1329                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1330                         mod_timer(&timer, expire);
1331                 }
1332
1333                 io_schedule();
1334
1335                 if (timer.function) {
1336                         del_singleshot_timer_sync(&timer);
1337                         destroy_timer_on_stack(&timer);
1338                 }
1339         }
1340         if (!irq_test_in_progress)
1341                 ring->irq_put(ring);
1342
1343         finish_wait(&ring->irq_queue, &wait);
1344
1345 out:
1346         now = ktime_get_raw_ns();
1347         trace_i915_gem_request_wait_end(req);
1348
1349         if (timeout) {
1350                 s64 tres = *timeout - (now - before);
1351
1352                 *timeout = tres < 0 ? 0 : tres;
1353
1354                 /*
1355                  * Apparently ktime isn't accurate enough and occasionally has a
1356                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1357                  * things up to make the test happy. We allow up to 1 jiffy.
1358                  *
1359                  * This is a regrssion from the timespec->ktime conversion.
1360                  */
1361                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1362                         *timeout = 0;
1363         }
1364
1365         return ret;
1366 }
1367
1368 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1369                                    struct drm_file *file)
1370 {
1371         struct drm_i915_private *dev_private;
1372         struct drm_i915_file_private *file_priv;
1373
1374         WARN_ON(!req || !file || req->file_priv);
1375
1376         if (!req || !file)
1377                 return -EINVAL;
1378
1379         if (req->file_priv)
1380                 return -EINVAL;
1381
1382         dev_private = req->ring->dev->dev_private;
1383         file_priv = file->driver_priv;
1384
1385         spin_lock(&file_priv->mm.lock);
1386         req->file_priv = file_priv;
1387         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1388         spin_unlock(&file_priv->mm.lock);
1389
1390         req->pid = get_pid(task_pid(current));
1391
1392         return 0;
1393 }
1394
1395 static inline void
1396 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1397 {
1398         struct drm_i915_file_private *file_priv = request->file_priv;
1399
1400         if (!file_priv)
1401                 return;
1402
1403         spin_lock(&file_priv->mm.lock);
1404         list_del(&request->client_list);
1405         request->file_priv = NULL;
1406         spin_unlock(&file_priv->mm.lock);
1407
1408         put_pid(request->pid);
1409         request->pid = NULL;
1410 }
1411
1412 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1413 {
1414         trace_i915_gem_request_retire(request);
1415
1416         /* We know the GPU must have read the request to have
1417          * sent us the seqno + interrupt, so use the position
1418          * of tail of the request to update the last known position
1419          * of the GPU head.
1420          *
1421          * Note this requires that we are always called in request
1422          * completion order.
1423          */
1424         request->ringbuf->last_retired_head = request->postfix;
1425
1426         list_del_init(&request->list);
1427         i915_gem_request_remove_from_client(request);
1428
1429         i915_gem_request_unreference(request);
1430 }
1431
1432 static void
1433 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1434 {
1435         struct intel_engine_cs *engine = req->ring;
1436         struct drm_i915_gem_request *tmp;
1437
1438         lockdep_assert_held(&engine->dev->struct_mutex);
1439
1440         if (list_empty(&req->list))
1441                 return;
1442
1443         do {
1444                 tmp = list_first_entry(&engine->request_list,
1445                                        typeof(*tmp), list);
1446
1447                 i915_gem_request_retire(tmp);
1448         } while (tmp != req);
1449
1450         WARN_ON(i915_verify_lists(engine->dev));
1451 }
1452
1453 /**
1454  * Waits for a request to be signaled, and cleans up the
1455  * request and object lists appropriately for that event.
1456  */
1457 int
1458 i915_wait_request(struct drm_i915_gem_request *req)
1459 {
1460         struct drm_device *dev;
1461         struct drm_i915_private *dev_priv;
1462         bool interruptible;
1463         int ret;
1464
1465         BUG_ON(req == NULL);
1466
1467         dev = req->ring->dev;
1468         dev_priv = dev->dev_private;
1469         interruptible = dev_priv->mm.interruptible;
1470
1471         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1472
1473         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1474         if (ret)
1475                 return ret;
1476
1477         ret = __i915_wait_request(req,
1478                                   atomic_read(&dev_priv->gpu_error.reset_counter),
1479                                   interruptible, NULL, NULL);
1480         if (ret)
1481                 return ret;
1482
1483         __i915_gem_request_retire__upto(req);
1484         return 0;
1485 }
1486
1487 /**
1488  * Ensures that all rendering to the object has completed and the object is
1489  * safe to unbind from the GTT or access from the CPU.
1490  */
1491 int
1492 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1493                                bool readonly)
1494 {
1495         int ret, i;
1496
1497         if (!obj->active)
1498                 return 0;
1499
1500         if (readonly) {
1501                 if (obj->last_write_req != NULL) {
1502                         ret = i915_wait_request(obj->last_write_req);
1503                         if (ret)
1504                                 return ret;
1505
1506                         i = obj->last_write_req->ring->id;
1507                         if (obj->last_read_req[i] == obj->last_write_req)
1508                                 i915_gem_object_retire__read(obj, i);
1509                         else
1510                                 i915_gem_object_retire__write(obj);
1511                 }
1512         } else {
1513                 for (i = 0; i < I915_NUM_RINGS; i++) {
1514                         if (obj->last_read_req[i] == NULL)
1515                                 continue;
1516
1517                         ret = i915_wait_request(obj->last_read_req[i]);
1518                         if (ret)
1519                                 return ret;
1520
1521                         i915_gem_object_retire__read(obj, i);
1522                 }
1523                 RQ_BUG_ON(obj->active);
1524         }
1525
1526         return 0;
1527 }
1528
1529 static void
1530 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1531                                struct drm_i915_gem_request *req)
1532 {
1533         int ring = req->ring->id;
1534
1535         if (obj->last_read_req[ring] == req)
1536                 i915_gem_object_retire__read(obj, ring);
1537         else if (obj->last_write_req == req)
1538                 i915_gem_object_retire__write(obj);
1539
1540         __i915_gem_request_retire__upto(req);
1541 }
1542
1543 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1544  * as the object state may change during this call.
1545  */
1546 static __must_check int
1547 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1548                                             struct intel_rps_client *rps,
1549                                             bool readonly)
1550 {
1551         struct drm_device *dev = obj->base.dev;
1552         struct drm_i915_private *dev_priv = dev->dev_private;
1553         struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1554         unsigned reset_counter;
1555         int ret, i, n = 0;
1556
1557         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1558         BUG_ON(!dev_priv->mm.interruptible);
1559
1560         if (!obj->active)
1561                 return 0;
1562
1563         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1564         if (ret)
1565                 return ret;
1566
1567         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1568
1569         if (readonly) {
1570                 struct drm_i915_gem_request *req;
1571
1572                 req = obj->last_write_req;
1573                 if (req == NULL)
1574                         return 0;
1575
1576                 requests[n++] = i915_gem_request_reference(req);
1577         } else {
1578                 for (i = 0; i < I915_NUM_RINGS; i++) {
1579                         struct drm_i915_gem_request *req;
1580
1581                         req = obj->last_read_req[i];
1582                         if (req == NULL)
1583                                 continue;
1584
1585                         requests[n++] = i915_gem_request_reference(req);
1586                 }
1587         }
1588
1589         mutex_unlock(&dev->struct_mutex);
1590         for (i = 0; ret == 0 && i < n; i++)
1591                 ret = __i915_wait_request(requests[i], reset_counter, true,
1592                                           NULL, rps);
1593         mutex_lock(&dev->struct_mutex);
1594
1595         for (i = 0; i < n; i++) {
1596                 if (ret == 0)
1597                         i915_gem_object_retire_request(obj, requests[i]);
1598                 i915_gem_request_unreference(requests[i]);
1599         }
1600
1601         return ret;
1602 }
1603
1604 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1605 {
1606         struct drm_i915_file_private *fpriv = file->driver_priv;
1607         return &fpriv->rps;
1608 }
1609
1610 /**
1611  * Called when user space prepares to use an object with the CPU, either
1612  * through the mmap ioctl's mapping or a GTT mapping.
1613  */
1614 int
1615 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1616                           struct drm_file *file)
1617 {
1618         struct drm_i915_gem_set_domain *args = data;
1619         struct drm_i915_gem_object *obj;
1620         uint32_t read_domains = args->read_domains;
1621         uint32_t write_domain = args->write_domain;
1622         int ret;
1623
1624         /* Only handle setting domains to types used by the CPU. */
1625         if (write_domain & I915_GEM_GPU_DOMAINS)
1626                 return -EINVAL;
1627
1628         if (read_domains & I915_GEM_GPU_DOMAINS)
1629                 return -EINVAL;
1630
1631         /* Having something in the write domain implies it's in the read
1632          * domain, and only that read domain.  Enforce that in the request.
1633          */
1634         if (write_domain != 0 && read_domains != write_domain)
1635                 return -EINVAL;
1636
1637         ret = i915_mutex_lock_interruptible(dev);
1638         if (ret)
1639                 return ret;
1640
1641         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642         if (&obj->base == NULL) {
1643                 ret = -ENOENT;
1644                 goto unlock;
1645         }
1646
1647         /* Try to flush the object off the GPU without holding the lock.
1648          * We will repeat the flush holding the lock in the normal manner
1649          * to catch cases where we are gazumped.
1650          */
1651         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1652                                                           to_rps_client(file),
1653                                                           !write_domain);
1654         if (ret)
1655                 goto unref;
1656
1657         if (read_domains & I915_GEM_DOMAIN_GTT)
1658                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1659         else
1660                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1661
1662         if (write_domain != 0)
1663                 intel_fb_obj_invalidate(obj,
1664                                         write_domain == I915_GEM_DOMAIN_GTT ?
1665                                         ORIGIN_GTT : ORIGIN_CPU);
1666
1667 unref:
1668         drm_gem_object_unreference(&obj->base);
1669 unlock:
1670         mutex_unlock(&dev->struct_mutex);
1671         return ret;
1672 }
1673
1674 /**
1675  * Called when user space has done writes to this buffer
1676  */
1677 int
1678 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1679                          struct drm_file *file)
1680 {
1681         struct drm_i915_gem_sw_finish *args = data;
1682         struct drm_i915_gem_object *obj;
1683         int ret = 0;
1684
1685         ret = i915_mutex_lock_interruptible(dev);
1686         if (ret)
1687                 return ret;
1688
1689         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1690         if (&obj->base == NULL) {
1691                 ret = -ENOENT;
1692                 goto unlock;
1693         }
1694
1695         /* Pinned buffers may be scanout, so flush the cache */
1696         if (obj->pin_display)
1697                 i915_gem_object_flush_cpu_write_domain(obj);
1698
1699         drm_gem_object_unreference(&obj->base);
1700 unlock:
1701         mutex_unlock(&dev->struct_mutex);
1702         return ret;
1703 }
1704
1705 /**
1706  * Maps the contents of an object, returning the address it is mapped
1707  * into.
1708  *
1709  * While the mapping holds a reference on the contents of the object, it doesn't
1710  * imply a ref on the object itself.
1711  *
1712  * IMPORTANT:
1713  *
1714  * DRM driver writers who look a this function as an example for how to do GEM
1715  * mmap support, please don't implement mmap support like here. The modern way
1716  * to implement DRM mmap support is with an mmap offset ioctl (like
1717  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1718  * That way debug tooling like valgrind will understand what's going on, hiding
1719  * the mmap call in a driver private ioctl will break that. The i915 driver only
1720  * does cpu mmaps this way because we didn't know better.
1721  */
1722 int
1723 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1724                     struct drm_file *file)
1725 {
1726         struct drm_i915_gem_mmap *args = data;
1727         struct drm_gem_object *obj;
1728         unsigned long addr;
1729
1730         if (args->flags & ~(I915_MMAP_WC))
1731                 return -EINVAL;
1732
1733         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1734                 return -ENODEV;
1735
1736         obj = drm_gem_object_lookup(dev, file, args->handle);
1737         if (obj == NULL)
1738                 return -ENOENT;
1739
1740         /* prime objects have no backing filp to GEM mmap
1741          * pages from.
1742          */
1743         if (!obj->filp) {
1744                 drm_gem_object_unreference_unlocked(obj);
1745                 return -EINVAL;
1746         }
1747
1748         addr = vm_mmap(obj->filp, 0, args->size,
1749                        PROT_READ | PROT_WRITE, MAP_SHARED,
1750                        args->offset);
1751         if (args->flags & I915_MMAP_WC) {
1752                 struct mm_struct *mm = current->mm;
1753                 struct vm_area_struct *vma;
1754
1755                 down_write(&mm->mmap_sem);
1756                 vma = find_vma(mm, addr);
1757                 if (vma)
1758                         vma->vm_page_prot =
1759                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1760                 else
1761                         addr = -ENOMEM;
1762                 up_write(&mm->mmap_sem);
1763         }
1764         drm_gem_object_unreference_unlocked(obj);
1765         if (IS_ERR((void *)addr))
1766                 return addr;
1767
1768         args->addr_ptr = (uint64_t) addr;
1769
1770         return 0;
1771 }
1772
1773 /**
1774  * i915_gem_fault - fault a page into the GTT
1775  * @vma: VMA in question
1776  * @vmf: fault info
1777  *
1778  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1779  * from userspace.  The fault handler takes care of binding the object to
1780  * the GTT (if needed), allocating and programming a fence register (again,
1781  * only if needed based on whether the old reg is still valid or the object
1782  * is tiled) and inserting a new PTE into the faulting process.
1783  *
1784  * Note that the faulting process may involve evicting existing objects
1785  * from the GTT and/or fence registers to make room.  So performance may
1786  * suffer if the GTT working set is large or there are few fence registers
1787  * left.
1788  */
1789 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1790 {
1791         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1792         struct drm_device *dev = obj->base.dev;
1793         struct drm_i915_private *dev_priv = dev->dev_private;
1794         struct i915_ggtt_view view = i915_ggtt_view_normal;
1795         pgoff_t page_offset;
1796         unsigned long pfn;
1797         int ret = 0;
1798         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1799
1800         intel_runtime_pm_get(dev_priv);
1801
1802         /* We don't use vmf->pgoff since that has the fake offset */
1803         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1804                 PAGE_SHIFT;
1805
1806         ret = i915_mutex_lock_interruptible(dev);
1807         if (ret)
1808                 goto out;
1809
1810         trace_i915_gem_object_fault(obj, page_offset, true, write);
1811
1812         /* Try to flush the object off the GPU first without holding the lock.
1813          * Upon reacquiring the lock, we will perform our sanity checks and then
1814          * repeat the flush holding the lock in the normal manner to catch cases
1815          * where we are gazumped.
1816          */
1817         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1818         if (ret)
1819                 goto unlock;
1820
1821         /* Access to snoopable pages through the GTT is incoherent. */
1822         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1823                 ret = -EFAULT;
1824                 goto unlock;
1825         }
1826
1827         /* Use a partial view if the object is bigger than the aperture. */
1828         if (obj->base.size >= dev_priv->gtt.mappable_end &&
1829             obj->tiling_mode == I915_TILING_NONE) {
1830                 static const unsigned int chunk_size = 256; // 1 MiB
1831
1832                 memset(&view, 0, sizeof(view));
1833                 view.type = I915_GGTT_VIEW_PARTIAL;
1834                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1835                 view.params.partial.size =
1836                         min_t(unsigned int,
1837                               chunk_size,
1838                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1839                               view.params.partial.offset);
1840         }
1841
1842         /* Now pin it into the GTT if needed */
1843         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1844         if (ret)
1845                 goto unlock;
1846
1847         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1848         if (ret)
1849                 goto unpin;
1850
1851         ret = i915_gem_object_get_fence(obj);
1852         if (ret)
1853                 goto unpin;
1854
1855         /* Finally, remap it using the new GTT offset */
1856         pfn = dev_priv->gtt.mappable_base +
1857                 i915_gem_obj_ggtt_offset_view(obj, &view);
1858         pfn >>= PAGE_SHIFT;
1859
1860         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1861                 /* Overriding existing pages in partial view does not cause
1862                  * us any trouble as TLBs are still valid because the fault
1863                  * is due to userspace losing part of the mapping or never
1864                  * having accessed it before (at this partials' range).
1865                  */
1866                 unsigned long base = vma->vm_start +
1867                                      (view.params.partial.offset << PAGE_SHIFT);
1868                 unsigned int i;
1869
1870                 for (i = 0; i < view.params.partial.size; i++) {
1871                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1872                         if (ret)
1873                                 break;
1874                 }
1875
1876                 obj->fault_mappable = true;
1877         } else {
1878                 if (!obj->fault_mappable) {
1879                         unsigned long size = min_t(unsigned long,
1880                                                    vma->vm_end - vma->vm_start,
1881                                                    obj->base.size);
1882                         int i;
1883
1884                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1885                                 ret = vm_insert_pfn(vma,
1886                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1887                                                     pfn + i);
1888                                 if (ret)
1889                                         break;
1890                         }
1891
1892                         obj->fault_mappable = true;
1893                 } else
1894                         ret = vm_insert_pfn(vma,
1895                                             (unsigned long)vmf->virtual_address,
1896                                             pfn + page_offset);
1897         }
1898 unpin:
1899         i915_gem_object_ggtt_unpin_view(obj, &view);
1900 unlock:
1901         mutex_unlock(&dev->struct_mutex);
1902 out:
1903         switch (ret) {
1904         case -EIO:
1905                 /*
1906                  * We eat errors when the gpu is terminally wedged to avoid
1907                  * userspace unduly crashing (gl has no provisions for mmaps to
1908                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1909                  * and so needs to be reported.
1910                  */
1911                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1912                         ret = VM_FAULT_SIGBUS;
1913                         break;
1914                 }
1915         case -EAGAIN:
1916                 /*
1917                  * EAGAIN means the gpu is hung and we'll wait for the error
1918                  * handler to reset everything when re-faulting in
1919                  * i915_mutex_lock_interruptible.
1920                  */
1921         case 0:
1922         case -ERESTARTSYS:
1923         case -EINTR:
1924         case -EBUSY:
1925                 /*
1926                  * EBUSY is ok: this just means that another thread
1927                  * already did the job.
1928                  */
1929                 ret = VM_FAULT_NOPAGE;
1930                 break;
1931         case -ENOMEM:
1932                 ret = VM_FAULT_OOM;
1933                 break;
1934         case -ENOSPC:
1935         case -EFAULT:
1936                 ret = VM_FAULT_SIGBUS;
1937                 break;
1938         default:
1939                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1940                 ret = VM_FAULT_SIGBUS;
1941                 break;
1942         }
1943
1944         intel_runtime_pm_put(dev_priv);
1945         return ret;
1946 }
1947
1948 /**
1949  * i915_gem_release_mmap - remove physical page mappings
1950  * @obj: obj in question
1951  *
1952  * Preserve the reservation of the mmapping with the DRM core code, but
1953  * relinquish ownership of the pages back to the system.
1954  *
1955  * It is vital that we remove the page mapping if we have mapped a tiled
1956  * object through the GTT and then lose the fence register due to
1957  * resource pressure. Similarly if the object has been moved out of the
1958  * aperture, than pages mapped into userspace must be revoked. Removing the
1959  * mapping will then trigger a page fault on the next user access, allowing
1960  * fixup by i915_gem_fault().
1961  */
1962 void
1963 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1964 {
1965         if (!obj->fault_mappable)
1966                 return;
1967
1968         drm_vma_node_unmap(&obj->base.vma_node,
1969                            obj->base.dev->anon_inode->i_mapping);
1970         obj->fault_mappable = false;
1971 }
1972
1973 void
1974 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1975 {
1976         struct drm_i915_gem_object *obj;
1977
1978         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1979                 i915_gem_release_mmap(obj);
1980 }
1981
1982 uint32_t
1983 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1984 {
1985         uint32_t gtt_size;
1986
1987         if (INTEL_INFO(dev)->gen >= 4 ||
1988             tiling_mode == I915_TILING_NONE)
1989                 return size;
1990
1991         /* Previous chips need a power-of-two fence region when tiling */
1992         if (INTEL_INFO(dev)->gen == 3)
1993                 gtt_size = 1024*1024;
1994         else
1995                 gtt_size = 512*1024;
1996
1997         while (gtt_size < size)
1998                 gtt_size <<= 1;
1999
2000         return gtt_size;
2001 }
2002
2003 /**
2004  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2005  * @obj: object to check
2006  *
2007  * Return the required GTT alignment for an object, taking into account
2008  * potential fence register mapping.
2009  */
2010 uint32_t
2011 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2012                            int tiling_mode, bool fenced)
2013 {
2014         /*
2015          * Minimum alignment is 4k (GTT page size), but might be greater
2016          * if a fence register is needed for the object.
2017          */
2018         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2019             tiling_mode == I915_TILING_NONE)
2020                 return 4096;
2021
2022         /*
2023          * Previous chips need to be aligned to the size of the smallest
2024          * fence register that can contain the object.
2025          */
2026         return i915_gem_get_gtt_size(dev, size, tiling_mode);
2027 }
2028
2029 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2030 {
2031         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2032         int ret;
2033
2034         if (drm_vma_node_has_offset(&obj->base.vma_node))
2035                 return 0;
2036
2037         dev_priv->mm.shrinker_no_lock_stealing = true;
2038
2039         ret = drm_gem_create_mmap_offset(&obj->base);
2040         if (ret != -ENOSPC)
2041                 goto out;
2042
2043         /* Badly fragmented mmap space? The only way we can recover
2044          * space is by destroying unwanted objects. We can't randomly release
2045          * mmap_offsets as userspace expects them to be persistent for the
2046          * lifetime of the objects. The closest we can is to release the
2047          * offsets on purgeable objects by truncating it and marking it purged,
2048          * which prevents userspace from ever using that object again.
2049          */
2050         i915_gem_shrink(dev_priv,
2051                         obj->base.size >> PAGE_SHIFT,
2052                         I915_SHRINK_BOUND |
2053                         I915_SHRINK_UNBOUND |
2054                         I915_SHRINK_PURGEABLE);
2055         ret = drm_gem_create_mmap_offset(&obj->base);
2056         if (ret != -ENOSPC)
2057                 goto out;
2058
2059         i915_gem_shrink_all(dev_priv);
2060         ret = drm_gem_create_mmap_offset(&obj->base);
2061 out:
2062         dev_priv->mm.shrinker_no_lock_stealing = false;
2063
2064         return ret;
2065 }
2066
2067 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2068 {
2069         drm_gem_free_mmap_offset(&obj->base);
2070 }
2071
2072 int
2073 i915_gem_mmap_gtt(struct drm_file *file,
2074                   struct drm_device *dev,
2075                   uint32_t handle,
2076                   uint64_t *offset)
2077 {
2078         struct drm_i915_gem_object *obj;
2079         int ret;
2080
2081         ret = i915_mutex_lock_interruptible(dev);
2082         if (ret)
2083                 return ret;
2084
2085         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2086         if (&obj->base == NULL) {
2087                 ret = -ENOENT;
2088                 goto unlock;
2089         }
2090
2091         if (obj->madv != I915_MADV_WILLNEED) {
2092                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2093                 ret = -EFAULT;
2094                 goto out;
2095         }
2096
2097         ret = i915_gem_object_create_mmap_offset(obj);
2098         if (ret)
2099                 goto out;
2100
2101         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2102
2103 out:
2104         drm_gem_object_unreference(&obj->base);
2105 unlock:
2106         mutex_unlock(&dev->struct_mutex);
2107         return ret;
2108 }
2109
2110 /**
2111  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2112  * @dev: DRM device
2113  * @data: GTT mapping ioctl data
2114  * @file: GEM object info
2115  *
2116  * Simply returns the fake offset to userspace so it can mmap it.
2117  * The mmap call will end up in drm_gem_mmap(), which will set things
2118  * up so we can get faults in the handler above.
2119  *
2120  * The fault handler will take care of binding the object into the GTT
2121  * (since it may have been evicted to make room for something), allocating
2122  * a fence register, and mapping the appropriate aperture address into
2123  * userspace.
2124  */
2125 int
2126 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2127                         struct drm_file *file)
2128 {
2129         struct drm_i915_gem_mmap_gtt *args = data;
2130
2131         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2132 }
2133
2134 /* Immediately discard the backing storage */
2135 static void
2136 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2137 {
2138         i915_gem_object_free_mmap_offset(obj);
2139
2140         if (obj->base.filp == NULL)
2141                 return;
2142
2143         /* Our goal here is to return as much of the memory as
2144          * is possible back to the system as we are called from OOM.
2145          * To do this we must instruct the shmfs to drop all of its
2146          * backing pages, *now*.
2147          */
2148         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2149         obj->madv = __I915_MADV_PURGED;
2150 }
2151
2152 /* Try to discard unwanted pages */
2153 static void
2154 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2155 {
2156         struct address_space *mapping;
2157
2158         switch (obj->madv) {
2159         case I915_MADV_DONTNEED:
2160                 i915_gem_object_truncate(obj);
2161         case __I915_MADV_PURGED:
2162                 return;
2163         }
2164
2165         if (obj->base.filp == NULL)
2166                 return;
2167
2168         mapping = file_inode(obj->base.filp)->i_mapping,
2169         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2170 }
2171
2172 static void
2173 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2174 {
2175         struct sg_page_iter sg_iter;
2176         int ret;
2177
2178         BUG_ON(obj->madv == __I915_MADV_PURGED);
2179
2180         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2181         if (ret) {
2182                 /* In the event of a disaster, abandon all caches and
2183                  * hope for the best.
2184                  */
2185                 WARN_ON(ret != -EIO);
2186                 i915_gem_clflush_object(obj, true);
2187                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2188         }
2189
2190         i915_gem_gtt_finish_object(obj);
2191
2192         if (i915_gem_object_needs_bit17_swizzle(obj))
2193                 i915_gem_object_save_bit_17_swizzle(obj);
2194
2195         if (obj->madv == I915_MADV_DONTNEED)
2196                 obj->dirty = 0;
2197
2198         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2199                 struct page *page = sg_page_iter_page(&sg_iter);
2200
2201                 if (obj->dirty)
2202                         set_page_dirty(page);
2203
2204                 if (obj->madv == I915_MADV_WILLNEED)
2205                         mark_page_accessed(page);
2206
2207                 page_cache_release(page);
2208         }
2209         obj->dirty = 0;
2210
2211         sg_free_table(obj->pages);
2212         kfree(obj->pages);
2213 }
2214
2215 int
2216 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2217 {
2218         const struct drm_i915_gem_object_ops *ops = obj->ops;
2219
2220         if (obj->pages == NULL)
2221                 return 0;
2222
2223         if (obj->pages_pin_count)
2224                 return -EBUSY;
2225
2226         BUG_ON(i915_gem_obj_bound_any(obj));
2227
2228         /* ->put_pages might need to allocate memory for the bit17 swizzle
2229          * array, hence protect them from being reaped by removing them from gtt
2230          * lists early. */
2231         list_del(&obj->global_list);
2232
2233         ops->put_pages(obj);
2234         obj->pages = NULL;
2235
2236         i915_gem_object_invalidate(obj);
2237
2238         return 0;
2239 }
2240
2241 static int
2242 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2243 {
2244         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245         int page_count, i;
2246         struct address_space *mapping;
2247         struct sg_table *st;
2248         struct scatterlist *sg;
2249         struct sg_page_iter sg_iter;
2250         struct page *page;
2251         unsigned long last_pfn = 0;     /* suppress gcc warning */
2252         int ret;
2253         gfp_t gfp;
2254
2255         /* Assert that the object is not currently in any GPU domain. As it
2256          * wasn't in the GTT, there shouldn't be any way it could have been in
2257          * a GPU cache
2258          */
2259         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2260         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2261
2262         st = kmalloc(sizeof(*st), GFP_KERNEL);
2263         if (st == NULL)
2264                 return -ENOMEM;
2265
2266         page_count = obj->base.size / PAGE_SIZE;
2267         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2268                 kfree(st);
2269                 return -ENOMEM;
2270         }
2271
2272         /* Get the list of pages out of our struct file.  They'll be pinned
2273          * at this point until we release them.
2274          *
2275          * Fail silently without starting the shrinker
2276          */
2277         mapping = file_inode(obj->base.filp)->i_mapping;
2278         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2279         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2280         sg = st->sgl;
2281         st->nents = 0;
2282         for (i = 0; i < page_count; i++) {
2283                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2284                 if (IS_ERR(page)) {
2285                         i915_gem_shrink(dev_priv,
2286                                         page_count,
2287                                         I915_SHRINK_BOUND |
2288                                         I915_SHRINK_UNBOUND |
2289                                         I915_SHRINK_PURGEABLE);
2290                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2291                 }
2292                 if (IS_ERR(page)) {
2293                         /* We've tried hard to allocate the memory by reaping
2294                          * our own buffer, now let the real VM do its job and
2295                          * go down in flames if truly OOM.
2296                          */
2297                         i915_gem_shrink_all(dev_priv);
2298                         page = shmem_read_mapping_page(mapping, i);
2299                         if (IS_ERR(page)) {
2300                                 ret = PTR_ERR(page);
2301                                 goto err_pages;
2302                         }
2303                 }
2304 #ifdef CONFIG_SWIOTLB
2305                 if (swiotlb_nr_tbl()) {
2306                         st->nents++;
2307                         sg_set_page(sg, page, PAGE_SIZE, 0);
2308                         sg = sg_next(sg);
2309                         continue;
2310                 }
2311 #endif
2312                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2313                         if (i)
2314                                 sg = sg_next(sg);
2315                         st->nents++;
2316                         sg_set_page(sg, page, PAGE_SIZE, 0);
2317                 } else {
2318                         sg->length += PAGE_SIZE;
2319                 }
2320                 last_pfn = page_to_pfn(page);
2321
2322                 /* Check that the i965g/gm workaround works. */
2323                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2324         }
2325 #ifdef CONFIG_SWIOTLB
2326         if (!swiotlb_nr_tbl())
2327 #endif
2328                 sg_mark_end(sg);
2329         obj->pages = st;
2330
2331         ret = i915_gem_gtt_prepare_object(obj);
2332         if (ret)
2333                 goto err_pages;
2334
2335         if (i915_gem_object_needs_bit17_swizzle(obj))
2336                 i915_gem_object_do_bit_17_swizzle(obj);
2337
2338         if (obj->tiling_mode != I915_TILING_NONE &&
2339             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2340                 i915_gem_object_pin_pages(obj);
2341
2342         return 0;
2343
2344 err_pages:
2345         sg_mark_end(sg);
2346         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2347                 page_cache_release(sg_page_iter_page(&sg_iter));
2348         sg_free_table(st);
2349         kfree(st);
2350
2351         /* shmemfs first checks if there is enough memory to allocate the page
2352          * and reports ENOSPC should there be insufficient, along with the usual
2353          * ENOMEM for a genuine allocation failure.
2354          *
2355          * We use ENOSPC in our driver to mean that we have run out of aperture
2356          * space and so want to translate the error from shmemfs back to our
2357          * usual understanding of ENOMEM.
2358          */
2359         if (ret == -ENOSPC)
2360                 ret = -ENOMEM;
2361
2362         return ret;
2363 }
2364
2365 /* Ensure that the associated pages are gathered from the backing storage
2366  * and pinned into our object. i915_gem_object_get_pages() may be called
2367  * multiple times before they are released by a single call to
2368  * i915_gem_object_put_pages() - once the pages are no longer referenced
2369  * either as a result of memory pressure (reaping pages under the shrinker)
2370  * or as the object is itself released.
2371  */
2372 int
2373 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2374 {
2375         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2376         const struct drm_i915_gem_object_ops *ops = obj->ops;
2377         int ret;
2378
2379         if (obj->pages)
2380                 return 0;
2381
2382         if (obj->madv != I915_MADV_WILLNEED) {
2383                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2384                 return -EFAULT;
2385         }
2386
2387         BUG_ON(obj->pages_pin_count);
2388
2389         ret = ops->get_pages(obj);
2390         if (ret)
2391                 return ret;
2392
2393         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2394
2395         obj->get_page.sg = obj->pages->sgl;
2396         obj->get_page.last = 0;
2397
2398         return 0;
2399 }
2400
2401 void i915_vma_move_to_active(struct i915_vma *vma,
2402                              struct drm_i915_gem_request *req)
2403 {
2404         struct drm_i915_gem_object *obj = vma->obj;
2405         struct intel_engine_cs *ring;
2406
2407         ring = i915_gem_request_get_ring(req);
2408
2409         /* Add a reference if we're newly entering the active list. */
2410         if (obj->active == 0)
2411                 drm_gem_object_reference(&obj->base);
2412         obj->active |= intel_ring_flag(ring);
2413
2414         list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2415         i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2416
2417         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2418 }
2419
2420 static void
2421 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2422 {
2423         RQ_BUG_ON(obj->last_write_req == NULL);
2424         RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2425
2426         i915_gem_request_assign(&obj->last_write_req, NULL);
2427         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2428 }
2429
2430 static void
2431 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2432 {
2433         struct i915_vma *vma;
2434
2435         RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2436         RQ_BUG_ON(!(obj->active & (1 << ring)));
2437
2438         list_del_init(&obj->ring_list[ring]);
2439         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2440
2441         if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2442                 i915_gem_object_retire__write(obj);
2443
2444         obj->active &= ~(1 << ring);
2445         if (obj->active)
2446                 return;
2447
2448         /* Bump our place on the bound list to keep it roughly in LRU order
2449          * so that we don't steal from recently used but inactive objects
2450          * (unless we are forced to ofc!)
2451          */
2452         list_move_tail(&obj->global_list,
2453                        &to_i915(obj->base.dev)->mm.bound_list);
2454
2455         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2456                 if (!list_empty(&vma->mm_list))
2457                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2458         }
2459
2460         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2461         drm_gem_object_unreference(&obj->base);
2462 }
2463
2464 static int
2465 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2466 {
2467         struct drm_i915_private *dev_priv = dev->dev_private;
2468         struct intel_engine_cs *ring;
2469         int ret, i, j;
2470
2471         /* Carefully retire all requests without writing to the rings */
2472         for_each_ring(ring, dev_priv, i) {
2473                 ret = intel_ring_idle(ring);
2474                 if (ret)
2475                         return ret;
2476         }
2477         i915_gem_retire_requests(dev);
2478
2479         /* Finally reset hw state */
2480         for_each_ring(ring, dev_priv, i) {
2481                 intel_ring_init_seqno(ring, seqno);
2482
2483                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2484                         ring->semaphore.sync_seqno[j] = 0;
2485         }
2486
2487         return 0;
2488 }
2489
2490 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2491 {
2492         struct drm_i915_private *dev_priv = dev->dev_private;
2493         int ret;
2494
2495         if (seqno == 0)
2496                 return -EINVAL;
2497
2498         /* HWS page needs to be set less than what we
2499          * will inject to ring
2500          */
2501         ret = i915_gem_init_seqno(dev, seqno - 1);
2502         if (ret)
2503                 return ret;
2504
2505         /* Carefully set the last_seqno value so that wrap
2506          * detection still works
2507          */
2508         dev_priv->next_seqno = seqno;
2509         dev_priv->last_seqno = seqno - 1;
2510         if (dev_priv->last_seqno == 0)
2511                 dev_priv->last_seqno--;
2512
2513         return 0;
2514 }
2515
2516 int
2517 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2518 {
2519         struct drm_i915_private *dev_priv = dev->dev_private;
2520
2521         /* reserve 0 for non-seqno */
2522         if (dev_priv->next_seqno == 0) {
2523                 int ret = i915_gem_init_seqno(dev, 0);
2524                 if (ret)
2525                         return ret;
2526
2527                 dev_priv->next_seqno = 1;
2528         }
2529
2530         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2531         return 0;
2532 }
2533
2534 /*
2535  * NB: This function is not allowed to fail. Doing so would mean the the
2536  * request is not being tracked for completion but the work itself is
2537  * going to happen on the hardware. This would be a Bad Thing(tm).
2538  */
2539 void __i915_add_request(struct drm_i915_gem_request *request,
2540                         struct drm_i915_gem_object *obj,
2541                         bool flush_caches)
2542 {
2543         struct intel_engine_cs *ring;
2544         struct drm_i915_private *dev_priv;
2545         struct intel_ringbuffer *ringbuf;
2546         u32 request_start;
2547         int ret;
2548
2549         if (WARN_ON(request == NULL))
2550                 return;
2551
2552         ring = request->ring;
2553         dev_priv = ring->dev->dev_private;
2554         ringbuf = request->ringbuf;
2555
2556         /*
2557          * To ensure that this call will not fail, space for its emissions
2558          * should already have been reserved in the ring buffer. Let the ring
2559          * know that it is time to use that space up.
2560          */
2561         intel_ring_reserved_space_use(ringbuf);
2562
2563         request_start = intel_ring_get_tail(ringbuf);
2564         /*
2565          * Emit any outstanding flushes - execbuf can fail to emit the flush
2566          * after having emitted the batchbuffer command. Hence we need to fix
2567          * things up similar to emitting the lazy request. The difference here
2568          * is that the flush _must_ happen before the next request, no matter
2569          * what.
2570          */
2571         if (flush_caches) {
2572                 if (i915.enable_execlists)
2573                         ret = logical_ring_flush_all_caches(request);
2574                 else
2575                         ret = intel_ring_flush_all_caches(request);
2576                 /* Not allowed to fail! */
2577                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2578         }
2579
2580         /* Record the position of the start of the request so that
2581          * should we detect the updated seqno part-way through the
2582          * GPU processing the request, we never over-estimate the
2583          * position of the head.
2584          */
2585         request->postfix = intel_ring_get_tail(ringbuf);
2586
2587         if (i915.enable_execlists)
2588                 ret = ring->emit_request(request);
2589         else {
2590                 ret = ring->add_request(request);
2591
2592                 request->tail = intel_ring_get_tail(ringbuf);
2593         }
2594         /* Not allowed to fail! */
2595         WARN(ret, "emit|add_request failed: %d!\n", ret);
2596
2597         request->head = request_start;
2598
2599         /* Whilst this request exists, batch_obj will be on the
2600          * active_list, and so will hold the active reference. Only when this
2601          * request is retired will the the batch_obj be moved onto the
2602          * inactive_list and lose its active reference. Hence we do not need
2603          * to explicitly hold another reference here.
2604          */
2605         request->batch_obj = obj;
2606
2607         request->emitted_jiffies = jiffies;
2608         request->previous_seqno = ring->last_submitted_seqno;
2609         ring->last_submitted_seqno = request->seqno;
2610         list_add_tail(&request->list, &ring->request_list);
2611
2612         trace_i915_gem_request_add(request);
2613
2614         i915_queue_hangcheck(ring->dev);
2615
2616         queue_delayed_work(dev_priv->wq,
2617                            &dev_priv->mm.retire_work,
2618                            round_jiffies_up_relative(HZ));
2619         intel_mark_busy(dev_priv->dev);
2620
2621         /* Sanity check that the reserved size was large enough. */
2622         intel_ring_reserved_space_end(ringbuf);
2623 }
2624
2625 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2626                                    const struct intel_context *ctx)
2627 {
2628         unsigned long elapsed;
2629
2630         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2631
2632         if (ctx->hang_stats.banned)
2633                 return true;
2634
2635         if (ctx->hang_stats.ban_period_seconds &&
2636             elapsed <= ctx->hang_stats.ban_period_seconds) {
2637                 if (!i915_gem_context_is_default(ctx)) {
2638                         DRM_DEBUG("context hanging too fast, banning!\n");
2639                         return true;
2640                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2641                         if (i915_stop_ring_allow_warn(dev_priv))
2642                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2643                         return true;
2644                 }
2645         }
2646
2647         return false;
2648 }
2649
2650 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2651                                   struct intel_context *ctx,
2652                                   const bool guilty)
2653 {
2654         struct i915_ctx_hang_stats *hs;
2655
2656         if (WARN_ON(!ctx))
2657                 return;
2658
2659         hs = &ctx->hang_stats;
2660
2661         if (guilty) {
2662                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2663                 hs->batch_active++;
2664                 hs->guilty_ts = get_seconds();
2665         } else {
2666                 hs->batch_pending++;
2667         }
2668 }
2669
2670 void i915_gem_request_free(struct kref *req_ref)
2671 {
2672         struct drm_i915_gem_request *req = container_of(req_ref,
2673                                                  typeof(*req), ref);
2674         struct intel_context *ctx = req->ctx;
2675
2676         if (req->file_priv)
2677                 i915_gem_request_remove_from_client(req);
2678
2679         if (ctx) {
2680                 if (i915.enable_execlists) {
2681                         if (ctx != req->ring->default_context)
2682                                 intel_lr_context_unpin(req);
2683                 }
2684
2685                 i915_gem_context_unreference(ctx);
2686         }
2687
2688         kmem_cache_free(req->i915->requests, req);
2689 }
2690
2691 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2692                            struct intel_context *ctx,
2693                            struct drm_i915_gem_request **req_out)
2694 {
2695         struct drm_i915_private *dev_priv = to_i915(ring->dev);
2696         struct drm_i915_gem_request *req;
2697         int ret;
2698
2699         if (!req_out)
2700                 return -EINVAL;
2701
2702         *req_out = NULL;
2703
2704         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2705         if (req == NULL)
2706                 return -ENOMEM;
2707
2708         ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2709         if (ret)
2710                 goto err;
2711
2712         kref_init(&req->ref);
2713         req->i915 = dev_priv;
2714         req->ring = ring;
2715         req->ctx  = ctx;
2716         i915_gem_context_reference(req->ctx);
2717
2718         if (i915.enable_execlists)
2719                 ret = intel_logical_ring_alloc_request_extras(req);
2720         else
2721                 ret = intel_ring_alloc_request_extras(req);
2722         if (ret) {
2723                 i915_gem_context_unreference(req->ctx);
2724                 goto err;
2725         }
2726
2727         /*
2728          * Reserve space in the ring buffer for all the commands required to
2729          * eventually emit this request. This is to guarantee that the
2730          * i915_add_request() call can't fail. Note that the reserve may need
2731          * to be redone if the request is not actually submitted straight
2732          * away, e.g. because a GPU scheduler has deferred it.
2733          */
2734         if (i915.enable_execlists)
2735                 ret = intel_logical_ring_reserve_space(req);
2736         else
2737                 ret = intel_ring_reserve_space(req);
2738         if (ret) {
2739                 /*
2740                  * At this point, the request is fully allocated even if not
2741                  * fully prepared. Thus it can be cleaned up using the proper
2742                  * free code.
2743                  */
2744                 i915_gem_request_cancel(req);
2745                 return ret;
2746         }
2747
2748         *req_out = req;
2749         return 0;
2750
2751 err:
2752         kmem_cache_free(dev_priv->requests, req);
2753         return ret;
2754 }
2755
2756 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2757 {
2758         intel_ring_reserved_space_cancel(req->ringbuf);
2759
2760         i915_gem_request_unreference(req);
2761 }
2762
2763 struct drm_i915_gem_request *
2764 i915_gem_find_active_request(struct intel_engine_cs *ring)
2765 {
2766         struct drm_i915_gem_request *request;
2767
2768         list_for_each_entry(request, &ring->request_list, list) {
2769                 if (i915_gem_request_completed(request, false))
2770                         continue;
2771
2772                 return request;
2773         }
2774
2775         return NULL;
2776 }
2777
2778 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2779                                        struct intel_engine_cs *ring)
2780 {
2781         struct drm_i915_gem_request *request;
2782         bool ring_hung;
2783
2784         request = i915_gem_find_active_request(ring);
2785
2786         if (request == NULL)
2787                 return;
2788
2789         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2790
2791         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2792
2793         list_for_each_entry_continue(request, &ring->request_list, list)
2794                 i915_set_reset_status(dev_priv, request->ctx, false);
2795 }
2796
2797 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2798                                         struct intel_engine_cs *ring)
2799 {
2800         struct intel_ringbuffer *buffer;
2801
2802         while (!list_empty(&ring->active_list)) {
2803                 struct drm_i915_gem_object *obj;
2804
2805                 obj = list_first_entry(&ring->active_list,
2806                                        struct drm_i915_gem_object,
2807                                        ring_list[ring->id]);
2808
2809                 i915_gem_object_retire__read(obj, ring->id);
2810         }
2811
2812         /*
2813          * Clear the execlists queue up before freeing the requests, as those
2814          * are the ones that keep the context and ringbuffer backing objects
2815          * pinned in place.
2816          */
2817
2818         if (i915.enable_execlists) {
2819                 spin_lock_irq(&ring->execlist_lock);
2820
2821                 /* list_splice_tail_init checks for empty lists */
2822                 list_splice_tail_init(&ring->execlist_queue,
2823                                       &ring->execlist_retired_req_list);
2824
2825                 spin_unlock_irq(&ring->execlist_lock);
2826                 intel_execlists_retire_requests(ring);
2827         }
2828
2829         /*
2830          * We must free the requests after all the corresponding objects have
2831          * been moved off active lists. Which is the same order as the normal
2832          * retire_requests function does. This is important if object hold
2833          * implicit references on things like e.g. ppgtt address spaces through
2834          * the request.
2835          */
2836         while (!list_empty(&ring->request_list)) {
2837                 struct drm_i915_gem_request *request;
2838
2839                 request = list_first_entry(&ring->request_list,
2840                                            struct drm_i915_gem_request,
2841                                            list);
2842
2843                 i915_gem_request_retire(request);
2844         }
2845
2846         /* Having flushed all requests from all queues, we know that all
2847          * ringbuffers must now be empty. However, since we do not reclaim
2848          * all space when retiring the request (to prevent HEADs colliding
2849          * with rapid ringbuffer wraparound) the amount of available space
2850          * upon reset is less than when we start. Do one more pass over
2851          * all the ringbuffers to reset last_retired_head.
2852          */
2853         list_for_each_entry(buffer, &ring->buffers, link) {
2854                 buffer->last_retired_head = buffer->tail;
2855                 intel_ring_update_space(buffer);
2856         }
2857 }
2858
2859 void i915_gem_reset(struct drm_device *dev)
2860 {
2861         struct drm_i915_private *dev_priv = dev->dev_private;
2862         struct intel_engine_cs *ring;
2863         int i;
2864
2865         /*
2866          * Before we free the objects from the requests, we need to inspect
2867          * them for finding the guilty party. As the requests only borrow
2868          * their reference to the objects, the inspection must be done first.
2869          */
2870         for_each_ring(ring, dev_priv, i)
2871                 i915_gem_reset_ring_status(dev_priv, ring);
2872
2873         for_each_ring(ring, dev_priv, i)
2874                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2875
2876         i915_gem_context_reset(dev);
2877
2878         i915_gem_restore_fences(dev);
2879
2880         WARN_ON(i915_verify_lists(dev));
2881 }
2882
2883 /**
2884  * This function clears the request list as sequence numbers are passed.
2885  */
2886 void
2887 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2888 {
2889         WARN_ON(i915_verify_lists(ring->dev));
2890
2891         /* Retire requests first as we use it above for the early return.
2892          * If we retire requests last, we may use a later seqno and so clear
2893          * the requests lists without clearing the active list, leading to
2894          * confusion.
2895          */
2896         while (!list_empty(&ring->request_list)) {
2897                 struct drm_i915_gem_request *request;
2898
2899                 request = list_first_entry(&ring->request_list,
2900                                            struct drm_i915_gem_request,
2901                                            list);
2902
2903                 if (!i915_gem_request_completed(request, true))
2904                         break;
2905
2906                 i915_gem_request_retire(request);
2907         }
2908
2909         /* Move any buffers on the active list that are no longer referenced
2910          * by the ringbuffer to the flushing/inactive lists as appropriate,
2911          * before we free the context associated with the requests.
2912          */
2913         while (!list_empty(&ring->active_list)) {
2914                 struct drm_i915_gem_object *obj;
2915
2916                 obj = list_first_entry(&ring->active_list,
2917                                       struct drm_i915_gem_object,
2918                                       ring_list[ring->id]);
2919
2920                 if (!list_empty(&obj->last_read_req[ring->id]->list))
2921                         break;
2922
2923                 i915_gem_object_retire__read(obj, ring->id);
2924         }
2925
2926         if (unlikely(ring->trace_irq_req &&
2927                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2928                 ring->irq_put(ring);
2929                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2930         }
2931
2932         WARN_ON(i915_verify_lists(ring->dev));
2933 }
2934
2935 bool
2936 i915_gem_retire_requests(struct drm_device *dev)
2937 {
2938         struct drm_i915_private *dev_priv = dev->dev_private;
2939         struct intel_engine_cs *ring;
2940         bool idle = true;
2941         int i;
2942
2943         for_each_ring(ring, dev_priv, i) {
2944                 i915_gem_retire_requests_ring(ring);
2945                 idle &= list_empty(&ring->request_list);
2946                 if (i915.enable_execlists) {
2947                         unsigned long flags;
2948
2949                         spin_lock_irqsave(&ring->execlist_lock, flags);
2950                         idle &= list_empty(&ring->execlist_queue);
2951                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2952
2953                         intel_execlists_retire_requests(ring);
2954                 }
2955         }
2956
2957         if (idle)
2958                 mod_delayed_work(dev_priv->wq,
2959                                    &dev_priv->mm.idle_work,
2960                                    msecs_to_jiffies(100));
2961
2962         return idle;
2963 }
2964
2965 static void
2966 i915_gem_retire_work_handler(struct work_struct *work)
2967 {
2968         struct drm_i915_private *dev_priv =
2969                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2970         struct drm_device *dev = dev_priv->dev;
2971         bool idle;
2972
2973         /* Come back later if the device is busy... */
2974         idle = false;
2975         if (mutex_trylock(&dev->struct_mutex)) {
2976                 idle = i915_gem_retire_requests(dev);
2977                 mutex_unlock(&dev->struct_mutex);
2978         }
2979         if (!idle)
2980                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2981                                    round_jiffies_up_relative(HZ));
2982 }
2983
2984 static void
2985 i915_gem_idle_work_handler(struct work_struct *work)
2986 {
2987         struct drm_i915_private *dev_priv =
2988                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2989         struct drm_device *dev = dev_priv->dev;
2990         struct intel_engine_cs *ring;
2991         int i;
2992
2993         for_each_ring(ring, dev_priv, i)
2994                 if (!list_empty(&ring->request_list))
2995                         return;
2996
2997         /* we probably should sync with hangcheck here, using cancel_work_sync.
2998          * Also locking seems to be fubar here, ring->request_list is protected
2999          * by dev->struct_mutex. */
3000
3001         intel_mark_idle(dev);
3002
3003         if (mutex_trylock(&dev->struct_mutex)) {
3004                 struct intel_engine_cs *ring;
3005                 int i;
3006
3007                 for_each_ring(ring, dev_priv, i)
3008                         i915_gem_batch_pool_fini(&ring->batch_pool);
3009
3010                 mutex_unlock(&dev->struct_mutex);
3011         }
3012 }
3013
3014 /**
3015  * Ensures that an object will eventually get non-busy by flushing any required
3016  * write domains, emitting any outstanding lazy request and retiring and
3017  * completed requests.
3018  */
3019 static int
3020 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3021 {
3022         int i;
3023
3024         if (!obj->active)
3025                 return 0;
3026
3027         for (i = 0; i < I915_NUM_RINGS; i++) {
3028                 struct drm_i915_gem_request *req;
3029
3030                 req = obj->last_read_req[i];
3031                 if (req == NULL)
3032                         continue;
3033
3034                 if (list_empty(&req->list))
3035                         goto retire;
3036
3037                 if (i915_gem_request_completed(req, true)) {
3038                         __i915_gem_request_retire__upto(req);
3039 retire:
3040                         i915_gem_object_retire__read(obj, i);
3041                 }
3042         }
3043
3044         return 0;
3045 }
3046
3047 /**
3048  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3049  * @DRM_IOCTL_ARGS: standard ioctl arguments
3050  *
3051  * Returns 0 if successful, else an error is returned with the remaining time in
3052  * the timeout parameter.
3053  *  -ETIME: object is still busy after timeout
3054  *  -ERESTARTSYS: signal interrupted the wait
3055  *  -ENONENT: object doesn't exist
3056  * Also possible, but rare:
3057  *  -EAGAIN: GPU wedged
3058  *  -ENOMEM: damn
3059  *  -ENODEV: Internal IRQ fail
3060  *  -E?: The add request failed
3061  *
3062  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3063  * non-zero timeout parameter the wait ioctl will wait for the given number of
3064  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3065  * without holding struct_mutex the object may become re-busied before this
3066  * function completes. A similar but shorter * race condition exists in the busy
3067  * ioctl
3068  */
3069 int
3070 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3071 {
3072         struct drm_i915_private *dev_priv = dev->dev_private;
3073         struct drm_i915_gem_wait *args = data;
3074         struct drm_i915_gem_object *obj;
3075         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3076         unsigned reset_counter;
3077         int i, n = 0;
3078         int ret;
3079
3080         if (args->flags != 0)
3081                 return -EINVAL;
3082
3083         ret = i915_mutex_lock_interruptible(dev);
3084         if (ret)
3085                 return ret;
3086
3087         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3088         if (&obj->base == NULL) {
3089                 mutex_unlock(&dev->struct_mutex);
3090                 return -ENOENT;
3091         }
3092
3093         /* Need to make sure the object gets inactive eventually. */
3094         ret = i915_gem_object_flush_active(obj);
3095         if (ret)
3096                 goto out;
3097
3098         if (!obj->active)
3099                 goto out;
3100
3101         /* Do this after OLR check to make sure we make forward progress polling
3102          * on this IOCTL with a timeout == 0 (like busy ioctl)
3103          */
3104         if (args->timeout_ns == 0) {
3105                 ret = -ETIME;
3106                 goto out;
3107         }
3108
3109         drm_gem_object_unreference(&obj->base);
3110         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3111
3112         for (i = 0; i < I915_NUM_RINGS; i++) {
3113                 if (obj->last_read_req[i] == NULL)
3114                         continue;
3115
3116                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3117         }
3118
3119         mutex_unlock(&dev->struct_mutex);
3120
3121         for (i = 0; i < n; i++) {
3122                 if (ret == 0)
3123                         ret = __i915_wait_request(req[i], reset_counter, true,
3124                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3125                                                   to_rps_client(file));
3126                 i915_gem_request_unreference__unlocked(req[i]);
3127         }
3128         return ret;
3129
3130 out:
3131         drm_gem_object_unreference(&obj->base);
3132         mutex_unlock(&dev->struct_mutex);
3133         return ret;
3134 }
3135
3136 static int
3137 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3138                        struct intel_engine_cs *to,
3139                        struct drm_i915_gem_request *from_req,
3140                        struct drm_i915_gem_request **to_req)
3141 {
3142         struct intel_engine_cs *from;
3143         int ret;
3144
3145         from = i915_gem_request_get_ring(from_req);
3146         if (to == from)
3147                 return 0;
3148
3149         if (i915_gem_request_completed(from_req, true))
3150                 return 0;
3151
3152         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3153                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3154                 ret = __i915_wait_request(from_req,
3155                                           atomic_read(&i915->gpu_error.reset_counter),
3156                                           i915->mm.interruptible,
3157                                           NULL,
3158                                           &i915->rps.semaphores);
3159                 if (ret)
3160                         return ret;
3161
3162                 i915_gem_object_retire_request(obj, from_req);
3163         } else {
3164                 int idx = intel_ring_sync_index(from, to);
3165                 u32 seqno = i915_gem_request_get_seqno(from_req);
3166
3167                 WARN_ON(!to_req);
3168
3169                 if (seqno <= from->semaphore.sync_seqno[idx])
3170                         return 0;
3171
3172                 if (*to_req == NULL) {
3173                         ret = i915_gem_request_alloc(to, to->default_context, to_req);
3174                         if (ret)
3175                                 return ret;
3176                 }
3177
3178                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3179                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3180                 if (ret)
3181                         return ret;
3182
3183                 /* We use last_read_req because sync_to()
3184                  * might have just caused seqno wrap under
3185                  * the radar.
3186                  */
3187                 from->semaphore.sync_seqno[idx] =
3188                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3189         }
3190
3191         return 0;
3192 }
3193
3194 /**
3195  * i915_gem_object_sync - sync an object to a ring.
3196  *
3197  * @obj: object which may be in use on another ring.
3198  * @to: ring we wish to use the object on. May be NULL.
3199  * @to_req: request we wish to use the object for. See below.
3200  *          This will be allocated and returned if a request is
3201  *          required but not passed in.
3202  *
3203  * This code is meant to abstract object synchronization with the GPU.
3204  * Calling with NULL implies synchronizing the object with the CPU
3205  * rather than a particular GPU ring. Conceptually we serialise writes
3206  * between engines inside the GPU. We only allow one engine to write
3207  * into a buffer at any time, but multiple readers. To ensure each has
3208  * a coherent view of memory, we must:
3209  *
3210  * - If there is an outstanding write request to the object, the new
3211  *   request must wait for it to complete (either CPU or in hw, requests
3212  *   on the same ring will be naturally ordered).
3213  *
3214  * - If we are a write request (pending_write_domain is set), the new
3215  *   request must wait for outstanding read requests to complete.
3216  *
3217  * For CPU synchronisation (NULL to) no request is required. For syncing with
3218  * rings to_req must be non-NULL. However, a request does not have to be
3219  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3220  * request will be allocated automatically and returned through *to_req. Note
3221  * that it is not guaranteed that commands will be emitted (because the system
3222  * might already be idle). Hence there is no need to create a request that
3223  * might never have any work submitted. Note further that if a request is
3224  * returned in *to_req, it is the responsibility of the caller to submit
3225  * that request (after potentially adding more work to it).
3226  *
3227  * Returns 0 if successful, else propagates up the lower layer error.
3228  */
3229 int
3230 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3231                      struct intel_engine_cs *to,
3232                      struct drm_i915_gem_request **to_req)
3233 {
3234         const bool readonly = obj->base.pending_write_domain == 0;
3235         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3236         int ret, i, n;
3237
3238         if (!obj->active)
3239                 return 0;
3240
3241         if (to == NULL)
3242                 return i915_gem_object_wait_rendering(obj, readonly);
3243
3244         n = 0;
3245         if (readonly) {
3246                 if (obj->last_write_req)
3247                         req[n++] = obj->last_write_req;
3248         } else {
3249                 for (i = 0; i < I915_NUM_RINGS; i++)
3250                         if (obj->last_read_req[i])
3251                                 req[n++] = obj->last_read_req[i];
3252         }
3253         for (i = 0; i < n; i++) {
3254                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3255                 if (ret)
3256                         return ret;
3257         }
3258
3259         return 0;
3260 }
3261
3262 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3263 {
3264         u32 old_write_domain, old_read_domains;
3265
3266         /* Force a pagefault for domain tracking on next user access */
3267         i915_gem_release_mmap(obj);
3268
3269         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3270                 return;
3271
3272         /* Wait for any direct GTT access to complete */
3273         mb();
3274
3275         old_read_domains = obj->base.read_domains;
3276         old_write_domain = obj->base.write_domain;
3277
3278         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3279         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3280
3281         trace_i915_gem_object_change_domain(obj,
3282                                             old_read_domains,
3283                                             old_write_domain);
3284 }
3285
3286 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3287 {
3288         struct drm_i915_gem_object *obj = vma->obj;
3289         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3290         int ret;
3291
3292         if (list_empty(&vma->vma_link))
3293                 return 0;
3294
3295         if (!drm_mm_node_allocated(&vma->node)) {
3296                 i915_gem_vma_destroy(vma);
3297                 return 0;
3298         }
3299
3300         if (vma->pin_count)
3301                 return -EBUSY;
3302
3303         BUG_ON(obj->pages == NULL);
3304
3305         if (wait) {
3306                 ret = i915_gem_object_wait_rendering(obj, false);
3307                 if (ret)
3308                         return ret;
3309         }
3310
3311         if (i915_is_ggtt(vma->vm) &&
3312             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3313                 i915_gem_object_finish_gtt(obj);
3314
3315                 /* release the fence reg _after_ flushing */
3316                 ret = i915_gem_object_put_fence(obj);
3317                 if (ret)
3318                         return ret;
3319         }
3320
3321         trace_i915_vma_unbind(vma);
3322
3323         vma->vm->unbind_vma(vma);
3324         vma->bound = 0;
3325
3326         list_del_init(&vma->mm_list);
3327         if (i915_is_ggtt(vma->vm)) {
3328                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3329                         obj->map_and_fenceable = false;
3330                 } else if (vma->ggtt_view.pages) {
3331                         sg_free_table(vma->ggtt_view.pages);
3332                         kfree(vma->ggtt_view.pages);
3333                 }
3334                 vma->ggtt_view.pages = NULL;
3335         }
3336
3337         drm_mm_remove_node(&vma->node);
3338         i915_gem_vma_destroy(vma);
3339
3340         /* Since the unbound list is global, only move to that list if
3341          * no more VMAs exist. */
3342         if (list_empty(&obj->vma_list))
3343                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3344
3345         /* And finally now the object is completely decoupled from this vma,
3346          * we can drop its hold on the backing storage and allow it to be
3347          * reaped by the shrinker.
3348          */
3349         i915_gem_object_unpin_pages(obj);
3350
3351         return 0;
3352 }
3353
3354 int i915_vma_unbind(struct i915_vma *vma)
3355 {
3356         return __i915_vma_unbind(vma, true);
3357 }
3358
3359 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3360 {
3361         return __i915_vma_unbind(vma, false);
3362 }
3363
3364 int i915_gpu_idle(struct drm_device *dev)
3365 {
3366         struct drm_i915_private *dev_priv = dev->dev_private;
3367         struct intel_engine_cs *ring;
3368         int ret, i;
3369
3370         /* Flush everything onto the inactive list. */
3371         for_each_ring(ring, dev_priv, i) {
3372                 if (!i915.enable_execlists) {
3373                         struct drm_i915_gem_request *req;
3374
3375                         ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3376                         if (ret)
3377                                 return ret;
3378
3379                         ret = i915_switch_context(req);
3380                         if (ret) {
3381                                 i915_gem_request_cancel(req);
3382                                 return ret;
3383                         }
3384
3385                         i915_add_request_no_flush(req);
3386                 }
3387
3388                 ret = intel_ring_idle(ring);
3389                 if (ret)
3390                         return ret;
3391         }
3392
3393         WARN_ON(i915_verify_lists(dev));
3394         return 0;
3395 }
3396
3397 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3398                                      unsigned long cache_level)
3399 {
3400         struct drm_mm_node *gtt_space = &vma->node;
3401         struct drm_mm_node *other;
3402
3403         /*
3404          * On some machines we have to be careful when putting differing types
3405          * of snoopable memory together to avoid the prefetcher crossing memory
3406          * domains and dying. During vm initialisation, we decide whether or not
3407          * these constraints apply and set the drm_mm.color_adjust
3408          * appropriately.
3409          */
3410         if (vma->vm->mm.color_adjust == NULL)
3411                 return true;
3412
3413         if (!drm_mm_node_allocated(gtt_space))
3414                 return true;
3415
3416         if (list_empty(&gtt_space->node_list))
3417                 return true;
3418
3419         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3420         if (other->allocated && !other->hole_follows && other->color != cache_level)
3421                 return false;
3422
3423         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3424         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3425                 return false;
3426
3427         return true;
3428 }
3429
3430 /**
3431  * Finds free space in the GTT aperture and binds the object or a view of it
3432  * there.
3433  */
3434 static struct i915_vma *
3435 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3436                            struct i915_address_space *vm,
3437                            const struct i915_ggtt_view *ggtt_view,
3438                            unsigned alignment,
3439                            uint64_t flags)
3440 {
3441         struct drm_device *dev = obj->base.dev;
3442         struct drm_i915_private *dev_priv = dev->dev_private;
3443         u32 fence_alignment, unfenced_alignment;
3444         u32 search_flag, alloc_flag;
3445         u64 start, end;
3446         u64 size, fence_size;
3447         struct i915_vma *vma;
3448         int ret;
3449
3450         if (i915_is_ggtt(vm)) {
3451                 u32 view_size;
3452
3453                 if (WARN_ON(!ggtt_view))
3454                         return ERR_PTR(-EINVAL);
3455
3456                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3457
3458                 fence_size = i915_gem_get_gtt_size(dev,
3459                                                    view_size,
3460                                                    obj->tiling_mode);
3461                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3462                                                              view_size,
3463                                                              obj->tiling_mode,
3464                                                              true);
3465                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3466                                                                 view_size,
3467                                                                 obj->tiling_mode,
3468                                                                 false);
3469                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3470         } else {
3471                 fence_size = i915_gem_get_gtt_size(dev,
3472                                                    obj->base.size,
3473                                                    obj->tiling_mode);
3474                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3475                                                              obj->base.size,
3476                                                              obj->tiling_mode,
3477                                                              true);
3478                 unfenced_alignment =
3479                         i915_gem_get_gtt_alignment(dev,
3480                                                    obj->base.size,
3481                                                    obj->tiling_mode,
3482                                                    false);
3483                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3484         }
3485
3486         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3487         end = vm->total;
3488         if (flags & PIN_MAPPABLE)
3489                 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3490         if (flags & PIN_ZONE_4G)
3491                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3492
3493         if (alignment == 0)
3494                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3495                                                 unfenced_alignment;
3496         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3497                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3498                           ggtt_view ? ggtt_view->type : 0,
3499                           alignment);
3500                 return ERR_PTR(-EINVAL);
3501         }
3502
3503         /* If binding the object/GGTT view requires more space than the entire
3504          * aperture has, reject it early before evicting everything in a vain
3505          * attempt to find space.
3506          */
3507         if (size > end) {
3508                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3509                           ggtt_view ? ggtt_view->type : 0,
3510                           size,
3511                           flags & PIN_MAPPABLE ? "mappable" : "total",
3512                           end);
3513                 return ERR_PTR(-E2BIG);
3514         }
3515
3516         ret = i915_gem_object_get_pages(obj);
3517         if (ret)
3518                 return ERR_PTR(ret);
3519
3520         i915_gem_object_pin_pages(obj);
3521
3522         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3523                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3524
3525         if (IS_ERR(vma))
3526                 goto err_unpin;
3527
3528         if (flags & PIN_OFFSET_FIXED) {
3529                 uint64_t offset = flags & PIN_OFFSET_MASK;
3530
3531                 if (offset & (alignment - 1) || offset + size > end) {
3532                         ret = -EINVAL;
3533                         goto err_free_vma;
3534                 }
3535                 vma->node.start = offset;
3536                 vma->node.size = size;
3537                 vma->node.color = obj->cache_level;
3538                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3539                 if (ret) {
3540                         ret = i915_gem_evict_for_vma(vma);
3541                         if (ret == 0)
3542                                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3543                 }
3544                 if (ret)
3545                         goto err_free_vma;
3546         } else {
3547                 if (flags & PIN_HIGH) {
3548                         search_flag = DRM_MM_SEARCH_BELOW;
3549                         alloc_flag = DRM_MM_CREATE_TOP;
3550                 } else {
3551                         search_flag = DRM_MM_SEARCH_DEFAULT;
3552                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3553                 }
3554
3555 search_free:
3556                 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3557                                                           size, alignment,
3558                                                           obj->cache_level,
3559                                                           start, end,
3560                                                           search_flag,
3561                                                           alloc_flag);
3562                 if (ret) {
3563                         ret = i915_gem_evict_something(dev, vm, size, alignment,
3564                                                        obj->cache_level,
3565                                                        start, end,
3566                                                        flags);
3567                         if (ret == 0)
3568                                 goto search_free;
3569
3570                         goto err_free_vma;
3571                 }
3572         }
3573         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3574                 ret = -EINVAL;
3575                 goto err_remove_node;
3576         }
3577
3578         trace_i915_vma_bind(vma, flags);
3579         ret = i915_vma_bind(vma, obj->cache_level, flags);
3580         if (ret)
3581                 goto err_remove_node;
3582
3583         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3584         list_add_tail(&vma->mm_list, &vm->inactive_list);
3585
3586         return vma;
3587
3588 err_remove_node:
3589         drm_mm_remove_node(&vma->node);
3590 err_free_vma:
3591         i915_gem_vma_destroy(vma);
3592         vma = ERR_PTR(ret);
3593 err_unpin:
3594         i915_gem_object_unpin_pages(obj);
3595         return vma;
3596 }
3597
3598 bool
3599 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3600                         bool force)
3601 {
3602         /* If we don't have a page list set up, then we're not pinned
3603          * to GPU, and we can ignore the cache flush because it'll happen
3604          * again at bind time.
3605          */
3606         if (obj->pages == NULL)
3607                 return false;
3608
3609         /*
3610          * Stolen memory is always coherent with the GPU as it is explicitly
3611          * marked as wc by the system, or the system is cache-coherent.
3612          */
3613         if (obj->stolen || obj->phys_handle)
3614                 return false;
3615
3616         /* If the GPU is snooping the contents of the CPU cache,
3617          * we do not need to manually clear the CPU cache lines.  However,
3618          * the caches are only snooped when the render cache is
3619          * flushed/invalidated.  As we always have to emit invalidations
3620          * and flushes when moving into and out of the RENDER domain, correct
3621          * snooping behaviour occurs naturally as the result of our domain
3622          * tracking.
3623          */
3624         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3625                 obj->cache_dirty = true;
3626                 return false;
3627         }
3628
3629         trace_i915_gem_object_clflush(obj);
3630         drm_clflush_sg(obj->pages);
3631         obj->cache_dirty = false;
3632
3633         return true;
3634 }
3635
3636 /** Flushes the GTT write domain for the object if it's dirty. */
3637 static void
3638 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3639 {
3640         uint32_t old_write_domain;
3641
3642         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3643                 return;
3644
3645         /* No actual flushing is required for the GTT write domain.  Writes
3646          * to it immediately go to main memory as far as we know, so there's
3647          * no chipset flush.  It also doesn't land in render cache.
3648          *
3649          * However, we do have to enforce the order so that all writes through
3650          * the GTT land before any writes to the device, such as updates to
3651          * the GATT itself.
3652          */
3653         wmb();
3654
3655         old_write_domain = obj->base.write_domain;
3656         obj->base.write_domain = 0;
3657
3658         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3659
3660         trace_i915_gem_object_change_domain(obj,
3661                                             obj->base.read_domains,
3662                                             old_write_domain);
3663 }
3664
3665 /** Flushes the CPU write domain for the object if it's dirty. */
3666 static void
3667 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3668 {
3669         uint32_t old_write_domain;
3670
3671         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3672                 return;
3673
3674         if (i915_gem_clflush_object(obj, obj->pin_display))
3675                 i915_gem_chipset_flush(obj->base.dev);
3676
3677         old_write_domain = obj->base.write_domain;
3678         obj->base.write_domain = 0;
3679
3680         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3681
3682         trace_i915_gem_object_change_domain(obj,
3683                                             obj->base.read_domains,
3684                                             old_write_domain);
3685 }
3686
3687 /**
3688  * Moves a single object to the GTT read, and possibly write domain.
3689  *
3690  * This function returns when the move is complete, including waiting on
3691  * flushes to occur.
3692  */
3693 int
3694 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3695 {
3696         uint32_t old_write_domain, old_read_domains;
3697         struct i915_vma *vma;
3698         int ret;
3699
3700         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3701                 return 0;
3702
3703         ret = i915_gem_object_wait_rendering(obj, !write);
3704         if (ret)
3705                 return ret;
3706
3707         /* Flush and acquire obj->pages so that we are coherent through
3708          * direct access in memory with previous cached writes through
3709          * shmemfs and that our cache domain tracking remains valid.
3710          * For example, if the obj->filp was moved to swap without us
3711          * being notified and releasing the pages, we would mistakenly
3712          * continue to assume that the obj remained out of the CPU cached
3713          * domain.
3714          */
3715         ret = i915_gem_object_get_pages(obj);
3716         if (ret)
3717                 return ret;
3718
3719         i915_gem_object_flush_cpu_write_domain(obj);
3720
3721         /* Serialise direct access to this object with the barriers for
3722          * coherent writes from the GPU, by effectively invalidating the
3723          * GTT domain upon first access.
3724          */
3725         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3726                 mb();
3727
3728         old_write_domain = obj->base.write_domain;
3729         old_read_domains = obj->base.read_domains;
3730
3731         /* It should now be out of any other write domains, and we can update
3732          * the domain values for our changes.
3733          */
3734         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3735         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3736         if (write) {
3737                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3738                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3739                 obj->dirty = 1;
3740         }
3741
3742         trace_i915_gem_object_change_domain(obj,
3743                                             old_read_domains,
3744                                             old_write_domain);
3745
3746         /* And bump the LRU for this access */
3747         vma = i915_gem_obj_to_ggtt(obj);
3748         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3749                 list_move_tail(&vma->mm_list,
3750                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3751
3752         return 0;
3753 }
3754
3755 /**
3756  * Changes the cache-level of an object across all VMA.
3757  *
3758  * After this function returns, the object will be in the new cache-level
3759  * across all GTT and the contents of the backing storage will be coherent,
3760  * with respect to the new cache-level. In order to keep the backing storage
3761  * coherent for all users, we only allow a single cache level to be set
3762  * globally on the object and prevent it from being changed whilst the
3763  * hardware is reading from the object. That is if the object is currently
3764  * on the scanout it will be set to uncached (or equivalent display
3765  * cache coherency) and all non-MOCS GPU access will also be uncached so
3766  * that all direct access to the scanout remains coherent.
3767  */
3768 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3769                                     enum i915_cache_level cache_level)
3770 {
3771         struct drm_device *dev = obj->base.dev;
3772         struct i915_vma *vma, *next;
3773         bool bound = false;
3774         int ret = 0;
3775
3776         if (obj->cache_level == cache_level)
3777                 goto out;
3778
3779         /* Inspect the list of currently bound VMA and unbind any that would
3780          * be invalid given the new cache-level. This is principally to
3781          * catch the issue of the CS prefetch crossing page boundaries and
3782          * reading an invalid PTE on older architectures.
3783          */
3784         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3785                 if (!drm_mm_node_allocated(&vma->node))
3786                         continue;
3787
3788                 if (vma->pin_count) {
3789                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3790                         return -EBUSY;
3791                 }
3792
3793                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3794                         ret = i915_vma_unbind(vma);
3795                         if (ret)
3796                                 return ret;
3797                 } else
3798                         bound = true;
3799         }
3800
3801         /* We can reuse the existing drm_mm nodes but need to change the
3802          * cache-level on the PTE. We could simply unbind them all and
3803          * rebind with the correct cache-level on next use. However since
3804          * we already have a valid slot, dma mapping, pages etc, we may as
3805          * rewrite the PTE in the belief that doing so tramples upon less
3806          * state and so involves less work.
3807          */
3808         if (bound) {
3809                 /* Before we change the PTE, the GPU must not be accessing it.
3810                  * If we wait upon the object, we know that all the bound
3811                  * VMA are no longer active.
3812                  */
3813                 ret = i915_gem_object_wait_rendering(obj, false);
3814                 if (ret)
3815                         return ret;
3816
3817                 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3818                         /* Access to snoopable pages through the GTT is
3819                          * incoherent and on some machines causes a hard
3820                          * lockup. Relinquish the CPU mmaping to force
3821                          * userspace to refault in the pages and we can
3822                          * then double check if the GTT mapping is still
3823                          * valid for that pointer access.
3824                          */
3825                         i915_gem_release_mmap(obj);
3826
3827                         /* As we no longer need a fence for GTT access,
3828                          * we can relinquish it now (and so prevent having
3829                          * to steal a fence from someone else on the next
3830                          * fence request). Note GPU activity would have
3831                          * dropped the fence as all snoopable access is
3832                          * supposed to be linear.
3833                          */
3834                         ret = i915_gem_object_put_fence(obj);
3835                         if (ret)
3836                                 return ret;
3837                 } else {
3838                         /* We either have incoherent backing store and
3839                          * so no GTT access or the architecture is fully
3840                          * coherent. In such cases, existing GTT mmaps
3841                          * ignore the cache bit in the PTE and we can
3842                          * rewrite it without confusing the GPU or having
3843                          * to force userspace to fault back in its mmaps.
3844                          */
3845                 }
3846
3847                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3848                         if (!drm_mm_node_allocated(&vma->node))
3849                                 continue;
3850
3851                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3852                         if (ret)
3853                                 return ret;
3854                 }
3855         }
3856
3857         list_for_each_entry(vma, &obj->vma_list, vma_link)
3858                 vma->node.color = cache_level;
3859         obj->cache_level = cache_level;
3860
3861 out:
3862         /* Flush the dirty CPU caches to the backing storage so that the
3863          * object is now coherent at its new cache level (with respect
3864          * to the access domain).
3865          */
3866         if (obj->cache_dirty &&
3867             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3868             cpu_write_needs_clflush(obj)) {
3869                 if (i915_gem_clflush_object(obj, true))
3870                         i915_gem_chipset_flush(obj->base.dev);
3871         }
3872
3873         return 0;
3874 }
3875
3876 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3877                                struct drm_file *file)
3878 {
3879         struct drm_i915_gem_caching *args = data;
3880         struct drm_i915_gem_object *obj;
3881
3882         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3883         if (&obj->base == NULL)
3884                 return -ENOENT;
3885
3886         switch (obj->cache_level) {
3887         case I915_CACHE_LLC:
3888         case I915_CACHE_L3_LLC:
3889                 args->caching = I915_CACHING_CACHED;
3890                 break;
3891
3892         case I915_CACHE_WT:
3893                 args->caching = I915_CACHING_DISPLAY;
3894                 break;
3895
3896         default:
3897                 args->caching = I915_CACHING_NONE;
3898                 break;
3899         }
3900
3901         drm_gem_object_unreference_unlocked(&obj->base);
3902         return 0;
3903 }
3904
3905 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3906                                struct drm_file *file)
3907 {
3908         struct drm_i915_private *dev_priv = dev->dev_private;
3909         struct drm_i915_gem_caching *args = data;
3910         struct drm_i915_gem_object *obj;
3911         enum i915_cache_level level;
3912         int ret;
3913
3914         switch (args->caching) {
3915         case I915_CACHING_NONE:
3916                 level = I915_CACHE_NONE;
3917                 break;
3918         case I915_CACHING_CACHED:
3919                 /*
3920                  * Due to a HW issue on BXT A stepping, GPU stores via a
3921                  * snooped mapping may leave stale data in a corresponding CPU
3922                  * cacheline, whereas normally such cachelines would get
3923                  * invalidated.
3924                  */
3925                 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3926                         return -ENODEV;
3927
3928                 level = I915_CACHE_LLC;
3929                 break;
3930         case I915_CACHING_DISPLAY:
3931                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3932                 break;
3933         default:
3934                 return -EINVAL;
3935         }
3936
3937         intel_runtime_pm_get(dev_priv);
3938
3939         ret = i915_mutex_lock_interruptible(dev);
3940         if (ret)
3941                 goto rpm_put;
3942
3943         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3944         if (&obj->base == NULL) {
3945                 ret = -ENOENT;
3946                 goto unlock;
3947         }
3948
3949         ret = i915_gem_object_set_cache_level(obj, level);
3950
3951         drm_gem_object_unreference(&obj->base);
3952 unlock:
3953         mutex_unlock(&dev->struct_mutex);
3954 rpm_put:
3955         intel_runtime_pm_put(dev_priv);
3956
3957         return ret;
3958 }
3959
3960 /*
3961  * Prepare buffer for display plane (scanout, cursors, etc).
3962  * Can be called from an uninterruptible phase (modesetting) and allows
3963  * any flushes to be pipelined (for pageflips).
3964  */
3965 int
3966 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3967                                      u32 alignment,
3968                                      const struct i915_ggtt_view *view)
3969 {
3970         u32 old_read_domains, old_write_domain;
3971         int ret;
3972
3973         /* Mark the pin_display early so that we account for the
3974          * display coherency whilst setting up the cache domains.
3975          */
3976         obj->pin_display++;
3977
3978         /* The display engine is not coherent with the LLC cache on gen6.  As
3979          * a result, we make sure that the pinning that is about to occur is
3980          * done with uncached PTEs. This is lowest common denominator for all
3981          * chipsets.
3982          *
3983          * However for gen6+, we could do better by using the GFDT bit instead
3984          * of uncaching, which would allow us to flush all the LLC-cached data
3985          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3986          */
3987         ret = i915_gem_object_set_cache_level(obj,
3988                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3989         if (ret)
3990                 goto err_unpin_display;
3991
3992         /* As the user may map the buffer once pinned in the display plane
3993          * (e.g. libkms for the bootup splash), we have to ensure that we
3994          * always use map_and_fenceable for all scanout buffers.
3995          */
3996         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3997                                        view->type == I915_GGTT_VIEW_NORMAL ?
3998                                        PIN_MAPPABLE : 0);
3999         if (ret)
4000                 goto err_unpin_display;
4001
4002         i915_gem_object_flush_cpu_write_domain(obj);
4003
4004         old_write_domain = obj->base.write_domain;
4005         old_read_domains = obj->base.read_domains;
4006
4007         /* It should now be out of any other write domains, and we can update
4008          * the domain values for our changes.
4009          */
4010         obj->base.write_domain = 0;
4011         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4012
4013         trace_i915_gem_object_change_domain(obj,
4014                                             old_read_domains,
4015                                             old_write_domain);
4016
4017         return 0;
4018
4019 err_unpin_display:
4020         obj->pin_display--;
4021         return ret;
4022 }
4023
4024 void
4025 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4026                                          const struct i915_ggtt_view *view)
4027 {
4028         if (WARN_ON(obj->pin_display == 0))
4029                 return;
4030
4031         i915_gem_object_ggtt_unpin_view(obj, view);
4032
4033         obj->pin_display--;
4034 }
4035
4036 /**
4037  * Moves a single object to the CPU read, and possibly write domain.
4038  *
4039  * This function returns when the move is complete, including waiting on
4040  * flushes to occur.
4041  */
4042 int
4043 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4044 {
4045         uint32_t old_write_domain, old_read_domains;
4046         int ret;
4047
4048         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4049                 return 0;
4050
4051         ret = i915_gem_object_wait_rendering(obj, !write);
4052         if (ret)
4053                 return ret;
4054
4055         i915_gem_object_flush_gtt_write_domain(obj);
4056
4057         old_write_domain = obj->base.write_domain;
4058         old_read_domains = obj->base.read_domains;
4059
4060         /* Flush the CPU cache if it's still invalid. */
4061         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4062                 i915_gem_clflush_object(obj, false);
4063
4064                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4065         }
4066
4067         /* It should now be out of any other write domains, and we can update
4068          * the domain values for our changes.
4069          */
4070         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4071
4072         /* If we're writing through the CPU, then the GPU read domains will
4073          * need to be invalidated at next use.
4074          */
4075         if (write) {
4076                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4077                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4078         }
4079
4080         trace_i915_gem_object_change_domain(obj,
4081                                             old_read_domains,
4082                                             old_write_domain);
4083
4084         return 0;
4085 }
4086
4087 /* Throttle our rendering by waiting until the ring has completed our requests
4088  * emitted over 20 msec ago.
4089  *
4090  * Note that if we were to use the current jiffies each time around the loop,
4091  * we wouldn't escape the function with any frames outstanding if the time to
4092  * render a frame was over 20ms.
4093  *
4094  * This should get us reasonable parallelism between CPU and GPU but also
4095  * relatively low latency when blocking on a particular request to finish.
4096  */
4097 static int
4098 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4099 {
4100         struct drm_i915_private *dev_priv = dev->dev_private;
4101         struct drm_i915_file_private *file_priv = file->driver_priv;
4102         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4103         struct drm_i915_gem_request *request, *target = NULL;
4104         unsigned reset_counter;
4105         int ret;
4106
4107         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4108         if (ret)
4109                 return ret;
4110
4111         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4112         if (ret)
4113                 return ret;
4114
4115         spin_lock(&file_priv->mm.lock);
4116         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4117                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4118                         break;
4119
4120                 /*
4121                  * Note that the request might not have been submitted yet.
4122                  * In which case emitted_jiffies will be zero.
4123                  */
4124                 if (!request->emitted_jiffies)
4125                         continue;
4126
4127                 target = request;
4128         }
4129         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4130         if (target)
4131                 i915_gem_request_reference(target);
4132         spin_unlock(&file_priv->mm.lock);
4133
4134         if (target == NULL)
4135                 return 0;
4136
4137         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4138         if (ret == 0)
4139                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4140
4141         i915_gem_request_unreference__unlocked(target);
4142
4143         return ret;
4144 }
4145
4146 static bool
4147 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4148 {
4149         struct drm_i915_gem_object *obj = vma->obj;
4150
4151         if (alignment &&
4152             vma->node.start & (alignment - 1))
4153                 return true;
4154
4155         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4156                 return true;
4157
4158         if (flags & PIN_OFFSET_BIAS &&
4159             vma->node.start < (flags & PIN_OFFSET_MASK))
4160                 return true;
4161
4162         if (flags & PIN_OFFSET_FIXED &&
4163             vma->node.start != (flags & PIN_OFFSET_MASK))
4164                 return true;
4165
4166         return false;
4167 }
4168
4169 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4170 {
4171         struct drm_i915_gem_object *obj = vma->obj;
4172         bool mappable, fenceable;
4173         u32 fence_size, fence_alignment;
4174
4175         fence_size = i915_gem_get_gtt_size(obj->base.dev,
4176                                            obj->base.size,
4177                                            obj->tiling_mode);
4178         fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4179                                                      obj->base.size,
4180                                                      obj->tiling_mode,
4181                                                      true);
4182
4183         fenceable = (vma->node.size == fence_size &&
4184                      (vma->node.start & (fence_alignment - 1)) == 0);
4185
4186         mappable = (vma->node.start + fence_size <=
4187                     to_i915(obj->base.dev)->gtt.mappable_end);
4188
4189         obj->map_and_fenceable = mappable && fenceable;
4190 }
4191
4192 static int
4193 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4194                        struct i915_address_space *vm,
4195                        const struct i915_ggtt_view *ggtt_view,
4196                        uint32_t alignment,
4197                        uint64_t flags)
4198 {
4199         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4200         struct i915_vma *vma;
4201         unsigned bound;
4202         int ret;
4203
4204         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4205                 return -ENODEV;
4206
4207         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4208                 return -EINVAL;
4209
4210         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4211                 return -EINVAL;
4212
4213         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4214                 return -EINVAL;
4215
4216         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4217                           i915_gem_obj_to_vma(obj, vm);
4218
4219         if (IS_ERR(vma))
4220                 return PTR_ERR(vma);
4221
4222         if (vma) {
4223                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4224                         return -EBUSY;
4225
4226                 if (i915_vma_misplaced(vma, alignment, flags)) {
4227                         WARN(vma->pin_count,
4228                              "bo is already pinned in %s with incorrect alignment:"
4229                              " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4230                              " obj->map_and_fenceable=%d\n",
4231                              ggtt_view ? "ggtt" : "ppgtt",
4232                              upper_32_bits(vma->node.start),
4233                              lower_32_bits(vma->node.start),
4234                              alignment,
4235                              !!(flags & PIN_MAPPABLE),
4236                              obj->map_and_fenceable);
4237                         ret = i915_vma_unbind(vma);
4238                         if (ret)
4239                                 return ret;
4240
4241                         vma = NULL;
4242                 }
4243         }
4244
4245         bound = vma ? vma->bound : 0;
4246         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4247                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4248                                                  flags);
4249                 if (IS_ERR(vma))
4250                         return PTR_ERR(vma);
4251         } else {
4252                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4253                 if (ret)
4254                         return ret;
4255         }
4256
4257         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4258             (bound ^ vma->bound) & GLOBAL_BIND) {
4259                 __i915_vma_set_map_and_fenceable(vma);
4260                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4261         }
4262
4263         vma->pin_count++;
4264         return 0;
4265 }
4266
4267 int
4268 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4269                     struct i915_address_space *vm,
4270                     uint32_t alignment,
4271                     uint64_t flags)
4272 {
4273         return i915_gem_object_do_pin(obj, vm,
4274                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4275                                       alignment, flags);
4276 }
4277
4278 int
4279 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4280                          const struct i915_ggtt_view *view,
4281                          uint32_t alignment,
4282                          uint64_t flags)
4283 {
4284         if (WARN_ONCE(!view, "no view specified"))
4285                 return -EINVAL;
4286
4287         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4288                                       alignment, flags | PIN_GLOBAL);
4289 }
4290
4291 void
4292 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4293                                 const struct i915_ggtt_view *view)
4294 {
4295         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4296
4297         BUG_ON(!vma);
4298         WARN_ON(vma->pin_count == 0);
4299         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4300
4301         --vma->pin_count;
4302 }
4303
4304 int
4305 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4306                     struct drm_file *file)
4307 {
4308         struct drm_i915_gem_busy *args = data;
4309         struct drm_i915_gem_object *obj;
4310         int ret;
4311
4312         ret = i915_mutex_lock_interruptible(dev);
4313         if (ret)
4314                 return ret;
4315
4316         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4317         if (&obj->base == NULL) {
4318                 ret = -ENOENT;
4319                 goto unlock;
4320         }
4321
4322         /* Count all active objects as busy, even if they are currently not used
4323          * by the gpu. Users of this interface expect objects to eventually
4324          * become non-busy without any further actions, therefore emit any
4325          * necessary flushes here.
4326          */
4327         ret = i915_gem_object_flush_active(obj);
4328         if (ret)
4329                 goto unref;
4330
4331         BUILD_BUG_ON(I915_NUM_RINGS > 16);
4332         args->busy = obj->active << 16;
4333         if (obj->last_write_req)
4334                 args->busy |= obj->last_write_req->ring->id;
4335
4336 unref:
4337         drm_gem_object_unreference(&obj->base);
4338 unlock:
4339         mutex_unlock(&dev->struct_mutex);
4340         return ret;
4341 }
4342
4343 int
4344 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4345                         struct drm_file *file_priv)
4346 {
4347         return i915_gem_ring_throttle(dev, file_priv);
4348 }
4349
4350 int
4351 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4352                        struct drm_file *file_priv)
4353 {
4354         struct drm_i915_private *dev_priv = dev->dev_private;
4355         struct drm_i915_gem_madvise *args = data;
4356         struct drm_i915_gem_object *obj;
4357         int ret;
4358
4359         switch (args->madv) {
4360         case I915_MADV_DONTNEED:
4361         case I915_MADV_WILLNEED:
4362             break;
4363         default:
4364             return -EINVAL;
4365         }
4366
4367         ret = i915_mutex_lock_interruptible(dev);
4368         if (ret)
4369                 return ret;
4370
4371         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4372         if (&obj->base == NULL) {
4373                 ret = -ENOENT;
4374                 goto unlock;
4375         }
4376
4377         if (i915_gem_obj_is_pinned(obj)) {
4378                 ret = -EINVAL;
4379                 goto out;
4380         }
4381
4382         if (obj->pages &&
4383             obj->tiling_mode != I915_TILING_NONE &&
4384             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4385                 if (obj->madv == I915_MADV_WILLNEED)
4386                         i915_gem_object_unpin_pages(obj);
4387                 if (args->madv == I915_MADV_WILLNEED)
4388                         i915_gem_object_pin_pages(obj);
4389         }
4390
4391         if (obj->madv != __I915_MADV_PURGED)
4392                 obj->madv = args->madv;
4393
4394         /* if the object is no longer attached, discard its backing storage */
4395         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4396                 i915_gem_object_truncate(obj);
4397
4398         args->retained = obj->madv != __I915_MADV_PURGED;
4399
4400 out:
4401         drm_gem_object_unreference(&obj->base);
4402 unlock:
4403         mutex_unlock(&dev->struct_mutex);
4404         return ret;
4405 }
4406
4407 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4408                           const struct drm_i915_gem_object_ops *ops)
4409 {
4410         int i;
4411
4412         INIT_LIST_HEAD(&obj->global_list);
4413         for (i = 0; i < I915_NUM_RINGS; i++)
4414                 INIT_LIST_HEAD(&obj->ring_list[i]);
4415         INIT_LIST_HEAD(&obj->obj_exec_link);
4416         INIT_LIST_HEAD(&obj->vma_list);
4417         INIT_LIST_HEAD(&obj->batch_pool_link);
4418
4419         obj->ops = ops;
4420
4421         obj->fence_reg = I915_FENCE_REG_NONE;
4422         obj->madv = I915_MADV_WILLNEED;
4423
4424         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4425 }
4426
4427 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4428         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4429         .get_pages = i915_gem_object_get_pages_gtt,
4430         .put_pages = i915_gem_object_put_pages_gtt,
4431 };
4432
4433 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4434                                                   size_t size)
4435 {
4436         struct drm_i915_gem_object *obj;
4437         struct address_space *mapping;
4438         gfp_t mask;
4439
4440         obj = i915_gem_object_alloc(dev);
4441         if (obj == NULL)
4442                 return NULL;
4443
4444         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4445                 i915_gem_object_free(obj);
4446                 return NULL;
4447         }
4448
4449         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4450         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4451                 /* 965gm cannot relocate objects above 4GiB. */
4452                 mask &= ~__GFP_HIGHMEM;
4453                 mask |= __GFP_DMA32;
4454         }
4455
4456         mapping = file_inode(obj->base.filp)->i_mapping;
4457         mapping_set_gfp_mask(mapping, mask);
4458
4459         i915_gem_object_init(obj, &i915_gem_object_ops);
4460
4461         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4462         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4463
4464         if (HAS_LLC(dev)) {
4465                 /* On some devices, we can have the GPU use the LLC (the CPU
4466                  * cache) for about a 10% performance improvement
4467                  * compared to uncached.  Graphics requests other than
4468                  * display scanout are coherent with the CPU in
4469                  * accessing this cache.  This means in this mode we
4470                  * don't need to clflush on the CPU side, and on the
4471                  * GPU side we only need to flush internal caches to
4472                  * get data visible to the CPU.
4473                  *
4474                  * However, we maintain the display planes as UC, and so
4475                  * need to rebind when first used as such.
4476                  */
4477                 obj->cache_level = I915_CACHE_LLC;
4478         } else
4479                 obj->cache_level = I915_CACHE_NONE;
4480
4481         trace_i915_gem_object_create(obj);
4482
4483         return obj;
4484 }
4485
4486 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4487 {
4488         /* If we are the last user of the backing storage (be it shmemfs
4489          * pages or stolen etc), we know that the pages are going to be
4490          * immediately released. In this case, we can then skip copying
4491          * back the contents from the GPU.
4492          */
4493
4494         if (obj->madv != I915_MADV_WILLNEED)
4495                 return false;
4496
4497         if (obj->base.filp == NULL)
4498                 return true;
4499
4500         /* At first glance, this looks racy, but then again so would be
4501          * userspace racing mmap against close. However, the first external
4502          * reference to the filp can only be obtained through the
4503          * i915_gem_mmap_ioctl() which safeguards us against the user
4504          * acquiring such a reference whilst we are in the middle of
4505          * freeing the object.
4506          */
4507         return atomic_long_read(&obj->base.filp->f_count) == 1;
4508 }
4509
4510 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4511 {
4512         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4513         struct drm_device *dev = obj->base.dev;
4514         struct drm_i915_private *dev_priv = dev->dev_private;
4515         struct i915_vma *vma, *next;
4516
4517         intel_runtime_pm_get(dev_priv);
4518
4519         trace_i915_gem_object_destroy(obj);
4520
4521         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4522                 int ret;
4523
4524                 vma->pin_count = 0;
4525                 ret = i915_vma_unbind(vma);
4526                 if (WARN_ON(ret == -ERESTARTSYS)) {
4527                         bool was_interruptible;
4528
4529                         was_interruptible = dev_priv->mm.interruptible;
4530                         dev_priv->mm.interruptible = false;
4531
4532                         WARN_ON(i915_vma_unbind(vma));
4533
4534                         dev_priv->mm.interruptible = was_interruptible;
4535                 }
4536         }
4537
4538         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4539          * before progressing. */
4540         if (obj->stolen)
4541                 i915_gem_object_unpin_pages(obj);
4542
4543         WARN_ON(obj->frontbuffer_bits);
4544
4545         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4546             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4547             obj->tiling_mode != I915_TILING_NONE)
4548                 i915_gem_object_unpin_pages(obj);
4549
4550         if (WARN_ON(obj->pages_pin_count))
4551                 obj->pages_pin_count = 0;
4552         if (discard_backing_storage(obj))
4553                 obj->madv = I915_MADV_DONTNEED;
4554         i915_gem_object_put_pages(obj);
4555         i915_gem_object_free_mmap_offset(obj);
4556
4557         BUG_ON(obj->pages);
4558
4559         if (obj->base.import_attach)
4560                 drm_prime_gem_destroy(&obj->base, NULL);
4561
4562         if (obj->ops->release)
4563                 obj->ops->release(obj);
4564
4565         drm_gem_object_release(&obj->base);
4566         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4567
4568         kfree(obj->bit_17);
4569         i915_gem_object_free(obj);
4570
4571         intel_runtime_pm_put(dev_priv);
4572 }
4573
4574 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4575                                      struct i915_address_space *vm)
4576 {
4577         struct i915_vma *vma;
4578         list_for_each_entry(vma, &obj->vma_list, vma_link) {
4579                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4580                     vma->vm == vm)
4581                         return vma;
4582         }
4583         return NULL;
4584 }
4585
4586 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4587                                            const struct i915_ggtt_view *view)
4588 {
4589         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4590         struct i915_vma *vma;
4591
4592         if (WARN_ONCE(!view, "no view specified"))
4593                 return ERR_PTR(-EINVAL);
4594
4595         list_for_each_entry(vma, &obj->vma_list, vma_link)
4596                 if (vma->vm == ggtt &&
4597                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4598                         return vma;
4599         return NULL;
4600 }
4601
4602 void i915_gem_vma_destroy(struct i915_vma *vma)
4603 {
4604         struct i915_address_space *vm = NULL;
4605         WARN_ON(vma->node.allocated);
4606
4607         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4608         if (!list_empty(&vma->exec_list))
4609                 return;
4610
4611         vm = vma->vm;
4612
4613         if (!i915_is_ggtt(vm))
4614                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4615
4616         list_del(&vma->vma_link);
4617
4618         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4619 }
4620
4621 static void
4622 i915_gem_stop_ringbuffers(struct drm_device *dev)
4623 {
4624         struct drm_i915_private *dev_priv = dev->dev_private;
4625         struct intel_engine_cs *ring;
4626         int i;
4627
4628         for_each_ring(ring, dev_priv, i)
4629                 dev_priv->gt.stop_ring(ring);
4630 }
4631
4632 int
4633 i915_gem_suspend(struct drm_device *dev)
4634 {
4635         struct drm_i915_private *dev_priv = dev->dev_private;
4636         int ret = 0;
4637
4638         mutex_lock(&dev->struct_mutex);
4639         ret = i915_gpu_idle(dev);
4640         if (ret)
4641                 goto err;
4642
4643         i915_gem_retire_requests(dev);
4644
4645         i915_gem_stop_ringbuffers(dev);
4646         mutex_unlock(&dev->struct_mutex);
4647
4648         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4649         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4650         flush_delayed_work(&dev_priv->mm.idle_work);
4651
4652         /* Assert that we sucessfully flushed all the work and
4653          * reset the GPU back to its idle, low power state.
4654          */
4655         WARN_ON(dev_priv->mm.busy);
4656
4657         return 0;
4658
4659 err:
4660         mutex_unlock(&dev->struct_mutex);
4661         return ret;
4662 }
4663
4664 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4665 {
4666         struct intel_engine_cs *ring = req->ring;
4667         struct drm_device *dev = ring->dev;
4668         struct drm_i915_private *dev_priv = dev->dev_private;
4669         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4670         int i, ret;
4671
4672         if (!HAS_L3_DPF(dev) || !remap_info)
4673                 return 0;
4674
4675         ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4676         if (ret)
4677                 return ret;
4678
4679         /*
4680          * Note: We do not worry about the concurrent register cacheline hang
4681          * here because no other code should access these registers other than
4682          * at initialization time.
4683          */
4684         for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4685                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4686                 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4687                 intel_ring_emit(ring, remap_info[i]);
4688         }
4689
4690         intel_ring_advance(ring);
4691
4692         return ret;
4693 }
4694
4695 void i915_gem_init_swizzling(struct drm_device *dev)
4696 {
4697         struct drm_i915_private *dev_priv = dev->dev_private;
4698
4699         if (INTEL_INFO(dev)->gen < 5 ||
4700             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4701                 return;
4702
4703         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4704                                  DISP_TILE_SURFACE_SWIZZLING);
4705
4706         if (IS_GEN5(dev))
4707                 return;
4708
4709         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4710         if (IS_GEN6(dev))
4711                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4712         else if (IS_GEN7(dev))
4713                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4714         else if (IS_GEN8(dev))
4715                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4716         else
4717                 BUG();
4718 }
4719
4720 static void init_unused_ring(struct drm_device *dev, u32 base)
4721 {
4722         struct drm_i915_private *dev_priv = dev->dev_private;
4723
4724         I915_WRITE(RING_CTL(base), 0);
4725         I915_WRITE(RING_HEAD(base), 0);
4726         I915_WRITE(RING_TAIL(base), 0);
4727         I915_WRITE(RING_START(base), 0);
4728 }
4729
4730 static void init_unused_rings(struct drm_device *dev)
4731 {
4732         if (IS_I830(dev)) {
4733                 init_unused_ring(dev, PRB1_BASE);
4734                 init_unused_ring(dev, SRB0_BASE);
4735                 init_unused_ring(dev, SRB1_BASE);
4736                 init_unused_ring(dev, SRB2_BASE);
4737                 init_unused_ring(dev, SRB3_BASE);
4738         } else if (IS_GEN2(dev)) {
4739                 init_unused_ring(dev, SRB0_BASE);
4740                 init_unused_ring(dev, SRB1_BASE);
4741         } else if (IS_GEN3(dev)) {
4742                 init_unused_ring(dev, PRB1_BASE);
4743                 init_unused_ring(dev, PRB2_BASE);
4744         }
4745 }
4746
4747 int i915_gem_init_rings(struct drm_device *dev)
4748 {
4749         struct drm_i915_private *dev_priv = dev->dev_private;
4750         int ret;
4751
4752         ret = intel_init_render_ring_buffer(dev);
4753         if (ret)
4754                 return ret;
4755
4756         if (HAS_BSD(dev)) {
4757                 ret = intel_init_bsd_ring_buffer(dev);
4758                 if (ret)
4759                         goto cleanup_render_ring;
4760         }
4761
4762         if (HAS_BLT(dev)) {
4763                 ret = intel_init_blt_ring_buffer(dev);
4764                 if (ret)
4765                         goto cleanup_bsd_ring;
4766         }
4767
4768         if (HAS_VEBOX(dev)) {
4769                 ret = intel_init_vebox_ring_buffer(dev);
4770                 if (ret)
4771                         goto cleanup_blt_ring;
4772         }
4773
4774         if (HAS_BSD2(dev)) {
4775                 ret = intel_init_bsd2_ring_buffer(dev);
4776                 if (ret)
4777                         goto cleanup_vebox_ring;
4778         }
4779
4780         return 0;
4781
4782 cleanup_vebox_ring:
4783         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4784 cleanup_blt_ring:
4785         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4786 cleanup_bsd_ring:
4787         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4788 cleanup_render_ring:
4789         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4790
4791         return ret;
4792 }
4793
4794 int
4795 i915_gem_init_hw(struct drm_device *dev)
4796 {
4797         struct drm_i915_private *dev_priv = dev->dev_private;
4798         struct intel_engine_cs *ring;
4799         int ret, i, j;
4800
4801         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4802                 return -EIO;
4803
4804         /* Double layer security blanket, see i915_gem_init() */
4805         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4806
4807         if (dev_priv->ellc_size)
4808                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4809
4810         if (IS_HASWELL(dev))
4811                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4812                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4813
4814         if (HAS_PCH_NOP(dev)) {
4815                 if (IS_IVYBRIDGE(dev)) {
4816                         u32 temp = I915_READ(GEN7_MSG_CTL);
4817                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4818                         I915_WRITE(GEN7_MSG_CTL, temp);
4819                 } else if (INTEL_INFO(dev)->gen >= 7) {
4820                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4821                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4822                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4823                 }
4824         }
4825
4826         i915_gem_init_swizzling(dev);
4827
4828         /*
4829          * At least 830 can leave some of the unused rings
4830          * "active" (ie. head != tail) after resume which
4831          * will prevent c3 entry. Makes sure all unused rings
4832          * are totally idle.
4833          */
4834         init_unused_rings(dev);
4835
4836         BUG_ON(!dev_priv->ring[RCS].default_context);
4837
4838         ret = i915_ppgtt_init_hw(dev);
4839         if (ret) {
4840                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4841                 goto out;
4842         }
4843
4844         /* Need to do basic initialisation of all rings first: */
4845         for_each_ring(ring, dev_priv, i) {
4846                 ret = ring->init_hw(ring);
4847                 if (ret)
4848                         goto out;
4849         }
4850
4851         /* We can't enable contexts until all firmware is loaded */
4852         if (HAS_GUC_UCODE(dev)) {
4853                 ret = intel_guc_ucode_load(dev);
4854                 if (ret) {
4855                         DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4856                         ret = -EIO;
4857                         goto out;
4858                 }
4859         }
4860
4861         /*
4862          * Increment the next seqno by 0x100 so we have a visible break
4863          * on re-initialisation
4864          */
4865         ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4866         if (ret)
4867                 goto out;
4868
4869         /* Now it is safe to go back round and do everything else: */
4870         for_each_ring(ring, dev_priv, i) {
4871                 struct drm_i915_gem_request *req;
4872
4873                 WARN_ON(!ring->default_context);
4874
4875                 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4876                 if (ret) {
4877                         i915_gem_cleanup_ringbuffer(dev);
4878                         goto out;
4879                 }
4880
4881                 if (ring->id == RCS) {
4882                         for (j = 0; j < NUM_L3_SLICES(dev); j++)
4883                                 i915_gem_l3_remap(req, j);
4884                 }
4885
4886                 ret = i915_ppgtt_init_ring(req);
4887                 if (ret && ret != -EIO) {
4888                         DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4889                         i915_gem_request_cancel(req);
4890                         i915_gem_cleanup_ringbuffer(dev);
4891                         goto out;
4892                 }
4893
4894                 ret = i915_gem_context_enable(req);
4895                 if (ret && ret != -EIO) {
4896                         DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4897                         i915_gem_request_cancel(req);
4898                         i915_gem_cleanup_ringbuffer(dev);
4899                         goto out;
4900                 }
4901
4902                 i915_add_request_no_flush(req);
4903         }
4904
4905 out:
4906         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4907         return ret;
4908 }
4909
4910 int i915_gem_init(struct drm_device *dev)
4911 {
4912         struct drm_i915_private *dev_priv = dev->dev_private;
4913         int ret;
4914
4915         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4916                         i915.enable_execlists);
4917
4918         mutex_lock(&dev->struct_mutex);
4919
4920         if (!i915.enable_execlists) {
4921                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4922                 dev_priv->gt.init_rings = i915_gem_init_rings;
4923                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4924                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4925         } else {
4926                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4927                 dev_priv->gt.init_rings = intel_logical_rings_init;
4928                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4929                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4930         }
4931
4932         /* This is just a security blanket to placate dragons.
4933          * On some systems, we very sporadically observe that the first TLBs
4934          * used by the CS may be stale, despite us poking the TLB reset. If
4935          * we hold the forcewake during initialisation these problems
4936          * just magically go away.
4937          */
4938         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4939
4940         ret = i915_gem_init_userptr(dev);
4941         if (ret)
4942                 goto out_unlock;
4943
4944         i915_gem_init_global_gtt(dev);
4945
4946         ret = i915_gem_context_init(dev);
4947         if (ret)
4948                 goto out_unlock;
4949
4950         ret = dev_priv->gt.init_rings(dev);
4951         if (ret)
4952                 goto out_unlock;
4953
4954         ret = i915_gem_init_hw(dev);
4955         if (ret == -EIO) {
4956                 /* Allow ring initialisation to fail by marking the GPU as
4957                  * wedged. But we only want to do this where the GPU is angry,
4958                  * for all other failure, such as an allocation failure, bail.
4959                  */
4960                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4961                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4962                 ret = 0;
4963         }
4964
4965 out_unlock:
4966         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4967         mutex_unlock(&dev->struct_mutex);
4968
4969         return ret;
4970 }
4971
4972 void
4973 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4974 {
4975         struct drm_i915_private *dev_priv = dev->dev_private;
4976         struct intel_engine_cs *ring;
4977         int i;
4978
4979         for_each_ring(ring, dev_priv, i)
4980                 dev_priv->gt.cleanup_ring(ring);
4981
4982     if (i915.enable_execlists)
4983             /*
4984              * Neither the BIOS, ourselves or any other kernel
4985              * expects the system to be in execlists mode on startup,
4986              * so we need to reset the GPU back to legacy mode.
4987              */
4988             intel_gpu_reset(dev);
4989 }
4990
4991 static void
4992 init_ring_lists(struct intel_engine_cs *ring)
4993 {
4994         INIT_LIST_HEAD(&ring->active_list);
4995         INIT_LIST_HEAD(&ring->request_list);
4996 }
4997
4998 void
4999 i915_gem_load(struct drm_device *dev)
5000 {
5001         struct drm_i915_private *dev_priv = dev->dev_private;
5002         int i;
5003
5004         dev_priv->objects =
5005                 kmem_cache_create("i915_gem_object",
5006                                   sizeof(struct drm_i915_gem_object), 0,
5007                                   SLAB_HWCACHE_ALIGN,
5008                                   NULL);
5009         dev_priv->vmas =
5010                 kmem_cache_create("i915_gem_vma",
5011                                   sizeof(struct i915_vma), 0,
5012                                   SLAB_HWCACHE_ALIGN,
5013                                   NULL);
5014         dev_priv->requests =
5015                 kmem_cache_create("i915_gem_request",
5016                                   sizeof(struct drm_i915_gem_request), 0,
5017                                   SLAB_HWCACHE_ALIGN,
5018                                   NULL);
5019
5020         INIT_LIST_HEAD(&dev_priv->vm_list);
5021         INIT_LIST_HEAD(&dev_priv->context_list);
5022         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5023         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5024         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5025         for (i = 0; i < I915_NUM_RINGS; i++)
5026                 init_ring_lists(&dev_priv->ring[i]);
5027         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5028                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5029         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5030                           i915_gem_retire_work_handler);
5031         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5032                           i915_gem_idle_work_handler);
5033         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5034
5035         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5036
5037         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
5038                 dev_priv->num_fence_regs = 32;
5039         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5040                 dev_priv->num_fence_regs = 16;
5041         else
5042                 dev_priv->num_fence_regs = 8;
5043
5044         if (intel_vgpu_active(dev))
5045                 dev_priv->num_fence_regs =
5046                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5047
5048         /*
5049          * Set initial sequence number for requests.
5050          * Using this number allows the wraparound to happen early,
5051          * catching any obvious problems.
5052          */
5053         dev_priv->next_seqno = ((u32)~0 - 0x1100);
5054         dev_priv->last_seqno = ((u32)~0 - 0x1101);
5055
5056         /* Initialize fence registers to zero */
5057         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5058         i915_gem_restore_fences(dev);
5059
5060         i915_gem_detect_bit_6_swizzle(dev);
5061         init_waitqueue_head(&dev_priv->pending_flip_queue);
5062
5063         dev_priv->mm.interruptible = true;
5064
5065         i915_gem_shrinker_init(dev_priv);
5066
5067         mutex_init(&dev_priv->fb_tracking.lock);
5068 }
5069
5070 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5071 {
5072         struct drm_i915_file_private *file_priv = file->driver_priv;
5073
5074         /* Clean up our request list when the client is going away, so that
5075          * later retire_requests won't dereference our soon-to-be-gone
5076          * file_priv.
5077          */
5078         spin_lock(&file_priv->mm.lock);
5079         while (!list_empty(&file_priv->mm.request_list)) {
5080                 struct drm_i915_gem_request *request;
5081
5082                 request = list_first_entry(&file_priv->mm.request_list,
5083                                            struct drm_i915_gem_request,
5084                                            client_list);
5085                 list_del(&request->client_list);
5086                 request->file_priv = NULL;
5087         }
5088         spin_unlock(&file_priv->mm.lock);
5089
5090         if (!list_empty(&file_priv->rps.link)) {
5091                 spin_lock(&to_i915(dev)->rps.client_lock);
5092                 list_del(&file_priv->rps.link);
5093                 spin_unlock(&to_i915(dev)->rps.client_lock);
5094         }
5095 }
5096
5097 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5098 {
5099         struct drm_i915_file_private *file_priv;
5100         int ret;
5101
5102         DRM_DEBUG_DRIVER("\n");
5103
5104         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5105         if (!file_priv)
5106                 return -ENOMEM;
5107
5108         file->driver_priv = file_priv;
5109         file_priv->dev_priv = dev->dev_private;
5110         file_priv->file = file;
5111         INIT_LIST_HEAD(&file_priv->rps.link);
5112
5113         spin_lock_init(&file_priv->mm.lock);
5114         INIT_LIST_HEAD(&file_priv->mm.request_list);
5115
5116         ret = i915_gem_context_open(dev, file);
5117         if (ret)
5118                 kfree(file_priv);
5119
5120         return ret;
5121 }
5122
5123 /**
5124  * i915_gem_track_fb - update frontbuffer tracking
5125  * @old: current GEM buffer for the frontbuffer slots
5126  * @new: new GEM buffer for the frontbuffer slots
5127  * @frontbuffer_bits: bitmask of frontbuffer slots
5128  *
5129  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5130  * from @old and setting them in @new. Both @old and @new can be NULL.
5131  */
5132 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5133                        struct drm_i915_gem_object *new,
5134                        unsigned frontbuffer_bits)
5135 {
5136         if (old) {
5137                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5138                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5139                 old->frontbuffer_bits &= ~frontbuffer_bits;
5140         }
5141
5142         if (new) {
5143                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5144                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5145                 new->frontbuffer_bits |= frontbuffer_bits;
5146         }
5147 }
5148
5149 /* All the new VM stuff */
5150 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5151                         struct i915_address_space *vm)
5152 {
5153         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5154         struct i915_vma *vma;
5155
5156         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5157
5158         list_for_each_entry(vma, &o->vma_list, vma_link) {
5159                 if (i915_is_ggtt(vma->vm) &&
5160                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5161                         continue;
5162                 if (vma->vm == vm)
5163                         return vma->node.start;
5164         }
5165
5166         WARN(1, "%s vma for this object not found.\n",
5167              i915_is_ggtt(vm) ? "global" : "ppgtt");
5168         return -1;
5169 }
5170
5171 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5172                                   const struct i915_ggtt_view *view)
5173 {
5174         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5175         struct i915_vma *vma;
5176
5177         list_for_each_entry(vma, &o->vma_list, vma_link)
5178                 if (vma->vm == ggtt &&
5179                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5180                         return vma->node.start;
5181
5182         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5183         return -1;
5184 }
5185
5186 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5187                         struct i915_address_space *vm)
5188 {
5189         struct i915_vma *vma;
5190
5191         list_for_each_entry(vma, &o->vma_list, vma_link) {
5192                 if (i915_is_ggtt(vma->vm) &&
5193                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5194                         continue;
5195                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5196                         return true;
5197         }
5198
5199         return false;
5200 }
5201
5202 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5203                                   const struct i915_ggtt_view *view)
5204 {
5205         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5206         struct i915_vma *vma;
5207
5208         list_for_each_entry(vma, &o->vma_list, vma_link)
5209                 if (vma->vm == ggtt &&
5210                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5211                     drm_mm_node_allocated(&vma->node))
5212                         return true;
5213
5214         return false;
5215 }
5216
5217 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5218 {
5219         struct i915_vma *vma;
5220
5221         list_for_each_entry(vma, &o->vma_list, vma_link)
5222                 if (drm_mm_node_allocated(&vma->node))
5223                         return true;
5224
5225         return false;
5226 }
5227
5228 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5229                                 struct i915_address_space *vm)
5230 {
5231         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5232         struct i915_vma *vma;
5233
5234         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5235
5236         BUG_ON(list_empty(&o->vma_list));
5237
5238         list_for_each_entry(vma, &o->vma_list, vma_link) {
5239                 if (i915_is_ggtt(vma->vm) &&
5240                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5241                         continue;
5242                 if (vma->vm == vm)
5243                         return vma->node.size;
5244         }
5245         return 0;
5246 }
5247
5248 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5249 {
5250         struct i915_vma *vma;
5251         list_for_each_entry(vma, &obj->vma_list, vma_link)
5252                 if (vma->pin_count > 0)
5253                         return true;
5254
5255         return false;
5256 }
5257
5258 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5259 struct page *
5260 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5261 {
5262         struct page *page;
5263
5264         /* Only default objects have per-page dirty tracking */
5265         if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5266                 return NULL;
5267
5268         page = i915_gem_object_get_page(obj, n);
5269         set_page_dirty(page);
5270         return page;
5271 }
5272
5273 /* Allocate a new GEM object and fill it with the supplied data */
5274 struct drm_i915_gem_object *
5275 i915_gem_object_create_from_data(struct drm_device *dev,
5276                                  const void *data, size_t size)
5277 {
5278         struct drm_i915_gem_object *obj;
5279         struct sg_table *sg;
5280         size_t bytes;
5281         int ret;
5282
5283         obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5284         if (IS_ERR_OR_NULL(obj))
5285                 return obj;
5286
5287         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5288         if (ret)
5289                 goto fail;
5290
5291         ret = i915_gem_object_get_pages(obj);
5292         if (ret)
5293                 goto fail;
5294
5295         i915_gem_object_pin_pages(obj);
5296         sg = obj->pages;
5297         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5298         obj->dirty = 1;         /* Backing store is now out of date */
5299         i915_gem_object_unpin_pages(obj);
5300
5301         if (WARN_ON(bytes != size)) {
5302                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5303                 ret = -EFAULT;
5304                 goto fail;
5305         }
5306
5307         return obj;
5308
5309 fail:
5310         drm_gem_object_unreference(&obj->base);
5311         return ERR_PTR(ret);
5312 }