drm/i915/bdw: Clean up execlist queue items in retire_work
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43                                                    bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46                                bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57                                              struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59                                             struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61                                  unsigned long event,
62                                  void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66                                   enum i915_cache_level level)
67 {
68         return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74                 return true;
75
76         return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81         if (obj->tiling_mode)
82                 i915_gem_release_mmap(obj);
83
84         /* As we do not have an associated fence register, we will force
85          * a tiling change if we ever need to acquire one.
86          */
87         obj->fence_dirty = false;
88         obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93                                   size_t size)
94 {
95         spin_lock(&dev_priv->mm.object_stat_lock);
96         dev_priv->mm.object_count++;
97         dev_priv->mm.object_memory += size;
98         spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102                                      size_t size)
103 {
104         spin_lock(&dev_priv->mm.object_stat_lock);
105         dev_priv->mm.object_count--;
106         dev_priv->mm.object_memory -= size;
107         spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113         int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116                    i915_terminally_wedged(error))
117         if (EXIT_COND)
118                 return 0;
119
120         /*
121          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122          * userspace. If it takes that long something really bad is going on and
123          * we should simply try to bail out and fail as gracefully as possible.
124          */
125         ret = wait_event_interruptible_timeout(error->reset_queue,
126                                                EXIT_COND,
127                                                10*HZ);
128         if (ret == 0) {
129                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130                 return -EIO;
131         } else if (ret < 0) {
132                 return ret;
133         }
134 #undef EXIT_COND
135
136         return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141         struct drm_i915_private *dev_priv = dev->dev_private;
142         int ret;
143
144         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145         if (ret)
146                 return ret;
147
148         ret = mutex_lock_interruptible(&dev->struct_mutex);
149         if (ret)
150                 return ret;
151
152         WARN_ON(i915_verify_lists(dev));
153         return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159         return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_init_ioctl(struct drm_device *dev, void *data,
164                     struct drm_file *file)
165 {
166         struct drm_i915_private *dev_priv = dev->dev_private;
167         struct drm_i915_gem_init *args = data;
168
169         if (drm_core_check_feature(dev, DRIVER_MODESET))
170                 return -ENODEV;
171
172         if (args->gtt_start >= args->gtt_end ||
173             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174                 return -EINVAL;
175
176         /* GEM with user mode setting was never supported on ilk and later. */
177         if (INTEL_INFO(dev)->gen >= 5)
178                 return -ENODEV;
179
180         mutex_lock(&dev->struct_mutex);
181         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182                                   args->gtt_end);
183         dev_priv->gtt.mappable_end = args->gtt_end;
184         mutex_unlock(&dev->struct_mutex);
185
186         return 0;
187 }
188
189 int
190 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
191                             struct drm_file *file)
192 {
193         struct drm_i915_private *dev_priv = dev->dev_private;
194         struct drm_i915_gem_get_aperture *args = data;
195         struct drm_i915_gem_object *obj;
196         size_t pinned;
197
198         pinned = 0;
199         mutex_lock(&dev->struct_mutex);
200         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
201                 if (i915_gem_obj_is_pinned(obj))
202                         pinned += i915_gem_obj_ggtt_size(obj);
203         mutex_unlock(&dev->struct_mutex);
204
205         args->aper_size = dev_priv->gtt.base.total;
206         args->aper_available_size = args->aper_size - pinned;
207
208         return 0;
209 }
210
211 static int
212 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
213 {
214         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
215         char *vaddr = obj->phys_handle->vaddr;
216         struct sg_table *st;
217         struct scatterlist *sg;
218         int i;
219
220         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
221                 return -EINVAL;
222
223         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
224                 struct page *page;
225                 char *src;
226
227                 page = shmem_read_mapping_page(mapping, i);
228                 if (IS_ERR(page))
229                         return PTR_ERR(page);
230
231                 src = kmap_atomic(page);
232                 memcpy(vaddr, src, PAGE_SIZE);
233                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
234                 kunmap_atomic(src);
235
236                 page_cache_release(page);
237                 vaddr += PAGE_SIZE;
238         }
239
240         i915_gem_chipset_flush(obj->base.dev);
241
242         st = kmalloc(sizeof(*st), GFP_KERNEL);
243         if (st == NULL)
244                 return -ENOMEM;
245
246         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
247                 kfree(st);
248                 return -ENOMEM;
249         }
250
251         sg = st->sgl;
252         sg->offset = 0;
253         sg->length = obj->base.size;
254
255         sg_dma_address(sg) = obj->phys_handle->busaddr;
256         sg_dma_len(sg) = obj->base.size;
257
258         obj->pages = st;
259         obj->has_dma_mapping = true;
260         return 0;
261 }
262
263 static void
264 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
265 {
266         int ret;
267
268         BUG_ON(obj->madv == __I915_MADV_PURGED);
269
270         ret = i915_gem_object_set_to_cpu_domain(obj, true);
271         if (ret) {
272                 /* In the event of a disaster, abandon all caches and
273                  * hope for the best.
274                  */
275                 WARN_ON(ret != -EIO);
276                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
277         }
278
279         if (obj->madv == I915_MADV_DONTNEED)
280                 obj->dirty = 0;
281
282         if (obj->dirty) {
283                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
284                 char *vaddr = obj->phys_handle->vaddr;
285                 int i;
286
287                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
288                         struct page *page;
289                         char *dst;
290
291                         page = shmem_read_mapping_page(mapping, i);
292                         if (IS_ERR(page))
293                                 continue;
294
295                         dst = kmap_atomic(page);
296                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
297                         memcpy(dst, vaddr, PAGE_SIZE);
298                         kunmap_atomic(dst);
299
300                         set_page_dirty(page);
301                         if (obj->madv == I915_MADV_WILLNEED)
302                                 mark_page_accessed(page);
303                         page_cache_release(page);
304                         vaddr += PAGE_SIZE;
305                 }
306                 obj->dirty = 0;
307         }
308
309         sg_free_table(obj->pages);
310         kfree(obj->pages);
311
312         obj->has_dma_mapping = false;
313 }
314
315 static void
316 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
317 {
318         drm_pci_free(obj->base.dev, obj->phys_handle);
319 }
320
321 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
322         .get_pages = i915_gem_object_get_pages_phys,
323         .put_pages = i915_gem_object_put_pages_phys,
324         .release = i915_gem_object_release_phys,
325 };
326
327 static int
328 drop_pages(struct drm_i915_gem_object *obj)
329 {
330         struct i915_vma *vma, *next;
331         int ret;
332
333         drm_gem_object_reference(&obj->base);
334         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
335                 if (i915_vma_unbind(vma))
336                         break;
337
338         ret = i915_gem_object_put_pages(obj);
339         drm_gem_object_unreference(&obj->base);
340
341         return ret;
342 }
343
344 int
345 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
346                             int align)
347 {
348         drm_dma_handle_t *phys;
349         int ret;
350
351         if (obj->phys_handle) {
352                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
353                         return -EBUSY;
354
355                 return 0;
356         }
357
358         if (obj->madv != I915_MADV_WILLNEED)
359                 return -EFAULT;
360
361         if (obj->base.filp == NULL)
362                 return -EINVAL;
363
364         ret = drop_pages(obj);
365         if (ret)
366                 return ret;
367
368         /* create a new object */
369         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
370         if (!phys)
371                 return -ENOMEM;
372
373         obj->phys_handle = phys;
374         obj->ops = &i915_gem_phys_ops;
375
376         return i915_gem_object_get_pages(obj);
377 }
378
379 static int
380 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
381                      struct drm_i915_gem_pwrite *args,
382                      struct drm_file *file_priv)
383 {
384         struct drm_device *dev = obj->base.dev;
385         void *vaddr = obj->phys_handle->vaddr + args->offset;
386         char __user *user_data = to_user_ptr(args->data_ptr);
387         int ret;
388
389         /* We manually control the domain here and pretend that it
390          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
391          */
392         ret = i915_gem_object_wait_rendering(obj, false);
393         if (ret)
394                 return ret;
395
396         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
397                 unsigned long unwritten;
398
399                 /* The physical object once assigned is fixed for the lifetime
400                  * of the obj, so we can safely drop the lock and continue
401                  * to access vaddr.
402                  */
403                 mutex_unlock(&dev->struct_mutex);
404                 unwritten = copy_from_user(vaddr, user_data, args->size);
405                 mutex_lock(&dev->struct_mutex);
406                 if (unwritten)
407                         return -EFAULT;
408         }
409
410         drm_clflush_virt_range(vaddr, args->size);
411         i915_gem_chipset_flush(dev);
412         return 0;
413 }
414
415 void *i915_gem_object_alloc(struct drm_device *dev)
416 {
417         struct drm_i915_private *dev_priv = dev->dev_private;
418         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
419 }
420
421 void i915_gem_object_free(struct drm_i915_gem_object *obj)
422 {
423         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
424         kmem_cache_free(dev_priv->slab, obj);
425 }
426
427 static int
428 i915_gem_create(struct drm_file *file,
429                 struct drm_device *dev,
430                 uint64_t size,
431                 uint32_t *handle_p)
432 {
433         struct drm_i915_gem_object *obj;
434         int ret;
435         u32 handle;
436
437         size = roundup(size, PAGE_SIZE);
438         if (size == 0)
439                 return -EINVAL;
440
441         /* Allocate the new object */
442         obj = i915_gem_alloc_object(dev, size);
443         if (obj == NULL)
444                 return -ENOMEM;
445
446         ret = drm_gem_handle_create(file, &obj->base, &handle);
447         /* drop reference from allocate - handle holds it now */
448         drm_gem_object_unreference_unlocked(&obj->base);
449         if (ret)
450                 return ret;
451
452         *handle_p = handle;
453         return 0;
454 }
455
456 int
457 i915_gem_dumb_create(struct drm_file *file,
458                      struct drm_device *dev,
459                      struct drm_mode_create_dumb *args)
460 {
461         /* have to work out size/pitch and return them */
462         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
463         args->size = args->pitch * args->height;
464         return i915_gem_create(file, dev,
465                                args->size, &args->handle);
466 }
467
468 /**
469  * Creates a new mm object and returns a handle to it.
470  */
471 int
472 i915_gem_create_ioctl(struct drm_device *dev, void *data,
473                       struct drm_file *file)
474 {
475         struct drm_i915_gem_create *args = data;
476
477         return i915_gem_create(file, dev,
478                                args->size, &args->handle);
479 }
480
481 static inline int
482 __copy_to_user_swizzled(char __user *cpu_vaddr,
483                         const char *gpu_vaddr, int gpu_offset,
484                         int length)
485 {
486         int ret, cpu_offset = 0;
487
488         while (length > 0) {
489                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
490                 int this_length = min(cacheline_end - gpu_offset, length);
491                 int swizzled_gpu_offset = gpu_offset ^ 64;
492
493                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
494                                      gpu_vaddr + swizzled_gpu_offset,
495                                      this_length);
496                 if (ret)
497                         return ret + length;
498
499                 cpu_offset += this_length;
500                 gpu_offset += this_length;
501                 length -= this_length;
502         }
503
504         return 0;
505 }
506
507 static inline int
508 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
509                           const char __user *cpu_vaddr,
510                           int length)
511 {
512         int ret, cpu_offset = 0;
513
514         while (length > 0) {
515                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
516                 int this_length = min(cacheline_end - gpu_offset, length);
517                 int swizzled_gpu_offset = gpu_offset ^ 64;
518
519                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
520                                        cpu_vaddr + cpu_offset,
521                                        this_length);
522                 if (ret)
523                         return ret + length;
524
525                 cpu_offset += this_length;
526                 gpu_offset += this_length;
527                 length -= this_length;
528         }
529
530         return 0;
531 }
532
533 /*
534  * Pins the specified object's pages and synchronizes the object with
535  * GPU accesses. Sets needs_clflush to non-zero if the caller should
536  * flush the object from the CPU cache.
537  */
538 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
539                                     int *needs_clflush)
540 {
541         int ret;
542
543         *needs_clflush = 0;
544
545         if (!obj->base.filp)
546                 return -EINVAL;
547
548         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
549                 /* If we're not in the cpu read domain, set ourself into the gtt
550                  * read domain and manually flush cachelines (if required). This
551                  * optimizes for the case when the gpu will dirty the data
552                  * anyway again before the next pread happens. */
553                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
554                                                         obj->cache_level);
555                 ret = i915_gem_object_wait_rendering(obj, true);
556                 if (ret)
557                         return ret;
558
559                 i915_gem_object_retire(obj);
560         }
561
562         ret = i915_gem_object_get_pages(obj);
563         if (ret)
564                 return ret;
565
566         i915_gem_object_pin_pages(obj);
567
568         return ret;
569 }
570
571 /* Per-page copy function for the shmem pread fastpath.
572  * Flushes invalid cachelines before reading the target if
573  * needs_clflush is set. */
574 static int
575 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
576                  char __user *user_data,
577                  bool page_do_bit17_swizzling, bool needs_clflush)
578 {
579         char *vaddr;
580         int ret;
581
582         if (unlikely(page_do_bit17_swizzling))
583                 return -EINVAL;
584
585         vaddr = kmap_atomic(page);
586         if (needs_clflush)
587                 drm_clflush_virt_range(vaddr + shmem_page_offset,
588                                        page_length);
589         ret = __copy_to_user_inatomic(user_data,
590                                       vaddr + shmem_page_offset,
591                                       page_length);
592         kunmap_atomic(vaddr);
593
594         return ret ? -EFAULT : 0;
595 }
596
597 static void
598 shmem_clflush_swizzled_range(char *addr, unsigned long length,
599                              bool swizzled)
600 {
601         if (unlikely(swizzled)) {
602                 unsigned long start = (unsigned long) addr;
603                 unsigned long end = (unsigned long) addr + length;
604
605                 /* For swizzling simply ensure that we always flush both
606                  * channels. Lame, but simple and it works. Swizzled
607                  * pwrite/pread is far from a hotpath - current userspace
608                  * doesn't use it at all. */
609                 start = round_down(start, 128);
610                 end = round_up(end, 128);
611
612                 drm_clflush_virt_range((void *)start, end - start);
613         } else {
614                 drm_clflush_virt_range(addr, length);
615         }
616
617 }
618
619 /* Only difference to the fast-path function is that this can handle bit17
620  * and uses non-atomic copy and kmap functions. */
621 static int
622 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
623                  char __user *user_data,
624                  bool page_do_bit17_swizzling, bool needs_clflush)
625 {
626         char *vaddr;
627         int ret;
628
629         vaddr = kmap(page);
630         if (needs_clflush)
631                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
632                                              page_length,
633                                              page_do_bit17_swizzling);
634
635         if (page_do_bit17_swizzling)
636                 ret = __copy_to_user_swizzled(user_data,
637                                               vaddr, shmem_page_offset,
638                                               page_length);
639         else
640                 ret = __copy_to_user(user_data,
641                                      vaddr + shmem_page_offset,
642                                      page_length);
643         kunmap(page);
644
645         return ret ? - EFAULT : 0;
646 }
647
648 static int
649 i915_gem_shmem_pread(struct drm_device *dev,
650                      struct drm_i915_gem_object *obj,
651                      struct drm_i915_gem_pread *args,
652                      struct drm_file *file)
653 {
654         char __user *user_data;
655         ssize_t remain;
656         loff_t offset;
657         int shmem_page_offset, page_length, ret = 0;
658         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
659         int prefaulted = 0;
660         int needs_clflush = 0;
661         struct sg_page_iter sg_iter;
662
663         user_data = to_user_ptr(args->data_ptr);
664         remain = args->size;
665
666         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
667
668         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
669         if (ret)
670                 return ret;
671
672         offset = args->offset;
673
674         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
675                          offset >> PAGE_SHIFT) {
676                 struct page *page = sg_page_iter_page(&sg_iter);
677
678                 if (remain <= 0)
679                         break;
680
681                 /* Operation in this page
682                  *
683                  * shmem_page_offset = offset within page in shmem file
684                  * page_length = bytes to copy for this page
685                  */
686                 shmem_page_offset = offset_in_page(offset);
687                 page_length = remain;
688                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
689                         page_length = PAGE_SIZE - shmem_page_offset;
690
691                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
692                         (page_to_phys(page) & (1 << 17)) != 0;
693
694                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
695                                        user_data, page_do_bit17_swizzling,
696                                        needs_clflush);
697                 if (ret == 0)
698                         goto next_page;
699
700                 mutex_unlock(&dev->struct_mutex);
701
702                 if (likely(!i915.prefault_disable) && !prefaulted) {
703                         ret = fault_in_multipages_writeable(user_data, remain);
704                         /* Userspace is tricking us, but we've already clobbered
705                          * its pages with the prefault and promised to write the
706                          * data up to the first fault. Hence ignore any errors
707                          * and just continue. */
708                         (void)ret;
709                         prefaulted = 1;
710                 }
711
712                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
713                                        user_data, page_do_bit17_swizzling,
714                                        needs_clflush);
715
716                 mutex_lock(&dev->struct_mutex);
717
718                 if (ret)
719                         goto out;
720
721 next_page:
722                 remain -= page_length;
723                 user_data += page_length;
724                 offset += page_length;
725         }
726
727 out:
728         i915_gem_object_unpin_pages(obj);
729
730         return ret;
731 }
732
733 /**
734  * Reads data from the object referenced by handle.
735  *
736  * On error, the contents of *data are undefined.
737  */
738 int
739 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
740                      struct drm_file *file)
741 {
742         struct drm_i915_gem_pread *args = data;
743         struct drm_i915_gem_object *obj;
744         int ret = 0;
745
746         if (args->size == 0)
747                 return 0;
748
749         if (!access_ok(VERIFY_WRITE,
750                        to_user_ptr(args->data_ptr),
751                        args->size))
752                 return -EFAULT;
753
754         ret = i915_mutex_lock_interruptible(dev);
755         if (ret)
756                 return ret;
757
758         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
759         if (&obj->base == NULL) {
760                 ret = -ENOENT;
761                 goto unlock;
762         }
763
764         /* Bounds check source.  */
765         if (args->offset > obj->base.size ||
766             args->size > obj->base.size - args->offset) {
767                 ret = -EINVAL;
768                 goto out;
769         }
770
771         /* prime objects have no backing filp to GEM pread/pwrite
772          * pages from.
773          */
774         if (!obj->base.filp) {
775                 ret = -EINVAL;
776                 goto out;
777         }
778
779         trace_i915_gem_object_pread(obj, args->offset, args->size);
780
781         ret = i915_gem_shmem_pread(dev, obj, args, file);
782
783 out:
784         drm_gem_object_unreference(&obj->base);
785 unlock:
786         mutex_unlock(&dev->struct_mutex);
787         return ret;
788 }
789
790 /* This is the fast write path which cannot handle
791  * page faults in the source data
792  */
793
794 static inline int
795 fast_user_write(struct io_mapping *mapping,
796                 loff_t page_base, int page_offset,
797                 char __user *user_data,
798                 int length)
799 {
800         void __iomem *vaddr_atomic;
801         void *vaddr;
802         unsigned long unwritten;
803
804         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
805         /* We can use the cpu mem copy function because this is X86. */
806         vaddr = (void __force*)vaddr_atomic + page_offset;
807         unwritten = __copy_from_user_inatomic_nocache(vaddr,
808                                                       user_data, length);
809         io_mapping_unmap_atomic(vaddr_atomic);
810         return unwritten;
811 }
812
813 /**
814  * This is the fast pwrite path, where we copy the data directly from the
815  * user into the GTT, uncached.
816  */
817 static int
818 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
819                          struct drm_i915_gem_object *obj,
820                          struct drm_i915_gem_pwrite *args,
821                          struct drm_file *file)
822 {
823         struct drm_i915_private *dev_priv = dev->dev_private;
824         ssize_t remain;
825         loff_t offset, page_base;
826         char __user *user_data;
827         int page_offset, page_length, ret;
828
829         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
830         if (ret)
831                 goto out;
832
833         ret = i915_gem_object_set_to_gtt_domain(obj, true);
834         if (ret)
835                 goto out_unpin;
836
837         ret = i915_gem_object_put_fence(obj);
838         if (ret)
839                 goto out_unpin;
840
841         user_data = to_user_ptr(args->data_ptr);
842         remain = args->size;
843
844         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
845
846         while (remain > 0) {
847                 /* Operation in this page
848                  *
849                  * page_base = page offset within aperture
850                  * page_offset = offset within page
851                  * page_length = bytes to copy for this page
852                  */
853                 page_base = offset & PAGE_MASK;
854                 page_offset = offset_in_page(offset);
855                 page_length = remain;
856                 if ((page_offset + remain) > PAGE_SIZE)
857                         page_length = PAGE_SIZE - page_offset;
858
859                 /* If we get a fault while copying data, then (presumably) our
860                  * source page isn't available.  Return the error and we'll
861                  * retry in the slow path.
862                  */
863                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
864                                     page_offset, user_data, page_length)) {
865                         ret = -EFAULT;
866                         goto out_unpin;
867                 }
868
869                 remain -= page_length;
870                 user_data += page_length;
871                 offset += page_length;
872         }
873
874 out_unpin:
875         i915_gem_object_ggtt_unpin(obj);
876 out:
877         return ret;
878 }
879
880 /* Per-page copy function for the shmem pwrite fastpath.
881  * Flushes invalid cachelines before writing to the target if
882  * needs_clflush_before is set and flushes out any written cachelines after
883  * writing if needs_clflush is set. */
884 static int
885 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
886                   char __user *user_data,
887                   bool page_do_bit17_swizzling,
888                   bool needs_clflush_before,
889                   bool needs_clflush_after)
890 {
891         char *vaddr;
892         int ret;
893
894         if (unlikely(page_do_bit17_swizzling))
895                 return -EINVAL;
896
897         vaddr = kmap_atomic(page);
898         if (needs_clflush_before)
899                 drm_clflush_virt_range(vaddr + shmem_page_offset,
900                                        page_length);
901         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
902                                         user_data, page_length);
903         if (needs_clflush_after)
904                 drm_clflush_virt_range(vaddr + shmem_page_offset,
905                                        page_length);
906         kunmap_atomic(vaddr);
907
908         return ret ? -EFAULT : 0;
909 }
910
911 /* Only difference to the fast-path function is that this can handle bit17
912  * and uses non-atomic copy and kmap functions. */
913 static int
914 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
915                   char __user *user_data,
916                   bool page_do_bit17_swizzling,
917                   bool needs_clflush_before,
918                   bool needs_clflush_after)
919 {
920         char *vaddr;
921         int ret;
922
923         vaddr = kmap(page);
924         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
925                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
926                                              page_length,
927                                              page_do_bit17_swizzling);
928         if (page_do_bit17_swizzling)
929                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
930                                                 user_data,
931                                                 page_length);
932         else
933                 ret = __copy_from_user(vaddr + shmem_page_offset,
934                                        user_data,
935                                        page_length);
936         if (needs_clflush_after)
937                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
938                                              page_length,
939                                              page_do_bit17_swizzling);
940         kunmap(page);
941
942         return ret ? -EFAULT : 0;
943 }
944
945 static int
946 i915_gem_shmem_pwrite(struct drm_device *dev,
947                       struct drm_i915_gem_object *obj,
948                       struct drm_i915_gem_pwrite *args,
949                       struct drm_file *file)
950 {
951         ssize_t remain;
952         loff_t offset;
953         char __user *user_data;
954         int shmem_page_offset, page_length, ret = 0;
955         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
956         int hit_slowpath = 0;
957         int needs_clflush_after = 0;
958         int needs_clflush_before = 0;
959         struct sg_page_iter sg_iter;
960
961         user_data = to_user_ptr(args->data_ptr);
962         remain = args->size;
963
964         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
965
966         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
967                 /* If we're not in the cpu write domain, set ourself into the gtt
968                  * write domain and manually flush cachelines (if required). This
969                  * optimizes for the case when the gpu will use the data
970                  * right away and we therefore have to clflush anyway. */
971                 needs_clflush_after = cpu_write_needs_clflush(obj);
972                 ret = i915_gem_object_wait_rendering(obj, false);
973                 if (ret)
974                         return ret;
975
976                 i915_gem_object_retire(obj);
977         }
978         /* Same trick applies to invalidate partially written cachelines read
979          * before writing. */
980         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
981                 needs_clflush_before =
982                         !cpu_cache_is_coherent(dev, obj->cache_level);
983
984         ret = i915_gem_object_get_pages(obj);
985         if (ret)
986                 return ret;
987
988         i915_gem_object_pin_pages(obj);
989
990         offset = args->offset;
991         obj->dirty = 1;
992
993         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
994                          offset >> PAGE_SHIFT) {
995                 struct page *page = sg_page_iter_page(&sg_iter);
996                 int partial_cacheline_write;
997
998                 if (remain <= 0)
999                         break;
1000
1001                 /* Operation in this page
1002                  *
1003                  * shmem_page_offset = offset within page in shmem file
1004                  * page_length = bytes to copy for this page
1005                  */
1006                 shmem_page_offset = offset_in_page(offset);
1007
1008                 page_length = remain;
1009                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1010                         page_length = PAGE_SIZE - shmem_page_offset;
1011
1012                 /* If we don't overwrite a cacheline completely we need to be
1013                  * careful to have up-to-date data by first clflushing. Don't
1014                  * overcomplicate things and flush the entire patch. */
1015                 partial_cacheline_write = needs_clflush_before &&
1016                         ((shmem_page_offset | page_length)
1017                                 & (boot_cpu_data.x86_clflush_size - 1));
1018
1019                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1020                         (page_to_phys(page) & (1 << 17)) != 0;
1021
1022                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1023                                         user_data, page_do_bit17_swizzling,
1024                                         partial_cacheline_write,
1025                                         needs_clflush_after);
1026                 if (ret == 0)
1027                         goto next_page;
1028
1029                 hit_slowpath = 1;
1030                 mutex_unlock(&dev->struct_mutex);
1031                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1032                                         user_data, page_do_bit17_swizzling,
1033                                         partial_cacheline_write,
1034                                         needs_clflush_after);
1035
1036                 mutex_lock(&dev->struct_mutex);
1037
1038                 if (ret)
1039                         goto out;
1040
1041 next_page:
1042                 remain -= page_length;
1043                 user_data += page_length;
1044                 offset += page_length;
1045         }
1046
1047 out:
1048         i915_gem_object_unpin_pages(obj);
1049
1050         if (hit_slowpath) {
1051                 /*
1052                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1053                  * cachelines in-line while writing and the object moved
1054                  * out of the cpu write domain while we've dropped the lock.
1055                  */
1056                 if (!needs_clflush_after &&
1057                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1058                         if (i915_gem_clflush_object(obj, obj->pin_display))
1059                                 i915_gem_chipset_flush(dev);
1060                 }
1061         }
1062
1063         if (needs_clflush_after)
1064                 i915_gem_chipset_flush(dev);
1065
1066         return ret;
1067 }
1068
1069 /**
1070  * Writes data to the object referenced by handle.
1071  *
1072  * On error, the contents of the buffer that were to be modified are undefined.
1073  */
1074 int
1075 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1076                       struct drm_file *file)
1077 {
1078         struct drm_i915_gem_pwrite *args = data;
1079         struct drm_i915_gem_object *obj;
1080         int ret;
1081
1082         if (args->size == 0)
1083                 return 0;
1084
1085         if (!access_ok(VERIFY_READ,
1086                        to_user_ptr(args->data_ptr),
1087                        args->size))
1088                 return -EFAULT;
1089
1090         if (likely(!i915.prefault_disable)) {
1091                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1092                                                    args->size);
1093                 if (ret)
1094                         return -EFAULT;
1095         }
1096
1097         ret = i915_mutex_lock_interruptible(dev);
1098         if (ret)
1099                 return ret;
1100
1101         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1102         if (&obj->base == NULL) {
1103                 ret = -ENOENT;
1104                 goto unlock;
1105         }
1106
1107         /* Bounds check destination. */
1108         if (args->offset > obj->base.size ||
1109             args->size > obj->base.size - args->offset) {
1110                 ret = -EINVAL;
1111                 goto out;
1112         }
1113
1114         /* prime objects have no backing filp to GEM pread/pwrite
1115          * pages from.
1116          */
1117         if (!obj->base.filp) {
1118                 ret = -EINVAL;
1119                 goto out;
1120         }
1121
1122         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1123
1124         ret = -EFAULT;
1125         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1126          * it would end up going through the fenced access, and we'll get
1127          * different detiling behavior between reading and writing.
1128          * pread/pwrite currently are reading and writing from the CPU
1129          * perspective, requiring manual detiling by the client.
1130          */
1131         if (obj->tiling_mode == I915_TILING_NONE &&
1132             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1133             cpu_write_needs_clflush(obj)) {
1134                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1135                 /* Note that the gtt paths might fail with non-page-backed user
1136                  * pointers (e.g. gtt mappings when moving data between
1137                  * textures). Fallback to the shmem path in that case. */
1138         }
1139
1140         if (ret == -EFAULT || ret == -ENOSPC) {
1141                 if (obj->phys_handle)
1142                         ret = i915_gem_phys_pwrite(obj, args, file);
1143                 else
1144                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1145         }
1146
1147 out:
1148         drm_gem_object_unreference(&obj->base);
1149 unlock:
1150         mutex_unlock(&dev->struct_mutex);
1151         return ret;
1152 }
1153
1154 int
1155 i915_gem_check_wedge(struct i915_gpu_error *error,
1156                      bool interruptible)
1157 {
1158         if (i915_reset_in_progress(error)) {
1159                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1160                  * -EIO unconditionally for these. */
1161                 if (!interruptible)
1162                         return -EIO;
1163
1164                 /* Recovery complete, but the reset failed ... */
1165                 if (i915_terminally_wedged(error))
1166                         return -EIO;
1167
1168                 /*
1169                  * Check if GPU Reset is in progress - we need intel_ring_begin
1170                  * to work properly to reinit the hw state while the gpu is
1171                  * still marked as reset-in-progress. Handle this with a flag.
1172                  */
1173                 if (!error->reload_in_reset)
1174                         return -EAGAIN;
1175         }
1176
1177         return 0;
1178 }
1179
1180 /*
1181  * Compare seqno against outstanding lazy request. Emit a request if they are
1182  * equal.
1183  */
1184 int
1185 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1186 {
1187         int ret;
1188
1189         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1190
1191         ret = 0;
1192         if (seqno == ring->outstanding_lazy_seqno)
1193                 ret = i915_add_request(ring, NULL);
1194
1195         return ret;
1196 }
1197
1198 static void fake_irq(unsigned long data)
1199 {
1200         wake_up_process((struct task_struct *)data);
1201 }
1202
1203 static bool missed_irq(struct drm_i915_private *dev_priv,
1204                        struct intel_engine_cs *ring)
1205 {
1206         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1207 }
1208
1209 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1210 {
1211         if (file_priv == NULL)
1212                 return true;
1213
1214         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1215 }
1216
1217 /**
1218  * __i915_wait_seqno - wait until execution of seqno has finished
1219  * @ring: the ring expected to report seqno
1220  * @seqno: duh!
1221  * @reset_counter: reset sequence associated with the given seqno
1222  * @interruptible: do an interruptible wait (normally yes)
1223  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1224  *
1225  * Note: It is of utmost importance that the passed in seqno and reset_counter
1226  * values have been read by the caller in an smp safe manner. Where read-side
1227  * locks are involved, it is sufficient to read the reset_counter before
1228  * unlocking the lock that protects the seqno. For lockless tricks, the
1229  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1230  * inserted.
1231  *
1232  * Returns 0 if the seqno was found within the alloted time. Else returns the
1233  * errno with remaining time filled in timeout argument.
1234  */
1235 int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1236                         unsigned reset_counter,
1237                         bool interruptible,
1238                         s64 *timeout,
1239                         struct drm_i915_file_private *file_priv)
1240 {
1241         struct drm_device *dev = ring->dev;
1242         struct drm_i915_private *dev_priv = dev->dev_private;
1243         const bool irq_test_in_progress =
1244                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1245         DEFINE_WAIT(wait);
1246         unsigned long timeout_expire;
1247         s64 before, now;
1248         int ret;
1249
1250         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1251
1252         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1253                 return 0;
1254
1255         timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1256
1257         if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1258                 gen6_rps_boost(dev_priv);
1259                 if (file_priv)
1260                         mod_delayed_work(dev_priv->wq,
1261                                          &file_priv->mm.idle_work,
1262                                          msecs_to_jiffies(100));
1263         }
1264
1265         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1266                 return -ENODEV;
1267
1268         /* Record current time in case interrupted by signal, or wedged */
1269         trace_i915_gem_request_wait_begin(ring, seqno);
1270         before = ktime_get_raw_ns();
1271         for (;;) {
1272                 struct timer_list timer;
1273
1274                 prepare_to_wait(&ring->irq_queue, &wait,
1275                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1276
1277                 /* We need to check whether any gpu reset happened in between
1278                  * the caller grabbing the seqno and now ... */
1279                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1280                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1281                          * is truely gone. */
1282                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1283                         if (ret == 0)
1284                                 ret = -EAGAIN;
1285                         break;
1286                 }
1287
1288                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1289                         ret = 0;
1290                         break;
1291                 }
1292
1293                 if (interruptible && signal_pending(current)) {
1294                         ret = -ERESTARTSYS;
1295                         break;
1296                 }
1297
1298                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1299                         ret = -ETIME;
1300                         break;
1301                 }
1302
1303                 timer.function = NULL;
1304                 if (timeout || missed_irq(dev_priv, ring)) {
1305                         unsigned long expire;
1306
1307                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1308                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1309                         mod_timer(&timer, expire);
1310                 }
1311
1312                 io_schedule();
1313
1314                 if (timer.function) {
1315                         del_singleshot_timer_sync(&timer);
1316                         destroy_timer_on_stack(&timer);
1317                 }
1318         }
1319         now = ktime_get_raw_ns();
1320         trace_i915_gem_request_wait_end(ring, seqno);
1321
1322         if (!irq_test_in_progress)
1323                 ring->irq_put(ring);
1324
1325         finish_wait(&ring->irq_queue, &wait);
1326
1327         if (timeout) {
1328                 s64 tres = *timeout - (now - before);
1329
1330                 *timeout = tres < 0 ? 0 : tres;
1331         }
1332
1333         return ret;
1334 }
1335
1336 /**
1337  * Waits for a sequence number to be signaled, and cleans up the
1338  * request and object lists appropriately for that event.
1339  */
1340 int
1341 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1342 {
1343         struct drm_device *dev = ring->dev;
1344         struct drm_i915_private *dev_priv = dev->dev_private;
1345         bool interruptible = dev_priv->mm.interruptible;
1346         unsigned reset_counter;
1347         int ret;
1348
1349         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1350         BUG_ON(seqno == 0);
1351
1352         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1353         if (ret)
1354                 return ret;
1355
1356         ret = i915_gem_check_olr(ring, seqno);
1357         if (ret)
1358                 return ret;
1359
1360         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1361         return __i915_wait_seqno(ring, seqno, reset_counter, interruptible,
1362                                  NULL, NULL);
1363 }
1364
1365 static int
1366 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1367 {
1368         if (!obj->active)
1369                 return 0;
1370
1371         /* Manually manage the write flush as we may have not yet
1372          * retired the buffer.
1373          *
1374          * Note that the last_write_seqno is always the earlier of
1375          * the two (read/write) seqno, so if we haved successfully waited,
1376          * we know we have passed the last write.
1377          */
1378         obj->last_write_seqno = 0;
1379
1380         return 0;
1381 }
1382
1383 /**
1384  * Ensures that all rendering to the object has completed and the object is
1385  * safe to unbind from the GTT or access from the CPU.
1386  */
1387 static __must_check int
1388 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1389                                bool readonly)
1390 {
1391         struct intel_engine_cs *ring = obj->ring;
1392         u32 seqno;
1393         int ret;
1394
1395         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1396         if (seqno == 0)
1397                 return 0;
1398
1399         ret = i915_wait_seqno(ring, seqno);
1400         if (ret)
1401                 return ret;
1402
1403         return i915_gem_object_wait_rendering__tail(obj);
1404 }
1405
1406 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1407  * as the object state may change during this call.
1408  */
1409 static __must_check int
1410 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1411                                             struct drm_i915_file_private *file_priv,
1412                                             bool readonly)
1413 {
1414         struct drm_device *dev = obj->base.dev;
1415         struct drm_i915_private *dev_priv = dev->dev_private;
1416         struct intel_engine_cs *ring = obj->ring;
1417         unsigned reset_counter;
1418         u32 seqno;
1419         int ret;
1420
1421         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1422         BUG_ON(!dev_priv->mm.interruptible);
1423
1424         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1425         if (seqno == 0)
1426                 return 0;
1427
1428         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1429         if (ret)
1430                 return ret;
1431
1432         ret = i915_gem_check_olr(ring, seqno);
1433         if (ret)
1434                 return ret;
1435
1436         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1437         mutex_unlock(&dev->struct_mutex);
1438         ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL,
1439                                 file_priv);
1440         mutex_lock(&dev->struct_mutex);
1441         if (ret)
1442                 return ret;
1443
1444         return i915_gem_object_wait_rendering__tail(obj);
1445 }
1446
1447 /**
1448  * Called when user space prepares to use an object with the CPU, either
1449  * through the mmap ioctl's mapping or a GTT mapping.
1450  */
1451 int
1452 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1453                           struct drm_file *file)
1454 {
1455         struct drm_i915_gem_set_domain *args = data;
1456         struct drm_i915_gem_object *obj;
1457         uint32_t read_domains = args->read_domains;
1458         uint32_t write_domain = args->write_domain;
1459         int ret;
1460
1461         /* Only handle setting domains to types used by the CPU. */
1462         if (write_domain & I915_GEM_GPU_DOMAINS)
1463                 return -EINVAL;
1464
1465         if (read_domains & I915_GEM_GPU_DOMAINS)
1466                 return -EINVAL;
1467
1468         /* Having something in the write domain implies it's in the read
1469          * domain, and only that read domain.  Enforce that in the request.
1470          */
1471         if (write_domain != 0 && read_domains != write_domain)
1472                 return -EINVAL;
1473
1474         ret = i915_mutex_lock_interruptible(dev);
1475         if (ret)
1476                 return ret;
1477
1478         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1479         if (&obj->base == NULL) {
1480                 ret = -ENOENT;
1481                 goto unlock;
1482         }
1483
1484         /* Try to flush the object off the GPU without holding the lock.
1485          * We will repeat the flush holding the lock in the normal manner
1486          * to catch cases where we are gazumped.
1487          */
1488         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1489                                                           file->driver_priv,
1490                                                           !write_domain);
1491         if (ret)
1492                 goto unref;
1493
1494         if (read_domains & I915_GEM_DOMAIN_GTT) {
1495                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1496
1497                 /* Silently promote "you're not bound, there was nothing to do"
1498                  * to success, since the client was just asking us to
1499                  * make sure everything was done.
1500                  */
1501                 if (ret == -EINVAL)
1502                         ret = 0;
1503         } else {
1504                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1505         }
1506
1507 unref:
1508         drm_gem_object_unreference(&obj->base);
1509 unlock:
1510         mutex_unlock(&dev->struct_mutex);
1511         return ret;
1512 }
1513
1514 /**
1515  * Called when user space has done writes to this buffer
1516  */
1517 int
1518 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1519                          struct drm_file *file)
1520 {
1521         struct drm_i915_gem_sw_finish *args = data;
1522         struct drm_i915_gem_object *obj;
1523         int ret = 0;
1524
1525         ret = i915_mutex_lock_interruptible(dev);
1526         if (ret)
1527                 return ret;
1528
1529         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1530         if (&obj->base == NULL) {
1531                 ret = -ENOENT;
1532                 goto unlock;
1533         }
1534
1535         /* Pinned buffers may be scanout, so flush the cache */
1536         if (obj->pin_display)
1537                 i915_gem_object_flush_cpu_write_domain(obj, true);
1538
1539         drm_gem_object_unreference(&obj->base);
1540 unlock:
1541         mutex_unlock(&dev->struct_mutex);
1542         return ret;
1543 }
1544
1545 /**
1546  * Maps the contents of an object, returning the address it is mapped
1547  * into.
1548  *
1549  * While the mapping holds a reference on the contents of the object, it doesn't
1550  * imply a ref on the object itself.
1551  *
1552  * IMPORTANT:
1553  *
1554  * DRM driver writers who look a this function as an example for how to do GEM
1555  * mmap support, please don't implement mmap support like here. The modern way
1556  * to implement DRM mmap support is with an mmap offset ioctl (like
1557  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1558  * That way debug tooling like valgrind will understand what's going on, hiding
1559  * the mmap call in a driver private ioctl will break that. The i915 driver only
1560  * does cpu mmaps this way because we didn't know better.
1561  */
1562 int
1563 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1564                     struct drm_file *file)
1565 {
1566         struct drm_i915_gem_mmap *args = data;
1567         struct drm_gem_object *obj;
1568         unsigned long addr;
1569
1570         obj = drm_gem_object_lookup(dev, file, args->handle);
1571         if (obj == NULL)
1572                 return -ENOENT;
1573
1574         /* prime objects have no backing filp to GEM mmap
1575          * pages from.
1576          */
1577         if (!obj->filp) {
1578                 drm_gem_object_unreference_unlocked(obj);
1579                 return -EINVAL;
1580         }
1581
1582         addr = vm_mmap(obj->filp, 0, args->size,
1583                        PROT_READ | PROT_WRITE, MAP_SHARED,
1584                        args->offset);
1585         drm_gem_object_unreference_unlocked(obj);
1586         if (IS_ERR((void *)addr))
1587                 return addr;
1588
1589         args->addr_ptr = (uint64_t) addr;
1590
1591         return 0;
1592 }
1593
1594 /**
1595  * i915_gem_fault - fault a page into the GTT
1596  * vma: VMA in question
1597  * vmf: fault info
1598  *
1599  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1600  * from userspace.  The fault handler takes care of binding the object to
1601  * the GTT (if needed), allocating and programming a fence register (again,
1602  * only if needed based on whether the old reg is still valid or the object
1603  * is tiled) and inserting a new PTE into the faulting process.
1604  *
1605  * Note that the faulting process may involve evicting existing objects
1606  * from the GTT and/or fence registers to make room.  So performance may
1607  * suffer if the GTT working set is large or there are few fence registers
1608  * left.
1609  */
1610 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1611 {
1612         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1613         struct drm_device *dev = obj->base.dev;
1614         struct drm_i915_private *dev_priv = dev->dev_private;
1615         pgoff_t page_offset;
1616         unsigned long pfn;
1617         int ret = 0;
1618         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1619
1620         intel_runtime_pm_get(dev_priv);
1621
1622         /* We don't use vmf->pgoff since that has the fake offset */
1623         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1624                 PAGE_SHIFT;
1625
1626         ret = i915_mutex_lock_interruptible(dev);
1627         if (ret)
1628                 goto out;
1629
1630         trace_i915_gem_object_fault(obj, page_offset, true, write);
1631
1632         /* Try to flush the object off the GPU first without holding the lock.
1633          * Upon reacquiring the lock, we will perform our sanity checks and then
1634          * repeat the flush holding the lock in the normal manner to catch cases
1635          * where we are gazumped.
1636          */
1637         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1638         if (ret)
1639                 goto unlock;
1640
1641         /* Access to snoopable pages through the GTT is incoherent. */
1642         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1643                 ret = -EFAULT;
1644                 goto unlock;
1645         }
1646
1647         /* Now bind it into the GTT if needed */
1648         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1649         if (ret)
1650                 goto unlock;
1651
1652         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1653         if (ret)
1654                 goto unpin;
1655
1656         ret = i915_gem_object_get_fence(obj);
1657         if (ret)
1658                 goto unpin;
1659
1660         /* Finally, remap it using the new GTT offset */
1661         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1662         pfn >>= PAGE_SHIFT;
1663
1664         if (!obj->fault_mappable) {
1665                 unsigned long size = min_t(unsigned long,
1666                                            vma->vm_end - vma->vm_start,
1667                                            obj->base.size);
1668                 int i;
1669
1670                 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1671                         ret = vm_insert_pfn(vma,
1672                                             (unsigned long)vma->vm_start + i * PAGE_SIZE,
1673                                             pfn + i);
1674                         if (ret)
1675                                 break;
1676                 }
1677
1678                 obj->fault_mappable = true;
1679         } else
1680                 ret = vm_insert_pfn(vma,
1681                                     (unsigned long)vmf->virtual_address,
1682                                     pfn + page_offset);
1683 unpin:
1684         i915_gem_object_ggtt_unpin(obj);
1685 unlock:
1686         mutex_unlock(&dev->struct_mutex);
1687 out:
1688         switch (ret) {
1689         case -EIO:
1690                 /*
1691                  * We eat errors when the gpu is terminally wedged to avoid
1692                  * userspace unduly crashing (gl has no provisions for mmaps to
1693                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1694                  * and so needs to be reported.
1695                  */
1696                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1697                         ret = VM_FAULT_SIGBUS;
1698                         break;
1699                 }
1700         case -EAGAIN:
1701                 /*
1702                  * EAGAIN means the gpu is hung and we'll wait for the error
1703                  * handler to reset everything when re-faulting in
1704                  * i915_mutex_lock_interruptible.
1705                  */
1706         case 0:
1707         case -ERESTARTSYS:
1708         case -EINTR:
1709         case -EBUSY:
1710                 /*
1711                  * EBUSY is ok: this just means that another thread
1712                  * already did the job.
1713                  */
1714                 ret = VM_FAULT_NOPAGE;
1715                 break;
1716         case -ENOMEM:
1717                 ret = VM_FAULT_OOM;
1718                 break;
1719         case -ENOSPC:
1720         case -EFAULT:
1721                 ret = VM_FAULT_SIGBUS;
1722                 break;
1723         default:
1724                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1725                 ret = VM_FAULT_SIGBUS;
1726                 break;
1727         }
1728
1729         intel_runtime_pm_put(dev_priv);
1730         return ret;
1731 }
1732
1733 /**
1734  * i915_gem_release_mmap - remove physical page mappings
1735  * @obj: obj in question
1736  *
1737  * Preserve the reservation of the mmapping with the DRM core code, but
1738  * relinquish ownership of the pages back to the system.
1739  *
1740  * It is vital that we remove the page mapping if we have mapped a tiled
1741  * object through the GTT and then lose the fence register due to
1742  * resource pressure. Similarly if the object has been moved out of the
1743  * aperture, than pages mapped into userspace must be revoked. Removing the
1744  * mapping will then trigger a page fault on the next user access, allowing
1745  * fixup by i915_gem_fault().
1746  */
1747 void
1748 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1749 {
1750         if (!obj->fault_mappable)
1751                 return;
1752
1753         drm_vma_node_unmap(&obj->base.vma_node,
1754                            obj->base.dev->anon_inode->i_mapping);
1755         obj->fault_mappable = false;
1756 }
1757
1758 void
1759 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1760 {
1761         struct drm_i915_gem_object *obj;
1762
1763         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1764                 i915_gem_release_mmap(obj);
1765 }
1766
1767 uint32_t
1768 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1769 {
1770         uint32_t gtt_size;
1771
1772         if (INTEL_INFO(dev)->gen >= 4 ||
1773             tiling_mode == I915_TILING_NONE)
1774                 return size;
1775
1776         /* Previous chips need a power-of-two fence region when tiling */
1777         if (INTEL_INFO(dev)->gen == 3)
1778                 gtt_size = 1024*1024;
1779         else
1780                 gtt_size = 512*1024;
1781
1782         while (gtt_size < size)
1783                 gtt_size <<= 1;
1784
1785         return gtt_size;
1786 }
1787
1788 /**
1789  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1790  * @obj: object to check
1791  *
1792  * Return the required GTT alignment for an object, taking into account
1793  * potential fence register mapping.
1794  */
1795 uint32_t
1796 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1797                            int tiling_mode, bool fenced)
1798 {
1799         /*
1800          * Minimum alignment is 4k (GTT page size), but might be greater
1801          * if a fence register is needed for the object.
1802          */
1803         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1804             tiling_mode == I915_TILING_NONE)
1805                 return 4096;
1806
1807         /*
1808          * Previous chips need to be aligned to the size of the smallest
1809          * fence register that can contain the object.
1810          */
1811         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1812 }
1813
1814 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1815 {
1816         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1817         int ret;
1818
1819         if (drm_vma_node_has_offset(&obj->base.vma_node))
1820                 return 0;
1821
1822         dev_priv->mm.shrinker_no_lock_stealing = true;
1823
1824         ret = drm_gem_create_mmap_offset(&obj->base);
1825         if (ret != -ENOSPC)
1826                 goto out;
1827
1828         /* Badly fragmented mmap space? The only way we can recover
1829          * space is by destroying unwanted objects. We can't randomly release
1830          * mmap_offsets as userspace expects them to be persistent for the
1831          * lifetime of the objects. The closest we can is to release the
1832          * offsets on purgeable objects by truncating it and marking it purged,
1833          * which prevents userspace from ever using that object again.
1834          */
1835         i915_gem_shrink(dev_priv,
1836                         obj->base.size >> PAGE_SHIFT,
1837                         I915_SHRINK_BOUND |
1838                         I915_SHRINK_UNBOUND |
1839                         I915_SHRINK_PURGEABLE);
1840         ret = drm_gem_create_mmap_offset(&obj->base);
1841         if (ret != -ENOSPC)
1842                 goto out;
1843
1844         i915_gem_shrink_all(dev_priv);
1845         ret = drm_gem_create_mmap_offset(&obj->base);
1846 out:
1847         dev_priv->mm.shrinker_no_lock_stealing = false;
1848
1849         return ret;
1850 }
1851
1852 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1853 {
1854         drm_gem_free_mmap_offset(&obj->base);
1855 }
1856
1857 int
1858 i915_gem_mmap_gtt(struct drm_file *file,
1859                   struct drm_device *dev,
1860                   uint32_t handle,
1861                   uint64_t *offset)
1862 {
1863         struct drm_i915_private *dev_priv = dev->dev_private;
1864         struct drm_i915_gem_object *obj;
1865         int ret;
1866
1867         ret = i915_mutex_lock_interruptible(dev);
1868         if (ret)
1869                 return ret;
1870
1871         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1872         if (&obj->base == NULL) {
1873                 ret = -ENOENT;
1874                 goto unlock;
1875         }
1876
1877         if (obj->base.size > dev_priv->gtt.mappable_end) {
1878                 ret = -E2BIG;
1879                 goto out;
1880         }
1881
1882         if (obj->madv != I915_MADV_WILLNEED) {
1883                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1884                 ret = -EFAULT;
1885                 goto out;
1886         }
1887
1888         ret = i915_gem_object_create_mmap_offset(obj);
1889         if (ret)
1890                 goto out;
1891
1892         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1893
1894 out:
1895         drm_gem_object_unreference(&obj->base);
1896 unlock:
1897         mutex_unlock(&dev->struct_mutex);
1898         return ret;
1899 }
1900
1901 /**
1902  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1903  * @dev: DRM device
1904  * @data: GTT mapping ioctl data
1905  * @file: GEM object info
1906  *
1907  * Simply returns the fake offset to userspace so it can mmap it.
1908  * The mmap call will end up in drm_gem_mmap(), which will set things
1909  * up so we can get faults in the handler above.
1910  *
1911  * The fault handler will take care of binding the object into the GTT
1912  * (since it may have been evicted to make room for something), allocating
1913  * a fence register, and mapping the appropriate aperture address into
1914  * userspace.
1915  */
1916 int
1917 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1918                         struct drm_file *file)
1919 {
1920         struct drm_i915_gem_mmap_gtt *args = data;
1921
1922         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1923 }
1924
1925 static inline int
1926 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1927 {
1928         return obj->madv == I915_MADV_DONTNEED;
1929 }
1930
1931 /* Immediately discard the backing storage */
1932 static void
1933 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1934 {
1935         i915_gem_object_free_mmap_offset(obj);
1936
1937         if (obj->base.filp == NULL)
1938                 return;
1939
1940         /* Our goal here is to return as much of the memory as
1941          * is possible back to the system as we are called from OOM.
1942          * To do this we must instruct the shmfs to drop all of its
1943          * backing pages, *now*.
1944          */
1945         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1946         obj->madv = __I915_MADV_PURGED;
1947 }
1948
1949 /* Try to discard unwanted pages */
1950 static void
1951 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1952 {
1953         struct address_space *mapping;
1954
1955         switch (obj->madv) {
1956         case I915_MADV_DONTNEED:
1957                 i915_gem_object_truncate(obj);
1958         case __I915_MADV_PURGED:
1959                 return;
1960         }
1961
1962         if (obj->base.filp == NULL)
1963                 return;
1964
1965         mapping = file_inode(obj->base.filp)->i_mapping,
1966         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1967 }
1968
1969 static void
1970 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1971 {
1972         struct sg_page_iter sg_iter;
1973         int ret;
1974
1975         BUG_ON(obj->madv == __I915_MADV_PURGED);
1976
1977         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1978         if (ret) {
1979                 /* In the event of a disaster, abandon all caches and
1980                  * hope for the best.
1981                  */
1982                 WARN_ON(ret != -EIO);
1983                 i915_gem_clflush_object(obj, true);
1984                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1985         }
1986
1987         if (i915_gem_object_needs_bit17_swizzle(obj))
1988                 i915_gem_object_save_bit_17_swizzle(obj);
1989
1990         if (obj->madv == I915_MADV_DONTNEED)
1991                 obj->dirty = 0;
1992
1993         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1994                 struct page *page = sg_page_iter_page(&sg_iter);
1995
1996                 if (obj->dirty)
1997                         set_page_dirty(page);
1998
1999                 if (obj->madv == I915_MADV_WILLNEED)
2000                         mark_page_accessed(page);
2001
2002                 page_cache_release(page);
2003         }
2004         obj->dirty = 0;
2005
2006         sg_free_table(obj->pages);
2007         kfree(obj->pages);
2008 }
2009
2010 int
2011 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2012 {
2013         const struct drm_i915_gem_object_ops *ops = obj->ops;
2014
2015         if (obj->pages == NULL)
2016                 return 0;
2017
2018         if (obj->pages_pin_count)
2019                 return -EBUSY;
2020
2021         BUG_ON(i915_gem_obj_bound_any(obj));
2022
2023         /* ->put_pages might need to allocate memory for the bit17 swizzle
2024          * array, hence protect them from being reaped by removing them from gtt
2025          * lists early. */
2026         list_del(&obj->global_list);
2027
2028         ops->put_pages(obj);
2029         obj->pages = NULL;
2030
2031         i915_gem_object_invalidate(obj);
2032
2033         return 0;
2034 }
2035
2036 unsigned long
2037 i915_gem_shrink(struct drm_i915_private *dev_priv,
2038                 long target, unsigned flags)
2039 {
2040         const struct {
2041                 struct list_head *list;
2042                 unsigned int bit;
2043         } phases[] = {
2044                 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2045                 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2046                 { NULL, 0 },
2047         }, *phase;
2048         unsigned long count = 0;
2049
2050         /*
2051          * As we may completely rewrite the (un)bound list whilst unbinding
2052          * (due to retiring requests) we have to strictly process only
2053          * one element of the list at the time, and recheck the list
2054          * on every iteration.
2055          *
2056          * In particular, we must hold a reference whilst removing the
2057          * object as we may end up waiting for and/or retiring the objects.
2058          * This might release the final reference (held by the active list)
2059          * and result in the object being freed from under us. This is
2060          * similar to the precautions the eviction code must take whilst
2061          * removing objects.
2062          *
2063          * Also note that although these lists do not hold a reference to
2064          * the object we can safely grab one here: The final object
2065          * unreferencing and the bound_list are both protected by the
2066          * dev->struct_mutex and so we won't ever be able to observe an
2067          * object on the bound_list with a reference count equals 0.
2068          */
2069         for (phase = phases; phase->list; phase++) {
2070                 struct list_head still_in_list;
2071
2072                 if ((flags & phase->bit) == 0)
2073                         continue;
2074
2075                 INIT_LIST_HEAD(&still_in_list);
2076                 while (count < target && !list_empty(phase->list)) {
2077                         struct drm_i915_gem_object *obj;
2078                         struct i915_vma *vma, *v;
2079
2080                         obj = list_first_entry(phase->list,
2081                                                typeof(*obj), global_list);
2082                         list_move_tail(&obj->global_list, &still_in_list);
2083
2084                         if (flags & I915_SHRINK_PURGEABLE &&
2085                             !i915_gem_object_is_purgeable(obj))
2086                                 continue;
2087
2088                         drm_gem_object_reference(&obj->base);
2089
2090                         /* For the unbound phase, this should be a no-op! */
2091                         list_for_each_entry_safe(vma, v,
2092                                                  &obj->vma_list, vma_link)
2093                                 if (i915_vma_unbind(vma))
2094                                         break;
2095
2096                         if (i915_gem_object_put_pages(obj) == 0)
2097                                 count += obj->base.size >> PAGE_SHIFT;
2098
2099                         drm_gem_object_unreference(&obj->base);
2100                 }
2101                 list_splice(&still_in_list, phase->list);
2102         }
2103
2104         return count;
2105 }
2106
2107 static unsigned long
2108 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2109 {
2110         i915_gem_evict_everything(dev_priv->dev);
2111         return i915_gem_shrink(dev_priv, LONG_MAX,
2112                                I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2113 }
2114
2115 static int
2116 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2117 {
2118         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2119         int page_count, i;
2120         struct address_space *mapping;
2121         struct sg_table *st;
2122         struct scatterlist *sg;
2123         struct sg_page_iter sg_iter;
2124         struct page *page;
2125         unsigned long last_pfn = 0;     /* suppress gcc warning */
2126         gfp_t gfp;
2127
2128         /* Assert that the object is not currently in any GPU domain. As it
2129          * wasn't in the GTT, there shouldn't be any way it could have been in
2130          * a GPU cache
2131          */
2132         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2133         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2134
2135         st = kmalloc(sizeof(*st), GFP_KERNEL);
2136         if (st == NULL)
2137                 return -ENOMEM;
2138
2139         page_count = obj->base.size / PAGE_SIZE;
2140         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2141                 kfree(st);
2142                 return -ENOMEM;
2143         }
2144
2145         /* Get the list of pages out of our struct file.  They'll be pinned
2146          * at this point until we release them.
2147          *
2148          * Fail silently without starting the shrinker
2149          */
2150         mapping = file_inode(obj->base.filp)->i_mapping;
2151         gfp = mapping_gfp_mask(mapping);
2152         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2153         gfp &= ~(__GFP_IO | __GFP_WAIT);
2154         sg = st->sgl;
2155         st->nents = 0;
2156         for (i = 0; i < page_count; i++) {
2157                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2158                 if (IS_ERR(page)) {
2159                         i915_gem_shrink(dev_priv,
2160                                         page_count,
2161                                         I915_SHRINK_BOUND |
2162                                         I915_SHRINK_UNBOUND |
2163                                         I915_SHRINK_PURGEABLE);
2164                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2165                 }
2166                 if (IS_ERR(page)) {
2167                         /* We've tried hard to allocate the memory by reaping
2168                          * our own buffer, now let the real VM do its job and
2169                          * go down in flames if truly OOM.
2170                          */
2171                         i915_gem_shrink_all(dev_priv);
2172                         page = shmem_read_mapping_page(mapping, i);
2173                         if (IS_ERR(page))
2174                                 goto err_pages;
2175                 }
2176 #ifdef CONFIG_SWIOTLB
2177                 if (swiotlb_nr_tbl()) {
2178                         st->nents++;
2179                         sg_set_page(sg, page, PAGE_SIZE, 0);
2180                         sg = sg_next(sg);
2181                         continue;
2182                 }
2183 #endif
2184                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2185                         if (i)
2186                                 sg = sg_next(sg);
2187                         st->nents++;
2188                         sg_set_page(sg, page, PAGE_SIZE, 0);
2189                 } else {
2190                         sg->length += PAGE_SIZE;
2191                 }
2192                 last_pfn = page_to_pfn(page);
2193
2194                 /* Check that the i965g/gm workaround works. */
2195                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2196         }
2197 #ifdef CONFIG_SWIOTLB
2198         if (!swiotlb_nr_tbl())
2199 #endif
2200                 sg_mark_end(sg);
2201         obj->pages = st;
2202
2203         if (i915_gem_object_needs_bit17_swizzle(obj))
2204                 i915_gem_object_do_bit_17_swizzle(obj);
2205
2206         return 0;
2207
2208 err_pages:
2209         sg_mark_end(sg);
2210         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2211                 page_cache_release(sg_page_iter_page(&sg_iter));
2212         sg_free_table(st);
2213         kfree(st);
2214
2215         /* shmemfs first checks if there is enough memory to allocate the page
2216          * and reports ENOSPC should there be insufficient, along with the usual
2217          * ENOMEM for a genuine allocation failure.
2218          *
2219          * We use ENOSPC in our driver to mean that we have run out of aperture
2220          * space and so want to translate the error from shmemfs back to our
2221          * usual understanding of ENOMEM.
2222          */
2223         if (PTR_ERR(page) == -ENOSPC)
2224                 return -ENOMEM;
2225         else
2226                 return PTR_ERR(page);
2227 }
2228
2229 /* Ensure that the associated pages are gathered from the backing storage
2230  * and pinned into our object. i915_gem_object_get_pages() may be called
2231  * multiple times before they are released by a single call to
2232  * i915_gem_object_put_pages() - once the pages are no longer referenced
2233  * either as a result of memory pressure (reaping pages under the shrinker)
2234  * or as the object is itself released.
2235  */
2236 int
2237 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2238 {
2239         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2240         const struct drm_i915_gem_object_ops *ops = obj->ops;
2241         int ret;
2242
2243         if (obj->pages)
2244                 return 0;
2245
2246         if (obj->madv != I915_MADV_WILLNEED) {
2247                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2248                 return -EFAULT;
2249         }
2250
2251         BUG_ON(obj->pages_pin_count);
2252
2253         ret = ops->get_pages(obj);
2254         if (ret)
2255                 return ret;
2256
2257         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2258         return 0;
2259 }
2260
2261 static void
2262 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2263                                struct intel_engine_cs *ring)
2264 {
2265         u32 seqno = intel_ring_get_seqno(ring);
2266
2267         BUG_ON(ring == NULL);
2268         if (obj->ring != ring && obj->last_write_seqno) {
2269                 /* Keep the seqno relative to the current ring */
2270                 obj->last_write_seqno = seqno;
2271         }
2272         obj->ring = ring;
2273
2274         /* Add a reference if we're newly entering the active list. */
2275         if (!obj->active) {
2276                 drm_gem_object_reference(&obj->base);
2277                 obj->active = 1;
2278         }
2279
2280         list_move_tail(&obj->ring_list, &ring->active_list);
2281
2282         obj->last_read_seqno = seqno;
2283 }
2284
2285 void i915_vma_move_to_active(struct i915_vma *vma,
2286                              struct intel_engine_cs *ring)
2287 {
2288         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2289         return i915_gem_object_move_to_active(vma->obj, ring);
2290 }
2291
2292 static void
2293 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2294 {
2295         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2296         struct i915_address_space *vm;
2297         struct i915_vma *vma;
2298
2299         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2300         BUG_ON(!obj->active);
2301
2302         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2303                 vma = i915_gem_obj_to_vma(obj, vm);
2304                 if (vma && !list_empty(&vma->mm_list))
2305                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2306         }
2307
2308         intel_fb_obj_flush(obj, true);
2309
2310         list_del_init(&obj->ring_list);
2311         obj->ring = NULL;
2312
2313         obj->last_read_seqno = 0;
2314         obj->last_write_seqno = 0;
2315         obj->base.write_domain = 0;
2316
2317         obj->last_fenced_seqno = 0;
2318
2319         obj->active = 0;
2320         drm_gem_object_unreference(&obj->base);
2321
2322         WARN_ON(i915_verify_lists(dev));
2323 }
2324
2325 static void
2326 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2327 {
2328         struct intel_engine_cs *ring = obj->ring;
2329
2330         if (ring == NULL)
2331                 return;
2332
2333         if (i915_seqno_passed(ring->get_seqno(ring, true),
2334                               obj->last_read_seqno))
2335                 i915_gem_object_move_to_inactive(obj);
2336 }
2337
2338 static int
2339 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2340 {
2341         struct drm_i915_private *dev_priv = dev->dev_private;
2342         struct intel_engine_cs *ring;
2343         int ret, i, j;
2344
2345         /* Carefully retire all requests without writing to the rings */
2346         for_each_ring(ring, dev_priv, i) {
2347                 ret = intel_ring_idle(ring);
2348                 if (ret)
2349                         return ret;
2350         }
2351         i915_gem_retire_requests(dev);
2352
2353         /* Finally reset hw state */
2354         for_each_ring(ring, dev_priv, i) {
2355                 intel_ring_init_seqno(ring, seqno);
2356
2357                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2358                         ring->semaphore.sync_seqno[j] = 0;
2359         }
2360
2361         return 0;
2362 }
2363
2364 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2365 {
2366         struct drm_i915_private *dev_priv = dev->dev_private;
2367         int ret;
2368
2369         if (seqno == 0)
2370                 return -EINVAL;
2371
2372         /* HWS page needs to be set less than what we
2373          * will inject to ring
2374          */
2375         ret = i915_gem_init_seqno(dev, seqno - 1);
2376         if (ret)
2377                 return ret;
2378
2379         /* Carefully set the last_seqno value so that wrap
2380          * detection still works
2381          */
2382         dev_priv->next_seqno = seqno;
2383         dev_priv->last_seqno = seqno - 1;
2384         if (dev_priv->last_seqno == 0)
2385                 dev_priv->last_seqno--;
2386
2387         return 0;
2388 }
2389
2390 int
2391 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2392 {
2393         struct drm_i915_private *dev_priv = dev->dev_private;
2394
2395         /* reserve 0 for non-seqno */
2396         if (dev_priv->next_seqno == 0) {
2397                 int ret = i915_gem_init_seqno(dev, 0);
2398                 if (ret)
2399                         return ret;
2400
2401                 dev_priv->next_seqno = 1;
2402         }
2403
2404         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2405         return 0;
2406 }
2407
2408 int __i915_add_request(struct intel_engine_cs *ring,
2409                        struct drm_file *file,
2410                        struct drm_i915_gem_object *obj,
2411                        u32 *out_seqno)
2412 {
2413         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2414         struct drm_i915_gem_request *request;
2415         struct intel_ringbuffer *ringbuf;
2416         u32 request_ring_position, request_start;
2417         int ret;
2418
2419         request = ring->preallocated_lazy_request;
2420         if (WARN_ON(request == NULL))
2421                 return -ENOMEM;
2422
2423         if (i915.enable_execlists) {
2424                 struct intel_context *ctx = request->ctx;
2425                 ringbuf = ctx->engine[ring->id].ringbuf;
2426         } else
2427                 ringbuf = ring->buffer;
2428
2429         request_start = intel_ring_get_tail(ringbuf);
2430         /*
2431          * Emit any outstanding flushes - execbuf can fail to emit the flush
2432          * after having emitted the batchbuffer command. Hence we need to fix
2433          * things up similar to emitting the lazy request. The difference here
2434          * is that the flush _must_ happen before the next request, no matter
2435          * what.
2436          */
2437         if (i915.enable_execlists) {
2438                 ret = logical_ring_flush_all_caches(ringbuf);
2439                 if (ret)
2440                         return ret;
2441         } else {
2442                 ret = intel_ring_flush_all_caches(ring);
2443                 if (ret)
2444                         return ret;
2445         }
2446
2447         /* Record the position of the start of the request so that
2448          * should we detect the updated seqno part-way through the
2449          * GPU processing the request, we never over-estimate the
2450          * position of the head.
2451          */
2452         request_ring_position = intel_ring_get_tail(ringbuf);
2453
2454         if (i915.enable_execlists) {
2455                 ret = ring->emit_request(ringbuf);
2456                 if (ret)
2457                         return ret;
2458         } else {
2459                 ret = ring->add_request(ring);
2460                 if (ret)
2461                         return ret;
2462         }
2463
2464         request->seqno = intel_ring_get_seqno(ring);
2465         request->ring = ring;
2466         request->head = request_start;
2467         request->tail = request_ring_position;
2468
2469         /* Whilst this request exists, batch_obj will be on the
2470          * active_list, and so will hold the active reference. Only when this
2471          * request is retired will the the batch_obj be moved onto the
2472          * inactive_list and lose its active reference. Hence we do not need
2473          * to explicitly hold another reference here.
2474          */
2475         request->batch_obj = obj;
2476
2477         if (!i915.enable_execlists) {
2478                 /* Hold a reference to the current context so that we can inspect
2479                  * it later in case a hangcheck error event fires.
2480                  */
2481                 request->ctx = ring->last_context;
2482                 if (request->ctx)
2483                         i915_gem_context_reference(request->ctx);
2484         }
2485
2486         request->emitted_jiffies = jiffies;
2487         list_add_tail(&request->list, &ring->request_list);
2488         request->file_priv = NULL;
2489
2490         if (file) {
2491                 struct drm_i915_file_private *file_priv = file->driver_priv;
2492
2493                 spin_lock(&file_priv->mm.lock);
2494                 request->file_priv = file_priv;
2495                 list_add_tail(&request->client_list,
2496                               &file_priv->mm.request_list);
2497                 spin_unlock(&file_priv->mm.lock);
2498         }
2499
2500         trace_i915_gem_request_add(ring, request->seqno);
2501         ring->outstanding_lazy_seqno = 0;
2502         ring->preallocated_lazy_request = NULL;
2503
2504         if (!dev_priv->ums.mm_suspended) {
2505                 i915_queue_hangcheck(ring->dev);
2506
2507                 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2508                 queue_delayed_work(dev_priv->wq,
2509                                    &dev_priv->mm.retire_work,
2510                                    round_jiffies_up_relative(HZ));
2511                 intel_mark_busy(dev_priv->dev);
2512         }
2513
2514         if (out_seqno)
2515                 *out_seqno = request->seqno;
2516         return 0;
2517 }
2518
2519 static inline void
2520 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2521 {
2522         struct drm_i915_file_private *file_priv = request->file_priv;
2523
2524         if (!file_priv)
2525                 return;
2526
2527         spin_lock(&file_priv->mm.lock);
2528         list_del(&request->client_list);
2529         request->file_priv = NULL;
2530         spin_unlock(&file_priv->mm.lock);
2531 }
2532
2533 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2534                                    const struct intel_context *ctx)
2535 {
2536         unsigned long elapsed;
2537
2538         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2539
2540         if (ctx->hang_stats.banned)
2541                 return true;
2542
2543         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2544                 if (!i915_gem_context_is_default(ctx)) {
2545                         DRM_DEBUG("context hanging too fast, banning!\n");
2546                         return true;
2547                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2548                         if (i915_stop_ring_allow_warn(dev_priv))
2549                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2550                         return true;
2551                 }
2552         }
2553
2554         return false;
2555 }
2556
2557 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2558                                   struct intel_context *ctx,
2559                                   const bool guilty)
2560 {
2561         struct i915_ctx_hang_stats *hs;
2562
2563         if (WARN_ON(!ctx))
2564                 return;
2565
2566         hs = &ctx->hang_stats;
2567
2568         if (guilty) {
2569                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2570                 hs->batch_active++;
2571                 hs->guilty_ts = get_seconds();
2572         } else {
2573                 hs->batch_pending++;
2574         }
2575 }
2576
2577 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2578 {
2579         list_del(&request->list);
2580         i915_gem_request_remove_from_client(request);
2581
2582         if (request->ctx)
2583                 i915_gem_context_unreference(request->ctx);
2584
2585         kfree(request);
2586 }
2587
2588 struct drm_i915_gem_request *
2589 i915_gem_find_active_request(struct intel_engine_cs *ring)
2590 {
2591         struct drm_i915_gem_request *request;
2592         u32 completed_seqno;
2593
2594         completed_seqno = ring->get_seqno(ring, false);
2595
2596         list_for_each_entry(request, &ring->request_list, list) {
2597                 if (i915_seqno_passed(completed_seqno, request->seqno))
2598                         continue;
2599
2600                 return request;
2601         }
2602
2603         return NULL;
2604 }
2605
2606 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2607                                        struct intel_engine_cs *ring)
2608 {
2609         struct drm_i915_gem_request *request;
2610         bool ring_hung;
2611
2612         request = i915_gem_find_active_request(ring);
2613
2614         if (request == NULL)
2615                 return;
2616
2617         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2618
2619         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2620
2621         list_for_each_entry_continue(request, &ring->request_list, list)
2622                 i915_set_reset_status(dev_priv, request->ctx, false);
2623 }
2624
2625 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2626                                         struct intel_engine_cs *ring)
2627 {
2628         while (!list_empty(&ring->active_list)) {
2629                 struct drm_i915_gem_object *obj;
2630
2631                 obj = list_first_entry(&ring->active_list,
2632                                        struct drm_i915_gem_object,
2633                                        ring_list);
2634
2635                 i915_gem_object_move_to_inactive(obj);
2636         }
2637
2638         /*
2639          * We must free the requests after all the corresponding objects have
2640          * been moved off active lists. Which is the same order as the normal
2641          * retire_requests function does. This is important if object hold
2642          * implicit references on things like e.g. ppgtt address spaces through
2643          * the request.
2644          */
2645         while (!list_empty(&ring->request_list)) {
2646                 struct drm_i915_gem_request *request;
2647
2648                 request = list_first_entry(&ring->request_list,
2649                                            struct drm_i915_gem_request,
2650                                            list);
2651
2652                 i915_gem_free_request(request);
2653         }
2654
2655         while (!list_empty(&ring->execlist_queue)) {
2656                 struct intel_ctx_submit_request *submit_req;
2657
2658                 submit_req = list_first_entry(&ring->execlist_queue,
2659                                 struct intel_ctx_submit_request,
2660                                 execlist_link);
2661                 list_del(&submit_req->execlist_link);
2662                 intel_runtime_pm_put(dev_priv);
2663                 i915_gem_context_unreference(submit_req->ctx);
2664                 kfree(submit_req);
2665         }
2666
2667         /* These may not have been flush before the reset, do so now */
2668         kfree(ring->preallocated_lazy_request);
2669         ring->preallocated_lazy_request = NULL;
2670         ring->outstanding_lazy_seqno = 0;
2671 }
2672
2673 void i915_gem_restore_fences(struct drm_device *dev)
2674 {
2675         struct drm_i915_private *dev_priv = dev->dev_private;
2676         int i;
2677
2678         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2679                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2680
2681                 /*
2682                  * Commit delayed tiling changes if we have an object still
2683                  * attached to the fence, otherwise just clear the fence.
2684                  */
2685                 if (reg->obj) {
2686                         i915_gem_object_update_fence(reg->obj, reg,
2687                                                      reg->obj->tiling_mode);
2688                 } else {
2689                         i915_gem_write_fence(dev, i, NULL);
2690                 }
2691         }
2692 }
2693
2694 void i915_gem_reset(struct drm_device *dev)
2695 {
2696         struct drm_i915_private *dev_priv = dev->dev_private;
2697         struct intel_engine_cs *ring;
2698         int i;
2699
2700         /*
2701          * Before we free the objects from the requests, we need to inspect
2702          * them for finding the guilty party. As the requests only borrow
2703          * their reference to the objects, the inspection must be done first.
2704          */
2705         for_each_ring(ring, dev_priv, i)
2706                 i915_gem_reset_ring_status(dev_priv, ring);
2707
2708         for_each_ring(ring, dev_priv, i)
2709                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2710
2711         i915_gem_context_reset(dev);
2712
2713         i915_gem_restore_fences(dev);
2714 }
2715
2716 /**
2717  * This function clears the request list as sequence numbers are passed.
2718  */
2719 void
2720 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2721 {
2722         uint32_t seqno;
2723
2724         if (list_empty(&ring->request_list))
2725                 return;
2726
2727         WARN_ON(i915_verify_lists(ring->dev));
2728
2729         seqno = ring->get_seqno(ring, true);
2730
2731         /* Move any buffers on the active list that are no longer referenced
2732          * by the ringbuffer to the flushing/inactive lists as appropriate,
2733          * before we free the context associated with the requests.
2734          */
2735         while (!list_empty(&ring->active_list)) {
2736                 struct drm_i915_gem_object *obj;
2737
2738                 obj = list_first_entry(&ring->active_list,
2739                                       struct drm_i915_gem_object,
2740                                       ring_list);
2741
2742                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2743                         break;
2744
2745                 i915_gem_object_move_to_inactive(obj);
2746         }
2747
2748
2749         while (!list_empty(&ring->request_list)) {
2750                 struct drm_i915_gem_request *request;
2751                 struct intel_ringbuffer *ringbuf;
2752
2753                 request = list_first_entry(&ring->request_list,
2754                                            struct drm_i915_gem_request,
2755                                            list);
2756
2757                 if (!i915_seqno_passed(seqno, request->seqno))
2758                         break;
2759
2760                 trace_i915_gem_request_retire(ring, request->seqno);
2761
2762                 /* This is one of the few common intersection points
2763                  * between legacy ringbuffer submission and execlists:
2764                  * we need to tell them apart in order to find the correct
2765                  * ringbuffer to which the request belongs to.
2766                  */
2767                 if (i915.enable_execlists) {
2768                         struct intel_context *ctx = request->ctx;
2769                         ringbuf = ctx->engine[ring->id].ringbuf;
2770                 } else
2771                         ringbuf = ring->buffer;
2772
2773                 /* We know the GPU must have read the request to have
2774                  * sent us the seqno + interrupt, so use the position
2775                  * of tail of the request to update the last known position
2776                  * of the GPU head.
2777                  */
2778                 ringbuf->last_retired_head = request->tail;
2779
2780                 i915_gem_free_request(request);
2781         }
2782
2783         if (unlikely(ring->trace_irq_seqno &&
2784                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2785                 ring->irq_put(ring);
2786                 ring->trace_irq_seqno = 0;
2787         }
2788
2789         WARN_ON(i915_verify_lists(ring->dev));
2790 }
2791
2792 bool
2793 i915_gem_retire_requests(struct drm_device *dev)
2794 {
2795         struct drm_i915_private *dev_priv = dev->dev_private;
2796         struct intel_engine_cs *ring;
2797         bool idle = true;
2798         int i;
2799
2800         for_each_ring(ring, dev_priv, i) {
2801                 i915_gem_retire_requests_ring(ring);
2802                 idle &= list_empty(&ring->request_list);
2803                 if (i915.enable_execlists) {
2804                         unsigned long flags;
2805
2806                         spin_lock_irqsave(&ring->execlist_lock, flags);
2807                         idle &= list_empty(&ring->execlist_queue);
2808                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2809
2810                         intel_execlists_retire_requests(ring);
2811                 }
2812         }
2813
2814         if (idle)
2815                 mod_delayed_work(dev_priv->wq,
2816                                    &dev_priv->mm.idle_work,
2817                                    msecs_to_jiffies(100));
2818
2819         return idle;
2820 }
2821
2822 static void
2823 i915_gem_retire_work_handler(struct work_struct *work)
2824 {
2825         struct drm_i915_private *dev_priv =
2826                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2827         struct drm_device *dev = dev_priv->dev;
2828         bool idle;
2829
2830         /* Come back later if the device is busy... */
2831         idle = false;
2832         if (mutex_trylock(&dev->struct_mutex)) {
2833                 idle = i915_gem_retire_requests(dev);
2834                 mutex_unlock(&dev->struct_mutex);
2835         }
2836         if (!idle)
2837                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2838                                    round_jiffies_up_relative(HZ));
2839 }
2840
2841 static void
2842 i915_gem_idle_work_handler(struct work_struct *work)
2843 {
2844         struct drm_i915_private *dev_priv =
2845                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2846
2847         intel_mark_idle(dev_priv->dev);
2848 }
2849
2850 /**
2851  * Ensures that an object will eventually get non-busy by flushing any required
2852  * write domains, emitting any outstanding lazy request and retiring and
2853  * completed requests.
2854  */
2855 static int
2856 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2857 {
2858         int ret;
2859
2860         if (obj->active) {
2861                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2862                 if (ret)
2863                         return ret;
2864
2865                 i915_gem_retire_requests_ring(obj->ring);
2866         }
2867
2868         return 0;
2869 }
2870
2871 /**
2872  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2873  * @DRM_IOCTL_ARGS: standard ioctl arguments
2874  *
2875  * Returns 0 if successful, else an error is returned with the remaining time in
2876  * the timeout parameter.
2877  *  -ETIME: object is still busy after timeout
2878  *  -ERESTARTSYS: signal interrupted the wait
2879  *  -ENONENT: object doesn't exist
2880  * Also possible, but rare:
2881  *  -EAGAIN: GPU wedged
2882  *  -ENOMEM: damn
2883  *  -ENODEV: Internal IRQ fail
2884  *  -E?: The add request failed
2885  *
2886  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2887  * non-zero timeout parameter the wait ioctl will wait for the given number of
2888  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2889  * without holding struct_mutex the object may become re-busied before this
2890  * function completes. A similar but shorter * race condition exists in the busy
2891  * ioctl
2892  */
2893 int
2894 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2895 {
2896         struct drm_i915_private *dev_priv = dev->dev_private;
2897         struct drm_i915_gem_wait *args = data;
2898         struct drm_i915_gem_object *obj;
2899         struct intel_engine_cs *ring = NULL;
2900         unsigned reset_counter;
2901         u32 seqno = 0;
2902         int ret = 0;
2903
2904         if (args->flags != 0)
2905                 return -EINVAL;
2906
2907         ret = i915_mutex_lock_interruptible(dev);
2908         if (ret)
2909                 return ret;
2910
2911         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2912         if (&obj->base == NULL) {
2913                 mutex_unlock(&dev->struct_mutex);
2914                 return -ENOENT;
2915         }
2916
2917         /* Need to make sure the object gets inactive eventually. */
2918         ret = i915_gem_object_flush_active(obj);
2919         if (ret)
2920                 goto out;
2921
2922         if (obj->active) {
2923                 seqno = obj->last_read_seqno;
2924                 ring = obj->ring;
2925         }
2926
2927         if (seqno == 0)
2928                  goto out;
2929
2930         /* Do this after OLR check to make sure we make forward progress polling
2931          * on this IOCTL with a timeout <=0 (like busy ioctl)
2932          */
2933         if (args->timeout_ns <= 0) {
2934                 ret = -ETIME;
2935                 goto out;
2936         }
2937
2938         drm_gem_object_unreference(&obj->base);
2939         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2940         mutex_unlock(&dev->struct_mutex);
2941
2942         return __i915_wait_seqno(ring, seqno, reset_counter, true,
2943                                  &args->timeout_ns, file->driver_priv);
2944
2945 out:
2946         drm_gem_object_unreference(&obj->base);
2947         mutex_unlock(&dev->struct_mutex);
2948         return ret;
2949 }
2950
2951 /**
2952  * i915_gem_object_sync - sync an object to a ring.
2953  *
2954  * @obj: object which may be in use on another ring.
2955  * @to: ring we wish to use the object on. May be NULL.
2956  *
2957  * This code is meant to abstract object synchronization with the GPU.
2958  * Calling with NULL implies synchronizing the object with the CPU
2959  * rather than a particular GPU ring.
2960  *
2961  * Returns 0 if successful, else propagates up the lower layer error.
2962  */
2963 int
2964 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2965                      struct intel_engine_cs *to)
2966 {
2967         struct intel_engine_cs *from = obj->ring;
2968         u32 seqno;
2969         int ret, idx;
2970
2971         if (from == NULL || to == from)
2972                 return 0;
2973
2974         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2975                 return i915_gem_object_wait_rendering(obj, false);
2976
2977         idx = intel_ring_sync_index(from, to);
2978
2979         seqno = obj->last_read_seqno;
2980         /* Optimization: Avoid semaphore sync when we are sure we already
2981          * waited for an object with higher seqno */
2982         if (seqno <= from->semaphore.sync_seqno[idx])
2983                 return 0;
2984
2985         ret = i915_gem_check_olr(obj->ring, seqno);
2986         if (ret)
2987                 return ret;
2988
2989         trace_i915_gem_ring_sync_to(from, to, seqno);
2990         ret = to->semaphore.sync_to(to, from, seqno);
2991         if (!ret)
2992                 /* We use last_read_seqno because sync_to()
2993                  * might have just caused seqno wrap under
2994                  * the radar.
2995                  */
2996                 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2997
2998         return ret;
2999 }
3000
3001 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3002 {
3003         u32 old_write_domain, old_read_domains;
3004
3005         /* Force a pagefault for domain tracking on next user access */
3006         i915_gem_release_mmap(obj);
3007
3008         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3009                 return;
3010
3011         /* Wait for any direct GTT access to complete */
3012         mb();
3013
3014         old_read_domains = obj->base.read_domains;
3015         old_write_domain = obj->base.write_domain;
3016
3017         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3018         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3019
3020         trace_i915_gem_object_change_domain(obj,
3021                                             old_read_domains,
3022                                             old_write_domain);
3023 }
3024
3025 int i915_vma_unbind(struct i915_vma *vma)
3026 {
3027         struct drm_i915_gem_object *obj = vma->obj;
3028         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3029         int ret;
3030
3031         if (list_empty(&vma->vma_link))
3032                 return 0;
3033
3034         if (!drm_mm_node_allocated(&vma->node)) {
3035                 i915_gem_vma_destroy(vma);
3036                 return 0;
3037         }
3038
3039         if (vma->pin_count)
3040                 return -EBUSY;
3041
3042         BUG_ON(obj->pages == NULL);
3043
3044         ret = i915_gem_object_finish_gpu(obj);
3045         if (ret)
3046                 return ret;
3047         /* Continue on if we fail due to EIO, the GPU is hung so we
3048          * should be safe and we need to cleanup or else we might
3049          * cause memory corruption through use-after-free.
3050          */
3051
3052         /* Throw away the active reference before moving to the unbound list */
3053         i915_gem_object_retire(obj);
3054
3055         if (i915_is_ggtt(vma->vm)) {
3056                 i915_gem_object_finish_gtt(obj);
3057
3058                 /* release the fence reg _after_ flushing */
3059                 ret = i915_gem_object_put_fence(obj);
3060                 if (ret)
3061                         return ret;
3062         }
3063
3064         trace_i915_vma_unbind(vma);
3065
3066         vma->unbind_vma(vma);
3067
3068         list_del_init(&vma->mm_list);
3069         if (i915_is_ggtt(vma->vm))
3070                 obj->map_and_fenceable = false;
3071
3072         drm_mm_remove_node(&vma->node);
3073         i915_gem_vma_destroy(vma);
3074
3075         /* Since the unbound list is global, only move to that list if
3076          * no more VMAs exist. */
3077         if (list_empty(&obj->vma_list)) {
3078                 i915_gem_gtt_finish_object(obj);
3079                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3080         }
3081
3082         /* And finally now the object is completely decoupled from this vma,
3083          * we can drop its hold on the backing storage and allow it to be
3084          * reaped by the shrinker.
3085          */
3086         i915_gem_object_unpin_pages(obj);
3087
3088         return 0;
3089 }
3090
3091 int i915_gpu_idle(struct drm_device *dev)
3092 {
3093         struct drm_i915_private *dev_priv = dev->dev_private;
3094         struct intel_engine_cs *ring;
3095         int ret, i;
3096
3097         /* Flush everything onto the inactive list. */
3098         for_each_ring(ring, dev_priv, i) {
3099                 if (!i915.enable_execlists) {
3100                         ret = i915_switch_context(ring, ring->default_context);
3101                         if (ret)
3102                                 return ret;
3103                 }
3104
3105                 ret = intel_ring_idle(ring);
3106                 if (ret)
3107                         return ret;
3108         }
3109
3110         return 0;
3111 }
3112
3113 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3114                                  struct drm_i915_gem_object *obj)
3115 {
3116         struct drm_i915_private *dev_priv = dev->dev_private;
3117         int fence_reg;
3118         int fence_pitch_shift;
3119
3120         if (INTEL_INFO(dev)->gen >= 6) {
3121                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3122                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3123         } else {
3124                 fence_reg = FENCE_REG_965_0;
3125                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3126         }
3127
3128         fence_reg += reg * 8;
3129
3130         /* To w/a incoherency with non-atomic 64-bit register updates,
3131          * we split the 64-bit update into two 32-bit writes. In order
3132          * for a partial fence not to be evaluated between writes, we
3133          * precede the update with write to turn off the fence register,
3134          * and only enable the fence as the last step.
3135          *
3136          * For extra levels of paranoia, we make sure each step lands
3137          * before applying the next step.
3138          */
3139         I915_WRITE(fence_reg, 0);
3140         POSTING_READ(fence_reg);
3141
3142         if (obj) {
3143                 u32 size = i915_gem_obj_ggtt_size(obj);
3144                 uint64_t val;
3145
3146                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3147                                  0xfffff000) << 32;
3148                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3149                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3150                 if (obj->tiling_mode == I915_TILING_Y)
3151                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3152                 val |= I965_FENCE_REG_VALID;
3153
3154                 I915_WRITE(fence_reg + 4, val >> 32);
3155                 POSTING_READ(fence_reg + 4);
3156
3157                 I915_WRITE(fence_reg + 0, val);
3158                 POSTING_READ(fence_reg);
3159         } else {
3160                 I915_WRITE(fence_reg + 4, 0);
3161                 POSTING_READ(fence_reg + 4);
3162         }
3163 }
3164
3165 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3166                                  struct drm_i915_gem_object *obj)
3167 {
3168         struct drm_i915_private *dev_priv = dev->dev_private;
3169         u32 val;
3170
3171         if (obj) {
3172                 u32 size = i915_gem_obj_ggtt_size(obj);
3173                 int pitch_val;
3174                 int tile_width;
3175
3176                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3177                      (size & -size) != size ||
3178                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3179                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3180                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3181
3182                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3183                         tile_width = 128;
3184                 else
3185                         tile_width = 512;
3186
3187                 /* Note: pitch better be a power of two tile widths */
3188                 pitch_val = obj->stride / tile_width;
3189                 pitch_val = ffs(pitch_val) - 1;
3190
3191                 val = i915_gem_obj_ggtt_offset(obj);
3192                 if (obj->tiling_mode == I915_TILING_Y)
3193                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3194                 val |= I915_FENCE_SIZE_BITS(size);
3195                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3196                 val |= I830_FENCE_REG_VALID;
3197         } else
3198                 val = 0;
3199
3200         if (reg < 8)
3201                 reg = FENCE_REG_830_0 + reg * 4;
3202         else
3203                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3204
3205         I915_WRITE(reg, val);
3206         POSTING_READ(reg);
3207 }
3208
3209 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3210                                 struct drm_i915_gem_object *obj)
3211 {
3212         struct drm_i915_private *dev_priv = dev->dev_private;
3213         uint32_t val;
3214
3215         if (obj) {
3216                 u32 size = i915_gem_obj_ggtt_size(obj);
3217                 uint32_t pitch_val;
3218
3219                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3220                      (size & -size) != size ||
3221                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3222                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3223                      i915_gem_obj_ggtt_offset(obj), size);
3224
3225                 pitch_val = obj->stride / 128;
3226                 pitch_val = ffs(pitch_val) - 1;
3227
3228                 val = i915_gem_obj_ggtt_offset(obj);
3229                 if (obj->tiling_mode == I915_TILING_Y)
3230                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3231                 val |= I830_FENCE_SIZE_BITS(size);
3232                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3233                 val |= I830_FENCE_REG_VALID;
3234         } else
3235                 val = 0;
3236
3237         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3238         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3239 }
3240
3241 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3242 {
3243         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3244 }
3245
3246 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3247                                  struct drm_i915_gem_object *obj)
3248 {
3249         struct drm_i915_private *dev_priv = dev->dev_private;
3250
3251         /* Ensure that all CPU reads are completed before installing a fence
3252          * and all writes before removing the fence.
3253          */
3254         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3255                 mb();
3256
3257         WARN(obj && (!obj->stride || !obj->tiling_mode),
3258              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3259              obj->stride, obj->tiling_mode);
3260
3261         switch (INTEL_INFO(dev)->gen) {
3262         case 9:
3263         case 8:
3264         case 7:
3265         case 6:
3266         case 5:
3267         case 4: i965_write_fence_reg(dev, reg, obj); break;
3268         case 3: i915_write_fence_reg(dev, reg, obj); break;
3269         case 2: i830_write_fence_reg(dev, reg, obj); break;
3270         default: BUG();
3271         }
3272
3273         /* And similarly be paranoid that no direct access to this region
3274          * is reordered to before the fence is installed.
3275          */
3276         if (i915_gem_object_needs_mb(obj))
3277                 mb();
3278 }
3279
3280 static inline int fence_number(struct drm_i915_private *dev_priv,
3281                                struct drm_i915_fence_reg *fence)
3282 {
3283         return fence - dev_priv->fence_regs;
3284 }
3285
3286 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3287                                          struct drm_i915_fence_reg *fence,
3288                                          bool enable)
3289 {
3290         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3291         int reg = fence_number(dev_priv, fence);
3292
3293         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3294
3295         if (enable) {
3296                 obj->fence_reg = reg;
3297                 fence->obj = obj;
3298                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3299         } else {
3300                 obj->fence_reg = I915_FENCE_REG_NONE;
3301                 fence->obj = NULL;
3302                 list_del_init(&fence->lru_list);
3303         }
3304         obj->fence_dirty = false;
3305 }
3306
3307 static int
3308 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3309 {
3310         if (obj->last_fenced_seqno) {
3311                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3312                 if (ret)
3313                         return ret;
3314
3315                 obj->last_fenced_seqno = 0;
3316         }
3317
3318         return 0;
3319 }
3320
3321 int
3322 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3323 {
3324         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3325         struct drm_i915_fence_reg *fence;
3326         int ret;
3327
3328         ret = i915_gem_object_wait_fence(obj);
3329         if (ret)
3330                 return ret;
3331
3332         if (obj->fence_reg == I915_FENCE_REG_NONE)
3333                 return 0;
3334
3335         fence = &dev_priv->fence_regs[obj->fence_reg];
3336
3337         if (WARN_ON(fence->pin_count))
3338                 return -EBUSY;
3339
3340         i915_gem_object_fence_lost(obj);
3341         i915_gem_object_update_fence(obj, fence, false);
3342
3343         return 0;
3344 }
3345
3346 static struct drm_i915_fence_reg *
3347 i915_find_fence_reg(struct drm_device *dev)
3348 {
3349         struct drm_i915_private *dev_priv = dev->dev_private;
3350         struct drm_i915_fence_reg *reg, *avail;
3351         int i;
3352
3353         /* First try to find a free reg */
3354         avail = NULL;
3355         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3356                 reg = &dev_priv->fence_regs[i];
3357                 if (!reg->obj)
3358                         return reg;
3359
3360                 if (!reg->pin_count)
3361                         avail = reg;
3362         }
3363
3364         if (avail == NULL)
3365                 goto deadlock;
3366
3367         /* None available, try to steal one or wait for a user to finish */
3368         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3369                 if (reg->pin_count)
3370                         continue;
3371
3372                 return reg;
3373         }
3374
3375 deadlock:
3376         /* Wait for completion of pending flips which consume fences */
3377         if (intel_has_pending_fb_unpin(dev))
3378                 return ERR_PTR(-EAGAIN);
3379
3380         return ERR_PTR(-EDEADLK);
3381 }
3382
3383 /**
3384  * i915_gem_object_get_fence - set up fencing for an object
3385  * @obj: object to map through a fence reg
3386  *
3387  * When mapping objects through the GTT, userspace wants to be able to write
3388  * to them without having to worry about swizzling if the object is tiled.
3389  * This function walks the fence regs looking for a free one for @obj,
3390  * stealing one if it can't find any.
3391  *
3392  * It then sets up the reg based on the object's properties: address, pitch
3393  * and tiling format.
3394  *
3395  * For an untiled surface, this removes any existing fence.
3396  */
3397 int
3398 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3399 {
3400         struct drm_device *dev = obj->base.dev;
3401         struct drm_i915_private *dev_priv = dev->dev_private;
3402         bool enable = obj->tiling_mode != I915_TILING_NONE;
3403         struct drm_i915_fence_reg *reg;
3404         int ret;
3405
3406         /* Have we updated the tiling parameters upon the object and so
3407          * will need to serialise the write to the associated fence register?
3408          */
3409         if (obj->fence_dirty) {
3410                 ret = i915_gem_object_wait_fence(obj);
3411                 if (ret)
3412                         return ret;
3413         }
3414
3415         /* Just update our place in the LRU if our fence is getting reused. */
3416         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3417                 reg = &dev_priv->fence_regs[obj->fence_reg];
3418                 if (!obj->fence_dirty) {
3419                         list_move_tail(&reg->lru_list,
3420                                        &dev_priv->mm.fence_list);
3421                         return 0;
3422                 }
3423         } else if (enable) {
3424                 if (WARN_ON(!obj->map_and_fenceable))
3425                         return -EINVAL;
3426
3427                 reg = i915_find_fence_reg(dev);
3428                 if (IS_ERR(reg))
3429                         return PTR_ERR(reg);
3430
3431                 if (reg->obj) {
3432                         struct drm_i915_gem_object *old = reg->obj;
3433
3434                         ret = i915_gem_object_wait_fence(old);
3435                         if (ret)
3436                                 return ret;
3437
3438                         i915_gem_object_fence_lost(old);
3439                 }
3440         } else
3441                 return 0;
3442
3443         i915_gem_object_update_fence(obj, reg, enable);
3444
3445         return 0;
3446 }
3447
3448 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3449                                      unsigned long cache_level)
3450 {
3451         struct drm_mm_node *gtt_space = &vma->node;
3452         struct drm_mm_node *other;
3453
3454         /*
3455          * On some machines we have to be careful when putting differing types
3456          * of snoopable memory together to avoid the prefetcher crossing memory
3457          * domains and dying. During vm initialisation, we decide whether or not
3458          * these constraints apply and set the drm_mm.color_adjust
3459          * appropriately.
3460          */
3461         if (vma->vm->mm.color_adjust == NULL)
3462                 return true;
3463
3464         if (!drm_mm_node_allocated(gtt_space))
3465                 return true;
3466
3467         if (list_empty(&gtt_space->node_list))
3468                 return true;
3469
3470         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3471         if (other->allocated && !other->hole_follows && other->color != cache_level)
3472                 return false;
3473
3474         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3475         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3476                 return false;
3477
3478         return true;
3479 }
3480
3481 /**
3482  * Finds free space in the GTT aperture and binds the object there.
3483  */
3484 static struct i915_vma *
3485 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3486                            struct i915_address_space *vm,
3487                            unsigned alignment,
3488                            uint64_t flags)
3489 {
3490         struct drm_device *dev = obj->base.dev;
3491         struct drm_i915_private *dev_priv = dev->dev_private;
3492         u32 size, fence_size, fence_alignment, unfenced_alignment;
3493         unsigned long start =
3494                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3495         unsigned long end =
3496                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3497         struct i915_vma *vma;
3498         int ret;
3499
3500         fence_size = i915_gem_get_gtt_size(dev,
3501                                            obj->base.size,
3502                                            obj->tiling_mode);
3503         fence_alignment = i915_gem_get_gtt_alignment(dev,
3504                                                      obj->base.size,
3505                                                      obj->tiling_mode, true);
3506         unfenced_alignment =
3507                 i915_gem_get_gtt_alignment(dev,
3508                                            obj->base.size,
3509                                            obj->tiling_mode, false);
3510
3511         if (alignment == 0)
3512                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3513                                                 unfenced_alignment;
3514         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3515                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3516                 return ERR_PTR(-EINVAL);
3517         }
3518
3519         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3520
3521         /* If the object is bigger than the entire aperture, reject it early
3522          * before evicting everything in a vain attempt to find space.
3523          */
3524         if (obj->base.size > end) {
3525                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3526                           obj->base.size,
3527                           flags & PIN_MAPPABLE ? "mappable" : "total",
3528                           end);
3529                 return ERR_PTR(-E2BIG);
3530         }
3531
3532         ret = i915_gem_object_get_pages(obj);
3533         if (ret)
3534                 return ERR_PTR(ret);
3535
3536         i915_gem_object_pin_pages(obj);
3537
3538         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3539         if (IS_ERR(vma))
3540                 goto err_unpin;
3541
3542 search_free:
3543         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3544                                                   size, alignment,
3545                                                   obj->cache_level,
3546                                                   start, end,
3547                                                   DRM_MM_SEARCH_DEFAULT,
3548                                                   DRM_MM_CREATE_DEFAULT);
3549         if (ret) {
3550                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3551                                                obj->cache_level,
3552                                                start, end,
3553                                                flags);
3554                 if (ret == 0)
3555                         goto search_free;
3556
3557                 goto err_free_vma;
3558         }
3559         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3560                 ret = -EINVAL;
3561                 goto err_remove_node;
3562         }
3563
3564         ret = i915_gem_gtt_prepare_object(obj);
3565         if (ret)
3566                 goto err_remove_node;
3567
3568         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3569         list_add_tail(&vma->mm_list, &vm->inactive_list);
3570
3571         trace_i915_vma_bind(vma, flags);
3572         vma->bind_vma(vma, obj->cache_level,
3573                       flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3574
3575         return vma;
3576
3577 err_remove_node:
3578         drm_mm_remove_node(&vma->node);
3579 err_free_vma:
3580         i915_gem_vma_destroy(vma);
3581         vma = ERR_PTR(ret);
3582 err_unpin:
3583         i915_gem_object_unpin_pages(obj);
3584         return vma;
3585 }
3586
3587 bool
3588 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3589                         bool force)
3590 {
3591         /* If we don't have a page list set up, then we're not pinned
3592          * to GPU, and we can ignore the cache flush because it'll happen
3593          * again at bind time.
3594          */
3595         if (obj->pages == NULL)
3596                 return false;
3597
3598         /*
3599          * Stolen memory is always coherent with the GPU as it is explicitly
3600          * marked as wc by the system, or the system is cache-coherent.
3601          */
3602         if (obj->stolen || obj->phys_handle)
3603                 return false;
3604
3605         /* If the GPU is snooping the contents of the CPU cache,
3606          * we do not need to manually clear the CPU cache lines.  However,
3607          * the caches are only snooped when the render cache is
3608          * flushed/invalidated.  As we always have to emit invalidations
3609          * and flushes when moving into and out of the RENDER domain, correct
3610          * snooping behaviour occurs naturally as the result of our domain
3611          * tracking.
3612          */
3613         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3614                 return false;
3615
3616         trace_i915_gem_object_clflush(obj);
3617         drm_clflush_sg(obj->pages);
3618
3619         return true;
3620 }
3621
3622 /** Flushes the GTT write domain for the object if it's dirty. */
3623 static void
3624 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3625 {
3626         uint32_t old_write_domain;
3627
3628         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3629                 return;
3630
3631         /* No actual flushing is required for the GTT write domain.  Writes
3632          * to it immediately go to main memory as far as we know, so there's
3633          * no chipset flush.  It also doesn't land in render cache.
3634          *
3635          * However, we do have to enforce the order so that all writes through
3636          * the GTT land before any writes to the device, such as updates to
3637          * the GATT itself.
3638          */
3639         wmb();
3640
3641         old_write_domain = obj->base.write_domain;
3642         obj->base.write_domain = 0;
3643
3644         intel_fb_obj_flush(obj, false);
3645
3646         trace_i915_gem_object_change_domain(obj,
3647                                             obj->base.read_domains,
3648                                             old_write_domain);
3649 }
3650
3651 /** Flushes the CPU write domain for the object if it's dirty. */
3652 static void
3653 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3654                                        bool force)
3655 {
3656         uint32_t old_write_domain;
3657
3658         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3659                 return;
3660
3661         if (i915_gem_clflush_object(obj, force))
3662                 i915_gem_chipset_flush(obj->base.dev);
3663
3664         old_write_domain = obj->base.write_domain;
3665         obj->base.write_domain = 0;
3666
3667         intel_fb_obj_flush(obj, false);
3668
3669         trace_i915_gem_object_change_domain(obj,
3670                                             obj->base.read_domains,
3671                                             old_write_domain);
3672 }
3673
3674 /**
3675  * Moves a single object to the GTT read, and possibly write domain.
3676  *
3677  * This function returns when the move is complete, including waiting on
3678  * flushes to occur.
3679  */
3680 int
3681 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3682 {
3683         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3684         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3685         uint32_t old_write_domain, old_read_domains;
3686         int ret;
3687
3688         /* Not valid to be called on unbound objects. */
3689         if (vma == NULL)
3690                 return -EINVAL;
3691
3692         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3693                 return 0;
3694
3695         ret = i915_gem_object_wait_rendering(obj, !write);
3696         if (ret)
3697                 return ret;
3698
3699         i915_gem_object_retire(obj);
3700         i915_gem_object_flush_cpu_write_domain(obj, false);
3701
3702         /* Serialise direct access to this object with the barriers for
3703          * coherent writes from the GPU, by effectively invalidating the
3704          * GTT domain upon first access.
3705          */
3706         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3707                 mb();
3708
3709         old_write_domain = obj->base.write_domain;
3710         old_read_domains = obj->base.read_domains;
3711
3712         /* It should now be out of any other write domains, and we can update
3713          * the domain values for our changes.
3714          */
3715         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3716         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3717         if (write) {
3718                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3719                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3720                 obj->dirty = 1;
3721         }
3722
3723         if (write)
3724                 intel_fb_obj_invalidate(obj, NULL);
3725
3726         trace_i915_gem_object_change_domain(obj,
3727                                             old_read_domains,
3728                                             old_write_domain);
3729
3730         /* And bump the LRU for this access */
3731         if (i915_gem_object_is_inactive(obj))
3732                 list_move_tail(&vma->mm_list,
3733                                &dev_priv->gtt.base.inactive_list);
3734
3735         return 0;
3736 }
3737
3738 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3739                                     enum i915_cache_level cache_level)
3740 {
3741         struct drm_device *dev = obj->base.dev;
3742         struct i915_vma *vma, *next;
3743         int ret;
3744
3745         if (obj->cache_level == cache_level)
3746                 return 0;
3747
3748         if (i915_gem_obj_is_pinned(obj)) {
3749                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3750                 return -EBUSY;
3751         }
3752
3753         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3754                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3755                         ret = i915_vma_unbind(vma);
3756                         if (ret)
3757                                 return ret;
3758                 }
3759         }
3760
3761         if (i915_gem_obj_bound_any(obj)) {
3762                 ret = i915_gem_object_finish_gpu(obj);
3763                 if (ret)
3764                         return ret;
3765
3766                 i915_gem_object_finish_gtt(obj);
3767
3768                 /* Before SandyBridge, you could not use tiling or fence
3769                  * registers with snooped memory, so relinquish any fences
3770                  * currently pointing to our region in the aperture.
3771                  */
3772                 if (INTEL_INFO(dev)->gen < 6) {
3773                         ret = i915_gem_object_put_fence(obj);
3774                         if (ret)
3775                                 return ret;
3776                 }
3777
3778                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3779                         if (drm_mm_node_allocated(&vma->node))
3780                                 vma->bind_vma(vma, cache_level,
3781                                                 vma->bound & GLOBAL_BIND);
3782         }
3783
3784         list_for_each_entry(vma, &obj->vma_list, vma_link)
3785                 vma->node.color = cache_level;
3786         obj->cache_level = cache_level;
3787
3788         if (cpu_write_needs_clflush(obj)) {
3789                 u32 old_read_domains, old_write_domain;
3790
3791                 /* If we're coming from LLC cached, then we haven't
3792                  * actually been tracking whether the data is in the
3793                  * CPU cache or not, since we only allow one bit set
3794                  * in obj->write_domain and have been skipping the clflushes.
3795                  * Just set it to the CPU cache for now.
3796                  */
3797                 i915_gem_object_retire(obj);
3798                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3799
3800                 old_read_domains = obj->base.read_domains;
3801                 old_write_domain = obj->base.write_domain;
3802
3803                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3804                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3805
3806                 trace_i915_gem_object_change_domain(obj,
3807                                                     old_read_domains,
3808                                                     old_write_domain);
3809         }
3810
3811         return 0;
3812 }
3813
3814 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3815                                struct drm_file *file)
3816 {
3817         struct drm_i915_gem_caching *args = data;
3818         struct drm_i915_gem_object *obj;
3819         int ret;
3820
3821         ret = i915_mutex_lock_interruptible(dev);
3822         if (ret)
3823                 return ret;
3824
3825         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3826         if (&obj->base == NULL) {
3827                 ret = -ENOENT;
3828                 goto unlock;
3829         }
3830
3831         switch (obj->cache_level) {
3832         case I915_CACHE_LLC:
3833         case I915_CACHE_L3_LLC:
3834                 args->caching = I915_CACHING_CACHED;
3835                 break;
3836
3837         case I915_CACHE_WT:
3838                 args->caching = I915_CACHING_DISPLAY;
3839                 break;
3840
3841         default:
3842                 args->caching = I915_CACHING_NONE;
3843                 break;
3844         }
3845
3846         drm_gem_object_unreference(&obj->base);
3847 unlock:
3848         mutex_unlock(&dev->struct_mutex);
3849         return ret;
3850 }
3851
3852 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3853                                struct drm_file *file)
3854 {
3855         struct drm_i915_gem_caching *args = data;
3856         struct drm_i915_gem_object *obj;
3857         enum i915_cache_level level;
3858         int ret;
3859
3860         switch (args->caching) {
3861         case I915_CACHING_NONE:
3862                 level = I915_CACHE_NONE;
3863                 break;
3864         case I915_CACHING_CACHED:
3865                 level = I915_CACHE_LLC;
3866                 break;
3867         case I915_CACHING_DISPLAY:
3868                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3869                 break;
3870         default:
3871                 return -EINVAL;
3872         }
3873
3874         ret = i915_mutex_lock_interruptible(dev);
3875         if (ret)
3876                 return ret;
3877
3878         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3879         if (&obj->base == NULL) {
3880                 ret = -ENOENT;
3881                 goto unlock;
3882         }
3883
3884         ret = i915_gem_object_set_cache_level(obj, level);
3885
3886         drm_gem_object_unreference(&obj->base);
3887 unlock:
3888         mutex_unlock(&dev->struct_mutex);
3889         return ret;
3890 }
3891
3892 static bool is_pin_display(struct drm_i915_gem_object *obj)
3893 {
3894         struct i915_vma *vma;
3895
3896         vma = i915_gem_obj_to_ggtt(obj);
3897         if (!vma)
3898                 return false;
3899
3900         /* There are 3 sources that pin objects:
3901          *   1. The display engine (scanouts, sprites, cursors);
3902          *   2. Reservations for execbuffer;
3903          *   3. The user.
3904          *
3905          * We can ignore reservations as we hold the struct_mutex and
3906          * are only called outside of the reservation path.  The user
3907          * can only increment pin_count once, and so if after
3908          * subtracting the potential reference by the user, any pin_count
3909          * remains, it must be due to another use by the display engine.
3910          */
3911         return vma->pin_count - !!obj->user_pin_count;
3912 }
3913
3914 /*
3915  * Prepare buffer for display plane (scanout, cursors, etc).
3916  * Can be called from an uninterruptible phase (modesetting) and allows
3917  * any flushes to be pipelined (for pageflips).
3918  */
3919 int
3920 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3921                                      u32 alignment,
3922                                      struct intel_engine_cs *pipelined)
3923 {
3924         u32 old_read_domains, old_write_domain;
3925         bool was_pin_display;
3926         int ret;
3927
3928         if (pipelined != obj->ring) {
3929                 ret = i915_gem_object_sync(obj, pipelined);
3930                 if (ret)
3931                         return ret;
3932         }
3933
3934         /* Mark the pin_display early so that we account for the
3935          * display coherency whilst setting up the cache domains.
3936          */
3937         was_pin_display = obj->pin_display;
3938         obj->pin_display = true;
3939
3940         /* The display engine is not coherent with the LLC cache on gen6.  As
3941          * a result, we make sure that the pinning that is about to occur is
3942          * done with uncached PTEs. This is lowest common denominator for all
3943          * chipsets.
3944          *
3945          * However for gen6+, we could do better by using the GFDT bit instead
3946          * of uncaching, which would allow us to flush all the LLC-cached data
3947          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3948          */
3949         ret = i915_gem_object_set_cache_level(obj,
3950                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3951         if (ret)
3952                 goto err_unpin_display;
3953
3954         /* As the user may map the buffer once pinned in the display plane
3955          * (e.g. libkms for the bootup splash), we have to ensure that we
3956          * always use map_and_fenceable for all scanout buffers.
3957          */
3958         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3959         if (ret)
3960                 goto err_unpin_display;
3961
3962         i915_gem_object_flush_cpu_write_domain(obj, true);
3963
3964         old_write_domain = obj->base.write_domain;
3965         old_read_domains = obj->base.read_domains;
3966
3967         /* It should now be out of any other write domains, and we can update
3968          * the domain values for our changes.
3969          */
3970         obj->base.write_domain = 0;
3971         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3972
3973         trace_i915_gem_object_change_domain(obj,
3974                                             old_read_domains,
3975                                             old_write_domain);
3976
3977         return 0;
3978
3979 err_unpin_display:
3980         WARN_ON(was_pin_display != is_pin_display(obj));
3981         obj->pin_display = was_pin_display;
3982         return ret;
3983 }
3984
3985 void
3986 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3987 {
3988         i915_gem_object_ggtt_unpin(obj);
3989         obj->pin_display = is_pin_display(obj);
3990 }
3991
3992 int
3993 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3994 {
3995         int ret;
3996
3997         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3998                 return 0;
3999
4000         ret = i915_gem_object_wait_rendering(obj, false);
4001         if (ret)
4002                 return ret;
4003
4004         /* Ensure that we invalidate the GPU's caches and TLBs. */
4005         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4006         return 0;
4007 }
4008
4009 /**
4010  * Moves a single object to the CPU read, and possibly write domain.
4011  *
4012  * This function returns when the move is complete, including waiting on
4013  * flushes to occur.
4014  */
4015 int
4016 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4017 {
4018         uint32_t old_write_domain, old_read_domains;
4019         int ret;
4020
4021         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4022                 return 0;
4023
4024         ret = i915_gem_object_wait_rendering(obj, !write);
4025         if (ret)
4026                 return ret;
4027
4028         i915_gem_object_retire(obj);
4029         i915_gem_object_flush_gtt_write_domain(obj);
4030
4031         old_write_domain = obj->base.write_domain;
4032         old_read_domains = obj->base.read_domains;
4033
4034         /* Flush the CPU cache if it's still invalid. */
4035         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4036                 i915_gem_clflush_object(obj, false);
4037
4038                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4039         }
4040
4041         /* It should now be out of any other write domains, and we can update
4042          * the domain values for our changes.
4043          */
4044         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4045
4046         /* If we're writing through the CPU, then the GPU read domains will
4047          * need to be invalidated at next use.
4048          */
4049         if (write) {
4050                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4051                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4052         }
4053
4054         if (write)
4055                 intel_fb_obj_invalidate(obj, NULL);
4056
4057         trace_i915_gem_object_change_domain(obj,
4058                                             old_read_domains,
4059                                             old_write_domain);
4060
4061         return 0;
4062 }
4063
4064 /* Throttle our rendering by waiting until the ring has completed our requests
4065  * emitted over 20 msec ago.
4066  *
4067  * Note that if we were to use the current jiffies each time around the loop,
4068  * we wouldn't escape the function with any frames outstanding if the time to
4069  * render a frame was over 20ms.
4070  *
4071  * This should get us reasonable parallelism between CPU and GPU but also
4072  * relatively low latency when blocking on a particular request to finish.
4073  */
4074 static int
4075 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4076 {
4077         struct drm_i915_private *dev_priv = dev->dev_private;
4078         struct drm_i915_file_private *file_priv = file->driver_priv;
4079         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4080         struct drm_i915_gem_request *request;
4081         struct intel_engine_cs *ring = NULL;
4082         unsigned reset_counter;
4083         u32 seqno = 0;
4084         int ret;
4085
4086         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4087         if (ret)
4088                 return ret;
4089
4090         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4091         if (ret)
4092                 return ret;
4093
4094         spin_lock(&file_priv->mm.lock);
4095         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4096                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4097                         break;
4098
4099                 ring = request->ring;
4100                 seqno = request->seqno;
4101         }
4102         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4103         spin_unlock(&file_priv->mm.lock);
4104
4105         if (seqno == 0)
4106                 return 0;
4107
4108         ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4109         if (ret == 0)
4110                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4111
4112         return ret;
4113 }
4114
4115 static bool
4116 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4117 {
4118         struct drm_i915_gem_object *obj = vma->obj;
4119
4120         if (alignment &&
4121             vma->node.start & (alignment - 1))
4122                 return true;
4123
4124         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4125                 return true;
4126
4127         if (flags & PIN_OFFSET_BIAS &&
4128             vma->node.start < (flags & PIN_OFFSET_MASK))
4129                 return true;
4130
4131         return false;
4132 }
4133
4134 int
4135 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4136                     struct i915_address_space *vm,
4137                     uint32_t alignment,
4138                     uint64_t flags)
4139 {
4140         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4141         struct i915_vma *vma;
4142         unsigned bound;
4143         int ret;
4144
4145         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4146                 return -ENODEV;
4147
4148         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4149                 return -EINVAL;
4150
4151         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4152                 return -EINVAL;
4153
4154         vma = i915_gem_obj_to_vma(obj, vm);
4155         if (vma) {
4156                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4157                         return -EBUSY;
4158
4159                 if (i915_vma_misplaced(vma, alignment, flags)) {
4160                         WARN(vma->pin_count,
4161                              "bo is already pinned with incorrect alignment:"
4162                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4163                              " obj->map_and_fenceable=%d\n",
4164                              i915_gem_obj_offset(obj, vm), alignment,
4165                              !!(flags & PIN_MAPPABLE),
4166                              obj->map_and_fenceable);
4167                         ret = i915_vma_unbind(vma);
4168                         if (ret)
4169                                 return ret;
4170
4171                         vma = NULL;
4172                 }
4173         }
4174
4175         bound = vma ? vma->bound : 0;
4176         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4177                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4178                 if (IS_ERR(vma))
4179                         return PTR_ERR(vma);
4180         }
4181
4182         if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4183                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4184
4185         if ((bound ^ vma->bound) & GLOBAL_BIND) {
4186                 bool mappable, fenceable;
4187                 u32 fence_size, fence_alignment;
4188
4189                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4190                                                    obj->base.size,
4191                                                    obj->tiling_mode);
4192                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4193                                                              obj->base.size,
4194                                                              obj->tiling_mode,
4195                                                              true);
4196
4197                 fenceable = (vma->node.size == fence_size &&
4198                              (vma->node.start & (fence_alignment - 1)) == 0);
4199
4200                 mappable = (vma->node.start + obj->base.size <=
4201                             dev_priv->gtt.mappable_end);
4202
4203                 obj->map_and_fenceable = mappable && fenceable;
4204         }
4205
4206         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4207
4208         vma->pin_count++;
4209         if (flags & PIN_MAPPABLE)
4210                 obj->pin_mappable |= true;
4211
4212         return 0;
4213 }
4214
4215 void
4216 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4217 {
4218         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4219
4220         BUG_ON(!vma);
4221         BUG_ON(vma->pin_count == 0);
4222         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4223
4224         if (--vma->pin_count == 0)
4225                 obj->pin_mappable = false;
4226 }
4227
4228 bool
4229 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4230 {
4231         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4232                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4233                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4234
4235                 WARN_ON(!ggtt_vma ||
4236                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4237                         ggtt_vma->pin_count);
4238                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4239                 return true;
4240         } else
4241                 return false;
4242 }
4243
4244 void
4245 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4246 {
4247         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4248                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4249                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4250                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4251         }
4252 }
4253
4254 int
4255 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4256                    struct drm_file *file)
4257 {
4258         struct drm_i915_gem_pin *args = data;
4259         struct drm_i915_gem_object *obj;
4260         int ret;
4261
4262         if (INTEL_INFO(dev)->gen >= 6)
4263                 return -ENODEV;
4264
4265         ret = i915_mutex_lock_interruptible(dev);
4266         if (ret)
4267                 return ret;
4268
4269         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4270         if (&obj->base == NULL) {
4271                 ret = -ENOENT;
4272                 goto unlock;
4273         }
4274
4275         if (obj->madv != I915_MADV_WILLNEED) {
4276                 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4277                 ret = -EFAULT;
4278                 goto out;
4279         }
4280
4281         if (obj->pin_filp != NULL && obj->pin_filp != file) {
4282                 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4283                           args->handle);
4284                 ret = -EINVAL;
4285                 goto out;
4286         }
4287
4288         if (obj->user_pin_count == ULONG_MAX) {
4289                 ret = -EBUSY;
4290                 goto out;
4291         }
4292
4293         if (obj->user_pin_count == 0) {
4294                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4295                 if (ret)
4296                         goto out;
4297         }
4298
4299         obj->user_pin_count++;
4300         obj->pin_filp = file;
4301
4302         args->offset = i915_gem_obj_ggtt_offset(obj);
4303 out:
4304         drm_gem_object_unreference(&obj->base);
4305 unlock:
4306         mutex_unlock(&dev->struct_mutex);
4307         return ret;
4308 }
4309
4310 int
4311 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4312                      struct drm_file *file)
4313 {
4314         struct drm_i915_gem_pin *args = data;
4315         struct drm_i915_gem_object *obj;
4316         int ret;
4317
4318         ret = i915_mutex_lock_interruptible(dev);
4319         if (ret)
4320                 return ret;
4321
4322         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4323         if (&obj->base == NULL) {
4324                 ret = -ENOENT;
4325                 goto unlock;
4326         }
4327
4328         if (obj->pin_filp != file) {
4329                 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4330                           args->handle);
4331                 ret = -EINVAL;
4332                 goto out;
4333         }
4334         obj->user_pin_count--;
4335         if (obj->user_pin_count == 0) {
4336                 obj->pin_filp = NULL;
4337                 i915_gem_object_ggtt_unpin(obj);
4338         }
4339
4340 out:
4341         drm_gem_object_unreference(&obj->base);
4342 unlock:
4343         mutex_unlock(&dev->struct_mutex);
4344         return ret;
4345 }
4346
4347 int
4348 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4349                     struct drm_file *file)
4350 {
4351         struct drm_i915_gem_busy *args = data;
4352         struct drm_i915_gem_object *obj;
4353         int ret;
4354
4355         ret = i915_mutex_lock_interruptible(dev);
4356         if (ret)
4357                 return ret;
4358
4359         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4360         if (&obj->base == NULL) {
4361                 ret = -ENOENT;
4362                 goto unlock;
4363         }
4364
4365         /* Count all active objects as busy, even if they are currently not used
4366          * by the gpu. Users of this interface expect objects to eventually
4367          * become non-busy without any further actions, therefore emit any
4368          * necessary flushes here.
4369          */
4370         ret = i915_gem_object_flush_active(obj);
4371
4372         args->busy = obj->active;
4373         if (obj->ring) {
4374                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4375                 args->busy |= intel_ring_flag(obj->ring) << 16;
4376         }
4377
4378         drm_gem_object_unreference(&obj->base);
4379 unlock:
4380         mutex_unlock(&dev->struct_mutex);
4381         return ret;
4382 }
4383
4384 int
4385 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4386                         struct drm_file *file_priv)
4387 {
4388         return i915_gem_ring_throttle(dev, file_priv);
4389 }
4390
4391 int
4392 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4393                        struct drm_file *file_priv)
4394 {
4395         struct drm_i915_gem_madvise *args = data;
4396         struct drm_i915_gem_object *obj;
4397         int ret;
4398
4399         switch (args->madv) {
4400         case I915_MADV_DONTNEED:
4401         case I915_MADV_WILLNEED:
4402             break;
4403         default:
4404             return -EINVAL;
4405         }
4406
4407         ret = i915_mutex_lock_interruptible(dev);
4408         if (ret)
4409                 return ret;
4410
4411         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4412         if (&obj->base == NULL) {
4413                 ret = -ENOENT;
4414                 goto unlock;
4415         }
4416
4417         if (i915_gem_obj_is_pinned(obj)) {
4418                 ret = -EINVAL;
4419                 goto out;
4420         }
4421
4422         if (obj->madv != __I915_MADV_PURGED)
4423                 obj->madv = args->madv;
4424
4425         /* if the object is no longer attached, discard its backing storage */
4426         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4427                 i915_gem_object_truncate(obj);
4428
4429         args->retained = obj->madv != __I915_MADV_PURGED;
4430
4431 out:
4432         drm_gem_object_unreference(&obj->base);
4433 unlock:
4434         mutex_unlock(&dev->struct_mutex);
4435         return ret;
4436 }
4437
4438 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4439                           const struct drm_i915_gem_object_ops *ops)
4440 {
4441         INIT_LIST_HEAD(&obj->global_list);
4442         INIT_LIST_HEAD(&obj->ring_list);
4443         INIT_LIST_HEAD(&obj->obj_exec_link);
4444         INIT_LIST_HEAD(&obj->vma_list);
4445
4446         obj->ops = ops;
4447
4448         obj->fence_reg = I915_FENCE_REG_NONE;
4449         obj->madv = I915_MADV_WILLNEED;
4450
4451         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4452 }
4453
4454 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4455         .get_pages = i915_gem_object_get_pages_gtt,
4456         .put_pages = i915_gem_object_put_pages_gtt,
4457 };
4458
4459 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4460                                                   size_t size)
4461 {
4462         struct drm_i915_gem_object *obj;
4463         struct address_space *mapping;
4464         gfp_t mask;
4465
4466         obj = i915_gem_object_alloc(dev);
4467         if (obj == NULL)
4468                 return NULL;
4469
4470         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4471                 i915_gem_object_free(obj);
4472                 return NULL;
4473         }
4474
4475         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4476         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4477                 /* 965gm cannot relocate objects above 4GiB. */
4478                 mask &= ~__GFP_HIGHMEM;
4479                 mask |= __GFP_DMA32;
4480         }
4481
4482         mapping = file_inode(obj->base.filp)->i_mapping;
4483         mapping_set_gfp_mask(mapping, mask);
4484
4485         i915_gem_object_init(obj, &i915_gem_object_ops);
4486
4487         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4488         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4489
4490         if (HAS_LLC(dev)) {
4491                 /* On some devices, we can have the GPU use the LLC (the CPU
4492                  * cache) for about a 10% performance improvement
4493                  * compared to uncached.  Graphics requests other than
4494                  * display scanout are coherent with the CPU in
4495                  * accessing this cache.  This means in this mode we
4496                  * don't need to clflush on the CPU side, and on the
4497                  * GPU side we only need to flush internal caches to
4498                  * get data visible to the CPU.
4499                  *
4500                  * However, we maintain the display planes as UC, and so
4501                  * need to rebind when first used as such.
4502                  */
4503                 obj->cache_level = I915_CACHE_LLC;
4504         } else
4505                 obj->cache_level = I915_CACHE_NONE;
4506
4507         trace_i915_gem_object_create(obj);
4508
4509         return obj;
4510 }
4511
4512 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4513 {
4514         /* If we are the last user of the backing storage (be it shmemfs
4515          * pages or stolen etc), we know that the pages are going to be
4516          * immediately released. In this case, we can then skip copying
4517          * back the contents from the GPU.
4518          */
4519
4520         if (obj->madv != I915_MADV_WILLNEED)
4521                 return false;
4522
4523         if (obj->base.filp == NULL)
4524                 return true;
4525
4526         /* At first glance, this looks racy, but then again so would be
4527          * userspace racing mmap against close. However, the first external
4528          * reference to the filp can only be obtained through the
4529          * i915_gem_mmap_ioctl() which safeguards us against the user
4530          * acquiring such a reference whilst we are in the middle of
4531          * freeing the object.
4532          */
4533         return atomic_long_read(&obj->base.filp->f_count) == 1;
4534 }
4535
4536 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4537 {
4538         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4539         struct drm_device *dev = obj->base.dev;
4540         struct drm_i915_private *dev_priv = dev->dev_private;
4541         struct i915_vma *vma, *next;
4542
4543         intel_runtime_pm_get(dev_priv);
4544
4545         trace_i915_gem_object_destroy(obj);
4546
4547         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4548                 int ret;
4549
4550                 vma->pin_count = 0;
4551                 ret = i915_vma_unbind(vma);
4552                 if (WARN_ON(ret == -ERESTARTSYS)) {
4553                         bool was_interruptible;
4554
4555                         was_interruptible = dev_priv->mm.interruptible;
4556                         dev_priv->mm.interruptible = false;
4557
4558                         WARN_ON(i915_vma_unbind(vma));
4559
4560                         dev_priv->mm.interruptible = was_interruptible;
4561                 }
4562         }
4563
4564         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4565          * before progressing. */
4566         if (obj->stolen)
4567                 i915_gem_object_unpin_pages(obj);
4568
4569         WARN_ON(obj->frontbuffer_bits);
4570
4571         if (WARN_ON(obj->pages_pin_count))
4572                 obj->pages_pin_count = 0;
4573         if (discard_backing_storage(obj))
4574                 obj->madv = I915_MADV_DONTNEED;
4575         i915_gem_object_put_pages(obj);
4576         i915_gem_object_free_mmap_offset(obj);
4577
4578         BUG_ON(obj->pages);
4579
4580         if (obj->base.import_attach)
4581                 drm_prime_gem_destroy(&obj->base, NULL);
4582
4583         if (obj->ops->release)
4584                 obj->ops->release(obj);
4585
4586         drm_gem_object_release(&obj->base);
4587         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4588
4589         kfree(obj->bit_17);
4590         i915_gem_object_free(obj);
4591
4592         intel_runtime_pm_put(dev_priv);
4593 }
4594
4595 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4596                                      struct i915_address_space *vm)
4597 {
4598         struct i915_vma *vma;
4599         list_for_each_entry(vma, &obj->vma_list, vma_link)
4600                 if (vma->vm == vm)
4601                         return vma;
4602
4603         return NULL;
4604 }
4605
4606 void i915_gem_vma_destroy(struct i915_vma *vma)
4607 {
4608         struct i915_address_space *vm = NULL;
4609         WARN_ON(vma->node.allocated);
4610
4611         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4612         if (!list_empty(&vma->exec_list))
4613                 return;
4614
4615         vm = vma->vm;
4616
4617         if (!i915_is_ggtt(vm))
4618                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4619
4620         list_del(&vma->vma_link);
4621
4622         kfree(vma);
4623 }
4624
4625 static void
4626 i915_gem_stop_ringbuffers(struct drm_device *dev)
4627 {
4628         struct drm_i915_private *dev_priv = dev->dev_private;
4629         struct intel_engine_cs *ring;
4630         int i;
4631
4632         for_each_ring(ring, dev_priv, i)
4633                 dev_priv->gt.stop_ring(ring);
4634 }
4635
4636 int
4637 i915_gem_suspend(struct drm_device *dev)
4638 {
4639         struct drm_i915_private *dev_priv = dev->dev_private;
4640         int ret = 0;
4641
4642         mutex_lock(&dev->struct_mutex);
4643         if (dev_priv->ums.mm_suspended)
4644                 goto err;
4645
4646         ret = i915_gpu_idle(dev);
4647         if (ret)
4648                 goto err;
4649
4650         i915_gem_retire_requests(dev);
4651
4652         /* Under UMS, be paranoid and evict. */
4653         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4654                 i915_gem_evict_everything(dev);
4655
4656         i915_kernel_lost_context(dev);
4657         i915_gem_stop_ringbuffers(dev);
4658
4659         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4660          * We need to replace this with a semaphore, or something.
4661          * And not confound ums.mm_suspended!
4662          */
4663         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4664                                                              DRIVER_MODESET);
4665         mutex_unlock(&dev->struct_mutex);
4666
4667         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4668         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4669         flush_delayed_work(&dev_priv->mm.idle_work);
4670
4671         return 0;
4672
4673 err:
4674         mutex_unlock(&dev->struct_mutex);
4675         return ret;
4676 }
4677
4678 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4679 {
4680         struct drm_device *dev = ring->dev;
4681         struct drm_i915_private *dev_priv = dev->dev_private;
4682         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4683         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4684         int i, ret;
4685
4686         if (!HAS_L3_DPF(dev) || !remap_info)
4687                 return 0;
4688
4689         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4690         if (ret)
4691                 return ret;
4692
4693         /*
4694          * Note: We do not worry about the concurrent register cacheline hang
4695          * here because no other code should access these registers other than
4696          * at initialization time.
4697          */
4698         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4699                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4700                 intel_ring_emit(ring, reg_base + i);
4701                 intel_ring_emit(ring, remap_info[i/4]);
4702         }
4703
4704         intel_ring_advance(ring);
4705
4706         return ret;
4707 }
4708
4709 void i915_gem_init_swizzling(struct drm_device *dev)
4710 {
4711         struct drm_i915_private *dev_priv = dev->dev_private;
4712
4713         if (INTEL_INFO(dev)->gen < 5 ||
4714             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4715                 return;
4716
4717         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4718                                  DISP_TILE_SURFACE_SWIZZLING);
4719
4720         if (IS_GEN5(dev))
4721                 return;
4722
4723         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4724         if (IS_GEN6(dev))
4725                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4726         else if (IS_GEN7(dev))
4727                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4728         else if (IS_GEN8(dev))
4729                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4730         else
4731                 BUG();
4732 }
4733
4734 static bool
4735 intel_enable_blt(struct drm_device *dev)
4736 {
4737         if (!HAS_BLT(dev))
4738                 return false;
4739
4740         /* The blitter was dysfunctional on early prototypes */
4741         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4742                 DRM_INFO("BLT not supported on this pre-production hardware;"
4743                          " graphics performance will be degraded.\n");
4744                 return false;
4745         }
4746
4747         return true;
4748 }
4749
4750 static void init_unused_ring(struct drm_device *dev, u32 base)
4751 {
4752         struct drm_i915_private *dev_priv = dev->dev_private;
4753
4754         I915_WRITE(RING_CTL(base), 0);
4755         I915_WRITE(RING_HEAD(base), 0);
4756         I915_WRITE(RING_TAIL(base), 0);
4757         I915_WRITE(RING_START(base), 0);
4758 }
4759
4760 static void init_unused_rings(struct drm_device *dev)
4761 {
4762         if (IS_I830(dev)) {
4763                 init_unused_ring(dev, PRB1_BASE);
4764                 init_unused_ring(dev, SRB0_BASE);
4765                 init_unused_ring(dev, SRB1_BASE);
4766                 init_unused_ring(dev, SRB2_BASE);
4767                 init_unused_ring(dev, SRB3_BASE);
4768         } else if (IS_GEN2(dev)) {
4769                 init_unused_ring(dev, SRB0_BASE);
4770                 init_unused_ring(dev, SRB1_BASE);
4771         } else if (IS_GEN3(dev)) {
4772                 init_unused_ring(dev, PRB1_BASE);
4773                 init_unused_ring(dev, PRB2_BASE);
4774         }
4775 }
4776
4777 int i915_gem_init_rings(struct drm_device *dev)
4778 {
4779         struct drm_i915_private *dev_priv = dev->dev_private;
4780         int ret;
4781
4782         /*
4783          * At least 830 can leave some of the unused rings
4784          * "active" (ie. head != tail) after resume which
4785          * will prevent c3 entry. Makes sure all unused rings
4786          * are totally idle.
4787          */
4788         init_unused_rings(dev);
4789
4790         ret = intel_init_render_ring_buffer(dev);
4791         if (ret)
4792                 return ret;
4793
4794         if (HAS_BSD(dev)) {
4795                 ret = intel_init_bsd_ring_buffer(dev);
4796                 if (ret)
4797                         goto cleanup_render_ring;
4798         }
4799
4800         if (intel_enable_blt(dev)) {
4801                 ret = intel_init_blt_ring_buffer(dev);
4802                 if (ret)
4803                         goto cleanup_bsd_ring;
4804         }
4805
4806         if (HAS_VEBOX(dev)) {
4807                 ret = intel_init_vebox_ring_buffer(dev);
4808                 if (ret)
4809                         goto cleanup_blt_ring;
4810         }
4811
4812         if (HAS_BSD2(dev)) {
4813                 ret = intel_init_bsd2_ring_buffer(dev);
4814                 if (ret)
4815                         goto cleanup_vebox_ring;
4816         }
4817
4818         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4819         if (ret)
4820                 goto cleanup_bsd2_ring;
4821
4822         return 0;
4823
4824 cleanup_bsd2_ring:
4825         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4826 cleanup_vebox_ring:
4827         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4828 cleanup_blt_ring:
4829         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4830 cleanup_bsd_ring:
4831         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4832 cleanup_render_ring:
4833         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4834
4835         return ret;
4836 }
4837
4838 int
4839 i915_gem_init_hw(struct drm_device *dev)
4840 {
4841         struct drm_i915_private *dev_priv = dev->dev_private;
4842         int ret, i;
4843
4844         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4845                 return -EIO;
4846
4847         if (dev_priv->ellc_size)
4848                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4849
4850         if (IS_HASWELL(dev))
4851                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4852                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4853
4854         if (HAS_PCH_NOP(dev)) {
4855                 if (IS_IVYBRIDGE(dev)) {
4856                         u32 temp = I915_READ(GEN7_MSG_CTL);
4857                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4858                         I915_WRITE(GEN7_MSG_CTL, temp);
4859                 } else if (INTEL_INFO(dev)->gen >= 7) {
4860                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4861                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4862                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4863                 }
4864         }
4865
4866         i915_gem_init_swizzling(dev);
4867
4868         ret = dev_priv->gt.init_rings(dev);
4869         if (ret)
4870                 return ret;
4871
4872         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4873                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4874
4875         /*
4876          * XXX: Contexts should only be initialized once. Doing a switch to the
4877          * default context switch however is something we'd like to do after
4878          * reset or thaw (the latter may not actually be necessary for HW, but
4879          * goes with our code better). Context switching requires rings (for
4880          * the do_switch), but before enabling PPGTT. So don't move this.
4881          */
4882         ret = i915_gem_context_enable(dev_priv);
4883         if (ret && ret != -EIO) {
4884                 DRM_ERROR("Context enable failed %d\n", ret);
4885                 i915_gem_cleanup_ringbuffer(dev);
4886
4887                 return ret;
4888         }
4889
4890         ret = i915_ppgtt_init_hw(dev);
4891         if (ret && ret != -EIO) {
4892                 DRM_ERROR("PPGTT enable failed %d\n", ret);
4893                 i915_gem_cleanup_ringbuffer(dev);
4894         }
4895
4896         return ret;
4897 }
4898
4899 int i915_gem_init(struct drm_device *dev)
4900 {
4901         struct drm_i915_private *dev_priv = dev->dev_private;
4902         int ret;
4903
4904         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4905                         i915.enable_execlists);
4906
4907         mutex_lock(&dev->struct_mutex);
4908
4909         if (IS_VALLEYVIEW(dev)) {
4910                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4911                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4912                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4913                               VLV_GTLC_ALLOWWAKEACK), 10))
4914                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4915         }
4916
4917         if (!i915.enable_execlists) {
4918                 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4919                 dev_priv->gt.init_rings = i915_gem_init_rings;
4920                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4921                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4922         } else {
4923                 dev_priv->gt.do_execbuf = intel_execlists_submission;
4924                 dev_priv->gt.init_rings = intel_logical_rings_init;
4925                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4926                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4927         }
4928
4929         ret = i915_gem_init_userptr(dev);
4930         if (ret) {
4931                 mutex_unlock(&dev->struct_mutex);
4932                 return ret;
4933         }
4934
4935         i915_gem_init_global_gtt(dev);
4936
4937         ret = i915_gem_context_init(dev);
4938         if (ret) {
4939                 mutex_unlock(&dev->struct_mutex);
4940                 return ret;
4941         }
4942
4943         ret = i915_gem_init_hw(dev);
4944         if (ret == -EIO) {
4945                 /* Allow ring initialisation to fail by marking the GPU as
4946                  * wedged. But we only want to do this where the GPU is angry,
4947                  * for all other failure, such as an allocation failure, bail.
4948                  */
4949                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4950                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4951                 ret = 0;
4952         }
4953         mutex_unlock(&dev->struct_mutex);
4954
4955         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4956         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4957                 dev_priv->dri1.allow_batchbuffer = 1;
4958         return ret;
4959 }
4960
4961 void
4962 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4963 {
4964         struct drm_i915_private *dev_priv = dev->dev_private;
4965         struct intel_engine_cs *ring;
4966         int i;
4967
4968         for_each_ring(ring, dev_priv, i)
4969                 dev_priv->gt.cleanup_ring(ring);
4970 }
4971
4972 int
4973 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4974                        struct drm_file *file_priv)
4975 {
4976         struct drm_i915_private *dev_priv = dev->dev_private;
4977         int ret;
4978
4979         if (drm_core_check_feature(dev, DRIVER_MODESET))
4980                 return 0;
4981
4982         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4983                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4984                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4985         }
4986
4987         mutex_lock(&dev->struct_mutex);
4988         dev_priv->ums.mm_suspended = 0;
4989
4990         ret = i915_gem_init_hw(dev);
4991         if (ret != 0) {
4992                 mutex_unlock(&dev->struct_mutex);
4993                 return ret;
4994         }
4995
4996         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4997
4998         ret = drm_irq_install(dev, dev->pdev->irq);
4999         if (ret)
5000                 goto cleanup_ringbuffer;
5001         mutex_unlock(&dev->struct_mutex);
5002
5003         return 0;
5004
5005 cleanup_ringbuffer:
5006         i915_gem_cleanup_ringbuffer(dev);
5007         dev_priv->ums.mm_suspended = 1;
5008         mutex_unlock(&dev->struct_mutex);
5009
5010         return ret;
5011 }
5012
5013 int
5014 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
5015                        struct drm_file *file_priv)
5016 {
5017         if (drm_core_check_feature(dev, DRIVER_MODESET))
5018                 return 0;
5019
5020         mutex_lock(&dev->struct_mutex);
5021         drm_irq_uninstall(dev);
5022         mutex_unlock(&dev->struct_mutex);
5023
5024         return i915_gem_suspend(dev);
5025 }
5026
5027 void
5028 i915_gem_lastclose(struct drm_device *dev)
5029 {
5030         int ret;
5031
5032         if (drm_core_check_feature(dev, DRIVER_MODESET))
5033                 return;
5034
5035         ret = i915_gem_suspend(dev);
5036         if (ret)
5037                 DRM_ERROR("failed to idle hardware: %d\n", ret);
5038 }
5039
5040 static void
5041 init_ring_lists(struct intel_engine_cs *ring)
5042 {
5043         INIT_LIST_HEAD(&ring->active_list);
5044         INIT_LIST_HEAD(&ring->request_list);
5045 }
5046
5047 void i915_init_vm(struct drm_i915_private *dev_priv,
5048                   struct i915_address_space *vm)
5049 {
5050         if (!i915_is_ggtt(vm))
5051                 drm_mm_init(&vm->mm, vm->start, vm->total);
5052         vm->dev = dev_priv->dev;
5053         INIT_LIST_HEAD(&vm->active_list);
5054         INIT_LIST_HEAD(&vm->inactive_list);
5055         INIT_LIST_HEAD(&vm->global_link);
5056         list_add_tail(&vm->global_link, &dev_priv->vm_list);
5057 }
5058
5059 void
5060 i915_gem_load(struct drm_device *dev)
5061 {
5062         struct drm_i915_private *dev_priv = dev->dev_private;
5063         int i;
5064
5065         dev_priv->slab =
5066                 kmem_cache_create("i915_gem_object",
5067                                   sizeof(struct drm_i915_gem_object), 0,
5068                                   SLAB_HWCACHE_ALIGN,
5069                                   NULL);
5070
5071         INIT_LIST_HEAD(&dev_priv->vm_list);
5072         i915_init_vm(dev_priv, &dev_priv->gtt.base);
5073
5074         INIT_LIST_HEAD(&dev_priv->context_list);
5075         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5076         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5077         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5078         for (i = 0; i < I915_NUM_RINGS; i++)
5079                 init_ring_lists(&dev_priv->ring[i]);
5080         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5081                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5082         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5083                           i915_gem_retire_work_handler);
5084         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5085                           i915_gem_idle_work_handler);
5086         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5087
5088         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5089         if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5090                 I915_WRITE(MI_ARB_STATE,
5091                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5092         }
5093
5094         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5095
5096         /* Old X drivers will take 0-2 for front, back, depth buffers */
5097         if (!drm_core_check_feature(dev, DRIVER_MODESET))
5098                 dev_priv->fence_reg_start = 3;
5099
5100         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5101                 dev_priv->num_fence_regs = 32;
5102         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5103                 dev_priv->num_fence_regs = 16;
5104         else
5105                 dev_priv->num_fence_regs = 8;
5106
5107         /* Initialize fence registers to zero */
5108         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5109         i915_gem_restore_fences(dev);
5110
5111         i915_gem_detect_bit_6_swizzle(dev);
5112         init_waitqueue_head(&dev_priv->pending_flip_queue);
5113
5114         dev_priv->mm.interruptible = true;
5115
5116         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5117         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5118         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5119         register_shrinker(&dev_priv->mm.shrinker);
5120
5121         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5122         register_oom_notifier(&dev_priv->mm.oom_notifier);
5123
5124         mutex_init(&dev_priv->fb_tracking.lock);
5125 }
5126
5127 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5128 {
5129         struct drm_i915_file_private *file_priv = file->driver_priv;
5130
5131         cancel_delayed_work_sync(&file_priv->mm.idle_work);
5132
5133         /* Clean up our request list when the client is going away, so that
5134          * later retire_requests won't dereference our soon-to-be-gone
5135          * file_priv.
5136          */
5137         spin_lock(&file_priv->mm.lock);
5138         while (!list_empty(&file_priv->mm.request_list)) {
5139                 struct drm_i915_gem_request *request;
5140
5141                 request = list_first_entry(&file_priv->mm.request_list,
5142                                            struct drm_i915_gem_request,
5143                                            client_list);
5144                 list_del(&request->client_list);
5145                 request->file_priv = NULL;
5146         }
5147         spin_unlock(&file_priv->mm.lock);
5148 }
5149
5150 static void
5151 i915_gem_file_idle_work_handler(struct work_struct *work)
5152 {
5153         struct drm_i915_file_private *file_priv =
5154                 container_of(work, typeof(*file_priv), mm.idle_work.work);
5155
5156         atomic_set(&file_priv->rps_wait_boost, false);
5157 }
5158
5159 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5160 {
5161         struct drm_i915_file_private *file_priv;
5162         int ret;
5163
5164         DRM_DEBUG_DRIVER("\n");
5165
5166         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5167         if (!file_priv)
5168                 return -ENOMEM;
5169
5170         file->driver_priv = file_priv;
5171         file_priv->dev_priv = dev->dev_private;
5172         file_priv->file = file;
5173
5174         spin_lock_init(&file_priv->mm.lock);
5175         INIT_LIST_HEAD(&file_priv->mm.request_list);
5176         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5177                           i915_gem_file_idle_work_handler);
5178
5179         ret = i915_gem_context_open(dev, file);
5180         if (ret)
5181                 kfree(file_priv);
5182
5183         return ret;
5184 }
5185
5186 /**
5187  * i915_gem_track_fb - update frontbuffer tracking
5188  * old: current GEM buffer for the frontbuffer slots
5189  * new: new GEM buffer for the frontbuffer slots
5190  * frontbuffer_bits: bitmask of frontbuffer slots
5191  *
5192  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5193  * from @old and setting them in @new. Both @old and @new can be NULL.
5194  */
5195 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5196                        struct drm_i915_gem_object *new,
5197                        unsigned frontbuffer_bits)
5198 {
5199         if (old) {
5200                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5201                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5202                 old->frontbuffer_bits &= ~frontbuffer_bits;
5203         }
5204
5205         if (new) {
5206                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5207                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5208                 new->frontbuffer_bits |= frontbuffer_bits;
5209         }
5210 }
5211
5212 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5213 {
5214         if (!mutex_is_locked(mutex))
5215                 return false;
5216
5217 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5218         return mutex->owner == task;
5219 #else
5220         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5221         return false;
5222 #endif
5223 }
5224
5225 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5226 {
5227         if (!mutex_trylock(&dev->struct_mutex)) {
5228                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5229                         return false;
5230
5231                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5232                         return false;
5233
5234                 *unlock = false;
5235         } else
5236                 *unlock = true;
5237
5238         return true;
5239 }
5240
5241 static int num_vma_bound(struct drm_i915_gem_object *obj)
5242 {
5243         struct i915_vma *vma;
5244         int count = 0;
5245
5246         list_for_each_entry(vma, &obj->vma_list, vma_link)
5247                 if (drm_mm_node_allocated(&vma->node))
5248                         count++;
5249
5250         return count;
5251 }
5252
5253 static unsigned long
5254 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5255 {
5256         struct drm_i915_private *dev_priv =
5257                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5258         struct drm_device *dev = dev_priv->dev;
5259         struct drm_i915_gem_object *obj;
5260         unsigned long count;
5261         bool unlock;
5262
5263         if (!i915_gem_shrinker_lock(dev, &unlock))
5264                 return 0;
5265
5266         count = 0;
5267         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5268                 if (obj->pages_pin_count == 0)
5269                         count += obj->base.size >> PAGE_SHIFT;
5270
5271         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5272                 if (!i915_gem_obj_is_pinned(obj) &&
5273                     obj->pages_pin_count == num_vma_bound(obj))
5274                         count += obj->base.size >> PAGE_SHIFT;
5275         }
5276
5277         if (unlock)
5278                 mutex_unlock(&dev->struct_mutex);
5279
5280         return count;
5281 }
5282
5283 /* All the new VM stuff */
5284 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5285                                   struct i915_address_space *vm)
5286 {
5287         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5288         struct i915_vma *vma;
5289
5290         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5291
5292         list_for_each_entry(vma, &o->vma_list, vma_link) {
5293                 if (vma->vm == vm)
5294                         return vma->node.start;
5295
5296         }
5297         WARN(1, "%s vma for this object not found.\n",
5298              i915_is_ggtt(vm) ? "global" : "ppgtt");
5299         return -1;
5300 }
5301
5302 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5303                         struct i915_address_space *vm)
5304 {
5305         struct i915_vma *vma;
5306
5307         list_for_each_entry(vma, &o->vma_list, vma_link)
5308                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5309                         return true;
5310
5311         return false;
5312 }
5313
5314 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5315 {
5316         struct i915_vma *vma;
5317
5318         list_for_each_entry(vma, &o->vma_list, vma_link)
5319                 if (drm_mm_node_allocated(&vma->node))
5320                         return true;
5321
5322         return false;
5323 }
5324
5325 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5326                                 struct i915_address_space *vm)
5327 {
5328         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5329         struct i915_vma *vma;
5330
5331         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5332
5333         BUG_ON(list_empty(&o->vma_list));
5334
5335         list_for_each_entry(vma, &o->vma_list, vma_link)
5336                 if (vma->vm == vm)
5337                         return vma->node.size;
5338
5339         return 0;
5340 }
5341
5342 static unsigned long
5343 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5344 {
5345         struct drm_i915_private *dev_priv =
5346                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5347         struct drm_device *dev = dev_priv->dev;
5348         unsigned long freed;
5349         bool unlock;
5350
5351         if (!i915_gem_shrinker_lock(dev, &unlock))
5352                 return SHRINK_STOP;
5353
5354         freed = i915_gem_shrink(dev_priv,
5355                                 sc->nr_to_scan,
5356                                 I915_SHRINK_BOUND |
5357                                 I915_SHRINK_UNBOUND |
5358                                 I915_SHRINK_PURGEABLE);
5359         if (freed < sc->nr_to_scan)
5360                 freed += i915_gem_shrink(dev_priv,
5361                                          sc->nr_to_scan - freed,
5362                                          I915_SHRINK_BOUND |
5363                                          I915_SHRINK_UNBOUND);
5364         if (unlock)
5365                 mutex_unlock(&dev->struct_mutex);
5366
5367         return freed;
5368 }
5369
5370 static int
5371 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5372 {
5373         struct drm_i915_private *dev_priv =
5374                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5375         struct drm_device *dev = dev_priv->dev;
5376         struct drm_i915_gem_object *obj;
5377         unsigned long timeout = msecs_to_jiffies(5000) + 1;
5378         unsigned long pinned, bound, unbound, freed_pages;
5379         bool was_interruptible;
5380         bool unlock;
5381
5382         while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5383                 schedule_timeout_killable(1);
5384                 if (fatal_signal_pending(current))
5385                         return NOTIFY_DONE;
5386         }
5387         if (timeout == 0) {
5388                 pr_err("Unable to purge GPU memory due lock contention.\n");
5389                 return NOTIFY_DONE;
5390         }
5391
5392         was_interruptible = dev_priv->mm.interruptible;
5393         dev_priv->mm.interruptible = false;
5394
5395         freed_pages = i915_gem_shrink_all(dev_priv);
5396
5397         dev_priv->mm.interruptible = was_interruptible;
5398
5399         /* Because we may be allocating inside our own driver, we cannot
5400          * assert that there are no objects with pinned pages that are not
5401          * being pointed to by hardware.
5402          */
5403         unbound = bound = pinned = 0;
5404         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5405                 if (!obj->base.filp) /* not backed by a freeable object */
5406                         continue;
5407
5408                 if (obj->pages_pin_count)
5409                         pinned += obj->base.size;
5410                 else
5411                         unbound += obj->base.size;
5412         }
5413         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5414                 if (!obj->base.filp)
5415                         continue;
5416
5417                 if (obj->pages_pin_count)
5418                         pinned += obj->base.size;
5419                 else
5420                         bound += obj->base.size;
5421         }
5422
5423         if (unlock)
5424                 mutex_unlock(&dev->struct_mutex);
5425
5426         if (freed_pages || unbound || bound)
5427                 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5428                         freed_pages << PAGE_SHIFT, pinned);
5429         if (unbound || bound)
5430                 pr_err("%lu and %lu bytes still available in the "
5431                        "bound and unbound GPU page lists.\n",
5432                        bound, unbound);
5433
5434         *(unsigned long *)ptr += freed_pages;
5435         return NOTIFY_DONE;
5436 }
5437
5438 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5439 {
5440         struct i915_vma *vma;
5441
5442         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5443         if (vma->vm != i915_obj_to_ggtt(obj))
5444                 return NULL;
5445
5446         return vma;
5447 }