Merge tag 'drm/tegra/for-4.9-rc1' of git://anongit.freedesktop.org/tegra/linux into...
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_dmabuf.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/pci.h>
43 #include <linux/dma-buf.h>
44
45 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47
48 static bool cpu_cache_is_coherent(struct drm_device *dev,
49                                   enum i915_cache_level level)
50 {
51         return HAS_LLC(dev) || level != I915_CACHE_NONE;
52 }
53
54 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55 {
56         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57                 return false;
58
59         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60                 return true;
61
62         return obj->pin_display;
63 }
64
65 static int
66 insert_mappable_node(struct drm_i915_private *i915,
67                      struct drm_mm_node *node, u32 size)
68 {
69         memset(node, 0, sizeof(*node));
70         return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
71                                                    size, 0, 0, 0,
72                                                    i915->ggtt.mappable_end,
73                                                    DRM_MM_SEARCH_DEFAULT,
74                                                    DRM_MM_CREATE_DEFAULT);
75 }
76
77 static void
78 remove_mappable_node(struct drm_mm_node *node)
79 {
80         drm_mm_remove_node(node);
81 }
82
83 /* some bookkeeping */
84 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85                                   size_t size)
86 {
87         spin_lock(&dev_priv->mm.object_stat_lock);
88         dev_priv->mm.object_count++;
89         dev_priv->mm.object_memory += size;
90         spin_unlock(&dev_priv->mm.object_stat_lock);
91 }
92
93 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94                                      size_t size)
95 {
96         spin_lock(&dev_priv->mm.object_stat_lock);
97         dev_priv->mm.object_count--;
98         dev_priv->mm.object_memory -= size;
99         spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static int
103 i915_gem_wait_for_error(struct i915_gpu_error *error)
104 {
105         int ret;
106
107         if (!i915_reset_in_progress(error))
108                 return 0;
109
110         /*
111          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112          * userspace. If it takes that long something really bad is going on and
113          * we should simply try to bail out and fail as gracefully as possible.
114          */
115         ret = wait_event_interruptible_timeout(error->reset_queue,
116                                                !i915_reset_in_progress(error),
117                                                10*HZ);
118         if (ret == 0) {
119                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120                 return -EIO;
121         } else if (ret < 0) {
122                 return ret;
123         } else {
124                 return 0;
125         }
126 }
127
128 int i915_mutex_lock_interruptible(struct drm_device *dev)
129 {
130         struct drm_i915_private *dev_priv = to_i915(dev);
131         int ret;
132
133         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134         if (ret)
135                 return ret;
136
137         ret = mutex_lock_interruptible(&dev->struct_mutex);
138         if (ret)
139                 return ret;
140
141         return 0;
142 }
143
144 int
145 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146                             struct drm_file *file)
147 {
148         struct drm_i915_private *dev_priv = to_i915(dev);
149         struct i915_ggtt *ggtt = &dev_priv->ggtt;
150         struct drm_i915_gem_get_aperture *args = data;
151         struct i915_vma *vma;
152         size_t pinned;
153
154         pinned = 0;
155         mutex_lock(&dev->struct_mutex);
156         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157                 if (i915_vma_is_pinned(vma))
158                         pinned += vma->node.size;
159         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160                 if (i915_vma_is_pinned(vma))
161                         pinned += vma->node.size;
162         mutex_unlock(&dev->struct_mutex);
163
164         args->aper_size = ggtt->base.total;
165         args->aper_available_size = args->aper_size - pinned;
166
167         return 0;
168 }
169
170 static int
171 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172 {
173         struct address_space *mapping = obj->base.filp->f_mapping;
174         char *vaddr = obj->phys_handle->vaddr;
175         struct sg_table *st;
176         struct scatterlist *sg;
177         int i;
178
179         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180                 return -EINVAL;
181
182         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
183                 struct page *page;
184                 char *src;
185
186                 page = shmem_read_mapping_page(mapping, i);
187                 if (IS_ERR(page))
188                         return PTR_ERR(page);
189
190                 src = kmap_atomic(page);
191                 memcpy(vaddr, src, PAGE_SIZE);
192                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
193                 kunmap_atomic(src);
194
195                 put_page(page);
196                 vaddr += PAGE_SIZE;
197         }
198
199         i915_gem_chipset_flush(to_i915(obj->base.dev));
200
201         st = kmalloc(sizeof(*st), GFP_KERNEL);
202         if (st == NULL)
203                 return -ENOMEM;
204
205         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
206                 kfree(st);
207                 return -ENOMEM;
208         }
209
210         sg = st->sgl;
211         sg->offset = 0;
212         sg->length = obj->base.size;
213
214         sg_dma_address(sg) = obj->phys_handle->busaddr;
215         sg_dma_len(sg) = obj->base.size;
216
217         obj->pages = st;
218         return 0;
219 }
220
221 static void
222 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
223 {
224         int ret;
225
226         BUG_ON(obj->madv == __I915_MADV_PURGED);
227
228         ret = i915_gem_object_set_to_cpu_domain(obj, true);
229         if (WARN_ON(ret)) {
230                 /* In the event of a disaster, abandon all caches and
231                  * hope for the best.
232                  */
233                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234         }
235
236         if (obj->madv == I915_MADV_DONTNEED)
237                 obj->dirty = 0;
238
239         if (obj->dirty) {
240                 struct address_space *mapping = obj->base.filp->f_mapping;
241                 char *vaddr = obj->phys_handle->vaddr;
242                 int i;
243
244                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245                         struct page *page;
246                         char *dst;
247
248                         page = shmem_read_mapping_page(mapping, i);
249                         if (IS_ERR(page))
250                                 continue;
251
252                         dst = kmap_atomic(page);
253                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
254                         memcpy(dst, vaddr, PAGE_SIZE);
255                         kunmap_atomic(dst);
256
257                         set_page_dirty(page);
258                         if (obj->madv == I915_MADV_WILLNEED)
259                                 mark_page_accessed(page);
260                         put_page(page);
261                         vaddr += PAGE_SIZE;
262                 }
263                 obj->dirty = 0;
264         }
265
266         sg_free_table(obj->pages);
267         kfree(obj->pages);
268 }
269
270 static void
271 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
272 {
273         drm_pci_free(obj->base.dev, obj->phys_handle);
274 }
275
276 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
277         .get_pages = i915_gem_object_get_pages_phys,
278         .put_pages = i915_gem_object_put_pages_phys,
279         .release = i915_gem_object_release_phys,
280 };
281
282 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 {
284         struct i915_vma *vma;
285         LIST_HEAD(still_in_list);
286         int ret;
287
288         lockdep_assert_held(&obj->base.dev->struct_mutex);
289
290         /* Closed vma are removed from the obj->vma_list - but they may
291          * still have an active binding on the object. To remove those we
292          * must wait for all rendering to complete to the object (as unbinding
293          * must anyway), and retire the requests.
294          */
295         ret = i915_gem_object_wait_rendering(obj, false);
296         if (ret)
297                 return ret;
298
299         i915_gem_retire_requests(to_i915(obj->base.dev));
300
301         while ((vma = list_first_entry_or_null(&obj->vma_list,
302                                                struct i915_vma,
303                                                obj_link))) {
304                 list_move_tail(&vma->obj_link, &still_in_list);
305                 ret = i915_vma_unbind(vma);
306                 if (ret)
307                         break;
308         }
309         list_splice(&still_in_list, &obj->vma_list);
310
311         return ret;
312 }
313
314 /**
315  * Ensures that all rendering to the object has completed and the object is
316  * safe to unbind from the GTT or access from the CPU.
317  * @obj: i915 gem object
318  * @readonly: waiting for just read access or read-write access
319  */
320 int
321 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
322                                bool readonly)
323 {
324         struct reservation_object *resv;
325         struct i915_gem_active *active;
326         unsigned long active_mask;
327         int idx;
328
329         lockdep_assert_held(&obj->base.dev->struct_mutex);
330
331         if (!readonly) {
332                 active = obj->last_read;
333                 active_mask = i915_gem_object_get_active(obj);
334         } else {
335                 active_mask = 1;
336                 active = &obj->last_write;
337         }
338
339         for_each_active(active_mask, idx) {
340                 int ret;
341
342                 ret = i915_gem_active_wait(&active[idx],
343                                            &obj->base.dev->struct_mutex);
344                 if (ret)
345                         return ret;
346         }
347
348         resv = i915_gem_object_get_dmabuf_resv(obj);
349         if (resv) {
350                 long err;
351
352                 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
353                                                           MAX_SCHEDULE_TIMEOUT);
354                 if (err < 0)
355                         return err;
356         }
357
358         return 0;
359 }
360
361 /* A nonblocking variant of the above wait. Must be called prior to
362  * acquiring the mutex for the object, as the object state may change
363  * during this call. A reference must be held by the caller for the object.
364  */
365 static __must_check int
366 __unsafe_wait_rendering(struct drm_i915_gem_object *obj,
367                         struct intel_rps_client *rps,
368                         bool readonly)
369 {
370         struct i915_gem_active *active;
371         unsigned long active_mask;
372         int idx;
373
374         active_mask = __I915_BO_ACTIVE(obj);
375         if (!active_mask)
376                 return 0;
377
378         if (!readonly) {
379                 active = obj->last_read;
380         } else {
381                 active_mask = 1;
382                 active = &obj->last_write;
383         }
384
385         for_each_active(active_mask, idx) {
386                 int ret;
387
388                 ret = i915_gem_active_wait_unlocked(&active[idx],
389                                                     I915_WAIT_INTERRUPTIBLE,
390                                                     NULL, rps);
391                 if (ret)
392                         return ret;
393         }
394
395         return 0;
396 }
397
398 static struct intel_rps_client *to_rps_client(struct drm_file *file)
399 {
400         struct drm_i915_file_private *fpriv = file->driver_priv;
401
402         return &fpriv->rps;
403 }
404
405 int
406 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
407                             int align)
408 {
409         drm_dma_handle_t *phys;
410         int ret;
411
412         if (obj->phys_handle) {
413                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
414                         return -EBUSY;
415
416                 return 0;
417         }
418
419         if (obj->madv != I915_MADV_WILLNEED)
420                 return -EFAULT;
421
422         if (obj->base.filp == NULL)
423                 return -EINVAL;
424
425         ret = i915_gem_object_unbind(obj);
426         if (ret)
427                 return ret;
428
429         ret = i915_gem_object_put_pages(obj);
430         if (ret)
431                 return ret;
432
433         /* create a new object */
434         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
435         if (!phys)
436                 return -ENOMEM;
437
438         obj->phys_handle = phys;
439         obj->ops = &i915_gem_phys_ops;
440
441         return i915_gem_object_get_pages(obj);
442 }
443
444 static int
445 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
446                      struct drm_i915_gem_pwrite *args,
447                      struct drm_file *file_priv)
448 {
449         struct drm_device *dev = obj->base.dev;
450         void *vaddr = obj->phys_handle->vaddr + args->offset;
451         char __user *user_data = u64_to_user_ptr(args->data_ptr);
452         int ret = 0;
453
454         /* We manually control the domain here and pretend that it
455          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
456          */
457         ret = i915_gem_object_wait_rendering(obj, false);
458         if (ret)
459                 return ret;
460
461         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
462         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
463                 unsigned long unwritten;
464
465                 /* The physical object once assigned is fixed for the lifetime
466                  * of the obj, so we can safely drop the lock and continue
467                  * to access vaddr.
468                  */
469                 mutex_unlock(&dev->struct_mutex);
470                 unwritten = copy_from_user(vaddr, user_data, args->size);
471                 mutex_lock(&dev->struct_mutex);
472                 if (unwritten) {
473                         ret = -EFAULT;
474                         goto out;
475                 }
476         }
477
478         drm_clflush_virt_range(vaddr, args->size);
479         i915_gem_chipset_flush(to_i915(dev));
480
481 out:
482         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
483         return ret;
484 }
485
486 void *i915_gem_object_alloc(struct drm_device *dev)
487 {
488         struct drm_i915_private *dev_priv = to_i915(dev);
489         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
490 }
491
492 void i915_gem_object_free(struct drm_i915_gem_object *obj)
493 {
494         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
495         kmem_cache_free(dev_priv->objects, obj);
496 }
497
498 static int
499 i915_gem_create(struct drm_file *file,
500                 struct drm_device *dev,
501                 uint64_t size,
502                 uint32_t *handle_p)
503 {
504         struct drm_i915_gem_object *obj;
505         int ret;
506         u32 handle;
507
508         size = roundup(size, PAGE_SIZE);
509         if (size == 0)
510                 return -EINVAL;
511
512         /* Allocate the new object */
513         obj = i915_gem_object_create(dev, size);
514         if (IS_ERR(obj))
515                 return PTR_ERR(obj);
516
517         ret = drm_gem_handle_create(file, &obj->base, &handle);
518         /* drop reference from allocate - handle holds it now */
519         i915_gem_object_put_unlocked(obj);
520         if (ret)
521                 return ret;
522
523         *handle_p = handle;
524         return 0;
525 }
526
527 int
528 i915_gem_dumb_create(struct drm_file *file,
529                      struct drm_device *dev,
530                      struct drm_mode_create_dumb *args)
531 {
532         /* have to work out size/pitch and return them */
533         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
534         args->size = args->pitch * args->height;
535         return i915_gem_create(file, dev,
536                                args->size, &args->handle);
537 }
538
539 /**
540  * Creates a new mm object and returns a handle to it.
541  * @dev: drm device pointer
542  * @data: ioctl data blob
543  * @file: drm file pointer
544  */
545 int
546 i915_gem_create_ioctl(struct drm_device *dev, void *data,
547                       struct drm_file *file)
548 {
549         struct drm_i915_gem_create *args = data;
550
551         return i915_gem_create(file, dev,
552                                args->size, &args->handle);
553 }
554
555 static inline int
556 __copy_to_user_swizzled(char __user *cpu_vaddr,
557                         const char *gpu_vaddr, int gpu_offset,
558                         int length)
559 {
560         int ret, cpu_offset = 0;
561
562         while (length > 0) {
563                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
564                 int this_length = min(cacheline_end - gpu_offset, length);
565                 int swizzled_gpu_offset = gpu_offset ^ 64;
566
567                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
568                                      gpu_vaddr + swizzled_gpu_offset,
569                                      this_length);
570                 if (ret)
571                         return ret + length;
572
573                 cpu_offset += this_length;
574                 gpu_offset += this_length;
575                 length -= this_length;
576         }
577
578         return 0;
579 }
580
581 static inline int
582 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
583                           const char __user *cpu_vaddr,
584                           int length)
585 {
586         int ret, cpu_offset = 0;
587
588         while (length > 0) {
589                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
590                 int this_length = min(cacheline_end - gpu_offset, length);
591                 int swizzled_gpu_offset = gpu_offset ^ 64;
592
593                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
594                                        cpu_vaddr + cpu_offset,
595                                        this_length);
596                 if (ret)
597                         return ret + length;
598
599                 cpu_offset += this_length;
600                 gpu_offset += this_length;
601                 length -= this_length;
602         }
603
604         return 0;
605 }
606
607 /*
608  * Pins the specified object's pages and synchronizes the object with
609  * GPU accesses. Sets needs_clflush to non-zero if the caller should
610  * flush the object from the CPU cache.
611  */
612 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
613                                     unsigned int *needs_clflush)
614 {
615         int ret;
616
617         *needs_clflush = 0;
618
619         if (!i915_gem_object_has_struct_page(obj))
620                 return -ENODEV;
621
622         ret = i915_gem_object_wait_rendering(obj, true);
623         if (ret)
624                 return ret;
625
626         ret = i915_gem_object_get_pages(obj);
627         if (ret)
628                 return ret;
629
630         i915_gem_object_pin_pages(obj);
631
632         i915_gem_object_flush_gtt_write_domain(obj);
633
634         /* If we're not in the cpu read domain, set ourself into the gtt
635          * read domain and manually flush cachelines (if required). This
636          * optimizes for the case when the gpu will dirty the data
637          * anyway again before the next pread happens.
638          */
639         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
640                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
641                                                         obj->cache_level);
642
643         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
644                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
645                 if (ret)
646                         goto err_unpin;
647
648                 *needs_clflush = 0;
649         }
650
651         /* return with the pages pinned */
652         return 0;
653
654 err_unpin:
655         i915_gem_object_unpin_pages(obj);
656         return ret;
657 }
658
659 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
660                                      unsigned int *needs_clflush)
661 {
662         int ret;
663
664         *needs_clflush = 0;
665         if (!i915_gem_object_has_struct_page(obj))
666                 return -ENODEV;
667
668         ret = i915_gem_object_wait_rendering(obj, false);
669         if (ret)
670                 return ret;
671
672         ret = i915_gem_object_get_pages(obj);
673         if (ret)
674                 return ret;
675
676         i915_gem_object_pin_pages(obj);
677
678         i915_gem_object_flush_gtt_write_domain(obj);
679
680         /* If we're not in the cpu write domain, set ourself into the
681          * gtt write domain and manually flush cachelines (as required).
682          * This optimizes for the case when the gpu will use the data
683          * right away and we therefore have to clflush anyway.
684          */
685         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
686                 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
687
688         /* Same trick applies to invalidate partially written cachelines read
689          * before writing.
690          */
691         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
692                 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
693                                                          obj->cache_level);
694
695         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
696                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
697                 if (ret)
698                         goto err_unpin;
699
700                 *needs_clflush = 0;
701         }
702
703         if ((*needs_clflush & CLFLUSH_AFTER) == 0)
704                 obj->cache_dirty = true;
705
706         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
707         obj->dirty = 1;
708         /* return with the pages pinned */
709         return 0;
710
711 err_unpin:
712         i915_gem_object_unpin_pages(obj);
713         return ret;
714 }
715
716 /* Per-page copy function for the shmem pread fastpath.
717  * Flushes invalid cachelines before reading the target if
718  * needs_clflush is set. */
719 static int
720 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
721                  char __user *user_data,
722                  bool page_do_bit17_swizzling, bool needs_clflush)
723 {
724         char *vaddr;
725         int ret;
726
727         if (unlikely(page_do_bit17_swizzling))
728                 return -EINVAL;
729
730         vaddr = kmap_atomic(page);
731         if (needs_clflush)
732                 drm_clflush_virt_range(vaddr + shmem_page_offset,
733                                        page_length);
734         ret = __copy_to_user_inatomic(user_data,
735                                       vaddr + shmem_page_offset,
736                                       page_length);
737         kunmap_atomic(vaddr);
738
739         return ret ? -EFAULT : 0;
740 }
741
742 static void
743 shmem_clflush_swizzled_range(char *addr, unsigned long length,
744                              bool swizzled)
745 {
746         if (unlikely(swizzled)) {
747                 unsigned long start = (unsigned long) addr;
748                 unsigned long end = (unsigned long) addr + length;
749
750                 /* For swizzling simply ensure that we always flush both
751                  * channels. Lame, but simple and it works. Swizzled
752                  * pwrite/pread is far from a hotpath - current userspace
753                  * doesn't use it at all. */
754                 start = round_down(start, 128);
755                 end = round_up(end, 128);
756
757                 drm_clflush_virt_range((void *)start, end - start);
758         } else {
759                 drm_clflush_virt_range(addr, length);
760         }
761
762 }
763
764 /* Only difference to the fast-path function is that this can handle bit17
765  * and uses non-atomic copy and kmap functions. */
766 static int
767 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
768                  char __user *user_data,
769                  bool page_do_bit17_swizzling, bool needs_clflush)
770 {
771         char *vaddr;
772         int ret;
773
774         vaddr = kmap(page);
775         if (needs_clflush)
776                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
777                                              page_length,
778                                              page_do_bit17_swizzling);
779
780         if (page_do_bit17_swizzling)
781                 ret = __copy_to_user_swizzled(user_data,
782                                               vaddr, shmem_page_offset,
783                                               page_length);
784         else
785                 ret = __copy_to_user(user_data,
786                                      vaddr + shmem_page_offset,
787                                      page_length);
788         kunmap(page);
789
790         return ret ? - EFAULT : 0;
791 }
792
793 static inline unsigned long
794 slow_user_access(struct io_mapping *mapping,
795                  uint64_t page_base, int page_offset,
796                  char __user *user_data,
797                  unsigned long length, bool pwrite)
798 {
799         void __iomem *ioaddr;
800         void *vaddr;
801         uint64_t unwritten;
802
803         ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
804         /* We can use the cpu mem copy function because this is X86. */
805         vaddr = (void __force *)ioaddr + page_offset;
806         if (pwrite)
807                 unwritten = __copy_from_user(vaddr, user_data, length);
808         else
809                 unwritten = __copy_to_user(user_data, vaddr, length);
810
811         io_mapping_unmap(ioaddr);
812         return unwritten;
813 }
814
815 static int
816 i915_gem_gtt_pread(struct drm_device *dev,
817                    struct drm_i915_gem_object *obj, uint64_t size,
818                    uint64_t data_offset, uint64_t data_ptr)
819 {
820         struct drm_i915_private *dev_priv = to_i915(dev);
821         struct i915_ggtt *ggtt = &dev_priv->ggtt;
822         struct i915_vma *vma;
823         struct drm_mm_node node;
824         char __user *user_data;
825         uint64_t remain;
826         uint64_t offset;
827         int ret;
828
829         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
830         if (!IS_ERR(vma)) {
831                 node.start = i915_ggtt_offset(vma);
832                 node.allocated = false;
833                 ret = i915_vma_put_fence(vma);
834                 if (ret) {
835                         i915_vma_unpin(vma);
836                         vma = ERR_PTR(ret);
837                 }
838         }
839         if (IS_ERR(vma)) {
840                 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
841                 if (ret)
842                         goto out;
843
844                 ret = i915_gem_object_get_pages(obj);
845                 if (ret) {
846                         remove_mappable_node(&node);
847                         goto out;
848                 }
849
850                 i915_gem_object_pin_pages(obj);
851         }
852
853         ret = i915_gem_object_set_to_gtt_domain(obj, false);
854         if (ret)
855                 goto out_unpin;
856
857         user_data = u64_to_user_ptr(data_ptr);
858         remain = size;
859         offset = data_offset;
860
861         mutex_unlock(&dev->struct_mutex);
862         if (likely(!i915.prefault_disable)) {
863                 ret = fault_in_multipages_writeable(user_data, remain);
864                 if (ret) {
865                         mutex_lock(&dev->struct_mutex);
866                         goto out_unpin;
867                 }
868         }
869
870         while (remain > 0) {
871                 /* Operation in this page
872                  *
873                  * page_base = page offset within aperture
874                  * page_offset = offset within page
875                  * page_length = bytes to copy for this page
876                  */
877                 u32 page_base = node.start;
878                 unsigned page_offset = offset_in_page(offset);
879                 unsigned page_length = PAGE_SIZE - page_offset;
880                 page_length = remain < page_length ? remain : page_length;
881                 if (node.allocated) {
882                         wmb();
883                         ggtt->base.insert_page(&ggtt->base,
884                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
885                                                node.start,
886                                                I915_CACHE_NONE, 0);
887                         wmb();
888                 } else {
889                         page_base += offset & PAGE_MASK;
890                 }
891                 /* This is a slow read/write as it tries to read from
892                  * and write to user memory which may result into page
893                  * faults, and so we cannot perform this under struct_mutex.
894                  */
895                 if (slow_user_access(&ggtt->mappable, page_base,
896                                      page_offset, user_data,
897                                      page_length, false)) {
898                         ret = -EFAULT;
899                         break;
900                 }
901
902                 remain -= page_length;
903                 user_data += page_length;
904                 offset += page_length;
905         }
906
907         mutex_lock(&dev->struct_mutex);
908         if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
909                 /* The user has modified the object whilst we tried
910                  * reading from it, and we now have no idea what domain
911                  * the pages should be in. As we have just been touching
912                  * them directly, flush everything back to the GTT
913                  * domain.
914                  */
915                 ret = i915_gem_object_set_to_gtt_domain(obj, false);
916         }
917
918 out_unpin:
919         if (node.allocated) {
920                 wmb();
921                 ggtt->base.clear_range(&ggtt->base,
922                                        node.start, node.size,
923                                        true);
924                 i915_gem_object_unpin_pages(obj);
925                 remove_mappable_node(&node);
926         } else {
927                 i915_vma_unpin(vma);
928         }
929 out:
930         return ret;
931 }
932
933 static int
934 i915_gem_shmem_pread(struct drm_device *dev,
935                      struct drm_i915_gem_object *obj,
936                      struct drm_i915_gem_pread *args,
937                      struct drm_file *file)
938 {
939         char __user *user_data;
940         ssize_t remain;
941         loff_t offset;
942         int shmem_page_offset, page_length, ret = 0;
943         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
944         int prefaulted = 0;
945         int needs_clflush = 0;
946         struct sg_page_iter sg_iter;
947
948         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
949         if (ret)
950                 return ret;
951
952         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
953         user_data = u64_to_user_ptr(args->data_ptr);
954         offset = args->offset;
955         remain = args->size;
956
957         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
958                          offset >> PAGE_SHIFT) {
959                 struct page *page = sg_page_iter_page(&sg_iter);
960
961                 if (remain <= 0)
962                         break;
963
964                 /* Operation in this page
965                  *
966                  * shmem_page_offset = offset within page in shmem file
967                  * page_length = bytes to copy for this page
968                  */
969                 shmem_page_offset = offset_in_page(offset);
970                 page_length = remain;
971                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
972                         page_length = PAGE_SIZE - shmem_page_offset;
973
974                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
975                         (page_to_phys(page) & (1 << 17)) != 0;
976
977                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
978                                        user_data, page_do_bit17_swizzling,
979                                        needs_clflush);
980                 if (ret == 0)
981                         goto next_page;
982
983                 mutex_unlock(&dev->struct_mutex);
984
985                 if (likely(!i915.prefault_disable) && !prefaulted) {
986                         ret = fault_in_multipages_writeable(user_data, remain);
987                         /* Userspace is tricking us, but we've already clobbered
988                          * its pages with the prefault and promised to write the
989                          * data up to the first fault. Hence ignore any errors
990                          * and just continue. */
991                         (void)ret;
992                         prefaulted = 1;
993                 }
994
995                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
996                                        user_data, page_do_bit17_swizzling,
997                                        needs_clflush);
998
999                 mutex_lock(&dev->struct_mutex);
1000
1001                 if (ret)
1002                         goto out;
1003
1004 next_page:
1005                 remain -= page_length;
1006                 user_data += page_length;
1007                 offset += page_length;
1008         }
1009
1010 out:
1011         i915_gem_obj_finish_shmem_access(obj);
1012
1013         return ret;
1014 }
1015
1016 /**
1017  * Reads data from the object referenced by handle.
1018  * @dev: drm device pointer
1019  * @data: ioctl data blob
1020  * @file: drm file pointer
1021  *
1022  * On error, the contents of *data are undefined.
1023  */
1024 int
1025 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1026                      struct drm_file *file)
1027 {
1028         struct drm_i915_gem_pread *args = data;
1029         struct drm_i915_gem_object *obj;
1030         int ret = 0;
1031
1032         if (args->size == 0)
1033                 return 0;
1034
1035         if (!access_ok(VERIFY_WRITE,
1036                        u64_to_user_ptr(args->data_ptr),
1037                        args->size))
1038                 return -EFAULT;
1039
1040         obj = i915_gem_object_lookup(file, args->handle);
1041         if (!obj)
1042                 return -ENOENT;
1043
1044         /* Bounds check source.  */
1045         if (args->offset > obj->base.size ||
1046             args->size > obj->base.size - args->offset) {
1047                 ret = -EINVAL;
1048                 goto err;
1049         }
1050
1051         trace_i915_gem_object_pread(obj, args->offset, args->size);
1052
1053         ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
1054         if (ret)
1055                 goto err;
1056
1057         ret = i915_mutex_lock_interruptible(dev);
1058         if (ret)
1059                 goto err;
1060
1061         ret = i915_gem_shmem_pread(dev, obj, args, file);
1062
1063         /* pread for non shmem backed objects */
1064         if (ret == -EFAULT || ret == -ENODEV) {
1065                 intel_runtime_pm_get(to_i915(dev));
1066                 ret = i915_gem_gtt_pread(dev, obj, args->size,
1067                                         args->offset, args->data_ptr);
1068                 intel_runtime_pm_put(to_i915(dev));
1069         }
1070
1071         i915_gem_object_put(obj);
1072         mutex_unlock(&dev->struct_mutex);
1073
1074         return ret;
1075
1076 err:
1077         i915_gem_object_put_unlocked(obj);
1078         return ret;
1079 }
1080
1081 /* This is the fast write path which cannot handle
1082  * page faults in the source data
1083  */
1084
1085 static inline int
1086 fast_user_write(struct io_mapping *mapping,
1087                 loff_t page_base, int page_offset,
1088                 char __user *user_data,
1089                 int length)
1090 {
1091         void __iomem *vaddr_atomic;
1092         void *vaddr;
1093         unsigned long unwritten;
1094
1095         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1096         /* We can use the cpu mem copy function because this is X86. */
1097         vaddr = (void __force*)vaddr_atomic + page_offset;
1098         unwritten = __copy_from_user_inatomic_nocache(vaddr,
1099                                                       user_data, length);
1100         io_mapping_unmap_atomic(vaddr_atomic);
1101         return unwritten;
1102 }
1103
1104 /**
1105  * This is the fast pwrite path, where we copy the data directly from the
1106  * user into the GTT, uncached.
1107  * @i915: i915 device private data
1108  * @obj: i915 gem object
1109  * @args: pwrite arguments structure
1110  * @file: drm file pointer
1111  */
1112 static int
1113 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1114                          struct drm_i915_gem_object *obj,
1115                          struct drm_i915_gem_pwrite *args,
1116                          struct drm_file *file)
1117 {
1118         struct i915_ggtt *ggtt = &i915->ggtt;
1119         struct drm_device *dev = obj->base.dev;
1120         struct i915_vma *vma;
1121         struct drm_mm_node node;
1122         uint64_t remain, offset;
1123         char __user *user_data;
1124         int ret;
1125         bool hit_slow_path = false;
1126
1127         if (i915_gem_object_is_tiled(obj))
1128                 return -EFAULT;
1129
1130         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1131                                        PIN_MAPPABLE | PIN_NONBLOCK);
1132         if (!IS_ERR(vma)) {
1133                 node.start = i915_ggtt_offset(vma);
1134                 node.allocated = false;
1135                 ret = i915_vma_put_fence(vma);
1136                 if (ret) {
1137                         i915_vma_unpin(vma);
1138                         vma = ERR_PTR(ret);
1139                 }
1140         }
1141         if (IS_ERR(vma)) {
1142                 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
1143                 if (ret)
1144                         goto out;
1145
1146                 ret = i915_gem_object_get_pages(obj);
1147                 if (ret) {
1148                         remove_mappable_node(&node);
1149                         goto out;
1150                 }
1151
1152                 i915_gem_object_pin_pages(obj);
1153         }
1154
1155         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1156         if (ret)
1157                 goto out_unpin;
1158
1159         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1160         obj->dirty = true;
1161
1162         user_data = u64_to_user_ptr(args->data_ptr);
1163         offset = args->offset;
1164         remain = args->size;
1165         while (remain) {
1166                 /* Operation in this page
1167                  *
1168                  * page_base = page offset within aperture
1169                  * page_offset = offset within page
1170                  * page_length = bytes to copy for this page
1171                  */
1172                 u32 page_base = node.start;
1173                 unsigned page_offset = offset_in_page(offset);
1174                 unsigned page_length = PAGE_SIZE - page_offset;
1175                 page_length = remain < page_length ? remain : page_length;
1176                 if (node.allocated) {
1177                         wmb(); /* flush the write before we modify the GGTT */
1178                         ggtt->base.insert_page(&ggtt->base,
1179                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1180                                                node.start, I915_CACHE_NONE, 0);
1181                         wmb(); /* flush modifications to the GGTT (insert_page) */
1182                 } else {
1183                         page_base += offset & PAGE_MASK;
1184                 }
1185                 /* If we get a fault while copying data, then (presumably) our
1186                  * source page isn't available.  Return the error and we'll
1187                  * retry in the slow path.
1188                  * If the object is non-shmem backed, we retry again with the
1189                  * path that handles page fault.
1190                  */
1191                 if (fast_user_write(&ggtt->mappable, page_base,
1192                                     page_offset, user_data, page_length)) {
1193                         hit_slow_path = true;
1194                         mutex_unlock(&dev->struct_mutex);
1195                         if (slow_user_access(&ggtt->mappable,
1196                                              page_base,
1197                                              page_offset, user_data,
1198                                              page_length, true)) {
1199                                 ret = -EFAULT;
1200                                 mutex_lock(&dev->struct_mutex);
1201                                 goto out_flush;
1202                         }
1203
1204                         mutex_lock(&dev->struct_mutex);
1205                 }
1206
1207                 remain -= page_length;
1208                 user_data += page_length;
1209                 offset += page_length;
1210         }
1211
1212 out_flush:
1213         if (hit_slow_path) {
1214                 if (ret == 0 &&
1215                     (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1216                         /* The user has modified the object whilst we tried
1217                          * reading from it, and we now have no idea what domain
1218                          * the pages should be in. As we have just been touching
1219                          * them directly, flush everything back to the GTT
1220                          * domain.
1221                          */
1222                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1223                 }
1224         }
1225
1226         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1227 out_unpin:
1228         if (node.allocated) {
1229                 wmb();
1230                 ggtt->base.clear_range(&ggtt->base,
1231                                        node.start, node.size,
1232                                        true);
1233                 i915_gem_object_unpin_pages(obj);
1234                 remove_mappable_node(&node);
1235         } else {
1236                 i915_vma_unpin(vma);
1237         }
1238 out:
1239         return ret;
1240 }
1241
1242 /* Per-page copy function for the shmem pwrite fastpath.
1243  * Flushes invalid cachelines before writing to the target if
1244  * needs_clflush_before is set and flushes out any written cachelines after
1245  * writing if needs_clflush is set. */
1246 static int
1247 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1248                   char __user *user_data,
1249                   bool page_do_bit17_swizzling,
1250                   bool needs_clflush_before,
1251                   bool needs_clflush_after)
1252 {
1253         char *vaddr;
1254         int ret;
1255
1256         if (unlikely(page_do_bit17_swizzling))
1257                 return -EINVAL;
1258
1259         vaddr = kmap_atomic(page);
1260         if (needs_clflush_before)
1261                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1262                                        page_length);
1263         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1264                                         user_data, page_length);
1265         if (needs_clflush_after)
1266                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1267                                        page_length);
1268         kunmap_atomic(vaddr);
1269
1270         return ret ? -EFAULT : 0;
1271 }
1272
1273 /* Only difference to the fast-path function is that this can handle bit17
1274  * and uses non-atomic copy and kmap functions. */
1275 static int
1276 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1277                   char __user *user_data,
1278                   bool page_do_bit17_swizzling,
1279                   bool needs_clflush_before,
1280                   bool needs_clflush_after)
1281 {
1282         char *vaddr;
1283         int ret;
1284
1285         vaddr = kmap(page);
1286         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1287                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1288                                              page_length,
1289                                              page_do_bit17_swizzling);
1290         if (page_do_bit17_swizzling)
1291                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1292                                                 user_data,
1293                                                 page_length);
1294         else
1295                 ret = __copy_from_user(vaddr + shmem_page_offset,
1296                                        user_data,
1297                                        page_length);
1298         if (needs_clflush_after)
1299                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1300                                              page_length,
1301                                              page_do_bit17_swizzling);
1302         kunmap(page);
1303
1304         return ret ? -EFAULT : 0;
1305 }
1306
1307 static int
1308 i915_gem_shmem_pwrite(struct drm_device *dev,
1309                       struct drm_i915_gem_object *obj,
1310                       struct drm_i915_gem_pwrite *args,
1311                       struct drm_file *file)
1312 {
1313         ssize_t remain;
1314         loff_t offset;
1315         char __user *user_data;
1316         int shmem_page_offset, page_length, ret = 0;
1317         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1318         int hit_slowpath = 0;
1319         unsigned int needs_clflush;
1320         struct sg_page_iter sg_iter;
1321
1322         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1323         if (ret)
1324                 return ret;
1325
1326         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1327         user_data = u64_to_user_ptr(args->data_ptr);
1328         offset = args->offset;
1329         remain = args->size;
1330
1331         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1332                          offset >> PAGE_SHIFT) {
1333                 struct page *page = sg_page_iter_page(&sg_iter);
1334                 int partial_cacheline_write;
1335
1336                 if (remain <= 0)
1337                         break;
1338
1339                 /* Operation in this page
1340                  *
1341                  * shmem_page_offset = offset within page in shmem file
1342                  * page_length = bytes to copy for this page
1343                  */
1344                 shmem_page_offset = offset_in_page(offset);
1345
1346                 page_length = remain;
1347                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1348                         page_length = PAGE_SIZE - shmem_page_offset;
1349
1350                 /* If we don't overwrite a cacheline completely we need to be
1351                  * careful to have up-to-date data by first clflushing. Don't
1352                  * overcomplicate things and flush the entire patch. */
1353                 partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1354                         ((shmem_page_offset | page_length)
1355                                 & (boot_cpu_data.x86_clflush_size - 1));
1356
1357                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1358                         (page_to_phys(page) & (1 << 17)) != 0;
1359
1360                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1361                                         user_data, page_do_bit17_swizzling,
1362                                         partial_cacheline_write,
1363                                         needs_clflush & CLFLUSH_AFTER);
1364                 if (ret == 0)
1365                         goto next_page;
1366
1367                 hit_slowpath = 1;
1368                 mutex_unlock(&dev->struct_mutex);
1369                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1370                                         user_data, page_do_bit17_swizzling,
1371                                         partial_cacheline_write,
1372                                         needs_clflush & CLFLUSH_AFTER);
1373
1374                 mutex_lock(&dev->struct_mutex);
1375
1376                 if (ret)
1377                         goto out;
1378
1379 next_page:
1380                 remain -= page_length;
1381                 user_data += page_length;
1382                 offset += page_length;
1383         }
1384
1385 out:
1386         i915_gem_obj_finish_shmem_access(obj);
1387
1388         if (hit_slowpath) {
1389                 /*
1390                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1391                  * cachelines in-line while writing and the object moved
1392                  * out of the cpu write domain while we've dropped the lock.
1393                  */
1394                 if (!(needs_clflush & CLFLUSH_AFTER) &&
1395                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1396                         if (i915_gem_clflush_object(obj, obj->pin_display))
1397                                 needs_clflush |= CLFLUSH_AFTER;
1398                 }
1399         }
1400
1401         if (needs_clflush & CLFLUSH_AFTER)
1402                 i915_gem_chipset_flush(to_i915(dev));
1403
1404         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1405         return ret;
1406 }
1407
1408 /**
1409  * Writes data to the object referenced by handle.
1410  * @dev: drm device
1411  * @data: ioctl data blob
1412  * @file: drm file
1413  *
1414  * On error, the contents of the buffer that were to be modified are undefined.
1415  */
1416 int
1417 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1418                       struct drm_file *file)
1419 {
1420         struct drm_i915_private *dev_priv = to_i915(dev);
1421         struct drm_i915_gem_pwrite *args = data;
1422         struct drm_i915_gem_object *obj;
1423         int ret;
1424
1425         if (args->size == 0)
1426                 return 0;
1427
1428         if (!access_ok(VERIFY_READ,
1429                        u64_to_user_ptr(args->data_ptr),
1430                        args->size))
1431                 return -EFAULT;
1432
1433         if (likely(!i915.prefault_disable)) {
1434                 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1435                                                    args->size);
1436                 if (ret)
1437                         return -EFAULT;
1438         }
1439
1440         obj = i915_gem_object_lookup(file, args->handle);
1441         if (!obj)
1442                 return -ENOENT;
1443
1444         /* Bounds check destination. */
1445         if (args->offset > obj->base.size ||
1446             args->size > obj->base.size - args->offset) {
1447                 ret = -EINVAL;
1448                 goto err;
1449         }
1450
1451         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1452
1453         ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
1454         if (ret)
1455                 goto err;
1456
1457         intel_runtime_pm_get(dev_priv);
1458
1459         ret = i915_mutex_lock_interruptible(dev);
1460         if (ret)
1461                 goto err_rpm;
1462
1463         ret = -EFAULT;
1464         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1465          * it would end up going through the fenced access, and we'll get
1466          * different detiling behavior between reading and writing.
1467          * pread/pwrite currently are reading and writing from the CPU
1468          * perspective, requiring manual detiling by the client.
1469          */
1470         if (!i915_gem_object_has_struct_page(obj) ||
1471             cpu_write_needs_clflush(obj)) {
1472                 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1473                 /* Note that the gtt paths might fail with non-page-backed user
1474                  * pointers (e.g. gtt mappings when moving data between
1475                  * textures). Fallback to the shmem path in that case. */
1476         }
1477
1478         if (ret == -EFAULT || ret == -ENOSPC) {
1479                 if (obj->phys_handle)
1480                         ret = i915_gem_phys_pwrite(obj, args, file);
1481                 else
1482                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1483         }
1484
1485         i915_gem_object_put(obj);
1486         mutex_unlock(&dev->struct_mutex);
1487         intel_runtime_pm_put(dev_priv);
1488
1489         return ret;
1490
1491 err_rpm:
1492         intel_runtime_pm_put(dev_priv);
1493 err:
1494         i915_gem_object_put_unlocked(obj);
1495         return ret;
1496 }
1497
1498 static inline enum fb_op_origin
1499 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1500 {
1501         return (domain == I915_GEM_DOMAIN_GTT ?
1502                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1503 }
1504
1505 /**
1506  * Called when user space prepares to use an object with the CPU, either
1507  * through the mmap ioctl's mapping or a GTT mapping.
1508  * @dev: drm device
1509  * @data: ioctl data blob
1510  * @file: drm file
1511  */
1512 int
1513 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1514                           struct drm_file *file)
1515 {
1516         struct drm_i915_gem_set_domain *args = data;
1517         struct drm_i915_gem_object *obj;
1518         uint32_t read_domains = args->read_domains;
1519         uint32_t write_domain = args->write_domain;
1520         int ret;
1521
1522         /* Only handle setting domains to types used by the CPU. */
1523         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1524                 return -EINVAL;
1525
1526         /* Having something in the write domain implies it's in the read
1527          * domain, and only that read domain.  Enforce that in the request.
1528          */
1529         if (write_domain != 0 && read_domains != write_domain)
1530                 return -EINVAL;
1531
1532         obj = i915_gem_object_lookup(file, args->handle);
1533         if (!obj)
1534                 return -ENOENT;
1535
1536         /* Try to flush the object off the GPU without holding the lock.
1537          * We will repeat the flush holding the lock in the normal manner
1538          * to catch cases where we are gazumped.
1539          */
1540         ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
1541         if (ret)
1542                 goto err;
1543
1544         ret = i915_mutex_lock_interruptible(dev);
1545         if (ret)
1546                 goto err;
1547
1548         if (read_domains & I915_GEM_DOMAIN_GTT)
1549                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1550         else
1551                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1552
1553         if (write_domain != 0)
1554                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1555
1556         i915_gem_object_put(obj);
1557         mutex_unlock(&dev->struct_mutex);
1558         return ret;
1559
1560 err:
1561         i915_gem_object_put_unlocked(obj);
1562         return ret;
1563 }
1564
1565 /**
1566  * Called when user space has done writes to this buffer
1567  * @dev: drm device
1568  * @data: ioctl data blob
1569  * @file: drm file
1570  */
1571 int
1572 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1573                          struct drm_file *file)
1574 {
1575         struct drm_i915_gem_sw_finish *args = data;
1576         struct drm_i915_gem_object *obj;
1577         int err = 0;
1578
1579         obj = i915_gem_object_lookup(file, args->handle);
1580         if (!obj)
1581                 return -ENOENT;
1582
1583         /* Pinned buffers may be scanout, so flush the cache */
1584         if (READ_ONCE(obj->pin_display)) {
1585                 err = i915_mutex_lock_interruptible(dev);
1586                 if (!err) {
1587                         i915_gem_object_flush_cpu_write_domain(obj);
1588                         mutex_unlock(&dev->struct_mutex);
1589                 }
1590         }
1591
1592         i915_gem_object_put_unlocked(obj);
1593         return err;
1594 }
1595
1596 /**
1597  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1598  *                       it is mapped to.
1599  * @dev: drm device
1600  * @data: ioctl data blob
1601  * @file: drm file
1602  *
1603  * While the mapping holds a reference on the contents of the object, it doesn't
1604  * imply a ref on the object itself.
1605  *
1606  * IMPORTANT:
1607  *
1608  * DRM driver writers who look a this function as an example for how to do GEM
1609  * mmap support, please don't implement mmap support like here. The modern way
1610  * to implement DRM mmap support is with an mmap offset ioctl (like
1611  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1612  * That way debug tooling like valgrind will understand what's going on, hiding
1613  * the mmap call in a driver private ioctl will break that. The i915 driver only
1614  * does cpu mmaps this way because we didn't know better.
1615  */
1616 int
1617 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1618                     struct drm_file *file)
1619 {
1620         struct drm_i915_gem_mmap *args = data;
1621         struct drm_i915_gem_object *obj;
1622         unsigned long addr;
1623
1624         if (args->flags & ~(I915_MMAP_WC))
1625                 return -EINVAL;
1626
1627         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1628                 return -ENODEV;
1629
1630         obj = i915_gem_object_lookup(file, args->handle);
1631         if (!obj)
1632                 return -ENOENT;
1633
1634         /* prime objects have no backing filp to GEM mmap
1635          * pages from.
1636          */
1637         if (!obj->base.filp) {
1638                 i915_gem_object_put_unlocked(obj);
1639                 return -EINVAL;
1640         }
1641
1642         addr = vm_mmap(obj->base.filp, 0, args->size,
1643                        PROT_READ | PROT_WRITE, MAP_SHARED,
1644                        args->offset);
1645         if (args->flags & I915_MMAP_WC) {
1646                 struct mm_struct *mm = current->mm;
1647                 struct vm_area_struct *vma;
1648
1649                 if (down_write_killable(&mm->mmap_sem)) {
1650                         i915_gem_object_put_unlocked(obj);
1651                         return -EINTR;
1652                 }
1653                 vma = find_vma(mm, addr);
1654                 if (vma)
1655                         vma->vm_page_prot =
1656                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1657                 else
1658                         addr = -ENOMEM;
1659                 up_write(&mm->mmap_sem);
1660
1661                 /* This may race, but that's ok, it only gets set */
1662                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1663         }
1664         i915_gem_object_put_unlocked(obj);
1665         if (IS_ERR((void *)addr))
1666                 return addr;
1667
1668         args->addr_ptr = (uint64_t) addr;
1669
1670         return 0;
1671 }
1672
1673 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1674 {
1675         u64 size;
1676
1677         size = i915_gem_object_get_stride(obj);
1678         size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1679
1680         return size >> PAGE_SHIFT;
1681 }
1682
1683 /**
1684  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1685  *
1686  * A history of the GTT mmap interface:
1687  *
1688  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1689  *     aligned and suitable for fencing, and still fit into the available
1690  *     mappable space left by the pinned display objects. A classic problem
1691  *     we called the page-fault-of-doom where we would ping-pong between
1692  *     two objects that could not fit inside the GTT and so the memcpy
1693  *     would page one object in at the expense of the other between every
1694  *     single byte.
1695  *
1696  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1697  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1698  *     object is too large for the available space (or simply too large
1699  *     for the mappable aperture!), a view is created instead and faulted
1700  *     into userspace. (This view is aligned and sized appropriately for
1701  *     fenced access.)
1702  *
1703  * Restrictions:
1704  *
1705  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1706  *    hangs on some architectures, corruption on others. An attempt to service
1707  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1708  *
1709  *  * the object must be able to fit into RAM (physical memory, though no
1710  *    limited to the mappable aperture).
1711  *
1712  *
1713  * Caveats:
1714  *
1715  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1716  *    all data to system memory. Subsequent access will not be synchronized.
1717  *
1718  *  * all mappings are revoked on runtime device suspend.
1719  *
1720  *  * there are only 8, 16 or 32 fence registers to share between all users
1721  *    (older machines require fence register for display and blitter access
1722  *    as well). Contention of the fence registers will cause the previous users
1723  *    to be unmapped and any new access will generate new page faults.
1724  *
1725  *  * running out of memory while servicing a fault may generate a SIGBUS,
1726  *    rather than the expected SIGSEGV.
1727  */
1728 int i915_gem_mmap_gtt_version(void)
1729 {
1730         return 1;
1731 }
1732
1733 /**
1734  * i915_gem_fault - fault a page into the GTT
1735  * @area: CPU VMA in question
1736  * @vmf: fault info
1737  *
1738  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1739  * from userspace.  The fault handler takes care of binding the object to
1740  * the GTT (if needed), allocating and programming a fence register (again,
1741  * only if needed based on whether the old reg is still valid or the object
1742  * is tiled) and inserting a new PTE into the faulting process.
1743  *
1744  * Note that the faulting process may involve evicting existing objects
1745  * from the GTT and/or fence registers to make room.  So performance may
1746  * suffer if the GTT working set is large or there are few fence registers
1747  * left.
1748  *
1749  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1750  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1751  */
1752 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1753 {
1754 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1755         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1756         struct drm_device *dev = obj->base.dev;
1757         struct drm_i915_private *dev_priv = to_i915(dev);
1758         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1759         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1760         struct i915_vma *vma;
1761         pgoff_t page_offset;
1762         unsigned int flags;
1763         int ret;
1764
1765         /* We don't use vmf->pgoff since that has the fake offset */
1766         page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1767                 PAGE_SHIFT;
1768
1769         trace_i915_gem_object_fault(obj, page_offset, true, write);
1770
1771         /* Try to flush the object off the GPU first without holding the lock.
1772          * Upon acquiring the lock, we will perform our sanity checks and then
1773          * repeat the flush holding the lock in the normal manner to catch cases
1774          * where we are gazumped.
1775          */
1776         ret = __unsafe_wait_rendering(obj, NULL, !write);
1777         if (ret)
1778                 goto err;
1779
1780         intel_runtime_pm_get(dev_priv);
1781
1782         ret = i915_mutex_lock_interruptible(dev);
1783         if (ret)
1784                 goto err_rpm;
1785
1786         /* Access to snoopable pages through the GTT is incoherent. */
1787         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1788                 ret = -EFAULT;
1789                 goto err_unlock;
1790         }
1791
1792         /* If the object is smaller than a couple of partial vma, it is
1793          * not worth only creating a single partial vma - we may as well
1794          * clear enough space for the full object.
1795          */
1796         flags = PIN_MAPPABLE;
1797         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1798                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1799
1800         /* Now pin it into the GTT as needed */
1801         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1802         if (IS_ERR(vma)) {
1803                 struct i915_ggtt_view view;
1804                 unsigned int chunk_size;
1805
1806                 /* Use a partial view if it is bigger than available space */
1807                 chunk_size = MIN_CHUNK_PAGES;
1808                 if (i915_gem_object_is_tiled(obj))
1809                         chunk_size = max(chunk_size, tile_row_pages(obj));
1810
1811                 memset(&view, 0, sizeof(view));
1812                 view.type = I915_GGTT_VIEW_PARTIAL;
1813                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1814                 view.params.partial.size =
1815                         min_t(unsigned int, chunk_size,
1816                               (area->vm_end - area->vm_start) / PAGE_SIZE -
1817                               view.params.partial.offset);
1818
1819                 /* If the partial covers the entire object, just create a
1820                  * normal VMA.
1821                  */
1822                 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1823                         view.type = I915_GGTT_VIEW_NORMAL;
1824
1825                 /* Userspace is now writing through an untracked VMA, abandon
1826                  * all hope that the hardware is able to track future writes.
1827                  */
1828                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1829
1830                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1831         }
1832         if (IS_ERR(vma)) {
1833                 ret = PTR_ERR(vma);
1834                 goto err_unlock;
1835         }
1836
1837         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1838         if (ret)
1839                 goto err_unpin;
1840
1841         ret = i915_vma_get_fence(vma);
1842         if (ret)
1843                 goto err_unpin;
1844
1845         /* Finally, remap it using the new GTT offset */
1846         ret = remap_io_mapping(area,
1847                                area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1848                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1849                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1850                                &ggtt->mappable);
1851         if (ret)
1852                 goto err_unpin;
1853
1854         obj->fault_mappable = true;
1855 err_unpin:
1856         __i915_vma_unpin(vma);
1857 err_unlock:
1858         mutex_unlock(&dev->struct_mutex);
1859 err_rpm:
1860         intel_runtime_pm_put(dev_priv);
1861 err:
1862         switch (ret) {
1863         case -EIO:
1864                 /*
1865                  * We eat errors when the gpu is terminally wedged to avoid
1866                  * userspace unduly crashing (gl has no provisions for mmaps to
1867                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1868                  * and so needs to be reported.
1869                  */
1870                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1871                         ret = VM_FAULT_SIGBUS;
1872                         break;
1873                 }
1874         case -EAGAIN:
1875                 /*
1876                  * EAGAIN means the gpu is hung and we'll wait for the error
1877                  * handler to reset everything when re-faulting in
1878                  * i915_mutex_lock_interruptible.
1879                  */
1880         case 0:
1881         case -ERESTARTSYS:
1882         case -EINTR:
1883         case -EBUSY:
1884                 /*
1885                  * EBUSY is ok: this just means that another thread
1886                  * already did the job.
1887                  */
1888                 ret = VM_FAULT_NOPAGE;
1889                 break;
1890         case -ENOMEM:
1891                 ret = VM_FAULT_OOM;
1892                 break;
1893         case -ENOSPC:
1894         case -EFAULT:
1895                 ret = VM_FAULT_SIGBUS;
1896                 break;
1897         default:
1898                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1899                 ret = VM_FAULT_SIGBUS;
1900                 break;
1901         }
1902         return ret;
1903 }
1904
1905 /**
1906  * i915_gem_release_mmap - remove physical page mappings
1907  * @obj: obj in question
1908  *
1909  * Preserve the reservation of the mmapping with the DRM core code, but
1910  * relinquish ownership of the pages back to the system.
1911  *
1912  * It is vital that we remove the page mapping if we have mapped a tiled
1913  * object through the GTT and then lose the fence register due to
1914  * resource pressure. Similarly if the object has been moved out of the
1915  * aperture, than pages mapped into userspace must be revoked. Removing the
1916  * mapping will then trigger a page fault on the next user access, allowing
1917  * fixup by i915_gem_fault().
1918  */
1919 void
1920 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1921 {
1922         /* Serialisation between user GTT access and our code depends upon
1923          * revoking the CPU's PTE whilst the mutex is held. The next user
1924          * pagefault then has to wait until we release the mutex.
1925          */
1926         lockdep_assert_held(&obj->base.dev->struct_mutex);
1927
1928         if (!obj->fault_mappable)
1929                 return;
1930
1931         drm_vma_node_unmap(&obj->base.vma_node,
1932                            obj->base.dev->anon_inode->i_mapping);
1933
1934         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1935          * memory transactions from userspace before we return. The TLB
1936          * flushing implied above by changing the PTE above *should* be
1937          * sufficient, an extra barrier here just provides us with a bit
1938          * of paranoid documentation about our requirement to serialise
1939          * memory writes before touching registers / GSM.
1940          */
1941         wmb();
1942
1943         obj->fault_mappable = false;
1944 }
1945
1946 void
1947 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1948 {
1949         struct drm_i915_gem_object *obj;
1950
1951         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1952                 i915_gem_release_mmap(obj);
1953 }
1954
1955 /**
1956  * i915_gem_get_ggtt_size - return required global GTT size for an object
1957  * @dev_priv: i915 device
1958  * @size: object size
1959  * @tiling_mode: tiling mode
1960  *
1961  * Return the required global GTT size for an object, taking into account
1962  * potential fence register mapping.
1963  */
1964 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1965                            u64 size, int tiling_mode)
1966 {
1967         u64 ggtt_size;
1968
1969         GEM_BUG_ON(size == 0);
1970
1971         if (INTEL_GEN(dev_priv) >= 4 ||
1972             tiling_mode == I915_TILING_NONE)
1973                 return size;
1974
1975         /* Previous chips need a power-of-two fence region when tiling */
1976         if (IS_GEN3(dev_priv))
1977                 ggtt_size = 1024*1024;
1978         else
1979                 ggtt_size = 512*1024;
1980
1981         while (ggtt_size < size)
1982                 ggtt_size <<= 1;
1983
1984         return ggtt_size;
1985 }
1986
1987 /**
1988  * i915_gem_get_ggtt_alignment - return required global GTT alignment
1989  * @dev_priv: i915 device
1990  * @size: object size
1991  * @tiling_mode: tiling mode
1992  * @fenced: is fenced alignment required or not
1993  *
1994  * Return the required global GTT alignment for an object, taking into account
1995  * potential fence register mapping.
1996  */
1997 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1998                                 int tiling_mode, bool fenced)
1999 {
2000         GEM_BUG_ON(size == 0);
2001
2002         /*
2003          * Minimum alignment is 4k (GTT page size), but might be greater
2004          * if a fence register is needed for the object.
2005          */
2006         if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2007             tiling_mode == I915_TILING_NONE)
2008                 return 4096;
2009
2010         /*
2011          * Previous chips need to be aligned to the size of the smallest
2012          * fence register that can contain the object.
2013          */
2014         return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2015 }
2016
2017 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2018 {
2019         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2020         int err;
2021
2022         err = drm_gem_create_mmap_offset(&obj->base);
2023         if (!err)
2024                 return 0;
2025
2026         /* We can idle the GPU locklessly to flush stale objects, but in order
2027          * to claim that space for ourselves, we need to take the big
2028          * struct_mutex to free the requests+objects and allocate our slot.
2029          */
2030         err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2031         if (err)
2032                 return err;
2033
2034         err = i915_mutex_lock_interruptible(&dev_priv->drm);
2035         if (!err) {
2036                 i915_gem_retire_requests(dev_priv);
2037                 err = drm_gem_create_mmap_offset(&obj->base);
2038                 mutex_unlock(&dev_priv->drm.struct_mutex);
2039         }
2040
2041         return err;
2042 }
2043
2044 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2045 {
2046         drm_gem_free_mmap_offset(&obj->base);
2047 }
2048
2049 int
2050 i915_gem_mmap_gtt(struct drm_file *file,
2051                   struct drm_device *dev,
2052                   uint32_t handle,
2053                   uint64_t *offset)
2054 {
2055         struct drm_i915_gem_object *obj;
2056         int ret;
2057
2058         obj = i915_gem_object_lookup(file, handle);
2059         if (!obj)
2060                 return -ENOENT;
2061
2062         ret = i915_gem_object_create_mmap_offset(obj);
2063         if (ret == 0)
2064                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2065
2066         i915_gem_object_put_unlocked(obj);
2067         return ret;
2068 }
2069
2070 /**
2071  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2072  * @dev: DRM device
2073  * @data: GTT mapping ioctl data
2074  * @file: GEM object info
2075  *
2076  * Simply returns the fake offset to userspace so it can mmap it.
2077  * The mmap call will end up in drm_gem_mmap(), which will set things
2078  * up so we can get faults in the handler above.
2079  *
2080  * The fault handler will take care of binding the object into the GTT
2081  * (since it may have been evicted to make room for something), allocating
2082  * a fence register, and mapping the appropriate aperture address into
2083  * userspace.
2084  */
2085 int
2086 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2087                         struct drm_file *file)
2088 {
2089         struct drm_i915_gem_mmap_gtt *args = data;
2090
2091         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2092 }
2093
2094 /* Immediately discard the backing storage */
2095 static void
2096 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2097 {
2098         i915_gem_object_free_mmap_offset(obj);
2099
2100         if (obj->base.filp == NULL)
2101                 return;
2102
2103         /* Our goal here is to return as much of the memory as
2104          * is possible back to the system as we are called from OOM.
2105          * To do this we must instruct the shmfs to drop all of its
2106          * backing pages, *now*.
2107          */
2108         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2109         obj->madv = __I915_MADV_PURGED;
2110 }
2111
2112 /* Try to discard unwanted pages */
2113 static void
2114 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2115 {
2116         struct address_space *mapping;
2117
2118         switch (obj->madv) {
2119         case I915_MADV_DONTNEED:
2120                 i915_gem_object_truncate(obj);
2121         case __I915_MADV_PURGED:
2122                 return;
2123         }
2124
2125         if (obj->base.filp == NULL)
2126                 return;
2127
2128         mapping = obj->base.filp->f_mapping,
2129         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2130 }
2131
2132 static void
2133 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2134 {
2135         struct sgt_iter sgt_iter;
2136         struct page *page;
2137         int ret;
2138
2139         BUG_ON(obj->madv == __I915_MADV_PURGED);
2140
2141         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2142         if (WARN_ON(ret)) {
2143                 /* In the event of a disaster, abandon all caches and
2144                  * hope for the best.
2145                  */
2146                 i915_gem_clflush_object(obj, true);
2147                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2148         }
2149
2150         i915_gem_gtt_finish_object(obj);
2151
2152         if (i915_gem_object_needs_bit17_swizzle(obj))
2153                 i915_gem_object_save_bit_17_swizzle(obj);
2154
2155         if (obj->madv == I915_MADV_DONTNEED)
2156                 obj->dirty = 0;
2157
2158         for_each_sgt_page(page, sgt_iter, obj->pages) {
2159                 if (obj->dirty)
2160                         set_page_dirty(page);
2161
2162                 if (obj->madv == I915_MADV_WILLNEED)
2163                         mark_page_accessed(page);
2164
2165                 put_page(page);
2166         }
2167         obj->dirty = 0;
2168
2169         sg_free_table(obj->pages);
2170         kfree(obj->pages);
2171 }
2172
2173 int
2174 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2175 {
2176         const struct drm_i915_gem_object_ops *ops = obj->ops;
2177
2178         if (obj->pages == NULL)
2179                 return 0;
2180
2181         if (obj->pages_pin_count)
2182                 return -EBUSY;
2183
2184         GEM_BUG_ON(obj->bind_count);
2185
2186         /* ->put_pages might need to allocate memory for the bit17 swizzle
2187          * array, hence protect them from being reaped by removing them from gtt
2188          * lists early. */
2189         list_del(&obj->global_list);
2190
2191         if (obj->mapping) {
2192                 void *ptr;
2193
2194                 ptr = ptr_mask_bits(obj->mapping);
2195                 if (is_vmalloc_addr(ptr))
2196                         vunmap(ptr);
2197                 else
2198                         kunmap(kmap_to_page(ptr));
2199
2200                 obj->mapping = NULL;
2201         }
2202
2203         ops->put_pages(obj);
2204         obj->pages = NULL;
2205
2206         i915_gem_object_invalidate(obj);
2207
2208         return 0;
2209 }
2210
2211 static int
2212 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2213 {
2214         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2215         int page_count, i;
2216         struct address_space *mapping;
2217         struct sg_table *st;
2218         struct scatterlist *sg;
2219         struct sgt_iter sgt_iter;
2220         struct page *page;
2221         unsigned long last_pfn = 0;     /* suppress gcc warning */
2222         int ret;
2223         gfp_t gfp;
2224
2225         /* Assert that the object is not currently in any GPU domain. As it
2226          * wasn't in the GTT, there shouldn't be any way it could have been in
2227          * a GPU cache
2228          */
2229         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2230         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2231
2232         st = kmalloc(sizeof(*st), GFP_KERNEL);
2233         if (st == NULL)
2234                 return -ENOMEM;
2235
2236         page_count = obj->base.size / PAGE_SIZE;
2237         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2238                 kfree(st);
2239                 return -ENOMEM;
2240         }
2241
2242         /* Get the list of pages out of our struct file.  They'll be pinned
2243          * at this point until we release them.
2244          *
2245          * Fail silently without starting the shrinker
2246          */
2247         mapping = obj->base.filp->f_mapping;
2248         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2249         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2250         sg = st->sgl;
2251         st->nents = 0;
2252         for (i = 0; i < page_count; i++) {
2253                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2254                 if (IS_ERR(page)) {
2255                         i915_gem_shrink(dev_priv,
2256                                         page_count,
2257                                         I915_SHRINK_BOUND |
2258                                         I915_SHRINK_UNBOUND |
2259                                         I915_SHRINK_PURGEABLE);
2260                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2261                 }
2262                 if (IS_ERR(page)) {
2263                         /* We've tried hard to allocate the memory by reaping
2264                          * our own buffer, now let the real VM do its job and
2265                          * go down in flames if truly OOM.
2266                          */
2267                         i915_gem_shrink_all(dev_priv);
2268                         page = shmem_read_mapping_page(mapping, i);
2269                         if (IS_ERR(page)) {
2270                                 ret = PTR_ERR(page);
2271                                 goto err_pages;
2272                         }
2273                 }
2274 #ifdef CONFIG_SWIOTLB
2275                 if (swiotlb_nr_tbl()) {
2276                         st->nents++;
2277                         sg_set_page(sg, page, PAGE_SIZE, 0);
2278                         sg = sg_next(sg);
2279                         continue;
2280                 }
2281 #endif
2282                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2283                         if (i)
2284                                 sg = sg_next(sg);
2285                         st->nents++;
2286                         sg_set_page(sg, page, PAGE_SIZE, 0);
2287                 } else {
2288                         sg->length += PAGE_SIZE;
2289                 }
2290                 last_pfn = page_to_pfn(page);
2291
2292                 /* Check that the i965g/gm workaround works. */
2293                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2294         }
2295 #ifdef CONFIG_SWIOTLB
2296         if (!swiotlb_nr_tbl())
2297 #endif
2298                 sg_mark_end(sg);
2299         obj->pages = st;
2300
2301         ret = i915_gem_gtt_prepare_object(obj);
2302         if (ret)
2303                 goto err_pages;
2304
2305         if (i915_gem_object_needs_bit17_swizzle(obj))
2306                 i915_gem_object_do_bit_17_swizzle(obj);
2307
2308         if (i915_gem_object_is_tiled(obj) &&
2309             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2310                 i915_gem_object_pin_pages(obj);
2311
2312         return 0;
2313
2314 err_pages:
2315         sg_mark_end(sg);
2316         for_each_sgt_page(page, sgt_iter, st)
2317                 put_page(page);
2318         sg_free_table(st);
2319         kfree(st);
2320
2321         /* shmemfs first checks if there is enough memory to allocate the page
2322          * and reports ENOSPC should there be insufficient, along with the usual
2323          * ENOMEM for a genuine allocation failure.
2324          *
2325          * We use ENOSPC in our driver to mean that we have run out of aperture
2326          * space and so want to translate the error from shmemfs back to our
2327          * usual understanding of ENOMEM.
2328          */
2329         if (ret == -ENOSPC)
2330                 ret = -ENOMEM;
2331
2332         return ret;
2333 }
2334
2335 /* Ensure that the associated pages are gathered from the backing storage
2336  * and pinned into our object. i915_gem_object_get_pages() may be called
2337  * multiple times before they are released by a single call to
2338  * i915_gem_object_put_pages() - once the pages are no longer referenced
2339  * either as a result of memory pressure (reaping pages under the shrinker)
2340  * or as the object is itself released.
2341  */
2342 int
2343 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2344 {
2345         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2346         const struct drm_i915_gem_object_ops *ops = obj->ops;
2347         int ret;
2348
2349         if (obj->pages)
2350                 return 0;
2351
2352         if (obj->madv != I915_MADV_WILLNEED) {
2353                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2354                 return -EFAULT;
2355         }
2356
2357         BUG_ON(obj->pages_pin_count);
2358
2359         ret = ops->get_pages(obj);
2360         if (ret)
2361                 return ret;
2362
2363         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2364
2365         obj->get_page.sg = obj->pages->sgl;
2366         obj->get_page.last = 0;
2367
2368         return 0;
2369 }
2370
2371 /* The 'mapping' part of i915_gem_object_pin_map() below */
2372 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2373                                  enum i915_map_type type)
2374 {
2375         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2376         struct sg_table *sgt = obj->pages;
2377         struct sgt_iter sgt_iter;
2378         struct page *page;
2379         struct page *stack_pages[32];
2380         struct page **pages = stack_pages;
2381         unsigned long i = 0;
2382         pgprot_t pgprot;
2383         void *addr;
2384
2385         /* A single page can always be kmapped */
2386         if (n_pages == 1 && type == I915_MAP_WB)
2387                 return kmap(sg_page(sgt->sgl));
2388
2389         if (n_pages > ARRAY_SIZE(stack_pages)) {
2390                 /* Too big for stack -- allocate temporary array instead */
2391                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2392                 if (!pages)
2393                         return NULL;
2394         }
2395
2396         for_each_sgt_page(page, sgt_iter, sgt)
2397                 pages[i++] = page;
2398
2399         /* Check that we have the expected number of pages */
2400         GEM_BUG_ON(i != n_pages);
2401
2402         switch (type) {
2403         case I915_MAP_WB:
2404                 pgprot = PAGE_KERNEL;
2405                 break;
2406         case I915_MAP_WC:
2407                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2408                 break;
2409         }
2410         addr = vmap(pages, n_pages, 0, pgprot);
2411
2412         if (pages != stack_pages)
2413                 drm_free_large(pages);
2414
2415         return addr;
2416 }
2417
2418 /* get, pin, and map the pages of the object into kernel space */
2419 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2420                               enum i915_map_type type)
2421 {
2422         enum i915_map_type has_type;
2423         bool pinned;
2424         void *ptr;
2425         int ret;
2426
2427         lockdep_assert_held(&obj->base.dev->struct_mutex);
2428         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2429
2430         ret = i915_gem_object_get_pages(obj);
2431         if (ret)
2432                 return ERR_PTR(ret);
2433
2434         i915_gem_object_pin_pages(obj);
2435         pinned = obj->pages_pin_count > 1;
2436
2437         ptr = ptr_unpack_bits(obj->mapping, has_type);
2438         if (ptr && has_type != type) {
2439                 if (pinned) {
2440                         ret = -EBUSY;
2441                         goto err;
2442                 }
2443
2444                 if (is_vmalloc_addr(ptr))
2445                         vunmap(ptr);
2446                 else
2447                         kunmap(kmap_to_page(ptr));
2448
2449                 ptr = obj->mapping = NULL;
2450         }
2451
2452         if (!ptr) {
2453                 ptr = i915_gem_object_map(obj, type);
2454                 if (!ptr) {
2455                         ret = -ENOMEM;
2456                         goto err;
2457                 }
2458
2459                 obj->mapping = ptr_pack_bits(ptr, type);
2460         }
2461
2462         return ptr;
2463
2464 err:
2465         i915_gem_object_unpin_pages(obj);
2466         return ERR_PTR(ret);
2467 }
2468
2469 static void
2470 i915_gem_object_retire__write(struct i915_gem_active *active,
2471                               struct drm_i915_gem_request *request)
2472 {
2473         struct drm_i915_gem_object *obj =
2474                 container_of(active, struct drm_i915_gem_object, last_write);
2475
2476         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2477 }
2478
2479 static void
2480 i915_gem_object_retire__read(struct i915_gem_active *active,
2481                              struct drm_i915_gem_request *request)
2482 {
2483         int idx = request->engine->id;
2484         struct drm_i915_gem_object *obj =
2485                 container_of(active, struct drm_i915_gem_object, last_read[idx]);
2486
2487         GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2488
2489         i915_gem_object_clear_active(obj, idx);
2490         if (i915_gem_object_is_active(obj))
2491                 return;
2492
2493         /* Bump our place on the bound list to keep it roughly in LRU order
2494          * so that we don't steal from recently used but inactive objects
2495          * (unless we are forced to ofc!)
2496          */
2497         if (obj->bind_count)
2498                 list_move_tail(&obj->global_list,
2499                                &request->i915->mm.bound_list);
2500
2501         i915_gem_object_put(obj);
2502 }
2503
2504 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2505 {
2506         unsigned long elapsed;
2507
2508         if (ctx->hang_stats.banned)
2509                 return true;
2510
2511         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2512         if (ctx->hang_stats.ban_period_seconds &&
2513             elapsed <= ctx->hang_stats.ban_period_seconds) {
2514                 DRM_DEBUG("context hanging too fast, banning!\n");
2515                 return true;
2516         }
2517
2518         return false;
2519 }
2520
2521 static void i915_set_reset_status(struct i915_gem_context *ctx,
2522                                   const bool guilty)
2523 {
2524         struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2525
2526         if (guilty) {
2527                 hs->banned = i915_context_is_banned(ctx);
2528                 hs->batch_active++;
2529                 hs->guilty_ts = get_seconds();
2530         } else {
2531                 hs->batch_pending++;
2532         }
2533 }
2534
2535 struct drm_i915_gem_request *
2536 i915_gem_find_active_request(struct intel_engine_cs *engine)
2537 {
2538         struct drm_i915_gem_request *request;
2539
2540         /* We are called by the error capture and reset at a random
2541          * point in time. In particular, note that neither is crucially
2542          * ordered with an interrupt. After a hang, the GPU is dead and we
2543          * assume that no more writes can happen (we waited long enough for
2544          * all writes that were in transaction to be flushed) - adding an
2545          * extra delay for a recent interrupt is pointless. Hence, we do
2546          * not need an engine->irq_seqno_barrier() before the seqno reads.
2547          */
2548         list_for_each_entry(request, &engine->request_list, link) {
2549                 if (i915_gem_request_completed(request))
2550                         continue;
2551
2552                 if (!i915_sw_fence_done(&request->submit))
2553                         break;
2554
2555                 return request;
2556         }
2557
2558         return NULL;
2559 }
2560
2561 static void reset_request(struct drm_i915_gem_request *request)
2562 {
2563         void *vaddr = request->ring->vaddr;
2564         u32 head;
2565
2566         /* As this request likely depends on state from the lost
2567          * context, clear out all the user operations leaving the
2568          * breadcrumb at the end (so we get the fence notifications).
2569          */
2570         head = request->head;
2571         if (request->postfix < head) {
2572                 memset(vaddr + head, 0, request->ring->size - head);
2573                 head = 0;
2574         }
2575         memset(vaddr + head, 0, request->postfix - head);
2576 }
2577
2578 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2579 {
2580         struct drm_i915_gem_request *request;
2581         struct i915_gem_context *incomplete_ctx;
2582         bool ring_hung;
2583
2584         /* Ensure irq handler finishes, and not run again. */
2585         tasklet_kill(&engine->irq_tasklet);
2586         if (engine->irq_seqno_barrier)
2587                 engine->irq_seqno_barrier(engine);
2588
2589         request = i915_gem_find_active_request(engine);
2590         if (!request)
2591                 return;
2592
2593         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2594         i915_set_reset_status(request->ctx, ring_hung);
2595         if (!ring_hung)
2596                 return;
2597
2598         DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2599                          engine->name, request->fence.seqno);
2600
2601         /* Setup the CS to resume from the breadcrumb of the hung request */
2602         engine->reset_hw(engine, request);
2603
2604         /* Users of the default context do not rely on logical state
2605          * preserved between batches. They have to emit full state on
2606          * every batch and so it is safe to execute queued requests following
2607          * the hang.
2608          *
2609          * Other contexts preserve state, now corrupt. We want to skip all
2610          * queued requests that reference the corrupt context.
2611          */
2612         incomplete_ctx = request->ctx;
2613         if (i915_gem_context_is_default(incomplete_ctx))
2614                 return;
2615
2616         list_for_each_entry_continue(request, &engine->request_list, link)
2617                 if (request->ctx == incomplete_ctx)
2618                         reset_request(request);
2619
2620         engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2621 }
2622
2623 void i915_gem_reset(struct drm_i915_private *dev_priv)
2624 {
2625         struct intel_engine_cs *engine;
2626
2627         i915_gem_retire_requests(dev_priv);
2628
2629         for_each_engine(engine, dev_priv)
2630                 i915_gem_reset_engine(engine);
2631         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2632
2633         i915_gem_restore_fences(&dev_priv->drm);
2634 }
2635
2636 static void nop_submit_request(struct drm_i915_gem_request *request)
2637 {
2638 }
2639
2640 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2641 {
2642         engine->submit_request = nop_submit_request;
2643
2644         /* Mark all pending requests as complete so that any concurrent
2645          * (lockless) lookup doesn't try and wait upon the request as we
2646          * reset it.
2647          */
2648         intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2649
2650         /*
2651          * Clear the execlists queue up before freeing the requests, as those
2652          * are the ones that keep the context and ringbuffer backing objects
2653          * pinned in place.
2654          */
2655
2656         if (i915.enable_execlists) {
2657                 spin_lock(&engine->execlist_lock);
2658                 INIT_LIST_HEAD(&engine->execlist_queue);
2659                 i915_gem_request_put(engine->execlist_port[0].request);
2660                 i915_gem_request_put(engine->execlist_port[1].request);
2661                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2662                 spin_unlock(&engine->execlist_lock);
2663         }
2664
2665         engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2666 }
2667
2668 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2669 {
2670         struct intel_engine_cs *engine;
2671
2672         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2673         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2674
2675         i915_gem_context_lost(dev_priv);
2676         for_each_engine(engine, dev_priv)
2677                 i915_gem_cleanup_engine(engine);
2678         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2679
2680         i915_gem_retire_requests(dev_priv);
2681 }
2682
2683 static void
2684 i915_gem_retire_work_handler(struct work_struct *work)
2685 {
2686         struct drm_i915_private *dev_priv =
2687                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2688         struct drm_device *dev = &dev_priv->drm;
2689
2690         /* Come back later if the device is busy... */
2691         if (mutex_trylock(&dev->struct_mutex)) {
2692                 i915_gem_retire_requests(dev_priv);
2693                 mutex_unlock(&dev->struct_mutex);
2694         }
2695
2696         /* Keep the retire handler running until we are finally idle.
2697          * We do not need to do this test under locking as in the worst-case
2698          * we queue the retire worker once too often.
2699          */
2700         if (READ_ONCE(dev_priv->gt.awake)) {
2701                 i915_queue_hangcheck(dev_priv);
2702                 queue_delayed_work(dev_priv->wq,
2703                                    &dev_priv->gt.retire_work,
2704                                    round_jiffies_up_relative(HZ));
2705         }
2706 }
2707
2708 static void
2709 i915_gem_idle_work_handler(struct work_struct *work)
2710 {
2711         struct drm_i915_private *dev_priv =
2712                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2713         struct drm_device *dev = &dev_priv->drm;
2714         struct intel_engine_cs *engine;
2715         bool rearm_hangcheck;
2716
2717         if (!READ_ONCE(dev_priv->gt.awake))
2718                 return;
2719
2720         if (READ_ONCE(dev_priv->gt.active_engines))
2721                 return;
2722
2723         rearm_hangcheck =
2724                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2725
2726         if (!mutex_trylock(&dev->struct_mutex)) {
2727                 /* Currently busy, come back later */
2728                 mod_delayed_work(dev_priv->wq,
2729                                  &dev_priv->gt.idle_work,
2730                                  msecs_to_jiffies(50));
2731                 goto out_rearm;
2732         }
2733
2734         if (dev_priv->gt.active_engines)
2735                 goto out_unlock;
2736
2737         for_each_engine(engine, dev_priv)
2738                 i915_gem_batch_pool_fini(&engine->batch_pool);
2739
2740         GEM_BUG_ON(!dev_priv->gt.awake);
2741         dev_priv->gt.awake = false;
2742         rearm_hangcheck = false;
2743
2744         if (INTEL_GEN(dev_priv) >= 6)
2745                 gen6_rps_idle(dev_priv);
2746         intel_runtime_pm_put(dev_priv);
2747 out_unlock:
2748         mutex_unlock(&dev->struct_mutex);
2749
2750 out_rearm:
2751         if (rearm_hangcheck) {
2752                 GEM_BUG_ON(!dev_priv->gt.awake);
2753                 i915_queue_hangcheck(dev_priv);
2754         }
2755 }
2756
2757 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2758 {
2759         struct drm_i915_gem_object *obj = to_intel_bo(gem);
2760         struct drm_i915_file_private *fpriv = file->driver_priv;
2761         struct i915_vma *vma, *vn;
2762
2763         mutex_lock(&obj->base.dev->struct_mutex);
2764         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2765                 if (vma->vm->file == fpriv)
2766                         i915_vma_close(vma);
2767         mutex_unlock(&obj->base.dev->struct_mutex);
2768 }
2769
2770 /**
2771  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2772  * @dev: drm device pointer
2773  * @data: ioctl data blob
2774  * @file: drm file pointer
2775  *
2776  * Returns 0 if successful, else an error is returned with the remaining time in
2777  * the timeout parameter.
2778  *  -ETIME: object is still busy after timeout
2779  *  -ERESTARTSYS: signal interrupted the wait
2780  *  -ENONENT: object doesn't exist
2781  * Also possible, but rare:
2782  *  -EAGAIN: GPU wedged
2783  *  -ENOMEM: damn
2784  *  -ENODEV: Internal IRQ fail
2785  *  -E?: The add request failed
2786  *
2787  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2788  * non-zero timeout parameter the wait ioctl will wait for the given number of
2789  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2790  * without holding struct_mutex the object may become re-busied before this
2791  * function completes. A similar but shorter * race condition exists in the busy
2792  * ioctl
2793  */
2794 int
2795 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2796 {
2797         struct drm_i915_gem_wait *args = data;
2798         struct intel_rps_client *rps = to_rps_client(file);
2799         struct drm_i915_gem_object *obj;
2800         unsigned long active;
2801         int idx, ret = 0;
2802
2803         if (args->flags != 0)
2804                 return -EINVAL;
2805
2806         obj = i915_gem_object_lookup(file, args->bo_handle);
2807         if (!obj)
2808                 return -ENOENT;
2809
2810         active = __I915_BO_ACTIVE(obj);
2811         for_each_active(active, idx) {
2812                 s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
2813                 ret = i915_gem_active_wait_unlocked(&obj->last_read[idx],
2814                                                     I915_WAIT_INTERRUPTIBLE,
2815                                                     timeout, rps);
2816                 if (ret)
2817                         break;
2818         }
2819
2820         i915_gem_object_put_unlocked(obj);
2821         return ret;
2822 }
2823
2824 static void __i915_vma_iounmap(struct i915_vma *vma)
2825 {
2826         GEM_BUG_ON(i915_vma_is_pinned(vma));
2827
2828         if (vma->iomap == NULL)
2829                 return;
2830
2831         io_mapping_unmap(vma->iomap);
2832         vma->iomap = NULL;
2833 }
2834
2835 int i915_vma_unbind(struct i915_vma *vma)
2836 {
2837         struct drm_i915_gem_object *obj = vma->obj;
2838         unsigned long active;
2839         int ret;
2840
2841         /* First wait upon any activity as retiring the request may
2842          * have side-effects such as unpinning or even unbinding this vma.
2843          */
2844         active = i915_vma_get_active(vma);
2845         if (active) {
2846                 int idx;
2847
2848                 /* When a closed VMA is retired, it is unbound - eek.
2849                  * In order to prevent it from being recursively closed,
2850                  * take a pin on the vma so that the second unbind is
2851                  * aborted.
2852                  */
2853                 __i915_vma_pin(vma);
2854
2855                 for_each_active(active, idx) {
2856                         ret = i915_gem_active_retire(&vma->last_read[idx],
2857                                                    &vma->vm->dev->struct_mutex);
2858                         if (ret)
2859                                 break;
2860                 }
2861
2862                 __i915_vma_unpin(vma);
2863                 if (ret)
2864                         return ret;
2865
2866                 GEM_BUG_ON(i915_vma_is_active(vma));
2867         }
2868
2869         if (i915_vma_is_pinned(vma))
2870                 return -EBUSY;
2871
2872         if (!drm_mm_node_allocated(&vma->node))
2873                 goto destroy;
2874
2875         GEM_BUG_ON(obj->bind_count == 0);
2876         GEM_BUG_ON(!obj->pages);
2877
2878         if (i915_vma_is_map_and_fenceable(vma)) {
2879                 /* release the fence reg _after_ flushing */
2880                 ret = i915_vma_put_fence(vma);
2881                 if (ret)
2882                         return ret;
2883
2884                 /* Force a pagefault for domain tracking on next user access */
2885                 i915_gem_release_mmap(obj);
2886
2887                 __i915_vma_iounmap(vma);
2888                 vma->flags &= ~I915_VMA_CAN_FENCE;
2889         }
2890
2891         if (likely(!vma->vm->closed)) {
2892                 trace_i915_vma_unbind(vma);
2893                 vma->vm->unbind_vma(vma);
2894         }
2895         vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2896
2897         drm_mm_remove_node(&vma->node);
2898         list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2899
2900         if (vma->pages != obj->pages) {
2901                 GEM_BUG_ON(!vma->pages);
2902                 sg_free_table(vma->pages);
2903                 kfree(vma->pages);
2904         }
2905         vma->pages = NULL;
2906
2907         /* Since the unbound list is global, only move to that list if
2908          * no more VMAs exist. */
2909         if (--obj->bind_count == 0)
2910                 list_move_tail(&obj->global_list,
2911                                &to_i915(obj->base.dev)->mm.unbound_list);
2912
2913         /* And finally now the object is completely decoupled from this vma,
2914          * we can drop its hold on the backing storage and allow it to be
2915          * reaped by the shrinker.
2916          */
2917         i915_gem_object_unpin_pages(obj);
2918
2919 destroy:
2920         if (unlikely(i915_vma_is_closed(vma)))
2921                 i915_vma_destroy(vma);
2922
2923         return 0;
2924 }
2925
2926 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
2927                            unsigned int flags)
2928 {
2929         struct intel_engine_cs *engine;
2930         int ret;
2931
2932         for_each_engine(engine, dev_priv) {
2933                 if (engine->last_context == NULL)
2934                         continue;
2935
2936                 ret = intel_engine_idle(engine, flags);
2937                 if (ret)
2938                         return ret;
2939         }
2940
2941         return 0;
2942 }
2943
2944 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2945                                      unsigned long cache_level)
2946 {
2947         struct drm_mm_node *gtt_space = &vma->node;
2948         struct drm_mm_node *other;
2949
2950         /*
2951          * On some machines we have to be careful when putting differing types
2952          * of snoopable memory together to avoid the prefetcher crossing memory
2953          * domains and dying. During vm initialisation, we decide whether or not
2954          * these constraints apply and set the drm_mm.color_adjust
2955          * appropriately.
2956          */
2957         if (vma->vm->mm.color_adjust == NULL)
2958                 return true;
2959
2960         if (!drm_mm_node_allocated(gtt_space))
2961                 return true;
2962
2963         if (list_empty(&gtt_space->node_list))
2964                 return true;
2965
2966         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2967         if (other->allocated && !other->hole_follows && other->color != cache_level)
2968                 return false;
2969
2970         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2971         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2972                 return false;
2973
2974         return true;
2975 }
2976
2977 /**
2978  * i915_vma_insert - finds a slot for the vma in its address space
2979  * @vma: the vma
2980  * @size: requested size in bytes (can be larger than the VMA)
2981  * @alignment: required alignment
2982  * @flags: mask of PIN_* flags to use
2983  *
2984  * First we try to allocate some free space that meets the requirements for
2985  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
2986  * preferrably the oldest idle entry to make room for the new VMA.
2987  *
2988  * Returns:
2989  * 0 on success, negative error code otherwise.
2990  */
2991 static int
2992 i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
2993 {
2994         struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
2995         struct drm_i915_gem_object *obj = vma->obj;
2996         u64 start, end;
2997         int ret;
2998
2999         GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3000         GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3001
3002         size = max(size, vma->size);
3003         if (flags & PIN_MAPPABLE)
3004                 size = i915_gem_get_ggtt_size(dev_priv, size,
3005                                               i915_gem_object_get_tiling(obj));
3006
3007         alignment = max(max(alignment, vma->display_alignment),
3008                         i915_gem_get_ggtt_alignment(dev_priv, size,
3009                                                     i915_gem_object_get_tiling(obj),
3010                                                     flags & PIN_MAPPABLE));
3011
3012         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3013
3014         end = vma->vm->total;
3015         if (flags & PIN_MAPPABLE)
3016                 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3017         if (flags & PIN_ZONE_4G)
3018                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3019
3020         /* If binding the object/GGTT view requires more space than the entire
3021          * aperture has, reject it early before evicting everything in a vain
3022          * attempt to find space.
3023          */
3024         if (size > end) {
3025                 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3026                           size, obj->base.size,
3027                           flags & PIN_MAPPABLE ? "mappable" : "total",
3028                           end);
3029                 return -E2BIG;
3030         }
3031
3032         ret = i915_gem_object_get_pages(obj);
3033         if (ret)
3034                 return ret;
3035
3036         i915_gem_object_pin_pages(obj);
3037
3038         if (flags & PIN_OFFSET_FIXED) {
3039                 u64 offset = flags & PIN_OFFSET_MASK;
3040                 if (offset & (alignment - 1) || offset > end - size) {
3041                         ret = -EINVAL;
3042                         goto err_unpin;
3043                 }
3044
3045                 vma->node.start = offset;
3046                 vma->node.size = size;
3047                 vma->node.color = obj->cache_level;
3048                 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3049                 if (ret) {
3050                         ret = i915_gem_evict_for_vma(vma);
3051                         if (ret == 0)
3052                                 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3053                         if (ret)
3054                                 goto err_unpin;
3055                 }
3056         } else {
3057                 u32 search_flag, alloc_flag;
3058
3059                 if (flags & PIN_HIGH) {
3060                         search_flag = DRM_MM_SEARCH_BELOW;
3061                         alloc_flag = DRM_MM_CREATE_TOP;
3062                 } else {
3063                         search_flag = DRM_MM_SEARCH_DEFAULT;
3064                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3065                 }
3066
3067                 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3068                  * so we know that we always have a minimum alignment of 4096.
3069                  * The drm_mm range manager is optimised to return results
3070                  * with zero alignment, so where possible use the optimal
3071                  * path.
3072                  */
3073                 if (alignment <= 4096)
3074                         alignment = 0;
3075
3076 search_free:
3077                 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3078                                                           &vma->node,
3079                                                           size, alignment,
3080                                                           obj->cache_level,
3081                                                           start, end,
3082                                                           search_flag,
3083                                                           alloc_flag);
3084                 if (ret) {
3085                         ret = i915_gem_evict_something(vma->vm, size, alignment,
3086                                                        obj->cache_level,
3087                                                        start, end,
3088                                                        flags);
3089                         if (ret == 0)
3090                                 goto search_free;
3091
3092                         goto err_unpin;
3093                 }
3094         }
3095         GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3096
3097         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3098         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3099         obj->bind_count++;
3100
3101         return 0;
3102
3103 err_unpin:
3104         i915_gem_object_unpin_pages(obj);
3105         return ret;
3106 }
3107
3108 bool
3109 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3110                         bool force)
3111 {
3112         /* If we don't have a page list set up, then we're not pinned
3113          * to GPU, and we can ignore the cache flush because it'll happen
3114          * again at bind time.
3115          */
3116         if (obj->pages == NULL)
3117                 return false;
3118
3119         /*
3120          * Stolen memory is always coherent with the GPU as it is explicitly
3121          * marked as wc by the system, or the system is cache-coherent.
3122          */
3123         if (obj->stolen || obj->phys_handle)
3124                 return false;
3125
3126         /* If the GPU is snooping the contents of the CPU cache,
3127          * we do not need to manually clear the CPU cache lines.  However,
3128          * the caches are only snooped when the render cache is
3129          * flushed/invalidated.  As we always have to emit invalidations
3130          * and flushes when moving into and out of the RENDER domain, correct
3131          * snooping behaviour occurs naturally as the result of our domain
3132          * tracking.
3133          */
3134         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3135                 obj->cache_dirty = true;
3136                 return false;
3137         }
3138
3139         trace_i915_gem_object_clflush(obj);
3140         drm_clflush_sg(obj->pages);
3141         obj->cache_dirty = false;
3142
3143         return true;
3144 }
3145
3146 /** Flushes the GTT write domain for the object if it's dirty. */
3147 static void
3148 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3149 {
3150         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3151
3152         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3153                 return;
3154
3155         /* No actual flushing is required for the GTT write domain.  Writes
3156          * to it "immediately" go to main memory as far as we know, so there's
3157          * no chipset flush.  It also doesn't land in render cache.
3158          *
3159          * However, we do have to enforce the order so that all writes through
3160          * the GTT land before any writes to the device, such as updates to
3161          * the GATT itself.
3162          *
3163          * We also have to wait a bit for the writes to land from the GTT.
3164          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3165          * timing. This issue has only been observed when switching quickly
3166          * between GTT writes and CPU reads from inside the kernel on recent hw,
3167          * and it appears to only affect discrete GTT blocks (i.e. on LLC
3168          * system agents we cannot reproduce this behaviour).
3169          */
3170         wmb();
3171         if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3172                 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base));
3173
3174         intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3175
3176         obj->base.write_domain = 0;
3177         trace_i915_gem_object_change_domain(obj,
3178                                             obj->base.read_domains,
3179                                             I915_GEM_DOMAIN_GTT);
3180 }
3181
3182 /** Flushes the CPU write domain for the object if it's dirty. */
3183 static void
3184 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3185 {
3186         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3187                 return;
3188
3189         if (i915_gem_clflush_object(obj, obj->pin_display))
3190                 i915_gem_chipset_flush(to_i915(obj->base.dev));
3191
3192         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3193
3194         obj->base.write_domain = 0;
3195         trace_i915_gem_object_change_domain(obj,
3196                                             obj->base.read_domains,
3197                                             I915_GEM_DOMAIN_CPU);
3198 }
3199
3200 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
3201 {
3202         struct i915_vma *vma;
3203
3204         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3205                 if (!i915_vma_is_ggtt(vma))
3206                         continue;
3207
3208                 if (i915_vma_is_active(vma))
3209                         continue;
3210
3211                 if (!drm_mm_node_allocated(&vma->node))
3212                         continue;
3213
3214                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3215         }
3216 }
3217
3218 /**
3219  * Moves a single object to the GTT read, and possibly write domain.
3220  * @obj: object to act on
3221  * @write: ask for write access or read only
3222  *
3223  * This function returns when the move is complete, including waiting on
3224  * flushes to occur.
3225  */
3226 int
3227 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3228 {
3229         uint32_t old_write_domain, old_read_domains;
3230         int ret;
3231
3232         ret = i915_gem_object_wait_rendering(obj, !write);
3233         if (ret)
3234                 return ret;
3235
3236         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3237                 return 0;
3238
3239         /* Flush and acquire obj->pages so that we are coherent through
3240          * direct access in memory with previous cached writes through
3241          * shmemfs and that our cache domain tracking remains valid.
3242          * For example, if the obj->filp was moved to swap without us
3243          * being notified and releasing the pages, we would mistakenly
3244          * continue to assume that the obj remained out of the CPU cached
3245          * domain.
3246          */
3247         ret = i915_gem_object_get_pages(obj);
3248         if (ret)
3249                 return ret;
3250
3251         i915_gem_object_flush_cpu_write_domain(obj);
3252
3253         /* Serialise direct access to this object with the barriers for
3254          * coherent writes from the GPU, by effectively invalidating the
3255          * GTT domain upon first access.
3256          */
3257         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3258                 mb();
3259
3260         old_write_domain = obj->base.write_domain;
3261         old_read_domains = obj->base.read_domains;
3262
3263         /* It should now be out of any other write domains, and we can update
3264          * the domain values for our changes.
3265          */
3266         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3267         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3268         if (write) {
3269                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3270                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3271                 obj->dirty = 1;
3272         }
3273
3274         trace_i915_gem_object_change_domain(obj,
3275                                             old_read_domains,
3276                                             old_write_domain);
3277
3278         /* And bump the LRU for this access */
3279         i915_gem_object_bump_inactive_ggtt(obj);
3280
3281         return 0;
3282 }
3283
3284 /**
3285  * Changes the cache-level of an object across all VMA.
3286  * @obj: object to act on
3287  * @cache_level: new cache level to set for the object
3288  *
3289  * After this function returns, the object will be in the new cache-level
3290  * across all GTT and the contents of the backing storage will be coherent,
3291  * with respect to the new cache-level. In order to keep the backing storage
3292  * coherent for all users, we only allow a single cache level to be set
3293  * globally on the object and prevent it from being changed whilst the
3294  * hardware is reading from the object. That is if the object is currently
3295  * on the scanout it will be set to uncached (or equivalent display
3296  * cache coherency) and all non-MOCS GPU access will also be uncached so
3297  * that all direct access to the scanout remains coherent.
3298  */
3299 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3300                                     enum i915_cache_level cache_level)
3301 {
3302         struct i915_vma *vma;
3303         int ret = 0;
3304
3305         if (obj->cache_level == cache_level)
3306                 goto out;
3307
3308         /* Inspect the list of currently bound VMA and unbind any that would
3309          * be invalid given the new cache-level. This is principally to
3310          * catch the issue of the CS prefetch crossing page boundaries and
3311          * reading an invalid PTE on older architectures.
3312          */
3313 restart:
3314         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3315                 if (!drm_mm_node_allocated(&vma->node))
3316                         continue;
3317
3318                 if (i915_vma_is_pinned(vma)) {
3319                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3320                         return -EBUSY;
3321                 }
3322
3323                 if (i915_gem_valid_gtt_space(vma, cache_level))
3324                         continue;
3325
3326                 ret = i915_vma_unbind(vma);
3327                 if (ret)
3328                         return ret;
3329
3330                 /* As unbinding may affect other elements in the
3331                  * obj->vma_list (due to side-effects from retiring
3332                  * an active vma), play safe and restart the iterator.
3333                  */
3334                 goto restart;
3335         }
3336
3337         /* We can reuse the existing drm_mm nodes but need to change the
3338          * cache-level on the PTE. We could simply unbind them all and
3339          * rebind with the correct cache-level on next use. However since
3340          * we already have a valid slot, dma mapping, pages etc, we may as
3341          * rewrite the PTE in the belief that doing so tramples upon less
3342          * state and so involves less work.
3343          */
3344         if (obj->bind_count) {
3345                 /* Before we change the PTE, the GPU must not be accessing it.
3346                  * If we wait upon the object, we know that all the bound
3347                  * VMA are no longer active.
3348                  */
3349                 ret = i915_gem_object_wait_rendering(obj, false);
3350                 if (ret)
3351                         return ret;
3352
3353                 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3354                         /* Access to snoopable pages through the GTT is
3355                          * incoherent and on some machines causes a hard
3356                          * lockup. Relinquish the CPU mmaping to force
3357                          * userspace to refault in the pages and we can
3358                          * then double check if the GTT mapping is still
3359                          * valid for that pointer access.
3360                          */
3361                         i915_gem_release_mmap(obj);
3362
3363                         /* As we no longer need a fence for GTT access,
3364                          * we can relinquish it now (and so prevent having
3365                          * to steal a fence from someone else on the next
3366                          * fence request). Note GPU activity would have
3367                          * dropped the fence as all snoopable access is
3368                          * supposed to be linear.
3369                          */
3370                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3371                                 ret = i915_vma_put_fence(vma);
3372                                 if (ret)
3373                                         return ret;
3374                         }
3375                 } else {
3376                         /* We either have incoherent backing store and
3377                          * so no GTT access or the architecture is fully
3378                          * coherent. In such cases, existing GTT mmaps
3379                          * ignore the cache bit in the PTE and we can
3380                          * rewrite it without confusing the GPU or having
3381                          * to force userspace to fault back in its mmaps.
3382                          */
3383                 }
3384
3385                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3386                         if (!drm_mm_node_allocated(&vma->node))
3387                                 continue;
3388
3389                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3390                         if (ret)
3391                                 return ret;
3392                 }
3393         }
3394
3395         list_for_each_entry(vma, &obj->vma_list, obj_link)
3396                 vma->node.color = cache_level;
3397         obj->cache_level = cache_level;
3398
3399 out:
3400         /* Flush the dirty CPU caches to the backing storage so that the
3401          * object is now coherent at its new cache level (with respect
3402          * to the access domain).
3403          */
3404         if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3405                 if (i915_gem_clflush_object(obj, true))
3406                         i915_gem_chipset_flush(to_i915(obj->base.dev));
3407         }
3408
3409         return 0;
3410 }
3411
3412 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3413                                struct drm_file *file)
3414 {
3415         struct drm_i915_gem_caching *args = data;
3416         struct drm_i915_gem_object *obj;
3417
3418         obj = i915_gem_object_lookup(file, args->handle);
3419         if (!obj)
3420                 return -ENOENT;
3421
3422         switch (obj->cache_level) {
3423         case I915_CACHE_LLC:
3424         case I915_CACHE_L3_LLC:
3425                 args->caching = I915_CACHING_CACHED;
3426                 break;
3427
3428         case I915_CACHE_WT:
3429                 args->caching = I915_CACHING_DISPLAY;
3430                 break;
3431
3432         default:
3433                 args->caching = I915_CACHING_NONE;
3434                 break;
3435         }
3436
3437         i915_gem_object_put_unlocked(obj);
3438         return 0;
3439 }
3440
3441 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3442                                struct drm_file *file)
3443 {
3444         struct drm_i915_private *dev_priv = to_i915(dev);
3445         struct drm_i915_gem_caching *args = data;
3446         struct drm_i915_gem_object *obj;
3447         enum i915_cache_level level;
3448         int ret;
3449
3450         switch (args->caching) {
3451         case I915_CACHING_NONE:
3452                 level = I915_CACHE_NONE;
3453                 break;
3454         case I915_CACHING_CACHED:
3455                 /*
3456                  * Due to a HW issue on BXT A stepping, GPU stores via a
3457                  * snooped mapping may leave stale data in a corresponding CPU
3458                  * cacheline, whereas normally such cachelines would get
3459                  * invalidated.
3460                  */
3461                 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3462                         return -ENODEV;
3463
3464                 level = I915_CACHE_LLC;
3465                 break;
3466         case I915_CACHING_DISPLAY:
3467                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3468                 break;
3469         default:
3470                 return -EINVAL;
3471         }
3472
3473         intel_runtime_pm_get(dev_priv);
3474
3475         ret = i915_mutex_lock_interruptible(dev);
3476         if (ret)
3477                 goto rpm_put;
3478
3479         obj = i915_gem_object_lookup(file, args->handle);
3480         if (!obj) {
3481                 ret = -ENOENT;
3482                 goto unlock;
3483         }
3484
3485         ret = i915_gem_object_set_cache_level(obj, level);
3486
3487         i915_gem_object_put(obj);
3488 unlock:
3489         mutex_unlock(&dev->struct_mutex);
3490 rpm_put:
3491         intel_runtime_pm_put(dev_priv);
3492
3493         return ret;
3494 }
3495
3496 /*
3497  * Prepare buffer for display plane (scanout, cursors, etc).
3498  * Can be called from an uninterruptible phase (modesetting) and allows
3499  * any flushes to be pipelined (for pageflips).
3500  */
3501 struct i915_vma *
3502 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3503                                      u32 alignment,
3504                                      const struct i915_ggtt_view *view)
3505 {
3506         struct i915_vma *vma;
3507         u32 old_read_domains, old_write_domain;
3508         int ret;
3509
3510         /* Mark the pin_display early so that we account for the
3511          * display coherency whilst setting up the cache domains.
3512          */
3513         obj->pin_display++;
3514
3515         /* The display engine is not coherent with the LLC cache on gen6.  As
3516          * a result, we make sure that the pinning that is about to occur is
3517          * done with uncached PTEs. This is lowest common denominator for all
3518          * chipsets.
3519          *
3520          * However for gen6+, we could do better by using the GFDT bit instead
3521          * of uncaching, which would allow us to flush all the LLC-cached data
3522          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3523          */
3524         ret = i915_gem_object_set_cache_level(obj,
3525                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3526         if (ret) {
3527                 vma = ERR_PTR(ret);
3528                 goto err_unpin_display;
3529         }
3530
3531         /* As the user may map the buffer once pinned in the display plane
3532          * (e.g. libkms for the bootup splash), we have to ensure that we
3533          * always use map_and_fenceable for all scanout buffers. However,
3534          * it may simply be too big to fit into mappable, in which case
3535          * put it anyway and hope that userspace can cope (but always first
3536          * try to preserve the existing ABI).
3537          */
3538         vma = ERR_PTR(-ENOSPC);
3539         if (view->type == I915_GGTT_VIEW_NORMAL)
3540                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3541                                                PIN_MAPPABLE | PIN_NONBLOCK);
3542         if (IS_ERR(vma))
3543                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
3544         if (IS_ERR(vma))
3545                 goto err_unpin_display;
3546
3547         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3548
3549         WARN_ON(obj->pin_display > i915_vma_pin_count(vma));
3550
3551         i915_gem_object_flush_cpu_write_domain(obj);
3552
3553         old_write_domain = obj->base.write_domain;
3554         old_read_domains = obj->base.read_domains;
3555
3556         /* It should now be out of any other write domains, and we can update
3557          * the domain values for our changes.
3558          */
3559         obj->base.write_domain = 0;
3560         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3561
3562         trace_i915_gem_object_change_domain(obj,
3563                                             old_read_domains,
3564                                             old_write_domain);
3565
3566         return vma;
3567
3568 err_unpin_display:
3569         obj->pin_display--;
3570         return vma;
3571 }
3572
3573 void
3574 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3575 {
3576         if (WARN_ON(vma->obj->pin_display == 0))
3577                 return;
3578
3579         if (--vma->obj->pin_display == 0)
3580                 vma->display_alignment = 0;
3581
3582         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3583         if (!i915_vma_is_active(vma))
3584                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3585
3586         i915_vma_unpin(vma);
3587         WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
3588 }
3589
3590 /**
3591  * Moves a single object to the CPU read, and possibly write domain.
3592  * @obj: object to act on
3593  * @write: requesting write or read-only access
3594  *
3595  * This function returns when the move is complete, including waiting on
3596  * flushes to occur.
3597  */
3598 int
3599 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3600 {
3601         uint32_t old_write_domain, old_read_domains;
3602         int ret;
3603
3604         ret = i915_gem_object_wait_rendering(obj, !write);
3605         if (ret)
3606                 return ret;
3607
3608         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3609                 return 0;
3610
3611         i915_gem_object_flush_gtt_write_domain(obj);
3612
3613         old_write_domain = obj->base.write_domain;
3614         old_read_domains = obj->base.read_domains;
3615
3616         /* Flush the CPU cache if it's still invalid. */
3617         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3618                 i915_gem_clflush_object(obj, false);
3619
3620                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3621         }
3622
3623         /* It should now be out of any other write domains, and we can update
3624          * the domain values for our changes.
3625          */
3626         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3627
3628         /* If we're writing through the CPU, then the GPU read domains will
3629          * need to be invalidated at next use.
3630          */
3631         if (write) {
3632                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3633                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3634         }
3635
3636         trace_i915_gem_object_change_domain(obj,
3637                                             old_read_domains,
3638                                             old_write_domain);
3639
3640         return 0;
3641 }
3642
3643 /* Throttle our rendering by waiting until the ring has completed our requests
3644  * emitted over 20 msec ago.
3645  *
3646  * Note that if we were to use the current jiffies each time around the loop,
3647  * we wouldn't escape the function with any frames outstanding if the time to
3648  * render a frame was over 20ms.
3649  *
3650  * This should get us reasonable parallelism between CPU and GPU but also
3651  * relatively low latency when blocking on a particular request to finish.
3652  */
3653 static int
3654 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3655 {
3656         struct drm_i915_private *dev_priv = to_i915(dev);
3657         struct drm_i915_file_private *file_priv = file->driver_priv;
3658         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3659         struct drm_i915_gem_request *request, *target = NULL;
3660         int ret;
3661
3662         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3663         if (ret)
3664                 return ret;
3665
3666         /* ABI: return -EIO if already wedged */
3667         if (i915_terminally_wedged(&dev_priv->gpu_error))
3668                 return -EIO;
3669
3670         spin_lock(&file_priv->mm.lock);
3671         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3672                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3673                         break;
3674
3675                 /*
3676                  * Note that the request might not have been submitted yet.
3677                  * In which case emitted_jiffies will be zero.
3678                  */
3679                 if (!request->emitted_jiffies)
3680                         continue;
3681
3682                 target = request;
3683         }
3684         if (target)
3685                 i915_gem_request_get(target);
3686         spin_unlock(&file_priv->mm.lock);
3687
3688         if (target == NULL)
3689                 return 0;
3690
3691         ret = i915_wait_request(target, I915_WAIT_INTERRUPTIBLE, NULL, NULL);
3692         i915_gem_request_put(target);
3693
3694         return ret;
3695 }
3696
3697 static bool
3698 i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3699 {
3700         if (!drm_mm_node_allocated(&vma->node))
3701                 return false;
3702
3703         if (vma->node.size < size)
3704                 return true;
3705
3706         if (alignment && vma->node.start & (alignment - 1))
3707                 return true;
3708
3709         if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3710                 return true;
3711
3712         if (flags & PIN_OFFSET_BIAS &&
3713             vma->node.start < (flags & PIN_OFFSET_MASK))
3714                 return true;
3715
3716         if (flags & PIN_OFFSET_FIXED &&
3717             vma->node.start != (flags & PIN_OFFSET_MASK))
3718                 return true;
3719
3720         return false;
3721 }
3722
3723 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3724 {
3725         struct drm_i915_gem_object *obj = vma->obj;
3726         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3727         bool mappable, fenceable;
3728         u32 fence_size, fence_alignment;
3729
3730         fence_size = i915_gem_get_ggtt_size(dev_priv,
3731                                             vma->size,
3732                                             i915_gem_object_get_tiling(obj));
3733         fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3734                                                       vma->size,
3735                                                       i915_gem_object_get_tiling(obj),
3736                                                       true);
3737
3738         fenceable = (vma->node.size == fence_size &&
3739                      (vma->node.start & (fence_alignment - 1)) == 0);
3740
3741         mappable = (vma->node.start + fence_size <=
3742                     dev_priv->ggtt.mappable_end);
3743
3744         if (mappable && fenceable)
3745                 vma->flags |= I915_VMA_CAN_FENCE;
3746         else
3747                 vma->flags &= ~I915_VMA_CAN_FENCE;
3748 }
3749
3750 int __i915_vma_do_pin(struct i915_vma *vma,
3751                       u64 size, u64 alignment, u64 flags)
3752 {
3753         unsigned int bound = vma->flags;
3754         int ret;
3755
3756         GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3757         GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
3758
3759         if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3760                 ret = -EBUSY;
3761                 goto err;
3762         }
3763
3764         if ((bound & I915_VMA_BIND_MASK) == 0) {
3765                 ret = i915_vma_insert(vma, size, alignment, flags);
3766                 if (ret)
3767                         goto err;
3768         }
3769
3770         ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3771         if (ret)
3772                 goto err;
3773
3774         if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3775                 __i915_vma_set_map_and_fenceable(vma);
3776
3777         GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3778         return 0;
3779
3780 err:
3781         __i915_vma_unpin(vma);
3782         return ret;
3783 }
3784
3785 struct i915_vma *
3786 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3787                          const struct i915_ggtt_view *view,
3788                          u64 size,
3789                          u64 alignment,
3790                          u64 flags)
3791 {
3792         struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
3793         struct i915_vma *vma;
3794         int ret;
3795
3796         vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3797         if (IS_ERR(vma))
3798                 return vma;
3799
3800         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3801                 if (flags & PIN_NONBLOCK &&
3802                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3803                         return ERR_PTR(-ENOSPC);
3804
3805                 WARN(i915_vma_is_pinned(vma),
3806                      "bo is already pinned in ggtt with incorrect alignment:"
3807                      " offset=%08x, req.alignment=%llx,"
3808                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3809                      i915_ggtt_offset(vma), alignment,
3810                      !!(flags & PIN_MAPPABLE),
3811                      i915_vma_is_map_and_fenceable(vma));
3812                 ret = i915_vma_unbind(vma);
3813                 if (ret)
3814                         return ERR_PTR(ret);
3815         }
3816
3817         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3818         if (ret)
3819                 return ERR_PTR(ret);
3820
3821         return vma;
3822 }
3823
3824 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3825 {
3826         /* Note that we could alias engines in the execbuf API, but
3827          * that would be very unwise as it prevents userspace from
3828          * fine control over engine selection. Ahem.
3829          *
3830          * This should be something like EXEC_MAX_ENGINE instead of
3831          * I915_NUM_ENGINES.
3832          */
3833         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3834         return 0x10000 << id;
3835 }
3836
3837 static __always_inline unsigned int __busy_write_id(unsigned int id)
3838 {
3839         /* The uABI guarantees an active writer is also amongst the read
3840          * engines. This would be true if we accessed the activity tracking
3841          * under the lock, but as we perform the lookup of the object and
3842          * its activity locklessly we can not guarantee that the last_write
3843          * being active implies that we have set the same engine flag from
3844          * last_read - hence we always set both read and write busy for
3845          * last_write.
3846          */
3847         return id | __busy_read_flag(id);
3848 }
3849
3850 static __always_inline unsigned int
3851 __busy_set_if_active(const struct i915_gem_active *active,
3852                      unsigned int (*flag)(unsigned int id))
3853 {
3854         struct drm_i915_gem_request *request;
3855
3856         request = rcu_dereference(active->request);
3857         if (!request || i915_gem_request_completed(request))
3858                 return 0;
3859
3860         /* This is racy. See __i915_gem_active_get_rcu() for an in detail
3861          * discussion of how to handle the race correctly, but for reporting
3862          * the busy state we err on the side of potentially reporting the
3863          * wrong engine as being busy (but we guarantee that the result
3864          * is at least self-consistent).
3865          *
3866          * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
3867          * whilst we are inspecting it, even under the RCU read lock as we are.
3868          * This means that there is a small window for the engine and/or the
3869          * seqno to have been overwritten. The seqno will always be in the
3870          * future compared to the intended, and so we know that if that
3871          * seqno is idle (on whatever engine) our request is idle and the
3872          * return 0 above is correct.
3873          *
3874          * The issue is that if the engine is switched, it is just as likely
3875          * to report that it is busy (but since the switch happened, we know
3876          * the request should be idle). So there is a small chance that a busy
3877          * result is actually the wrong engine.
3878          *
3879          * So why don't we care?
3880          *
3881          * For starters, the busy ioctl is a heuristic that is by definition
3882          * racy. Even with perfect serialisation in the driver, the hardware
3883          * state is constantly advancing - the state we report to the user
3884          * is stale.
3885          *
3886          * The critical information for the busy-ioctl is whether the object
3887          * is idle as userspace relies on that to detect whether its next
3888          * access will stall, or if it has missed submitting commands to
3889          * the hardware allowing the GPU to stall. We never generate a
3890          * false-positive for idleness, thus busy-ioctl is reliable at the
3891          * most fundamental level, and we maintain the guarantee that a
3892          * busy object left to itself will eventually become idle (and stay
3893          * idle!).
3894          *
3895          * We allow ourselves the leeway of potentially misreporting the busy
3896          * state because that is an optimisation heuristic that is constantly
3897          * in flux. Being quickly able to detect the busy/idle state is much
3898          * more important than accurate logging of exactly which engines were
3899          * busy.
3900          *
3901          * For accuracy in reporting the engine, we could use
3902          *
3903          *      result = 0;
3904          *      request = __i915_gem_active_get_rcu(active);
3905          *      if (request) {
3906          *              if (!i915_gem_request_completed(request))
3907          *                      result = flag(request->engine->exec_id);
3908          *              i915_gem_request_put(request);
3909          *      }
3910          *
3911          * but that still remains susceptible to both hardware and userspace
3912          * races. So we accept making the result of that race slightly worse,
3913          * given the rarity of the race and its low impact on the result.
3914          */
3915         return flag(READ_ONCE(request->engine->exec_id));
3916 }
3917
3918 static __always_inline unsigned int
3919 busy_check_reader(const struct i915_gem_active *active)
3920 {
3921         return __busy_set_if_active(active, __busy_read_flag);
3922 }
3923
3924 static __always_inline unsigned int
3925 busy_check_writer(const struct i915_gem_active *active)
3926 {
3927         return __busy_set_if_active(active, __busy_write_id);
3928 }
3929
3930 int
3931 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3932                     struct drm_file *file)
3933 {
3934         struct drm_i915_gem_busy *args = data;
3935         struct drm_i915_gem_object *obj;
3936         unsigned long active;
3937
3938         obj = i915_gem_object_lookup(file, args->handle);
3939         if (!obj)
3940                 return -ENOENT;
3941
3942         args->busy = 0;
3943         active = __I915_BO_ACTIVE(obj);
3944         if (active) {
3945                 int idx;
3946
3947                 /* Yes, the lookups are intentionally racy.
3948                  *
3949                  * First, we cannot simply rely on __I915_BO_ACTIVE. We have
3950                  * to regard the value as stale and as our ABI guarantees
3951                  * forward progress, we confirm the status of each active
3952                  * request with the hardware.
3953                  *
3954                  * Even though we guard the pointer lookup by RCU, that only
3955                  * guarantees that the pointer and its contents remain
3956                  * dereferencable and does *not* mean that the request we
3957                  * have is the same as the one being tracked by the object.
3958                  *
3959                  * Consider that we lookup the request just as it is being
3960                  * retired and freed. We take a local copy of the pointer,
3961                  * but before we add its engine into the busy set, the other
3962                  * thread reallocates it and assigns it to a task on another
3963                  * engine with a fresh and incomplete seqno. Guarding against
3964                  * that requires careful serialisation and reference counting,
3965                  * i.e. using __i915_gem_active_get_request_rcu(). We don't,
3966                  * instead we expect that if the result is busy, which engines
3967                  * are busy is not completely reliable - we only guarantee
3968                  * that the object was busy.
3969                  */
3970                 rcu_read_lock();
3971
3972                 for_each_active(active, idx)
3973                         args->busy |= busy_check_reader(&obj->last_read[idx]);
3974
3975                 /* For ABI sanity, we only care that the write engine is in
3976                  * the set of read engines. This should be ensured by the
3977                  * ordering of setting last_read/last_write in
3978                  * i915_vma_move_to_active(), and then in reverse in retire.
3979                  * However, for good measure, we always report the last_write
3980                  * request as a busy read as well as being a busy write.
3981                  *
3982                  * We don't care that the set of active read/write engines
3983                  * may change during construction of the result, as it is
3984                  * equally liable to change before userspace can inspect
3985                  * the result.
3986                  */
3987                 args->busy |= busy_check_writer(&obj->last_write);
3988
3989                 rcu_read_unlock();
3990         }
3991
3992         i915_gem_object_put_unlocked(obj);
3993         return 0;
3994 }
3995
3996 int
3997 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3998                         struct drm_file *file_priv)
3999 {
4000         return i915_gem_ring_throttle(dev, file_priv);
4001 }
4002
4003 int
4004 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4005                        struct drm_file *file_priv)
4006 {
4007         struct drm_i915_private *dev_priv = to_i915(dev);
4008         struct drm_i915_gem_madvise *args = data;
4009         struct drm_i915_gem_object *obj;
4010         int ret;
4011
4012         switch (args->madv) {
4013         case I915_MADV_DONTNEED:
4014         case I915_MADV_WILLNEED:
4015             break;
4016         default:
4017             return -EINVAL;
4018         }
4019
4020         ret = i915_mutex_lock_interruptible(dev);
4021         if (ret)
4022                 return ret;
4023
4024         obj = i915_gem_object_lookup(file_priv, args->handle);
4025         if (!obj) {
4026                 ret = -ENOENT;
4027                 goto unlock;
4028         }
4029
4030         if (obj->pages &&
4031             i915_gem_object_is_tiled(obj) &&
4032             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4033                 if (obj->madv == I915_MADV_WILLNEED)
4034                         i915_gem_object_unpin_pages(obj);
4035                 if (args->madv == I915_MADV_WILLNEED)
4036                         i915_gem_object_pin_pages(obj);
4037         }
4038
4039         if (obj->madv != __I915_MADV_PURGED)
4040                 obj->madv = args->madv;
4041
4042         /* if the object is no longer attached, discard its backing storage */
4043         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4044                 i915_gem_object_truncate(obj);
4045
4046         args->retained = obj->madv != __I915_MADV_PURGED;
4047
4048         i915_gem_object_put(obj);
4049 unlock:
4050         mutex_unlock(&dev->struct_mutex);
4051         return ret;
4052 }
4053
4054 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4055                           const struct drm_i915_gem_object_ops *ops)
4056 {
4057         int i;
4058
4059         INIT_LIST_HEAD(&obj->global_list);
4060         for (i = 0; i < I915_NUM_ENGINES; i++)
4061                 init_request_active(&obj->last_read[i],
4062                                     i915_gem_object_retire__read);
4063         init_request_active(&obj->last_write,
4064                             i915_gem_object_retire__write);
4065         INIT_LIST_HEAD(&obj->obj_exec_link);
4066         INIT_LIST_HEAD(&obj->vma_list);
4067         INIT_LIST_HEAD(&obj->batch_pool_link);
4068
4069         obj->ops = ops;
4070
4071         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4072         obj->madv = I915_MADV_WILLNEED;
4073
4074         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4075 }
4076
4077 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4078         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4079         .get_pages = i915_gem_object_get_pages_gtt,
4080         .put_pages = i915_gem_object_put_pages_gtt,
4081 };
4082
4083 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4084                                                   size_t size)
4085 {
4086         struct drm_i915_gem_object *obj;
4087         struct address_space *mapping;
4088         gfp_t mask;
4089         int ret;
4090
4091         obj = i915_gem_object_alloc(dev);
4092         if (obj == NULL)
4093                 return ERR_PTR(-ENOMEM);
4094
4095         ret = drm_gem_object_init(dev, &obj->base, size);
4096         if (ret)
4097                 goto fail;
4098
4099         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4100         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4101                 /* 965gm cannot relocate objects above 4GiB. */
4102                 mask &= ~__GFP_HIGHMEM;
4103                 mask |= __GFP_DMA32;
4104         }
4105
4106         mapping = obj->base.filp->f_mapping;
4107         mapping_set_gfp_mask(mapping, mask);
4108
4109         i915_gem_object_init(obj, &i915_gem_object_ops);
4110
4111         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4112         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4113
4114         if (HAS_LLC(dev)) {
4115                 /* On some devices, we can have the GPU use the LLC (the CPU
4116                  * cache) for about a 10% performance improvement
4117                  * compared to uncached.  Graphics requests other than
4118                  * display scanout are coherent with the CPU in
4119                  * accessing this cache.  This means in this mode we
4120                  * don't need to clflush on the CPU side, and on the
4121                  * GPU side we only need to flush internal caches to
4122                  * get data visible to the CPU.
4123                  *
4124                  * However, we maintain the display planes as UC, and so
4125                  * need to rebind when first used as such.
4126                  */
4127                 obj->cache_level = I915_CACHE_LLC;
4128         } else
4129                 obj->cache_level = I915_CACHE_NONE;
4130
4131         trace_i915_gem_object_create(obj);
4132
4133         return obj;
4134
4135 fail:
4136         i915_gem_object_free(obj);
4137
4138         return ERR_PTR(ret);
4139 }
4140
4141 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4142 {
4143         /* If we are the last user of the backing storage (be it shmemfs
4144          * pages or stolen etc), we know that the pages are going to be
4145          * immediately released. In this case, we can then skip copying
4146          * back the contents from the GPU.
4147          */
4148
4149         if (obj->madv != I915_MADV_WILLNEED)
4150                 return false;
4151
4152         if (obj->base.filp == NULL)
4153                 return true;
4154
4155         /* At first glance, this looks racy, but then again so would be
4156          * userspace racing mmap against close. However, the first external
4157          * reference to the filp can only be obtained through the
4158          * i915_gem_mmap_ioctl() which safeguards us against the user
4159          * acquiring such a reference whilst we are in the middle of
4160          * freeing the object.
4161          */
4162         return atomic_long_read(&obj->base.filp->f_count) == 1;
4163 }
4164
4165 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4166 {
4167         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4168         struct drm_device *dev = obj->base.dev;
4169         struct drm_i915_private *dev_priv = to_i915(dev);
4170         struct i915_vma *vma, *next;
4171
4172         intel_runtime_pm_get(dev_priv);
4173
4174         trace_i915_gem_object_destroy(obj);
4175
4176         /* All file-owned VMA should have been released by this point through
4177          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4178          * However, the object may also be bound into the global GTT (e.g.
4179          * older GPUs without per-process support, or for direct access through
4180          * the GTT either for the user or for scanout). Those VMA still need to
4181          * unbound now.
4182          */
4183         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4184                 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4185                 GEM_BUG_ON(i915_vma_is_active(vma));
4186                 vma->flags &= ~I915_VMA_PIN_MASK;
4187                 i915_vma_close(vma);
4188         }
4189         GEM_BUG_ON(obj->bind_count);
4190
4191         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4192          * before progressing. */
4193         if (obj->stolen)
4194                 i915_gem_object_unpin_pages(obj);
4195
4196         WARN_ON(atomic_read(&obj->frontbuffer_bits));
4197
4198         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4199             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4200             i915_gem_object_is_tiled(obj))
4201                 i915_gem_object_unpin_pages(obj);
4202
4203         if (WARN_ON(obj->pages_pin_count))
4204                 obj->pages_pin_count = 0;
4205         if (discard_backing_storage(obj))
4206                 obj->madv = I915_MADV_DONTNEED;
4207         i915_gem_object_put_pages(obj);
4208
4209         BUG_ON(obj->pages);
4210
4211         if (obj->base.import_attach)
4212                 drm_prime_gem_destroy(&obj->base, NULL);
4213
4214         if (obj->ops->release)
4215                 obj->ops->release(obj);
4216
4217         drm_gem_object_release(&obj->base);
4218         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4219
4220         kfree(obj->bit_17);
4221         i915_gem_object_free(obj);
4222
4223         intel_runtime_pm_put(dev_priv);
4224 }
4225
4226 int i915_gem_suspend(struct drm_device *dev)
4227 {
4228         struct drm_i915_private *dev_priv = to_i915(dev);
4229         int ret;
4230
4231         intel_suspend_gt_powersave(dev_priv);
4232
4233         mutex_lock(&dev->struct_mutex);
4234
4235         /* We have to flush all the executing contexts to main memory so
4236          * that they can saved in the hibernation image. To ensure the last
4237          * context image is coherent, we have to switch away from it. That
4238          * leaves the dev_priv->kernel_context still active when
4239          * we actually suspend, and its image in memory may not match the GPU
4240          * state. Fortunately, the kernel_context is disposable and we do
4241          * not rely on its state.
4242          */
4243         ret = i915_gem_switch_to_kernel_context(dev_priv);
4244         if (ret)
4245                 goto err;
4246
4247         ret = i915_gem_wait_for_idle(dev_priv,
4248                                      I915_WAIT_INTERRUPTIBLE |
4249                                      I915_WAIT_LOCKED);
4250         if (ret)
4251                 goto err;
4252
4253         i915_gem_retire_requests(dev_priv);
4254
4255         i915_gem_context_lost(dev_priv);
4256         mutex_unlock(&dev->struct_mutex);
4257
4258         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4259         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4260         flush_delayed_work(&dev_priv->gt.idle_work);
4261
4262         /* Assert that we sucessfully flushed all the work and
4263          * reset the GPU back to its idle, low power state.
4264          */
4265         WARN_ON(dev_priv->gt.awake);
4266
4267         return 0;
4268
4269 err:
4270         mutex_unlock(&dev->struct_mutex);
4271         return ret;
4272 }
4273
4274 void i915_gem_resume(struct drm_device *dev)
4275 {
4276         struct drm_i915_private *dev_priv = to_i915(dev);
4277
4278         mutex_lock(&dev->struct_mutex);
4279         i915_gem_restore_gtt_mappings(dev);
4280
4281         /* As we didn't flush the kernel context before suspend, we cannot
4282          * guarantee that the context image is complete. So let's just reset
4283          * it and start again.
4284          */
4285         dev_priv->gt.resume(dev_priv);
4286
4287         mutex_unlock(&dev->struct_mutex);
4288 }
4289
4290 void i915_gem_init_swizzling(struct drm_device *dev)
4291 {
4292         struct drm_i915_private *dev_priv = to_i915(dev);
4293
4294         if (INTEL_INFO(dev)->gen < 5 ||
4295             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4296                 return;
4297
4298         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4299                                  DISP_TILE_SURFACE_SWIZZLING);
4300
4301         if (IS_GEN5(dev))
4302                 return;
4303
4304         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4305         if (IS_GEN6(dev))
4306                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4307         else if (IS_GEN7(dev))
4308                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4309         else if (IS_GEN8(dev))
4310                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4311         else
4312                 BUG();
4313 }
4314
4315 static void init_unused_ring(struct drm_device *dev, u32 base)
4316 {
4317         struct drm_i915_private *dev_priv = to_i915(dev);
4318
4319         I915_WRITE(RING_CTL(base), 0);
4320         I915_WRITE(RING_HEAD(base), 0);
4321         I915_WRITE(RING_TAIL(base), 0);
4322         I915_WRITE(RING_START(base), 0);
4323 }
4324
4325 static void init_unused_rings(struct drm_device *dev)
4326 {
4327         if (IS_I830(dev)) {
4328                 init_unused_ring(dev, PRB1_BASE);
4329                 init_unused_ring(dev, SRB0_BASE);
4330                 init_unused_ring(dev, SRB1_BASE);
4331                 init_unused_ring(dev, SRB2_BASE);
4332                 init_unused_ring(dev, SRB3_BASE);
4333         } else if (IS_GEN2(dev)) {
4334                 init_unused_ring(dev, SRB0_BASE);
4335                 init_unused_ring(dev, SRB1_BASE);
4336         } else if (IS_GEN3(dev)) {
4337                 init_unused_ring(dev, PRB1_BASE);
4338                 init_unused_ring(dev, PRB2_BASE);
4339         }
4340 }
4341
4342 int
4343 i915_gem_init_hw(struct drm_device *dev)
4344 {
4345         struct drm_i915_private *dev_priv = to_i915(dev);
4346         struct intel_engine_cs *engine;
4347         int ret;
4348
4349         /* Double layer security blanket, see i915_gem_init() */
4350         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4351
4352         if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4353                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4354
4355         if (IS_HASWELL(dev))
4356                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4357                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4358
4359         if (HAS_PCH_NOP(dev)) {
4360                 if (IS_IVYBRIDGE(dev)) {
4361                         u32 temp = I915_READ(GEN7_MSG_CTL);
4362                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4363                         I915_WRITE(GEN7_MSG_CTL, temp);
4364                 } else if (INTEL_INFO(dev)->gen >= 7) {
4365                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4366                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4367                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4368                 }
4369         }
4370
4371         i915_gem_init_swizzling(dev);
4372
4373         /*
4374          * At least 830 can leave some of the unused rings
4375          * "active" (ie. head != tail) after resume which
4376          * will prevent c3 entry. Makes sure all unused rings
4377          * are totally idle.
4378          */
4379         init_unused_rings(dev);
4380
4381         BUG_ON(!dev_priv->kernel_context);
4382
4383         ret = i915_ppgtt_init_hw(dev);
4384         if (ret) {
4385                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4386                 goto out;
4387         }
4388
4389         /* Need to do basic initialisation of all rings first: */
4390         for_each_engine(engine, dev_priv) {
4391                 ret = engine->init_hw(engine);
4392                 if (ret)
4393                         goto out;
4394         }
4395
4396         intel_mocs_init_l3cc_table(dev);
4397
4398         /* We can't enable contexts until all firmware is loaded */
4399         ret = intel_guc_setup(dev);
4400         if (ret)
4401                 goto out;
4402
4403 out:
4404         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4405         return ret;
4406 }
4407
4408 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4409 {
4410         if (INTEL_INFO(dev_priv)->gen < 6)
4411                 return false;
4412
4413         /* TODO: make semaphores and Execlists play nicely together */
4414         if (i915.enable_execlists)
4415                 return false;
4416
4417         if (value >= 0)
4418                 return value;
4419
4420 #ifdef CONFIG_INTEL_IOMMU
4421         /* Enable semaphores on SNB when IO remapping is off */
4422         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4423                 return false;
4424 #endif
4425
4426         return true;
4427 }
4428
4429 int i915_gem_init(struct drm_device *dev)
4430 {
4431         struct drm_i915_private *dev_priv = to_i915(dev);
4432         int ret;
4433
4434         mutex_lock(&dev->struct_mutex);
4435
4436         if (!i915.enable_execlists) {
4437                 dev_priv->gt.resume = intel_legacy_submission_resume;
4438                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4439         } else {
4440                 dev_priv->gt.resume = intel_lr_context_resume;
4441                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4442         }
4443
4444         /* This is just a security blanket to placate dragons.
4445          * On some systems, we very sporadically observe that the first TLBs
4446          * used by the CS may be stale, despite us poking the TLB reset. If
4447          * we hold the forcewake during initialisation these problems
4448          * just magically go away.
4449          */
4450         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4451
4452         i915_gem_init_userptr(dev_priv);
4453
4454         ret = i915_gem_init_ggtt(dev_priv);
4455         if (ret)
4456                 goto out_unlock;
4457
4458         ret = i915_gem_context_init(dev);
4459         if (ret)
4460                 goto out_unlock;
4461
4462         ret = intel_engines_init(dev);
4463         if (ret)
4464                 goto out_unlock;
4465
4466         ret = i915_gem_init_hw(dev);
4467         if (ret == -EIO) {
4468                 /* Allow engine initialisation to fail by marking the GPU as
4469                  * wedged. But we only want to do this where the GPU is angry,
4470                  * for all other failure, such as an allocation failure, bail.
4471                  */
4472                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4473                 i915_gem_set_wedged(dev_priv);
4474                 ret = 0;
4475         }
4476
4477 out_unlock:
4478         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4479         mutex_unlock(&dev->struct_mutex);
4480
4481         return ret;
4482 }
4483
4484 void
4485 i915_gem_cleanup_engines(struct drm_device *dev)
4486 {
4487         struct drm_i915_private *dev_priv = to_i915(dev);
4488         struct intel_engine_cs *engine;
4489
4490         for_each_engine(engine, dev_priv)
4491                 dev_priv->gt.cleanup_engine(engine);
4492 }
4493
4494 static void
4495 init_engine_lists(struct intel_engine_cs *engine)
4496 {
4497         INIT_LIST_HEAD(&engine->request_list);
4498 }
4499
4500 void
4501 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4502 {
4503         struct drm_device *dev = &dev_priv->drm;
4504         int i;
4505
4506         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4507             !IS_CHERRYVIEW(dev_priv))
4508                 dev_priv->num_fence_regs = 32;
4509         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4510                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
4511                 dev_priv->num_fence_regs = 16;
4512         else
4513                 dev_priv->num_fence_regs = 8;
4514
4515         if (intel_vgpu_active(dev_priv))
4516                 dev_priv->num_fence_regs =
4517                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4518
4519         /* Initialize fence registers to zero */
4520         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4521                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4522
4523                 fence->i915 = dev_priv;
4524                 fence->id = i;
4525                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4526         }
4527         i915_gem_restore_fences(dev);
4528
4529         i915_gem_detect_bit_6_swizzle(dev);
4530 }
4531
4532 void
4533 i915_gem_load_init(struct drm_device *dev)
4534 {
4535         struct drm_i915_private *dev_priv = to_i915(dev);
4536         int i;
4537
4538         dev_priv->objects =
4539                 kmem_cache_create("i915_gem_object",
4540                                   sizeof(struct drm_i915_gem_object), 0,
4541                                   SLAB_HWCACHE_ALIGN,
4542                                   NULL);
4543         dev_priv->vmas =
4544                 kmem_cache_create("i915_gem_vma",
4545                                   sizeof(struct i915_vma), 0,
4546                                   SLAB_HWCACHE_ALIGN,
4547                                   NULL);
4548         dev_priv->requests =
4549                 kmem_cache_create("i915_gem_request",
4550                                   sizeof(struct drm_i915_gem_request), 0,
4551                                   SLAB_HWCACHE_ALIGN |
4552                                   SLAB_RECLAIM_ACCOUNT |
4553                                   SLAB_DESTROY_BY_RCU,
4554                                   NULL);
4555
4556         INIT_LIST_HEAD(&dev_priv->context_list);
4557         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4558         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4559         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4560         for (i = 0; i < I915_NUM_ENGINES; i++)
4561                 init_engine_lists(&dev_priv->engine[i]);
4562         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4563                           i915_gem_retire_work_handler);
4564         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4565                           i915_gem_idle_work_handler);
4566         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4567         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4568
4569         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4570
4571         init_waitqueue_head(&dev_priv->pending_flip_queue);
4572
4573         dev_priv->mm.interruptible = true;
4574
4575         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4576
4577         spin_lock_init(&dev_priv->fb_tracking.lock);
4578 }
4579
4580 void i915_gem_load_cleanup(struct drm_device *dev)
4581 {
4582         struct drm_i915_private *dev_priv = to_i915(dev);
4583
4584         kmem_cache_destroy(dev_priv->requests);
4585         kmem_cache_destroy(dev_priv->vmas);
4586         kmem_cache_destroy(dev_priv->objects);
4587
4588         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4589         rcu_barrier();
4590 }
4591
4592 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4593 {
4594         struct drm_i915_gem_object *obj;
4595         struct list_head *phases[] = {
4596                 &dev_priv->mm.unbound_list,
4597                 &dev_priv->mm.bound_list,
4598                 NULL
4599         }, **p;
4600
4601         /* Called just before we write the hibernation image.
4602          *
4603          * We need to update the domain tracking to reflect that the CPU
4604          * will be accessing all the pages to create and restore from the
4605          * hibernation, and so upon restoration those pages will be in the
4606          * CPU domain.
4607          *
4608          * To make sure the hibernation image contains the latest state,
4609          * we update that state just before writing out the image.
4610          *
4611          * To try and reduce the hibernation image, we manually shrink
4612          * the objects as well.
4613          */
4614
4615         i915_gem_shrink_all(dev_priv);
4616
4617         for (p = phases; *p; p++) {
4618                 list_for_each_entry(obj, *p, global_list) {
4619                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4620                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4621                 }
4622         }
4623
4624         return 0;
4625 }
4626
4627 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4628 {
4629         struct drm_i915_file_private *file_priv = file->driver_priv;
4630         struct drm_i915_gem_request *request;
4631
4632         /* Clean up our request list when the client is going away, so that
4633          * later retire_requests won't dereference our soon-to-be-gone
4634          * file_priv.
4635          */
4636         spin_lock(&file_priv->mm.lock);
4637         list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4638                 request->file_priv = NULL;
4639         spin_unlock(&file_priv->mm.lock);
4640
4641         if (!list_empty(&file_priv->rps.link)) {
4642                 spin_lock(&to_i915(dev)->rps.client_lock);
4643                 list_del(&file_priv->rps.link);
4644                 spin_unlock(&to_i915(dev)->rps.client_lock);
4645         }
4646 }
4647
4648 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4649 {
4650         struct drm_i915_file_private *file_priv;
4651         int ret;
4652
4653         DRM_DEBUG_DRIVER("\n");
4654
4655         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4656         if (!file_priv)
4657                 return -ENOMEM;
4658
4659         file->driver_priv = file_priv;
4660         file_priv->dev_priv = to_i915(dev);
4661         file_priv->file = file;
4662         INIT_LIST_HEAD(&file_priv->rps.link);
4663
4664         spin_lock_init(&file_priv->mm.lock);
4665         INIT_LIST_HEAD(&file_priv->mm.request_list);
4666
4667         file_priv->bsd_engine = -1;
4668
4669         ret = i915_gem_context_open(dev, file);
4670         if (ret)
4671                 kfree(file_priv);
4672
4673         return ret;
4674 }
4675
4676 /**
4677  * i915_gem_track_fb - update frontbuffer tracking
4678  * @old: current GEM buffer for the frontbuffer slots
4679  * @new: new GEM buffer for the frontbuffer slots
4680  * @frontbuffer_bits: bitmask of frontbuffer slots
4681  *
4682  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4683  * from @old and setting them in @new. Both @old and @new can be NULL.
4684  */
4685 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4686                        struct drm_i915_gem_object *new,
4687                        unsigned frontbuffer_bits)
4688 {
4689         /* Control of individual bits within the mask are guarded by
4690          * the owning plane->mutex, i.e. we can never see concurrent
4691          * manipulation of individual bits. But since the bitfield as a whole
4692          * is updated using RMW, we need to use atomics in order to update
4693          * the bits.
4694          */
4695         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4696                      sizeof(atomic_t) * BITS_PER_BYTE);
4697
4698         if (old) {
4699                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4700                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4701         }
4702
4703         if (new) {
4704                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4705                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4706         }
4707 }
4708
4709 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4710 struct page *
4711 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4712 {
4713         struct page *page;
4714
4715         /* Only default objects have per-page dirty tracking */
4716         if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4717                 return NULL;
4718
4719         page = i915_gem_object_get_page(obj, n);
4720         set_page_dirty(page);
4721         return page;
4722 }
4723
4724 /* Allocate a new GEM object and fill it with the supplied data */
4725 struct drm_i915_gem_object *
4726 i915_gem_object_create_from_data(struct drm_device *dev,
4727                                  const void *data, size_t size)
4728 {
4729         struct drm_i915_gem_object *obj;
4730         struct sg_table *sg;
4731         size_t bytes;
4732         int ret;
4733
4734         obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4735         if (IS_ERR(obj))
4736                 return obj;
4737
4738         ret = i915_gem_object_set_to_cpu_domain(obj, true);
4739         if (ret)
4740                 goto fail;
4741
4742         ret = i915_gem_object_get_pages(obj);
4743         if (ret)
4744                 goto fail;
4745
4746         i915_gem_object_pin_pages(obj);
4747         sg = obj->pages;
4748         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4749         obj->dirty = 1;         /* Backing store is now out of date */
4750         i915_gem_object_unpin_pages(obj);
4751
4752         if (WARN_ON(bytes != size)) {
4753                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4754                 ret = -EFAULT;
4755                 goto fail;
4756         }
4757
4758         return obj;
4759
4760 fail:
4761         i915_gem_object_put(obj);
4762         return ERR_PTR(ret);
4763 }