Merge tag 'asm-generic-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd...
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50                                   enum i915_cache_level level)
51 {
52         return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58                 return true;
59
60         return obj->pin_display;
61 }
62
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65                                   size_t size)
66 {
67         spin_lock(&dev_priv->mm.object_stat_lock);
68         dev_priv->mm.object_count++;
69         dev_priv->mm.object_memory += size;
70         spin_unlock(&dev_priv->mm.object_stat_lock);
71 }
72
73 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
74                                      size_t size)
75 {
76         spin_lock(&dev_priv->mm.object_stat_lock);
77         dev_priv->mm.object_count--;
78         dev_priv->mm.object_memory -= size;
79         spin_unlock(&dev_priv->mm.object_stat_lock);
80 }
81
82 static int
83 i915_gem_wait_for_error(struct i915_gpu_error *error)
84 {
85         int ret;
86
87         if (!i915_reset_in_progress(error))
88                 return 0;
89
90         /*
91          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
92          * userspace. If it takes that long something really bad is going on and
93          * we should simply try to bail out and fail as gracefully as possible.
94          */
95         ret = wait_event_interruptible_timeout(error->reset_queue,
96                                                !i915_reset_in_progress(error),
97                                                10*HZ);
98         if (ret == 0) {
99                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
100                 return -EIO;
101         } else if (ret < 0) {
102                 return ret;
103         } else {
104                 return 0;
105         }
106 }
107
108 int i915_mutex_lock_interruptible(struct drm_device *dev)
109 {
110         struct drm_i915_private *dev_priv = dev->dev_private;
111         int ret;
112
113         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
114         if (ret)
115                 return ret;
116
117         ret = mutex_lock_interruptible(&dev->struct_mutex);
118         if (ret)
119                 return ret;
120
121         WARN_ON(i915_verify_lists(dev));
122         return 0;
123 }
124
125 int
126 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
127                             struct drm_file *file)
128 {
129         struct drm_i915_private *dev_priv = to_i915(dev);
130         struct i915_ggtt *ggtt = &dev_priv->ggtt;
131         struct drm_i915_gem_get_aperture *args = data;
132         struct i915_vma *vma;
133         size_t pinned;
134
135         pinned = 0;
136         mutex_lock(&dev->struct_mutex);
137         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
138                 if (vma->pin_count)
139                         pinned += vma->node.size;
140         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
141                 if (vma->pin_count)
142                         pinned += vma->node.size;
143         mutex_unlock(&dev->struct_mutex);
144
145         args->aper_size = ggtt->base.total;
146         args->aper_available_size = args->aper_size - pinned;
147
148         return 0;
149 }
150
151 static int
152 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
153 {
154         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
155         char *vaddr = obj->phys_handle->vaddr;
156         struct sg_table *st;
157         struct scatterlist *sg;
158         int i;
159
160         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
161                 return -EINVAL;
162
163         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
164                 struct page *page;
165                 char *src;
166
167                 page = shmem_read_mapping_page(mapping, i);
168                 if (IS_ERR(page))
169                         return PTR_ERR(page);
170
171                 src = kmap_atomic(page);
172                 memcpy(vaddr, src, PAGE_SIZE);
173                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
174                 kunmap_atomic(src);
175
176                 put_page(page);
177                 vaddr += PAGE_SIZE;
178         }
179
180         i915_gem_chipset_flush(obj->base.dev);
181
182         st = kmalloc(sizeof(*st), GFP_KERNEL);
183         if (st == NULL)
184                 return -ENOMEM;
185
186         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
187                 kfree(st);
188                 return -ENOMEM;
189         }
190
191         sg = st->sgl;
192         sg->offset = 0;
193         sg->length = obj->base.size;
194
195         sg_dma_address(sg) = obj->phys_handle->busaddr;
196         sg_dma_len(sg) = obj->base.size;
197
198         obj->pages = st;
199         return 0;
200 }
201
202 static void
203 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
204 {
205         int ret;
206
207         BUG_ON(obj->madv == __I915_MADV_PURGED);
208
209         ret = i915_gem_object_set_to_cpu_domain(obj, true);
210         if (WARN_ON(ret)) {
211                 /* In the event of a disaster, abandon all caches and
212                  * hope for the best.
213                  */
214                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
215         }
216
217         if (obj->madv == I915_MADV_DONTNEED)
218                 obj->dirty = 0;
219
220         if (obj->dirty) {
221                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
222                 char *vaddr = obj->phys_handle->vaddr;
223                 int i;
224
225                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
226                         struct page *page;
227                         char *dst;
228
229                         page = shmem_read_mapping_page(mapping, i);
230                         if (IS_ERR(page))
231                                 continue;
232
233                         dst = kmap_atomic(page);
234                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
235                         memcpy(dst, vaddr, PAGE_SIZE);
236                         kunmap_atomic(dst);
237
238                         set_page_dirty(page);
239                         if (obj->madv == I915_MADV_WILLNEED)
240                                 mark_page_accessed(page);
241                         put_page(page);
242                         vaddr += PAGE_SIZE;
243                 }
244                 obj->dirty = 0;
245         }
246
247         sg_free_table(obj->pages);
248         kfree(obj->pages);
249 }
250
251 static void
252 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
253 {
254         drm_pci_free(obj->base.dev, obj->phys_handle);
255 }
256
257 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
258         .get_pages = i915_gem_object_get_pages_phys,
259         .put_pages = i915_gem_object_put_pages_phys,
260         .release = i915_gem_object_release_phys,
261 };
262
263 static int
264 drop_pages(struct drm_i915_gem_object *obj)
265 {
266         struct i915_vma *vma, *next;
267         int ret;
268
269         drm_gem_object_reference(&obj->base);
270         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
271                 if (i915_vma_unbind(vma))
272                         break;
273
274         ret = i915_gem_object_put_pages(obj);
275         drm_gem_object_unreference(&obj->base);
276
277         return ret;
278 }
279
280 int
281 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
282                             int align)
283 {
284         drm_dma_handle_t *phys;
285         int ret;
286
287         if (obj->phys_handle) {
288                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
289                         return -EBUSY;
290
291                 return 0;
292         }
293
294         if (obj->madv != I915_MADV_WILLNEED)
295                 return -EFAULT;
296
297         if (obj->base.filp == NULL)
298                 return -EINVAL;
299
300         ret = drop_pages(obj);
301         if (ret)
302                 return ret;
303
304         /* create a new object */
305         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
306         if (!phys)
307                 return -ENOMEM;
308
309         obj->phys_handle = phys;
310         obj->ops = &i915_gem_phys_ops;
311
312         return i915_gem_object_get_pages(obj);
313 }
314
315 static int
316 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
317                      struct drm_i915_gem_pwrite *args,
318                      struct drm_file *file_priv)
319 {
320         struct drm_device *dev = obj->base.dev;
321         void *vaddr = obj->phys_handle->vaddr + args->offset;
322         char __user *user_data = u64_to_user_ptr(args->data_ptr);
323         int ret = 0;
324
325         /* We manually control the domain here and pretend that it
326          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
327          */
328         ret = i915_gem_object_wait_rendering(obj, false);
329         if (ret)
330                 return ret;
331
332         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
333         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
334                 unsigned long unwritten;
335
336                 /* The physical object once assigned is fixed for the lifetime
337                  * of the obj, so we can safely drop the lock and continue
338                  * to access vaddr.
339                  */
340                 mutex_unlock(&dev->struct_mutex);
341                 unwritten = copy_from_user(vaddr, user_data, args->size);
342                 mutex_lock(&dev->struct_mutex);
343                 if (unwritten) {
344                         ret = -EFAULT;
345                         goto out;
346                 }
347         }
348
349         drm_clflush_virt_range(vaddr, args->size);
350         i915_gem_chipset_flush(dev);
351
352 out:
353         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
354         return ret;
355 }
356
357 void *i915_gem_object_alloc(struct drm_device *dev)
358 {
359         struct drm_i915_private *dev_priv = dev->dev_private;
360         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
361 }
362
363 void i915_gem_object_free(struct drm_i915_gem_object *obj)
364 {
365         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
366         kmem_cache_free(dev_priv->objects, obj);
367 }
368
369 static int
370 i915_gem_create(struct drm_file *file,
371                 struct drm_device *dev,
372                 uint64_t size,
373                 uint32_t *handle_p)
374 {
375         struct drm_i915_gem_object *obj;
376         int ret;
377         u32 handle;
378
379         size = roundup(size, PAGE_SIZE);
380         if (size == 0)
381                 return -EINVAL;
382
383         /* Allocate the new object */
384         obj = i915_gem_alloc_object(dev, size);
385         if (obj == NULL)
386                 return -ENOMEM;
387
388         ret = drm_gem_handle_create(file, &obj->base, &handle);
389         /* drop reference from allocate - handle holds it now */
390         drm_gem_object_unreference_unlocked(&obj->base);
391         if (ret)
392                 return ret;
393
394         *handle_p = handle;
395         return 0;
396 }
397
398 int
399 i915_gem_dumb_create(struct drm_file *file,
400                      struct drm_device *dev,
401                      struct drm_mode_create_dumb *args)
402 {
403         /* have to work out size/pitch and return them */
404         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
405         args->size = args->pitch * args->height;
406         return i915_gem_create(file, dev,
407                                args->size, &args->handle);
408 }
409
410 /**
411  * Creates a new mm object and returns a handle to it.
412  */
413 int
414 i915_gem_create_ioctl(struct drm_device *dev, void *data,
415                       struct drm_file *file)
416 {
417         struct drm_i915_gem_create *args = data;
418
419         return i915_gem_create(file, dev,
420                                args->size, &args->handle);
421 }
422
423 static inline int
424 __copy_to_user_swizzled(char __user *cpu_vaddr,
425                         const char *gpu_vaddr, int gpu_offset,
426                         int length)
427 {
428         int ret, cpu_offset = 0;
429
430         while (length > 0) {
431                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
432                 int this_length = min(cacheline_end - gpu_offset, length);
433                 int swizzled_gpu_offset = gpu_offset ^ 64;
434
435                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
436                                      gpu_vaddr + swizzled_gpu_offset,
437                                      this_length);
438                 if (ret)
439                         return ret + length;
440
441                 cpu_offset += this_length;
442                 gpu_offset += this_length;
443                 length -= this_length;
444         }
445
446         return 0;
447 }
448
449 static inline int
450 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
451                           const char __user *cpu_vaddr,
452                           int length)
453 {
454         int ret, cpu_offset = 0;
455
456         while (length > 0) {
457                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
458                 int this_length = min(cacheline_end - gpu_offset, length);
459                 int swizzled_gpu_offset = gpu_offset ^ 64;
460
461                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
462                                        cpu_vaddr + cpu_offset,
463                                        this_length);
464                 if (ret)
465                         return ret + length;
466
467                 cpu_offset += this_length;
468                 gpu_offset += this_length;
469                 length -= this_length;
470         }
471
472         return 0;
473 }
474
475 /*
476  * Pins the specified object's pages and synchronizes the object with
477  * GPU accesses. Sets needs_clflush to non-zero if the caller should
478  * flush the object from the CPU cache.
479  */
480 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
481                                     int *needs_clflush)
482 {
483         int ret;
484
485         *needs_clflush = 0;
486
487         if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
488                 return -EINVAL;
489
490         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
491                 /* If we're not in the cpu read domain, set ourself into the gtt
492                  * read domain and manually flush cachelines (if required). This
493                  * optimizes for the case when the gpu will dirty the data
494                  * anyway again before the next pread happens. */
495                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
496                                                         obj->cache_level);
497                 ret = i915_gem_object_wait_rendering(obj, true);
498                 if (ret)
499                         return ret;
500         }
501
502         ret = i915_gem_object_get_pages(obj);
503         if (ret)
504                 return ret;
505
506         i915_gem_object_pin_pages(obj);
507
508         return ret;
509 }
510
511 /* Per-page copy function for the shmem pread fastpath.
512  * Flushes invalid cachelines before reading the target if
513  * needs_clflush is set. */
514 static int
515 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
516                  char __user *user_data,
517                  bool page_do_bit17_swizzling, bool needs_clflush)
518 {
519         char *vaddr;
520         int ret;
521
522         if (unlikely(page_do_bit17_swizzling))
523                 return -EINVAL;
524
525         vaddr = kmap_atomic(page);
526         if (needs_clflush)
527                 drm_clflush_virt_range(vaddr + shmem_page_offset,
528                                        page_length);
529         ret = __copy_to_user_inatomic(user_data,
530                                       vaddr + shmem_page_offset,
531                                       page_length);
532         kunmap_atomic(vaddr);
533
534         return ret ? -EFAULT : 0;
535 }
536
537 static void
538 shmem_clflush_swizzled_range(char *addr, unsigned long length,
539                              bool swizzled)
540 {
541         if (unlikely(swizzled)) {
542                 unsigned long start = (unsigned long) addr;
543                 unsigned long end = (unsigned long) addr + length;
544
545                 /* For swizzling simply ensure that we always flush both
546                  * channels. Lame, but simple and it works. Swizzled
547                  * pwrite/pread is far from a hotpath - current userspace
548                  * doesn't use it at all. */
549                 start = round_down(start, 128);
550                 end = round_up(end, 128);
551
552                 drm_clflush_virt_range((void *)start, end - start);
553         } else {
554                 drm_clflush_virt_range(addr, length);
555         }
556
557 }
558
559 /* Only difference to the fast-path function is that this can handle bit17
560  * and uses non-atomic copy and kmap functions. */
561 static int
562 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
563                  char __user *user_data,
564                  bool page_do_bit17_swizzling, bool needs_clflush)
565 {
566         char *vaddr;
567         int ret;
568
569         vaddr = kmap(page);
570         if (needs_clflush)
571                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
572                                              page_length,
573                                              page_do_bit17_swizzling);
574
575         if (page_do_bit17_swizzling)
576                 ret = __copy_to_user_swizzled(user_data,
577                                               vaddr, shmem_page_offset,
578                                               page_length);
579         else
580                 ret = __copy_to_user(user_data,
581                                      vaddr + shmem_page_offset,
582                                      page_length);
583         kunmap(page);
584
585         return ret ? - EFAULT : 0;
586 }
587
588 static int
589 i915_gem_shmem_pread(struct drm_device *dev,
590                      struct drm_i915_gem_object *obj,
591                      struct drm_i915_gem_pread *args,
592                      struct drm_file *file)
593 {
594         char __user *user_data;
595         ssize_t remain;
596         loff_t offset;
597         int shmem_page_offset, page_length, ret = 0;
598         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
599         int prefaulted = 0;
600         int needs_clflush = 0;
601         struct sg_page_iter sg_iter;
602
603         user_data = u64_to_user_ptr(args->data_ptr);
604         remain = args->size;
605
606         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
607
608         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
609         if (ret)
610                 return ret;
611
612         offset = args->offset;
613
614         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
615                          offset >> PAGE_SHIFT) {
616                 struct page *page = sg_page_iter_page(&sg_iter);
617
618                 if (remain <= 0)
619                         break;
620
621                 /* Operation in this page
622                  *
623                  * shmem_page_offset = offset within page in shmem file
624                  * page_length = bytes to copy for this page
625                  */
626                 shmem_page_offset = offset_in_page(offset);
627                 page_length = remain;
628                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
629                         page_length = PAGE_SIZE - shmem_page_offset;
630
631                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
632                         (page_to_phys(page) & (1 << 17)) != 0;
633
634                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
635                                        user_data, page_do_bit17_swizzling,
636                                        needs_clflush);
637                 if (ret == 0)
638                         goto next_page;
639
640                 mutex_unlock(&dev->struct_mutex);
641
642                 if (likely(!i915.prefault_disable) && !prefaulted) {
643                         ret = fault_in_multipages_writeable(user_data, remain);
644                         /* Userspace is tricking us, but we've already clobbered
645                          * its pages with the prefault and promised to write the
646                          * data up to the first fault. Hence ignore any errors
647                          * and just continue. */
648                         (void)ret;
649                         prefaulted = 1;
650                 }
651
652                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
653                                        user_data, page_do_bit17_swizzling,
654                                        needs_clflush);
655
656                 mutex_lock(&dev->struct_mutex);
657
658                 if (ret)
659                         goto out;
660
661 next_page:
662                 remain -= page_length;
663                 user_data += page_length;
664                 offset += page_length;
665         }
666
667 out:
668         i915_gem_object_unpin_pages(obj);
669
670         return ret;
671 }
672
673 /**
674  * Reads data from the object referenced by handle.
675  *
676  * On error, the contents of *data are undefined.
677  */
678 int
679 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
680                      struct drm_file *file)
681 {
682         struct drm_i915_gem_pread *args = data;
683         struct drm_i915_gem_object *obj;
684         int ret = 0;
685
686         if (args->size == 0)
687                 return 0;
688
689         if (!access_ok(VERIFY_WRITE,
690                        u64_to_user_ptr(args->data_ptr),
691                        args->size))
692                 return -EFAULT;
693
694         ret = i915_mutex_lock_interruptible(dev);
695         if (ret)
696                 return ret;
697
698         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
699         if (&obj->base == NULL) {
700                 ret = -ENOENT;
701                 goto unlock;
702         }
703
704         /* Bounds check source.  */
705         if (args->offset > obj->base.size ||
706             args->size > obj->base.size - args->offset) {
707                 ret = -EINVAL;
708                 goto out;
709         }
710
711         /* prime objects have no backing filp to GEM pread/pwrite
712          * pages from.
713          */
714         if (!obj->base.filp) {
715                 ret = -EINVAL;
716                 goto out;
717         }
718
719         trace_i915_gem_object_pread(obj, args->offset, args->size);
720
721         ret = i915_gem_shmem_pread(dev, obj, args, file);
722
723 out:
724         drm_gem_object_unreference(&obj->base);
725 unlock:
726         mutex_unlock(&dev->struct_mutex);
727         return ret;
728 }
729
730 /* This is the fast write path which cannot handle
731  * page faults in the source data
732  */
733
734 static inline int
735 fast_user_write(struct io_mapping *mapping,
736                 loff_t page_base, int page_offset,
737                 char __user *user_data,
738                 int length)
739 {
740         void __iomem *vaddr_atomic;
741         void *vaddr;
742         unsigned long unwritten;
743
744         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
745         /* We can use the cpu mem copy function because this is X86. */
746         vaddr = (void __force*)vaddr_atomic + page_offset;
747         unwritten = __copy_from_user_inatomic_nocache(vaddr,
748                                                       user_data, length);
749         io_mapping_unmap_atomic(vaddr_atomic);
750         return unwritten;
751 }
752
753 /**
754  * This is the fast pwrite path, where we copy the data directly from the
755  * user into the GTT, uncached.
756  */
757 static int
758 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
759                          struct drm_i915_gem_object *obj,
760                          struct drm_i915_gem_pwrite *args,
761                          struct drm_file *file)
762 {
763         struct drm_i915_private *dev_priv = to_i915(dev);
764         struct i915_ggtt *ggtt = &dev_priv->ggtt;
765         ssize_t remain;
766         loff_t offset, page_base;
767         char __user *user_data;
768         int page_offset, page_length, ret;
769
770         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
771         if (ret)
772                 goto out;
773
774         ret = i915_gem_object_set_to_gtt_domain(obj, true);
775         if (ret)
776                 goto out_unpin;
777
778         ret = i915_gem_object_put_fence(obj);
779         if (ret)
780                 goto out_unpin;
781
782         user_data = u64_to_user_ptr(args->data_ptr);
783         remain = args->size;
784
785         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
786
787         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
788
789         while (remain > 0) {
790                 /* Operation in this page
791                  *
792                  * page_base = page offset within aperture
793                  * page_offset = offset within page
794                  * page_length = bytes to copy for this page
795                  */
796                 page_base = offset & PAGE_MASK;
797                 page_offset = offset_in_page(offset);
798                 page_length = remain;
799                 if ((page_offset + remain) > PAGE_SIZE)
800                         page_length = PAGE_SIZE - page_offset;
801
802                 /* If we get a fault while copying data, then (presumably) our
803                  * source page isn't available.  Return the error and we'll
804                  * retry in the slow path.
805                  */
806                 if (fast_user_write(ggtt->mappable, page_base,
807                                     page_offset, user_data, page_length)) {
808                         ret = -EFAULT;
809                         goto out_flush;
810                 }
811
812                 remain -= page_length;
813                 user_data += page_length;
814                 offset += page_length;
815         }
816
817 out_flush:
818         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
819 out_unpin:
820         i915_gem_object_ggtt_unpin(obj);
821 out:
822         return ret;
823 }
824
825 /* Per-page copy function for the shmem pwrite fastpath.
826  * Flushes invalid cachelines before writing to the target if
827  * needs_clflush_before is set and flushes out any written cachelines after
828  * writing if needs_clflush is set. */
829 static int
830 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
831                   char __user *user_data,
832                   bool page_do_bit17_swizzling,
833                   bool needs_clflush_before,
834                   bool needs_clflush_after)
835 {
836         char *vaddr;
837         int ret;
838
839         if (unlikely(page_do_bit17_swizzling))
840                 return -EINVAL;
841
842         vaddr = kmap_atomic(page);
843         if (needs_clflush_before)
844                 drm_clflush_virt_range(vaddr + shmem_page_offset,
845                                        page_length);
846         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
847                                         user_data, page_length);
848         if (needs_clflush_after)
849                 drm_clflush_virt_range(vaddr + shmem_page_offset,
850                                        page_length);
851         kunmap_atomic(vaddr);
852
853         return ret ? -EFAULT : 0;
854 }
855
856 /* Only difference to the fast-path function is that this can handle bit17
857  * and uses non-atomic copy and kmap functions. */
858 static int
859 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
860                   char __user *user_data,
861                   bool page_do_bit17_swizzling,
862                   bool needs_clflush_before,
863                   bool needs_clflush_after)
864 {
865         char *vaddr;
866         int ret;
867
868         vaddr = kmap(page);
869         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
870                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
871                                              page_length,
872                                              page_do_bit17_swizzling);
873         if (page_do_bit17_swizzling)
874                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
875                                                 user_data,
876                                                 page_length);
877         else
878                 ret = __copy_from_user(vaddr + shmem_page_offset,
879                                        user_data,
880                                        page_length);
881         if (needs_clflush_after)
882                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
883                                              page_length,
884                                              page_do_bit17_swizzling);
885         kunmap(page);
886
887         return ret ? -EFAULT : 0;
888 }
889
890 static int
891 i915_gem_shmem_pwrite(struct drm_device *dev,
892                       struct drm_i915_gem_object *obj,
893                       struct drm_i915_gem_pwrite *args,
894                       struct drm_file *file)
895 {
896         ssize_t remain;
897         loff_t offset;
898         char __user *user_data;
899         int shmem_page_offset, page_length, ret = 0;
900         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
901         int hit_slowpath = 0;
902         int needs_clflush_after = 0;
903         int needs_clflush_before = 0;
904         struct sg_page_iter sg_iter;
905
906         user_data = u64_to_user_ptr(args->data_ptr);
907         remain = args->size;
908
909         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
910
911         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912                 /* If we're not in the cpu write domain, set ourself into the gtt
913                  * write domain and manually flush cachelines (if required). This
914                  * optimizes for the case when the gpu will use the data
915                  * right away and we therefore have to clflush anyway. */
916                 needs_clflush_after = cpu_write_needs_clflush(obj);
917                 ret = i915_gem_object_wait_rendering(obj, false);
918                 if (ret)
919                         return ret;
920         }
921         /* Same trick applies to invalidate partially written cachelines read
922          * before writing. */
923         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
924                 needs_clflush_before =
925                         !cpu_cache_is_coherent(dev, obj->cache_level);
926
927         ret = i915_gem_object_get_pages(obj);
928         if (ret)
929                 return ret;
930
931         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
932
933         i915_gem_object_pin_pages(obj);
934
935         offset = args->offset;
936         obj->dirty = 1;
937
938         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
939                          offset >> PAGE_SHIFT) {
940                 struct page *page = sg_page_iter_page(&sg_iter);
941                 int partial_cacheline_write;
942
943                 if (remain <= 0)
944                         break;
945
946                 /* Operation in this page
947                  *
948                  * shmem_page_offset = offset within page in shmem file
949                  * page_length = bytes to copy for this page
950                  */
951                 shmem_page_offset = offset_in_page(offset);
952
953                 page_length = remain;
954                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
955                         page_length = PAGE_SIZE - shmem_page_offset;
956
957                 /* If we don't overwrite a cacheline completely we need to be
958                  * careful to have up-to-date data by first clflushing. Don't
959                  * overcomplicate things and flush the entire patch. */
960                 partial_cacheline_write = needs_clflush_before &&
961                         ((shmem_page_offset | page_length)
962                                 & (boot_cpu_data.x86_clflush_size - 1));
963
964                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
965                         (page_to_phys(page) & (1 << 17)) != 0;
966
967                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
968                                         user_data, page_do_bit17_swizzling,
969                                         partial_cacheline_write,
970                                         needs_clflush_after);
971                 if (ret == 0)
972                         goto next_page;
973
974                 hit_slowpath = 1;
975                 mutex_unlock(&dev->struct_mutex);
976                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
977                                         user_data, page_do_bit17_swizzling,
978                                         partial_cacheline_write,
979                                         needs_clflush_after);
980
981                 mutex_lock(&dev->struct_mutex);
982
983                 if (ret)
984                         goto out;
985
986 next_page:
987                 remain -= page_length;
988                 user_data += page_length;
989                 offset += page_length;
990         }
991
992 out:
993         i915_gem_object_unpin_pages(obj);
994
995         if (hit_slowpath) {
996                 /*
997                  * Fixup: Flush cpu caches in case we didn't flush the dirty
998                  * cachelines in-line while writing and the object moved
999                  * out of the cpu write domain while we've dropped the lock.
1000                  */
1001                 if (!needs_clflush_after &&
1002                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003                         if (i915_gem_clflush_object(obj, obj->pin_display))
1004                                 needs_clflush_after = true;
1005                 }
1006         }
1007
1008         if (needs_clflush_after)
1009                 i915_gem_chipset_flush(dev);
1010         else
1011                 obj->cache_dirty = true;
1012
1013         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1014         return ret;
1015 }
1016
1017 /**
1018  * Writes data to the object referenced by handle.
1019  *
1020  * On error, the contents of the buffer that were to be modified are undefined.
1021  */
1022 int
1023 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1024                       struct drm_file *file)
1025 {
1026         struct drm_i915_private *dev_priv = dev->dev_private;
1027         struct drm_i915_gem_pwrite *args = data;
1028         struct drm_i915_gem_object *obj;
1029         int ret;
1030
1031         if (args->size == 0)
1032                 return 0;
1033
1034         if (!access_ok(VERIFY_READ,
1035                        u64_to_user_ptr(args->data_ptr),
1036                        args->size))
1037                 return -EFAULT;
1038
1039         if (likely(!i915.prefault_disable)) {
1040                 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1041                                                    args->size);
1042                 if (ret)
1043                         return -EFAULT;
1044         }
1045
1046         intel_runtime_pm_get(dev_priv);
1047
1048         ret = i915_mutex_lock_interruptible(dev);
1049         if (ret)
1050                 goto put_rpm;
1051
1052         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1053         if (&obj->base == NULL) {
1054                 ret = -ENOENT;
1055                 goto unlock;
1056         }
1057
1058         /* Bounds check destination. */
1059         if (args->offset > obj->base.size ||
1060             args->size > obj->base.size - args->offset) {
1061                 ret = -EINVAL;
1062                 goto out;
1063         }
1064
1065         /* prime objects have no backing filp to GEM pread/pwrite
1066          * pages from.
1067          */
1068         if (!obj->base.filp) {
1069                 ret = -EINVAL;
1070                 goto out;
1071         }
1072
1073         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1074
1075         ret = -EFAULT;
1076         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077          * it would end up going through the fenced access, and we'll get
1078          * different detiling behavior between reading and writing.
1079          * pread/pwrite currently are reading and writing from the CPU
1080          * perspective, requiring manual detiling by the client.
1081          */
1082         if (obj->tiling_mode == I915_TILING_NONE &&
1083             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1084             cpu_write_needs_clflush(obj)) {
1085                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1086                 /* Note that the gtt paths might fail with non-page-backed user
1087                  * pointers (e.g. gtt mappings when moving data between
1088                  * textures). Fallback to the shmem path in that case. */
1089         }
1090
1091         if (ret == -EFAULT || ret == -ENOSPC) {
1092                 if (obj->phys_handle)
1093                         ret = i915_gem_phys_pwrite(obj, args, file);
1094                 else
1095                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1096         }
1097
1098 out:
1099         drm_gem_object_unreference(&obj->base);
1100 unlock:
1101         mutex_unlock(&dev->struct_mutex);
1102 put_rpm:
1103         intel_runtime_pm_put(dev_priv);
1104
1105         return ret;
1106 }
1107
1108 static int
1109 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1110 {
1111         if (__i915_terminally_wedged(reset_counter))
1112                 return -EIO;
1113
1114         if (__i915_reset_in_progress(reset_counter)) {
1115                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116                  * -EIO unconditionally for these. */
1117                 if (!interruptible)
1118                         return -EIO;
1119
1120                 return -EAGAIN;
1121         }
1122
1123         return 0;
1124 }
1125
1126 static void fake_irq(unsigned long data)
1127 {
1128         wake_up_process((struct task_struct *)data);
1129 }
1130
1131 static bool missed_irq(struct drm_i915_private *dev_priv,
1132                        struct intel_engine_cs *engine)
1133 {
1134         return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1135 }
1136
1137 static unsigned long local_clock_us(unsigned *cpu)
1138 {
1139         unsigned long t;
1140
1141         /* Cheaply and approximately convert from nanoseconds to microseconds.
1142          * The result and subsequent calculations are also defined in the same
1143          * approximate microseconds units. The principal source of timing
1144          * error here is from the simple truncation.
1145          *
1146          * Note that local_clock() is only defined wrt to the current CPU;
1147          * the comparisons are no longer valid if we switch CPUs. Instead of
1148          * blocking preemption for the entire busywait, we can detect the CPU
1149          * switch and use that as indicator of system load and a reason to
1150          * stop busywaiting, see busywait_stop().
1151          */
1152         *cpu = get_cpu();
1153         t = local_clock() >> 10;
1154         put_cpu();
1155
1156         return t;
1157 }
1158
1159 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1160 {
1161         unsigned this_cpu;
1162
1163         if (time_after(local_clock_us(&this_cpu), timeout))
1164                 return true;
1165
1166         return this_cpu != cpu;
1167 }
1168
1169 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1170 {
1171         unsigned long timeout;
1172         unsigned cpu;
1173
1174         /* When waiting for high frequency requests, e.g. during synchronous
1175          * rendering split between the CPU and GPU, the finite amount of time
1176          * required to set up the irq and wait upon it limits the response
1177          * rate. By busywaiting on the request completion for a short while we
1178          * can service the high frequency waits as quick as possible. However,
1179          * if it is a slow request, we want to sleep as quickly as possible.
1180          * The tradeoff between waiting and sleeping is roughly the time it
1181          * takes to sleep on a request, on the order of a microsecond.
1182          */
1183
1184         if (req->engine->irq_refcount)
1185                 return -EBUSY;
1186
1187         /* Only spin if we know the GPU is processing this request */
1188         if (!i915_gem_request_started(req, true))
1189                 return -EAGAIN;
1190
1191         timeout = local_clock_us(&cpu) + 5;
1192         while (!need_resched()) {
1193                 if (i915_gem_request_completed(req, true))
1194                         return 0;
1195
1196                 if (signal_pending_state(state, current))
1197                         break;
1198
1199                 if (busywait_stop(timeout, cpu))
1200                         break;
1201
1202                 cpu_relax_lowlatency();
1203         }
1204
1205         if (i915_gem_request_completed(req, false))
1206                 return 0;
1207
1208         return -EAGAIN;
1209 }
1210
1211 /**
1212  * __i915_wait_request - wait until execution of request has finished
1213  * @req: duh!
1214  * @interruptible: do an interruptible wait (normally yes)
1215  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1216  *
1217  * Note: It is of utmost importance that the passed in seqno and reset_counter
1218  * values have been read by the caller in an smp safe manner. Where read-side
1219  * locks are involved, it is sufficient to read the reset_counter before
1220  * unlocking the lock that protects the seqno. For lockless tricks, the
1221  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1222  * inserted.
1223  *
1224  * Returns 0 if the request was found within the alloted time. Else returns the
1225  * errno with remaining time filled in timeout argument.
1226  */
1227 int __i915_wait_request(struct drm_i915_gem_request *req,
1228                         bool interruptible,
1229                         s64 *timeout,
1230                         struct intel_rps_client *rps)
1231 {
1232         struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1233         struct drm_device *dev = engine->dev;
1234         struct drm_i915_private *dev_priv = dev->dev_private;
1235         const bool irq_test_in_progress =
1236                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1237         int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1238         DEFINE_WAIT(wait);
1239         unsigned long timeout_expire;
1240         s64 before = 0; /* Only to silence a compiler warning. */
1241         int ret;
1242
1243         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1244
1245         if (list_empty(&req->list))
1246                 return 0;
1247
1248         if (i915_gem_request_completed(req, true))
1249                 return 0;
1250
1251         timeout_expire = 0;
1252         if (timeout) {
1253                 if (WARN_ON(*timeout < 0))
1254                         return -EINVAL;
1255
1256                 if (*timeout == 0)
1257                         return -ETIME;
1258
1259                 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1260
1261                 /*
1262                  * Record current time in case interrupted by signal, or wedged.
1263                  */
1264                 before = ktime_get_raw_ns();
1265         }
1266
1267         if (INTEL_INFO(dev_priv)->gen >= 6)
1268                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1269
1270         trace_i915_gem_request_wait_begin(req);
1271
1272         /* Optimistic spin for the next jiffie before touching IRQs */
1273         ret = __i915_spin_request(req, state);
1274         if (ret == 0)
1275                 goto out;
1276
1277         if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1278                 ret = -ENODEV;
1279                 goto out;
1280         }
1281
1282         for (;;) {
1283                 struct timer_list timer;
1284
1285                 prepare_to_wait(&engine->irq_queue, &wait, state);
1286
1287                 /* We need to check whether any gpu reset happened in between
1288                  * the request being submitted and now. If a reset has occurred,
1289                  * the request is effectively complete (we either are in the
1290                  * process of or have discarded the rendering and completely
1291                  * reset the GPU. The results of the request are lost and we
1292                  * are free to continue on with the original operation.
1293                  */
1294                 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1295                         ret = 0;
1296                         break;
1297                 }
1298
1299                 if (i915_gem_request_completed(req, false)) {
1300                         ret = 0;
1301                         break;
1302                 }
1303
1304                 if (signal_pending_state(state, current)) {
1305                         ret = -ERESTARTSYS;
1306                         break;
1307                 }
1308
1309                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1310                         ret = -ETIME;
1311                         break;
1312                 }
1313
1314                 timer.function = NULL;
1315                 if (timeout || missed_irq(dev_priv, engine)) {
1316                         unsigned long expire;
1317
1318                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1319                         expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1320                         mod_timer(&timer, expire);
1321                 }
1322
1323                 io_schedule();
1324
1325                 if (timer.function) {
1326                         del_singleshot_timer_sync(&timer);
1327                         destroy_timer_on_stack(&timer);
1328                 }
1329         }
1330         if (!irq_test_in_progress)
1331                 engine->irq_put(engine);
1332
1333         finish_wait(&engine->irq_queue, &wait);
1334
1335 out:
1336         trace_i915_gem_request_wait_end(req);
1337
1338         if (timeout) {
1339                 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1340
1341                 *timeout = tres < 0 ? 0 : tres;
1342
1343                 /*
1344                  * Apparently ktime isn't accurate enough and occasionally has a
1345                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1346                  * things up to make the test happy. We allow up to 1 jiffy.
1347                  *
1348                  * This is a regrssion from the timespec->ktime conversion.
1349                  */
1350                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1351                         *timeout = 0;
1352         }
1353
1354         return ret;
1355 }
1356
1357 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1358                                    struct drm_file *file)
1359 {
1360         struct drm_i915_file_private *file_priv;
1361
1362         WARN_ON(!req || !file || req->file_priv);
1363
1364         if (!req || !file)
1365                 return -EINVAL;
1366
1367         if (req->file_priv)
1368                 return -EINVAL;
1369
1370         file_priv = file->driver_priv;
1371
1372         spin_lock(&file_priv->mm.lock);
1373         req->file_priv = file_priv;
1374         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1375         spin_unlock(&file_priv->mm.lock);
1376
1377         req->pid = get_pid(task_pid(current));
1378
1379         return 0;
1380 }
1381
1382 static inline void
1383 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1384 {
1385         struct drm_i915_file_private *file_priv = request->file_priv;
1386
1387         if (!file_priv)
1388                 return;
1389
1390         spin_lock(&file_priv->mm.lock);
1391         list_del(&request->client_list);
1392         request->file_priv = NULL;
1393         spin_unlock(&file_priv->mm.lock);
1394
1395         put_pid(request->pid);
1396         request->pid = NULL;
1397 }
1398
1399 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1400 {
1401         trace_i915_gem_request_retire(request);
1402
1403         /* We know the GPU must have read the request to have
1404          * sent us the seqno + interrupt, so use the position
1405          * of tail of the request to update the last known position
1406          * of the GPU head.
1407          *
1408          * Note this requires that we are always called in request
1409          * completion order.
1410          */
1411         request->ringbuf->last_retired_head = request->postfix;
1412
1413         list_del_init(&request->list);
1414         i915_gem_request_remove_from_client(request);
1415
1416         i915_gem_request_unreference(request);
1417 }
1418
1419 static void
1420 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1421 {
1422         struct intel_engine_cs *engine = req->engine;
1423         struct drm_i915_gem_request *tmp;
1424
1425         lockdep_assert_held(&engine->dev->struct_mutex);
1426
1427         if (list_empty(&req->list))
1428                 return;
1429
1430         do {
1431                 tmp = list_first_entry(&engine->request_list,
1432                                        typeof(*tmp), list);
1433
1434                 i915_gem_request_retire(tmp);
1435         } while (tmp != req);
1436
1437         WARN_ON(i915_verify_lists(engine->dev));
1438 }
1439
1440 /**
1441  * Waits for a request to be signaled, and cleans up the
1442  * request and object lists appropriately for that event.
1443  */
1444 int
1445 i915_wait_request(struct drm_i915_gem_request *req)
1446 {
1447         struct drm_i915_private *dev_priv = req->i915;
1448         bool interruptible;
1449         int ret;
1450
1451         interruptible = dev_priv->mm.interruptible;
1452
1453         BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1454
1455         ret = __i915_wait_request(req, interruptible, NULL, NULL);
1456         if (ret)
1457                 return ret;
1458
1459         __i915_gem_request_retire__upto(req);
1460         return 0;
1461 }
1462
1463 /**
1464  * Ensures that all rendering to the object has completed and the object is
1465  * safe to unbind from the GTT or access from the CPU.
1466  */
1467 int
1468 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1469                                bool readonly)
1470 {
1471         int ret, i;
1472
1473         if (!obj->active)
1474                 return 0;
1475
1476         if (readonly) {
1477                 if (obj->last_write_req != NULL) {
1478                         ret = i915_wait_request(obj->last_write_req);
1479                         if (ret)
1480                                 return ret;
1481
1482                         i = obj->last_write_req->engine->id;
1483                         if (obj->last_read_req[i] == obj->last_write_req)
1484                                 i915_gem_object_retire__read(obj, i);
1485                         else
1486                                 i915_gem_object_retire__write(obj);
1487                 }
1488         } else {
1489                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1490                         if (obj->last_read_req[i] == NULL)
1491                                 continue;
1492
1493                         ret = i915_wait_request(obj->last_read_req[i]);
1494                         if (ret)
1495                                 return ret;
1496
1497                         i915_gem_object_retire__read(obj, i);
1498                 }
1499                 GEM_BUG_ON(obj->active);
1500         }
1501
1502         return 0;
1503 }
1504
1505 static void
1506 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1507                                struct drm_i915_gem_request *req)
1508 {
1509         int ring = req->engine->id;
1510
1511         if (obj->last_read_req[ring] == req)
1512                 i915_gem_object_retire__read(obj, ring);
1513         else if (obj->last_write_req == req)
1514                 i915_gem_object_retire__write(obj);
1515
1516         __i915_gem_request_retire__upto(req);
1517 }
1518
1519 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1520  * as the object state may change during this call.
1521  */
1522 static __must_check int
1523 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1524                                             struct intel_rps_client *rps,
1525                                             bool readonly)
1526 {
1527         struct drm_device *dev = obj->base.dev;
1528         struct drm_i915_private *dev_priv = dev->dev_private;
1529         struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1530         int ret, i, n = 0;
1531
1532         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1533         BUG_ON(!dev_priv->mm.interruptible);
1534
1535         if (!obj->active)
1536                 return 0;
1537
1538         if (readonly) {
1539                 struct drm_i915_gem_request *req;
1540
1541                 req = obj->last_write_req;
1542                 if (req == NULL)
1543                         return 0;
1544
1545                 requests[n++] = i915_gem_request_reference(req);
1546         } else {
1547                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1548                         struct drm_i915_gem_request *req;
1549
1550                         req = obj->last_read_req[i];
1551                         if (req == NULL)
1552                                 continue;
1553
1554                         requests[n++] = i915_gem_request_reference(req);
1555                 }
1556         }
1557
1558         mutex_unlock(&dev->struct_mutex);
1559         ret = 0;
1560         for (i = 0; ret == 0 && i < n; i++)
1561                 ret = __i915_wait_request(requests[i], true, NULL, rps);
1562         mutex_lock(&dev->struct_mutex);
1563
1564         for (i = 0; i < n; i++) {
1565                 if (ret == 0)
1566                         i915_gem_object_retire_request(obj, requests[i]);
1567                 i915_gem_request_unreference(requests[i]);
1568         }
1569
1570         return ret;
1571 }
1572
1573 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1574 {
1575         struct drm_i915_file_private *fpriv = file->driver_priv;
1576         return &fpriv->rps;
1577 }
1578
1579 /**
1580  * Called when user space prepares to use an object with the CPU, either
1581  * through the mmap ioctl's mapping or a GTT mapping.
1582  */
1583 int
1584 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1585                           struct drm_file *file)
1586 {
1587         struct drm_i915_gem_set_domain *args = data;
1588         struct drm_i915_gem_object *obj;
1589         uint32_t read_domains = args->read_domains;
1590         uint32_t write_domain = args->write_domain;
1591         int ret;
1592
1593         /* Only handle setting domains to types used by the CPU. */
1594         if (write_domain & I915_GEM_GPU_DOMAINS)
1595                 return -EINVAL;
1596
1597         if (read_domains & I915_GEM_GPU_DOMAINS)
1598                 return -EINVAL;
1599
1600         /* Having something in the write domain implies it's in the read
1601          * domain, and only that read domain.  Enforce that in the request.
1602          */
1603         if (write_domain != 0 && read_domains != write_domain)
1604                 return -EINVAL;
1605
1606         ret = i915_mutex_lock_interruptible(dev);
1607         if (ret)
1608                 return ret;
1609
1610         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1611         if (&obj->base == NULL) {
1612                 ret = -ENOENT;
1613                 goto unlock;
1614         }
1615
1616         /* Try to flush the object off the GPU without holding the lock.
1617          * We will repeat the flush holding the lock in the normal manner
1618          * to catch cases where we are gazumped.
1619          */
1620         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1621                                                           to_rps_client(file),
1622                                                           !write_domain);
1623         if (ret)
1624                 goto unref;
1625
1626         if (read_domains & I915_GEM_DOMAIN_GTT)
1627                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1628         else
1629                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1630
1631         if (write_domain != 0)
1632                 intel_fb_obj_invalidate(obj,
1633                                         write_domain == I915_GEM_DOMAIN_GTT ?
1634                                         ORIGIN_GTT : ORIGIN_CPU);
1635
1636 unref:
1637         drm_gem_object_unreference(&obj->base);
1638 unlock:
1639         mutex_unlock(&dev->struct_mutex);
1640         return ret;
1641 }
1642
1643 /**
1644  * Called when user space has done writes to this buffer
1645  */
1646 int
1647 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1648                          struct drm_file *file)
1649 {
1650         struct drm_i915_gem_sw_finish *args = data;
1651         struct drm_i915_gem_object *obj;
1652         int ret = 0;
1653
1654         ret = i915_mutex_lock_interruptible(dev);
1655         if (ret)
1656                 return ret;
1657
1658         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1659         if (&obj->base == NULL) {
1660                 ret = -ENOENT;
1661                 goto unlock;
1662         }
1663
1664         /* Pinned buffers may be scanout, so flush the cache */
1665         if (obj->pin_display)
1666                 i915_gem_object_flush_cpu_write_domain(obj);
1667
1668         drm_gem_object_unreference(&obj->base);
1669 unlock:
1670         mutex_unlock(&dev->struct_mutex);
1671         return ret;
1672 }
1673
1674 /**
1675  * Maps the contents of an object, returning the address it is mapped
1676  * into.
1677  *
1678  * While the mapping holds a reference on the contents of the object, it doesn't
1679  * imply a ref on the object itself.
1680  *
1681  * IMPORTANT:
1682  *
1683  * DRM driver writers who look a this function as an example for how to do GEM
1684  * mmap support, please don't implement mmap support like here. The modern way
1685  * to implement DRM mmap support is with an mmap offset ioctl (like
1686  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1687  * That way debug tooling like valgrind will understand what's going on, hiding
1688  * the mmap call in a driver private ioctl will break that. The i915 driver only
1689  * does cpu mmaps this way because we didn't know better.
1690  */
1691 int
1692 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1693                     struct drm_file *file)
1694 {
1695         struct drm_i915_gem_mmap *args = data;
1696         struct drm_gem_object *obj;
1697         unsigned long addr;
1698
1699         if (args->flags & ~(I915_MMAP_WC))
1700                 return -EINVAL;
1701
1702         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1703                 return -ENODEV;
1704
1705         obj = drm_gem_object_lookup(file, args->handle);
1706         if (obj == NULL)
1707                 return -ENOENT;
1708
1709         /* prime objects have no backing filp to GEM mmap
1710          * pages from.
1711          */
1712         if (!obj->filp) {
1713                 drm_gem_object_unreference_unlocked(obj);
1714                 return -EINVAL;
1715         }
1716
1717         addr = vm_mmap(obj->filp, 0, args->size,
1718                        PROT_READ | PROT_WRITE, MAP_SHARED,
1719                        args->offset);
1720         if (args->flags & I915_MMAP_WC) {
1721                 struct mm_struct *mm = current->mm;
1722                 struct vm_area_struct *vma;
1723
1724                 if (down_write_killable(&mm->mmap_sem)) {
1725                         drm_gem_object_unreference_unlocked(obj);
1726                         return -EINTR;
1727                 }
1728                 vma = find_vma(mm, addr);
1729                 if (vma)
1730                         vma->vm_page_prot =
1731                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1732                 else
1733                         addr = -ENOMEM;
1734                 up_write(&mm->mmap_sem);
1735         }
1736         drm_gem_object_unreference_unlocked(obj);
1737         if (IS_ERR((void *)addr))
1738                 return addr;
1739
1740         args->addr_ptr = (uint64_t) addr;
1741
1742         return 0;
1743 }
1744
1745 /**
1746  * i915_gem_fault - fault a page into the GTT
1747  * @vma: VMA in question
1748  * @vmf: fault info
1749  *
1750  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1751  * from userspace.  The fault handler takes care of binding the object to
1752  * the GTT (if needed), allocating and programming a fence register (again,
1753  * only if needed based on whether the old reg is still valid or the object
1754  * is tiled) and inserting a new PTE into the faulting process.
1755  *
1756  * Note that the faulting process may involve evicting existing objects
1757  * from the GTT and/or fence registers to make room.  So performance may
1758  * suffer if the GTT working set is large or there are few fence registers
1759  * left.
1760  */
1761 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1762 {
1763         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1764         struct drm_device *dev = obj->base.dev;
1765         struct drm_i915_private *dev_priv = to_i915(dev);
1766         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1767         struct i915_ggtt_view view = i915_ggtt_view_normal;
1768         pgoff_t page_offset;
1769         unsigned long pfn;
1770         int ret = 0;
1771         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1772
1773         intel_runtime_pm_get(dev_priv);
1774
1775         /* We don't use vmf->pgoff since that has the fake offset */
1776         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1777                 PAGE_SHIFT;
1778
1779         ret = i915_mutex_lock_interruptible(dev);
1780         if (ret)
1781                 goto out;
1782
1783         trace_i915_gem_object_fault(obj, page_offset, true, write);
1784
1785         /* Try to flush the object off the GPU first without holding the lock.
1786          * Upon reacquiring the lock, we will perform our sanity checks and then
1787          * repeat the flush holding the lock in the normal manner to catch cases
1788          * where we are gazumped.
1789          */
1790         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1791         if (ret)
1792                 goto unlock;
1793
1794         /* Access to snoopable pages through the GTT is incoherent. */
1795         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1796                 ret = -EFAULT;
1797                 goto unlock;
1798         }
1799
1800         /* Use a partial view if the object is bigger than the aperture. */
1801         if (obj->base.size >= ggtt->mappable_end &&
1802             obj->tiling_mode == I915_TILING_NONE) {
1803                 static const unsigned int chunk_size = 256; // 1 MiB
1804
1805                 memset(&view, 0, sizeof(view));
1806                 view.type = I915_GGTT_VIEW_PARTIAL;
1807                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1808                 view.params.partial.size =
1809                         min_t(unsigned int,
1810                               chunk_size,
1811                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1812                               view.params.partial.offset);
1813         }
1814
1815         /* Now pin it into the GTT if needed */
1816         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1817         if (ret)
1818                 goto unlock;
1819
1820         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1821         if (ret)
1822                 goto unpin;
1823
1824         ret = i915_gem_object_get_fence(obj);
1825         if (ret)
1826                 goto unpin;
1827
1828         /* Finally, remap it using the new GTT offset */
1829         pfn = ggtt->mappable_base +
1830                 i915_gem_obj_ggtt_offset_view(obj, &view);
1831         pfn >>= PAGE_SHIFT;
1832
1833         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1834                 /* Overriding existing pages in partial view does not cause
1835                  * us any trouble as TLBs are still valid because the fault
1836                  * is due to userspace losing part of the mapping or never
1837                  * having accessed it before (at this partials' range).
1838                  */
1839                 unsigned long base = vma->vm_start +
1840                                      (view.params.partial.offset << PAGE_SHIFT);
1841                 unsigned int i;
1842
1843                 for (i = 0; i < view.params.partial.size; i++) {
1844                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1845                         if (ret)
1846                                 break;
1847                 }
1848
1849                 obj->fault_mappable = true;
1850         } else {
1851                 if (!obj->fault_mappable) {
1852                         unsigned long size = min_t(unsigned long,
1853                                                    vma->vm_end - vma->vm_start,
1854                                                    obj->base.size);
1855                         int i;
1856
1857                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1858                                 ret = vm_insert_pfn(vma,
1859                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1860                                                     pfn + i);
1861                                 if (ret)
1862                                         break;
1863                         }
1864
1865                         obj->fault_mappable = true;
1866                 } else
1867                         ret = vm_insert_pfn(vma,
1868                                             (unsigned long)vmf->virtual_address,
1869                                             pfn + page_offset);
1870         }
1871 unpin:
1872         i915_gem_object_ggtt_unpin_view(obj, &view);
1873 unlock:
1874         mutex_unlock(&dev->struct_mutex);
1875 out:
1876         switch (ret) {
1877         case -EIO:
1878                 /*
1879                  * We eat errors when the gpu is terminally wedged to avoid
1880                  * userspace unduly crashing (gl has no provisions for mmaps to
1881                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1882                  * and so needs to be reported.
1883                  */
1884                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1885                         ret = VM_FAULT_SIGBUS;
1886                         break;
1887                 }
1888         case -EAGAIN:
1889                 /*
1890                  * EAGAIN means the gpu is hung and we'll wait for the error
1891                  * handler to reset everything when re-faulting in
1892                  * i915_mutex_lock_interruptible.
1893                  */
1894         case 0:
1895         case -ERESTARTSYS:
1896         case -EINTR:
1897         case -EBUSY:
1898                 /*
1899                  * EBUSY is ok: this just means that another thread
1900                  * already did the job.
1901                  */
1902                 ret = VM_FAULT_NOPAGE;
1903                 break;
1904         case -ENOMEM:
1905                 ret = VM_FAULT_OOM;
1906                 break;
1907         case -ENOSPC:
1908         case -EFAULT:
1909                 ret = VM_FAULT_SIGBUS;
1910                 break;
1911         default:
1912                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1913                 ret = VM_FAULT_SIGBUS;
1914                 break;
1915         }
1916
1917         intel_runtime_pm_put(dev_priv);
1918         return ret;
1919 }
1920
1921 /**
1922  * i915_gem_release_mmap - remove physical page mappings
1923  * @obj: obj in question
1924  *
1925  * Preserve the reservation of the mmapping with the DRM core code, but
1926  * relinquish ownership of the pages back to the system.
1927  *
1928  * It is vital that we remove the page mapping if we have mapped a tiled
1929  * object through the GTT and then lose the fence register due to
1930  * resource pressure. Similarly if the object has been moved out of the
1931  * aperture, than pages mapped into userspace must be revoked. Removing the
1932  * mapping will then trigger a page fault on the next user access, allowing
1933  * fixup by i915_gem_fault().
1934  */
1935 void
1936 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1937 {
1938         /* Serialisation between user GTT access and our code depends upon
1939          * revoking the CPU's PTE whilst the mutex is held. The next user
1940          * pagefault then has to wait until we release the mutex.
1941          */
1942         lockdep_assert_held(&obj->base.dev->struct_mutex);
1943
1944         if (!obj->fault_mappable)
1945                 return;
1946
1947         drm_vma_node_unmap(&obj->base.vma_node,
1948                            obj->base.dev->anon_inode->i_mapping);
1949
1950         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1951          * memory transactions from userspace before we return. The TLB
1952          * flushing implied above by changing the PTE above *should* be
1953          * sufficient, an extra barrier here just provides us with a bit
1954          * of paranoid documentation about our requirement to serialise
1955          * memory writes before touching registers / GSM.
1956          */
1957         wmb();
1958
1959         obj->fault_mappable = false;
1960 }
1961
1962 void
1963 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1964 {
1965         struct drm_i915_gem_object *obj;
1966
1967         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1968                 i915_gem_release_mmap(obj);
1969 }
1970
1971 uint32_t
1972 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1973 {
1974         uint32_t gtt_size;
1975
1976         if (INTEL_INFO(dev)->gen >= 4 ||
1977             tiling_mode == I915_TILING_NONE)
1978                 return size;
1979
1980         /* Previous chips need a power-of-two fence region when tiling */
1981         if (INTEL_INFO(dev)->gen == 3)
1982                 gtt_size = 1024*1024;
1983         else
1984                 gtt_size = 512*1024;
1985
1986         while (gtt_size < size)
1987                 gtt_size <<= 1;
1988
1989         return gtt_size;
1990 }
1991
1992 /**
1993  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1994  * @obj: object to check
1995  *
1996  * Return the required GTT alignment for an object, taking into account
1997  * potential fence register mapping.
1998  */
1999 uint32_t
2000 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2001                            int tiling_mode, bool fenced)
2002 {
2003         /*
2004          * Minimum alignment is 4k (GTT page size), but might be greater
2005          * if a fence register is needed for the object.
2006          */
2007         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2008             tiling_mode == I915_TILING_NONE)
2009                 return 4096;
2010
2011         /*
2012          * Previous chips need to be aligned to the size of the smallest
2013          * fence register that can contain the object.
2014          */
2015         return i915_gem_get_gtt_size(dev, size, tiling_mode);
2016 }
2017
2018 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2019 {
2020         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2021         int ret;
2022
2023         dev_priv->mm.shrinker_no_lock_stealing = true;
2024
2025         ret = drm_gem_create_mmap_offset(&obj->base);
2026         if (ret != -ENOSPC)
2027                 goto out;
2028
2029         /* Badly fragmented mmap space? The only way we can recover
2030          * space is by destroying unwanted objects. We can't randomly release
2031          * mmap_offsets as userspace expects them to be persistent for the
2032          * lifetime of the objects. The closest we can is to release the
2033          * offsets on purgeable objects by truncating it and marking it purged,
2034          * which prevents userspace from ever using that object again.
2035          */
2036         i915_gem_shrink(dev_priv,
2037                         obj->base.size >> PAGE_SHIFT,
2038                         I915_SHRINK_BOUND |
2039                         I915_SHRINK_UNBOUND |
2040                         I915_SHRINK_PURGEABLE);
2041         ret = drm_gem_create_mmap_offset(&obj->base);
2042         if (ret != -ENOSPC)
2043                 goto out;
2044
2045         i915_gem_shrink_all(dev_priv);
2046         ret = drm_gem_create_mmap_offset(&obj->base);
2047 out:
2048         dev_priv->mm.shrinker_no_lock_stealing = false;
2049
2050         return ret;
2051 }
2052
2053 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2054 {
2055         drm_gem_free_mmap_offset(&obj->base);
2056 }
2057
2058 int
2059 i915_gem_mmap_gtt(struct drm_file *file,
2060                   struct drm_device *dev,
2061                   uint32_t handle,
2062                   uint64_t *offset)
2063 {
2064         struct drm_i915_gem_object *obj;
2065         int ret;
2066
2067         ret = i915_mutex_lock_interruptible(dev);
2068         if (ret)
2069                 return ret;
2070
2071         obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2072         if (&obj->base == NULL) {
2073                 ret = -ENOENT;
2074                 goto unlock;
2075         }
2076
2077         if (obj->madv != I915_MADV_WILLNEED) {
2078                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2079                 ret = -EFAULT;
2080                 goto out;
2081         }
2082
2083         ret = i915_gem_object_create_mmap_offset(obj);
2084         if (ret)
2085                 goto out;
2086
2087         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2088
2089 out:
2090         drm_gem_object_unreference(&obj->base);
2091 unlock:
2092         mutex_unlock(&dev->struct_mutex);
2093         return ret;
2094 }
2095
2096 /**
2097  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2098  * @dev: DRM device
2099  * @data: GTT mapping ioctl data
2100  * @file: GEM object info
2101  *
2102  * Simply returns the fake offset to userspace so it can mmap it.
2103  * The mmap call will end up in drm_gem_mmap(), which will set things
2104  * up so we can get faults in the handler above.
2105  *
2106  * The fault handler will take care of binding the object into the GTT
2107  * (since it may have been evicted to make room for something), allocating
2108  * a fence register, and mapping the appropriate aperture address into
2109  * userspace.
2110  */
2111 int
2112 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2113                         struct drm_file *file)
2114 {
2115         struct drm_i915_gem_mmap_gtt *args = data;
2116
2117         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2118 }
2119
2120 /* Immediately discard the backing storage */
2121 static void
2122 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2123 {
2124         i915_gem_object_free_mmap_offset(obj);
2125
2126         if (obj->base.filp == NULL)
2127                 return;
2128
2129         /* Our goal here is to return as much of the memory as
2130          * is possible back to the system as we are called from OOM.
2131          * To do this we must instruct the shmfs to drop all of its
2132          * backing pages, *now*.
2133          */
2134         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2135         obj->madv = __I915_MADV_PURGED;
2136 }
2137
2138 /* Try to discard unwanted pages */
2139 static void
2140 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2141 {
2142         struct address_space *mapping;
2143
2144         switch (obj->madv) {
2145         case I915_MADV_DONTNEED:
2146                 i915_gem_object_truncate(obj);
2147         case __I915_MADV_PURGED:
2148                 return;
2149         }
2150
2151         if (obj->base.filp == NULL)
2152                 return;
2153
2154         mapping = file_inode(obj->base.filp)->i_mapping,
2155         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2156 }
2157
2158 static void
2159 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2160 {
2161         struct sg_page_iter sg_iter;
2162         int ret;
2163
2164         BUG_ON(obj->madv == __I915_MADV_PURGED);
2165
2166         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2167         if (WARN_ON(ret)) {
2168                 /* In the event of a disaster, abandon all caches and
2169                  * hope for the best.
2170                  */
2171                 i915_gem_clflush_object(obj, true);
2172                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2173         }
2174
2175         i915_gem_gtt_finish_object(obj);
2176
2177         if (i915_gem_object_needs_bit17_swizzle(obj))
2178                 i915_gem_object_save_bit_17_swizzle(obj);
2179
2180         if (obj->madv == I915_MADV_DONTNEED)
2181                 obj->dirty = 0;
2182
2183         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2184                 struct page *page = sg_page_iter_page(&sg_iter);
2185
2186                 if (obj->dirty)
2187                         set_page_dirty(page);
2188
2189                 if (obj->madv == I915_MADV_WILLNEED)
2190                         mark_page_accessed(page);
2191
2192                 put_page(page);
2193         }
2194         obj->dirty = 0;
2195
2196         sg_free_table(obj->pages);
2197         kfree(obj->pages);
2198 }
2199
2200 int
2201 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2202 {
2203         const struct drm_i915_gem_object_ops *ops = obj->ops;
2204
2205         if (obj->pages == NULL)
2206                 return 0;
2207
2208         if (obj->pages_pin_count)
2209                 return -EBUSY;
2210
2211         BUG_ON(i915_gem_obj_bound_any(obj));
2212
2213         /* ->put_pages might need to allocate memory for the bit17 swizzle
2214          * array, hence protect them from being reaped by removing them from gtt
2215          * lists early. */
2216         list_del(&obj->global_list);
2217
2218         if (obj->mapping) {
2219                 if (is_vmalloc_addr(obj->mapping))
2220                         vunmap(obj->mapping);
2221                 else
2222                         kunmap(kmap_to_page(obj->mapping));
2223                 obj->mapping = NULL;
2224         }
2225
2226         ops->put_pages(obj);
2227         obj->pages = NULL;
2228
2229         i915_gem_object_invalidate(obj);
2230
2231         return 0;
2232 }
2233
2234 static int
2235 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2236 {
2237         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2238         int page_count, i;
2239         struct address_space *mapping;
2240         struct sg_table *st;
2241         struct scatterlist *sg;
2242         struct sg_page_iter sg_iter;
2243         struct page *page;
2244         unsigned long last_pfn = 0;     /* suppress gcc warning */
2245         int ret;
2246         gfp_t gfp;
2247
2248         /* Assert that the object is not currently in any GPU domain. As it
2249          * wasn't in the GTT, there shouldn't be any way it could have been in
2250          * a GPU cache
2251          */
2252         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2253         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2254
2255         st = kmalloc(sizeof(*st), GFP_KERNEL);
2256         if (st == NULL)
2257                 return -ENOMEM;
2258
2259         page_count = obj->base.size / PAGE_SIZE;
2260         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2261                 kfree(st);
2262                 return -ENOMEM;
2263         }
2264
2265         /* Get the list of pages out of our struct file.  They'll be pinned
2266          * at this point until we release them.
2267          *
2268          * Fail silently without starting the shrinker
2269          */
2270         mapping = file_inode(obj->base.filp)->i_mapping;
2271         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2272         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2273         sg = st->sgl;
2274         st->nents = 0;
2275         for (i = 0; i < page_count; i++) {
2276                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2277                 if (IS_ERR(page)) {
2278                         i915_gem_shrink(dev_priv,
2279                                         page_count,
2280                                         I915_SHRINK_BOUND |
2281                                         I915_SHRINK_UNBOUND |
2282                                         I915_SHRINK_PURGEABLE);
2283                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2284                 }
2285                 if (IS_ERR(page)) {
2286                         /* We've tried hard to allocate the memory by reaping
2287                          * our own buffer, now let the real VM do its job and
2288                          * go down in flames if truly OOM.
2289                          */
2290                         i915_gem_shrink_all(dev_priv);
2291                         page = shmem_read_mapping_page(mapping, i);
2292                         if (IS_ERR(page)) {
2293                                 ret = PTR_ERR(page);
2294                                 goto err_pages;
2295                         }
2296                 }
2297 #ifdef CONFIG_SWIOTLB
2298                 if (swiotlb_nr_tbl()) {
2299                         st->nents++;
2300                         sg_set_page(sg, page, PAGE_SIZE, 0);
2301                         sg = sg_next(sg);
2302                         continue;
2303                 }
2304 #endif
2305                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2306                         if (i)
2307                                 sg = sg_next(sg);
2308                         st->nents++;
2309                         sg_set_page(sg, page, PAGE_SIZE, 0);
2310                 } else {
2311                         sg->length += PAGE_SIZE;
2312                 }
2313                 last_pfn = page_to_pfn(page);
2314
2315                 /* Check that the i965g/gm workaround works. */
2316                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2317         }
2318 #ifdef CONFIG_SWIOTLB
2319         if (!swiotlb_nr_tbl())
2320 #endif
2321                 sg_mark_end(sg);
2322         obj->pages = st;
2323
2324         ret = i915_gem_gtt_prepare_object(obj);
2325         if (ret)
2326                 goto err_pages;
2327
2328         if (i915_gem_object_needs_bit17_swizzle(obj))
2329                 i915_gem_object_do_bit_17_swizzle(obj);
2330
2331         if (obj->tiling_mode != I915_TILING_NONE &&
2332             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2333                 i915_gem_object_pin_pages(obj);
2334
2335         return 0;
2336
2337 err_pages:
2338         sg_mark_end(sg);
2339         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2340                 put_page(sg_page_iter_page(&sg_iter));
2341         sg_free_table(st);
2342         kfree(st);
2343
2344         /* shmemfs first checks if there is enough memory to allocate the page
2345          * and reports ENOSPC should there be insufficient, along with the usual
2346          * ENOMEM for a genuine allocation failure.
2347          *
2348          * We use ENOSPC in our driver to mean that we have run out of aperture
2349          * space and so want to translate the error from shmemfs back to our
2350          * usual understanding of ENOMEM.
2351          */
2352         if (ret == -ENOSPC)
2353                 ret = -ENOMEM;
2354
2355         return ret;
2356 }
2357
2358 /* Ensure that the associated pages are gathered from the backing storage
2359  * and pinned into our object. i915_gem_object_get_pages() may be called
2360  * multiple times before they are released by a single call to
2361  * i915_gem_object_put_pages() - once the pages are no longer referenced
2362  * either as a result of memory pressure (reaping pages under the shrinker)
2363  * or as the object is itself released.
2364  */
2365 int
2366 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2367 {
2368         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2369         const struct drm_i915_gem_object_ops *ops = obj->ops;
2370         int ret;
2371
2372         if (obj->pages)
2373                 return 0;
2374
2375         if (obj->madv != I915_MADV_WILLNEED) {
2376                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2377                 return -EFAULT;
2378         }
2379
2380         BUG_ON(obj->pages_pin_count);
2381
2382         ret = ops->get_pages(obj);
2383         if (ret)
2384                 return ret;
2385
2386         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2387
2388         obj->get_page.sg = obj->pages->sgl;
2389         obj->get_page.last = 0;
2390
2391         return 0;
2392 }
2393
2394 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2395 {
2396         int ret;
2397
2398         lockdep_assert_held(&obj->base.dev->struct_mutex);
2399
2400         ret = i915_gem_object_get_pages(obj);
2401         if (ret)
2402                 return ERR_PTR(ret);
2403
2404         i915_gem_object_pin_pages(obj);
2405
2406         if (obj->mapping == NULL) {
2407                 struct page **pages;
2408
2409                 pages = NULL;
2410                 if (obj->base.size == PAGE_SIZE)
2411                         obj->mapping = kmap(sg_page(obj->pages->sgl));
2412                 else
2413                         pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
2414                                                sizeof(*pages),
2415                                                GFP_TEMPORARY);
2416                 if (pages != NULL) {
2417                         struct sg_page_iter sg_iter;
2418                         int n;
2419
2420                         n = 0;
2421                         for_each_sg_page(obj->pages->sgl, &sg_iter,
2422                                          obj->pages->nents, 0)
2423                                 pages[n++] = sg_page_iter_page(&sg_iter);
2424
2425                         obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
2426                         drm_free_large(pages);
2427                 }
2428                 if (obj->mapping == NULL) {
2429                         i915_gem_object_unpin_pages(obj);
2430                         return ERR_PTR(-ENOMEM);
2431                 }
2432         }
2433
2434         return obj->mapping;
2435 }
2436
2437 void i915_vma_move_to_active(struct i915_vma *vma,
2438                              struct drm_i915_gem_request *req)
2439 {
2440         struct drm_i915_gem_object *obj = vma->obj;
2441         struct intel_engine_cs *engine;
2442
2443         engine = i915_gem_request_get_engine(req);
2444
2445         /* Add a reference if we're newly entering the active list. */
2446         if (obj->active == 0)
2447                 drm_gem_object_reference(&obj->base);
2448         obj->active |= intel_engine_flag(engine);
2449
2450         list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2451         i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2452
2453         list_move_tail(&vma->vm_link, &vma->vm->active_list);
2454 }
2455
2456 static void
2457 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2458 {
2459         GEM_BUG_ON(obj->last_write_req == NULL);
2460         GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2461
2462         i915_gem_request_assign(&obj->last_write_req, NULL);
2463         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2464 }
2465
2466 static void
2467 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2468 {
2469         struct i915_vma *vma;
2470
2471         GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2472         GEM_BUG_ON(!(obj->active & (1 << ring)));
2473
2474         list_del_init(&obj->engine_list[ring]);
2475         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2476
2477         if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2478                 i915_gem_object_retire__write(obj);
2479
2480         obj->active &= ~(1 << ring);
2481         if (obj->active)
2482                 return;
2483
2484         /* Bump our place on the bound list to keep it roughly in LRU order
2485          * so that we don't steal from recently used but inactive objects
2486          * (unless we are forced to ofc!)
2487          */
2488         list_move_tail(&obj->global_list,
2489                        &to_i915(obj->base.dev)->mm.bound_list);
2490
2491         list_for_each_entry(vma, &obj->vma_list, obj_link) {
2492                 if (!list_empty(&vma->vm_link))
2493                         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2494         }
2495
2496         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2497         drm_gem_object_unreference(&obj->base);
2498 }
2499
2500 static int
2501 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2502 {
2503         struct drm_i915_private *dev_priv = dev->dev_private;
2504         struct intel_engine_cs *engine;
2505         int ret;
2506
2507         /* Carefully retire all requests without writing to the rings */
2508         for_each_engine(engine, dev_priv) {
2509                 ret = intel_engine_idle(engine);
2510                 if (ret)
2511                         return ret;
2512         }
2513         i915_gem_retire_requests(dev);
2514
2515         /* Finally reset hw state */
2516         for_each_engine(engine, dev_priv)
2517                 intel_ring_init_seqno(engine, seqno);
2518
2519         return 0;
2520 }
2521
2522 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2523 {
2524         struct drm_i915_private *dev_priv = dev->dev_private;
2525         int ret;
2526
2527         if (seqno == 0)
2528                 return -EINVAL;
2529
2530         /* HWS page needs to be set less than what we
2531          * will inject to ring
2532          */
2533         ret = i915_gem_init_seqno(dev, seqno - 1);
2534         if (ret)
2535                 return ret;
2536
2537         /* Carefully set the last_seqno value so that wrap
2538          * detection still works
2539          */
2540         dev_priv->next_seqno = seqno;
2541         dev_priv->last_seqno = seqno - 1;
2542         if (dev_priv->last_seqno == 0)
2543                 dev_priv->last_seqno--;
2544
2545         return 0;
2546 }
2547
2548 int
2549 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2550 {
2551         struct drm_i915_private *dev_priv = dev->dev_private;
2552
2553         /* reserve 0 for non-seqno */
2554         if (dev_priv->next_seqno == 0) {
2555                 int ret = i915_gem_init_seqno(dev, 0);
2556                 if (ret)
2557                         return ret;
2558
2559                 dev_priv->next_seqno = 1;
2560         }
2561
2562         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2563         return 0;
2564 }
2565
2566 /*
2567  * NB: This function is not allowed to fail. Doing so would mean the the
2568  * request is not being tracked for completion but the work itself is
2569  * going to happen on the hardware. This would be a Bad Thing(tm).
2570  */
2571 void __i915_add_request(struct drm_i915_gem_request *request,
2572                         struct drm_i915_gem_object *obj,
2573                         bool flush_caches)
2574 {
2575         struct intel_engine_cs *engine;
2576         struct drm_i915_private *dev_priv;
2577         struct intel_ringbuffer *ringbuf;
2578         u32 request_start;
2579         int ret;
2580
2581         if (WARN_ON(request == NULL))
2582                 return;
2583
2584         engine = request->engine;
2585         dev_priv = request->i915;
2586         ringbuf = request->ringbuf;
2587
2588         /*
2589          * To ensure that this call will not fail, space for its emissions
2590          * should already have been reserved in the ring buffer. Let the ring
2591          * know that it is time to use that space up.
2592          */
2593         intel_ring_reserved_space_use(ringbuf);
2594
2595         request_start = intel_ring_get_tail(ringbuf);
2596         /*
2597          * Emit any outstanding flushes - execbuf can fail to emit the flush
2598          * after having emitted the batchbuffer command. Hence we need to fix
2599          * things up similar to emitting the lazy request. The difference here
2600          * is that the flush _must_ happen before the next request, no matter
2601          * what.
2602          */
2603         if (flush_caches) {
2604                 if (i915.enable_execlists)
2605                         ret = logical_ring_flush_all_caches(request);
2606                 else
2607                         ret = intel_ring_flush_all_caches(request);
2608                 /* Not allowed to fail! */
2609                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2610         }
2611
2612         trace_i915_gem_request_add(request);
2613
2614         request->head = request_start;
2615
2616         /* Whilst this request exists, batch_obj will be on the
2617          * active_list, and so will hold the active reference. Only when this
2618          * request is retired will the the batch_obj be moved onto the
2619          * inactive_list and lose its active reference. Hence we do not need
2620          * to explicitly hold another reference here.
2621          */
2622         request->batch_obj = obj;
2623
2624         /* Seal the request and mark it as pending execution. Note that
2625          * we may inspect this state, without holding any locks, during
2626          * hangcheck. Hence we apply the barrier to ensure that we do not
2627          * see a more recent value in the hws than we are tracking.
2628          */
2629         request->emitted_jiffies = jiffies;
2630         request->previous_seqno = engine->last_submitted_seqno;
2631         smp_store_mb(engine->last_submitted_seqno, request->seqno);
2632         list_add_tail(&request->list, &engine->request_list);
2633
2634         /* Record the position of the start of the request so that
2635          * should we detect the updated seqno part-way through the
2636          * GPU processing the request, we never over-estimate the
2637          * position of the head.
2638          */
2639         request->postfix = intel_ring_get_tail(ringbuf);
2640
2641         if (i915.enable_execlists)
2642                 ret = engine->emit_request(request);
2643         else {
2644                 ret = engine->add_request(request);
2645
2646                 request->tail = intel_ring_get_tail(ringbuf);
2647         }
2648         /* Not allowed to fail! */
2649         WARN(ret, "emit|add_request failed: %d!\n", ret);
2650
2651         i915_queue_hangcheck(engine->dev);
2652
2653         queue_delayed_work(dev_priv->wq,
2654                            &dev_priv->mm.retire_work,
2655                            round_jiffies_up_relative(HZ));
2656         intel_mark_busy(dev_priv->dev);
2657
2658         /* Sanity check that the reserved size was large enough. */
2659         intel_ring_reserved_space_end(ringbuf);
2660 }
2661
2662 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2663                                    const struct intel_context *ctx)
2664 {
2665         unsigned long elapsed;
2666
2667         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2668
2669         if (ctx->hang_stats.banned)
2670                 return true;
2671
2672         if (ctx->hang_stats.ban_period_seconds &&
2673             elapsed <= ctx->hang_stats.ban_period_seconds) {
2674                 if (!i915_gem_context_is_default(ctx)) {
2675                         DRM_DEBUG("context hanging too fast, banning!\n");
2676                         return true;
2677                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2678                         if (i915_stop_ring_allow_warn(dev_priv))
2679                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2680                         return true;
2681                 }
2682         }
2683
2684         return false;
2685 }
2686
2687 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2688                                   struct intel_context *ctx,
2689                                   const bool guilty)
2690 {
2691         struct i915_ctx_hang_stats *hs;
2692
2693         if (WARN_ON(!ctx))
2694                 return;
2695
2696         hs = &ctx->hang_stats;
2697
2698         if (guilty) {
2699                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2700                 hs->batch_active++;
2701                 hs->guilty_ts = get_seconds();
2702         } else {
2703                 hs->batch_pending++;
2704         }
2705 }
2706
2707 void i915_gem_request_free(struct kref *req_ref)
2708 {
2709         struct drm_i915_gem_request *req = container_of(req_ref,
2710                                                  typeof(*req), ref);
2711         struct intel_context *ctx = req->ctx;
2712
2713         if (req->file_priv)
2714                 i915_gem_request_remove_from_client(req);
2715
2716         if (ctx) {
2717                 if (i915.enable_execlists && ctx != req->i915->kernel_context)
2718                         intel_lr_context_unpin(ctx, req->engine);
2719
2720                 i915_gem_context_unreference(ctx);
2721         }
2722
2723         kmem_cache_free(req->i915->requests, req);
2724 }
2725
2726 static inline int
2727 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2728                          struct intel_context *ctx,
2729                          struct drm_i915_gem_request **req_out)
2730 {
2731         struct drm_i915_private *dev_priv = to_i915(engine->dev);
2732         unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2733         struct drm_i915_gem_request *req;
2734         int ret;
2735
2736         if (!req_out)
2737                 return -EINVAL;
2738
2739         *req_out = NULL;
2740
2741         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2742          * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2743          * and restart.
2744          */
2745         ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2746         if (ret)
2747                 return ret;
2748
2749         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2750         if (req == NULL)
2751                 return -ENOMEM;
2752
2753         ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2754         if (ret)
2755                 goto err;
2756
2757         kref_init(&req->ref);
2758         req->i915 = dev_priv;
2759         req->engine = engine;
2760         req->reset_counter = reset_counter;
2761         req->ctx  = ctx;
2762         i915_gem_context_reference(req->ctx);
2763
2764         if (i915.enable_execlists)
2765                 ret = intel_logical_ring_alloc_request_extras(req);
2766         else
2767                 ret = intel_ring_alloc_request_extras(req);
2768         if (ret) {
2769                 i915_gem_context_unreference(req->ctx);
2770                 goto err;
2771         }
2772
2773         /*
2774          * Reserve space in the ring buffer for all the commands required to
2775          * eventually emit this request. This is to guarantee that the
2776          * i915_add_request() call can't fail. Note that the reserve may need
2777          * to be redone if the request is not actually submitted straight
2778          * away, e.g. because a GPU scheduler has deferred it.
2779          */
2780         if (i915.enable_execlists)
2781                 ret = intel_logical_ring_reserve_space(req);
2782         else
2783                 ret = intel_ring_reserve_space(req);
2784         if (ret) {
2785                 /*
2786                  * At this point, the request is fully allocated even if not
2787                  * fully prepared. Thus it can be cleaned up using the proper
2788                  * free code.
2789                  */
2790                 intel_ring_reserved_space_cancel(req->ringbuf);
2791                 i915_gem_request_unreference(req);
2792                 return ret;
2793         }
2794
2795         *req_out = req;
2796         return 0;
2797
2798 err:
2799         kmem_cache_free(dev_priv->requests, req);
2800         return ret;
2801 }
2802
2803 /**
2804  * i915_gem_request_alloc - allocate a request structure
2805  *
2806  * @engine: engine that we wish to issue the request on.
2807  * @ctx: context that the request will be associated with.
2808  *       This can be NULL if the request is not directly related to
2809  *       any specific user context, in which case this function will
2810  *       choose an appropriate context to use.
2811  *
2812  * Returns a pointer to the allocated request if successful,
2813  * or an error code if not.
2814  */
2815 struct drm_i915_gem_request *
2816 i915_gem_request_alloc(struct intel_engine_cs *engine,
2817                        struct intel_context *ctx)
2818 {
2819         struct drm_i915_gem_request *req;
2820         int err;
2821
2822         if (ctx == NULL)
2823                 ctx = to_i915(engine->dev)->kernel_context;
2824         err = __i915_gem_request_alloc(engine, ctx, &req);
2825         return err ? ERR_PTR(err) : req;
2826 }
2827
2828 struct drm_i915_gem_request *
2829 i915_gem_find_active_request(struct intel_engine_cs *engine)
2830 {
2831         struct drm_i915_gem_request *request;
2832
2833         list_for_each_entry(request, &engine->request_list, list) {
2834                 if (i915_gem_request_completed(request, false))
2835                         continue;
2836
2837                 return request;
2838         }
2839
2840         return NULL;
2841 }
2842
2843 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2844                                        struct intel_engine_cs *engine)
2845 {
2846         struct drm_i915_gem_request *request;
2847         bool ring_hung;
2848
2849         request = i915_gem_find_active_request(engine);
2850
2851         if (request == NULL)
2852                 return;
2853
2854         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2855
2856         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2857
2858         list_for_each_entry_continue(request, &engine->request_list, list)
2859                 i915_set_reset_status(dev_priv, request->ctx, false);
2860 }
2861
2862 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2863                                         struct intel_engine_cs *engine)
2864 {
2865         struct intel_ringbuffer *buffer;
2866
2867         while (!list_empty(&engine->active_list)) {
2868                 struct drm_i915_gem_object *obj;
2869
2870                 obj = list_first_entry(&engine->active_list,
2871                                        struct drm_i915_gem_object,
2872                                        engine_list[engine->id]);
2873
2874                 i915_gem_object_retire__read(obj, engine->id);
2875         }
2876
2877         /*
2878          * Clear the execlists queue up before freeing the requests, as those
2879          * are the ones that keep the context and ringbuffer backing objects
2880          * pinned in place.
2881          */
2882
2883         if (i915.enable_execlists) {
2884                 /* Ensure irq handler finishes or is cancelled. */
2885                 tasklet_kill(&engine->irq_tasklet);
2886
2887                 spin_lock_bh(&engine->execlist_lock);
2888                 /* list_splice_tail_init checks for empty lists */
2889                 list_splice_tail_init(&engine->execlist_queue,
2890                                       &engine->execlist_retired_req_list);
2891                 spin_unlock_bh(&engine->execlist_lock);
2892
2893                 intel_execlists_retire_requests(engine);
2894         }
2895
2896         /*
2897          * We must free the requests after all the corresponding objects have
2898          * been moved off active lists. Which is the same order as the normal
2899          * retire_requests function does. This is important if object hold
2900          * implicit references on things like e.g. ppgtt address spaces through
2901          * the request.
2902          */
2903         while (!list_empty(&engine->request_list)) {
2904                 struct drm_i915_gem_request *request;
2905
2906                 request = list_first_entry(&engine->request_list,
2907                                            struct drm_i915_gem_request,
2908                                            list);
2909
2910                 i915_gem_request_retire(request);
2911         }
2912
2913         /* Having flushed all requests from all queues, we know that all
2914          * ringbuffers must now be empty. However, since we do not reclaim
2915          * all space when retiring the request (to prevent HEADs colliding
2916          * with rapid ringbuffer wraparound) the amount of available space
2917          * upon reset is less than when we start. Do one more pass over
2918          * all the ringbuffers to reset last_retired_head.
2919          */
2920         list_for_each_entry(buffer, &engine->buffers, link) {
2921                 buffer->last_retired_head = buffer->tail;
2922                 intel_ring_update_space(buffer);
2923         }
2924
2925         intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2926 }
2927
2928 void i915_gem_reset(struct drm_device *dev)
2929 {
2930         struct drm_i915_private *dev_priv = dev->dev_private;
2931         struct intel_engine_cs *engine;
2932
2933         /*
2934          * Before we free the objects from the requests, we need to inspect
2935          * them for finding the guilty party. As the requests only borrow
2936          * their reference to the objects, the inspection must be done first.
2937          */
2938         for_each_engine(engine, dev_priv)
2939                 i915_gem_reset_engine_status(dev_priv, engine);
2940
2941         for_each_engine(engine, dev_priv)
2942                 i915_gem_reset_engine_cleanup(dev_priv, engine);
2943
2944         i915_gem_context_reset(dev);
2945
2946         i915_gem_restore_fences(dev);
2947
2948         WARN_ON(i915_verify_lists(dev));
2949 }
2950
2951 /**
2952  * This function clears the request list as sequence numbers are passed.
2953  */
2954 void
2955 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2956 {
2957         WARN_ON(i915_verify_lists(engine->dev));
2958
2959         /* Retire requests first as we use it above for the early return.
2960          * If we retire requests last, we may use a later seqno and so clear
2961          * the requests lists without clearing the active list, leading to
2962          * confusion.
2963          */
2964         while (!list_empty(&engine->request_list)) {
2965                 struct drm_i915_gem_request *request;
2966
2967                 request = list_first_entry(&engine->request_list,
2968                                            struct drm_i915_gem_request,
2969                                            list);
2970
2971                 if (!i915_gem_request_completed(request, true))
2972                         break;
2973
2974                 i915_gem_request_retire(request);
2975         }
2976
2977         /* Move any buffers on the active list that are no longer referenced
2978          * by the ringbuffer to the flushing/inactive lists as appropriate,
2979          * before we free the context associated with the requests.
2980          */
2981         while (!list_empty(&engine->active_list)) {
2982                 struct drm_i915_gem_object *obj;
2983
2984                 obj = list_first_entry(&engine->active_list,
2985                                        struct drm_i915_gem_object,
2986                                        engine_list[engine->id]);
2987
2988                 if (!list_empty(&obj->last_read_req[engine->id]->list))
2989                         break;
2990
2991                 i915_gem_object_retire__read(obj, engine->id);
2992         }
2993
2994         if (unlikely(engine->trace_irq_req &&
2995                      i915_gem_request_completed(engine->trace_irq_req, true))) {
2996                 engine->irq_put(engine);
2997                 i915_gem_request_assign(&engine->trace_irq_req, NULL);
2998         }
2999
3000         WARN_ON(i915_verify_lists(engine->dev));
3001 }
3002
3003 bool
3004 i915_gem_retire_requests(struct drm_device *dev)
3005 {
3006         struct drm_i915_private *dev_priv = dev->dev_private;
3007         struct intel_engine_cs *engine;
3008         bool idle = true;
3009
3010         for_each_engine(engine, dev_priv) {
3011                 i915_gem_retire_requests_ring(engine);
3012                 idle &= list_empty(&engine->request_list);
3013                 if (i915.enable_execlists) {
3014                         spin_lock_bh(&engine->execlist_lock);
3015                         idle &= list_empty(&engine->execlist_queue);
3016                         spin_unlock_bh(&engine->execlist_lock);
3017
3018                         intel_execlists_retire_requests(engine);
3019                 }
3020         }
3021
3022         if (idle)
3023                 mod_delayed_work(dev_priv->wq,
3024                                    &dev_priv->mm.idle_work,
3025                                    msecs_to_jiffies(100));
3026
3027         return idle;
3028 }
3029
3030 static void
3031 i915_gem_retire_work_handler(struct work_struct *work)
3032 {
3033         struct drm_i915_private *dev_priv =
3034                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3035         struct drm_device *dev = dev_priv->dev;
3036         bool idle;
3037
3038         /* Come back later if the device is busy... */
3039         idle = false;
3040         if (mutex_trylock(&dev->struct_mutex)) {
3041                 idle = i915_gem_retire_requests(dev);
3042                 mutex_unlock(&dev->struct_mutex);
3043         }
3044         if (!idle)
3045                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3046                                    round_jiffies_up_relative(HZ));
3047 }
3048
3049 static void
3050 i915_gem_idle_work_handler(struct work_struct *work)
3051 {
3052         struct drm_i915_private *dev_priv =
3053                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3054         struct drm_device *dev = dev_priv->dev;
3055         struct intel_engine_cs *engine;
3056
3057         for_each_engine(engine, dev_priv)
3058                 if (!list_empty(&engine->request_list))
3059                         return;
3060
3061         /* we probably should sync with hangcheck here, using cancel_work_sync.
3062          * Also locking seems to be fubar here, engine->request_list is protected
3063          * by dev->struct_mutex. */
3064
3065         intel_mark_idle(dev);
3066
3067         if (mutex_trylock(&dev->struct_mutex)) {
3068                 for_each_engine(engine, dev_priv)
3069                         i915_gem_batch_pool_fini(&engine->batch_pool);
3070
3071                 mutex_unlock(&dev->struct_mutex);
3072         }
3073 }
3074
3075 /**
3076  * Ensures that an object will eventually get non-busy by flushing any required
3077  * write domains, emitting any outstanding lazy request and retiring and
3078  * completed requests.
3079  */
3080 static int
3081 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3082 {
3083         int i;
3084
3085         if (!obj->active)
3086                 return 0;
3087
3088         for (i = 0; i < I915_NUM_ENGINES; i++) {
3089                 struct drm_i915_gem_request *req;
3090
3091                 req = obj->last_read_req[i];
3092                 if (req == NULL)
3093                         continue;
3094
3095                 if (list_empty(&req->list))
3096                         goto retire;
3097
3098                 if (i915_gem_request_completed(req, true)) {
3099                         __i915_gem_request_retire__upto(req);
3100 retire:
3101                         i915_gem_object_retire__read(obj, i);
3102                 }
3103         }
3104
3105         return 0;
3106 }
3107
3108 /**
3109  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3110  * @DRM_IOCTL_ARGS: standard ioctl arguments
3111  *
3112  * Returns 0 if successful, else an error is returned with the remaining time in
3113  * the timeout parameter.
3114  *  -ETIME: object is still busy after timeout
3115  *  -ERESTARTSYS: signal interrupted the wait
3116  *  -ENONENT: object doesn't exist
3117  * Also possible, but rare:
3118  *  -EAGAIN: GPU wedged
3119  *  -ENOMEM: damn
3120  *  -ENODEV: Internal IRQ fail
3121  *  -E?: The add request failed
3122  *
3123  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3124  * non-zero timeout parameter the wait ioctl will wait for the given number of
3125  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3126  * without holding struct_mutex the object may become re-busied before this
3127  * function completes. A similar but shorter * race condition exists in the busy
3128  * ioctl
3129  */
3130 int
3131 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3132 {
3133         struct drm_i915_gem_wait *args = data;
3134         struct drm_i915_gem_object *obj;
3135         struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3136         int i, n = 0;
3137         int ret;
3138
3139         if (args->flags != 0)
3140                 return -EINVAL;
3141
3142         ret = i915_mutex_lock_interruptible(dev);
3143         if (ret)
3144                 return ret;
3145
3146         obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3147         if (&obj->base == NULL) {
3148                 mutex_unlock(&dev->struct_mutex);
3149                 return -ENOENT;
3150         }
3151
3152         /* Need to make sure the object gets inactive eventually. */
3153         ret = i915_gem_object_flush_active(obj);
3154         if (ret)
3155                 goto out;
3156
3157         if (!obj->active)
3158                 goto out;
3159
3160         /* Do this after OLR check to make sure we make forward progress polling
3161          * on this IOCTL with a timeout == 0 (like busy ioctl)
3162          */
3163         if (args->timeout_ns == 0) {
3164                 ret = -ETIME;
3165                 goto out;
3166         }
3167
3168         drm_gem_object_unreference(&obj->base);
3169
3170         for (i = 0; i < I915_NUM_ENGINES; i++) {
3171                 if (obj->last_read_req[i] == NULL)
3172                         continue;
3173
3174                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3175         }
3176
3177         mutex_unlock(&dev->struct_mutex);
3178
3179         for (i = 0; i < n; i++) {
3180                 if (ret == 0)
3181                         ret = __i915_wait_request(req[i], true,
3182                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3183                                                   to_rps_client(file));
3184                 i915_gem_request_unreference__unlocked(req[i]);
3185         }
3186         return ret;
3187
3188 out:
3189         drm_gem_object_unreference(&obj->base);
3190         mutex_unlock(&dev->struct_mutex);
3191         return ret;
3192 }
3193
3194 static int
3195 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3196                        struct intel_engine_cs *to,
3197                        struct drm_i915_gem_request *from_req,
3198                        struct drm_i915_gem_request **to_req)
3199 {
3200         struct intel_engine_cs *from;
3201         int ret;
3202
3203         from = i915_gem_request_get_engine(from_req);
3204         if (to == from)
3205                 return 0;
3206
3207         if (i915_gem_request_completed(from_req, true))
3208                 return 0;
3209
3210         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3211                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3212                 ret = __i915_wait_request(from_req,
3213                                           i915->mm.interruptible,
3214                                           NULL,
3215                                           &i915->rps.semaphores);
3216                 if (ret)
3217                         return ret;
3218
3219                 i915_gem_object_retire_request(obj, from_req);
3220         } else {
3221                 int idx = intel_ring_sync_index(from, to);
3222                 u32 seqno = i915_gem_request_get_seqno(from_req);
3223
3224                 WARN_ON(!to_req);
3225
3226                 if (seqno <= from->semaphore.sync_seqno[idx])
3227                         return 0;
3228
3229                 if (*to_req == NULL) {
3230                         struct drm_i915_gem_request *req;
3231
3232                         req = i915_gem_request_alloc(to, NULL);
3233                         if (IS_ERR(req))
3234                                 return PTR_ERR(req);
3235
3236                         *to_req = req;
3237                 }
3238
3239                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3240                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3241                 if (ret)
3242                         return ret;
3243
3244                 /* We use last_read_req because sync_to()
3245                  * might have just caused seqno wrap under
3246                  * the radar.
3247                  */
3248                 from->semaphore.sync_seqno[idx] =
3249                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3250         }
3251
3252         return 0;
3253 }
3254
3255 /**
3256  * i915_gem_object_sync - sync an object to a ring.
3257  *
3258  * @obj: object which may be in use on another ring.
3259  * @to: ring we wish to use the object on. May be NULL.
3260  * @to_req: request we wish to use the object for. See below.
3261  *          This will be allocated and returned if a request is
3262  *          required but not passed in.
3263  *
3264  * This code is meant to abstract object synchronization with the GPU.
3265  * Calling with NULL implies synchronizing the object with the CPU
3266  * rather than a particular GPU ring. Conceptually we serialise writes
3267  * between engines inside the GPU. We only allow one engine to write
3268  * into a buffer at any time, but multiple readers. To ensure each has
3269  * a coherent view of memory, we must:
3270  *
3271  * - If there is an outstanding write request to the object, the new
3272  *   request must wait for it to complete (either CPU or in hw, requests
3273  *   on the same ring will be naturally ordered).
3274  *
3275  * - If we are a write request (pending_write_domain is set), the new
3276  *   request must wait for outstanding read requests to complete.
3277  *
3278  * For CPU synchronisation (NULL to) no request is required. For syncing with
3279  * rings to_req must be non-NULL. However, a request does not have to be
3280  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3281  * request will be allocated automatically and returned through *to_req. Note
3282  * that it is not guaranteed that commands will be emitted (because the system
3283  * might already be idle). Hence there is no need to create a request that
3284  * might never have any work submitted. Note further that if a request is
3285  * returned in *to_req, it is the responsibility of the caller to submit
3286  * that request (after potentially adding more work to it).
3287  *
3288  * Returns 0 if successful, else propagates up the lower layer error.
3289  */
3290 int
3291 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3292                      struct intel_engine_cs *to,
3293                      struct drm_i915_gem_request **to_req)
3294 {
3295         const bool readonly = obj->base.pending_write_domain == 0;
3296         struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3297         int ret, i, n;
3298
3299         if (!obj->active)
3300                 return 0;
3301
3302         if (to == NULL)
3303                 return i915_gem_object_wait_rendering(obj, readonly);
3304
3305         n = 0;
3306         if (readonly) {
3307                 if (obj->last_write_req)
3308                         req[n++] = obj->last_write_req;
3309         } else {
3310                 for (i = 0; i < I915_NUM_ENGINES; i++)
3311                         if (obj->last_read_req[i])
3312                                 req[n++] = obj->last_read_req[i];
3313         }
3314         for (i = 0; i < n; i++) {
3315                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3316                 if (ret)
3317                         return ret;
3318         }
3319
3320         return 0;
3321 }
3322
3323 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3324 {
3325         u32 old_write_domain, old_read_domains;
3326
3327         /* Force a pagefault for domain tracking on next user access */
3328         i915_gem_release_mmap(obj);
3329
3330         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3331                 return;
3332
3333         old_read_domains = obj->base.read_domains;
3334         old_write_domain = obj->base.write_domain;
3335
3336         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3337         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3338
3339         trace_i915_gem_object_change_domain(obj,
3340                                             old_read_domains,
3341                                             old_write_domain);
3342 }
3343
3344 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3345 {
3346         struct drm_i915_gem_object *obj = vma->obj;
3347         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3348         int ret;
3349
3350         if (list_empty(&vma->obj_link))
3351                 return 0;
3352
3353         if (!drm_mm_node_allocated(&vma->node)) {
3354                 i915_gem_vma_destroy(vma);
3355                 return 0;
3356         }
3357
3358         if (vma->pin_count)
3359                 return -EBUSY;
3360
3361         BUG_ON(obj->pages == NULL);
3362
3363         if (wait) {
3364                 ret = i915_gem_object_wait_rendering(obj, false);
3365                 if (ret)
3366                         return ret;
3367         }
3368
3369         if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3370                 i915_gem_object_finish_gtt(obj);
3371
3372                 /* release the fence reg _after_ flushing */
3373                 ret = i915_gem_object_put_fence(obj);
3374                 if (ret)
3375                         return ret;
3376         }
3377
3378         trace_i915_vma_unbind(vma);
3379
3380         vma->vm->unbind_vma(vma);
3381         vma->bound = 0;
3382
3383         list_del_init(&vma->vm_link);
3384         if (vma->is_ggtt) {
3385                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3386                         obj->map_and_fenceable = false;
3387                 } else if (vma->ggtt_view.pages) {
3388                         sg_free_table(vma->ggtt_view.pages);
3389                         kfree(vma->ggtt_view.pages);
3390                 }
3391                 vma->ggtt_view.pages = NULL;
3392         }
3393
3394         drm_mm_remove_node(&vma->node);
3395         i915_gem_vma_destroy(vma);
3396
3397         /* Since the unbound list is global, only move to that list if
3398          * no more VMAs exist. */
3399         if (list_empty(&obj->vma_list))
3400                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3401
3402         /* And finally now the object is completely decoupled from this vma,
3403          * we can drop its hold on the backing storage and allow it to be
3404          * reaped by the shrinker.
3405          */
3406         i915_gem_object_unpin_pages(obj);
3407
3408         return 0;
3409 }
3410
3411 int i915_vma_unbind(struct i915_vma *vma)
3412 {
3413         return __i915_vma_unbind(vma, true);
3414 }
3415
3416 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3417 {
3418         return __i915_vma_unbind(vma, false);
3419 }
3420
3421 int i915_gpu_idle(struct drm_device *dev)
3422 {
3423         struct drm_i915_private *dev_priv = dev->dev_private;
3424         struct intel_engine_cs *engine;
3425         int ret;
3426
3427         /* Flush everything onto the inactive list. */
3428         for_each_engine(engine, dev_priv) {
3429                 if (!i915.enable_execlists) {
3430                         struct drm_i915_gem_request *req;
3431
3432                         req = i915_gem_request_alloc(engine, NULL);
3433                         if (IS_ERR(req))
3434                                 return PTR_ERR(req);
3435
3436                         ret = i915_switch_context(req);
3437                         i915_add_request_no_flush(req);
3438                         if (ret)
3439                                 return ret;
3440                 }
3441
3442                 ret = intel_engine_idle(engine);
3443                 if (ret)
3444                         return ret;
3445         }
3446
3447         WARN_ON(i915_verify_lists(dev));
3448         return 0;
3449 }
3450
3451 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3452                                      unsigned long cache_level)
3453 {
3454         struct drm_mm_node *gtt_space = &vma->node;
3455         struct drm_mm_node *other;
3456
3457         /*
3458          * On some machines we have to be careful when putting differing types
3459          * of snoopable memory together to avoid the prefetcher crossing memory
3460          * domains and dying. During vm initialisation, we decide whether or not
3461          * these constraints apply and set the drm_mm.color_adjust
3462          * appropriately.
3463          */
3464         if (vma->vm->mm.color_adjust == NULL)
3465                 return true;
3466
3467         if (!drm_mm_node_allocated(gtt_space))
3468                 return true;
3469
3470         if (list_empty(&gtt_space->node_list))
3471                 return true;
3472
3473         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3474         if (other->allocated && !other->hole_follows && other->color != cache_level)
3475                 return false;
3476
3477         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3478         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3479                 return false;
3480
3481         return true;
3482 }
3483
3484 /**
3485  * Finds free space in the GTT aperture and binds the object or a view of it
3486  * there.
3487  */
3488 static struct i915_vma *
3489 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3490                            struct i915_address_space *vm,
3491                            const struct i915_ggtt_view *ggtt_view,
3492                            unsigned alignment,
3493                            uint64_t flags)
3494 {
3495         struct drm_device *dev = obj->base.dev;
3496         struct drm_i915_private *dev_priv = to_i915(dev);
3497         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3498         u32 fence_alignment, unfenced_alignment;
3499         u32 search_flag, alloc_flag;
3500         u64 start, end;
3501         u64 size, fence_size;
3502         struct i915_vma *vma;
3503         int ret;
3504
3505         if (i915_is_ggtt(vm)) {
3506                 u32 view_size;
3507
3508                 if (WARN_ON(!ggtt_view))
3509                         return ERR_PTR(-EINVAL);
3510
3511                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3512
3513                 fence_size = i915_gem_get_gtt_size(dev,
3514                                                    view_size,
3515                                                    obj->tiling_mode);
3516                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3517                                                              view_size,
3518                                                              obj->tiling_mode,
3519                                                              true);
3520                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3521                                                                 view_size,
3522                                                                 obj->tiling_mode,
3523                                                                 false);
3524                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3525         } else {
3526                 fence_size = i915_gem_get_gtt_size(dev,
3527                                                    obj->base.size,
3528                                                    obj->tiling_mode);
3529                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3530                                                              obj->base.size,
3531                                                              obj->tiling_mode,
3532                                                              true);
3533                 unfenced_alignment =
3534                         i915_gem_get_gtt_alignment(dev,
3535                                                    obj->base.size,
3536                                                    obj->tiling_mode,
3537                                                    false);
3538                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3539         }
3540
3541         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3542         end = vm->total;
3543         if (flags & PIN_MAPPABLE)
3544                 end = min_t(u64, end, ggtt->mappable_end);
3545         if (flags & PIN_ZONE_4G)
3546                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3547
3548         if (alignment == 0)
3549                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3550                                                 unfenced_alignment;
3551         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3552                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3553                           ggtt_view ? ggtt_view->type : 0,
3554                           alignment);
3555                 return ERR_PTR(-EINVAL);
3556         }
3557
3558         /* If binding the object/GGTT view requires more space than the entire
3559          * aperture has, reject it early before evicting everything in a vain
3560          * attempt to find space.
3561          */
3562         if (size > end) {
3563                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3564                           ggtt_view ? ggtt_view->type : 0,
3565                           size,
3566                           flags & PIN_MAPPABLE ? "mappable" : "total",
3567                           end);
3568                 return ERR_PTR(-E2BIG);
3569         }
3570
3571         ret = i915_gem_object_get_pages(obj);
3572         if (ret)
3573                 return ERR_PTR(ret);
3574
3575         i915_gem_object_pin_pages(obj);
3576
3577         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3578                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3579
3580         if (IS_ERR(vma))
3581                 goto err_unpin;
3582
3583         if (flags & PIN_OFFSET_FIXED) {
3584                 uint64_t offset = flags & PIN_OFFSET_MASK;
3585
3586                 if (offset & (alignment - 1) || offset + size > end) {
3587                         ret = -EINVAL;
3588                         goto err_free_vma;
3589                 }
3590                 vma->node.start = offset;
3591                 vma->node.size = size;
3592                 vma->node.color = obj->cache_level;
3593                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3594                 if (ret) {
3595                         ret = i915_gem_evict_for_vma(vma);
3596                         if (ret == 0)
3597                                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3598                 }
3599                 if (ret)
3600                         goto err_free_vma;
3601         } else {
3602                 if (flags & PIN_HIGH) {
3603                         search_flag = DRM_MM_SEARCH_BELOW;
3604                         alloc_flag = DRM_MM_CREATE_TOP;
3605                 } else {
3606                         search_flag = DRM_MM_SEARCH_DEFAULT;
3607                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3608                 }
3609
3610 search_free:
3611                 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3612                                                           size, alignment,
3613                                                           obj->cache_level,
3614                                                           start, end,
3615                                                           search_flag,
3616                                                           alloc_flag);
3617                 if (ret) {
3618                         ret = i915_gem_evict_something(dev, vm, size, alignment,
3619                                                        obj->cache_level,
3620                                                        start, end,
3621                                                        flags);
3622                         if (ret == 0)
3623                                 goto search_free;
3624
3625                         goto err_free_vma;
3626                 }
3627         }
3628         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3629                 ret = -EINVAL;
3630                 goto err_remove_node;
3631         }
3632
3633         trace_i915_vma_bind(vma, flags);
3634         ret = i915_vma_bind(vma, obj->cache_level, flags);
3635         if (ret)
3636                 goto err_remove_node;
3637
3638         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3639         list_add_tail(&vma->vm_link, &vm->inactive_list);
3640
3641         return vma;
3642
3643 err_remove_node:
3644         drm_mm_remove_node(&vma->node);
3645 err_free_vma:
3646         i915_gem_vma_destroy(vma);
3647         vma = ERR_PTR(ret);
3648 err_unpin:
3649         i915_gem_object_unpin_pages(obj);
3650         return vma;
3651 }
3652
3653 bool
3654 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3655                         bool force)
3656 {
3657         /* If we don't have a page list set up, then we're not pinned
3658          * to GPU, and we can ignore the cache flush because it'll happen
3659          * again at bind time.
3660          */
3661         if (obj->pages == NULL)
3662                 return false;
3663
3664         /*
3665          * Stolen memory is always coherent with the GPU as it is explicitly
3666          * marked as wc by the system, or the system is cache-coherent.
3667          */
3668         if (obj->stolen || obj->phys_handle)
3669                 return false;
3670
3671         /* If the GPU is snooping the contents of the CPU cache,
3672          * we do not need to manually clear the CPU cache lines.  However,
3673          * the caches are only snooped when the render cache is
3674          * flushed/invalidated.  As we always have to emit invalidations
3675          * and flushes when moving into and out of the RENDER domain, correct
3676          * snooping behaviour occurs naturally as the result of our domain
3677          * tracking.
3678          */
3679         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3680                 obj->cache_dirty = true;
3681                 return false;
3682         }
3683
3684         trace_i915_gem_object_clflush(obj);
3685         drm_clflush_sg(obj->pages);
3686         obj->cache_dirty = false;
3687
3688         return true;
3689 }
3690
3691 /** Flushes the GTT write domain for the object if it's dirty. */
3692 static void
3693 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3694 {
3695         uint32_t old_write_domain;
3696
3697         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3698                 return;
3699
3700         /* No actual flushing is required for the GTT write domain.  Writes
3701          * to it immediately go to main memory as far as we know, so there's
3702          * no chipset flush.  It also doesn't land in render cache.
3703          *
3704          * However, we do have to enforce the order so that all writes through
3705          * the GTT land before any writes to the device, such as updates to
3706          * the GATT itself.
3707          */
3708         wmb();
3709
3710         old_write_domain = obj->base.write_domain;
3711         obj->base.write_domain = 0;
3712
3713         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3714
3715         trace_i915_gem_object_change_domain(obj,
3716                                             obj->base.read_domains,
3717                                             old_write_domain);
3718 }
3719
3720 /** Flushes the CPU write domain for the object if it's dirty. */
3721 static void
3722 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3723 {
3724         uint32_t old_write_domain;
3725
3726         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3727                 return;
3728
3729         if (i915_gem_clflush_object(obj, obj->pin_display))
3730                 i915_gem_chipset_flush(obj->base.dev);
3731
3732         old_write_domain = obj->base.write_domain;
3733         obj->base.write_domain = 0;
3734
3735         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3736
3737         trace_i915_gem_object_change_domain(obj,
3738                                             obj->base.read_domains,
3739                                             old_write_domain);
3740 }
3741
3742 /**
3743  * Moves a single object to the GTT read, and possibly write domain.
3744  *
3745  * This function returns when the move is complete, including waiting on
3746  * flushes to occur.
3747  */
3748 int
3749 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3750 {
3751         struct drm_device *dev = obj->base.dev;
3752         struct drm_i915_private *dev_priv = to_i915(dev);
3753         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3754         uint32_t old_write_domain, old_read_domains;
3755         struct i915_vma *vma;
3756         int ret;
3757
3758         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3759                 return 0;
3760
3761         ret = i915_gem_object_wait_rendering(obj, !write);
3762         if (ret)
3763                 return ret;
3764
3765         /* Flush and acquire obj->pages so that we are coherent through
3766          * direct access in memory with previous cached writes through
3767          * shmemfs and that our cache domain tracking remains valid.
3768          * For example, if the obj->filp was moved to swap without us
3769          * being notified and releasing the pages, we would mistakenly
3770          * continue to assume that the obj remained out of the CPU cached
3771          * domain.
3772          */
3773         ret = i915_gem_object_get_pages(obj);
3774         if (ret)
3775                 return ret;
3776
3777         i915_gem_object_flush_cpu_write_domain(obj);
3778
3779         /* Serialise direct access to this object with the barriers for
3780          * coherent writes from the GPU, by effectively invalidating the
3781          * GTT domain upon first access.
3782          */
3783         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3784                 mb();
3785
3786         old_write_domain = obj->base.write_domain;
3787         old_read_domains = obj->base.read_domains;
3788
3789         /* It should now be out of any other write domains, and we can update
3790          * the domain values for our changes.
3791          */
3792         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3793         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3794         if (write) {
3795                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3796                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3797                 obj->dirty = 1;
3798         }
3799
3800         trace_i915_gem_object_change_domain(obj,
3801                                             old_read_domains,
3802                                             old_write_domain);
3803
3804         /* And bump the LRU for this access */
3805         vma = i915_gem_obj_to_ggtt(obj);
3806         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3807                 list_move_tail(&vma->vm_link,
3808                                &ggtt->base.inactive_list);
3809
3810         return 0;
3811 }
3812
3813 /**
3814  * Changes the cache-level of an object across all VMA.
3815  *
3816  * After this function returns, the object will be in the new cache-level
3817  * across all GTT and the contents of the backing storage will be coherent,
3818  * with respect to the new cache-level. In order to keep the backing storage
3819  * coherent for all users, we only allow a single cache level to be set
3820  * globally on the object and prevent it from being changed whilst the
3821  * hardware is reading from the object. That is if the object is currently
3822  * on the scanout it will be set to uncached (or equivalent display
3823  * cache coherency) and all non-MOCS GPU access will also be uncached so
3824  * that all direct access to the scanout remains coherent.
3825  */
3826 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3827                                     enum i915_cache_level cache_level)
3828 {
3829         struct drm_device *dev = obj->base.dev;
3830         struct i915_vma *vma, *next;
3831         bool bound = false;
3832         int ret = 0;
3833
3834         if (obj->cache_level == cache_level)
3835                 goto out;
3836
3837         /* Inspect the list of currently bound VMA and unbind any that would
3838          * be invalid given the new cache-level. This is principally to
3839          * catch the issue of the CS prefetch crossing page boundaries and
3840          * reading an invalid PTE on older architectures.
3841          */
3842         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3843                 if (!drm_mm_node_allocated(&vma->node))
3844                         continue;
3845
3846                 if (vma->pin_count) {
3847                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3848                         return -EBUSY;
3849                 }
3850
3851                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3852                         ret = i915_vma_unbind(vma);
3853                         if (ret)
3854                                 return ret;
3855                 } else
3856                         bound = true;
3857         }
3858
3859         /* We can reuse the existing drm_mm nodes but need to change the
3860          * cache-level on the PTE. We could simply unbind them all and
3861          * rebind with the correct cache-level on next use. However since
3862          * we already have a valid slot, dma mapping, pages etc, we may as
3863          * rewrite the PTE in the belief that doing so tramples upon less
3864          * state and so involves less work.
3865          */
3866         if (bound) {
3867                 /* Before we change the PTE, the GPU must not be accessing it.
3868                  * If we wait upon the object, we know that all the bound
3869                  * VMA are no longer active.
3870                  */
3871                 ret = i915_gem_object_wait_rendering(obj, false);
3872                 if (ret)
3873                         return ret;
3874
3875                 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3876                         /* Access to snoopable pages through the GTT is
3877                          * incoherent and on some machines causes a hard
3878                          * lockup. Relinquish the CPU mmaping to force
3879                          * userspace to refault in the pages and we can
3880                          * then double check if the GTT mapping is still
3881                          * valid for that pointer access.
3882                          */
3883                         i915_gem_release_mmap(obj);
3884
3885                         /* As we no longer need a fence for GTT access,
3886                          * we can relinquish it now (and so prevent having
3887                          * to steal a fence from someone else on the next
3888                          * fence request). Note GPU activity would have
3889                          * dropped the fence as all snoopable access is
3890                          * supposed to be linear.
3891                          */
3892                         ret = i915_gem_object_put_fence(obj);
3893                         if (ret)
3894                                 return ret;
3895                 } else {
3896                         /* We either have incoherent backing store and
3897                          * so no GTT access or the architecture is fully
3898                          * coherent. In such cases, existing GTT mmaps
3899                          * ignore the cache bit in the PTE and we can
3900                          * rewrite it without confusing the GPU or having
3901                          * to force userspace to fault back in its mmaps.
3902                          */
3903                 }
3904
3905                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3906                         if (!drm_mm_node_allocated(&vma->node))
3907                                 continue;
3908
3909                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3910                         if (ret)
3911                                 return ret;
3912                 }
3913         }
3914
3915         list_for_each_entry(vma, &obj->vma_list, obj_link)
3916                 vma->node.color = cache_level;
3917         obj->cache_level = cache_level;
3918
3919 out:
3920         /* Flush the dirty CPU caches to the backing storage so that the
3921          * object is now coherent at its new cache level (with respect
3922          * to the access domain).
3923          */
3924         if (obj->cache_dirty &&
3925             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3926             cpu_write_needs_clflush(obj)) {
3927                 if (i915_gem_clflush_object(obj, true))
3928                         i915_gem_chipset_flush(obj->base.dev);
3929         }
3930
3931         return 0;
3932 }
3933
3934 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3935                                struct drm_file *file)
3936 {
3937         struct drm_i915_gem_caching *args = data;
3938         struct drm_i915_gem_object *obj;
3939
3940         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
3941         if (&obj->base == NULL)
3942                 return -ENOENT;
3943
3944         switch (obj->cache_level) {
3945         case I915_CACHE_LLC:
3946         case I915_CACHE_L3_LLC:
3947                 args->caching = I915_CACHING_CACHED;
3948                 break;
3949
3950         case I915_CACHE_WT:
3951                 args->caching = I915_CACHING_DISPLAY;
3952                 break;
3953
3954         default:
3955                 args->caching = I915_CACHING_NONE;
3956                 break;
3957         }
3958
3959         drm_gem_object_unreference_unlocked(&obj->base);
3960         return 0;
3961 }
3962
3963 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3964                                struct drm_file *file)
3965 {
3966         struct drm_i915_private *dev_priv = dev->dev_private;
3967         struct drm_i915_gem_caching *args = data;
3968         struct drm_i915_gem_object *obj;
3969         enum i915_cache_level level;
3970         int ret;
3971
3972         switch (args->caching) {
3973         case I915_CACHING_NONE:
3974                 level = I915_CACHE_NONE;
3975                 break;
3976         case I915_CACHING_CACHED:
3977                 /*
3978                  * Due to a HW issue on BXT A stepping, GPU stores via a
3979                  * snooped mapping may leave stale data in a corresponding CPU
3980                  * cacheline, whereas normally such cachelines would get
3981                  * invalidated.
3982                  */
3983                 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3984                         return -ENODEV;
3985
3986                 level = I915_CACHE_LLC;
3987                 break;
3988         case I915_CACHING_DISPLAY:
3989                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3990                 break;
3991         default:
3992                 return -EINVAL;
3993         }
3994
3995         intel_runtime_pm_get(dev_priv);
3996
3997         ret = i915_mutex_lock_interruptible(dev);
3998         if (ret)
3999                 goto rpm_put;
4000
4001         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4002         if (&obj->base == NULL) {
4003                 ret = -ENOENT;
4004                 goto unlock;
4005         }
4006
4007         ret = i915_gem_object_set_cache_level(obj, level);
4008
4009         drm_gem_object_unreference(&obj->base);
4010 unlock:
4011         mutex_unlock(&dev->struct_mutex);
4012 rpm_put:
4013         intel_runtime_pm_put(dev_priv);
4014
4015         return ret;
4016 }
4017
4018 /*
4019  * Prepare buffer for display plane (scanout, cursors, etc).
4020  * Can be called from an uninterruptible phase (modesetting) and allows
4021  * any flushes to be pipelined (for pageflips).
4022  */
4023 int
4024 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4025                                      u32 alignment,
4026                                      const struct i915_ggtt_view *view)
4027 {
4028         u32 old_read_domains, old_write_domain;
4029         int ret;
4030
4031         /* Mark the pin_display early so that we account for the
4032          * display coherency whilst setting up the cache domains.
4033          */
4034         obj->pin_display++;
4035
4036         /* The display engine is not coherent with the LLC cache on gen6.  As
4037          * a result, we make sure that the pinning that is about to occur is
4038          * done with uncached PTEs. This is lowest common denominator for all
4039          * chipsets.
4040          *
4041          * However for gen6+, we could do better by using the GFDT bit instead
4042          * of uncaching, which would allow us to flush all the LLC-cached data
4043          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4044          */
4045         ret = i915_gem_object_set_cache_level(obj,
4046                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4047         if (ret)
4048                 goto err_unpin_display;
4049
4050         /* As the user may map the buffer once pinned in the display plane
4051          * (e.g. libkms for the bootup splash), we have to ensure that we
4052          * always use map_and_fenceable for all scanout buffers.
4053          */
4054         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4055                                        view->type == I915_GGTT_VIEW_NORMAL ?
4056                                        PIN_MAPPABLE : 0);
4057         if (ret)
4058                 goto err_unpin_display;
4059
4060         i915_gem_object_flush_cpu_write_domain(obj);
4061
4062         old_write_domain = obj->base.write_domain;
4063         old_read_domains = obj->base.read_domains;
4064
4065         /* It should now be out of any other write domains, and we can update
4066          * the domain values for our changes.
4067          */
4068         obj->base.write_domain = 0;
4069         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4070
4071         trace_i915_gem_object_change_domain(obj,
4072                                             old_read_domains,
4073                                             old_write_domain);
4074
4075         return 0;
4076
4077 err_unpin_display:
4078         obj->pin_display--;
4079         return ret;
4080 }
4081
4082 void
4083 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4084                                          const struct i915_ggtt_view *view)
4085 {
4086         if (WARN_ON(obj->pin_display == 0))
4087                 return;
4088
4089         i915_gem_object_ggtt_unpin_view(obj, view);
4090
4091         obj->pin_display--;
4092 }
4093
4094 /**
4095  * Moves a single object to the CPU read, and possibly write domain.
4096  *
4097  * This function returns when the move is complete, including waiting on
4098  * flushes to occur.
4099  */
4100 int
4101 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4102 {
4103         uint32_t old_write_domain, old_read_domains;
4104         int ret;
4105
4106         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4107                 return 0;
4108
4109         ret = i915_gem_object_wait_rendering(obj, !write);
4110         if (ret)
4111                 return ret;
4112
4113         i915_gem_object_flush_gtt_write_domain(obj);
4114
4115         old_write_domain = obj->base.write_domain;
4116         old_read_domains = obj->base.read_domains;
4117
4118         /* Flush the CPU cache if it's still invalid. */
4119         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4120                 i915_gem_clflush_object(obj, false);
4121
4122                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4123         }
4124
4125         /* It should now be out of any other write domains, and we can update
4126          * the domain values for our changes.
4127          */
4128         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4129
4130         /* If we're writing through the CPU, then the GPU read domains will
4131          * need to be invalidated at next use.
4132          */
4133         if (write) {
4134                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4135                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4136         }
4137
4138         trace_i915_gem_object_change_domain(obj,
4139                                             old_read_domains,
4140                                             old_write_domain);
4141
4142         return 0;
4143 }
4144
4145 /* Throttle our rendering by waiting until the ring has completed our requests
4146  * emitted over 20 msec ago.
4147  *
4148  * Note that if we were to use the current jiffies each time around the loop,
4149  * we wouldn't escape the function with any frames outstanding if the time to
4150  * render a frame was over 20ms.
4151  *
4152  * This should get us reasonable parallelism between CPU and GPU but also
4153  * relatively low latency when blocking on a particular request to finish.
4154  */
4155 static int
4156 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4157 {
4158         struct drm_i915_private *dev_priv = dev->dev_private;
4159         struct drm_i915_file_private *file_priv = file->driver_priv;
4160         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4161         struct drm_i915_gem_request *request, *target = NULL;
4162         int ret;
4163
4164         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4165         if (ret)
4166                 return ret;
4167
4168         /* ABI: return -EIO if already wedged */
4169         if (i915_terminally_wedged(&dev_priv->gpu_error))
4170                 return -EIO;
4171
4172         spin_lock(&file_priv->mm.lock);
4173         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4174                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4175                         break;
4176
4177                 /*
4178                  * Note that the request might not have been submitted yet.
4179                  * In which case emitted_jiffies will be zero.
4180                  */
4181                 if (!request->emitted_jiffies)
4182                         continue;
4183
4184                 target = request;
4185         }
4186         if (target)
4187                 i915_gem_request_reference(target);
4188         spin_unlock(&file_priv->mm.lock);
4189
4190         if (target == NULL)
4191                 return 0;
4192
4193         ret = __i915_wait_request(target, true, NULL, NULL);
4194         if (ret == 0)
4195                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4196
4197         i915_gem_request_unreference__unlocked(target);
4198
4199         return ret;
4200 }
4201
4202 static bool
4203 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4204 {
4205         struct drm_i915_gem_object *obj = vma->obj;
4206
4207         if (alignment &&
4208             vma->node.start & (alignment - 1))
4209                 return true;
4210
4211         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4212                 return true;
4213
4214         if (flags & PIN_OFFSET_BIAS &&
4215             vma->node.start < (flags & PIN_OFFSET_MASK))
4216                 return true;
4217
4218         if (flags & PIN_OFFSET_FIXED &&
4219             vma->node.start != (flags & PIN_OFFSET_MASK))
4220                 return true;
4221
4222         return false;
4223 }
4224
4225 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4226 {
4227         struct drm_i915_gem_object *obj = vma->obj;
4228         bool mappable, fenceable;
4229         u32 fence_size, fence_alignment;
4230
4231         fence_size = i915_gem_get_gtt_size(obj->base.dev,
4232                                            obj->base.size,
4233                                            obj->tiling_mode);
4234         fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4235                                                      obj->base.size,
4236                                                      obj->tiling_mode,
4237                                                      true);
4238
4239         fenceable = (vma->node.size == fence_size &&
4240                      (vma->node.start & (fence_alignment - 1)) == 0);
4241
4242         mappable = (vma->node.start + fence_size <=
4243                     to_i915(obj->base.dev)->ggtt.mappable_end);
4244
4245         obj->map_and_fenceable = mappable && fenceable;
4246 }
4247
4248 static int
4249 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4250                        struct i915_address_space *vm,
4251                        const struct i915_ggtt_view *ggtt_view,
4252                        uint32_t alignment,
4253                        uint64_t flags)
4254 {
4255         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4256         struct i915_vma *vma;
4257         unsigned bound;
4258         int ret;
4259
4260         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4261                 return -ENODEV;
4262
4263         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4264                 return -EINVAL;
4265
4266         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4267                 return -EINVAL;
4268
4269         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4270                 return -EINVAL;
4271
4272         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4273                           i915_gem_obj_to_vma(obj, vm);
4274
4275         if (vma) {
4276                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4277                         return -EBUSY;
4278
4279                 if (i915_vma_misplaced(vma, alignment, flags)) {
4280                         WARN(vma->pin_count,
4281                              "bo is already pinned in %s with incorrect alignment:"
4282                              " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4283                              " obj->map_and_fenceable=%d\n",
4284                              ggtt_view ? "ggtt" : "ppgtt",
4285                              upper_32_bits(vma->node.start),
4286                              lower_32_bits(vma->node.start),
4287                              alignment,
4288                              !!(flags & PIN_MAPPABLE),
4289                              obj->map_and_fenceable);
4290                         ret = i915_vma_unbind(vma);
4291                         if (ret)
4292                                 return ret;
4293
4294                         vma = NULL;
4295                 }
4296         }
4297
4298         bound = vma ? vma->bound : 0;
4299         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4300                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4301                                                  flags);
4302                 if (IS_ERR(vma))
4303                         return PTR_ERR(vma);
4304         } else {
4305                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4306                 if (ret)
4307                         return ret;
4308         }
4309
4310         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4311             (bound ^ vma->bound) & GLOBAL_BIND) {
4312                 __i915_vma_set_map_and_fenceable(vma);
4313                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4314         }
4315
4316         vma->pin_count++;
4317         return 0;
4318 }
4319
4320 int
4321 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4322                     struct i915_address_space *vm,
4323                     uint32_t alignment,
4324                     uint64_t flags)
4325 {
4326         return i915_gem_object_do_pin(obj, vm,
4327                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4328                                       alignment, flags);
4329 }
4330
4331 int
4332 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4333                          const struct i915_ggtt_view *view,
4334                          uint32_t alignment,
4335                          uint64_t flags)
4336 {
4337         struct drm_device *dev = obj->base.dev;
4338         struct drm_i915_private *dev_priv = to_i915(dev);
4339         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4340
4341         BUG_ON(!view);
4342
4343         return i915_gem_object_do_pin(obj, &ggtt->base, view,
4344                                       alignment, flags | PIN_GLOBAL);
4345 }
4346
4347 void
4348 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4349                                 const struct i915_ggtt_view *view)
4350 {
4351         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4352
4353         WARN_ON(vma->pin_count == 0);
4354         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4355
4356         --vma->pin_count;
4357 }
4358
4359 int
4360 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4361                     struct drm_file *file)
4362 {
4363         struct drm_i915_gem_busy *args = data;
4364         struct drm_i915_gem_object *obj;
4365         int ret;
4366
4367         ret = i915_mutex_lock_interruptible(dev);
4368         if (ret)
4369                 return ret;
4370
4371         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4372         if (&obj->base == NULL) {
4373                 ret = -ENOENT;
4374                 goto unlock;
4375         }
4376
4377         /* Count all active objects as busy, even if they are currently not used
4378          * by the gpu. Users of this interface expect objects to eventually
4379          * become non-busy without any further actions, therefore emit any
4380          * necessary flushes here.
4381          */
4382         ret = i915_gem_object_flush_active(obj);
4383         if (ret)
4384                 goto unref;
4385
4386         args->busy = 0;
4387         if (obj->active) {
4388                 int i;
4389
4390                 for (i = 0; i < I915_NUM_ENGINES; i++) {
4391                         struct drm_i915_gem_request *req;
4392
4393                         req = obj->last_read_req[i];
4394                         if (req)
4395                                 args->busy |= 1 << (16 + req->engine->exec_id);
4396                 }
4397                 if (obj->last_write_req)
4398                         args->busy |= obj->last_write_req->engine->exec_id;
4399         }
4400
4401 unref:
4402         drm_gem_object_unreference(&obj->base);
4403 unlock:
4404         mutex_unlock(&dev->struct_mutex);
4405         return ret;
4406 }
4407
4408 int
4409 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4410                         struct drm_file *file_priv)
4411 {
4412         return i915_gem_ring_throttle(dev, file_priv);
4413 }
4414
4415 int
4416 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4417                        struct drm_file *file_priv)
4418 {
4419         struct drm_i915_private *dev_priv = dev->dev_private;
4420         struct drm_i915_gem_madvise *args = data;
4421         struct drm_i915_gem_object *obj;
4422         int ret;
4423
4424         switch (args->madv) {
4425         case I915_MADV_DONTNEED:
4426         case I915_MADV_WILLNEED:
4427             break;
4428         default:
4429             return -EINVAL;
4430         }
4431
4432         ret = i915_mutex_lock_interruptible(dev);
4433         if (ret)
4434                 return ret;
4435
4436         obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4437         if (&obj->base == NULL) {
4438                 ret = -ENOENT;
4439                 goto unlock;
4440         }
4441
4442         if (i915_gem_obj_is_pinned(obj)) {
4443                 ret = -EINVAL;
4444                 goto out;
4445         }
4446
4447         if (obj->pages &&
4448             obj->tiling_mode != I915_TILING_NONE &&
4449             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4450                 if (obj->madv == I915_MADV_WILLNEED)
4451                         i915_gem_object_unpin_pages(obj);
4452                 if (args->madv == I915_MADV_WILLNEED)
4453                         i915_gem_object_pin_pages(obj);
4454         }
4455
4456         if (obj->madv != __I915_MADV_PURGED)
4457                 obj->madv = args->madv;
4458
4459         /* if the object is no longer attached, discard its backing storage */
4460         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4461                 i915_gem_object_truncate(obj);
4462
4463         args->retained = obj->madv != __I915_MADV_PURGED;
4464
4465 out:
4466         drm_gem_object_unreference(&obj->base);
4467 unlock:
4468         mutex_unlock(&dev->struct_mutex);
4469         return ret;
4470 }
4471
4472 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4473                           const struct drm_i915_gem_object_ops *ops)
4474 {
4475         int i;
4476
4477         INIT_LIST_HEAD(&obj->global_list);
4478         for (i = 0; i < I915_NUM_ENGINES; i++)
4479                 INIT_LIST_HEAD(&obj->engine_list[i]);
4480         INIT_LIST_HEAD(&obj->obj_exec_link);
4481         INIT_LIST_HEAD(&obj->vma_list);
4482         INIT_LIST_HEAD(&obj->batch_pool_link);
4483
4484         obj->ops = ops;
4485
4486         obj->fence_reg = I915_FENCE_REG_NONE;
4487         obj->madv = I915_MADV_WILLNEED;
4488
4489         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4490 }
4491
4492 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4493         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4494         .get_pages = i915_gem_object_get_pages_gtt,
4495         .put_pages = i915_gem_object_put_pages_gtt,
4496 };
4497
4498 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4499                                                   size_t size)
4500 {
4501         struct drm_i915_gem_object *obj;
4502         struct address_space *mapping;
4503         gfp_t mask;
4504
4505         obj = i915_gem_object_alloc(dev);
4506         if (obj == NULL)
4507                 return NULL;
4508
4509         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4510                 i915_gem_object_free(obj);
4511                 return NULL;
4512         }
4513
4514         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4515         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4516                 /* 965gm cannot relocate objects above 4GiB. */
4517                 mask &= ~__GFP_HIGHMEM;
4518                 mask |= __GFP_DMA32;
4519         }
4520
4521         mapping = file_inode(obj->base.filp)->i_mapping;
4522         mapping_set_gfp_mask(mapping, mask);
4523
4524         i915_gem_object_init(obj, &i915_gem_object_ops);
4525
4526         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4527         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4528
4529         if (HAS_LLC(dev)) {
4530                 /* On some devices, we can have the GPU use the LLC (the CPU
4531                  * cache) for about a 10% performance improvement
4532                  * compared to uncached.  Graphics requests other than
4533                  * display scanout are coherent with the CPU in
4534                  * accessing this cache.  This means in this mode we
4535                  * don't need to clflush on the CPU side, and on the
4536                  * GPU side we only need to flush internal caches to
4537                  * get data visible to the CPU.
4538                  *
4539                  * However, we maintain the display planes as UC, and so
4540                  * need to rebind when first used as such.
4541                  */
4542                 obj->cache_level = I915_CACHE_LLC;
4543         } else
4544                 obj->cache_level = I915_CACHE_NONE;
4545
4546         trace_i915_gem_object_create(obj);
4547
4548         return obj;
4549 }
4550
4551 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4552 {
4553         /* If we are the last user of the backing storage (be it shmemfs
4554          * pages or stolen etc), we know that the pages are going to be
4555          * immediately released. In this case, we can then skip copying
4556          * back the contents from the GPU.
4557          */
4558
4559         if (obj->madv != I915_MADV_WILLNEED)
4560                 return false;
4561
4562         if (obj->base.filp == NULL)
4563                 return true;
4564
4565         /* At first glance, this looks racy, but then again so would be
4566          * userspace racing mmap against close. However, the first external
4567          * reference to the filp can only be obtained through the
4568          * i915_gem_mmap_ioctl() which safeguards us against the user
4569          * acquiring such a reference whilst we are in the middle of
4570          * freeing the object.
4571          */
4572         return atomic_long_read(&obj->base.filp->f_count) == 1;
4573 }
4574
4575 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4576 {
4577         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4578         struct drm_device *dev = obj->base.dev;
4579         struct drm_i915_private *dev_priv = dev->dev_private;
4580         struct i915_vma *vma, *next;
4581
4582         intel_runtime_pm_get(dev_priv);
4583
4584         trace_i915_gem_object_destroy(obj);
4585
4586         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4587                 int ret;
4588
4589                 vma->pin_count = 0;
4590                 ret = i915_vma_unbind(vma);
4591                 if (WARN_ON(ret == -ERESTARTSYS)) {
4592                         bool was_interruptible;
4593
4594                         was_interruptible = dev_priv->mm.interruptible;
4595                         dev_priv->mm.interruptible = false;
4596
4597                         WARN_ON(i915_vma_unbind(vma));
4598
4599                         dev_priv->mm.interruptible = was_interruptible;
4600                 }
4601         }
4602
4603         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4604          * before progressing. */
4605         if (obj->stolen)
4606                 i915_gem_object_unpin_pages(obj);
4607
4608         WARN_ON(obj->frontbuffer_bits);
4609
4610         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4611             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4612             obj->tiling_mode != I915_TILING_NONE)
4613                 i915_gem_object_unpin_pages(obj);
4614
4615         if (WARN_ON(obj->pages_pin_count))
4616                 obj->pages_pin_count = 0;
4617         if (discard_backing_storage(obj))
4618                 obj->madv = I915_MADV_DONTNEED;
4619         i915_gem_object_put_pages(obj);
4620         i915_gem_object_free_mmap_offset(obj);
4621
4622         BUG_ON(obj->pages);
4623
4624         if (obj->base.import_attach)
4625                 drm_prime_gem_destroy(&obj->base, NULL);
4626
4627         if (obj->ops->release)
4628                 obj->ops->release(obj);
4629
4630         drm_gem_object_release(&obj->base);
4631         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4632
4633         kfree(obj->bit_17);
4634         i915_gem_object_free(obj);
4635
4636         intel_runtime_pm_put(dev_priv);
4637 }
4638
4639 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4640                                      struct i915_address_space *vm)
4641 {
4642         struct i915_vma *vma;
4643         list_for_each_entry(vma, &obj->vma_list, obj_link) {
4644                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4645                     vma->vm == vm)
4646                         return vma;
4647         }
4648         return NULL;
4649 }
4650
4651 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4652                                            const struct i915_ggtt_view *view)
4653 {
4654         struct drm_device *dev = obj->base.dev;
4655         struct drm_i915_private *dev_priv = to_i915(dev);
4656         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4657         struct i915_vma *vma;
4658
4659         BUG_ON(!view);
4660
4661         list_for_each_entry(vma, &obj->vma_list, obj_link)
4662                 if (vma->vm == &ggtt->base &&
4663                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4664                         return vma;
4665         return NULL;
4666 }
4667
4668 void i915_gem_vma_destroy(struct i915_vma *vma)
4669 {
4670         WARN_ON(vma->node.allocated);
4671
4672         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4673         if (!list_empty(&vma->exec_list))
4674                 return;
4675
4676         if (!vma->is_ggtt)
4677                 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4678
4679         list_del(&vma->obj_link);
4680
4681         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4682 }
4683
4684 static void
4685 i915_gem_stop_engines(struct drm_device *dev)
4686 {
4687         struct drm_i915_private *dev_priv = dev->dev_private;
4688         struct intel_engine_cs *engine;
4689
4690         for_each_engine(engine, dev_priv)
4691                 dev_priv->gt.stop_engine(engine);
4692 }
4693
4694 int
4695 i915_gem_suspend(struct drm_device *dev)
4696 {
4697         struct drm_i915_private *dev_priv = dev->dev_private;
4698         int ret = 0;
4699
4700         mutex_lock(&dev->struct_mutex);
4701         ret = i915_gpu_idle(dev);
4702         if (ret)
4703                 goto err;
4704
4705         i915_gem_retire_requests(dev);
4706
4707         i915_gem_stop_engines(dev);
4708         mutex_unlock(&dev->struct_mutex);
4709
4710         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4711         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4712         flush_delayed_work(&dev_priv->mm.idle_work);
4713
4714         /* Assert that we sucessfully flushed all the work and
4715          * reset the GPU back to its idle, low power state.
4716          */
4717         WARN_ON(dev_priv->mm.busy);
4718
4719         return 0;
4720
4721 err:
4722         mutex_unlock(&dev->struct_mutex);
4723         return ret;
4724 }
4725
4726 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4727 {
4728         struct intel_engine_cs *engine = req->engine;
4729         struct drm_device *dev = engine->dev;
4730         struct drm_i915_private *dev_priv = dev->dev_private;
4731         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4732         int i, ret;
4733
4734         if (!HAS_L3_DPF(dev) || !remap_info)
4735                 return 0;
4736
4737         ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4738         if (ret)
4739                 return ret;
4740
4741         /*
4742          * Note: We do not worry about the concurrent register cacheline hang
4743          * here because no other code should access these registers other than
4744          * at initialization time.
4745          */
4746         for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4747                 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
4748                 intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
4749                 intel_ring_emit(engine, remap_info[i]);
4750         }
4751
4752         intel_ring_advance(engine);
4753
4754         return ret;
4755 }
4756
4757 void i915_gem_init_swizzling(struct drm_device *dev)
4758 {
4759         struct drm_i915_private *dev_priv = dev->dev_private;
4760
4761         if (INTEL_INFO(dev)->gen < 5 ||
4762             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4763                 return;
4764
4765         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4766                                  DISP_TILE_SURFACE_SWIZZLING);
4767
4768         if (IS_GEN5(dev))
4769                 return;
4770
4771         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4772         if (IS_GEN6(dev))
4773                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4774         else if (IS_GEN7(dev))
4775                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4776         else if (IS_GEN8(dev))
4777                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4778         else
4779                 BUG();
4780 }
4781
4782 static void init_unused_ring(struct drm_device *dev, u32 base)
4783 {
4784         struct drm_i915_private *dev_priv = dev->dev_private;
4785
4786         I915_WRITE(RING_CTL(base), 0);
4787         I915_WRITE(RING_HEAD(base), 0);
4788         I915_WRITE(RING_TAIL(base), 0);
4789         I915_WRITE(RING_START(base), 0);
4790 }
4791
4792 static void init_unused_rings(struct drm_device *dev)
4793 {
4794         if (IS_I830(dev)) {
4795                 init_unused_ring(dev, PRB1_BASE);
4796                 init_unused_ring(dev, SRB0_BASE);
4797                 init_unused_ring(dev, SRB1_BASE);
4798                 init_unused_ring(dev, SRB2_BASE);
4799                 init_unused_ring(dev, SRB3_BASE);
4800         } else if (IS_GEN2(dev)) {
4801                 init_unused_ring(dev, SRB0_BASE);
4802                 init_unused_ring(dev, SRB1_BASE);
4803         } else if (IS_GEN3(dev)) {
4804                 init_unused_ring(dev, PRB1_BASE);
4805                 init_unused_ring(dev, PRB2_BASE);
4806         }
4807 }
4808
4809 int i915_gem_init_engines(struct drm_device *dev)
4810 {
4811         struct drm_i915_private *dev_priv = dev->dev_private;
4812         int ret;
4813
4814         ret = intel_init_render_ring_buffer(dev);
4815         if (ret)
4816                 return ret;
4817
4818         if (HAS_BSD(dev)) {
4819                 ret = intel_init_bsd_ring_buffer(dev);
4820                 if (ret)
4821                         goto cleanup_render_ring;
4822         }
4823
4824         if (HAS_BLT(dev)) {
4825                 ret = intel_init_blt_ring_buffer(dev);
4826                 if (ret)
4827                         goto cleanup_bsd_ring;
4828         }
4829
4830         if (HAS_VEBOX(dev)) {
4831                 ret = intel_init_vebox_ring_buffer(dev);
4832                 if (ret)
4833                         goto cleanup_blt_ring;
4834         }
4835
4836         if (HAS_BSD2(dev)) {
4837                 ret = intel_init_bsd2_ring_buffer(dev);
4838                 if (ret)
4839                         goto cleanup_vebox_ring;
4840         }
4841
4842         return 0;
4843
4844 cleanup_vebox_ring:
4845         intel_cleanup_engine(&dev_priv->engine[VECS]);
4846 cleanup_blt_ring:
4847         intel_cleanup_engine(&dev_priv->engine[BCS]);
4848 cleanup_bsd_ring:
4849         intel_cleanup_engine(&dev_priv->engine[VCS]);
4850 cleanup_render_ring:
4851         intel_cleanup_engine(&dev_priv->engine[RCS]);
4852
4853         return ret;
4854 }
4855
4856 int
4857 i915_gem_init_hw(struct drm_device *dev)
4858 {
4859         struct drm_i915_private *dev_priv = dev->dev_private;
4860         struct intel_engine_cs *engine;
4861         int ret, j;
4862
4863         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4864                 return -EIO;
4865
4866         /* Double layer security blanket, see i915_gem_init() */
4867         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4868
4869         if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4870                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4871
4872         if (IS_HASWELL(dev))
4873                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4874                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4875
4876         if (HAS_PCH_NOP(dev)) {
4877                 if (IS_IVYBRIDGE(dev)) {
4878                         u32 temp = I915_READ(GEN7_MSG_CTL);
4879                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4880                         I915_WRITE(GEN7_MSG_CTL, temp);
4881                 } else if (INTEL_INFO(dev)->gen >= 7) {
4882                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4883                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4884                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4885                 }
4886         }
4887
4888         i915_gem_init_swizzling(dev);
4889
4890         /*
4891          * At least 830 can leave some of the unused rings
4892          * "active" (ie. head != tail) after resume which
4893          * will prevent c3 entry. Makes sure all unused rings
4894          * are totally idle.
4895          */
4896         init_unused_rings(dev);
4897
4898         BUG_ON(!dev_priv->kernel_context);
4899
4900         ret = i915_ppgtt_init_hw(dev);
4901         if (ret) {
4902                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4903                 goto out;
4904         }
4905
4906         /* Need to do basic initialisation of all rings first: */
4907         for_each_engine(engine, dev_priv) {
4908                 ret = engine->init_hw(engine);
4909                 if (ret)
4910                         goto out;
4911         }
4912
4913         intel_mocs_init_l3cc_table(dev);
4914
4915         /* We can't enable contexts until all firmware is loaded */
4916         if (HAS_GUC_UCODE(dev)) {
4917                 ret = intel_guc_ucode_load(dev);
4918                 if (ret) {
4919                         DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4920                         ret = -EIO;
4921                         goto out;
4922                 }
4923         }
4924
4925         /*
4926          * Increment the next seqno by 0x100 so we have a visible break
4927          * on re-initialisation
4928          */
4929         ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4930         if (ret)
4931                 goto out;
4932
4933         /* Now it is safe to go back round and do everything else: */
4934         for_each_engine(engine, dev_priv) {
4935                 struct drm_i915_gem_request *req;
4936
4937                 req = i915_gem_request_alloc(engine, NULL);
4938                 if (IS_ERR(req)) {
4939                         ret = PTR_ERR(req);
4940                         break;
4941                 }
4942
4943                 if (engine->id == RCS) {
4944                         for (j = 0; j < NUM_L3_SLICES(dev); j++) {
4945                                 ret = i915_gem_l3_remap(req, j);
4946                                 if (ret)
4947                                         goto err_request;
4948                         }
4949                 }
4950
4951                 ret = i915_ppgtt_init_ring(req);
4952                 if (ret)
4953                         goto err_request;
4954
4955                 ret = i915_gem_context_enable(req);
4956                 if (ret)
4957                         goto err_request;
4958
4959 err_request:
4960                 i915_add_request_no_flush(req);
4961                 if (ret) {
4962                         DRM_ERROR("Failed to enable %s, error=%d\n",
4963                                   engine->name, ret);
4964                         i915_gem_cleanup_engines(dev);
4965                         break;
4966                 }
4967         }
4968
4969 out:
4970         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4971         return ret;
4972 }
4973
4974 int i915_gem_init(struct drm_device *dev)
4975 {
4976         struct drm_i915_private *dev_priv = dev->dev_private;
4977         int ret;
4978
4979         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4980                         i915.enable_execlists);
4981
4982         mutex_lock(&dev->struct_mutex);
4983
4984         if (!i915.enable_execlists) {
4985                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4986                 dev_priv->gt.init_engines = i915_gem_init_engines;
4987                 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4988                 dev_priv->gt.stop_engine = intel_stop_engine;
4989         } else {
4990                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4991                 dev_priv->gt.init_engines = intel_logical_rings_init;
4992                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4993                 dev_priv->gt.stop_engine = intel_logical_ring_stop;
4994         }
4995
4996         /* This is just a security blanket to placate dragons.
4997          * On some systems, we very sporadically observe that the first TLBs
4998          * used by the CS may be stale, despite us poking the TLB reset. If
4999          * we hold the forcewake during initialisation these problems
5000          * just magically go away.
5001          */
5002         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5003
5004         ret = i915_gem_init_userptr(dev);
5005         if (ret)
5006                 goto out_unlock;
5007
5008         i915_gem_init_ggtt(dev);
5009
5010         ret = i915_gem_context_init(dev);
5011         if (ret)
5012                 goto out_unlock;
5013
5014         ret = dev_priv->gt.init_engines(dev);
5015         if (ret)
5016                 goto out_unlock;
5017
5018         ret = i915_gem_init_hw(dev);
5019         if (ret == -EIO) {
5020                 /* Allow ring initialisation to fail by marking the GPU as
5021                  * wedged. But we only want to do this where the GPU is angry,
5022                  * for all other failure, such as an allocation failure, bail.
5023                  */
5024                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5025                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5026                 ret = 0;
5027         }
5028
5029 out_unlock:
5030         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5031         mutex_unlock(&dev->struct_mutex);
5032
5033         return ret;
5034 }
5035
5036 void
5037 i915_gem_cleanup_engines(struct drm_device *dev)
5038 {
5039         struct drm_i915_private *dev_priv = dev->dev_private;
5040         struct intel_engine_cs *engine;
5041
5042         for_each_engine(engine, dev_priv)
5043                 dev_priv->gt.cleanup_engine(engine);
5044
5045         if (i915.enable_execlists)
5046                 /*
5047                  * Neither the BIOS, ourselves or any other kernel
5048                  * expects the system to be in execlists mode on startup,
5049                  * so we need to reset the GPU back to legacy mode.
5050                  */
5051                 intel_gpu_reset(dev, ALL_ENGINES);
5052 }
5053
5054 static void
5055 init_engine_lists(struct intel_engine_cs *engine)
5056 {
5057         INIT_LIST_HEAD(&engine->active_list);
5058         INIT_LIST_HEAD(&engine->request_list);
5059 }
5060
5061 void
5062 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5063 {
5064         struct drm_device *dev = dev_priv->dev;
5065
5066         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5067             !IS_CHERRYVIEW(dev_priv))
5068                 dev_priv->num_fence_regs = 32;
5069         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5070                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
5071                 dev_priv->num_fence_regs = 16;
5072         else
5073                 dev_priv->num_fence_regs = 8;
5074
5075         if (intel_vgpu_active(dev))
5076                 dev_priv->num_fence_regs =
5077                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5078
5079         /* Initialize fence registers to zero */
5080         i915_gem_restore_fences(dev);
5081
5082         i915_gem_detect_bit_6_swizzle(dev);
5083 }
5084
5085 void
5086 i915_gem_load_init(struct drm_device *dev)
5087 {
5088         struct drm_i915_private *dev_priv = dev->dev_private;
5089         int i;
5090
5091         dev_priv->objects =
5092                 kmem_cache_create("i915_gem_object",
5093                                   sizeof(struct drm_i915_gem_object), 0,
5094                                   SLAB_HWCACHE_ALIGN,
5095                                   NULL);
5096         dev_priv->vmas =
5097                 kmem_cache_create("i915_gem_vma",
5098                                   sizeof(struct i915_vma), 0,
5099                                   SLAB_HWCACHE_ALIGN,
5100                                   NULL);
5101         dev_priv->requests =
5102                 kmem_cache_create("i915_gem_request",
5103                                   sizeof(struct drm_i915_gem_request), 0,
5104                                   SLAB_HWCACHE_ALIGN,
5105                                   NULL);
5106
5107         INIT_LIST_HEAD(&dev_priv->vm_list);
5108         INIT_LIST_HEAD(&dev_priv->context_list);
5109         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5110         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5111         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5112         for (i = 0; i < I915_NUM_ENGINES; i++)
5113                 init_engine_lists(&dev_priv->engine[i]);
5114         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5115                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5116         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5117                           i915_gem_retire_work_handler);
5118         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5119                           i915_gem_idle_work_handler);
5120         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5121
5122         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5123
5124         /*
5125          * Set initial sequence number for requests.
5126          * Using this number allows the wraparound to happen early,
5127          * catching any obvious problems.
5128          */
5129         dev_priv->next_seqno = ((u32)~0 - 0x1100);
5130         dev_priv->last_seqno = ((u32)~0 - 0x1101);
5131
5132         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5133
5134         init_waitqueue_head(&dev_priv->pending_flip_queue);
5135
5136         dev_priv->mm.interruptible = true;
5137
5138         mutex_init(&dev_priv->fb_tracking.lock);
5139 }
5140
5141 void i915_gem_load_cleanup(struct drm_device *dev)
5142 {
5143         struct drm_i915_private *dev_priv = to_i915(dev);
5144
5145         kmem_cache_destroy(dev_priv->requests);
5146         kmem_cache_destroy(dev_priv->vmas);
5147         kmem_cache_destroy(dev_priv->objects);
5148 }
5149
5150 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5151 {
5152         struct drm_i915_file_private *file_priv = file->driver_priv;
5153
5154         /* Clean up our request list when the client is going away, so that
5155          * later retire_requests won't dereference our soon-to-be-gone
5156          * file_priv.
5157          */
5158         spin_lock(&file_priv->mm.lock);
5159         while (!list_empty(&file_priv->mm.request_list)) {
5160                 struct drm_i915_gem_request *request;
5161
5162                 request = list_first_entry(&file_priv->mm.request_list,
5163                                            struct drm_i915_gem_request,
5164                                            client_list);
5165                 list_del(&request->client_list);
5166                 request->file_priv = NULL;
5167         }
5168         spin_unlock(&file_priv->mm.lock);
5169
5170         if (!list_empty(&file_priv->rps.link)) {
5171                 spin_lock(&to_i915(dev)->rps.client_lock);
5172                 list_del(&file_priv->rps.link);
5173                 spin_unlock(&to_i915(dev)->rps.client_lock);
5174         }
5175 }
5176
5177 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5178 {
5179         struct drm_i915_file_private *file_priv;
5180         int ret;
5181
5182         DRM_DEBUG_DRIVER("\n");
5183
5184         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5185         if (!file_priv)
5186                 return -ENOMEM;
5187
5188         file->driver_priv = file_priv;
5189         file_priv->dev_priv = dev->dev_private;
5190         file_priv->file = file;
5191         INIT_LIST_HEAD(&file_priv->rps.link);
5192
5193         spin_lock_init(&file_priv->mm.lock);
5194         INIT_LIST_HEAD(&file_priv->mm.request_list);
5195
5196         file_priv->bsd_ring = -1;
5197
5198         ret = i915_gem_context_open(dev, file);
5199         if (ret)
5200                 kfree(file_priv);
5201
5202         return ret;
5203 }
5204
5205 /**
5206  * i915_gem_track_fb - update frontbuffer tracking
5207  * @old: current GEM buffer for the frontbuffer slots
5208  * @new: new GEM buffer for the frontbuffer slots
5209  * @frontbuffer_bits: bitmask of frontbuffer slots
5210  *
5211  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5212  * from @old and setting them in @new. Both @old and @new can be NULL.
5213  */
5214 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5215                        struct drm_i915_gem_object *new,
5216                        unsigned frontbuffer_bits)
5217 {
5218         if (old) {
5219                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5220                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5221                 old->frontbuffer_bits &= ~frontbuffer_bits;
5222         }
5223
5224         if (new) {
5225                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5226                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5227                 new->frontbuffer_bits |= frontbuffer_bits;
5228         }
5229 }
5230
5231 /* All the new VM stuff */
5232 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5233                         struct i915_address_space *vm)
5234 {
5235         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5236         struct i915_vma *vma;
5237
5238         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5239
5240         list_for_each_entry(vma, &o->vma_list, obj_link) {
5241                 if (vma->is_ggtt &&
5242                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5243                         continue;
5244                 if (vma->vm == vm)
5245                         return vma->node.start;
5246         }
5247
5248         WARN(1, "%s vma for this object not found.\n",
5249              i915_is_ggtt(vm) ? "global" : "ppgtt");
5250         return -1;
5251 }
5252
5253 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5254                                   const struct i915_ggtt_view *view)
5255 {
5256         struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5257         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5258         struct i915_vma *vma;
5259
5260         list_for_each_entry(vma, &o->vma_list, obj_link)
5261                 if (vma->vm == &ggtt->base &&
5262                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5263                         return vma->node.start;
5264
5265         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5266         return -1;
5267 }
5268
5269 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5270                         struct i915_address_space *vm)
5271 {
5272         struct i915_vma *vma;
5273
5274         list_for_each_entry(vma, &o->vma_list, obj_link) {
5275                 if (vma->is_ggtt &&
5276                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5277                         continue;
5278                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5279                         return true;
5280         }
5281
5282         return false;
5283 }
5284
5285 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5286                                   const struct i915_ggtt_view *view)
5287 {
5288         struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5289         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5290         struct i915_vma *vma;
5291
5292         list_for_each_entry(vma, &o->vma_list, obj_link)
5293                 if (vma->vm == &ggtt->base &&
5294                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5295                     drm_mm_node_allocated(&vma->node))
5296                         return true;
5297
5298         return false;
5299 }
5300
5301 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5302 {
5303         struct i915_vma *vma;
5304
5305         list_for_each_entry(vma, &o->vma_list, obj_link)
5306                 if (drm_mm_node_allocated(&vma->node))
5307                         return true;
5308
5309         return false;
5310 }
5311
5312 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5313                                 struct i915_address_space *vm)
5314 {
5315         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5316         struct i915_vma *vma;
5317
5318         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5319
5320         BUG_ON(list_empty(&o->vma_list));
5321
5322         list_for_each_entry(vma, &o->vma_list, obj_link) {
5323                 if (vma->is_ggtt &&
5324                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5325                         continue;
5326                 if (vma->vm == vm)
5327                         return vma->node.size;
5328         }
5329         return 0;
5330 }
5331
5332 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5333 {
5334         struct i915_vma *vma;
5335         list_for_each_entry(vma, &obj->vma_list, obj_link)
5336                 if (vma->pin_count > 0)
5337                         return true;
5338
5339         return false;
5340 }
5341
5342 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5343 struct page *
5344 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5345 {
5346         struct page *page;
5347
5348         /* Only default objects have per-page dirty tracking */
5349         if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5350                 return NULL;
5351
5352         page = i915_gem_object_get_page(obj, n);
5353         set_page_dirty(page);
5354         return page;
5355 }
5356
5357 /* Allocate a new GEM object and fill it with the supplied data */
5358 struct drm_i915_gem_object *
5359 i915_gem_object_create_from_data(struct drm_device *dev,
5360                                  const void *data, size_t size)
5361 {
5362         struct drm_i915_gem_object *obj;
5363         struct sg_table *sg;
5364         size_t bytes;
5365         int ret;
5366
5367         obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5368         if (IS_ERR_OR_NULL(obj))
5369                 return obj;
5370
5371         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5372         if (ret)
5373                 goto fail;
5374
5375         ret = i915_gem_object_get_pages(obj);
5376         if (ret)
5377                 goto fail;
5378
5379         i915_gem_object_pin_pages(obj);
5380         sg = obj->pages;
5381         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5382         obj->dirty = 1;         /* Backing store is now out of date */
5383         i915_gem_object_unpin_pages(obj);
5384
5385         if (WARN_ON(bytes != size)) {
5386                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5387                 ret = -EFAULT;
5388                 goto fail;
5389         }
5390
5391         return obj;
5392
5393 fail:
5394         drm_gem_object_unreference(&obj->base);
5395         return ERR_PTR(ret);
5396 }