drm/i915: Remove user pinning code
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43                                                    bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46                                bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57                                              struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59                                             struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61                                  unsigned long event,
62                                  void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66                                   enum i915_cache_level level)
67 {
68         return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74                 return true;
75
76         return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81         if (obj->tiling_mode)
82                 i915_gem_release_mmap(obj);
83
84         /* As we do not have an associated fence register, we will force
85          * a tiling change if we ever need to acquire one.
86          */
87         obj->fence_dirty = false;
88         obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93                                   size_t size)
94 {
95         spin_lock(&dev_priv->mm.object_stat_lock);
96         dev_priv->mm.object_count++;
97         dev_priv->mm.object_memory += size;
98         spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102                                      size_t size)
103 {
104         spin_lock(&dev_priv->mm.object_stat_lock);
105         dev_priv->mm.object_count--;
106         dev_priv->mm.object_memory -= size;
107         spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113         int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116                    i915_terminally_wedged(error))
117         if (EXIT_COND)
118                 return 0;
119
120         /*
121          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122          * userspace. If it takes that long something really bad is going on and
123          * we should simply try to bail out and fail as gracefully as possible.
124          */
125         ret = wait_event_interruptible_timeout(error->reset_queue,
126                                                EXIT_COND,
127                                                10*HZ);
128         if (ret == 0) {
129                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130                 return -EIO;
131         } else if (ret < 0) {
132                 return ret;
133         }
134 #undef EXIT_COND
135
136         return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141         struct drm_i915_private *dev_priv = dev->dev_private;
142         int ret;
143
144         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145         if (ret)
146                 return ret;
147
148         ret = mutex_lock_interruptible(&dev->struct_mutex);
149         if (ret)
150                 return ret;
151
152         WARN_ON(i915_verify_lists(dev));
153         return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159         return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164                             struct drm_file *file)
165 {
166         struct drm_i915_private *dev_priv = dev->dev_private;
167         struct drm_i915_gem_get_aperture *args = data;
168         struct drm_i915_gem_object *obj;
169         size_t pinned;
170
171         pinned = 0;
172         mutex_lock(&dev->struct_mutex);
173         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
174                 if (i915_gem_obj_is_pinned(obj))
175                         pinned += i915_gem_obj_ggtt_size(obj);
176         mutex_unlock(&dev->struct_mutex);
177
178         args->aper_size = dev_priv->gtt.base.total;
179         args->aper_available_size = args->aper_size - pinned;
180
181         return 0;
182 }
183
184 static int
185 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
186 {
187         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
188         char *vaddr = obj->phys_handle->vaddr;
189         struct sg_table *st;
190         struct scatterlist *sg;
191         int i;
192
193         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
194                 return -EINVAL;
195
196         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
197                 struct page *page;
198                 char *src;
199
200                 page = shmem_read_mapping_page(mapping, i);
201                 if (IS_ERR(page))
202                         return PTR_ERR(page);
203
204                 src = kmap_atomic(page);
205                 memcpy(vaddr, src, PAGE_SIZE);
206                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
207                 kunmap_atomic(src);
208
209                 page_cache_release(page);
210                 vaddr += PAGE_SIZE;
211         }
212
213         i915_gem_chipset_flush(obj->base.dev);
214
215         st = kmalloc(sizeof(*st), GFP_KERNEL);
216         if (st == NULL)
217                 return -ENOMEM;
218
219         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
220                 kfree(st);
221                 return -ENOMEM;
222         }
223
224         sg = st->sgl;
225         sg->offset = 0;
226         sg->length = obj->base.size;
227
228         sg_dma_address(sg) = obj->phys_handle->busaddr;
229         sg_dma_len(sg) = obj->base.size;
230
231         obj->pages = st;
232         obj->has_dma_mapping = true;
233         return 0;
234 }
235
236 static void
237 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
238 {
239         int ret;
240
241         BUG_ON(obj->madv == __I915_MADV_PURGED);
242
243         ret = i915_gem_object_set_to_cpu_domain(obj, true);
244         if (ret) {
245                 /* In the event of a disaster, abandon all caches and
246                  * hope for the best.
247                  */
248                 WARN_ON(ret != -EIO);
249                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
250         }
251
252         if (obj->madv == I915_MADV_DONTNEED)
253                 obj->dirty = 0;
254
255         if (obj->dirty) {
256                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
257                 char *vaddr = obj->phys_handle->vaddr;
258                 int i;
259
260                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
261                         struct page *page;
262                         char *dst;
263
264                         page = shmem_read_mapping_page(mapping, i);
265                         if (IS_ERR(page))
266                                 continue;
267
268                         dst = kmap_atomic(page);
269                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
270                         memcpy(dst, vaddr, PAGE_SIZE);
271                         kunmap_atomic(dst);
272
273                         set_page_dirty(page);
274                         if (obj->madv == I915_MADV_WILLNEED)
275                                 mark_page_accessed(page);
276                         page_cache_release(page);
277                         vaddr += PAGE_SIZE;
278                 }
279                 obj->dirty = 0;
280         }
281
282         sg_free_table(obj->pages);
283         kfree(obj->pages);
284
285         obj->has_dma_mapping = false;
286 }
287
288 static void
289 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
290 {
291         drm_pci_free(obj->base.dev, obj->phys_handle);
292 }
293
294 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
295         .get_pages = i915_gem_object_get_pages_phys,
296         .put_pages = i915_gem_object_put_pages_phys,
297         .release = i915_gem_object_release_phys,
298 };
299
300 static int
301 drop_pages(struct drm_i915_gem_object *obj)
302 {
303         struct i915_vma *vma, *next;
304         int ret;
305
306         drm_gem_object_reference(&obj->base);
307         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
308                 if (i915_vma_unbind(vma))
309                         break;
310
311         ret = i915_gem_object_put_pages(obj);
312         drm_gem_object_unreference(&obj->base);
313
314         return ret;
315 }
316
317 int
318 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
319                             int align)
320 {
321         drm_dma_handle_t *phys;
322         int ret;
323
324         if (obj->phys_handle) {
325                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
326                         return -EBUSY;
327
328                 return 0;
329         }
330
331         if (obj->madv != I915_MADV_WILLNEED)
332                 return -EFAULT;
333
334         if (obj->base.filp == NULL)
335                 return -EINVAL;
336
337         ret = drop_pages(obj);
338         if (ret)
339                 return ret;
340
341         /* create a new object */
342         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
343         if (!phys)
344                 return -ENOMEM;
345
346         obj->phys_handle = phys;
347         obj->ops = &i915_gem_phys_ops;
348
349         return i915_gem_object_get_pages(obj);
350 }
351
352 static int
353 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
354                      struct drm_i915_gem_pwrite *args,
355                      struct drm_file *file_priv)
356 {
357         struct drm_device *dev = obj->base.dev;
358         void *vaddr = obj->phys_handle->vaddr + args->offset;
359         char __user *user_data = to_user_ptr(args->data_ptr);
360         int ret;
361
362         /* We manually control the domain here and pretend that it
363          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
364          */
365         ret = i915_gem_object_wait_rendering(obj, false);
366         if (ret)
367                 return ret;
368
369         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
370                 unsigned long unwritten;
371
372                 /* The physical object once assigned is fixed for the lifetime
373                  * of the obj, so we can safely drop the lock and continue
374                  * to access vaddr.
375                  */
376                 mutex_unlock(&dev->struct_mutex);
377                 unwritten = copy_from_user(vaddr, user_data, args->size);
378                 mutex_lock(&dev->struct_mutex);
379                 if (unwritten)
380                         return -EFAULT;
381         }
382
383         drm_clflush_virt_range(vaddr, args->size);
384         i915_gem_chipset_flush(dev);
385         return 0;
386 }
387
388 void *i915_gem_object_alloc(struct drm_device *dev)
389 {
390         struct drm_i915_private *dev_priv = dev->dev_private;
391         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
392 }
393
394 void i915_gem_object_free(struct drm_i915_gem_object *obj)
395 {
396         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
397         kmem_cache_free(dev_priv->slab, obj);
398 }
399
400 static int
401 i915_gem_create(struct drm_file *file,
402                 struct drm_device *dev,
403                 uint64_t size,
404                 bool dumb,
405                 uint32_t *handle_p)
406 {
407         struct drm_i915_gem_object *obj;
408         int ret;
409         u32 handle;
410
411         size = roundup(size, PAGE_SIZE);
412         if (size == 0)
413                 return -EINVAL;
414
415         /* Allocate the new object */
416         obj = i915_gem_alloc_object(dev, size);
417         if (obj == NULL)
418                 return -ENOMEM;
419
420         obj->base.dumb = dumb;
421         ret = drm_gem_handle_create(file, &obj->base, &handle);
422         /* drop reference from allocate - handle holds it now */
423         drm_gem_object_unreference_unlocked(&obj->base);
424         if (ret)
425                 return ret;
426
427         *handle_p = handle;
428         return 0;
429 }
430
431 int
432 i915_gem_dumb_create(struct drm_file *file,
433                      struct drm_device *dev,
434                      struct drm_mode_create_dumb *args)
435 {
436         /* have to work out size/pitch and return them */
437         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
438         args->size = args->pitch * args->height;
439         return i915_gem_create(file, dev,
440                                args->size, true, &args->handle);
441 }
442
443 /**
444  * Creates a new mm object and returns a handle to it.
445  */
446 int
447 i915_gem_create_ioctl(struct drm_device *dev, void *data,
448                       struct drm_file *file)
449 {
450         struct drm_i915_gem_create *args = data;
451
452         return i915_gem_create(file, dev,
453                                args->size, false, &args->handle);
454 }
455
456 static inline int
457 __copy_to_user_swizzled(char __user *cpu_vaddr,
458                         const char *gpu_vaddr, int gpu_offset,
459                         int length)
460 {
461         int ret, cpu_offset = 0;
462
463         while (length > 0) {
464                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
465                 int this_length = min(cacheline_end - gpu_offset, length);
466                 int swizzled_gpu_offset = gpu_offset ^ 64;
467
468                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
469                                      gpu_vaddr + swizzled_gpu_offset,
470                                      this_length);
471                 if (ret)
472                         return ret + length;
473
474                 cpu_offset += this_length;
475                 gpu_offset += this_length;
476                 length -= this_length;
477         }
478
479         return 0;
480 }
481
482 static inline int
483 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
484                           const char __user *cpu_vaddr,
485                           int length)
486 {
487         int ret, cpu_offset = 0;
488
489         while (length > 0) {
490                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
491                 int this_length = min(cacheline_end - gpu_offset, length);
492                 int swizzled_gpu_offset = gpu_offset ^ 64;
493
494                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
495                                        cpu_vaddr + cpu_offset,
496                                        this_length);
497                 if (ret)
498                         return ret + length;
499
500                 cpu_offset += this_length;
501                 gpu_offset += this_length;
502                 length -= this_length;
503         }
504
505         return 0;
506 }
507
508 /*
509  * Pins the specified object's pages and synchronizes the object with
510  * GPU accesses. Sets needs_clflush to non-zero if the caller should
511  * flush the object from the CPU cache.
512  */
513 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
514                                     int *needs_clflush)
515 {
516         int ret;
517
518         *needs_clflush = 0;
519
520         if (!obj->base.filp)
521                 return -EINVAL;
522
523         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
524                 /* If we're not in the cpu read domain, set ourself into the gtt
525                  * read domain and manually flush cachelines (if required). This
526                  * optimizes for the case when the gpu will dirty the data
527                  * anyway again before the next pread happens. */
528                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
529                                                         obj->cache_level);
530                 ret = i915_gem_object_wait_rendering(obj, true);
531                 if (ret)
532                         return ret;
533
534                 i915_gem_object_retire(obj);
535         }
536
537         ret = i915_gem_object_get_pages(obj);
538         if (ret)
539                 return ret;
540
541         i915_gem_object_pin_pages(obj);
542
543         return ret;
544 }
545
546 /* Per-page copy function for the shmem pread fastpath.
547  * Flushes invalid cachelines before reading the target if
548  * needs_clflush is set. */
549 static int
550 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
551                  char __user *user_data,
552                  bool page_do_bit17_swizzling, bool needs_clflush)
553 {
554         char *vaddr;
555         int ret;
556
557         if (unlikely(page_do_bit17_swizzling))
558                 return -EINVAL;
559
560         vaddr = kmap_atomic(page);
561         if (needs_clflush)
562                 drm_clflush_virt_range(vaddr + shmem_page_offset,
563                                        page_length);
564         ret = __copy_to_user_inatomic(user_data,
565                                       vaddr + shmem_page_offset,
566                                       page_length);
567         kunmap_atomic(vaddr);
568
569         return ret ? -EFAULT : 0;
570 }
571
572 static void
573 shmem_clflush_swizzled_range(char *addr, unsigned long length,
574                              bool swizzled)
575 {
576         if (unlikely(swizzled)) {
577                 unsigned long start = (unsigned long) addr;
578                 unsigned long end = (unsigned long) addr + length;
579
580                 /* For swizzling simply ensure that we always flush both
581                  * channels. Lame, but simple and it works. Swizzled
582                  * pwrite/pread is far from a hotpath - current userspace
583                  * doesn't use it at all. */
584                 start = round_down(start, 128);
585                 end = round_up(end, 128);
586
587                 drm_clflush_virt_range((void *)start, end - start);
588         } else {
589                 drm_clflush_virt_range(addr, length);
590         }
591
592 }
593
594 /* Only difference to the fast-path function is that this can handle bit17
595  * and uses non-atomic copy and kmap functions. */
596 static int
597 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
598                  char __user *user_data,
599                  bool page_do_bit17_swizzling, bool needs_clflush)
600 {
601         char *vaddr;
602         int ret;
603
604         vaddr = kmap(page);
605         if (needs_clflush)
606                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
607                                              page_length,
608                                              page_do_bit17_swizzling);
609
610         if (page_do_bit17_swizzling)
611                 ret = __copy_to_user_swizzled(user_data,
612                                               vaddr, shmem_page_offset,
613                                               page_length);
614         else
615                 ret = __copy_to_user(user_data,
616                                      vaddr + shmem_page_offset,
617                                      page_length);
618         kunmap(page);
619
620         return ret ? - EFAULT : 0;
621 }
622
623 static int
624 i915_gem_shmem_pread(struct drm_device *dev,
625                      struct drm_i915_gem_object *obj,
626                      struct drm_i915_gem_pread *args,
627                      struct drm_file *file)
628 {
629         char __user *user_data;
630         ssize_t remain;
631         loff_t offset;
632         int shmem_page_offset, page_length, ret = 0;
633         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
634         int prefaulted = 0;
635         int needs_clflush = 0;
636         struct sg_page_iter sg_iter;
637
638         user_data = to_user_ptr(args->data_ptr);
639         remain = args->size;
640
641         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
642
643         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
644         if (ret)
645                 return ret;
646
647         offset = args->offset;
648
649         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
650                          offset >> PAGE_SHIFT) {
651                 struct page *page = sg_page_iter_page(&sg_iter);
652
653                 if (remain <= 0)
654                         break;
655
656                 /* Operation in this page
657                  *
658                  * shmem_page_offset = offset within page in shmem file
659                  * page_length = bytes to copy for this page
660                  */
661                 shmem_page_offset = offset_in_page(offset);
662                 page_length = remain;
663                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
664                         page_length = PAGE_SIZE - shmem_page_offset;
665
666                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
667                         (page_to_phys(page) & (1 << 17)) != 0;
668
669                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
670                                        user_data, page_do_bit17_swizzling,
671                                        needs_clflush);
672                 if (ret == 0)
673                         goto next_page;
674
675                 mutex_unlock(&dev->struct_mutex);
676
677                 if (likely(!i915.prefault_disable) && !prefaulted) {
678                         ret = fault_in_multipages_writeable(user_data, remain);
679                         /* Userspace is tricking us, but we've already clobbered
680                          * its pages with the prefault and promised to write the
681                          * data up to the first fault. Hence ignore any errors
682                          * and just continue. */
683                         (void)ret;
684                         prefaulted = 1;
685                 }
686
687                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
688                                        user_data, page_do_bit17_swizzling,
689                                        needs_clflush);
690
691                 mutex_lock(&dev->struct_mutex);
692
693                 if (ret)
694                         goto out;
695
696 next_page:
697                 remain -= page_length;
698                 user_data += page_length;
699                 offset += page_length;
700         }
701
702 out:
703         i915_gem_object_unpin_pages(obj);
704
705         return ret;
706 }
707
708 /**
709  * Reads data from the object referenced by handle.
710  *
711  * On error, the contents of *data are undefined.
712  */
713 int
714 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
715                      struct drm_file *file)
716 {
717         struct drm_i915_gem_pread *args = data;
718         struct drm_i915_gem_object *obj;
719         int ret = 0;
720
721         if (args->size == 0)
722                 return 0;
723
724         if (!access_ok(VERIFY_WRITE,
725                        to_user_ptr(args->data_ptr),
726                        args->size))
727                 return -EFAULT;
728
729         ret = i915_mutex_lock_interruptible(dev);
730         if (ret)
731                 return ret;
732
733         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
734         if (&obj->base == NULL) {
735                 ret = -ENOENT;
736                 goto unlock;
737         }
738
739         /* Bounds check source.  */
740         if (args->offset > obj->base.size ||
741             args->size > obj->base.size - args->offset) {
742                 ret = -EINVAL;
743                 goto out;
744         }
745
746         /* prime objects have no backing filp to GEM pread/pwrite
747          * pages from.
748          */
749         if (!obj->base.filp) {
750                 ret = -EINVAL;
751                 goto out;
752         }
753
754         trace_i915_gem_object_pread(obj, args->offset, args->size);
755
756         ret = i915_gem_shmem_pread(dev, obj, args, file);
757
758 out:
759         drm_gem_object_unreference(&obj->base);
760 unlock:
761         mutex_unlock(&dev->struct_mutex);
762         return ret;
763 }
764
765 /* This is the fast write path which cannot handle
766  * page faults in the source data
767  */
768
769 static inline int
770 fast_user_write(struct io_mapping *mapping,
771                 loff_t page_base, int page_offset,
772                 char __user *user_data,
773                 int length)
774 {
775         void __iomem *vaddr_atomic;
776         void *vaddr;
777         unsigned long unwritten;
778
779         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
780         /* We can use the cpu mem copy function because this is X86. */
781         vaddr = (void __force*)vaddr_atomic + page_offset;
782         unwritten = __copy_from_user_inatomic_nocache(vaddr,
783                                                       user_data, length);
784         io_mapping_unmap_atomic(vaddr_atomic);
785         return unwritten;
786 }
787
788 /**
789  * This is the fast pwrite path, where we copy the data directly from the
790  * user into the GTT, uncached.
791  */
792 static int
793 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
794                          struct drm_i915_gem_object *obj,
795                          struct drm_i915_gem_pwrite *args,
796                          struct drm_file *file)
797 {
798         struct drm_i915_private *dev_priv = dev->dev_private;
799         ssize_t remain;
800         loff_t offset, page_base;
801         char __user *user_data;
802         int page_offset, page_length, ret;
803
804         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
805         if (ret)
806                 goto out;
807
808         ret = i915_gem_object_set_to_gtt_domain(obj, true);
809         if (ret)
810                 goto out_unpin;
811
812         ret = i915_gem_object_put_fence(obj);
813         if (ret)
814                 goto out_unpin;
815
816         user_data = to_user_ptr(args->data_ptr);
817         remain = args->size;
818
819         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
820
821         while (remain > 0) {
822                 /* Operation in this page
823                  *
824                  * page_base = page offset within aperture
825                  * page_offset = offset within page
826                  * page_length = bytes to copy for this page
827                  */
828                 page_base = offset & PAGE_MASK;
829                 page_offset = offset_in_page(offset);
830                 page_length = remain;
831                 if ((page_offset + remain) > PAGE_SIZE)
832                         page_length = PAGE_SIZE - page_offset;
833
834                 /* If we get a fault while copying data, then (presumably) our
835                  * source page isn't available.  Return the error and we'll
836                  * retry in the slow path.
837                  */
838                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
839                                     page_offset, user_data, page_length)) {
840                         ret = -EFAULT;
841                         goto out_unpin;
842                 }
843
844                 remain -= page_length;
845                 user_data += page_length;
846                 offset += page_length;
847         }
848
849 out_unpin:
850         i915_gem_object_ggtt_unpin(obj);
851 out:
852         return ret;
853 }
854
855 /* Per-page copy function for the shmem pwrite fastpath.
856  * Flushes invalid cachelines before writing to the target if
857  * needs_clflush_before is set and flushes out any written cachelines after
858  * writing if needs_clflush is set. */
859 static int
860 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
861                   char __user *user_data,
862                   bool page_do_bit17_swizzling,
863                   bool needs_clflush_before,
864                   bool needs_clflush_after)
865 {
866         char *vaddr;
867         int ret;
868
869         if (unlikely(page_do_bit17_swizzling))
870                 return -EINVAL;
871
872         vaddr = kmap_atomic(page);
873         if (needs_clflush_before)
874                 drm_clflush_virt_range(vaddr + shmem_page_offset,
875                                        page_length);
876         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
877                                         user_data, page_length);
878         if (needs_clflush_after)
879                 drm_clflush_virt_range(vaddr + shmem_page_offset,
880                                        page_length);
881         kunmap_atomic(vaddr);
882
883         return ret ? -EFAULT : 0;
884 }
885
886 /* Only difference to the fast-path function is that this can handle bit17
887  * and uses non-atomic copy and kmap functions. */
888 static int
889 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
890                   char __user *user_data,
891                   bool page_do_bit17_swizzling,
892                   bool needs_clflush_before,
893                   bool needs_clflush_after)
894 {
895         char *vaddr;
896         int ret;
897
898         vaddr = kmap(page);
899         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
900                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
901                                              page_length,
902                                              page_do_bit17_swizzling);
903         if (page_do_bit17_swizzling)
904                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
905                                                 user_data,
906                                                 page_length);
907         else
908                 ret = __copy_from_user(vaddr + shmem_page_offset,
909                                        user_data,
910                                        page_length);
911         if (needs_clflush_after)
912                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
913                                              page_length,
914                                              page_do_bit17_swizzling);
915         kunmap(page);
916
917         return ret ? -EFAULT : 0;
918 }
919
920 static int
921 i915_gem_shmem_pwrite(struct drm_device *dev,
922                       struct drm_i915_gem_object *obj,
923                       struct drm_i915_gem_pwrite *args,
924                       struct drm_file *file)
925 {
926         ssize_t remain;
927         loff_t offset;
928         char __user *user_data;
929         int shmem_page_offset, page_length, ret = 0;
930         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
931         int hit_slowpath = 0;
932         int needs_clflush_after = 0;
933         int needs_clflush_before = 0;
934         struct sg_page_iter sg_iter;
935
936         user_data = to_user_ptr(args->data_ptr);
937         remain = args->size;
938
939         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
940
941         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
942                 /* If we're not in the cpu write domain, set ourself into the gtt
943                  * write domain and manually flush cachelines (if required). This
944                  * optimizes for the case when the gpu will use the data
945                  * right away and we therefore have to clflush anyway. */
946                 needs_clflush_after = cpu_write_needs_clflush(obj);
947                 ret = i915_gem_object_wait_rendering(obj, false);
948                 if (ret)
949                         return ret;
950
951                 i915_gem_object_retire(obj);
952         }
953         /* Same trick applies to invalidate partially written cachelines read
954          * before writing. */
955         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
956                 needs_clflush_before =
957                         !cpu_cache_is_coherent(dev, obj->cache_level);
958
959         ret = i915_gem_object_get_pages(obj);
960         if (ret)
961                 return ret;
962
963         i915_gem_object_pin_pages(obj);
964
965         offset = args->offset;
966         obj->dirty = 1;
967
968         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
969                          offset >> PAGE_SHIFT) {
970                 struct page *page = sg_page_iter_page(&sg_iter);
971                 int partial_cacheline_write;
972
973                 if (remain <= 0)
974                         break;
975
976                 /* Operation in this page
977                  *
978                  * shmem_page_offset = offset within page in shmem file
979                  * page_length = bytes to copy for this page
980                  */
981                 shmem_page_offset = offset_in_page(offset);
982
983                 page_length = remain;
984                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
985                         page_length = PAGE_SIZE - shmem_page_offset;
986
987                 /* If we don't overwrite a cacheline completely we need to be
988                  * careful to have up-to-date data by first clflushing. Don't
989                  * overcomplicate things and flush the entire patch. */
990                 partial_cacheline_write = needs_clflush_before &&
991                         ((shmem_page_offset | page_length)
992                                 & (boot_cpu_data.x86_clflush_size - 1));
993
994                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
995                         (page_to_phys(page) & (1 << 17)) != 0;
996
997                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
998                                         user_data, page_do_bit17_swizzling,
999                                         partial_cacheline_write,
1000                                         needs_clflush_after);
1001                 if (ret == 0)
1002                         goto next_page;
1003
1004                 hit_slowpath = 1;
1005                 mutex_unlock(&dev->struct_mutex);
1006                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1007                                         user_data, page_do_bit17_swizzling,
1008                                         partial_cacheline_write,
1009                                         needs_clflush_after);
1010
1011                 mutex_lock(&dev->struct_mutex);
1012
1013                 if (ret)
1014                         goto out;
1015
1016 next_page:
1017                 remain -= page_length;
1018                 user_data += page_length;
1019                 offset += page_length;
1020         }
1021
1022 out:
1023         i915_gem_object_unpin_pages(obj);
1024
1025         if (hit_slowpath) {
1026                 /*
1027                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1028                  * cachelines in-line while writing and the object moved
1029                  * out of the cpu write domain while we've dropped the lock.
1030                  */
1031                 if (!needs_clflush_after &&
1032                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1033                         if (i915_gem_clflush_object(obj, obj->pin_display))
1034                                 i915_gem_chipset_flush(dev);
1035                 }
1036         }
1037
1038         if (needs_clflush_after)
1039                 i915_gem_chipset_flush(dev);
1040
1041         return ret;
1042 }
1043
1044 /**
1045  * Writes data to the object referenced by handle.
1046  *
1047  * On error, the contents of the buffer that were to be modified are undefined.
1048  */
1049 int
1050 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1051                       struct drm_file *file)
1052 {
1053         struct drm_i915_gem_pwrite *args = data;
1054         struct drm_i915_gem_object *obj;
1055         int ret;
1056
1057         if (args->size == 0)
1058                 return 0;
1059
1060         if (!access_ok(VERIFY_READ,
1061                        to_user_ptr(args->data_ptr),
1062                        args->size))
1063                 return -EFAULT;
1064
1065         if (likely(!i915.prefault_disable)) {
1066                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1067                                                    args->size);
1068                 if (ret)
1069                         return -EFAULT;
1070         }
1071
1072         ret = i915_mutex_lock_interruptible(dev);
1073         if (ret)
1074                 return ret;
1075
1076         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1077         if (&obj->base == NULL) {
1078                 ret = -ENOENT;
1079                 goto unlock;
1080         }
1081
1082         /* Bounds check destination. */
1083         if (args->offset > obj->base.size ||
1084             args->size > obj->base.size - args->offset) {
1085                 ret = -EINVAL;
1086                 goto out;
1087         }
1088
1089         /* prime objects have no backing filp to GEM pread/pwrite
1090          * pages from.
1091          */
1092         if (!obj->base.filp) {
1093                 ret = -EINVAL;
1094                 goto out;
1095         }
1096
1097         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1098
1099         ret = -EFAULT;
1100         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1101          * it would end up going through the fenced access, and we'll get
1102          * different detiling behavior between reading and writing.
1103          * pread/pwrite currently are reading and writing from the CPU
1104          * perspective, requiring manual detiling by the client.
1105          */
1106         if (obj->tiling_mode == I915_TILING_NONE &&
1107             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1108             cpu_write_needs_clflush(obj)) {
1109                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1110                 /* Note that the gtt paths might fail with non-page-backed user
1111                  * pointers (e.g. gtt mappings when moving data between
1112                  * textures). Fallback to the shmem path in that case. */
1113         }
1114
1115         if (ret == -EFAULT || ret == -ENOSPC) {
1116                 if (obj->phys_handle)
1117                         ret = i915_gem_phys_pwrite(obj, args, file);
1118                 else
1119                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1120         }
1121
1122 out:
1123         drm_gem_object_unreference(&obj->base);
1124 unlock:
1125         mutex_unlock(&dev->struct_mutex);
1126         return ret;
1127 }
1128
1129 int
1130 i915_gem_check_wedge(struct i915_gpu_error *error,
1131                      bool interruptible)
1132 {
1133         if (i915_reset_in_progress(error)) {
1134                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1135                  * -EIO unconditionally for these. */
1136                 if (!interruptible)
1137                         return -EIO;
1138
1139                 /* Recovery complete, but the reset failed ... */
1140                 if (i915_terminally_wedged(error))
1141                         return -EIO;
1142
1143                 /*
1144                  * Check if GPU Reset is in progress - we need intel_ring_begin
1145                  * to work properly to reinit the hw state while the gpu is
1146                  * still marked as reset-in-progress. Handle this with a flag.
1147                  */
1148                 if (!error->reload_in_reset)
1149                         return -EAGAIN;
1150         }
1151
1152         return 0;
1153 }
1154
1155 /*
1156  * Compare seqno against outstanding lazy request. Emit a request if they are
1157  * equal.
1158  */
1159 int
1160 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1161 {
1162         int ret;
1163
1164         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1165
1166         ret = 0;
1167         if (seqno == ring->outstanding_lazy_seqno)
1168                 ret = i915_add_request(ring, NULL);
1169
1170         return ret;
1171 }
1172
1173 static void fake_irq(unsigned long data)
1174 {
1175         wake_up_process((struct task_struct *)data);
1176 }
1177
1178 static bool missed_irq(struct drm_i915_private *dev_priv,
1179                        struct intel_engine_cs *ring)
1180 {
1181         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182 }
1183
1184 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1185 {
1186         if (file_priv == NULL)
1187                 return true;
1188
1189         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1190 }
1191
1192 /**
1193  * __i915_wait_seqno - wait until execution of seqno has finished
1194  * @ring: the ring expected to report seqno
1195  * @seqno: duh!
1196  * @reset_counter: reset sequence associated with the given seqno
1197  * @interruptible: do an interruptible wait (normally yes)
1198  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1199  *
1200  * Note: It is of utmost importance that the passed in seqno and reset_counter
1201  * values have been read by the caller in an smp safe manner. Where read-side
1202  * locks are involved, it is sufficient to read the reset_counter before
1203  * unlocking the lock that protects the seqno. For lockless tricks, the
1204  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1205  * inserted.
1206  *
1207  * Returns 0 if the seqno was found within the alloted time. Else returns the
1208  * errno with remaining time filled in timeout argument.
1209  */
1210 int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1211                         unsigned reset_counter,
1212                         bool interruptible,
1213                         s64 *timeout,
1214                         struct drm_i915_file_private *file_priv)
1215 {
1216         struct drm_device *dev = ring->dev;
1217         struct drm_i915_private *dev_priv = dev->dev_private;
1218         const bool irq_test_in_progress =
1219                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1220         DEFINE_WAIT(wait);
1221         unsigned long timeout_expire;
1222         s64 before, now;
1223         int ret;
1224
1225         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1226
1227         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1228                 return 0;
1229
1230         timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1231
1232         if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1233                 gen6_rps_boost(dev_priv);
1234                 if (file_priv)
1235                         mod_delayed_work(dev_priv->wq,
1236                                          &file_priv->mm.idle_work,
1237                                          msecs_to_jiffies(100));
1238         }
1239
1240         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1241                 return -ENODEV;
1242
1243         /* Record current time in case interrupted by signal, or wedged */
1244         trace_i915_gem_request_wait_begin(ring, seqno);
1245         before = ktime_get_raw_ns();
1246         for (;;) {
1247                 struct timer_list timer;
1248
1249                 prepare_to_wait(&ring->irq_queue, &wait,
1250                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1251
1252                 /* We need to check whether any gpu reset happened in between
1253                  * the caller grabbing the seqno and now ... */
1254                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1255                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1256                          * is truely gone. */
1257                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1258                         if (ret == 0)
1259                                 ret = -EAGAIN;
1260                         break;
1261                 }
1262
1263                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1264                         ret = 0;
1265                         break;
1266                 }
1267
1268                 if (interruptible && signal_pending(current)) {
1269                         ret = -ERESTARTSYS;
1270                         break;
1271                 }
1272
1273                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1274                         ret = -ETIME;
1275                         break;
1276                 }
1277
1278                 timer.function = NULL;
1279                 if (timeout || missed_irq(dev_priv, ring)) {
1280                         unsigned long expire;
1281
1282                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1283                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1284                         mod_timer(&timer, expire);
1285                 }
1286
1287                 io_schedule();
1288
1289                 if (timer.function) {
1290                         del_singleshot_timer_sync(&timer);
1291                         destroy_timer_on_stack(&timer);
1292                 }
1293         }
1294         now = ktime_get_raw_ns();
1295         trace_i915_gem_request_wait_end(ring, seqno);
1296
1297         if (!irq_test_in_progress)
1298                 ring->irq_put(ring);
1299
1300         finish_wait(&ring->irq_queue, &wait);
1301
1302         if (timeout) {
1303                 s64 tres = *timeout - (now - before);
1304
1305                 *timeout = tres < 0 ? 0 : tres;
1306         }
1307
1308         return ret;
1309 }
1310
1311 /**
1312  * Waits for a sequence number to be signaled, and cleans up the
1313  * request and object lists appropriately for that event.
1314  */
1315 int
1316 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1317 {
1318         struct drm_device *dev = ring->dev;
1319         struct drm_i915_private *dev_priv = dev->dev_private;
1320         bool interruptible = dev_priv->mm.interruptible;
1321         unsigned reset_counter;
1322         int ret;
1323
1324         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1325         BUG_ON(seqno == 0);
1326
1327         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1328         if (ret)
1329                 return ret;
1330
1331         ret = i915_gem_check_olr(ring, seqno);
1332         if (ret)
1333                 return ret;
1334
1335         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1336         return __i915_wait_seqno(ring, seqno, reset_counter, interruptible,
1337                                  NULL, NULL);
1338 }
1339
1340 static int
1341 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1342 {
1343         if (!obj->active)
1344                 return 0;
1345
1346         /* Manually manage the write flush as we may have not yet
1347          * retired the buffer.
1348          *
1349          * Note that the last_write_seqno is always the earlier of
1350          * the two (read/write) seqno, so if we haved successfully waited,
1351          * we know we have passed the last write.
1352          */
1353         obj->last_write_seqno = 0;
1354
1355         return 0;
1356 }
1357
1358 /**
1359  * Ensures that all rendering to the object has completed and the object is
1360  * safe to unbind from the GTT or access from the CPU.
1361  */
1362 static __must_check int
1363 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1364                                bool readonly)
1365 {
1366         struct intel_engine_cs *ring = obj->ring;
1367         u32 seqno;
1368         int ret;
1369
1370         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1371         if (seqno == 0)
1372                 return 0;
1373
1374         ret = i915_wait_seqno(ring, seqno);
1375         if (ret)
1376                 return ret;
1377
1378         return i915_gem_object_wait_rendering__tail(obj);
1379 }
1380
1381 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1382  * as the object state may change during this call.
1383  */
1384 static __must_check int
1385 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1386                                             struct drm_i915_file_private *file_priv,
1387                                             bool readonly)
1388 {
1389         struct drm_device *dev = obj->base.dev;
1390         struct drm_i915_private *dev_priv = dev->dev_private;
1391         struct intel_engine_cs *ring = obj->ring;
1392         unsigned reset_counter;
1393         u32 seqno;
1394         int ret;
1395
1396         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1397         BUG_ON(!dev_priv->mm.interruptible);
1398
1399         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1400         if (seqno == 0)
1401                 return 0;
1402
1403         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1404         if (ret)
1405                 return ret;
1406
1407         ret = i915_gem_check_olr(ring, seqno);
1408         if (ret)
1409                 return ret;
1410
1411         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1412         mutex_unlock(&dev->struct_mutex);
1413         ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL,
1414                                 file_priv);
1415         mutex_lock(&dev->struct_mutex);
1416         if (ret)
1417                 return ret;
1418
1419         return i915_gem_object_wait_rendering__tail(obj);
1420 }
1421
1422 /**
1423  * Called when user space prepares to use an object with the CPU, either
1424  * through the mmap ioctl's mapping or a GTT mapping.
1425  */
1426 int
1427 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1428                           struct drm_file *file)
1429 {
1430         struct drm_i915_gem_set_domain *args = data;
1431         struct drm_i915_gem_object *obj;
1432         uint32_t read_domains = args->read_domains;
1433         uint32_t write_domain = args->write_domain;
1434         int ret;
1435
1436         /* Only handle setting domains to types used by the CPU. */
1437         if (write_domain & I915_GEM_GPU_DOMAINS)
1438                 return -EINVAL;
1439
1440         if (read_domains & I915_GEM_GPU_DOMAINS)
1441                 return -EINVAL;
1442
1443         /* Having something in the write domain implies it's in the read
1444          * domain, and only that read domain.  Enforce that in the request.
1445          */
1446         if (write_domain != 0 && read_domains != write_domain)
1447                 return -EINVAL;
1448
1449         ret = i915_mutex_lock_interruptible(dev);
1450         if (ret)
1451                 return ret;
1452
1453         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1454         if (&obj->base == NULL) {
1455                 ret = -ENOENT;
1456                 goto unlock;
1457         }
1458
1459         /* Try to flush the object off the GPU without holding the lock.
1460          * We will repeat the flush holding the lock in the normal manner
1461          * to catch cases where we are gazumped.
1462          */
1463         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1464                                                           file->driver_priv,
1465                                                           !write_domain);
1466         if (ret)
1467                 goto unref;
1468
1469         if (read_domains & I915_GEM_DOMAIN_GTT) {
1470                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1471
1472                 /* Silently promote "you're not bound, there was nothing to do"
1473                  * to success, since the client was just asking us to
1474                  * make sure everything was done.
1475                  */
1476                 if (ret == -EINVAL)
1477                         ret = 0;
1478         } else {
1479                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1480         }
1481
1482 unref:
1483         drm_gem_object_unreference(&obj->base);
1484 unlock:
1485         mutex_unlock(&dev->struct_mutex);
1486         return ret;
1487 }
1488
1489 /**
1490  * Called when user space has done writes to this buffer
1491  */
1492 int
1493 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1494                          struct drm_file *file)
1495 {
1496         struct drm_i915_gem_sw_finish *args = data;
1497         struct drm_i915_gem_object *obj;
1498         int ret = 0;
1499
1500         ret = i915_mutex_lock_interruptible(dev);
1501         if (ret)
1502                 return ret;
1503
1504         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1505         if (&obj->base == NULL) {
1506                 ret = -ENOENT;
1507                 goto unlock;
1508         }
1509
1510         /* Pinned buffers may be scanout, so flush the cache */
1511         if (obj->pin_display)
1512                 i915_gem_object_flush_cpu_write_domain(obj, true);
1513
1514         drm_gem_object_unreference(&obj->base);
1515 unlock:
1516         mutex_unlock(&dev->struct_mutex);
1517         return ret;
1518 }
1519
1520 /**
1521  * Maps the contents of an object, returning the address it is mapped
1522  * into.
1523  *
1524  * While the mapping holds a reference on the contents of the object, it doesn't
1525  * imply a ref on the object itself.
1526  *
1527  * IMPORTANT:
1528  *
1529  * DRM driver writers who look a this function as an example for how to do GEM
1530  * mmap support, please don't implement mmap support like here. The modern way
1531  * to implement DRM mmap support is with an mmap offset ioctl (like
1532  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1533  * That way debug tooling like valgrind will understand what's going on, hiding
1534  * the mmap call in a driver private ioctl will break that. The i915 driver only
1535  * does cpu mmaps this way because we didn't know better.
1536  */
1537 int
1538 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1539                     struct drm_file *file)
1540 {
1541         struct drm_i915_gem_mmap *args = data;
1542         struct drm_gem_object *obj;
1543         unsigned long addr;
1544
1545         obj = drm_gem_object_lookup(dev, file, args->handle);
1546         if (obj == NULL)
1547                 return -ENOENT;
1548
1549         /* prime objects have no backing filp to GEM mmap
1550          * pages from.
1551          */
1552         if (!obj->filp) {
1553                 drm_gem_object_unreference_unlocked(obj);
1554                 return -EINVAL;
1555         }
1556
1557         addr = vm_mmap(obj->filp, 0, args->size,
1558                        PROT_READ | PROT_WRITE, MAP_SHARED,
1559                        args->offset);
1560         drm_gem_object_unreference_unlocked(obj);
1561         if (IS_ERR((void *)addr))
1562                 return addr;
1563
1564         args->addr_ptr = (uint64_t) addr;
1565
1566         return 0;
1567 }
1568
1569 /**
1570  * i915_gem_fault - fault a page into the GTT
1571  * vma: VMA in question
1572  * vmf: fault info
1573  *
1574  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1575  * from userspace.  The fault handler takes care of binding the object to
1576  * the GTT (if needed), allocating and programming a fence register (again,
1577  * only if needed based on whether the old reg is still valid or the object
1578  * is tiled) and inserting a new PTE into the faulting process.
1579  *
1580  * Note that the faulting process may involve evicting existing objects
1581  * from the GTT and/or fence registers to make room.  So performance may
1582  * suffer if the GTT working set is large or there are few fence registers
1583  * left.
1584  */
1585 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1586 {
1587         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1588         struct drm_device *dev = obj->base.dev;
1589         struct drm_i915_private *dev_priv = dev->dev_private;
1590         pgoff_t page_offset;
1591         unsigned long pfn;
1592         int ret = 0;
1593         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1594
1595         intel_runtime_pm_get(dev_priv);
1596
1597         /* We don't use vmf->pgoff since that has the fake offset */
1598         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1599                 PAGE_SHIFT;
1600
1601         ret = i915_mutex_lock_interruptible(dev);
1602         if (ret)
1603                 goto out;
1604
1605         trace_i915_gem_object_fault(obj, page_offset, true, write);
1606
1607         /* Try to flush the object off the GPU first without holding the lock.
1608          * Upon reacquiring the lock, we will perform our sanity checks and then
1609          * repeat the flush holding the lock in the normal manner to catch cases
1610          * where we are gazumped.
1611          */
1612         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1613         if (ret)
1614                 goto unlock;
1615
1616         /* Access to snoopable pages through the GTT is incoherent. */
1617         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1618                 ret = -EFAULT;
1619                 goto unlock;
1620         }
1621
1622         /* Now bind it into the GTT if needed */
1623         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1624         if (ret)
1625                 goto unlock;
1626
1627         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1628         if (ret)
1629                 goto unpin;
1630
1631         ret = i915_gem_object_get_fence(obj);
1632         if (ret)
1633                 goto unpin;
1634
1635         /* Finally, remap it using the new GTT offset */
1636         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1637         pfn >>= PAGE_SHIFT;
1638
1639         if (!obj->fault_mappable) {
1640                 unsigned long size = min_t(unsigned long,
1641                                            vma->vm_end - vma->vm_start,
1642                                            obj->base.size);
1643                 int i;
1644
1645                 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1646                         ret = vm_insert_pfn(vma,
1647                                             (unsigned long)vma->vm_start + i * PAGE_SIZE,
1648                                             pfn + i);
1649                         if (ret)
1650                                 break;
1651                 }
1652
1653                 obj->fault_mappable = true;
1654         } else
1655                 ret = vm_insert_pfn(vma,
1656                                     (unsigned long)vmf->virtual_address,
1657                                     pfn + page_offset);
1658 unpin:
1659         i915_gem_object_ggtt_unpin(obj);
1660 unlock:
1661         mutex_unlock(&dev->struct_mutex);
1662 out:
1663         switch (ret) {
1664         case -EIO:
1665                 /*
1666                  * We eat errors when the gpu is terminally wedged to avoid
1667                  * userspace unduly crashing (gl has no provisions for mmaps to
1668                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1669                  * and so needs to be reported.
1670                  */
1671                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1672                         ret = VM_FAULT_SIGBUS;
1673                         break;
1674                 }
1675         case -EAGAIN:
1676                 /*
1677                  * EAGAIN means the gpu is hung and we'll wait for the error
1678                  * handler to reset everything when re-faulting in
1679                  * i915_mutex_lock_interruptible.
1680                  */
1681         case 0:
1682         case -ERESTARTSYS:
1683         case -EINTR:
1684         case -EBUSY:
1685                 /*
1686                  * EBUSY is ok: this just means that another thread
1687                  * already did the job.
1688                  */
1689                 ret = VM_FAULT_NOPAGE;
1690                 break;
1691         case -ENOMEM:
1692                 ret = VM_FAULT_OOM;
1693                 break;
1694         case -ENOSPC:
1695         case -EFAULT:
1696                 ret = VM_FAULT_SIGBUS;
1697                 break;
1698         default:
1699                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1700                 ret = VM_FAULT_SIGBUS;
1701                 break;
1702         }
1703
1704         intel_runtime_pm_put(dev_priv);
1705         return ret;
1706 }
1707
1708 /**
1709  * i915_gem_release_mmap - remove physical page mappings
1710  * @obj: obj in question
1711  *
1712  * Preserve the reservation of the mmapping with the DRM core code, but
1713  * relinquish ownership of the pages back to the system.
1714  *
1715  * It is vital that we remove the page mapping if we have mapped a tiled
1716  * object through the GTT and then lose the fence register due to
1717  * resource pressure. Similarly if the object has been moved out of the
1718  * aperture, than pages mapped into userspace must be revoked. Removing the
1719  * mapping will then trigger a page fault on the next user access, allowing
1720  * fixup by i915_gem_fault().
1721  */
1722 void
1723 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1724 {
1725         if (!obj->fault_mappable)
1726                 return;
1727
1728         drm_vma_node_unmap(&obj->base.vma_node,
1729                            obj->base.dev->anon_inode->i_mapping);
1730         obj->fault_mappable = false;
1731 }
1732
1733 void
1734 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1735 {
1736         struct drm_i915_gem_object *obj;
1737
1738         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1739                 i915_gem_release_mmap(obj);
1740 }
1741
1742 uint32_t
1743 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1744 {
1745         uint32_t gtt_size;
1746
1747         if (INTEL_INFO(dev)->gen >= 4 ||
1748             tiling_mode == I915_TILING_NONE)
1749                 return size;
1750
1751         /* Previous chips need a power-of-two fence region when tiling */
1752         if (INTEL_INFO(dev)->gen == 3)
1753                 gtt_size = 1024*1024;
1754         else
1755                 gtt_size = 512*1024;
1756
1757         while (gtt_size < size)
1758                 gtt_size <<= 1;
1759
1760         return gtt_size;
1761 }
1762
1763 /**
1764  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1765  * @obj: object to check
1766  *
1767  * Return the required GTT alignment for an object, taking into account
1768  * potential fence register mapping.
1769  */
1770 uint32_t
1771 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1772                            int tiling_mode, bool fenced)
1773 {
1774         /*
1775          * Minimum alignment is 4k (GTT page size), but might be greater
1776          * if a fence register is needed for the object.
1777          */
1778         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1779             tiling_mode == I915_TILING_NONE)
1780                 return 4096;
1781
1782         /*
1783          * Previous chips need to be aligned to the size of the smallest
1784          * fence register that can contain the object.
1785          */
1786         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1787 }
1788
1789 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1790 {
1791         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1792         int ret;
1793
1794         if (drm_vma_node_has_offset(&obj->base.vma_node))
1795                 return 0;
1796
1797         dev_priv->mm.shrinker_no_lock_stealing = true;
1798
1799         ret = drm_gem_create_mmap_offset(&obj->base);
1800         if (ret != -ENOSPC)
1801                 goto out;
1802
1803         /* Badly fragmented mmap space? The only way we can recover
1804          * space is by destroying unwanted objects. We can't randomly release
1805          * mmap_offsets as userspace expects them to be persistent for the
1806          * lifetime of the objects. The closest we can is to release the
1807          * offsets on purgeable objects by truncating it and marking it purged,
1808          * which prevents userspace from ever using that object again.
1809          */
1810         i915_gem_shrink(dev_priv,
1811                         obj->base.size >> PAGE_SHIFT,
1812                         I915_SHRINK_BOUND |
1813                         I915_SHRINK_UNBOUND |
1814                         I915_SHRINK_PURGEABLE);
1815         ret = drm_gem_create_mmap_offset(&obj->base);
1816         if (ret != -ENOSPC)
1817                 goto out;
1818
1819         i915_gem_shrink_all(dev_priv);
1820         ret = drm_gem_create_mmap_offset(&obj->base);
1821 out:
1822         dev_priv->mm.shrinker_no_lock_stealing = false;
1823
1824         return ret;
1825 }
1826
1827 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1828 {
1829         drm_gem_free_mmap_offset(&obj->base);
1830 }
1831
1832 static int
1833 i915_gem_mmap_gtt(struct drm_file *file,
1834                   struct drm_device *dev,
1835                   uint32_t handle, bool dumb,
1836                   uint64_t *offset)
1837 {
1838         struct drm_i915_private *dev_priv = dev->dev_private;
1839         struct drm_i915_gem_object *obj;
1840         int ret;
1841
1842         ret = i915_mutex_lock_interruptible(dev);
1843         if (ret)
1844                 return ret;
1845
1846         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1847         if (&obj->base == NULL) {
1848                 ret = -ENOENT;
1849                 goto unlock;
1850         }
1851
1852         /*
1853          * We don't allow dumb mmaps on objects created using another
1854          * interface.
1855          */
1856         WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
1857                   "Illegal dumb map of accelerated buffer.\n");
1858
1859         if (obj->base.size > dev_priv->gtt.mappable_end) {
1860                 ret = -E2BIG;
1861                 goto out;
1862         }
1863
1864         if (obj->madv != I915_MADV_WILLNEED) {
1865                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1866                 ret = -EFAULT;
1867                 goto out;
1868         }
1869
1870         ret = i915_gem_object_create_mmap_offset(obj);
1871         if (ret)
1872                 goto out;
1873
1874         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1875
1876 out:
1877         drm_gem_object_unreference(&obj->base);
1878 unlock:
1879         mutex_unlock(&dev->struct_mutex);
1880         return ret;
1881 }
1882
1883 int
1884 i915_gem_dumb_map_offset(struct drm_file *file,
1885                          struct drm_device *dev,
1886                          uint32_t handle,
1887                          uint64_t *offset)
1888 {
1889         return i915_gem_mmap_gtt(file, dev, handle, true, offset);
1890 }
1891
1892 /**
1893  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1894  * @dev: DRM device
1895  * @data: GTT mapping ioctl data
1896  * @file: GEM object info
1897  *
1898  * Simply returns the fake offset to userspace so it can mmap it.
1899  * The mmap call will end up in drm_gem_mmap(), which will set things
1900  * up so we can get faults in the handler above.
1901  *
1902  * The fault handler will take care of binding the object into the GTT
1903  * (since it may have been evicted to make room for something), allocating
1904  * a fence register, and mapping the appropriate aperture address into
1905  * userspace.
1906  */
1907 int
1908 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1909                         struct drm_file *file)
1910 {
1911         struct drm_i915_gem_mmap_gtt *args = data;
1912
1913         return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
1914 }
1915
1916 static inline int
1917 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1918 {
1919         return obj->madv == I915_MADV_DONTNEED;
1920 }
1921
1922 /* Immediately discard the backing storage */
1923 static void
1924 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1925 {
1926         i915_gem_object_free_mmap_offset(obj);
1927
1928         if (obj->base.filp == NULL)
1929                 return;
1930
1931         /* Our goal here is to return as much of the memory as
1932          * is possible back to the system as we are called from OOM.
1933          * To do this we must instruct the shmfs to drop all of its
1934          * backing pages, *now*.
1935          */
1936         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1937         obj->madv = __I915_MADV_PURGED;
1938 }
1939
1940 /* Try to discard unwanted pages */
1941 static void
1942 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1943 {
1944         struct address_space *mapping;
1945
1946         switch (obj->madv) {
1947         case I915_MADV_DONTNEED:
1948                 i915_gem_object_truncate(obj);
1949         case __I915_MADV_PURGED:
1950                 return;
1951         }
1952
1953         if (obj->base.filp == NULL)
1954                 return;
1955
1956         mapping = file_inode(obj->base.filp)->i_mapping,
1957         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1958 }
1959
1960 static void
1961 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1962 {
1963         struct sg_page_iter sg_iter;
1964         int ret;
1965
1966         BUG_ON(obj->madv == __I915_MADV_PURGED);
1967
1968         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1969         if (ret) {
1970                 /* In the event of a disaster, abandon all caches and
1971                  * hope for the best.
1972                  */
1973                 WARN_ON(ret != -EIO);
1974                 i915_gem_clflush_object(obj, true);
1975                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1976         }
1977
1978         if (i915_gem_object_needs_bit17_swizzle(obj))
1979                 i915_gem_object_save_bit_17_swizzle(obj);
1980
1981         if (obj->madv == I915_MADV_DONTNEED)
1982                 obj->dirty = 0;
1983
1984         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1985                 struct page *page = sg_page_iter_page(&sg_iter);
1986
1987                 if (obj->dirty)
1988                         set_page_dirty(page);
1989
1990                 if (obj->madv == I915_MADV_WILLNEED)
1991                         mark_page_accessed(page);
1992
1993                 page_cache_release(page);
1994         }
1995         obj->dirty = 0;
1996
1997         sg_free_table(obj->pages);
1998         kfree(obj->pages);
1999 }
2000
2001 int
2002 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2003 {
2004         const struct drm_i915_gem_object_ops *ops = obj->ops;
2005
2006         if (obj->pages == NULL)
2007                 return 0;
2008
2009         if (obj->pages_pin_count)
2010                 return -EBUSY;
2011
2012         BUG_ON(i915_gem_obj_bound_any(obj));
2013
2014         /* ->put_pages might need to allocate memory for the bit17 swizzle
2015          * array, hence protect them from being reaped by removing them from gtt
2016          * lists early. */
2017         list_del(&obj->global_list);
2018
2019         ops->put_pages(obj);
2020         obj->pages = NULL;
2021
2022         i915_gem_object_invalidate(obj);
2023
2024         return 0;
2025 }
2026
2027 unsigned long
2028 i915_gem_shrink(struct drm_i915_private *dev_priv,
2029                 long target, unsigned flags)
2030 {
2031         const struct {
2032                 struct list_head *list;
2033                 unsigned int bit;
2034         } phases[] = {
2035                 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2036                 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2037                 { NULL, 0 },
2038         }, *phase;
2039         unsigned long count = 0;
2040
2041         /*
2042          * As we may completely rewrite the (un)bound list whilst unbinding
2043          * (due to retiring requests) we have to strictly process only
2044          * one element of the list at the time, and recheck the list
2045          * on every iteration.
2046          *
2047          * In particular, we must hold a reference whilst removing the
2048          * object as we may end up waiting for and/or retiring the objects.
2049          * This might release the final reference (held by the active list)
2050          * and result in the object being freed from under us. This is
2051          * similar to the precautions the eviction code must take whilst
2052          * removing objects.
2053          *
2054          * Also note that although these lists do not hold a reference to
2055          * the object we can safely grab one here: The final object
2056          * unreferencing and the bound_list are both protected by the
2057          * dev->struct_mutex and so we won't ever be able to observe an
2058          * object on the bound_list with a reference count equals 0.
2059          */
2060         for (phase = phases; phase->list; phase++) {
2061                 struct list_head still_in_list;
2062
2063                 if ((flags & phase->bit) == 0)
2064                         continue;
2065
2066                 INIT_LIST_HEAD(&still_in_list);
2067                 while (count < target && !list_empty(phase->list)) {
2068                         struct drm_i915_gem_object *obj;
2069                         struct i915_vma *vma, *v;
2070
2071                         obj = list_first_entry(phase->list,
2072                                                typeof(*obj), global_list);
2073                         list_move_tail(&obj->global_list, &still_in_list);
2074
2075                         if (flags & I915_SHRINK_PURGEABLE &&
2076                             !i915_gem_object_is_purgeable(obj))
2077                                 continue;
2078
2079                         drm_gem_object_reference(&obj->base);
2080
2081                         /* For the unbound phase, this should be a no-op! */
2082                         list_for_each_entry_safe(vma, v,
2083                                                  &obj->vma_list, vma_link)
2084                                 if (i915_vma_unbind(vma))
2085                                         break;
2086
2087                         if (i915_gem_object_put_pages(obj) == 0)
2088                                 count += obj->base.size >> PAGE_SHIFT;
2089
2090                         drm_gem_object_unreference(&obj->base);
2091                 }
2092                 list_splice(&still_in_list, phase->list);
2093         }
2094
2095         return count;
2096 }
2097
2098 static unsigned long
2099 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2100 {
2101         i915_gem_evict_everything(dev_priv->dev);
2102         return i915_gem_shrink(dev_priv, LONG_MAX,
2103                                I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2104 }
2105
2106 static int
2107 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2108 {
2109         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2110         int page_count, i;
2111         struct address_space *mapping;
2112         struct sg_table *st;
2113         struct scatterlist *sg;
2114         struct sg_page_iter sg_iter;
2115         struct page *page;
2116         unsigned long last_pfn = 0;     /* suppress gcc warning */
2117         gfp_t gfp;
2118
2119         /* Assert that the object is not currently in any GPU domain. As it
2120          * wasn't in the GTT, there shouldn't be any way it could have been in
2121          * a GPU cache
2122          */
2123         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2124         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2125
2126         st = kmalloc(sizeof(*st), GFP_KERNEL);
2127         if (st == NULL)
2128                 return -ENOMEM;
2129
2130         page_count = obj->base.size / PAGE_SIZE;
2131         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2132                 kfree(st);
2133                 return -ENOMEM;
2134         }
2135
2136         /* Get the list of pages out of our struct file.  They'll be pinned
2137          * at this point until we release them.
2138          *
2139          * Fail silently without starting the shrinker
2140          */
2141         mapping = file_inode(obj->base.filp)->i_mapping;
2142         gfp = mapping_gfp_mask(mapping);
2143         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2144         gfp &= ~(__GFP_IO | __GFP_WAIT);
2145         sg = st->sgl;
2146         st->nents = 0;
2147         for (i = 0; i < page_count; i++) {
2148                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2149                 if (IS_ERR(page)) {
2150                         i915_gem_shrink(dev_priv,
2151                                         page_count,
2152                                         I915_SHRINK_BOUND |
2153                                         I915_SHRINK_UNBOUND |
2154                                         I915_SHRINK_PURGEABLE);
2155                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2156                 }
2157                 if (IS_ERR(page)) {
2158                         /* We've tried hard to allocate the memory by reaping
2159                          * our own buffer, now let the real VM do its job and
2160                          * go down in flames if truly OOM.
2161                          */
2162                         i915_gem_shrink_all(dev_priv);
2163                         page = shmem_read_mapping_page(mapping, i);
2164                         if (IS_ERR(page))
2165                                 goto err_pages;
2166                 }
2167 #ifdef CONFIG_SWIOTLB
2168                 if (swiotlb_nr_tbl()) {
2169                         st->nents++;
2170                         sg_set_page(sg, page, PAGE_SIZE, 0);
2171                         sg = sg_next(sg);
2172                         continue;
2173                 }
2174 #endif
2175                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2176                         if (i)
2177                                 sg = sg_next(sg);
2178                         st->nents++;
2179                         sg_set_page(sg, page, PAGE_SIZE, 0);
2180                 } else {
2181                         sg->length += PAGE_SIZE;
2182                 }
2183                 last_pfn = page_to_pfn(page);
2184
2185                 /* Check that the i965g/gm workaround works. */
2186                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2187         }
2188 #ifdef CONFIG_SWIOTLB
2189         if (!swiotlb_nr_tbl())
2190 #endif
2191                 sg_mark_end(sg);
2192         obj->pages = st;
2193
2194         if (i915_gem_object_needs_bit17_swizzle(obj))
2195                 i915_gem_object_do_bit_17_swizzle(obj);
2196
2197         if (obj->tiling_mode != I915_TILING_NONE &&
2198             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2199                 i915_gem_object_pin_pages(obj);
2200
2201         return 0;
2202
2203 err_pages:
2204         sg_mark_end(sg);
2205         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2206                 page_cache_release(sg_page_iter_page(&sg_iter));
2207         sg_free_table(st);
2208         kfree(st);
2209
2210         /* shmemfs first checks if there is enough memory to allocate the page
2211          * and reports ENOSPC should there be insufficient, along with the usual
2212          * ENOMEM for a genuine allocation failure.
2213          *
2214          * We use ENOSPC in our driver to mean that we have run out of aperture
2215          * space and so want to translate the error from shmemfs back to our
2216          * usual understanding of ENOMEM.
2217          */
2218         if (PTR_ERR(page) == -ENOSPC)
2219                 return -ENOMEM;
2220         else
2221                 return PTR_ERR(page);
2222 }
2223
2224 /* Ensure that the associated pages are gathered from the backing storage
2225  * and pinned into our object. i915_gem_object_get_pages() may be called
2226  * multiple times before they are released by a single call to
2227  * i915_gem_object_put_pages() - once the pages are no longer referenced
2228  * either as a result of memory pressure (reaping pages under the shrinker)
2229  * or as the object is itself released.
2230  */
2231 int
2232 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2233 {
2234         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2235         const struct drm_i915_gem_object_ops *ops = obj->ops;
2236         int ret;
2237
2238         if (obj->pages)
2239                 return 0;
2240
2241         if (obj->madv != I915_MADV_WILLNEED) {
2242                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2243                 return -EFAULT;
2244         }
2245
2246         BUG_ON(obj->pages_pin_count);
2247
2248         ret = ops->get_pages(obj);
2249         if (ret)
2250                 return ret;
2251
2252         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2253         return 0;
2254 }
2255
2256 static void
2257 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2258                                struct intel_engine_cs *ring)
2259 {
2260         u32 seqno = intel_ring_get_seqno(ring);
2261
2262         BUG_ON(ring == NULL);
2263         if (obj->ring != ring && obj->last_write_seqno) {
2264                 /* Keep the seqno relative to the current ring */
2265                 obj->last_write_seqno = seqno;
2266         }
2267         obj->ring = ring;
2268
2269         /* Add a reference if we're newly entering the active list. */
2270         if (!obj->active) {
2271                 drm_gem_object_reference(&obj->base);
2272                 obj->active = 1;
2273         }
2274
2275         list_move_tail(&obj->ring_list, &ring->active_list);
2276
2277         obj->last_read_seqno = seqno;
2278 }
2279
2280 void i915_vma_move_to_active(struct i915_vma *vma,
2281                              struct intel_engine_cs *ring)
2282 {
2283         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2284         return i915_gem_object_move_to_active(vma->obj, ring);
2285 }
2286
2287 static void
2288 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2289 {
2290         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2291         struct i915_address_space *vm;
2292         struct i915_vma *vma;
2293
2294         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2295         BUG_ON(!obj->active);
2296
2297         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2298                 vma = i915_gem_obj_to_vma(obj, vm);
2299                 if (vma && !list_empty(&vma->mm_list))
2300                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2301         }
2302
2303         intel_fb_obj_flush(obj, true);
2304
2305         list_del_init(&obj->ring_list);
2306         obj->ring = NULL;
2307
2308         obj->last_read_seqno = 0;
2309         obj->last_write_seqno = 0;
2310         obj->base.write_domain = 0;
2311
2312         obj->last_fenced_seqno = 0;
2313
2314         obj->active = 0;
2315         drm_gem_object_unreference(&obj->base);
2316
2317         WARN_ON(i915_verify_lists(dev));
2318 }
2319
2320 static void
2321 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2322 {
2323         struct intel_engine_cs *ring = obj->ring;
2324
2325         if (ring == NULL)
2326                 return;
2327
2328         if (i915_seqno_passed(ring->get_seqno(ring, true),
2329                               obj->last_read_seqno))
2330                 i915_gem_object_move_to_inactive(obj);
2331 }
2332
2333 static int
2334 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2335 {
2336         struct drm_i915_private *dev_priv = dev->dev_private;
2337         struct intel_engine_cs *ring;
2338         int ret, i, j;
2339
2340         /* Carefully retire all requests without writing to the rings */
2341         for_each_ring(ring, dev_priv, i) {
2342                 ret = intel_ring_idle(ring);
2343                 if (ret)
2344                         return ret;
2345         }
2346         i915_gem_retire_requests(dev);
2347
2348         /* Finally reset hw state */
2349         for_each_ring(ring, dev_priv, i) {
2350                 intel_ring_init_seqno(ring, seqno);
2351
2352                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2353                         ring->semaphore.sync_seqno[j] = 0;
2354         }
2355
2356         return 0;
2357 }
2358
2359 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2360 {
2361         struct drm_i915_private *dev_priv = dev->dev_private;
2362         int ret;
2363
2364         if (seqno == 0)
2365                 return -EINVAL;
2366
2367         /* HWS page needs to be set less than what we
2368          * will inject to ring
2369          */
2370         ret = i915_gem_init_seqno(dev, seqno - 1);
2371         if (ret)
2372                 return ret;
2373
2374         /* Carefully set the last_seqno value so that wrap
2375          * detection still works
2376          */
2377         dev_priv->next_seqno = seqno;
2378         dev_priv->last_seqno = seqno - 1;
2379         if (dev_priv->last_seqno == 0)
2380                 dev_priv->last_seqno--;
2381
2382         return 0;
2383 }
2384
2385 int
2386 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2387 {
2388         struct drm_i915_private *dev_priv = dev->dev_private;
2389
2390         /* reserve 0 for non-seqno */
2391         if (dev_priv->next_seqno == 0) {
2392                 int ret = i915_gem_init_seqno(dev, 0);
2393                 if (ret)
2394                         return ret;
2395
2396                 dev_priv->next_seqno = 1;
2397         }
2398
2399         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2400         return 0;
2401 }
2402
2403 int __i915_add_request(struct intel_engine_cs *ring,
2404                        struct drm_file *file,
2405                        struct drm_i915_gem_object *obj,
2406                        u32 *out_seqno)
2407 {
2408         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2409         struct drm_i915_gem_request *request;
2410         struct intel_ringbuffer *ringbuf;
2411         u32 request_ring_position, request_start;
2412         int ret;
2413
2414         request = ring->preallocated_lazy_request;
2415         if (WARN_ON(request == NULL))
2416                 return -ENOMEM;
2417
2418         if (i915.enable_execlists) {
2419                 struct intel_context *ctx = request->ctx;
2420                 ringbuf = ctx->engine[ring->id].ringbuf;
2421         } else
2422                 ringbuf = ring->buffer;
2423
2424         request_start = intel_ring_get_tail(ringbuf);
2425         /*
2426          * Emit any outstanding flushes - execbuf can fail to emit the flush
2427          * after having emitted the batchbuffer command. Hence we need to fix
2428          * things up similar to emitting the lazy request. The difference here
2429          * is that the flush _must_ happen before the next request, no matter
2430          * what.
2431          */
2432         if (i915.enable_execlists) {
2433                 ret = logical_ring_flush_all_caches(ringbuf);
2434                 if (ret)
2435                         return ret;
2436         } else {
2437                 ret = intel_ring_flush_all_caches(ring);
2438                 if (ret)
2439                         return ret;
2440         }
2441
2442         /* Record the position of the start of the request so that
2443          * should we detect the updated seqno part-way through the
2444          * GPU processing the request, we never over-estimate the
2445          * position of the head.
2446          */
2447         request_ring_position = intel_ring_get_tail(ringbuf);
2448
2449         if (i915.enable_execlists) {
2450                 ret = ring->emit_request(ringbuf);
2451                 if (ret)
2452                         return ret;
2453         } else {
2454                 ret = ring->add_request(ring);
2455                 if (ret)
2456                         return ret;
2457         }
2458
2459         request->seqno = intel_ring_get_seqno(ring);
2460         request->ring = ring;
2461         request->head = request_start;
2462         request->tail = request_ring_position;
2463
2464         /* Whilst this request exists, batch_obj will be on the
2465          * active_list, and so will hold the active reference. Only when this
2466          * request is retired will the the batch_obj be moved onto the
2467          * inactive_list and lose its active reference. Hence we do not need
2468          * to explicitly hold another reference here.
2469          */
2470         request->batch_obj = obj;
2471
2472         if (!i915.enable_execlists) {
2473                 /* Hold a reference to the current context so that we can inspect
2474                  * it later in case a hangcheck error event fires.
2475                  */
2476                 request->ctx = ring->last_context;
2477                 if (request->ctx)
2478                         i915_gem_context_reference(request->ctx);
2479         }
2480
2481         request->emitted_jiffies = jiffies;
2482         list_add_tail(&request->list, &ring->request_list);
2483         request->file_priv = NULL;
2484
2485         if (file) {
2486                 struct drm_i915_file_private *file_priv = file->driver_priv;
2487
2488                 spin_lock(&file_priv->mm.lock);
2489                 request->file_priv = file_priv;
2490                 list_add_tail(&request->client_list,
2491                               &file_priv->mm.request_list);
2492                 spin_unlock(&file_priv->mm.lock);
2493         }
2494
2495         trace_i915_gem_request_add(ring, request->seqno);
2496         ring->outstanding_lazy_seqno = 0;
2497         ring->preallocated_lazy_request = NULL;
2498
2499         i915_queue_hangcheck(ring->dev);
2500
2501         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2502         queue_delayed_work(dev_priv->wq,
2503                            &dev_priv->mm.retire_work,
2504                            round_jiffies_up_relative(HZ));
2505         intel_mark_busy(dev_priv->dev);
2506
2507         if (out_seqno)
2508                 *out_seqno = request->seqno;
2509         return 0;
2510 }
2511
2512 static inline void
2513 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2514 {
2515         struct drm_i915_file_private *file_priv = request->file_priv;
2516
2517         if (!file_priv)
2518                 return;
2519
2520         spin_lock(&file_priv->mm.lock);
2521         list_del(&request->client_list);
2522         request->file_priv = NULL;
2523         spin_unlock(&file_priv->mm.lock);
2524 }
2525
2526 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2527                                    const struct intel_context *ctx)
2528 {
2529         unsigned long elapsed;
2530
2531         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2532
2533         if (ctx->hang_stats.banned)
2534                 return true;
2535
2536         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2537                 if (!i915_gem_context_is_default(ctx)) {
2538                         DRM_DEBUG("context hanging too fast, banning!\n");
2539                         return true;
2540                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2541                         if (i915_stop_ring_allow_warn(dev_priv))
2542                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2543                         return true;
2544                 }
2545         }
2546
2547         return false;
2548 }
2549
2550 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2551                                   struct intel_context *ctx,
2552                                   const bool guilty)
2553 {
2554         struct i915_ctx_hang_stats *hs;
2555
2556         if (WARN_ON(!ctx))
2557                 return;
2558
2559         hs = &ctx->hang_stats;
2560
2561         if (guilty) {
2562                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2563                 hs->batch_active++;
2564                 hs->guilty_ts = get_seconds();
2565         } else {
2566                 hs->batch_pending++;
2567         }
2568 }
2569
2570 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2571 {
2572         struct intel_context *ctx = request->ctx;
2573
2574         list_del(&request->list);
2575         i915_gem_request_remove_from_client(request);
2576
2577         if (ctx) {
2578                 if (i915.enable_execlists) {
2579                         struct intel_engine_cs *ring = request->ring;
2580
2581                         if (ctx != ring->default_context)
2582                                 intel_lr_context_unpin(ring, ctx);
2583                 }
2584                 i915_gem_context_unreference(ctx);
2585         }
2586         kfree(request);
2587 }
2588
2589 struct drm_i915_gem_request *
2590 i915_gem_find_active_request(struct intel_engine_cs *ring)
2591 {
2592         struct drm_i915_gem_request *request;
2593         u32 completed_seqno;
2594
2595         completed_seqno = ring->get_seqno(ring, false);
2596
2597         list_for_each_entry(request, &ring->request_list, list) {
2598                 if (i915_seqno_passed(completed_seqno, request->seqno))
2599                         continue;
2600
2601                 return request;
2602         }
2603
2604         return NULL;
2605 }
2606
2607 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2608                                        struct intel_engine_cs *ring)
2609 {
2610         struct drm_i915_gem_request *request;
2611         bool ring_hung;
2612
2613         request = i915_gem_find_active_request(ring);
2614
2615         if (request == NULL)
2616                 return;
2617
2618         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2619
2620         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2621
2622         list_for_each_entry_continue(request, &ring->request_list, list)
2623                 i915_set_reset_status(dev_priv, request->ctx, false);
2624 }
2625
2626 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2627                                         struct intel_engine_cs *ring)
2628 {
2629         while (!list_empty(&ring->active_list)) {
2630                 struct drm_i915_gem_object *obj;
2631
2632                 obj = list_first_entry(&ring->active_list,
2633                                        struct drm_i915_gem_object,
2634                                        ring_list);
2635
2636                 i915_gem_object_move_to_inactive(obj);
2637         }
2638
2639         /*
2640          * Clear the execlists queue up before freeing the requests, as those
2641          * are the ones that keep the context and ringbuffer backing objects
2642          * pinned in place.
2643          */
2644         while (!list_empty(&ring->execlist_queue)) {
2645                 struct intel_ctx_submit_request *submit_req;
2646
2647                 submit_req = list_first_entry(&ring->execlist_queue,
2648                                 struct intel_ctx_submit_request,
2649                                 execlist_link);
2650                 list_del(&submit_req->execlist_link);
2651                 intel_runtime_pm_put(dev_priv);
2652                 i915_gem_context_unreference(submit_req->ctx);
2653                 kfree(submit_req);
2654         }
2655
2656         /*
2657          * We must free the requests after all the corresponding objects have
2658          * been moved off active lists. Which is the same order as the normal
2659          * retire_requests function does. This is important if object hold
2660          * implicit references on things like e.g. ppgtt address spaces through
2661          * the request.
2662          */
2663         while (!list_empty(&ring->request_list)) {
2664                 struct drm_i915_gem_request *request;
2665
2666                 request = list_first_entry(&ring->request_list,
2667                                            struct drm_i915_gem_request,
2668                                            list);
2669
2670                 i915_gem_free_request(request);
2671         }
2672
2673         /* These may not have been flush before the reset, do so now */
2674         kfree(ring->preallocated_lazy_request);
2675         ring->preallocated_lazy_request = NULL;
2676         ring->outstanding_lazy_seqno = 0;
2677 }
2678
2679 void i915_gem_restore_fences(struct drm_device *dev)
2680 {
2681         struct drm_i915_private *dev_priv = dev->dev_private;
2682         int i;
2683
2684         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2685                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2686
2687                 /*
2688                  * Commit delayed tiling changes if we have an object still
2689                  * attached to the fence, otherwise just clear the fence.
2690                  */
2691                 if (reg->obj) {
2692                         i915_gem_object_update_fence(reg->obj, reg,
2693                                                      reg->obj->tiling_mode);
2694                 } else {
2695                         i915_gem_write_fence(dev, i, NULL);
2696                 }
2697         }
2698 }
2699
2700 void i915_gem_reset(struct drm_device *dev)
2701 {
2702         struct drm_i915_private *dev_priv = dev->dev_private;
2703         struct intel_engine_cs *ring;
2704         int i;
2705
2706         /*
2707          * Before we free the objects from the requests, we need to inspect
2708          * them for finding the guilty party. As the requests only borrow
2709          * their reference to the objects, the inspection must be done first.
2710          */
2711         for_each_ring(ring, dev_priv, i)
2712                 i915_gem_reset_ring_status(dev_priv, ring);
2713
2714         for_each_ring(ring, dev_priv, i)
2715                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2716
2717         i915_gem_context_reset(dev);
2718
2719         i915_gem_restore_fences(dev);
2720 }
2721
2722 /**
2723  * This function clears the request list as sequence numbers are passed.
2724  */
2725 void
2726 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2727 {
2728         uint32_t seqno;
2729
2730         if (list_empty(&ring->request_list))
2731                 return;
2732
2733         WARN_ON(i915_verify_lists(ring->dev));
2734
2735         seqno = ring->get_seqno(ring, true);
2736
2737         /* Move any buffers on the active list that are no longer referenced
2738          * by the ringbuffer to the flushing/inactive lists as appropriate,
2739          * before we free the context associated with the requests.
2740          */
2741         while (!list_empty(&ring->active_list)) {
2742                 struct drm_i915_gem_object *obj;
2743
2744                 obj = list_first_entry(&ring->active_list,
2745                                       struct drm_i915_gem_object,
2746                                       ring_list);
2747
2748                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2749                         break;
2750
2751                 i915_gem_object_move_to_inactive(obj);
2752         }
2753
2754
2755         while (!list_empty(&ring->request_list)) {
2756                 struct drm_i915_gem_request *request;
2757                 struct intel_ringbuffer *ringbuf;
2758
2759                 request = list_first_entry(&ring->request_list,
2760                                            struct drm_i915_gem_request,
2761                                            list);
2762
2763                 if (!i915_seqno_passed(seqno, request->seqno))
2764                         break;
2765
2766                 trace_i915_gem_request_retire(ring, request->seqno);
2767
2768                 /* This is one of the few common intersection points
2769                  * between legacy ringbuffer submission and execlists:
2770                  * we need to tell them apart in order to find the correct
2771                  * ringbuffer to which the request belongs to.
2772                  */
2773                 if (i915.enable_execlists) {
2774                         struct intel_context *ctx = request->ctx;
2775                         ringbuf = ctx->engine[ring->id].ringbuf;
2776                 } else
2777                         ringbuf = ring->buffer;
2778
2779                 /* We know the GPU must have read the request to have
2780                  * sent us the seqno + interrupt, so use the position
2781                  * of tail of the request to update the last known position
2782                  * of the GPU head.
2783                  */
2784                 ringbuf->last_retired_head = request->tail;
2785
2786                 i915_gem_free_request(request);
2787         }
2788
2789         if (unlikely(ring->trace_irq_seqno &&
2790                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2791                 ring->irq_put(ring);
2792                 ring->trace_irq_seqno = 0;
2793         }
2794
2795         WARN_ON(i915_verify_lists(ring->dev));
2796 }
2797
2798 bool
2799 i915_gem_retire_requests(struct drm_device *dev)
2800 {
2801         struct drm_i915_private *dev_priv = dev->dev_private;
2802         struct intel_engine_cs *ring;
2803         bool idle = true;
2804         int i;
2805
2806         for_each_ring(ring, dev_priv, i) {
2807                 i915_gem_retire_requests_ring(ring);
2808                 idle &= list_empty(&ring->request_list);
2809                 if (i915.enable_execlists) {
2810                         unsigned long flags;
2811
2812                         spin_lock_irqsave(&ring->execlist_lock, flags);
2813                         idle &= list_empty(&ring->execlist_queue);
2814                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2815
2816                         intel_execlists_retire_requests(ring);
2817                 }
2818         }
2819
2820         if (idle)
2821                 mod_delayed_work(dev_priv->wq,
2822                                    &dev_priv->mm.idle_work,
2823                                    msecs_to_jiffies(100));
2824
2825         return idle;
2826 }
2827
2828 static void
2829 i915_gem_retire_work_handler(struct work_struct *work)
2830 {
2831         struct drm_i915_private *dev_priv =
2832                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2833         struct drm_device *dev = dev_priv->dev;
2834         bool idle;
2835
2836         /* Come back later if the device is busy... */
2837         idle = false;
2838         if (mutex_trylock(&dev->struct_mutex)) {
2839                 idle = i915_gem_retire_requests(dev);
2840                 mutex_unlock(&dev->struct_mutex);
2841         }
2842         if (!idle)
2843                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2844                                    round_jiffies_up_relative(HZ));
2845 }
2846
2847 static void
2848 i915_gem_idle_work_handler(struct work_struct *work)
2849 {
2850         struct drm_i915_private *dev_priv =
2851                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2852
2853         intel_mark_idle(dev_priv->dev);
2854 }
2855
2856 /**
2857  * Ensures that an object will eventually get non-busy by flushing any required
2858  * write domains, emitting any outstanding lazy request and retiring and
2859  * completed requests.
2860  */
2861 static int
2862 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2863 {
2864         int ret;
2865
2866         if (obj->active) {
2867                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2868                 if (ret)
2869                         return ret;
2870
2871                 i915_gem_retire_requests_ring(obj->ring);
2872         }
2873
2874         return 0;
2875 }
2876
2877 /**
2878  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2879  * @DRM_IOCTL_ARGS: standard ioctl arguments
2880  *
2881  * Returns 0 if successful, else an error is returned with the remaining time in
2882  * the timeout parameter.
2883  *  -ETIME: object is still busy after timeout
2884  *  -ERESTARTSYS: signal interrupted the wait
2885  *  -ENONENT: object doesn't exist
2886  * Also possible, but rare:
2887  *  -EAGAIN: GPU wedged
2888  *  -ENOMEM: damn
2889  *  -ENODEV: Internal IRQ fail
2890  *  -E?: The add request failed
2891  *
2892  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2893  * non-zero timeout parameter the wait ioctl will wait for the given number of
2894  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2895  * without holding struct_mutex the object may become re-busied before this
2896  * function completes. A similar but shorter * race condition exists in the busy
2897  * ioctl
2898  */
2899 int
2900 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2901 {
2902         struct drm_i915_private *dev_priv = dev->dev_private;
2903         struct drm_i915_gem_wait *args = data;
2904         struct drm_i915_gem_object *obj;
2905         struct intel_engine_cs *ring = NULL;
2906         unsigned reset_counter;
2907         u32 seqno = 0;
2908         int ret = 0;
2909
2910         if (args->flags != 0)
2911                 return -EINVAL;
2912
2913         ret = i915_mutex_lock_interruptible(dev);
2914         if (ret)
2915                 return ret;
2916
2917         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2918         if (&obj->base == NULL) {
2919                 mutex_unlock(&dev->struct_mutex);
2920                 return -ENOENT;
2921         }
2922
2923         /* Need to make sure the object gets inactive eventually. */
2924         ret = i915_gem_object_flush_active(obj);
2925         if (ret)
2926                 goto out;
2927
2928         if (obj->active) {
2929                 seqno = obj->last_read_seqno;
2930                 ring = obj->ring;
2931         }
2932
2933         if (seqno == 0)
2934                  goto out;
2935
2936         /* Do this after OLR check to make sure we make forward progress polling
2937          * on this IOCTL with a timeout <=0 (like busy ioctl)
2938          */
2939         if (args->timeout_ns <= 0) {
2940                 ret = -ETIME;
2941                 goto out;
2942         }
2943
2944         drm_gem_object_unreference(&obj->base);
2945         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2946         mutex_unlock(&dev->struct_mutex);
2947
2948         return __i915_wait_seqno(ring, seqno, reset_counter, true,
2949                                  &args->timeout_ns, file->driver_priv);
2950
2951 out:
2952         drm_gem_object_unreference(&obj->base);
2953         mutex_unlock(&dev->struct_mutex);
2954         return ret;
2955 }
2956
2957 /**
2958  * i915_gem_object_sync - sync an object to a ring.
2959  *
2960  * @obj: object which may be in use on another ring.
2961  * @to: ring we wish to use the object on. May be NULL.
2962  *
2963  * This code is meant to abstract object synchronization with the GPU.
2964  * Calling with NULL implies synchronizing the object with the CPU
2965  * rather than a particular GPU ring.
2966  *
2967  * Returns 0 if successful, else propagates up the lower layer error.
2968  */
2969 int
2970 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2971                      struct intel_engine_cs *to)
2972 {
2973         struct intel_engine_cs *from = obj->ring;
2974         u32 seqno;
2975         int ret, idx;
2976
2977         if (from == NULL || to == from)
2978                 return 0;
2979
2980         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2981                 return i915_gem_object_wait_rendering(obj, false);
2982
2983         idx = intel_ring_sync_index(from, to);
2984
2985         seqno = obj->last_read_seqno;
2986         /* Optimization: Avoid semaphore sync when we are sure we already
2987          * waited for an object with higher seqno */
2988         if (seqno <= from->semaphore.sync_seqno[idx])
2989                 return 0;
2990
2991         ret = i915_gem_check_olr(obj->ring, seqno);
2992         if (ret)
2993                 return ret;
2994
2995         trace_i915_gem_ring_sync_to(from, to, seqno);
2996         ret = to->semaphore.sync_to(to, from, seqno);
2997         if (!ret)
2998                 /* We use last_read_seqno because sync_to()
2999                  * might have just caused seqno wrap under
3000                  * the radar.
3001                  */
3002                 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
3003
3004         return ret;
3005 }
3006
3007 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3008 {
3009         u32 old_write_domain, old_read_domains;
3010
3011         /* Force a pagefault for domain tracking on next user access */
3012         i915_gem_release_mmap(obj);
3013
3014         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3015                 return;
3016
3017         /* Wait for any direct GTT access to complete */
3018         mb();
3019
3020         old_read_domains = obj->base.read_domains;
3021         old_write_domain = obj->base.write_domain;
3022
3023         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3024         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3025
3026         trace_i915_gem_object_change_domain(obj,
3027                                             old_read_domains,
3028                                             old_write_domain);
3029 }
3030
3031 int i915_vma_unbind(struct i915_vma *vma)
3032 {
3033         struct drm_i915_gem_object *obj = vma->obj;
3034         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3035         int ret;
3036
3037         if (list_empty(&vma->vma_link))
3038                 return 0;
3039
3040         if (!drm_mm_node_allocated(&vma->node)) {
3041                 i915_gem_vma_destroy(vma);
3042                 return 0;
3043         }
3044
3045         if (vma->pin_count)
3046                 return -EBUSY;
3047
3048         BUG_ON(obj->pages == NULL);
3049
3050         ret = i915_gem_object_finish_gpu(obj);
3051         if (ret)
3052                 return ret;
3053         /* Continue on if we fail due to EIO, the GPU is hung so we
3054          * should be safe and we need to cleanup or else we might
3055          * cause memory corruption through use-after-free.
3056          */
3057
3058         /* Throw away the active reference before moving to the unbound list */
3059         i915_gem_object_retire(obj);
3060
3061         if (i915_is_ggtt(vma->vm)) {
3062                 i915_gem_object_finish_gtt(obj);
3063
3064                 /* release the fence reg _after_ flushing */
3065                 ret = i915_gem_object_put_fence(obj);
3066                 if (ret)
3067                         return ret;
3068         }
3069
3070         trace_i915_vma_unbind(vma);
3071
3072         vma->unbind_vma(vma);
3073
3074         list_del_init(&vma->mm_list);
3075         if (i915_is_ggtt(vma->vm))
3076                 obj->map_and_fenceable = false;
3077
3078         drm_mm_remove_node(&vma->node);
3079         i915_gem_vma_destroy(vma);
3080
3081         /* Since the unbound list is global, only move to that list if
3082          * no more VMAs exist. */
3083         if (list_empty(&obj->vma_list)) {
3084                 i915_gem_gtt_finish_object(obj);
3085                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3086         }
3087
3088         /* And finally now the object is completely decoupled from this vma,
3089          * we can drop its hold on the backing storage and allow it to be
3090          * reaped by the shrinker.
3091          */
3092         i915_gem_object_unpin_pages(obj);
3093
3094         return 0;
3095 }
3096
3097 int i915_gpu_idle(struct drm_device *dev)
3098 {
3099         struct drm_i915_private *dev_priv = dev->dev_private;
3100         struct intel_engine_cs *ring;
3101         int ret, i;
3102
3103         /* Flush everything onto the inactive list. */
3104         for_each_ring(ring, dev_priv, i) {
3105                 if (!i915.enable_execlists) {
3106                         ret = i915_switch_context(ring, ring->default_context);
3107                         if (ret)
3108                                 return ret;
3109                 }
3110
3111                 ret = intel_ring_idle(ring);
3112                 if (ret)
3113                         return ret;
3114         }
3115
3116         return 0;
3117 }
3118
3119 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3120                                  struct drm_i915_gem_object *obj)
3121 {
3122         struct drm_i915_private *dev_priv = dev->dev_private;
3123         int fence_reg;
3124         int fence_pitch_shift;
3125
3126         if (INTEL_INFO(dev)->gen >= 6) {
3127                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3128                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3129         } else {
3130                 fence_reg = FENCE_REG_965_0;
3131                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3132         }
3133
3134         fence_reg += reg * 8;
3135
3136         /* To w/a incoherency with non-atomic 64-bit register updates,
3137          * we split the 64-bit update into two 32-bit writes. In order
3138          * for a partial fence not to be evaluated between writes, we
3139          * precede the update with write to turn off the fence register,
3140          * and only enable the fence as the last step.
3141          *
3142          * For extra levels of paranoia, we make sure each step lands
3143          * before applying the next step.
3144          */
3145         I915_WRITE(fence_reg, 0);
3146         POSTING_READ(fence_reg);
3147
3148         if (obj) {
3149                 u32 size = i915_gem_obj_ggtt_size(obj);
3150                 uint64_t val;
3151
3152                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3153                                  0xfffff000) << 32;
3154                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3155                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3156                 if (obj->tiling_mode == I915_TILING_Y)
3157                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3158                 val |= I965_FENCE_REG_VALID;
3159
3160                 I915_WRITE(fence_reg + 4, val >> 32);
3161                 POSTING_READ(fence_reg + 4);
3162
3163                 I915_WRITE(fence_reg + 0, val);
3164                 POSTING_READ(fence_reg);
3165         } else {
3166                 I915_WRITE(fence_reg + 4, 0);
3167                 POSTING_READ(fence_reg + 4);
3168         }
3169 }
3170
3171 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3172                                  struct drm_i915_gem_object *obj)
3173 {
3174         struct drm_i915_private *dev_priv = dev->dev_private;
3175         u32 val;
3176
3177         if (obj) {
3178                 u32 size = i915_gem_obj_ggtt_size(obj);
3179                 int pitch_val;
3180                 int tile_width;
3181
3182                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3183                      (size & -size) != size ||
3184                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3185                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3186                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3187
3188                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3189                         tile_width = 128;
3190                 else
3191                         tile_width = 512;
3192
3193                 /* Note: pitch better be a power of two tile widths */
3194                 pitch_val = obj->stride / tile_width;
3195                 pitch_val = ffs(pitch_val) - 1;
3196
3197                 val = i915_gem_obj_ggtt_offset(obj);
3198                 if (obj->tiling_mode == I915_TILING_Y)
3199                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3200                 val |= I915_FENCE_SIZE_BITS(size);
3201                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3202                 val |= I830_FENCE_REG_VALID;
3203         } else
3204                 val = 0;
3205
3206         if (reg < 8)
3207                 reg = FENCE_REG_830_0 + reg * 4;
3208         else
3209                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3210
3211         I915_WRITE(reg, val);
3212         POSTING_READ(reg);
3213 }
3214
3215 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3216                                 struct drm_i915_gem_object *obj)
3217 {
3218         struct drm_i915_private *dev_priv = dev->dev_private;
3219         uint32_t val;
3220
3221         if (obj) {
3222                 u32 size = i915_gem_obj_ggtt_size(obj);
3223                 uint32_t pitch_val;
3224
3225                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3226                      (size & -size) != size ||
3227                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3228                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3229                      i915_gem_obj_ggtt_offset(obj), size);
3230
3231                 pitch_val = obj->stride / 128;
3232                 pitch_val = ffs(pitch_val) - 1;
3233
3234                 val = i915_gem_obj_ggtt_offset(obj);
3235                 if (obj->tiling_mode == I915_TILING_Y)
3236                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3237                 val |= I830_FENCE_SIZE_BITS(size);
3238                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3239                 val |= I830_FENCE_REG_VALID;
3240         } else
3241                 val = 0;
3242
3243         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3244         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3245 }
3246
3247 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3248 {
3249         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3250 }
3251
3252 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3253                                  struct drm_i915_gem_object *obj)
3254 {
3255         struct drm_i915_private *dev_priv = dev->dev_private;
3256
3257         /* Ensure that all CPU reads are completed before installing a fence
3258          * and all writes before removing the fence.
3259          */
3260         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3261                 mb();
3262
3263         WARN(obj && (!obj->stride || !obj->tiling_mode),
3264              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3265              obj->stride, obj->tiling_mode);
3266
3267         switch (INTEL_INFO(dev)->gen) {
3268         case 9:
3269         case 8:
3270         case 7:
3271         case 6:
3272         case 5:
3273         case 4: i965_write_fence_reg(dev, reg, obj); break;
3274         case 3: i915_write_fence_reg(dev, reg, obj); break;
3275         case 2: i830_write_fence_reg(dev, reg, obj); break;
3276         default: BUG();
3277         }
3278
3279         /* And similarly be paranoid that no direct access to this region
3280          * is reordered to before the fence is installed.
3281          */
3282         if (i915_gem_object_needs_mb(obj))
3283                 mb();
3284 }
3285
3286 static inline int fence_number(struct drm_i915_private *dev_priv,
3287                                struct drm_i915_fence_reg *fence)
3288 {
3289         return fence - dev_priv->fence_regs;
3290 }
3291
3292 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3293                                          struct drm_i915_fence_reg *fence,
3294                                          bool enable)
3295 {
3296         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3297         int reg = fence_number(dev_priv, fence);
3298
3299         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3300
3301         if (enable) {
3302                 obj->fence_reg = reg;
3303                 fence->obj = obj;
3304                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3305         } else {
3306                 obj->fence_reg = I915_FENCE_REG_NONE;
3307                 fence->obj = NULL;
3308                 list_del_init(&fence->lru_list);
3309         }
3310         obj->fence_dirty = false;
3311 }
3312
3313 static int
3314 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3315 {
3316         if (obj->last_fenced_seqno) {
3317                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3318                 if (ret)
3319                         return ret;
3320
3321                 obj->last_fenced_seqno = 0;
3322         }
3323
3324         return 0;
3325 }
3326
3327 int
3328 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3329 {
3330         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3331         struct drm_i915_fence_reg *fence;
3332         int ret;
3333
3334         ret = i915_gem_object_wait_fence(obj);
3335         if (ret)
3336                 return ret;
3337
3338         if (obj->fence_reg == I915_FENCE_REG_NONE)
3339                 return 0;
3340
3341         fence = &dev_priv->fence_regs[obj->fence_reg];
3342
3343         if (WARN_ON(fence->pin_count))
3344                 return -EBUSY;
3345
3346         i915_gem_object_fence_lost(obj);
3347         i915_gem_object_update_fence(obj, fence, false);
3348
3349         return 0;
3350 }
3351
3352 static struct drm_i915_fence_reg *
3353 i915_find_fence_reg(struct drm_device *dev)
3354 {
3355         struct drm_i915_private *dev_priv = dev->dev_private;
3356         struct drm_i915_fence_reg *reg, *avail;
3357         int i;
3358
3359         /* First try to find a free reg */
3360         avail = NULL;
3361         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3362                 reg = &dev_priv->fence_regs[i];
3363                 if (!reg->obj)
3364                         return reg;
3365
3366                 if (!reg->pin_count)
3367                         avail = reg;
3368         }
3369
3370         if (avail == NULL)
3371                 goto deadlock;
3372
3373         /* None available, try to steal one or wait for a user to finish */
3374         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3375                 if (reg->pin_count)
3376                         continue;
3377
3378                 return reg;
3379         }
3380
3381 deadlock:
3382         /* Wait for completion of pending flips which consume fences */
3383         if (intel_has_pending_fb_unpin(dev))
3384                 return ERR_PTR(-EAGAIN);
3385
3386         return ERR_PTR(-EDEADLK);
3387 }
3388
3389 /**
3390  * i915_gem_object_get_fence - set up fencing for an object
3391  * @obj: object to map through a fence reg
3392  *
3393  * When mapping objects through the GTT, userspace wants to be able to write
3394  * to them without having to worry about swizzling if the object is tiled.
3395  * This function walks the fence regs looking for a free one for @obj,
3396  * stealing one if it can't find any.
3397  *
3398  * It then sets up the reg based on the object's properties: address, pitch
3399  * and tiling format.
3400  *
3401  * For an untiled surface, this removes any existing fence.
3402  */
3403 int
3404 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3405 {
3406         struct drm_device *dev = obj->base.dev;
3407         struct drm_i915_private *dev_priv = dev->dev_private;
3408         bool enable = obj->tiling_mode != I915_TILING_NONE;
3409         struct drm_i915_fence_reg *reg;
3410         int ret;
3411
3412         /* Have we updated the tiling parameters upon the object and so
3413          * will need to serialise the write to the associated fence register?
3414          */
3415         if (obj->fence_dirty) {
3416                 ret = i915_gem_object_wait_fence(obj);
3417                 if (ret)
3418                         return ret;
3419         }
3420
3421         /* Just update our place in the LRU if our fence is getting reused. */
3422         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3423                 reg = &dev_priv->fence_regs[obj->fence_reg];
3424                 if (!obj->fence_dirty) {
3425                         list_move_tail(&reg->lru_list,
3426                                        &dev_priv->mm.fence_list);
3427                         return 0;
3428                 }
3429         } else if (enable) {
3430                 if (WARN_ON(!obj->map_and_fenceable))
3431                         return -EINVAL;
3432
3433                 reg = i915_find_fence_reg(dev);
3434                 if (IS_ERR(reg))
3435                         return PTR_ERR(reg);
3436
3437                 if (reg->obj) {
3438                         struct drm_i915_gem_object *old = reg->obj;
3439
3440                         ret = i915_gem_object_wait_fence(old);
3441                         if (ret)
3442                                 return ret;
3443
3444                         i915_gem_object_fence_lost(old);
3445                 }
3446         } else
3447                 return 0;
3448
3449         i915_gem_object_update_fence(obj, reg, enable);
3450
3451         return 0;
3452 }
3453
3454 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3455                                      unsigned long cache_level)
3456 {
3457         struct drm_mm_node *gtt_space = &vma->node;
3458         struct drm_mm_node *other;
3459
3460         /*
3461          * On some machines we have to be careful when putting differing types
3462          * of snoopable memory together to avoid the prefetcher crossing memory
3463          * domains and dying. During vm initialisation, we decide whether or not
3464          * these constraints apply and set the drm_mm.color_adjust
3465          * appropriately.
3466          */
3467         if (vma->vm->mm.color_adjust == NULL)
3468                 return true;
3469
3470         if (!drm_mm_node_allocated(gtt_space))
3471                 return true;
3472
3473         if (list_empty(&gtt_space->node_list))
3474                 return true;
3475
3476         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3477         if (other->allocated && !other->hole_follows && other->color != cache_level)
3478                 return false;
3479
3480         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3481         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3482                 return false;
3483
3484         return true;
3485 }
3486
3487 /**
3488  * Finds free space in the GTT aperture and binds the object there.
3489  */
3490 static struct i915_vma *
3491 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3492                            struct i915_address_space *vm,
3493                            unsigned alignment,
3494                            uint64_t flags)
3495 {
3496         struct drm_device *dev = obj->base.dev;
3497         struct drm_i915_private *dev_priv = dev->dev_private;
3498         u32 size, fence_size, fence_alignment, unfenced_alignment;
3499         unsigned long start =
3500                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3501         unsigned long end =
3502                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3503         struct i915_vma *vma;
3504         int ret;
3505
3506         fence_size = i915_gem_get_gtt_size(dev,
3507                                            obj->base.size,
3508                                            obj->tiling_mode);
3509         fence_alignment = i915_gem_get_gtt_alignment(dev,
3510                                                      obj->base.size,
3511                                                      obj->tiling_mode, true);
3512         unfenced_alignment =
3513                 i915_gem_get_gtt_alignment(dev,
3514                                            obj->base.size,
3515                                            obj->tiling_mode, false);
3516
3517         if (alignment == 0)
3518                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3519                                                 unfenced_alignment;
3520         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3521                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3522                 return ERR_PTR(-EINVAL);
3523         }
3524
3525         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3526
3527         /* If the object is bigger than the entire aperture, reject it early
3528          * before evicting everything in a vain attempt to find space.
3529          */
3530         if (obj->base.size > end) {
3531                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3532                           obj->base.size,
3533                           flags & PIN_MAPPABLE ? "mappable" : "total",
3534                           end);
3535                 return ERR_PTR(-E2BIG);
3536         }
3537
3538         ret = i915_gem_object_get_pages(obj);
3539         if (ret)
3540                 return ERR_PTR(ret);
3541
3542         i915_gem_object_pin_pages(obj);
3543
3544         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3545         if (IS_ERR(vma))
3546                 goto err_unpin;
3547
3548 search_free:
3549         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3550                                                   size, alignment,
3551                                                   obj->cache_level,
3552                                                   start, end,
3553                                                   DRM_MM_SEARCH_DEFAULT,
3554                                                   DRM_MM_CREATE_DEFAULT);
3555         if (ret) {
3556                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3557                                                obj->cache_level,
3558                                                start, end,
3559                                                flags);
3560                 if (ret == 0)
3561                         goto search_free;
3562
3563                 goto err_free_vma;
3564         }
3565         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3566                 ret = -EINVAL;
3567                 goto err_remove_node;
3568         }
3569
3570         ret = i915_gem_gtt_prepare_object(obj);
3571         if (ret)
3572                 goto err_remove_node;
3573
3574         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3575         list_add_tail(&vma->mm_list, &vm->inactive_list);
3576
3577         trace_i915_vma_bind(vma, flags);
3578         vma->bind_vma(vma, obj->cache_level,
3579                       flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3580
3581         return vma;
3582
3583 err_remove_node:
3584         drm_mm_remove_node(&vma->node);
3585 err_free_vma:
3586         i915_gem_vma_destroy(vma);
3587         vma = ERR_PTR(ret);
3588 err_unpin:
3589         i915_gem_object_unpin_pages(obj);
3590         return vma;
3591 }
3592
3593 bool
3594 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3595                         bool force)
3596 {
3597         /* If we don't have a page list set up, then we're not pinned
3598          * to GPU, and we can ignore the cache flush because it'll happen
3599          * again at bind time.
3600          */
3601         if (obj->pages == NULL)
3602                 return false;
3603
3604         /*
3605          * Stolen memory is always coherent with the GPU as it is explicitly
3606          * marked as wc by the system, or the system is cache-coherent.
3607          */
3608         if (obj->stolen || obj->phys_handle)
3609                 return false;
3610
3611         /* If the GPU is snooping the contents of the CPU cache,
3612          * we do not need to manually clear the CPU cache lines.  However,
3613          * the caches are only snooped when the render cache is
3614          * flushed/invalidated.  As we always have to emit invalidations
3615          * and flushes when moving into and out of the RENDER domain, correct
3616          * snooping behaviour occurs naturally as the result of our domain
3617          * tracking.
3618          */
3619         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3620                 return false;
3621
3622         trace_i915_gem_object_clflush(obj);
3623         drm_clflush_sg(obj->pages);
3624
3625         return true;
3626 }
3627
3628 /** Flushes the GTT write domain for the object if it's dirty. */
3629 static void
3630 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3631 {
3632         uint32_t old_write_domain;
3633
3634         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3635                 return;
3636
3637         /* No actual flushing is required for the GTT write domain.  Writes
3638          * to it immediately go to main memory as far as we know, so there's
3639          * no chipset flush.  It also doesn't land in render cache.
3640          *
3641          * However, we do have to enforce the order so that all writes through
3642          * the GTT land before any writes to the device, such as updates to
3643          * the GATT itself.
3644          */
3645         wmb();
3646
3647         old_write_domain = obj->base.write_domain;
3648         obj->base.write_domain = 0;
3649
3650         intel_fb_obj_flush(obj, false);
3651
3652         trace_i915_gem_object_change_domain(obj,
3653                                             obj->base.read_domains,
3654                                             old_write_domain);
3655 }
3656
3657 /** Flushes the CPU write domain for the object if it's dirty. */
3658 static void
3659 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3660                                        bool force)
3661 {
3662         uint32_t old_write_domain;
3663
3664         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3665                 return;
3666
3667         if (i915_gem_clflush_object(obj, force))
3668                 i915_gem_chipset_flush(obj->base.dev);
3669
3670         old_write_domain = obj->base.write_domain;
3671         obj->base.write_domain = 0;
3672
3673         intel_fb_obj_flush(obj, false);
3674
3675         trace_i915_gem_object_change_domain(obj,
3676                                             obj->base.read_domains,
3677                                             old_write_domain);
3678 }
3679
3680 /**
3681  * Moves a single object to the GTT read, and possibly write domain.
3682  *
3683  * This function returns when the move is complete, including waiting on
3684  * flushes to occur.
3685  */
3686 int
3687 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3688 {
3689         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3690         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3691         uint32_t old_write_domain, old_read_domains;
3692         int ret;
3693
3694         /* Not valid to be called on unbound objects. */
3695         if (vma == NULL)
3696                 return -EINVAL;
3697
3698         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3699                 return 0;
3700
3701         ret = i915_gem_object_wait_rendering(obj, !write);
3702         if (ret)
3703                 return ret;
3704
3705         i915_gem_object_retire(obj);
3706         i915_gem_object_flush_cpu_write_domain(obj, false);
3707
3708         /* Serialise direct access to this object with the barriers for
3709          * coherent writes from the GPU, by effectively invalidating the
3710          * GTT domain upon first access.
3711          */
3712         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3713                 mb();
3714
3715         old_write_domain = obj->base.write_domain;
3716         old_read_domains = obj->base.read_domains;
3717
3718         /* It should now be out of any other write domains, and we can update
3719          * the domain values for our changes.
3720          */
3721         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3722         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3723         if (write) {
3724                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3725                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3726                 obj->dirty = 1;
3727         }
3728
3729         if (write)
3730                 intel_fb_obj_invalidate(obj, NULL);
3731
3732         trace_i915_gem_object_change_domain(obj,
3733                                             old_read_domains,
3734                                             old_write_domain);
3735
3736         /* And bump the LRU for this access */
3737         if (i915_gem_object_is_inactive(obj))
3738                 list_move_tail(&vma->mm_list,
3739                                &dev_priv->gtt.base.inactive_list);
3740
3741         return 0;
3742 }
3743
3744 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3745                                     enum i915_cache_level cache_level)
3746 {
3747         struct drm_device *dev = obj->base.dev;
3748         struct i915_vma *vma, *next;
3749         int ret;
3750
3751         if (obj->cache_level == cache_level)
3752                 return 0;
3753
3754         if (i915_gem_obj_is_pinned(obj)) {
3755                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3756                 return -EBUSY;
3757         }
3758
3759         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3760                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3761                         ret = i915_vma_unbind(vma);
3762                         if (ret)
3763                                 return ret;
3764                 }
3765         }
3766
3767         if (i915_gem_obj_bound_any(obj)) {
3768                 ret = i915_gem_object_finish_gpu(obj);
3769                 if (ret)
3770                         return ret;
3771
3772                 i915_gem_object_finish_gtt(obj);
3773
3774                 /* Before SandyBridge, you could not use tiling or fence
3775                  * registers with snooped memory, so relinquish any fences
3776                  * currently pointing to our region in the aperture.
3777                  */
3778                 if (INTEL_INFO(dev)->gen < 6) {
3779                         ret = i915_gem_object_put_fence(obj);
3780                         if (ret)
3781                                 return ret;
3782                 }
3783
3784                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3785                         if (drm_mm_node_allocated(&vma->node))
3786                                 vma->bind_vma(vma, cache_level,
3787                                                 vma->bound & GLOBAL_BIND);
3788         }
3789
3790         list_for_each_entry(vma, &obj->vma_list, vma_link)
3791                 vma->node.color = cache_level;
3792         obj->cache_level = cache_level;
3793
3794         if (cpu_write_needs_clflush(obj)) {
3795                 u32 old_read_domains, old_write_domain;
3796
3797                 /* If we're coming from LLC cached, then we haven't
3798                  * actually been tracking whether the data is in the
3799                  * CPU cache or not, since we only allow one bit set
3800                  * in obj->write_domain and have been skipping the clflushes.
3801                  * Just set it to the CPU cache for now.
3802                  */
3803                 i915_gem_object_retire(obj);
3804                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3805
3806                 old_read_domains = obj->base.read_domains;
3807                 old_write_domain = obj->base.write_domain;
3808
3809                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3810                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3811
3812                 trace_i915_gem_object_change_domain(obj,
3813                                                     old_read_domains,
3814                                                     old_write_domain);
3815         }
3816
3817         return 0;
3818 }
3819
3820 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3821                                struct drm_file *file)
3822 {
3823         struct drm_i915_gem_caching *args = data;
3824         struct drm_i915_gem_object *obj;
3825         int ret;
3826
3827         ret = i915_mutex_lock_interruptible(dev);
3828         if (ret)
3829                 return ret;
3830
3831         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3832         if (&obj->base == NULL) {
3833                 ret = -ENOENT;
3834                 goto unlock;
3835         }
3836
3837         switch (obj->cache_level) {
3838         case I915_CACHE_LLC:
3839         case I915_CACHE_L3_LLC:
3840                 args->caching = I915_CACHING_CACHED;
3841                 break;
3842
3843         case I915_CACHE_WT:
3844                 args->caching = I915_CACHING_DISPLAY;
3845                 break;
3846
3847         default:
3848                 args->caching = I915_CACHING_NONE;
3849                 break;
3850         }
3851
3852         drm_gem_object_unreference(&obj->base);
3853 unlock:
3854         mutex_unlock(&dev->struct_mutex);
3855         return ret;
3856 }
3857
3858 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3859                                struct drm_file *file)
3860 {
3861         struct drm_i915_gem_caching *args = data;
3862         struct drm_i915_gem_object *obj;
3863         enum i915_cache_level level;
3864         int ret;
3865
3866         switch (args->caching) {
3867         case I915_CACHING_NONE:
3868                 level = I915_CACHE_NONE;
3869                 break;
3870         case I915_CACHING_CACHED:
3871                 level = I915_CACHE_LLC;
3872                 break;
3873         case I915_CACHING_DISPLAY:
3874                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3875                 break;
3876         default:
3877                 return -EINVAL;
3878         }
3879
3880         ret = i915_mutex_lock_interruptible(dev);
3881         if (ret)
3882                 return ret;
3883
3884         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3885         if (&obj->base == NULL) {
3886                 ret = -ENOENT;
3887                 goto unlock;
3888         }
3889
3890         ret = i915_gem_object_set_cache_level(obj, level);
3891
3892         drm_gem_object_unreference(&obj->base);
3893 unlock:
3894         mutex_unlock(&dev->struct_mutex);
3895         return ret;
3896 }
3897
3898 static bool is_pin_display(struct drm_i915_gem_object *obj)
3899 {
3900         struct i915_vma *vma;
3901
3902         vma = i915_gem_obj_to_ggtt(obj);
3903         if (!vma)
3904                 return false;
3905
3906         /* There are 2 sources that pin objects:
3907          *   1. The display engine (scanouts, sprites, cursors);
3908          *   2. Reservations for execbuffer;
3909          *
3910          * We can ignore reservations as we hold the struct_mutex and
3911          * are only called outside of the reservation path.
3912          */
3913         return vma->pin_count;
3914 }
3915
3916 /*
3917  * Prepare buffer for display plane (scanout, cursors, etc).
3918  * Can be called from an uninterruptible phase (modesetting) and allows
3919  * any flushes to be pipelined (for pageflips).
3920  */
3921 int
3922 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3923                                      u32 alignment,
3924                                      struct intel_engine_cs *pipelined)
3925 {
3926         u32 old_read_domains, old_write_domain;
3927         bool was_pin_display;
3928         int ret;
3929
3930         if (pipelined != obj->ring) {
3931                 ret = i915_gem_object_sync(obj, pipelined);
3932                 if (ret)
3933                         return ret;
3934         }
3935
3936         /* Mark the pin_display early so that we account for the
3937          * display coherency whilst setting up the cache domains.
3938          */
3939         was_pin_display = obj->pin_display;
3940         obj->pin_display = true;
3941
3942         /* The display engine is not coherent with the LLC cache on gen6.  As
3943          * a result, we make sure that the pinning that is about to occur is
3944          * done with uncached PTEs. This is lowest common denominator for all
3945          * chipsets.
3946          *
3947          * However for gen6+, we could do better by using the GFDT bit instead
3948          * of uncaching, which would allow us to flush all the LLC-cached data
3949          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3950          */
3951         ret = i915_gem_object_set_cache_level(obj,
3952                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3953         if (ret)
3954                 goto err_unpin_display;
3955
3956         /* As the user may map the buffer once pinned in the display plane
3957          * (e.g. libkms for the bootup splash), we have to ensure that we
3958          * always use map_and_fenceable for all scanout buffers.
3959          */
3960         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3961         if (ret)
3962                 goto err_unpin_display;
3963
3964         i915_gem_object_flush_cpu_write_domain(obj, true);
3965
3966         old_write_domain = obj->base.write_domain;
3967         old_read_domains = obj->base.read_domains;
3968
3969         /* It should now be out of any other write domains, and we can update
3970          * the domain values for our changes.
3971          */
3972         obj->base.write_domain = 0;
3973         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3974
3975         trace_i915_gem_object_change_domain(obj,
3976                                             old_read_domains,
3977                                             old_write_domain);
3978
3979         return 0;
3980
3981 err_unpin_display:
3982         WARN_ON(was_pin_display != is_pin_display(obj));
3983         obj->pin_display = was_pin_display;
3984         return ret;
3985 }
3986
3987 void
3988 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3989 {
3990         i915_gem_object_ggtt_unpin(obj);
3991         obj->pin_display = is_pin_display(obj);
3992 }
3993
3994 int
3995 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3996 {
3997         int ret;
3998
3999         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4000                 return 0;
4001
4002         ret = i915_gem_object_wait_rendering(obj, false);
4003         if (ret)
4004                 return ret;
4005
4006         /* Ensure that we invalidate the GPU's caches and TLBs. */
4007         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4008         return 0;
4009 }
4010
4011 /**
4012  * Moves a single object to the CPU read, and possibly write domain.
4013  *
4014  * This function returns when the move is complete, including waiting on
4015  * flushes to occur.
4016  */
4017 int
4018 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4019 {
4020         uint32_t old_write_domain, old_read_domains;
4021         int ret;
4022
4023         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4024                 return 0;
4025
4026         ret = i915_gem_object_wait_rendering(obj, !write);
4027         if (ret)
4028                 return ret;
4029
4030         i915_gem_object_retire(obj);
4031         i915_gem_object_flush_gtt_write_domain(obj);
4032
4033         old_write_domain = obj->base.write_domain;
4034         old_read_domains = obj->base.read_domains;
4035
4036         /* Flush the CPU cache if it's still invalid. */
4037         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4038                 i915_gem_clflush_object(obj, false);
4039
4040                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4041         }
4042
4043         /* It should now be out of any other write domains, and we can update
4044          * the domain values for our changes.
4045          */
4046         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4047
4048         /* If we're writing through the CPU, then the GPU read domains will
4049          * need to be invalidated at next use.
4050          */
4051         if (write) {
4052                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4053                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4054         }
4055
4056         if (write)
4057                 intel_fb_obj_invalidate(obj, NULL);
4058
4059         trace_i915_gem_object_change_domain(obj,
4060                                             old_read_domains,
4061                                             old_write_domain);
4062
4063         return 0;
4064 }
4065
4066 /* Throttle our rendering by waiting until the ring has completed our requests
4067  * emitted over 20 msec ago.
4068  *
4069  * Note that if we were to use the current jiffies each time around the loop,
4070  * we wouldn't escape the function with any frames outstanding if the time to
4071  * render a frame was over 20ms.
4072  *
4073  * This should get us reasonable parallelism between CPU and GPU but also
4074  * relatively low latency when blocking on a particular request to finish.
4075  */
4076 static int
4077 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4078 {
4079         struct drm_i915_private *dev_priv = dev->dev_private;
4080         struct drm_i915_file_private *file_priv = file->driver_priv;
4081         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4082         struct drm_i915_gem_request *request;
4083         struct intel_engine_cs *ring = NULL;
4084         unsigned reset_counter;
4085         u32 seqno = 0;
4086         int ret;
4087
4088         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4089         if (ret)
4090                 return ret;
4091
4092         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4093         if (ret)
4094                 return ret;
4095
4096         spin_lock(&file_priv->mm.lock);
4097         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4098                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4099                         break;
4100
4101                 ring = request->ring;
4102                 seqno = request->seqno;
4103         }
4104         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4105         spin_unlock(&file_priv->mm.lock);
4106
4107         if (seqno == 0)
4108                 return 0;
4109
4110         ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4111         if (ret == 0)
4112                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4113
4114         return ret;
4115 }
4116
4117 static bool
4118 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4119 {
4120         struct drm_i915_gem_object *obj = vma->obj;
4121
4122         if (alignment &&
4123             vma->node.start & (alignment - 1))
4124                 return true;
4125
4126         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4127                 return true;
4128
4129         if (flags & PIN_OFFSET_BIAS &&
4130             vma->node.start < (flags & PIN_OFFSET_MASK))
4131                 return true;
4132
4133         return false;
4134 }
4135
4136 int
4137 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4138                     struct i915_address_space *vm,
4139                     uint32_t alignment,
4140                     uint64_t flags)
4141 {
4142         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4143         struct i915_vma *vma;
4144         unsigned bound;
4145         int ret;
4146
4147         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4148                 return -ENODEV;
4149
4150         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4151                 return -EINVAL;
4152
4153         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4154                 return -EINVAL;
4155
4156         vma = i915_gem_obj_to_vma(obj, vm);
4157         if (vma) {
4158                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4159                         return -EBUSY;
4160
4161                 if (i915_vma_misplaced(vma, alignment, flags)) {
4162                         WARN(vma->pin_count,
4163                              "bo is already pinned with incorrect alignment:"
4164                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4165                              " obj->map_and_fenceable=%d\n",
4166                              i915_gem_obj_offset(obj, vm), alignment,
4167                              !!(flags & PIN_MAPPABLE),
4168                              obj->map_and_fenceable);
4169                         ret = i915_vma_unbind(vma);
4170                         if (ret)
4171                                 return ret;
4172
4173                         vma = NULL;
4174                 }
4175         }
4176
4177         bound = vma ? vma->bound : 0;
4178         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4179                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4180                 if (IS_ERR(vma))
4181                         return PTR_ERR(vma);
4182         }
4183
4184         if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4185                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4186
4187         if ((bound ^ vma->bound) & GLOBAL_BIND) {
4188                 bool mappable, fenceable;
4189                 u32 fence_size, fence_alignment;
4190
4191                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4192                                                    obj->base.size,
4193                                                    obj->tiling_mode);
4194                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4195                                                              obj->base.size,
4196                                                              obj->tiling_mode,
4197                                                              true);
4198
4199                 fenceable = (vma->node.size == fence_size &&
4200                              (vma->node.start & (fence_alignment - 1)) == 0);
4201
4202                 mappable = (vma->node.start + obj->base.size <=
4203                             dev_priv->gtt.mappable_end);
4204
4205                 obj->map_and_fenceable = mappable && fenceable;
4206         }
4207
4208         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4209
4210         vma->pin_count++;
4211         if (flags & PIN_MAPPABLE)
4212                 obj->pin_mappable |= true;
4213
4214         return 0;
4215 }
4216
4217 void
4218 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4219 {
4220         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4221
4222         BUG_ON(!vma);
4223         BUG_ON(vma->pin_count == 0);
4224         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4225
4226         if (--vma->pin_count == 0)
4227                 obj->pin_mappable = false;
4228 }
4229
4230 bool
4231 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4232 {
4233         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4234                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4235                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4236
4237                 WARN_ON(!ggtt_vma ||
4238                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4239                         ggtt_vma->pin_count);
4240                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4241                 return true;
4242         } else
4243                 return false;
4244 }
4245
4246 void
4247 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4248 {
4249         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4250                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4251                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4252                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4253         }
4254 }
4255
4256 int
4257 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4258                     struct drm_file *file)
4259 {
4260         struct drm_i915_gem_busy *args = data;
4261         struct drm_i915_gem_object *obj;
4262         int ret;
4263
4264         ret = i915_mutex_lock_interruptible(dev);
4265         if (ret)
4266                 return ret;
4267
4268         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4269         if (&obj->base == NULL) {
4270                 ret = -ENOENT;
4271                 goto unlock;
4272         }
4273
4274         /* Count all active objects as busy, even if they are currently not used
4275          * by the gpu. Users of this interface expect objects to eventually
4276          * become non-busy without any further actions, therefore emit any
4277          * necessary flushes here.
4278          */
4279         ret = i915_gem_object_flush_active(obj);
4280
4281         args->busy = obj->active;
4282         if (obj->ring) {
4283                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4284                 args->busy |= intel_ring_flag(obj->ring) << 16;
4285         }
4286
4287         drm_gem_object_unreference(&obj->base);
4288 unlock:
4289         mutex_unlock(&dev->struct_mutex);
4290         return ret;
4291 }
4292
4293 int
4294 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4295                         struct drm_file *file_priv)
4296 {
4297         return i915_gem_ring_throttle(dev, file_priv);
4298 }
4299
4300 int
4301 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4302                        struct drm_file *file_priv)
4303 {
4304         struct drm_i915_private *dev_priv = dev->dev_private;
4305         struct drm_i915_gem_madvise *args = data;
4306         struct drm_i915_gem_object *obj;
4307         int ret;
4308
4309         switch (args->madv) {
4310         case I915_MADV_DONTNEED:
4311         case I915_MADV_WILLNEED:
4312             break;
4313         default:
4314             return -EINVAL;
4315         }
4316
4317         ret = i915_mutex_lock_interruptible(dev);
4318         if (ret)
4319                 return ret;
4320
4321         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4322         if (&obj->base == NULL) {
4323                 ret = -ENOENT;
4324                 goto unlock;
4325         }
4326
4327         if (i915_gem_obj_is_pinned(obj)) {
4328                 ret = -EINVAL;
4329                 goto out;
4330         }
4331
4332         if (obj->pages &&
4333             obj->tiling_mode != I915_TILING_NONE &&
4334             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4335                 if (obj->madv == I915_MADV_WILLNEED)
4336                         i915_gem_object_unpin_pages(obj);
4337                 if (args->madv == I915_MADV_WILLNEED)
4338                         i915_gem_object_pin_pages(obj);
4339         }
4340
4341         if (obj->madv != __I915_MADV_PURGED)
4342                 obj->madv = args->madv;
4343
4344         /* if the object is no longer attached, discard its backing storage */
4345         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4346                 i915_gem_object_truncate(obj);
4347
4348         args->retained = obj->madv != __I915_MADV_PURGED;
4349
4350 out:
4351         drm_gem_object_unreference(&obj->base);
4352 unlock:
4353         mutex_unlock(&dev->struct_mutex);
4354         return ret;
4355 }
4356
4357 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4358                           const struct drm_i915_gem_object_ops *ops)
4359 {
4360         INIT_LIST_HEAD(&obj->global_list);
4361         INIT_LIST_HEAD(&obj->ring_list);
4362         INIT_LIST_HEAD(&obj->obj_exec_link);
4363         INIT_LIST_HEAD(&obj->vma_list);
4364
4365         obj->ops = ops;
4366
4367         obj->fence_reg = I915_FENCE_REG_NONE;
4368         obj->madv = I915_MADV_WILLNEED;
4369
4370         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4371 }
4372
4373 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4374         .get_pages = i915_gem_object_get_pages_gtt,
4375         .put_pages = i915_gem_object_put_pages_gtt,
4376 };
4377
4378 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4379                                                   size_t size)
4380 {
4381         struct drm_i915_gem_object *obj;
4382         struct address_space *mapping;
4383         gfp_t mask;
4384
4385         obj = i915_gem_object_alloc(dev);
4386         if (obj == NULL)
4387                 return NULL;
4388
4389         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4390                 i915_gem_object_free(obj);
4391                 return NULL;
4392         }
4393
4394         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4395         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4396                 /* 965gm cannot relocate objects above 4GiB. */
4397                 mask &= ~__GFP_HIGHMEM;
4398                 mask |= __GFP_DMA32;
4399         }
4400
4401         mapping = file_inode(obj->base.filp)->i_mapping;
4402         mapping_set_gfp_mask(mapping, mask);
4403
4404         i915_gem_object_init(obj, &i915_gem_object_ops);
4405
4406         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4407         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4408
4409         if (HAS_LLC(dev)) {
4410                 /* On some devices, we can have the GPU use the LLC (the CPU
4411                  * cache) for about a 10% performance improvement
4412                  * compared to uncached.  Graphics requests other than
4413                  * display scanout are coherent with the CPU in
4414                  * accessing this cache.  This means in this mode we
4415                  * don't need to clflush on the CPU side, and on the
4416                  * GPU side we only need to flush internal caches to
4417                  * get data visible to the CPU.
4418                  *
4419                  * However, we maintain the display planes as UC, and so
4420                  * need to rebind when first used as such.
4421                  */
4422                 obj->cache_level = I915_CACHE_LLC;
4423         } else
4424                 obj->cache_level = I915_CACHE_NONE;
4425
4426         trace_i915_gem_object_create(obj);
4427
4428         return obj;
4429 }
4430
4431 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4432 {
4433         /* If we are the last user of the backing storage (be it shmemfs
4434          * pages or stolen etc), we know that the pages are going to be
4435          * immediately released. In this case, we can then skip copying
4436          * back the contents from the GPU.
4437          */
4438
4439         if (obj->madv != I915_MADV_WILLNEED)
4440                 return false;
4441
4442         if (obj->base.filp == NULL)
4443                 return true;
4444
4445         /* At first glance, this looks racy, but then again so would be
4446          * userspace racing mmap against close. However, the first external
4447          * reference to the filp can only be obtained through the
4448          * i915_gem_mmap_ioctl() which safeguards us against the user
4449          * acquiring such a reference whilst we are in the middle of
4450          * freeing the object.
4451          */
4452         return atomic_long_read(&obj->base.filp->f_count) == 1;
4453 }
4454
4455 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4456 {
4457         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4458         struct drm_device *dev = obj->base.dev;
4459         struct drm_i915_private *dev_priv = dev->dev_private;
4460         struct i915_vma *vma, *next;
4461
4462         intel_runtime_pm_get(dev_priv);
4463
4464         trace_i915_gem_object_destroy(obj);
4465
4466         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4467                 int ret;
4468
4469                 vma->pin_count = 0;
4470                 ret = i915_vma_unbind(vma);
4471                 if (WARN_ON(ret == -ERESTARTSYS)) {
4472                         bool was_interruptible;
4473
4474                         was_interruptible = dev_priv->mm.interruptible;
4475                         dev_priv->mm.interruptible = false;
4476
4477                         WARN_ON(i915_vma_unbind(vma));
4478
4479                         dev_priv->mm.interruptible = was_interruptible;
4480                 }
4481         }
4482
4483         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4484          * before progressing. */
4485         if (obj->stolen)
4486                 i915_gem_object_unpin_pages(obj);
4487
4488         WARN_ON(obj->frontbuffer_bits);
4489
4490         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4491             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4492             obj->tiling_mode != I915_TILING_NONE)
4493                 i915_gem_object_unpin_pages(obj);
4494
4495         if (WARN_ON(obj->pages_pin_count))
4496                 obj->pages_pin_count = 0;
4497         if (discard_backing_storage(obj))
4498                 obj->madv = I915_MADV_DONTNEED;
4499         i915_gem_object_put_pages(obj);
4500         i915_gem_object_free_mmap_offset(obj);
4501
4502         BUG_ON(obj->pages);
4503
4504         if (obj->base.import_attach)
4505                 drm_prime_gem_destroy(&obj->base, NULL);
4506
4507         if (obj->ops->release)
4508                 obj->ops->release(obj);
4509
4510         drm_gem_object_release(&obj->base);
4511         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4512
4513         kfree(obj->bit_17);
4514         i915_gem_object_free(obj);
4515
4516         intel_runtime_pm_put(dev_priv);
4517 }
4518
4519 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4520                                      struct i915_address_space *vm)
4521 {
4522         struct i915_vma *vma;
4523         list_for_each_entry(vma, &obj->vma_list, vma_link)
4524                 if (vma->vm == vm)
4525                         return vma;
4526
4527         return NULL;
4528 }
4529
4530 void i915_gem_vma_destroy(struct i915_vma *vma)
4531 {
4532         struct i915_address_space *vm = NULL;
4533         WARN_ON(vma->node.allocated);
4534
4535         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4536         if (!list_empty(&vma->exec_list))
4537                 return;
4538
4539         vm = vma->vm;
4540
4541         if (!i915_is_ggtt(vm))
4542                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4543
4544         list_del(&vma->vma_link);
4545
4546         kfree(vma);
4547 }
4548
4549 static void
4550 i915_gem_stop_ringbuffers(struct drm_device *dev)
4551 {
4552         struct drm_i915_private *dev_priv = dev->dev_private;
4553         struct intel_engine_cs *ring;
4554         int i;
4555
4556         for_each_ring(ring, dev_priv, i)
4557                 dev_priv->gt.stop_ring(ring);
4558 }
4559
4560 int
4561 i915_gem_suspend(struct drm_device *dev)
4562 {
4563         struct drm_i915_private *dev_priv = dev->dev_private;
4564         int ret = 0;
4565
4566         mutex_lock(&dev->struct_mutex);
4567         ret = i915_gpu_idle(dev);
4568         if (ret)
4569                 goto err;
4570
4571         i915_gem_retire_requests(dev);
4572
4573         /* Under UMS, be paranoid and evict. */
4574         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4575                 i915_gem_evict_everything(dev);
4576
4577         i915_gem_stop_ringbuffers(dev);
4578         mutex_unlock(&dev->struct_mutex);
4579
4580         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4581         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4582         flush_delayed_work(&dev_priv->mm.idle_work);
4583
4584         return 0;
4585
4586 err:
4587         mutex_unlock(&dev->struct_mutex);
4588         return ret;
4589 }
4590
4591 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4592 {
4593         struct drm_device *dev = ring->dev;
4594         struct drm_i915_private *dev_priv = dev->dev_private;
4595         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4596         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4597         int i, ret;
4598
4599         if (!HAS_L3_DPF(dev) || !remap_info)
4600                 return 0;
4601
4602         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4603         if (ret)
4604                 return ret;
4605
4606         /*
4607          * Note: We do not worry about the concurrent register cacheline hang
4608          * here because no other code should access these registers other than
4609          * at initialization time.
4610          */
4611         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4612                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4613                 intel_ring_emit(ring, reg_base + i);
4614                 intel_ring_emit(ring, remap_info[i/4]);
4615         }
4616
4617         intel_ring_advance(ring);
4618
4619         return ret;
4620 }
4621
4622 void i915_gem_init_swizzling(struct drm_device *dev)
4623 {
4624         struct drm_i915_private *dev_priv = dev->dev_private;
4625
4626         if (INTEL_INFO(dev)->gen < 5 ||
4627             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4628                 return;
4629
4630         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4631                                  DISP_TILE_SURFACE_SWIZZLING);
4632
4633         if (IS_GEN5(dev))
4634                 return;
4635
4636         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4637         if (IS_GEN6(dev))
4638                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4639         else if (IS_GEN7(dev))
4640                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4641         else if (IS_GEN8(dev))
4642                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4643         else
4644                 BUG();
4645 }
4646
4647 static bool
4648 intel_enable_blt(struct drm_device *dev)
4649 {
4650         if (!HAS_BLT(dev))
4651                 return false;
4652
4653         /* The blitter was dysfunctional on early prototypes */
4654         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4655                 DRM_INFO("BLT not supported on this pre-production hardware;"
4656                          " graphics performance will be degraded.\n");
4657                 return false;
4658         }
4659
4660         return true;
4661 }
4662
4663 static void init_unused_ring(struct drm_device *dev, u32 base)
4664 {
4665         struct drm_i915_private *dev_priv = dev->dev_private;
4666
4667         I915_WRITE(RING_CTL(base), 0);
4668         I915_WRITE(RING_HEAD(base), 0);
4669         I915_WRITE(RING_TAIL(base), 0);
4670         I915_WRITE(RING_START(base), 0);
4671 }
4672
4673 static void init_unused_rings(struct drm_device *dev)
4674 {
4675         if (IS_I830(dev)) {
4676                 init_unused_ring(dev, PRB1_BASE);
4677                 init_unused_ring(dev, SRB0_BASE);
4678                 init_unused_ring(dev, SRB1_BASE);
4679                 init_unused_ring(dev, SRB2_BASE);
4680                 init_unused_ring(dev, SRB3_BASE);
4681         } else if (IS_GEN2(dev)) {
4682                 init_unused_ring(dev, SRB0_BASE);
4683                 init_unused_ring(dev, SRB1_BASE);
4684         } else if (IS_GEN3(dev)) {
4685                 init_unused_ring(dev, PRB1_BASE);
4686                 init_unused_ring(dev, PRB2_BASE);
4687         }
4688 }
4689
4690 int i915_gem_init_rings(struct drm_device *dev)
4691 {
4692         struct drm_i915_private *dev_priv = dev->dev_private;
4693         int ret;
4694
4695         /*
4696          * At least 830 can leave some of the unused rings
4697          * "active" (ie. head != tail) after resume which
4698          * will prevent c3 entry. Makes sure all unused rings
4699          * are totally idle.
4700          */
4701         init_unused_rings(dev);
4702
4703         ret = intel_init_render_ring_buffer(dev);
4704         if (ret)
4705                 return ret;
4706
4707         if (HAS_BSD(dev)) {
4708                 ret = intel_init_bsd_ring_buffer(dev);
4709                 if (ret)
4710                         goto cleanup_render_ring;
4711         }
4712
4713         if (intel_enable_blt(dev)) {
4714                 ret = intel_init_blt_ring_buffer(dev);
4715                 if (ret)
4716                         goto cleanup_bsd_ring;
4717         }
4718
4719         if (HAS_VEBOX(dev)) {
4720                 ret = intel_init_vebox_ring_buffer(dev);
4721                 if (ret)
4722                         goto cleanup_blt_ring;
4723         }
4724
4725         if (HAS_BSD2(dev)) {
4726                 ret = intel_init_bsd2_ring_buffer(dev);
4727                 if (ret)
4728                         goto cleanup_vebox_ring;
4729         }
4730
4731         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4732         if (ret)
4733                 goto cleanup_bsd2_ring;
4734
4735         return 0;
4736
4737 cleanup_bsd2_ring:
4738         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4739 cleanup_vebox_ring:
4740         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4741 cleanup_blt_ring:
4742         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4743 cleanup_bsd_ring:
4744         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4745 cleanup_render_ring:
4746         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4747
4748         return ret;
4749 }
4750
4751 int
4752 i915_gem_init_hw(struct drm_device *dev)
4753 {
4754         struct drm_i915_private *dev_priv = dev->dev_private;
4755         int ret, i;
4756
4757         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4758                 return -EIO;
4759
4760         if (dev_priv->ellc_size)
4761                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4762
4763         if (IS_HASWELL(dev))
4764                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4765                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4766
4767         if (HAS_PCH_NOP(dev)) {
4768                 if (IS_IVYBRIDGE(dev)) {
4769                         u32 temp = I915_READ(GEN7_MSG_CTL);
4770                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4771                         I915_WRITE(GEN7_MSG_CTL, temp);
4772                 } else if (INTEL_INFO(dev)->gen >= 7) {
4773                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4774                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4775                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4776                 }
4777         }
4778
4779         i915_gem_init_swizzling(dev);
4780
4781         ret = dev_priv->gt.init_rings(dev);
4782         if (ret)
4783                 return ret;
4784
4785         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4786                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4787
4788         /*
4789          * XXX: Contexts should only be initialized once. Doing a switch to the
4790          * default context switch however is something we'd like to do after
4791          * reset or thaw (the latter may not actually be necessary for HW, but
4792          * goes with our code better). Context switching requires rings (for
4793          * the do_switch), but before enabling PPGTT. So don't move this.
4794          */
4795         ret = i915_gem_context_enable(dev_priv);
4796         if (ret && ret != -EIO) {
4797                 DRM_ERROR("Context enable failed %d\n", ret);
4798                 i915_gem_cleanup_ringbuffer(dev);
4799
4800                 return ret;
4801         }
4802
4803         ret = i915_ppgtt_init_hw(dev);
4804         if (ret && ret != -EIO) {
4805                 DRM_ERROR("PPGTT enable failed %d\n", ret);
4806                 i915_gem_cleanup_ringbuffer(dev);
4807         }
4808
4809         return ret;
4810 }
4811
4812 int i915_gem_init(struct drm_device *dev)
4813 {
4814         struct drm_i915_private *dev_priv = dev->dev_private;
4815         int ret;
4816
4817         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4818                         i915.enable_execlists);
4819
4820         mutex_lock(&dev->struct_mutex);
4821
4822         if (IS_VALLEYVIEW(dev)) {
4823                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4824                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4825                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4826                               VLV_GTLC_ALLOWWAKEACK), 10))
4827                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4828         }
4829
4830         if (!i915.enable_execlists) {
4831                 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4832                 dev_priv->gt.init_rings = i915_gem_init_rings;
4833                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4834                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4835         } else {
4836                 dev_priv->gt.do_execbuf = intel_execlists_submission;
4837                 dev_priv->gt.init_rings = intel_logical_rings_init;
4838                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4839                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4840         }
4841
4842         ret = i915_gem_init_userptr(dev);
4843         if (ret) {
4844                 mutex_unlock(&dev->struct_mutex);
4845                 return ret;
4846         }
4847
4848         i915_gem_init_global_gtt(dev);
4849
4850         ret = i915_gem_context_init(dev);
4851         if (ret) {
4852                 mutex_unlock(&dev->struct_mutex);
4853                 return ret;
4854         }
4855
4856         ret = i915_gem_init_hw(dev);
4857         if (ret == -EIO) {
4858                 /* Allow ring initialisation to fail by marking the GPU as
4859                  * wedged. But we only want to do this where the GPU is angry,
4860                  * for all other failure, such as an allocation failure, bail.
4861                  */
4862                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4863                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4864                 ret = 0;
4865         }
4866         mutex_unlock(&dev->struct_mutex);
4867
4868         return ret;
4869 }
4870
4871 void
4872 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4873 {
4874         struct drm_i915_private *dev_priv = dev->dev_private;
4875         struct intel_engine_cs *ring;
4876         int i;
4877
4878         for_each_ring(ring, dev_priv, i)
4879                 dev_priv->gt.cleanup_ring(ring);
4880 }
4881
4882 static void
4883 init_ring_lists(struct intel_engine_cs *ring)
4884 {
4885         INIT_LIST_HEAD(&ring->active_list);
4886         INIT_LIST_HEAD(&ring->request_list);
4887 }
4888
4889 void i915_init_vm(struct drm_i915_private *dev_priv,
4890                   struct i915_address_space *vm)
4891 {
4892         if (!i915_is_ggtt(vm))
4893                 drm_mm_init(&vm->mm, vm->start, vm->total);
4894         vm->dev = dev_priv->dev;
4895         INIT_LIST_HEAD(&vm->active_list);
4896         INIT_LIST_HEAD(&vm->inactive_list);
4897         INIT_LIST_HEAD(&vm->global_link);
4898         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4899 }
4900
4901 void
4902 i915_gem_load(struct drm_device *dev)
4903 {
4904         struct drm_i915_private *dev_priv = dev->dev_private;
4905         int i;
4906
4907         dev_priv->slab =
4908                 kmem_cache_create("i915_gem_object",
4909                                   sizeof(struct drm_i915_gem_object), 0,
4910                                   SLAB_HWCACHE_ALIGN,
4911                                   NULL);
4912
4913         INIT_LIST_HEAD(&dev_priv->vm_list);
4914         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4915
4916         INIT_LIST_HEAD(&dev_priv->context_list);
4917         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4918         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4919         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4920         for (i = 0; i < I915_NUM_RINGS; i++)
4921                 init_ring_lists(&dev_priv->ring[i]);
4922         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4923                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4924         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4925                           i915_gem_retire_work_handler);
4926         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4927                           i915_gem_idle_work_handler);
4928         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4929
4930         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4931         if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4932                 I915_WRITE(MI_ARB_STATE,
4933                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4934         }
4935
4936         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4937
4938         /* Old X drivers will take 0-2 for front, back, depth buffers */
4939         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4940                 dev_priv->fence_reg_start = 3;
4941
4942         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4943                 dev_priv->num_fence_regs = 32;
4944         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4945                 dev_priv->num_fence_regs = 16;
4946         else
4947                 dev_priv->num_fence_regs = 8;
4948
4949         /* Initialize fence registers to zero */
4950         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4951         i915_gem_restore_fences(dev);
4952
4953         i915_gem_detect_bit_6_swizzle(dev);
4954         init_waitqueue_head(&dev_priv->pending_flip_queue);
4955
4956         dev_priv->mm.interruptible = true;
4957
4958         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4959         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4960         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4961         register_shrinker(&dev_priv->mm.shrinker);
4962
4963         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4964         register_oom_notifier(&dev_priv->mm.oom_notifier);
4965
4966         mutex_init(&dev_priv->fb_tracking.lock);
4967 }
4968
4969 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4970 {
4971         struct drm_i915_file_private *file_priv = file->driver_priv;
4972
4973         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4974
4975         /* Clean up our request list when the client is going away, so that
4976          * later retire_requests won't dereference our soon-to-be-gone
4977          * file_priv.
4978          */
4979         spin_lock(&file_priv->mm.lock);
4980         while (!list_empty(&file_priv->mm.request_list)) {
4981                 struct drm_i915_gem_request *request;
4982
4983                 request = list_first_entry(&file_priv->mm.request_list,
4984                                            struct drm_i915_gem_request,
4985                                            client_list);
4986                 list_del(&request->client_list);
4987                 request->file_priv = NULL;
4988         }
4989         spin_unlock(&file_priv->mm.lock);
4990 }
4991
4992 static void
4993 i915_gem_file_idle_work_handler(struct work_struct *work)
4994 {
4995         struct drm_i915_file_private *file_priv =
4996                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4997
4998         atomic_set(&file_priv->rps_wait_boost, false);
4999 }
5000
5001 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5002 {
5003         struct drm_i915_file_private *file_priv;
5004         int ret;
5005
5006         DRM_DEBUG_DRIVER("\n");
5007
5008         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5009         if (!file_priv)
5010                 return -ENOMEM;
5011
5012         file->driver_priv = file_priv;
5013         file_priv->dev_priv = dev->dev_private;
5014         file_priv->file = file;
5015
5016         spin_lock_init(&file_priv->mm.lock);
5017         INIT_LIST_HEAD(&file_priv->mm.request_list);
5018         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5019                           i915_gem_file_idle_work_handler);
5020
5021         ret = i915_gem_context_open(dev, file);
5022         if (ret)
5023                 kfree(file_priv);
5024
5025         return ret;
5026 }
5027
5028 /**
5029  * i915_gem_track_fb - update frontbuffer tracking
5030  * old: current GEM buffer for the frontbuffer slots
5031  * new: new GEM buffer for the frontbuffer slots
5032  * frontbuffer_bits: bitmask of frontbuffer slots
5033  *
5034  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5035  * from @old and setting them in @new. Both @old and @new can be NULL.
5036  */
5037 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5038                        struct drm_i915_gem_object *new,
5039                        unsigned frontbuffer_bits)
5040 {
5041         if (old) {
5042                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5043                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5044                 old->frontbuffer_bits &= ~frontbuffer_bits;
5045         }
5046
5047         if (new) {
5048                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5049                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5050                 new->frontbuffer_bits |= frontbuffer_bits;
5051         }
5052 }
5053
5054 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5055 {
5056         if (!mutex_is_locked(mutex))
5057                 return false;
5058
5059 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5060         return mutex->owner == task;
5061 #else
5062         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5063         return false;
5064 #endif
5065 }
5066
5067 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5068 {
5069         if (!mutex_trylock(&dev->struct_mutex)) {
5070                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5071                         return false;
5072
5073                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5074                         return false;
5075
5076                 *unlock = false;
5077         } else
5078                 *unlock = true;
5079
5080         return true;
5081 }
5082
5083 static int num_vma_bound(struct drm_i915_gem_object *obj)
5084 {
5085         struct i915_vma *vma;
5086         int count = 0;
5087
5088         list_for_each_entry(vma, &obj->vma_list, vma_link)
5089                 if (drm_mm_node_allocated(&vma->node))
5090                         count++;
5091
5092         return count;
5093 }
5094
5095 static unsigned long
5096 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5097 {
5098         struct drm_i915_private *dev_priv =
5099                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5100         struct drm_device *dev = dev_priv->dev;
5101         struct drm_i915_gem_object *obj;
5102         unsigned long count;
5103         bool unlock;
5104
5105         if (!i915_gem_shrinker_lock(dev, &unlock))
5106                 return 0;
5107
5108         count = 0;
5109         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5110                 if (obj->pages_pin_count == 0)
5111                         count += obj->base.size >> PAGE_SHIFT;
5112
5113         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5114                 if (!i915_gem_obj_is_pinned(obj) &&
5115                     obj->pages_pin_count == num_vma_bound(obj))
5116                         count += obj->base.size >> PAGE_SHIFT;
5117         }
5118
5119         if (unlock)
5120                 mutex_unlock(&dev->struct_mutex);
5121
5122         return count;
5123 }
5124
5125 /* All the new VM stuff */
5126 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5127                                   struct i915_address_space *vm)
5128 {
5129         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5130         struct i915_vma *vma;
5131
5132         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5133
5134         list_for_each_entry(vma, &o->vma_list, vma_link) {
5135                 if (vma->vm == vm)
5136                         return vma->node.start;
5137
5138         }
5139         WARN(1, "%s vma for this object not found.\n",
5140              i915_is_ggtt(vm) ? "global" : "ppgtt");
5141         return -1;
5142 }
5143
5144 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5145                         struct i915_address_space *vm)
5146 {
5147         struct i915_vma *vma;
5148
5149         list_for_each_entry(vma, &o->vma_list, vma_link)
5150                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5151                         return true;
5152
5153         return false;
5154 }
5155
5156 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5157 {
5158         struct i915_vma *vma;
5159
5160         list_for_each_entry(vma, &o->vma_list, vma_link)
5161                 if (drm_mm_node_allocated(&vma->node))
5162                         return true;
5163
5164         return false;
5165 }
5166
5167 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5168                                 struct i915_address_space *vm)
5169 {
5170         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5171         struct i915_vma *vma;
5172
5173         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5174
5175         BUG_ON(list_empty(&o->vma_list));
5176
5177         list_for_each_entry(vma, &o->vma_list, vma_link)
5178                 if (vma->vm == vm)
5179                         return vma->node.size;
5180
5181         return 0;
5182 }
5183
5184 static unsigned long
5185 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5186 {
5187         struct drm_i915_private *dev_priv =
5188                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5189         struct drm_device *dev = dev_priv->dev;
5190         unsigned long freed;
5191         bool unlock;
5192
5193         if (!i915_gem_shrinker_lock(dev, &unlock))
5194                 return SHRINK_STOP;
5195
5196         freed = i915_gem_shrink(dev_priv,
5197                                 sc->nr_to_scan,
5198                                 I915_SHRINK_BOUND |
5199                                 I915_SHRINK_UNBOUND |
5200                                 I915_SHRINK_PURGEABLE);
5201         if (freed < sc->nr_to_scan)
5202                 freed += i915_gem_shrink(dev_priv,
5203                                          sc->nr_to_scan - freed,
5204                                          I915_SHRINK_BOUND |
5205                                          I915_SHRINK_UNBOUND);
5206         if (unlock)
5207                 mutex_unlock(&dev->struct_mutex);
5208
5209         return freed;
5210 }
5211
5212 static int
5213 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5214 {
5215         struct drm_i915_private *dev_priv =
5216                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5217         struct drm_device *dev = dev_priv->dev;
5218         struct drm_i915_gem_object *obj;
5219         unsigned long timeout = msecs_to_jiffies(5000) + 1;
5220         unsigned long pinned, bound, unbound, freed_pages;
5221         bool was_interruptible;
5222         bool unlock;
5223
5224         while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5225                 schedule_timeout_killable(1);
5226                 if (fatal_signal_pending(current))
5227                         return NOTIFY_DONE;
5228         }
5229         if (timeout == 0) {
5230                 pr_err("Unable to purge GPU memory due lock contention.\n");
5231                 return NOTIFY_DONE;
5232         }
5233
5234         was_interruptible = dev_priv->mm.interruptible;
5235         dev_priv->mm.interruptible = false;
5236
5237         freed_pages = i915_gem_shrink_all(dev_priv);
5238
5239         dev_priv->mm.interruptible = was_interruptible;
5240
5241         /* Because we may be allocating inside our own driver, we cannot
5242          * assert that there are no objects with pinned pages that are not
5243          * being pointed to by hardware.
5244          */
5245         unbound = bound = pinned = 0;
5246         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5247                 if (!obj->base.filp) /* not backed by a freeable object */
5248                         continue;
5249
5250                 if (obj->pages_pin_count)
5251                         pinned += obj->base.size;
5252                 else
5253                         unbound += obj->base.size;
5254         }
5255         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5256                 if (!obj->base.filp)
5257                         continue;
5258
5259                 if (obj->pages_pin_count)
5260                         pinned += obj->base.size;
5261                 else
5262                         bound += obj->base.size;
5263         }
5264
5265         if (unlock)
5266                 mutex_unlock(&dev->struct_mutex);
5267
5268         if (freed_pages || unbound || bound)
5269                 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5270                         freed_pages << PAGE_SHIFT, pinned);
5271         if (unbound || bound)
5272                 pr_err("%lu and %lu bytes still available in the "
5273                        "bound and unbound GPU page lists.\n",
5274                        bound, unbound);
5275
5276         *(unsigned long *)ptr += freed_pages;
5277         return NOTIFY_DONE;
5278 }
5279
5280 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5281 {
5282         struct i915_vma *vma;
5283
5284         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5285         if (vma->vm != i915_obj_to_ggtt(obj))
5286                 return NULL;
5287
5288         return vma;
5289 }