Merge remote-tracking branches 'spi/fix/img-spfi' and 'spi/fix/msiof' into spi-linus
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43                                                    bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46                                bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57                                              struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59                                             struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61                                  unsigned long event,
62                                  void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66                                   enum i915_cache_level level)
67 {
68         return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74                 return true;
75
76         return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81         if (obj->tiling_mode)
82                 i915_gem_release_mmap(obj);
83
84         /* As we do not have an associated fence register, we will force
85          * a tiling change if we ever need to acquire one.
86          */
87         obj->fence_dirty = false;
88         obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93                                   size_t size)
94 {
95         spin_lock(&dev_priv->mm.object_stat_lock);
96         dev_priv->mm.object_count++;
97         dev_priv->mm.object_memory += size;
98         spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102                                      size_t size)
103 {
104         spin_lock(&dev_priv->mm.object_stat_lock);
105         dev_priv->mm.object_count--;
106         dev_priv->mm.object_memory -= size;
107         spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113         int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116                    i915_terminally_wedged(error))
117         if (EXIT_COND)
118                 return 0;
119
120         /*
121          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122          * userspace. If it takes that long something really bad is going on and
123          * we should simply try to bail out and fail as gracefully as possible.
124          */
125         ret = wait_event_interruptible_timeout(error->reset_queue,
126                                                EXIT_COND,
127                                                10*HZ);
128         if (ret == 0) {
129                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130                 return -EIO;
131         } else if (ret < 0) {
132                 return ret;
133         }
134 #undef EXIT_COND
135
136         return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141         struct drm_i915_private *dev_priv = dev->dev_private;
142         int ret;
143
144         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145         if (ret)
146                 return ret;
147
148         ret = mutex_lock_interruptible(&dev->struct_mutex);
149         if (ret)
150                 return ret;
151
152         WARN_ON(i915_verify_lists(dev));
153         return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159         return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164                             struct drm_file *file)
165 {
166         struct drm_i915_private *dev_priv = dev->dev_private;
167         struct drm_i915_gem_get_aperture *args = data;
168         struct drm_i915_gem_object *obj;
169         size_t pinned;
170
171         pinned = 0;
172         mutex_lock(&dev->struct_mutex);
173         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
174                 if (i915_gem_obj_is_pinned(obj))
175                         pinned += i915_gem_obj_ggtt_size(obj);
176         mutex_unlock(&dev->struct_mutex);
177
178         args->aper_size = dev_priv->gtt.base.total;
179         args->aper_available_size = args->aper_size - pinned;
180
181         return 0;
182 }
183
184 static int
185 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
186 {
187         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
188         char *vaddr = obj->phys_handle->vaddr;
189         struct sg_table *st;
190         struct scatterlist *sg;
191         int i;
192
193         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
194                 return -EINVAL;
195
196         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
197                 struct page *page;
198                 char *src;
199
200                 page = shmem_read_mapping_page(mapping, i);
201                 if (IS_ERR(page))
202                         return PTR_ERR(page);
203
204                 src = kmap_atomic(page);
205                 memcpy(vaddr, src, PAGE_SIZE);
206                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
207                 kunmap_atomic(src);
208
209                 page_cache_release(page);
210                 vaddr += PAGE_SIZE;
211         }
212
213         i915_gem_chipset_flush(obj->base.dev);
214
215         st = kmalloc(sizeof(*st), GFP_KERNEL);
216         if (st == NULL)
217                 return -ENOMEM;
218
219         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
220                 kfree(st);
221                 return -ENOMEM;
222         }
223
224         sg = st->sgl;
225         sg->offset = 0;
226         sg->length = obj->base.size;
227
228         sg_dma_address(sg) = obj->phys_handle->busaddr;
229         sg_dma_len(sg) = obj->base.size;
230
231         obj->pages = st;
232         obj->has_dma_mapping = true;
233         return 0;
234 }
235
236 static void
237 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
238 {
239         int ret;
240
241         BUG_ON(obj->madv == __I915_MADV_PURGED);
242
243         ret = i915_gem_object_set_to_cpu_domain(obj, true);
244         if (ret) {
245                 /* In the event of a disaster, abandon all caches and
246                  * hope for the best.
247                  */
248                 WARN_ON(ret != -EIO);
249                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
250         }
251
252         if (obj->madv == I915_MADV_DONTNEED)
253                 obj->dirty = 0;
254
255         if (obj->dirty) {
256                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
257                 char *vaddr = obj->phys_handle->vaddr;
258                 int i;
259
260                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
261                         struct page *page;
262                         char *dst;
263
264                         page = shmem_read_mapping_page(mapping, i);
265                         if (IS_ERR(page))
266                                 continue;
267
268                         dst = kmap_atomic(page);
269                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
270                         memcpy(dst, vaddr, PAGE_SIZE);
271                         kunmap_atomic(dst);
272
273                         set_page_dirty(page);
274                         if (obj->madv == I915_MADV_WILLNEED)
275                                 mark_page_accessed(page);
276                         page_cache_release(page);
277                         vaddr += PAGE_SIZE;
278                 }
279                 obj->dirty = 0;
280         }
281
282         sg_free_table(obj->pages);
283         kfree(obj->pages);
284
285         obj->has_dma_mapping = false;
286 }
287
288 static void
289 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
290 {
291         drm_pci_free(obj->base.dev, obj->phys_handle);
292 }
293
294 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
295         .get_pages = i915_gem_object_get_pages_phys,
296         .put_pages = i915_gem_object_put_pages_phys,
297         .release = i915_gem_object_release_phys,
298 };
299
300 static int
301 drop_pages(struct drm_i915_gem_object *obj)
302 {
303         struct i915_vma *vma, *next;
304         int ret;
305
306         drm_gem_object_reference(&obj->base);
307         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
308                 if (i915_vma_unbind(vma))
309                         break;
310
311         ret = i915_gem_object_put_pages(obj);
312         drm_gem_object_unreference(&obj->base);
313
314         return ret;
315 }
316
317 int
318 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
319                             int align)
320 {
321         drm_dma_handle_t *phys;
322         int ret;
323
324         if (obj->phys_handle) {
325                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
326                         return -EBUSY;
327
328                 return 0;
329         }
330
331         if (obj->madv != I915_MADV_WILLNEED)
332                 return -EFAULT;
333
334         if (obj->base.filp == NULL)
335                 return -EINVAL;
336
337         ret = drop_pages(obj);
338         if (ret)
339                 return ret;
340
341         /* create a new object */
342         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
343         if (!phys)
344                 return -ENOMEM;
345
346         obj->phys_handle = phys;
347         obj->ops = &i915_gem_phys_ops;
348
349         return i915_gem_object_get_pages(obj);
350 }
351
352 static int
353 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
354                      struct drm_i915_gem_pwrite *args,
355                      struct drm_file *file_priv)
356 {
357         struct drm_device *dev = obj->base.dev;
358         void *vaddr = obj->phys_handle->vaddr + args->offset;
359         char __user *user_data = to_user_ptr(args->data_ptr);
360         int ret;
361
362         /* We manually control the domain here and pretend that it
363          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
364          */
365         ret = i915_gem_object_wait_rendering(obj, false);
366         if (ret)
367                 return ret;
368
369         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
370                 unsigned long unwritten;
371
372                 /* The physical object once assigned is fixed for the lifetime
373                  * of the obj, so we can safely drop the lock and continue
374                  * to access vaddr.
375                  */
376                 mutex_unlock(&dev->struct_mutex);
377                 unwritten = copy_from_user(vaddr, user_data, args->size);
378                 mutex_lock(&dev->struct_mutex);
379                 if (unwritten)
380                         return -EFAULT;
381         }
382
383         drm_clflush_virt_range(vaddr, args->size);
384         i915_gem_chipset_flush(dev);
385         return 0;
386 }
387
388 void *i915_gem_object_alloc(struct drm_device *dev)
389 {
390         struct drm_i915_private *dev_priv = dev->dev_private;
391         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
392 }
393
394 void i915_gem_object_free(struct drm_i915_gem_object *obj)
395 {
396         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
397         kmem_cache_free(dev_priv->slab, obj);
398 }
399
400 static int
401 i915_gem_create(struct drm_file *file,
402                 struct drm_device *dev,
403                 uint64_t size,
404                 bool dumb,
405                 uint32_t *handle_p)
406 {
407         struct drm_i915_gem_object *obj;
408         int ret;
409         u32 handle;
410
411         size = roundup(size, PAGE_SIZE);
412         if (size == 0)
413                 return -EINVAL;
414
415         /* Allocate the new object */
416         obj = i915_gem_alloc_object(dev, size);
417         if (obj == NULL)
418                 return -ENOMEM;
419
420         obj->base.dumb = dumb;
421         ret = drm_gem_handle_create(file, &obj->base, &handle);
422         /* drop reference from allocate - handle holds it now */
423         drm_gem_object_unreference_unlocked(&obj->base);
424         if (ret)
425                 return ret;
426
427         *handle_p = handle;
428         return 0;
429 }
430
431 int
432 i915_gem_dumb_create(struct drm_file *file,
433                      struct drm_device *dev,
434                      struct drm_mode_create_dumb *args)
435 {
436         /* have to work out size/pitch and return them */
437         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
438         args->size = args->pitch * args->height;
439         return i915_gem_create(file, dev,
440                                args->size, true, &args->handle);
441 }
442
443 /**
444  * Creates a new mm object and returns a handle to it.
445  */
446 int
447 i915_gem_create_ioctl(struct drm_device *dev, void *data,
448                       struct drm_file *file)
449 {
450         struct drm_i915_gem_create *args = data;
451
452         return i915_gem_create(file, dev,
453                                args->size, false, &args->handle);
454 }
455
456 static inline int
457 __copy_to_user_swizzled(char __user *cpu_vaddr,
458                         const char *gpu_vaddr, int gpu_offset,
459                         int length)
460 {
461         int ret, cpu_offset = 0;
462
463         while (length > 0) {
464                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
465                 int this_length = min(cacheline_end - gpu_offset, length);
466                 int swizzled_gpu_offset = gpu_offset ^ 64;
467
468                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
469                                      gpu_vaddr + swizzled_gpu_offset,
470                                      this_length);
471                 if (ret)
472                         return ret + length;
473
474                 cpu_offset += this_length;
475                 gpu_offset += this_length;
476                 length -= this_length;
477         }
478
479         return 0;
480 }
481
482 static inline int
483 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
484                           const char __user *cpu_vaddr,
485                           int length)
486 {
487         int ret, cpu_offset = 0;
488
489         while (length > 0) {
490                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
491                 int this_length = min(cacheline_end - gpu_offset, length);
492                 int swizzled_gpu_offset = gpu_offset ^ 64;
493
494                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
495                                        cpu_vaddr + cpu_offset,
496                                        this_length);
497                 if (ret)
498                         return ret + length;
499
500                 cpu_offset += this_length;
501                 gpu_offset += this_length;
502                 length -= this_length;
503         }
504
505         return 0;
506 }
507
508 /*
509  * Pins the specified object's pages and synchronizes the object with
510  * GPU accesses. Sets needs_clflush to non-zero if the caller should
511  * flush the object from the CPU cache.
512  */
513 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
514                                     int *needs_clflush)
515 {
516         int ret;
517
518         *needs_clflush = 0;
519
520         if (!obj->base.filp)
521                 return -EINVAL;
522
523         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
524                 /* If we're not in the cpu read domain, set ourself into the gtt
525                  * read domain and manually flush cachelines (if required). This
526                  * optimizes for the case when the gpu will dirty the data
527                  * anyway again before the next pread happens. */
528                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
529                                                         obj->cache_level);
530                 ret = i915_gem_object_wait_rendering(obj, true);
531                 if (ret)
532                         return ret;
533
534                 i915_gem_object_retire(obj);
535         }
536
537         ret = i915_gem_object_get_pages(obj);
538         if (ret)
539                 return ret;
540
541         i915_gem_object_pin_pages(obj);
542
543         return ret;
544 }
545
546 /* Per-page copy function for the shmem pread fastpath.
547  * Flushes invalid cachelines before reading the target if
548  * needs_clflush is set. */
549 static int
550 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
551                  char __user *user_data,
552                  bool page_do_bit17_swizzling, bool needs_clflush)
553 {
554         char *vaddr;
555         int ret;
556
557         if (unlikely(page_do_bit17_swizzling))
558                 return -EINVAL;
559
560         vaddr = kmap_atomic(page);
561         if (needs_clflush)
562                 drm_clflush_virt_range(vaddr + shmem_page_offset,
563                                        page_length);
564         ret = __copy_to_user_inatomic(user_data,
565                                       vaddr + shmem_page_offset,
566                                       page_length);
567         kunmap_atomic(vaddr);
568
569         return ret ? -EFAULT : 0;
570 }
571
572 static void
573 shmem_clflush_swizzled_range(char *addr, unsigned long length,
574                              bool swizzled)
575 {
576         if (unlikely(swizzled)) {
577                 unsigned long start = (unsigned long) addr;
578                 unsigned long end = (unsigned long) addr + length;
579
580                 /* For swizzling simply ensure that we always flush both
581                  * channels. Lame, but simple and it works. Swizzled
582                  * pwrite/pread is far from a hotpath - current userspace
583                  * doesn't use it at all. */
584                 start = round_down(start, 128);
585                 end = round_up(end, 128);
586
587                 drm_clflush_virt_range((void *)start, end - start);
588         } else {
589                 drm_clflush_virt_range(addr, length);
590         }
591
592 }
593
594 /* Only difference to the fast-path function is that this can handle bit17
595  * and uses non-atomic copy and kmap functions. */
596 static int
597 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
598                  char __user *user_data,
599                  bool page_do_bit17_swizzling, bool needs_clflush)
600 {
601         char *vaddr;
602         int ret;
603
604         vaddr = kmap(page);
605         if (needs_clflush)
606                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
607                                              page_length,
608                                              page_do_bit17_swizzling);
609
610         if (page_do_bit17_swizzling)
611                 ret = __copy_to_user_swizzled(user_data,
612                                               vaddr, shmem_page_offset,
613                                               page_length);
614         else
615                 ret = __copy_to_user(user_data,
616                                      vaddr + shmem_page_offset,
617                                      page_length);
618         kunmap(page);
619
620         return ret ? - EFAULT : 0;
621 }
622
623 static int
624 i915_gem_shmem_pread(struct drm_device *dev,
625                      struct drm_i915_gem_object *obj,
626                      struct drm_i915_gem_pread *args,
627                      struct drm_file *file)
628 {
629         char __user *user_data;
630         ssize_t remain;
631         loff_t offset;
632         int shmem_page_offset, page_length, ret = 0;
633         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
634         int prefaulted = 0;
635         int needs_clflush = 0;
636         struct sg_page_iter sg_iter;
637
638         user_data = to_user_ptr(args->data_ptr);
639         remain = args->size;
640
641         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
642
643         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
644         if (ret)
645                 return ret;
646
647         offset = args->offset;
648
649         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
650                          offset >> PAGE_SHIFT) {
651                 struct page *page = sg_page_iter_page(&sg_iter);
652
653                 if (remain <= 0)
654                         break;
655
656                 /* Operation in this page
657                  *
658                  * shmem_page_offset = offset within page in shmem file
659                  * page_length = bytes to copy for this page
660                  */
661                 shmem_page_offset = offset_in_page(offset);
662                 page_length = remain;
663                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
664                         page_length = PAGE_SIZE - shmem_page_offset;
665
666                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
667                         (page_to_phys(page) & (1 << 17)) != 0;
668
669                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
670                                        user_data, page_do_bit17_swizzling,
671                                        needs_clflush);
672                 if (ret == 0)
673                         goto next_page;
674
675                 mutex_unlock(&dev->struct_mutex);
676
677                 if (likely(!i915.prefault_disable) && !prefaulted) {
678                         ret = fault_in_multipages_writeable(user_data, remain);
679                         /* Userspace is tricking us, but we've already clobbered
680                          * its pages with the prefault and promised to write the
681                          * data up to the first fault. Hence ignore any errors
682                          * and just continue. */
683                         (void)ret;
684                         prefaulted = 1;
685                 }
686
687                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
688                                        user_data, page_do_bit17_swizzling,
689                                        needs_clflush);
690
691                 mutex_lock(&dev->struct_mutex);
692
693                 if (ret)
694                         goto out;
695
696 next_page:
697                 remain -= page_length;
698                 user_data += page_length;
699                 offset += page_length;
700         }
701
702 out:
703         i915_gem_object_unpin_pages(obj);
704
705         return ret;
706 }
707
708 /**
709  * Reads data from the object referenced by handle.
710  *
711  * On error, the contents of *data are undefined.
712  */
713 int
714 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
715                      struct drm_file *file)
716 {
717         struct drm_i915_gem_pread *args = data;
718         struct drm_i915_gem_object *obj;
719         int ret = 0;
720
721         if (args->size == 0)
722                 return 0;
723
724         if (!access_ok(VERIFY_WRITE,
725                        to_user_ptr(args->data_ptr),
726                        args->size))
727                 return -EFAULT;
728
729         ret = i915_mutex_lock_interruptible(dev);
730         if (ret)
731                 return ret;
732
733         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
734         if (&obj->base == NULL) {
735                 ret = -ENOENT;
736                 goto unlock;
737         }
738
739         /* Bounds check source.  */
740         if (args->offset > obj->base.size ||
741             args->size > obj->base.size - args->offset) {
742                 ret = -EINVAL;
743                 goto out;
744         }
745
746         /* prime objects have no backing filp to GEM pread/pwrite
747          * pages from.
748          */
749         if (!obj->base.filp) {
750                 ret = -EINVAL;
751                 goto out;
752         }
753
754         trace_i915_gem_object_pread(obj, args->offset, args->size);
755
756         ret = i915_gem_shmem_pread(dev, obj, args, file);
757
758 out:
759         drm_gem_object_unreference(&obj->base);
760 unlock:
761         mutex_unlock(&dev->struct_mutex);
762         return ret;
763 }
764
765 /* This is the fast write path which cannot handle
766  * page faults in the source data
767  */
768
769 static inline int
770 fast_user_write(struct io_mapping *mapping,
771                 loff_t page_base, int page_offset,
772                 char __user *user_data,
773                 int length)
774 {
775         void __iomem *vaddr_atomic;
776         void *vaddr;
777         unsigned long unwritten;
778
779         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
780         /* We can use the cpu mem copy function because this is X86. */
781         vaddr = (void __force*)vaddr_atomic + page_offset;
782         unwritten = __copy_from_user_inatomic_nocache(vaddr,
783                                                       user_data, length);
784         io_mapping_unmap_atomic(vaddr_atomic);
785         return unwritten;
786 }
787
788 /**
789  * This is the fast pwrite path, where we copy the data directly from the
790  * user into the GTT, uncached.
791  */
792 static int
793 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
794                          struct drm_i915_gem_object *obj,
795                          struct drm_i915_gem_pwrite *args,
796                          struct drm_file *file)
797 {
798         struct drm_i915_private *dev_priv = dev->dev_private;
799         ssize_t remain;
800         loff_t offset, page_base;
801         char __user *user_data;
802         int page_offset, page_length, ret;
803
804         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
805         if (ret)
806                 goto out;
807
808         ret = i915_gem_object_set_to_gtt_domain(obj, true);
809         if (ret)
810                 goto out_unpin;
811
812         ret = i915_gem_object_put_fence(obj);
813         if (ret)
814                 goto out_unpin;
815
816         user_data = to_user_ptr(args->data_ptr);
817         remain = args->size;
818
819         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
820
821         while (remain > 0) {
822                 /* Operation in this page
823                  *
824                  * page_base = page offset within aperture
825                  * page_offset = offset within page
826                  * page_length = bytes to copy for this page
827                  */
828                 page_base = offset & PAGE_MASK;
829                 page_offset = offset_in_page(offset);
830                 page_length = remain;
831                 if ((page_offset + remain) > PAGE_SIZE)
832                         page_length = PAGE_SIZE - page_offset;
833
834                 /* If we get a fault while copying data, then (presumably) our
835                  * source page isn't available.  Return the error and we'll
836                  * retry in the slow path.
837                  */
838                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
839                                     page_offset, user_data, page_length)) {
840                         ret = -EFAULT;
841                         goto out_unpin;
842                 }
843
844                 remain -= page_length;
845                 user_data += page_length;
846                 offset += page_length;
847         }
848
849 out_unpin:
850         i915_gem_object_ggtt_unpin(obj);
851 out:
852         return ret;
853 }
854
855 /* Per-page copy function for the shmem pwrite fastpath.
856  * Flushes invalid cachelines before writing to the target if
857  * needs_clflush_before is set and flushes out any written cachelines after
858  * writing if needs_clflush is set. */
859 static int
860 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
861                   char __user *user_data,
862                   bool page_do_bit17_swizzling,
863                   bool needs_clflush_before,
864                   bool needs_clflush_after)
865 {
866         char *vaddr;
867         int ret;
868
869         if (unlikely(page_do_bit17_swizzling))
870                 return -EINVAL;
871
872         vaddr = kmap_atomic(page);
873         if (needs_clflush_before)
874                 drm_clflush_virt_range(vaddr + shmem_page_offset,
875                                        page_length);
876         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
877                                         user_data, page_length);
878         if (needs_clflush_after)
879                 drm_clflush_virt_range(vaddr + shmem_page_offset,
880                                        page_length);
881         kunmap_atomic(vaddr);
882
883         return ret ? -EFAULT : 0;
884 }
885
886 /* Only difference to the fast-path function is that this can handle bit17
887  * and uses non-atomic copy and kmap functions. */
888 static int
889 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
890                   char __user *user_data,
891                   bool page_do_bit17_swizzling,
892                   bool needs_clflush_before,
893                   bool needs_clflush_after)
894 {
895         char *vaddr;
896         int ret;
897
898         vaddr = kmap(page);
899         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
900                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
901                                              page_length,
902                                              page_do_bit17_swizzling);
903         if (page_do_bit17_swizzling)
904                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
905                                                 user_data,
906                                                 page_length);
907         else
908                 ret = __copy_from_user(vaddr + shmem_page_offset,
909                                        user_data,
910                                        page_length);
911         if (needs_clflush_after)
912                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
913                                              page_length,
914                                              page_do_bit17_swizzling);
915         kunmap(page);
916
917         return ret ? -EFAULT : 0;
918 }
919
920 static int
921 i915_gem_shmem_pwrite(struct drm_device *dev,
922                       struct drm_i915_gem_object *obj,
923                       struct drm_i915_gem_pwrite *args,
924                       struct drm_file *file)
925 {
926         ssize_t remain;
927         loff_t offset;
928         char __user *user_data;
929         int shmem_page_offset, page_length, ret = 0;
930         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
931         int hit_slowpath = 0;
932         int needs_clflush_after = 0;
933         int needs_clflush_before = 0;
934         struct sg_page_iter sg_iter;
935
936         user_data = to_user_ptr(args->data_ptr);
937         remain = args->size;
938
939         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
940
941         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
942                 /* If we're not in the cpu write domain, set ourself into the gtt
943                  * write domain and manually flush cachelines (if required). This
944                  * optimizes for the case when the gpu will use the data
945                  * right away and we therefore have to clflush anyway. */
946                 needs_clflush_after = cpu_write_needs_clflush(obj);
947                 ret = i915_gem_object_wait_rendering(obj, false);
948                 if (ret)
949                         return ret;
950
951                 i915_gem_object_retire(obj);
952         }
953         /* Same trick applies to invalidate partially written cachelines read
954          * before writing. */
955         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
956                 needs_clflush_before =
957                         !cpu_cache_is_coherent(dev, obj->cache_level);
958
959         ret = i915_gem_object_get_pages(obj);
960         if (ret)
961                 return ret;
962
963         i915_gem_object_pin_pages(obj);
964
965         offset = args->offset;
966         obj->dirty = 1;
967
968         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
969                          offset >> PAGE_SHIFT) {
970                 struct page *page = sg_page_iter_page(&sg_iter);
971                 int partial_cacheline_write;
972
973                 if (remain <= 0)
974                         break;
975
976                 /* Operation in this page
977                  *
978                  * shmem_page_offset = offset within page in shmem file
979                  * page_length = bytes to copy for this page
980                  */
981                 shmem_page_offset = offset_in_page(offset);
982
983                 page_length = remain;
984                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
985                         page_length = PAGE_SIZE - shmem_page_offset;
986
987                 /* If we don't overwrite a cacheline completely we need to be
988                  * careful to have up-to-date data by first clflushing. Don't
989                  * overcomplicate things and flush the entire patch. */
990                 partial_cacheline_write = needs_clflush_before &&
991                         ((shmem_page_offset | page_length)
992                                 & (boot_cpu_data.x86_clflush_size - 1));
993
994                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
995                         (page_to_phys(page) & (1 << 17)) != 0;
996
997                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
998                                         user_data, page_do_bit17_swizzling,
999                                         partial_cacheline_write,
1000                                         needs_clflush_after);
1001                 if (ret == 0)
1002                         goto next_page;
1003
1004                 hit_slowpath = 1;
1005                 mutex_unlock(&dev->struct_mutex);
1006                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1007                                         user_data, page_do_bit17_swizzling,
1008                                         partial_cacheline_write,
1009                                         needs_clflush_after);
1010
1011                 mutex_lock(&dev->struct_mutex);
1012
1013                 if (ret)
1014                         goto out;
1015
1016 next_page:
1017                 remain -= page_length;
1018                 user_data += page_length;
1019                 offset += page_length;
1020         }
1021
1022 out:
1023         i915_gem_object_unpin_pages(obj);
1024
1025         if (hit_slowpath) {
1026                 /*
1027                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1028                  * cachelines in-line while writing and the object moved
1029                  * out of the cpu write domain while we've dropped the lock.
1030                  */
1031                 if (!needs_clflush_after &&
1032                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1033                         if (i915_gem_clflush_object(obj, obj->pin_display))
1034                                 i915_gem_chipset_flush(dev);
1035                 }
1036         }
1037
1038         if (needs_clflush_after)
1039                 i915_gem_chipset_flush(dev);
1040
1041         return ret;
1042 }
1043
1044 /**
1045  * Writes data to the object referenced by handle.
1046  *
1047  * On error, the contents of the buffer that were to be modified are undefined.
1048  */
1049 int
1050 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1051                       struct drm_file *file)
1052 {
1053         struct drm_i915_gem_pwrite *args = data;
1054         struct drm_i915_gem_object *obj;
1055         int ret;
1056
1057         if (args->size == 0)
1058                 return 0;
1059
1060         if (!access_ok(VERIFY_READ,
1061                        to_user_ptr(args->data_ptr),
1062                        args->size))
1063                 return -EFAULT;
1064
1065         if (likely(!i915.prefault_disable)) {
1066                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1067                                                    args->size);
1068                 if (ret)
1069                         return -EFAULT;
1070         }
1071
1072         ret = i915_mutex_lock_interruptible(dev);
1073         if (ret)
1074                 return ret;
1075
1076         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1077         if (&obj->base == NULL) {
1078                 ret = -ENOENT;
1079                 goto unlock;
1080         }
1081
1082         /* Bounds check destination. */
1083         if (args->offset > obj->base.size ||
1084             args->size > obj->base.size - args->offset) {
1085                 ret = -EINVAL;
1086                 goto out;
1087         }
1088
1089         /* prime objects have no backing filp to GEM pread/pwrite
1090          * pages from.
1091          */
1092         if (!obj->base.filp) {
1093                 ret = -EINVAL;
1094                 goto out;
1095         }
1096
1097         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1098
1099         ret = -EFAULT;
1100         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1101          * it would end up going through the fenced access, and we'll get
1102          * different detiling behavior between reading and writing.
1103          * pread/pwrite currently are reading and writing from the CPU
1104          * perspective, requiring manual detiling by the client.
1105          */
1106         if (obj->tiling_mode == I915_TILING_NONE &&
1107             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1108             cpu_write_needs_clflush(obj)) {
1109                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1110                 /* Note that the gtt paths might fail with non-page-backed user
1111                  * pointers (e.g. gtt mappings when moving data between
1112                  * textures). Fallback to the shmem path in that case. */
1113         }
1114
1115         if (ret == -EFAULT || ret == -ENOSPC) {
1116                 if (obj->phys_handle)
1117                         ret = i915_gem_phys_pwrite(obj, args, file);
1118                 else
1119                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1120         }
1121
1122 out:
1123         drm_gem_object_unreference(&obj->base);
1124 unlock:
1125         mutex_unlock(&dev->struct_mutex);
1126         return ret;
1127 }
1128
1129 int
1130 i915_gem_check_wedge(struct i915_gpu_error *error,
1131                      bool interruptible)
1132 {
1133         if (i915_reset_in_progress(error)) {
1134                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1135                  * -EIO unconditionally for these. */
1136                 if (!interruptible)
1137                         return -EIO;
1138
1139                 /* Recovery complete, but the reset failed ... */
1140                 if (i915_terminally_wedged(error))
1141                         return -EIO;
1142
1143                 /*
1144                  * Check if GPU Reset is in progress - we need intel_ring_begin
1145                  * to work properly to reinit the hw state while the gpu is
1146                  * still marked as reset-in-progress. Handle this with a flag.
1147                  */
1148                 if (!error->reload_in_reset)
1149                         return -EAGAIN;
1150         }
1151
1152         return 0;
1153 }
1154
1155 /*
1156  * Compare seqno against outstanding lazy request. Emit a request if they are
1157  * equal.
1158  */
1159 int
1160 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1161 {
1162         int ret;
1163
1164         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1165
1166         ret = 0;
1167         if (seqno == ring->outstanding_lazy_seqno)
1168                 ret = i915_add_request(ring, NULL);
1169
1170         return ret;
1171 }
1172
1173 static void fake_irq(unsigned long data)
1174 {
1175         wake_up_process((struct task_struct *)data);
1176 }
1177
1178 static bool missed_irq(struct drm_i915_private *dev_priv,
1179                        struct intel_engine_cs *ring)
1180 {
1181         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182 }
1183
1184 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1185 {
1186         if (file_priv == NULL)
1187                 return true;
1188
1189         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1190 }
1191
1192 /**
1193  * __i915_wait_seqno - wait until execution of seqno has finished
1194  * @ring: the ring expected to report seqno
1195  * @seqno: duh!
1196  * @reset_counter: reset sequence associated with the given seqno
1197  * @interruptible: do an interruptible wait (normally yes)
1198  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1199  *
1200  * Note: It is of utmost importance that the passed in seqno and reset_counter
1201  * values have been read by the caller in an smp safe manner. Where read-side
1202  * locks are involved, it is sufficient to read the reset_counter before
1203  * unlocking the lock that protects the seqno. For lockless tricks, the
1204  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1205  * inserted.
1206  *
1207  * Returns 0 if the seqno was found within the alloted time. Else returns the
1208  * errno with remaining time filled in timeout argument.
1209  */
1210 int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1211                         unsigned reset_counter,
1212                         bool interruptible,
1213                         s64 *timeout,
1214                         struct drm_i915_file_private *file_priv)
1215 {
1216         struct drm_device *dev = ring->dev;
1217         struct drm_i915_private *dev_priv = dev->dev_private;
1218         const bool irq_test_in_progress =
1219                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1220         DEFINE_WAIT(wait);
1221         unsigned long timeout_expire;
1222         s64 before, now;
1223         int ret;
1224
1225         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1226
1227         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1228                 return 0;
1229
1230         timeout_expire = timeout ?
1231                 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1232
1233         if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1234                 gen6_rps_boost(dev_priv);
1235                 if (file_priv)
1236                         mod_delayed_work(dev_priv->wq,
1237                                          &file_priv->mm.idle_work,
1238                                          msecs_to_jiffies(100));
1239         }
1240
1241         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1242                 return -ENODEV;
1243
1244         /* Record current time in case interrupted by signal, or wedged */
1245         trace_i915_gem_request_wait_begin(ring, seqno);
1246         before = ktime_get_raw_ns();
1247         for (;;) {
1248                 struct timer_list timer;
1249
1250                 prepare_to_wait(&ring->irq_queue, &wait,
1251                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1252
1253                 /* We need to check whether any gpu reset happened in between
1254                  * the caller grabbing the seqno and now ... */
1255                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1256                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1257                          * is truely gone. */
1258                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1259                         if (ret == 0)
1260                                 ret = -EAGAIN;
1261                         break;
1262                 }
1263
1264                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1265                         ret = 0;
1266                         break;
1267                 }
1268
1269                 if (interruptible && signal_pending(current)) {
1270                         ret = -ERESTARTSYS;
1271                         break;
1272                 }
1273
1274                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1275                         ret = -ETIME;
1276                         break;
1277                 }
1278
1279                 timer.function = NULL;
1280                 if (timeout || missed_irq(dev_priv, ring)) {
1281                         unsigned long expire;
1282
1283                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1284                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1285                         mod_timer(&timer, expire);
1286                 }
1287
1288                 io_schedule();
1289
1290                 if (timer.function) {
1291                         del_singleshot_timer_sync(&timer);
1292                         destroy_timer_on_stack(&timer);
1293                 }
1294         }
1295         now = ktime_get_raw_ns();
1296         trace_i915_gem_request_wait_end(ring, seqno);
1297
1298         if (!irq_test_in_progress)
1299                 ring->irq_put(ring);
1300
1301         finish_wait(&ring->irq_queue, &wait);
1302
1303         if (timeout) {
1304                 s64 tres = *timeout - (now - before);
1305
1306                 *timeout = tres < 0 ? 0 : tres;
1307
1308                 /*
1309                  * Apparently ktime isn't accurate enough and occasionally has a
1310                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1311                  * things up to make the test happy. We allow up to 1 jiffy.
1312                  *
1313                  * This is a regrssion from the timespec->ktime conversion.
1314                  */
1315                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1316                         *timeout = 0;
1317         }
1318
1319         return ret;
1320 }
1321
1322 /**
1323  * Waits for a sequence number to be signaled, and cleans up the
1324  * request and object lists appropriately for that event.
1325  */
1326 int
1327 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1328 {
1329         struct drm_device *dev = ring->dev;
1330         struct drm_i915_private *dev_priv = dev->dev_private;
1331         bool interruptible = dev_priv->mm.interruptible;
1332         unsigned reset_counter;
1333         int ret;
1334
1335         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1336         BUG_ON(seqno == 0);
1337
1338         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1339         if (ret)
1340                 return ret;
1341
1342         ret = i915_gem_check_olr(ring, seqno);
1343         if (ret)
1344                 return ret;
1345
1346         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1347         return __i915_wait_seqno(ring, seqno, reset_counter, interruptible,
1348                                  NULL, NULL);
1349 }
1350
1351 static int
1352 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1353 {
1354         if (!obj->active)
1355                 return 0;
1356
1357         /* Manually manage the write flush as we may have not yet
1358          * retired the buffer.
1359          *
1360          * Note that the last_write_seqno is always the earlier of
1361          * the two (read/write) seqno, so if we haved successfully waited,
1362          * we know we have passed the last write.
1363          */
1364         obj->last_write_seqno = 0;
1365
1366         return 0;
1367 }
1368
1369 /**
1370  * Ensures that all rendering to the object has completed and the object is
1371  * safe to unbind from the GTT or access from the CPU.
1372  */
1373 static __must_check int
1374 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1375                                bool readonly)
1376 {
1377         struct intel_engine_cs *ring = obj->ring;
1378         u32 seqno;
1379         int ret;
1380
1381         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1382         if (seqno == 0)
1383                 return 0;
1384
1385         ret = i915_wait_seqno(ring, seqno);
1386         if (ret)
1387                 return ret;
1388
1389         return i915_gem_object_wait_rendering__tail(obj);
1390 }
1391
1392 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1393  * as the object state may change during this call.
1394  */
1395 static __must_check int
1396 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1397                                             struct drm_i915_file_private *file_priv,
1398                                             bool readonly)
1399 {
1400         struct drm_device *dev = obj->base.dev;
1401         struct drm_i915_private *dev_priv = dev->dev_private;
1402         struct intel_engine_cs *ring = obj->ring;
1403         unsigned reset_counter;
1404         u32 seqno;
1405         int ret;
1406
1407         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1408         BUG_ON(!dev_priv->mm.interruptible);
1409
1410         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1411         if (seqno == 0)
1412                 return 0;
1413
1414         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1415         if (ret)
1416                 return ret;
1417
1418         ret = i915_gem_check_olr(ring, seqno);
1419         if (ret)
1420                 return ret;
1421
1422         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1423         mutex_unlock(&dev->struct_mutex);
1424         ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL,
1425                                 file_priv);
1426         mutex_lock(&dev->struct_mutex);
1427         if (ret)
1428                 return ret;
1429
1430         return i915_gem_object_wait_rendering__tail(obj);
1431 }
1432
1433 /**
1434  * Called when user space prepares to use an object with the CPU, either
1435  * through the mmap ioctl's mapping or a GTT mapping.
1436  */
1437 int
1438 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1439                           struct drm_file *file)
1440 {
1441         struct drm_i915_gem_set_domain *args = data;
1442         struct drm_i915_gem_object *obj;
1443         uint32_t read_domains = args->read_domains;
1444         uint32_t write_domain = args->write_domain;
1445         int ret;
1446
1447         /* Only handle setting domains to types used by the CPU. */
1448         if (write_domain & I915_GEM_GPU_DOMAINS)
1449                 return -EINVAL;
1450
1451         if (read_domains & I915_GEM_GPU_DOMAINS)
1452                 return -EINVAL;
1453
1454         /* Having something in the write domain implies it's in the read
1455          * domain, and only that read domain.  Enforce that in the request.
1456          */
1457         if (write_domain != 0 && read_domains != write_domain)
1458                 return -EINVAL;
1459
1460         ret = i915_mutex_lock_interruptible(dev);
1461         if (ret)
1462                 return ret;
1463
1464         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1465         if (&obj->base == NULL) {
1466                 ret = -ENOENT;
1467                 goto unlock;
1468         }
1469
1470         /* Try to flush the object off the GPU without holding the lock.
1471          * We will repeat the flush holding the lock in the normal manner
1472          * to catch cases where we are gazumped.
1473          */
1474         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1475                                                           file->driver_priv,
1476                                                           !write_domain);
1477         if (ret)
1478                 goto unref;
1479
1480         if (read_domains & I915_GEM_DOMAIN_GTT) {
1481                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1482
1483                 /* Silently promote "you're not bound, there was nothing to do"
1484                  * to success, since the client was just asking us to
1485                  * make sure everything was done.
1486                  */
1487                 if (ret == -EINVAL)
1488                         ret = 0;
1489         } else {
1490                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1491         }
1492
1493 unref:
1494         drm_gem_object_unreference(&obj->base);
1495 unlock:
1496         mutex_unlock(&dev->struct_mutex);
1497         return ret;
1498 }
1499
1500 /**
1501  * Called when user space has done writes to this buffer
1502  */
1503 int
1504 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1505                          struct drm_file *file)
1506 {
1507         struct drm_i915_gem_sw_finish *args = data;
1508         struct drm_i915_gem_object *obj;
1509         int ret = 0;
1510
1511         ret = i915_mutex_lock_interruptible(dev);
1512         if (ret)
1513                 return ret;
1514
1515         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1516         if (&obj->base == NULL) {
1517                 ret = -ENOENT;
1518                 goto unlock;
1519         }
1520
1521         /* Pinned buffers may be scanout, so flush the cache */
1522         if (obj->pin_display)
1523                 i915_gem_object_flush_cpu_write_domain(obj, true);
1524
1525         drm_gem_object_unreference(&obj->base);
1526 unlock:
1527         mutex_unlock(&dev->struct_mutex);
1528         return ret;
1529 }
1530
1531 /**
1532  * Maps the contents of an object, returning the address it is mapped
1533  * into.
1534  *
1535  * While the mapping holds a reference on the contents of the object, it doesn't
1536  * imply a ref on the object itself.
1537  *
1538  * IMPORTANT:
1539  *
1540  * DRM driver writers who look a this function as an example for how to do GEM
1541  * mmap support, please don't implement mmap support like here. The modern way
1542  * to implement DRM mmap support is with an mmap offset ioctl (like
1543  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1544  * That way debug tooling like valgrind will understand what's going on, hiding
1545  * the mmap call in a driver private ioctl will break that. The i915 driver only
1546  * does cpu mmaps this way because we didn't know better.
1547  */
1548 int
1549 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1550                     struct drm_file *file)
1551 {
1552         struct drm_i915_gem_mmap *args = data;
1553         struct drm_gem_object *obj;
1554         unsigned long addr;
1555
1556         obj = drm_gem_object_lookup(dev, file, args->handle);
1557         if (obj == NULL)
1558                 return -ENOENT;
1559
1560         /* prime objects have no backing filp to GEM mmap
1561          * pages from.
1562          */
1563         if (!obj->filp) {
1564                 drm_gem_object_unreference_unlocked(obj);
1565                 return -EINVAL;
1566         }
1567
1568         addr = vm_mmap(obj->filp, 0, args->size,
1569                        PROT_READ | PROT_WRITE, MAP_SHARED,
1570                        args->offset);
1571         drm_gem_object_unreference_unlocked(obj);
1572         if (IS_ERR((void *)addr))
1573                 return addr;
1574
1575         args->addr_ptr = (uint64_t) addr;
1576
1577         return 0;
1578 }
1579
1580 /**
1581  * i915_gem_fault - fault a page into the GTT
1582  * vma: VMA in question
1583  * vmf: fault info
1584  *
1585  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1586  * from userspace.  The fault handler takes care of binding the object to
1587  * the GTT (if needed), allocating and programming a fence register (again,
1588  * only if needed based on whether the old reg is still valid or the object
1589  * is tiled) and inserting a new PTE into the faulting process.
1590  *
1591  * Note that the faulting process may involve evicting existing objects
1592  * from the GTT and/or fence registers to make room.  So performance may
1593  * suffer if the GTT working set is large or there are few fence registers
1594  * left.
1595  */
1596 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1597 {
1598         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1599         struct drm_device *dev = obj->base.dev;
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         pgoff_t page_offset;
1602         unsigned long pfn;
1603         int ret = 0;
1604         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1605
1606         intel_runtime_pm_get(dev_priv);
1607
1608         /* We don't use vmf->pgoff since that has the fake offset */
1609         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1610                 PAGE_SHIFT;
1611
1612         ret = i915_mutex_lock_interruptible(dev);
1613         if (ret)
1614                 goto out;
1615
1616         trace_i915_gem_object_fault(obj, page_offset, true, write);
1617
1618         /* Try to flush the object off the GPU first without holding the lock.
1619          * Upon reacquiring the lock, we will perform our sanity checks and then
1620          * repeat the flush holding the lock in the normal manner to catch cases
1621          * where we are gazumped.
1622          */
1623         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1624         if (ret)
1625                 goto unlock;
1626
1627         /* Access to snoopable pages through the GTT is incoherent. */
1628         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1629                 ret = -EFAULT;
1630                 goto unlock;
1631         }
1632
1633         /* Now bind it into the GTT if needed */
1634         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1635         if (ret)
1636                 goto unlock;
1637
1638         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1639         if (ret)
1640                 goto unpin;
1641
1642         ret = i915_gem_object_get_fence(obj);
1643         if (ret)
1644                 goto unpin;
1645
1646         /* Finally, remap it using the new GTT offset */
1647         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1648         pfn >>= PAGE_SHIFT;
1649
1650         if (!obj->fault_mappable) {
1651                 unsigned long size = min_t(unsigned long,
1652                                            vma->vm_end - vma->vm_start,
1653                                            obj->base.size);
1654                 int i;
1655
1656                 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1657                         ret = vm_insert_pfn(vma,
1658                                             (unsigned long)vma->vm_start + i * PAGE_SIZE,
1659                                             pfn + i);
1660                         if (ret)
1661                                 break;
1662                 }
1663
1664                 obj->fault_mappable = true;
1665         } else
1666                 ret = vm_insert_pfn(vma,
1667                                     (unsigned long)vmf->virtual_address,
1668                                     pfn + page_offset);
1669 unpin:
1670         i915_gem_object_ggtt_unpin(obj);
1671 unlock:
1672         mutex_unlock(&dev->struct_mutex);
1673 out:
1674         switch (ret) {
1675         case -EIO:
1676                 /*
1677                  * We eat errors when the gpu is terminally wedged to avoid
1678                  * userspace unduly crashing (gl has no provisions for mmaps to
1679                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1680                  * and so needs to be reported.
1681                  */
1682                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1683                         ret = VM_FAULT_SIGBUS;
1684                         break;
1685                 }
1686         case -EAGAIN:
1687                 /*
1688                  * EAGAIN means the gpu is hung and we'll wait for the error
1689                  * handler to reset everything when re-faulting in
1690                  * i915_mutex_lock_interruptible.
1691                  */
1692         case 0:
1693         case -ERESTARTSYS:
1694         case -EINTR:
1695         case -EBUSY:
1696                 /*
1697                  * EBUSY is ok: this just means that another thread
1698                  * already did the job.
1699                  */
1700                 ret = VM_FAULT_NOPAGE;
1701                 break;
1702         case -ENOMEM:
1703                 ret = VM_FAULT_OOM;
1704                 break;
1705         case -ENOSPC:
1706         case -EFAULT:
1707                 ret = VM_FAULT_SIGBUS;
1708                 break;
1709         default:
1710                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1711                 ret = VM_FAULT_SIGBUS;
1712                 break;
1713         }
1714
1715         intel_runtime_pm_put(dev_priv);
1716         return ret;
1717 }
1718
1719 /**
1720  * i915_gem_release_mmap - remove physical page mappings
1721  * @obj: obj in question
1722  *
1723  * Preserve the reservation of the mmapping with the DRM core code, but
1724  * relinquish ownership of the pages back to the system.
1725  *
1726  * It is vital that we remove the page mapping if we have mapped a tiled
1727  * object through the GTT and then lose the fence register due to
1728  * resource pressure. Similarly if the object has been moved out of the
1729  * aperture, than pages mapped into userspace must be revoked. Removing the
1730  * mapping will then trigger a page fault on the next user access, allowing
1731  * fixup by i915_gem_fault().
1732  */
1733 void
1734 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1735 {
1736         if (!obj->fault_mappable)
1737                 return;
1738
1739         drm_vma_node_unmap(&obj->base.vma_node,
1740                            obj->base.dev->anon_inode->i_mapping);
1741         obj->fault_mappable = false;
1742 }
1743
1744 void
1745 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1746 {
1747         struct drm_i915_gem_object *obj;
1748
1749         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1750                 i915_gem_release_mmap(obj);
1751 }
1752
1753 uint32_t
1754 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1755 {
1756         uint32_t gtt_size;
1757
1758         if (INTEL_INFO(dev)->gen >= 4 ||
1759             tiling_mode == I915_TILING_NONE)
1760                 return size;
1761
1762         /* Previous chips need a power-of-two fence region when tiling */
1763         if (INTEL_INFO(dev)->gen == 3)
1764                 gtt_size = 1024*1024;
1765         else
1766                 gtt_size = 512*1024;
1767
1768         while (gtt_size < size)
1769                 gtt_size <<= 1;
1770
1771         return gtt_size;
1772 }
1773
1774 /**
1775  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1776  * @obj: object to check
1777  *
1778  * Return the required GTT alignment for an object, taking into account
1779  * potential fence register mapping.
1780  */
1781 uint32_t
1782 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1783                            int tiling_mode, bool fenced)
1784 {
1785         /*
1786          * Minimum alignment is 4k (GTT page size), but might be greater
1787          * if a fence register is needed for the object.
1788          */
1789         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1790             tiling_mode == I915_TILING_NONE)
1791                 return 4096;
1792
1793         /*
1794          * Previous chips need to be aligned to the size of the smallest
1795          * fence register that can contain the object.
1796          */
1797         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1798 }
1799
1800 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1801 {
1802         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1803         int ret;
1804
1805         if (drm_vma_node_has_offset(&obj->base.vma_node))
1806                 return 0;
1807
1808         dev_priv->mm.shrinker_no_lock_stealing = true;
1809
1810         ret = drm_gem_create_mmap_offset(&obj->base);
1811         if (ret != -ENOSPC)
1812                 goto out;
1813
1814         /* Badly fragmented mmap space? The only way we can recover
1815          * space is by destroying unwanted objects. We can't randomly release
1816          * mmap_offsets as userspace expects them to be persistent for the
1817          * lifetime of the objects. The closest we can is to release the
1818          * offsets on purgeable objects by truncating it and marking it purged,
1819          * which prevents userspace from ever using that object again.
1820          */
1821         i915_gem_shrink(dev_priv,
1822                         obj->base.size >> PAGE_SHIFT,
1823                         I915_SHRINK_BOUND |
1824                         I915_SHRINK_UNBOUND |
1825                         I915_SHRINK_PURGEABLE);
1826         ret = drm_gem_create_mmap_offset(&obj->base);
1827         if (ret != -ENOSPC)
1828                 goto out;
1829
1830         i915_gem_shrink_all(dev_priv);
1831         ret = drm_gem_create_mmap_offset(&obj->base);
1832 out:
1833         dev_priv->mm.shrinker_no_lock_stealing = false;
1834
1835         return ret;
1836 }
1837
1838 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1839 {
1840         drm_gem_free_mmap_offset(&obj->base);
1841 }
1842
1843 static int
1844 i915_gem_mmap_gtt(struct drm_file *file,
1845                   struct drm_device *dev,
1846                   uint32_t handle, bool dumb,
1847                   uint64_t *offset)
1848 {
1849         struct drm_i915_private *dev_priv = dev->dev_private;
1850         struct drm_i915_gem_object *obj;
1851         int ret;
1852
1853         ret = i915_mutex_lock_interruptible(dev);
1854         if (ret)
1855                 return ret;
1856
1857         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1858         if (&obj->base == NULL) {
1859                 ret = -ENOENT;
1860                 goto unlock;
1861         }
1862
1863         /*
1864          * We don't allow dumb mmaps on objects created using another
1865          * interface.
1866          */
1867         WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
1868                   "Illegal dumb map of accelerated buffer.\n");
1869
1870         if (obj->base.size > dev_priv->gtt.mappable_end) {
1871                 ret = -E2BIG;
1872                 goto out;
1873         }
1874
1875         if (obj->madv != I915_MADV_WILLNEED) {
1876                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1877                 ret = -EFAULT;
1878                 goto out;
1879         }
1880
1881         ret = i915_gem_object_create_mmap_offset(obj);
1882         if (ret)
1883                 goto out;
1884
1885         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1886
1887 out:
1888         drm_gem_object_unreference(&obj->base);
1889 unlock:
1890         mutex_unlock(&dev->struct_mutex);
1891         return ret;
1892 }
1893
1894 int
1895 i915_gem_dumb_map_offset(struct drm_file *file,
1896                          struct drm_device *dev,
1897                          uint32_t handle,
1898                          uint64_t *offset)
1899 {
1900         return i915_gem_mmap_gtt(file, dev, handle, true, offset);
1901 }
1902
1903 /**
1904  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1905  * @dev: DRM device
1906  * @data: GTT mapping ioctl data
1907  * @file: GEM object info
1908  *
1909  * Simply returns the fake offset to userspace so it can mmap it.
1910  * The mmap call will end up in drm_gem_mmap(), which will set things
1911  * up so we can get faults in the handler above.
1912  *
1913  * The fault handler will take care of binding the object into the GTT
1914  * (since it may have been evicted to make room for something), allocating
1915  * a fence register, and mapping the appropriate aperture address into
1916  * userspace.
1917  */
1918 int
1919 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1920                         struct drm_file *file)
1921 {
1922         struct drm_i915_gem_mmap_gtt *args = data;
1923
1924         return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
1925 }
1926
1927 static inline int
1928 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1929 {
1930         return obj->madv == I915_MADV_DONTNEED;
1931 }
1932
1933 /* Immediately discard the backing storage */
1934 static void
1935 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1936 {
1937         i915_gem_object_free_mmap_offset(obj);
1938
1939         if (obj->base.filp == NULL)
1940                 return;
1941
1942         /* Our goal here is to return as much of the memory as
1943          * is possible back to the system as we are called from OOM.
1944          * To do this we must instruct the shmfs to drop all of its
1945          * backing pages, *now*.
1946          */
1947         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1948         obj->madv = __I915_MADV_PURGED;
1949 }
1950
1951 /* Try to discard unwanted pages */
1952 static void
1953 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1954 {
1955         struct address_space *mapping;
1956
1957         switch (obj->madv) {
1958         case I915_MADV_DONTNEED:
1959                 i915_gem_object_truncate(obj);
1960         case __I915_MADV_PURGED:
1961                 return;
1962         }
1963
1964         if (obj->base.filp == NULL)
1965                 return;
1966
1967         mapping = file_inode(obj->base.filp)->i_mapping,
1968         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1969 }
1970
1971 static void
1972 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1973 {
1974         struct sg_page_iter sg_iter;
1975         int ret;
1976
1977         BUG_ON(obj->madv == __I915_MADV_PURGED);
1978
1979         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1980         if (ret) {
1981                 /* In the event of a disaster, abandon all caches and
1982                  * hope for the best.
1983                  */
1984                 WARN_ON(ret != -EIO);
1985                 i915_gem_clflush_object(obj, true);
1986                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1987         }
1988
1989         if (i915_gem_object_needs_bit17_swizzle(obj))
1990                 i915_gem_object_save_bit_17_swizzle(obj);
1991
1992         if (obj->madv == I915_MADV_DONTNEED)
1993                 obj->dirty = 0;
1994
1995         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1996                 struct page *page = sg_page_iter_page(&sg_iter);
1997
1998                 if (obj->dirty)
1999                         set_page_dirty(page);
2000
2001                 if (obj->madv == I915_MADV_WILLNEED)
2002                         mark_page_accessed(page);
2003
2004                 page_cache_release(page);
2005         }
2006         obj->dirty = 0;
2007
2008         sg_free_table(obj->pages);
2009         kfree(obj->pages);
2010 }
2011
2012 int
2013 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2014 {
2015         const struct drm_i915_gem_object_ops *ops = obj->ops;
2016
2017         if (obj->pages == NULL)
2018                 return 0;
2019
2020         if (obj->pages_pin_count)
2021                 return -EBUSY;
2022
2023         BUG_ON(i915_gem_obj_bound_any(obj));
2024
2025         /* ->put_pages might need to allocate memory for the bit17 swizzle
2026          * array, hence protect them from being reaped by removing them from gtt
2027          * lists early. */
2028         list_del(&obj->global_list);
2029
2030         ops->put_pages(obj);
2031         obj->pages = NULL;
2032
2033         i915_gem_object_invalidate(obj);
2034
2035         return 0;
2036 }
2037
2038 unsigned long
2039 i915_gem_shrink(struct drm_i915_private *dev_priv,
2040                 long target, unsigned flags)
2041 {
2042         const struct {
2043                 struct list_head *list;
2044                 unsigned int bit;
2045         } phases[] = {
2046                 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2047                 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2048                 { NULL, 0 },
2049         }, *phase;
2050         unsigned long count = 0;
2051
2052         /*
2053          * As we may completely rewrite the (un)bound list whilst unbinding
2054          * (due to retiring requests) we have to strictly process only
2055          * one element of the list at the time, and recheck the list
2056          * on every iteration.
2057          *
2058          * In particular, we must hold a reference whilst removing the
2059          * object as we may end up waiting for and/or retiring the objects.
2060          * This might release the final reference (held by the active list)
2061          * and result in the object being freed from under us. This is
2062          * similar to the precautions the eviction code must take whilst
2063          * removing objects.
2064          *
2065          * Also note that although these lists do not hold a reference to
2066          * the object we can safely grab one here: The final object
2067          * unreferencing and the bound_list are both protected by the
2068          * dev->struct_mutex and so we won't ever be able to observe an
2069          * object on the bound_list with a reference count equals 0.
2070          */
2071         for (phase = phases; phase->list; phase++) {
2072                 struct list_head still_in_list;
2073
2074                 if ((flags & phase->bit) == 0)
2075                         continue;
2076
2077                 INIT_LIST_HEAD(&still_in_list);
2078                 while (count < target && !list_empty(phase->list)) {
2079                         struct drm_i915_gem_object *obj;
2080                         struct i915_vma *vma, *v;
2081
2082                         obj = list_first_entry(phase->list,
2083                                                typeof(*obj), global_list);
2084                         list_move_tail(&obj->global_list, &still_in_list);
2085
2086                         if (flags & I915_SHRINK_PURGEABLE &&
2087                             !i915_gem_object_is_purgeable(obj))
2088                                 continue;
2089
2090                         drm_gem_object_reference(&obj->base);
2091
2092                         /* For the unbound phase, this should be a no-op! */
2093                         list_for_each_entry_safe(vma, v,
2094                                                  &obj->vma_list, vma_link)
2095                                 if (i915_vma_unbind(vma))
2096                                         break;
2097
2098                         if (i915_gem_object_put_pages(obj) == 0)
2099                                 count += obj->base.size >> PAGE_SHIFT;
2100
2101                         drm_gem_object_unreference(&obj->base);
2102                 }
2103                 list_splice(&still_in_list, phase->list);
2104         }
2105
2106         return count;
2107 }
2108
2109 static unsigned long
2110 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2111 {
2112         i915_gem_evict_everything(dev_priv->dev);
2113         return i915_gem_shrink(dev_priv, LONG_MAX,
2114                                I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2115 }
2116
2117 static int
2118 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2119 {
2120         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2121         int page_count, i;
2122         struct address_space *mapping;
2123         struct sg_table *st;
2124         struct scatterlist *sg;
2125         struct sg_page_iter sg_iter;
2126         struct page *page;
2127         unsigned long last_pfn = 0;     /* suppress gcc warning */
2128         gfp_t gfp;
2129
2130         /* Assert that the object is not currently in any GPU domain. As it
2131          * wasn't in the GTT, there shouldn't be any way it could have been in
2132          * a GPU cache
2133          */
2134         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2135         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2136
2137         st = kmalloc(sizeof(*st), GFP_KERNEL);
2138         if (st == NULL)
2139                 return -ENOMEM;
2140
2141         page_count = obj->base.size / PAGE_SIZE;
2142         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2143                 kfree(st);
2144                 return -ENOMEM;
2145         }
2146
2147         /* Get the list of pages out of our struct file.  They'll be pinned
2148          * at this point until we release them.
2149          *
2150          * Fail silently without starting the shrinker
2151          */
2152         mapping = file_inode(obj->base.filp)->i_mapping;
2153         gfp = mapping_gfp_mask(mapping);
2154         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2155         gfp &= ~(__GFP_IO | __GFP_WAIT);
2156         sg = st->sgl;
2157         st->nents = 0;
2158         for (i = 0; i < page_count; i++) {
2159                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2160                 if (IS_ERR(page)) {
2161                         i915_gem_shrink(dev_priv,
2162                                         page_count,
2163                                         I915_SHRINK_BOUND |
2164                                         I915_SHRINK_UNBOUND |
2165                                         I915_SHRINK_PURGEABLE);
2166                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2167                 }
2168                 if (IS_ERR(page)) {
2169                         /* We've tried hard to allocate the memory by reaping
2170                          * our own buffer, now let the real VM do its job and
2171                          * go down in flames if truly OOM.
2172                          */
2173                         i915_gem_shrink_all(dev_priv);
2174                         page = shmem_read_mapping_page(mapping, i);
2175                         if (IS_ERR(page))
2176                                 goto err_pages;
2177                 }
2178 #ifdef CONFIG_SWIOTLB
2179                 if (swiotlb_nr_tbl()) {
2180                         st->nents++;
2181                         sg_set_page(sg, page, PAGE_SIZE, 0);
2182                         sg = sg_next(sg);
2183                         continue;
2184                 }
2185 #endif
2186                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2187                         if (i)
2188                                 sg = sg_next(sg);
2189                         st->nents++;
2190                         sg_set_page(sg, page, PAGE_SIZE, 0);
2191                 } else {
2192                         sg->length += PAGE_SIZE;
2193                 }
2194                 last_pfn = page_to_pfn(page);
2195
2196                 /* Check that the i965g/gm workaround works. */
2197                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2198         }
2199 #ifdef CONFIG_SWIOTLB
2200         if (!swiotlb_nr_tbl())
2201 #endif
2202                 sg_mark_end(sg);
2203         obj->pages = st;
2204
2205         if (i915_gem_object_needs_bit17_swizzle(obj))
2206                 i915_gem_object_do_bit_17_swizzle(obj);
2207
2208         if (obj->tiling_mode != I915_TILING_NONE &&
2209             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2210                 i915_gem_object_pin_pages(obj);
2211
2212         return 0;
2213
2214 err_pages:
2215         sg_mark_end(sg);
2216         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2217                 page_cache_release(sg_page_iter_page(&sg_iter));
2218         sg_free_table(st);
2219         kfree(st);
2220
2221         /* shmemfs first checks if there is enough memory to allocate the page
2222          * and reports ENOSPC should there be insufficient, along with the usual
2223          * ENOMEM for a genuine allocation failure.
2224          *
2225          * We use ENOSPC in our driver to mean that we have run out of aperture
2226          * space and so want to translate the error from shmemfs back to our
2227          * usual understanding of ENOMEM.
2228          */
2229         if (PTR_ERR(page) == -ENOSPC)
2230                 return -ENOMEM;
2231         else
2232                 return PTR_ERR(page);
2233 }
2234
2235 /* Ensure that the associated pages are gathered from the backing storage
2236  * and pinned into our object. i915_gem_object_get_pages() may be called
2237  * multiple times before they are released by a single call to
2238  * i915_gem_object_put_pages() - once the pages are no longer referenced
2239  * either as a result of memory pressure (reaping pages under the shrinker)
2240  * or as the object is itself released.
2241  */
2242 int
2243 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2244 {
2245         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2246         const struct drm_i915_gem_object_ops *ops = obj->ops;
2247         int ret;
2248
2249         if (obj->pages)
2250                 return 0;
2251
2252         if (obj->madv != I915_MADV_WILLNEED) {
2253                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2254                 return -EFAULT;
2255         }
2256
2257         BUG_ON(obj->pages_pin_count);
2258
2259         ret = ops->get_pages(obj);
2260         if (ret)
2261                 return ret;
2262
2263         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2264         return 0;
2265 }
2266
2267 static void
2268 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2269                                struct intel_engine_cs *ring)
2270 {
2271         u32 seqno = intel_ring_get_seqno(ring);
2272
2273         BUG_ON(ring == NULL);
2274         if (obj->ring != ring && obj->last_write_seqno) {
2275                 /* Keep the seqno relative to the current ring */
2276                 obj->last_write_seqno = seqno;
2277         }
2278         obj->ring = ring;
2279
2280         /* Add a reference if we're newly entering the active list. */
2281         if (!obj->active) {
2282                 drm_gem_object_reference(&obj->base);
2283                 obj->active = 1;
2284         }
2285
2286         list_move_tail(&obj->ring_list, &ring->active_list);
2287
2288         obj->last_read_seqno = seqno;
2289 }
2290
2291 void i915_vma_move_to_active(struct i915_vma *vma,
2292                              struct intel_engine_cs *ring)
2293 {
2294         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2295         return i915_gem_object_move_to_active(vma->obj, ring);
2296 }
2297
2298 static void
2299 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2300 {
2301         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2302         struct i915_address_space *vm;
2303         struct i915_vma *vma;
2304
2305         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2306         BUG_ON(!obj->active);
2307
2308         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2309                 vma = i915_gem_obj_to_vma(obj, vm);
2310                 if (vma && !list_empty(&vma->mm_list))
2311                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2312         }
2313
2314         intel_fb_obj_flush(obj, true);
2315
2316         list_del_init(&obj->ring_list);
2317         obj->ring = NULL;
2318
2319         obj->last_read_seqno = 0;
2320         obj->last_write_seqno = 0;
2321         obj->base.write_domain = 0;
2322
2323         obj->last_fenced_seqno = 0;
2324
2325         obj->active = 0;
2326         drm_gem_object_unreference(&obj->base);
2327
2328         WARN_ON(i915_verify_lists(dev));
2329 }
2330
2331 static void
2332 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2333 {
2334         struct intel_engine_cs *ring = obj->ring;
2335
2336         if (ring == NULL)
2337                 return;
2338
2339         if (i915_seqno_passed(ring->get_seqno(ring, true),
2340                               obj->last_read_seqno))
2341                 i915_gem_object_move_to_inactive(obj);
2342 }
2343
2344 static int
2345 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2346 {
2347         struct drm_i915_private *dev_priv = dev->dev_private;
2348         struct intel_engine_cs *ring;
2349         int ret, i, j;
2350
2351         /* Carefully retire all requests without writing to the rings */
2352         for_each_ring(ring, dev_priv, i) {
2353                 ret = intel_ring_idle(ring);
2354                 if (ret)
2355                         return ret;
2356         }
2357         i915_gem_retire_requests(dev);
2358
2359         /* Finally reset hw state */
2360         for_each_ring(ring, dev_priv, i) {
2361                 intel_ring_init_seqno(ring, seqno);
2362
2363                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2364                         ring->semaphore.sync_seqno[j] = 0;
2365         }
2366
2367         return 0;
2368 }
2369
2370 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2371 {
2372         struct drm_i915_private *dev_priv = dev->dev_private;
2373         int ret;
2374
2375         if (seqno == 0)
2376                 return -EINVAL;
2377
2378         /* HWS page needs to be set less than what we
2379          * will inject to ring
2380          */
2381         ret = i915_gem_init_seqno(dev, seqno - 1);
2382         if (ret)
2383                 return ret;
2384
2385         /* Carefully set the last_seqno value so that wrap
2386          * detection still works
2387          */
2388         dev_priv->next_seqno = seqno;
2389         dev_priv->last_seqno = seqno - 1;
2390         if (dev_priv->last_seqno == 0)
2391                 dev_priv->last_seqno--;
2392
2393         return 0;
2394 }
2395
2396 int
2397 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2398 {
2399         struct drm_i915_private *dev_priv = dev->dev_private;
2400
2401         /* reserve 0 for non-seqno */
2402         if (dev_priv->next_seqno == 0) {
2403                 int ret = i915_gem_init_seqno(dev, 0);
2404                 if (ret)
2405                         return ret;
2406
2407                 dev_priv->next_seqno = 1;
2408         }
2409
2410         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2411         return 0;
2412 }
2413
2414 int __i915_add_request(struct intel_engine_cs *ring,
2415                        struct drm_file *file,
2416                        struct drm_i915_gem_object *obj,
2417                        u32 *out_seqno)
2418 {
2419         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2420         struct drm_i915_gem_request *request;
2421         struct intel_ringbuffer *ringbuf;
2422         u32 request_ring_position, request_start;
2423         int ret;
2424
2425         request = ring->preallocated_lazy_request;
2426         if (WARN_ON(request == NULL))
2427                 return -ENOMEM;
2428
2429         if (i915.enable_execlists) {
2430                 struct intel_context *ctx = request->ctx;
2431                 ringbuf = ctx->engine[ring->id].ringbuf;
2432         } else
2433                 ringbuf = ring->buffer;
2434
2435         request_start = intel_ring_get_tail(ringbuf);
2436         /*
2437          * Emit any outstanding flushes - execbuf can fail to emit the flush
2438          * after having emitted the batchbuffer command. Hence we need to fix
2439          * things up similar to emitting the lazy request. The difference here
2440          * is that the flush _must_ happen before the next request, no matter
2441          * what.
2442          */
2443         if (i915.enable_execlists) {
2444                 ret = logical_ring_flush_all_caches(ringbuf);
2445                 if (ret)
2446                         return ret;
2447         } else {
2448                 ret = intel_ring_flush_all_caches(ring);
2449                 if (ret)
2450                         return ret;
2451         }
2452
2453         /* Record the position of the start of the request so that
2454          * should we detect the updated seqno part-way through the
2455          * GPU processing the request, we never over-estimate the
2456          * position of the head.
2457          */
2458         request_ring_position = intel_ring_get_tail(ringbuf);
2459
2460         if (i915.enable_execlists) {
2461                 ret = ring->emit_request(ringbuf);
2462                 if (ret)
2463                         return ret;
2464         } else {
2465                 ret = ring->add_request(ring);
2466                 if (ret)
2467                         return ret;
2468         }
2469
2470         request->seqno = intel_ring_get_seqno(ring);
2471         request->ring = ring;
2472         request->head = request_start;
2473         request->tail = request_ring_position;
2474
2475         /* Whilst this request exists, batch_obj will be on the
2476          * active_list, and so will hold the active reference. Only when this
2477          * request is retired will the the batch_obj be moved onto the
2478          * inactive_list and lose its active reference. Hence we do not need
2479          * to explicitly hold another reference here.
2480          */
2481         request->batch_obj = obj;
2482
2483         if (!i915.enable_execlists) {
2484                 /* Hold a reference to the current context so that we can inspect
2485                  * it later in case a hangcheck error event fires.
2486                  */
2487                 request->ctx = ring->last_context;
2488                 if (request->ctx)
2489                         i915_gem_context_reference(request->ctx);
2490         }
2491
2492         request->emitted_jiffies = jiffies;
2493         list_add_tail(&request->list, &ring->request_list);
2494         request->file_priv = NULL;
2495
2496         if (file) {
2497                 struct drm_i915_file_private *file_priv = file->driver_priv;
2498
2499                 spin_lock(&file_priv->mm.lock);
2500                 request->file_priv = file_priv;
2501                 list_add_tail(&request->client_list,
2502                               &file_priv->mm.request_list);
2503                 spin_unlock(&file_priv->mm.lock);
2504         }
2505
2506         trace_i915_gem_request_add(ring, request->seqno);
2507         ring->outstanding_lazy_seqno = 0;
2508         ring->preallocated_lazy_request = NULL;
2509
2510         i915_queue_hangcheck(ring->dev);
2511
2512         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2513         queue_delayed_work(dev_priv->wq,
2514                            &dev_priv->mm.retire_work,
2515                            round_jiffies_up_relative(HZ));
2516         intel_mark_busy(dev_priv->dev);
2517
2518         if (out_seqno)
2519                 *out_seqno = request->seqno;
2520         return 0;
2521 }
2522
2523 static inline void
2524 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2525 {
2526         struct drm_i915_file_private *file_priv = request->file_priv;
2527
2528         if (!file_priv)
2529                 return;
2530
2531         spin_lock(&file_priv->mm.lock);
2532         list_del(&request->client_list);
2533         request->file_priv = NULL;
2534         spin_unlock(&file_priv->mm.lock);
2535 }
2536
2537 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2538                                    const struct intel_context *ctx)
2539 {
2540         unsigned long elapsed;
2541
2542         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2543
2544         if (ctx->hang_stats.banned)
2545                 return true;
2546
2547         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2548                 if (!i915_gem_context_is_default(ctx)) {
2549                         DRM_DEBUG("context hanging too fast, banning!\n");
2550                         return true;
2551                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2552                         if (i915_stop_ring_allow_warn(dev_priv))
2553                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2554                         return true;
2555                 }
2556         }
2557
2558         return false;
2559 }
2560
2561 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2562                                   struct intel_context *ctx,
2563                                   const bool guilty)
2564 {
2565         struct i915_ctx_hang_stats *hs;
2566
2567         if (WARN_ON(!ctx))
2568                 return;
2569
2570         hs = &ctx->hang_stats;
2571
2572         if (guilty) {
2573                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2574                 hs->batch_active++;
2575                 hs->guilty_ts = get_seconds();
2576         } else {
2577                 hs->batch_pending++;
2578         }
2579 }
2580
2581 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2582 {
2583         struct intel_context *ctx = request->ctx;
2584
2585         list_del(&request->list);
2586         i915_gem_request_remove_from_client(request);
2587
2588         if (ctx) {
2589                 if (i915.enable_execlists) {
2590                         struct intel_engine_cs *ring = request->ring;
2591
2592                         if (ctx != ring->default_context)
2593                                 intel_lr_context_unpin(ring, ctx);
2594                 }
2595                 i915_gem_context_unreference(ctx);
2596         }
2597         kfree(request);
2598 }
2599
2600 struct drm_i915_gem_request *
2601 i915_gem_find_active_request(struct intel_engine_cs *ring)
2602 {
2603         struct drm_i915_gem_request *request;
2604         u32 completed_seqno;
2605
2606         completed_seqno = ring->get_seqno(ring, false);
2607
2608         list_for_each_entry(request, &ring->request_list, list) {
2609                 if (i915_seqno_passed(completed_seqno, request->seqno))
2610                         continue;
2611
2612                 return request;
2613         }
2614
2615         return NULL;
2616 }
2617
2618 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2619                                        struct intel_engine_cs *ring)
2620 {
2621         struct drm_i915_gem_request *request;
2622         bool ring_hung;
2623
2624         request = i915_gem_find_active_request(ring);
2625
2626         if (request == NULL)
2627                 return;
2628
2629         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2630
2631         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2632
2633         list_for_each_entry_continue(request, &ring->request_list, list)
2634                 i915_set_reset_status(dev_priv, request->ctx, false);
2635 }
2636
2637 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2638                                         struct intel_engine_cs *ring)
2639 {
2640         while (!list_empty(&ring->active_list)) {
2641                 struct drm_i915_gem_object *obj;
2642
2643                 obj = list_first_entry(&ring->active_list,
2644                                        struct drm_i915_gem_object,
2645                                        ring_list);
2646
2647                 i915_gem_object_move_to_inactive(obj);
2648         }
2649
2650         /*
2651          * Clear the execlists queue up before freeing the requests, as those
2652          * are the ones that keep the context and ringbuffer backing objects
2653          * pinned in place.
2654          */
2655         while (!list_empty(&ring->execlist_queue)) {
2656                 struct intel_ctx_submit_request *submit_req;
2657
2658                 submit_req = list_first_entry(&ring->execlist_queue,
2659                                 struct intel_ctx_submit_request,
2660                                 execlist_link);
2661                 list_del(&submit_req->execlist_link);
2662                 intel_runtime_pm_put(dev_priv);
2663                 i915_gem_context_unreference(submit_req->ctx);
2664                 kfree(submit_req);
2665         }
2666
2667         /*
2668          * We must free the requests after all the corresponding objects have
2669          * been moved off active lists. Which is the same order as the normal
2670          * retire_requests function does. This is important if object hold
2671          * implicit references on things like e.g. ppgtt address spaces through
2672          * the request.
2673          */
2674         while (!list_empty(&ring->request_list)) {
2675                 struct drm_i915_gem_request *request;
2676
2677                 request = list_first_entry(&ring->request_list,
2678                                            struct drm_i915_gem_request,
2679                                            list);
2680
2681                 i915_gem_free_request(request);
2682         }
2683
2684         /* These may not have been flush before the reset, do so now */
2685         kfree(ring->preallocated_lazy_request);
2686         ring->preallocated_lazy_request = NULL;
2687         ring->outstanding_lazy_seqno = 0;
2688 }
2689
2690 void i915_gem_restore_fences(struct drm_device *dev)
2691 {
2692         struct drm_i915_private *dev_priv = dev->dev_private;
2693         int i;
2694
2695         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2696                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2697
2698                 /*
2699                  * Commit delayed tiling changes if we have an object still
2700                  * attached to the fence, otherwise just clear the fence.
2701                  */
2702                 if (reg->obj) {
2703                         i915_gem_object_update_fence(reg->obj, reg,
2704                                                      reg->obj->tiling_mode);
2705                 } else {
2706                         i915_gem_write_fence(dev, i, NULL);
2707                 }
2708         }
2709 }
2710
2711 void i915_gem_reset(struct drm_device *dev)
2712 {
2713         struct drm_i915_private *dev_priv = dev->dev_private;
2714         struct intel_engine_cs *ring;
2715         int i;
2716
2717         /*
2718          * Before we free the objects from the requests, we need to inspect
2719          * them for finding the guilty party. As the requests only borrow
2720          * their reference to the objects, the inspection must be done first.
2721          */
2722         for_each_ring(ring, dev_priv, i)
2723                 i915_gem_reset_ring_status(dev_priv, ring);
2724
2725         for_each_ring(ring, dev_priv, i)
2726                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2727
2728         i915_gem_context_reset(dev);
2729
2730         i915_gem_restore_fences(dev);
2731 }
2732
2733 /**
2734  * This function clears the request list as sequence numbers are passed.
2735  */
2736 void
2737 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2738 {
2739         uint32_t seqno;
2740
2741         if (list_empty(&ring->request_list))
2742                 return;
2743
2744         WARN_ON(i915_verify_lists(ring->dev));
2745
2746         seqno = ring->get_seqno(ring, true);
2747
2748         /* Move any buffers on the active list that are no longer referenced
2749          * by the ringbuffer to the flushing/inactive lists as appropriate,
2750          * before we free the context associated with the requests.
2751          */
2752         while (!list_empty(&ring->active_list)) {
2753                 struct drm_i915_gem_object *obj;
2754
2755                 obj = list_first_entry(&ring->active_list,
2756                                       struct drm_i915_gem_object,
2757                                       ring_list);
2758
2759                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2760                         break;
2761
2762                 i915_gem_object_move_to_inactive(obj);
2763         }
2764
2765
2766         while (!list_empty(&ring->request_list)) {
2767                 struct drm_i915_gem_request *request;
2768                 struct intel_ringbuffer *ringbuf;
2769
2770                 request = list_first_entry(&ring->request_list,
2771                                            struct drm_i915_gem_request,
2772                                            list);
2773
2774                 if (!i915_seqno_passed(seqno, request->seqno))
2775                         break;
2776
2777                 trace_i915_gem_request_retire(ring, request->seqno);
2778
2779                 /* This is one of the few common intersection points
2780                  * between legacy ringbuffer submission and execlists:
2781                  * we need to tell them apart in order to find the correct
2782                  * ringbuffer to which the request belongs to.
2783                  */
2784                 if (i915.enable_execlists) {
2785                         struct intel_context *ctx = request->ctx;
2786                         ringbuf = ctx->engine[ring->id].ringbuf;
2787                 } else
2788                         ringbuf = ring->buffer;
2789
2790                 /* We know the GPU must have read the request to have
2791                  * sent us the seqno + interrupt, so use the position
2792                  * of tail of the request to update the last known position
2793                  * of the GPU head.
2794                  */
2795                 ringbuf->last_retired_head = request->tail;
2796
2797                 i915_gem_free_request(request);
2798         }
2799
2800         if (unlikely(ring->trace_irq_seqno &&
2801                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2802                 ring->irq_put(ring);
2803                 ring->trace_irq_seqno = 0;
2804         }
2805
2806         WARN_ON(i915_verify_lists(ring->dev));
2807 }
2808
2809 bool
2810 i915_gem_retire_requests(struct drm_device *dev)
2811 {
2812         struct drm_i915_private *dev_priv = dev->dev_private;
2813         struct intel_engine_cs *ring;
2814         bool idle = true;
2815         int i;
2816
2817         for_each_ring(ring, dev_priv, i) {
2818                 i915_gem_retire_requests_ring(ring);
2819                 idle &= list_empty(&ring->request_list);
2820                 if (i915.enable_execlists) {
2821                         unsigned long flags;
2822
2823                         spin_lock_irqsave(&ring->execlist_lock, flags);
2824                         idle &= list_empty(&ring->execlist_queue);
2825                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2826
2827                         intel_execlists_retire_requests(ring);
2828                 }
2829         }
2830
2831         if (idle)
2832                 mod_delayed_work(dev_priv->wq,
2833                                    &dev_priv->mm.idle_work,
2834                                    msecs_to_jiffies(100));
2835
2836         return idle;
2837 }
2838
2839 static void
2840 i915_gem_retire_work_handler(struct work_struct *work)
2841 {
2842         struct drm_i915_private *dev_priv =
2843                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2844         struct drm_device *dev = dev_priv->dev;
2845         bool idle;
2846
2847         /* Come back later if the device is busy... */
2848         idle = false;
2849         if (mutex_trylock(&dev->struct_mutex)) {
2850                 idle = i915_gem_retire_requests(dev);
2851                 mutex_unlock(&dev->struct_mutex);
2852         }
2853         if (!idle)
2854                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2855                                    round_jiffies_up_relative(HZ));
2856 }
2857
2858 static void
2859 i915_gem_idle_work_handler(struct work_struct *work)
2860 {
2861         struct drm_i915_private *dev_priv =
2862                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2863
2864         intel_mark_idle(dev_priv->dev);
2865 }
2866
2867 /**
2868  * Ensures that an object will eventually get non-busy by flushing any required
2869  * write domains, emitting any outstanding lazy request and retiring and
2870  * completed requests.
2871  */
2872 static int
2873 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2874 {
2875         int ret;
2876
2877         if (obj->active) {
2878                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2879                 if (ret)
2880                         return ret;
2881
2882                 i915_gem_retire_requests_ring(obj->ring);
2883         }
2884
2885         return 0;
2886 }
2887
2888 /**
2889  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2890  * @DRM_IOCTL_ARGS: standard ioctl arguments
2891  *
2892  * Returns 0 if successful, else an error is returned with the remaining time in
2893  * the timeout parameter.
2894  *  -ETIME: object is still busy after timeout
2895  *  -ERESTARTSYS: signal interrupted the wait
2896  *  -ENONENT: object doesn't exist
2897  * Also possible, but rare:
2898  *  -EAGAIN: GPU wedged
2899  *  -ENOMEM: damn
2900  *  -ENODEV: Internal IRQ fail
2901  *  -E?: The add request failed
2902  *
2903  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2904  * non-zero timeout parameter the wait ioctl will wait for the given number of
2905  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2906  * without holding struct_mutex the object may become re-busied before this
2907  * function completes. A similar but shorter * race condition exists in the busy
2908  * ioctl
2909  */
2910 int
2911 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2912 {
2913         struct drm_i915_private *dev_priv = dev->dev_private;
2914         struct drm_i915_gem_wait *args = data;
2915         struct drm_i915_gem_object *obj;
2916         struct intel_engine_cs *ring = NULL;
2917         unsigned reset_counter;
2918         u32 seqno = 0;
2919         int ret = 0;
2920
2921         if (args->flags != 0)
2922                 return -EINVAL;
2923
2924         ret = i915_mutex_lock_interruptible(dev);
2925         if (ret)
2926                 return ret;
2927
2928         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2929         if (&obj->base == NULL) {
2930                 mutex_unlock(&dev->struct_mutex);
2931                 return -ENOENT;
2932         }
2933
2934         /* Need to make sure the object gets inactive eventually. */
2935         ret = i915_gem_object_flush_active(obj);
2936         if (ret)
2937                 goto out;
2938
2939         if (obj->active) {
2940                 seqno = obj->last_read_seqno;
2941                 ring = obj->ring;
2942         }
2943
2944         if (seqno == 0)
2945                  goto out;
2946
2947         /* Do this after OLR check to make sure we make forward progress polling
2948          * on this IOCTL with a timeout <=0 (like busy ioctl)
2949          */
2950         if (args->timeout_ns <= 0) {
2951                 ret = -ETIME;
2952                 goto out;
2953         }
2954
2955         drm_gem_object_unreference(&obj->base);
2956         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2957         mutex_unlock(&dev->struct_mutex);
2958
2959         return __i915_wait_seqno(ring, seqno, reset_counter, true,
2960                                  &args->timeout_ns, file->driver_priv);
2961
2962 out:
2963         drm_gem_object_unreference(&obj->base);
2964         mutex_unlock(&dev->struct_mutex);
2965         return ret;
2966 }
2967
2968 /**
2969  * i915_gem_object_sync - sync an object to a ring.
2970  *
2971  * @obj: object which may be in use on another ring.
2972  * @to: ring we wish to use the object on. May be NULL.
2973  *
2974  * This code is meant to abstract object synchronization with the GPU.
2975  * Calling with NULL implies synchronizing the object with the CPU
2976  * rather than a particular GPU ring.
2977  *
2978  * Returns 0 if successful, else propagates up the lower layer error.
2979  */
2980 int
2981 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2982                      struct intel_engine_cs *to)
2983 {
2984         struct intel_engine_cs *from = obj->ring;
2985         u32 seqno;
2986         int ret, idx;
2987
2988         if (from == NULL || to == from)
2989                 return 0;
2990
2991         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2992                 return i915_gem_object_wait_rendering(obj, false);
2993
2994         idx = intel_ring_sync_index(from, to);
2995
2996         seqno = obj->last_read_seqno;
2997         /* Optimization: Avoid semaphore sync when we are sure we already
2998          * waited for an object with higher seqno */
2999         if (seqno <= from->semaphore.sync_seqno[idx])
3000                 return 0;
3001
3002         ret = i915_gem_check_olr(obj->ring, seqno);
3003         if (ret)
3004                 return ret;
3005
3006         trace_i915_gem_ring_sync_to(from, to, seqno);
3007         ret = to->semaphore.sync_to(to, from, seqno);
3008         if (!ret)
3009                 /* We use last_read_seqno because sync_to()
3010                  * might have just caused seqno wrap under
3011                  * the radar.
3012                  */
3013                 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
3014
3015         return ret;
3016 }
3017
3018 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3019 {
3020         u32 old_write_domain, old_read_domains;
3021
3022         /* Force a pagefault for domain tracking on next user access */
3023         i915_gem_release_mmap(obj);
3024
3025         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3026                 return;
3027
3028         /* Wait for any direct GTT access to complete */
3029         mb();
3030
3031         old_read_domains = obj->base.read_domains;
3032         old_write_domain = obj->base.write_domain;
3033
3034         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3035         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3036
3037         trace_i915_gem_object_change_domain(obj,
3038                                             old_read_domains,
3039                                             old_write_domain);
3040 }
3041
3042 int i915_vma_unbind(struct i915_vma *vma)
3043 {
3044         struct drm_i915_gem_object *obj = vma->obj;
3045         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3046         int ret;
3047
3048         if (list_empty(&vma->vma_link))
3049                 return 0;
3050
3051         if (!drm_mm_node_allocated(&vma->node)) {
3052                 i915_gem_vma_destroy(vma);
3053                 return 0;
3054         }
3055
3056         if (vma->pin_count)
3057                 return -EBUSY;
3058
3059         BUG_ON(obj->pages == NULL);
3060
3061         ret = i915_gem_object_finish_gpu(obj);
3062         if (ret)
3063                 return ret;
3064         /* Continue on if we fail due to EIO, the GPU is hung so we
3065          * should be safe and we need to cleanup or else we might
3066          * cause memory corruption through use-after-free.
3067          */
3068
3069         /* Throw away the active reference before moving to the unbound list */
3070         i915_gem_object_retire(obj);
3071
3072         if (i915_is_ggtt(vma->vm)) {
3073                 i915_gem_object_finish_gtt(obj);
3074
3075                 /* release the fence reg _after_ flushing */
3076                 ret = i915_gem_object_put_fence(obj);
3077                 if (ret)
3078                         return ret;
3079         }
3080
3081         trace_i915_vma_unbind(vma);
3082
3083         vma->unbind_vma(vma);
3084
3085         list_del_init(&vma->mm_list);
3086         if (i915_is_ggtt(vma->vm))
3087                 obj->map_and_fenceable = false;
3088
3089         drm_mm_remove_node(&vma->node);
3090         i915_gem_vma_destroy(vma);
3091
3092         /* Since the unbound list is global, only move to that list if
3093          * no more VMAs exist. */
3094         if (list_empty(&obj->vma_list)) {
3095                 i915_gem_gtt_finish_object(obj);
3096                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3097         }
3098
3099         /* And finally now the object is completely decoupled from this vma,
3100          * we can drop its hold on the backing storage and allow it to be
3101          * reaped by the shrinker.
3102          */
3103         i915_gem_object_unpin_pages(obj);
3104
3105         return 0;
3106 }
3107
3108 int i915_gpu_idle(struct drm_device *dev)
3109 {
3110         struct drm_i915_private *dev_priv = dev->dev_private;
3111         struct intel_engine_cs *ring;
3112         int ret, i;
3113
3114         /* Flush everything onto the inactive list. */
3115         for_each_ring(ring, dev_priv, i) {
3116                 if (!i915.enable_execlists) {
3117                         ret = i915_switch_context(ring, ring->default_context);
3118                         if (ret)
3119                                 return ret;
3120                 }
3121
3122                 ret = intel_ring_idle(ring);
3123                 if (ret)
3124                         return ret;
3125         }
3126
3127         return 0;
3128 }
3129
3130 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3131                                  struct drm_i915_gem_object *obj)
3132 {
3133         struct drm_i915_private *dev_priv = dev->dev_private;
3134         int fence_reg;
3135         int fence_pitch_shift;
3136
3137         if (INTEL_INFO(dev)->gen >= 6) {
3138                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3139                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3140         } else {
3141                 fence_reg = FENCE_REG_965_0;
3142                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3143         }
3144
3145         fence_reg += reg * 8;
3146
3147         /* To w/a incoherency with non-atomic 64-bit register updates,
3148          * we split the 64-bit update into two 32-bit writes. In order
3149          * for a partial fence not to be evaluated between writes, we
3150          * precede the update with write to turn off the fence register,
3151          * and only enable the fence as the last step.
3152          *
3153          * For extra levels of paranoia, we make sure each step lands
3154          * before applying the next step.
3155          */
3156         I915_WRITE(fence_reg, 0);
3157         POSTING_READ(fence_reg);
3158
3159         if (obj) {
3160                 u32 size = i915_gem_obj_ggtt_size(obj);
3161                 uint64_t val;
3162
3163                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3164                                  0xfffff000) << 32;
3165                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3166                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3167                 if (obj->tiling_mode == I915_TILING_Y)
3168                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3169                 val |= I965_FENCE_REG_VALID;
3170
3171                 I915_WRITE(fence_reg + 4, val >> 32);
3172                 POSTING_READ(fence_reg + 4);
3173
3174                 I915_WRITE(fence_reg + 0, val);
3175                 POSTING_READ(fence_reg);
3176         } else {
3177                 I915_WRITE(fence_reg + 4, 0);
3178                 POSTING_READ(fence_reg + 4);
3179         }
3180 }
3181
3182 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3183                                  struct drm_i915_gem_object *obj)
3184 {
3185         struct drm_i915_private *dev_priv = dev->dev_private;
3186         u32 val;
3187
3188         if (obj) {
3189                 u32 size = i915_gem_obj_ggtt_size(obj);
3190                 int pitch_val;
3191                 int tile_width;
3192
3193                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3194                      (size & -size) != size ||
3195                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3196                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3197                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3198
3199                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3200                         tile_width = 128;
3201                 else
3202                         tile_width = 512;
3203
3204                 /* Note: pitch better be a power of two tile widths */
3205                 pitch_val = obj->stride / tile_width;
3206                 pitch_val = ffs(pitch_val) - 1;
3207
3208                 val = i915_gem_obj_ggtt_offset(obj);
3209                 if (obj->tiling_mode == I915_TILING_Y)
3210                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3211                 val |= I915_FENCE_SIZE_BITS(size);
3212                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3213                 val |= I830_FENCE_REG_VALID;
3214         } else
3215                 val = 0;
3216
3217         if (reg < 8)
3218                 reg = FENCE_REG_830_0 + reg * 4;
3219         else
3220                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3221
3222         I915_WRITE(reg, val);
3223         POSTING_READ(reg);
3224 }
3225
3226 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3227                                 struct drm_i915_gem_object *obj)
3228 {
3229         struct drm_i915_private *dev_priv = dev->dev_private;
3230         uint32_t val;
3231
3232         if (obj) {
3233                 u32 size = i915_gem_obj_ggtt_size(obj);
3234                 uint32_t pitch_val;
3235
3236                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3237                      (size & -size) != size ||
3238                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3239                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3240                      i915_gem_obj_ggtt_offset(obj), size);
3241
3242                 pitch_val = obj->stride / 128;
3243                 pitch_val = ffs(pitch_val) - 1;
3244
3245                 val = i915_gem_obj_ggtt_offset(obj);
3246                 if (obj->tiling_mode == I915_TILING_Y)
3247                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3248                 val |= I830_FENCE_SIZE_BITS(size);
3249                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3250                 val |= I830_FENCE_REG_VALID;
3251         } else
3252                 val = 0;
3253
3254         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3255         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3256 }
3257
3258 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3259 {
3260         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3261 }
3262
3263 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3264                                  struct drm_i915_gem_object *obj)
3265 {
3266         struct drm_i915_private *dev_priv = dev->dev_private;
3267
3268         /* Ensure that all CPU reads are completed before installing a fence
3269          * and all writes before removing the fence.
3270          */
3271         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3272                 mb();
3273
3274         WARN(obj && (!obj->stride || !obj->tiling_mode),
3275              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3276              obj->stride, obj->tiling_mode);
3277
3278         switch (INTEL_INFO(dev)->gen) {
3279         case 9:
3280         case 8:
3281         case 7:
3282         case 6:
3283         case 5:
3284         case 4: i965_write_fence_reg(dev, reg, obj); break;
3285         case 3: i915_write_fence_reg(dev, reg, obj); break;
3286         case 2: i830_write_fence_reg(dev, reg, obj); break;
3287         default: BUG();
3288         }
3289
3290         /* And similarly be paranoid that no direct access to this region
3291          * is reordered to before the fence is installed.
3292          */
3293         if (i915_gem_object_needs_mb(obj))
3294                 mb();
3295 }
3296
3297 static inline int fence_number(struct drm_i915_private *dev_priv,
3298                                struct drm_i915_fence_reg *fence)
3299 {
3300         return fence - dev_priv->fence_regs;
3301 }
3302
3303 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3304                                          struct drm_i915_fence_reg *fence,
3305                                          bool enable)
3306 {
3307         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3308         int reg = fence_number(dev_priv, fence);
3309
3310         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3311
3312         if (enable) {
3313                 obj->fence_reg = reg;
3314                 fence->obj = obj;
3315                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3316         } else {
3317                 obj->fence_reg = I915_FENCE_REG_NONE;
3318                 fence->obj = NULL;
3319                 list_del_init(&fence->lru_list);
3320         }
3321         obj->fence_dirty = false;
3322 }
3323
3324 static int
3325 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3326 {
3327         if (obj->last_fenced_seqno) {
3328                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3329                 if (ret)
3330                         return ret;
3331
3332                 obj->last_fenced_seqno = 0;
3333         }
3334
3335         return 0;
3336 }
3337
3338 int
3339 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3340 {
3341         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3342         struct drm_i915_fence_reg *fence;
3343         int ret;
3344
3345         ret = i915_gem_object_wait_fence(obj);
3346         if (ret)
3347                 return ret;
3348
3349         if (obj->fence_reg == I915_FENCE_REG_NONE)
3350                 return 0;
3351
3352         fence = &dev_priv->fence_regs[obj->fence_reg];
3353
3354         if (WARN_ON(fence->pin_count))
3355                 return -EBUSY;
3356
3357         i915_gem_object_fence_lost(obj);
3358         i915_gem_object_update_fence(obj, fence, false);
3359
3360         return 0;
3361 }
3362
3363 static struct drm_i915_fence_reg *
3364 i915_find_fence_reg(struct drm_device *dev)
3365 {
3366         struct drm_i915_private *dev_priv = dev->dev_private;
3367         struct drm_i915_fence_reg *reg, *avail;
3368         int i;
3369
3370         /* First try to find a free reg */
3371         avail = NULL;
3372         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3373                 reg = &dev_priv->fence_regs[i];
3374                 if (!reg->obj)
3375                         return reg;
3376
3377                 if (!reg->pin_count)
3378                         avail = reg;
3379         }
3380
3381         if (avail == NULL)
3382                 goto deadlock;
3383
3384         /* None available, try to steal one or wait for a user to finish */
3385         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3386                 if (reg->pin_count)
3387                         continue;
3388
3389                 return reg;
3390         }
3391
3392 deadlock:
3393         /* Wait for completion of pending flips which consume fences */
3394         if (intel_has_pending_fb_unpin(dev))
3395                 return ERR_PTR(-EAGAIN);
3396
3397         return ERR_PTR(-EDEADLK);
3398 }
3399
3400 /**
3401  * i915_gem_object_get_fence - set up fencing for an object
3402  * @obj: object to map through a fence reg
3403  *
3404  * When mapping objects through the GTT, userspace wants to be able to write
3405  * to them without having to worry about swizzling if the object is tiled.
3406  * This function walks the fence regs looking for a free one for @obj,
3407  * stealing one if it can't find any.
3408  *
3409  * It then sets up the reg based on the object's properties: address, pitch
3410  * and tiling format.
3411  *
3412  * For an untiled surface, this removes any existing fence.
3413  */
3414 int
3415 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3416 {
3417         struct drm_device *dev = obj->base.dev;
3418         struct drm_i915_private *dev_priv = dev->dev_private;
3419         bool enable = obj->tiling_mode != I915_TILING_NONE;
3420         struct drm_i915_fence_reg *reg;
3421         int ret;
3422
3423         /* Have we updated the tiling parameters upon the object and so
3424          * will need to serialise the write to the associated fence register?
3425          */
3426         if (obj->fence_dirty) {
3427                 ret = i915_gem_object_wait_fence(obj);
3428                 if (ret)
3429                         return ret;
3430         }
3431
3432         /* Just update our place in the LRU if our fence is getting reused. */
3433         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3434                 reg = &dev_priv->fence_regs[obj->fence_reg];
3435                 if (!obj->fence_dirty) {
3436                         list_move_tail(&reg->lru_list,
3437                                        &dev_priv->mm.fence_list);
3438                         return 0;
3439                 }
3440         } else if (enable) {
3441                 if (WARN_ON(!obj->map_and_fenceable))
3442                         return -EINVAL;
3443
3444                 reg = i915_find_fence_reg(dev);
3445                 if (IS_ERR(reg))
3446                         return PTR_ERR(reg);
3447
3448                 if (reg->obj) {
3449                         struct drm_i915_gem_object *old = reg->obj;
3450
3451                         ret = i915_gem_object_wait_fence(old);
3452                         if (ret)
3453                                 return ret;
3454
3455                         i915_gem_object_fence_lost(old);
3456                 }
3457         } else
3458                 return 0;
3459
3460         i915_gem_object_update_fence(obj, reg, enable);
3461
3462         return 0;
3463 }
3464
3465 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3466                                      unsigned long cache_level)
3467 {
3468         struct drm_mm_node *gtt_space = &vma->node;
3469         struct drm_mm_node *other;
3470
3471         /*
3472          * On some machines we have to be careful when putting differing types
3473          * of snoopable memory together to avoid the prefetcher crossing memory
3474          * domains and dying. During vm initialisation, we decide whether or not
3475          * these constraints apply and set the drm_mm.color_adjust
3476          * appropriately.
3477          */
3478         if (vma->vm->mm.color_adjust == NULL)
3479                 return true;
3480
3481         if (!drm_mm_node_allocated(gtt_space))
3482                 return true;
3483
3484         if (list_empty(&gtt_space->node_list))
3485                 return true;
3486
3487         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3488         if (other->allocated && !other->hole_follows && other->color != cache_level)
3489                 return false;
3490
3491         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3492         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3493                 return false;
3494
3495         return true;
3496 }
3497
3498 /**
3499  * Finds free space in the GTT aperture and binds the object there.
3500  */
3501 static struct i915_vma *
3502 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3503                            struct i915_address_space *vm,
3504                            unsigned alignment,
3505                            uint64_t flags)
3506 {
3507         struct drm_device *dev = obj->base.dev;
3508         struct drm_i915_private *dev_priv = dev->dev_private;
3509         u32 size, fence_size, fence_alignment, unfenced_alignment;
3510         unsigned long start =
3511                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3512         unsigned long end =
3513                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3514         struct i915_vma *vma;
3515         int ret;
3516
3517         fence_size = i915_gem_get_gtt_size(dev,
3518                                            obj->base.size,
3519                                            obj->tiling_mode);
3520         fence_alignment = i915_gem_get_gtt_alignment(dev,
3521                                                      obj->base.size,
3522                                                      obj->tiling_mode, true);
3523         unfenced_alignment =
3524                 i915_gem_get_gtt_alignment(dev,
3525                                            obj->base.size,
3526                                            obj->tiling_mode, false);
3527
3528         if (alignment == 0)
3529                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3530                                                 unfenced_alignment;
3531         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3532                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3533                 return ERR_PTR(-EINVAL);
3534         }
3535
3536         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3537
3538         /* If the object is bigger than the entire aperture, reject it early
3539          * before evicting everything in a vain attempt to find space.
3540          */
3541         if (obj->base.size > end) {
3542                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3543                           obj->base.size,
3544                           flags & PIN_MAPPABLE ? "mappable" : "total",
3545                           end);
3546                 return ERR_PTR(-E2BIG);
3547         }
3548
3549         ret = i915_gem_object_get_pages(obj);
3550         if (ret)
3551                 return ERR_PTR(ret);
3552
3553         i915_gem_object_pin_pages(obj);
3554
3555         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3556         if (IS_ERR(vma))
3557                 goto err_unpin;
3558
3559 search_free:
3560         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3561                                                   size, alignment,
3562                                                   obj->cache_level,
3563                                                   start, end,
3564                                                   DRM_MM_SEARCH_DEFAULT,
3565                                                   DRM_MM_CREATE_DEFAULT);
3566         if (ret) {
3567                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3568                                                obj->cache_level,
3569                                                start, end,
3570                                                flags);
3571                 if (ret == 0)
3572                         goto search_free;
3573
3574                 goto err_free_vma;
3575         }
3576         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3577                 ret = -EINVAL;
3578                 goto err_remove_node;
3579         }
3580
3581         ret = i915_gem_gtt_prepare_object(obj);
3582         if (ret)
3583                 goto err_remove_node;
3584
3585         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3586         list_add_tail(&vma->mm_list, &vm->inactive_list);
3587
3588         trace_i915_vma_bind(vma, flags);
3589         vma->bind_vma(vma, obj->cache_level,
3590                       flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3591
3592         return vma;
3593
3594 err_remove_node:
3595         drm_mm_remove_node(&vma->node);
3596 err_free_vma:
3597         i915_gem_vma_destroy(vma);
3598         vma = ERR_PTR(ret);
3599 err_unpin:
3600         i915_gem_object_unpin_pages(obj);
3601         return vma;
3602 }
3603
3604 bool
3605 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3606                         bool force)
3607 {
3608         /* If we don't have a page list set up, then we're not pinned
3609          * to GPU, and we can ignore the cache flush because it'll happen
3610          * again at bind time.
3611          */
3612         if (obj->pages == NULL)
3613                 return false;
3614
3615         /*
3616          * Stolen memory is always coherent with the GPU as it is explicitly
3617          * marked as wc by the system, or the system is cache-coherent.
3618          */
3619         if (obj->stolen || obj->phys_handle)
3620                 return false;
3621
3622         /* If the GPU is snooping the contents of the CPU cache,
3623          * we do not need to manually clear the CPU cache lines.  However,
3624          * the caches are only snooped when the render cache is
3625          * flushed/invalidated.  As we always have to emit invalidations
3626          * and flushes when moving into and out of the RENDER domain, correct
3627          * snooping behaviour occurs naturally as the result of our domain
3628          * tracking.
3629          */
3630         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3631                 return false;
3632
3633         trace_i915_gem_object_clflush(obj);
3634         drm_clflush_sg(obj->pages);
3635
3636         return true;
3637 }
3638
3639 /** Flushes the GTT write domain for the object if it's dirty. */
3640 static void
3641 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3642 {
3643         uint32_t old_write_domain;
3644
3645         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3646                 return;
3647
3648         /* No actual flushing is required for the GTT write domain.  Writes
3649          * to it immediately go to main memory as far as we know, so there's
3650          * no chipset flush.  It also doesn't land in render cache.
3651          *
3652          * However, we do have to enforce the order so that all writes through
3653          * the GTT land before any writes to the device, such as updates to
3654          * the GATT itself.
3655          */
3656         wmb();
3657
3658         old_write_domain = obj->base.write_domain;
3659         obj->base.write_domain = 0;
3660
3661         intel_fb_obj_flush(obj, false);
3662
3663         trace_i915_gem_object_change_domain(obj,
3664                                             obj->base.read_domains,
3665                                             old_write_domain);
3666 }
3667
3668 /** Flushes the CPU write domain for the object if it's dirty. */
3669 static void
3670 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3671                                        bool force)
3672 {
3673         uint32_t old_write_domain;
3674
3675         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3676                 return;
3677
3678         if (i915_gem_clflush_object(obj, force))
3679                 i915_gem_chipset_flush(obj->base.dev);
3680
3681         old_write_domain = obj->base.write_domain;
3682         obj->base.write_domain = 0;
3683
3684         intel_fb_obj_flush(obj, false);
3685
3686         trace_i915_gem_object_change_domain(obj,
3687                                             obj->base.read_domains,
3688                                             old_write_domain);
3689 }
3690
3691 /**
3692  * Moves a single object to the GTT read, and possibly write domain.
3693  *
3694  * This function returns when the move is complete, including waiting on
3695  * flushes to occur.
3696  */
3697 int
3698 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3699 {
3700         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3701         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3702         uint32_t old_write_domain, old_read_domains;
3703         int ret;
3704
3705         /* Not valid to be called on unbound objects. */
3706         if (vma == NULL)
3707                 return -EINVAL;
3708
3709         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3710                 return 0;
3711
3712         ret = i915_gem_object_wait_rendering(obj, !write);
3713         if (ret)
3714                 return ret;
3715
3716         i915_gem_object_retire(obj);
3717         i915_gem_object_flush_cpu_write_domain(obj, false);
3718
3719         /* Serialise direct access to this object with the barriers for
3720          * coherent writes from the GPU, by effectively invalidating the
3721          * GTT domain upon first access.
3722          */
3723         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3724                 mb();
3725
3726         old_write_domain = obj->base.write_domain;
3727         old_read_domains = obj->base.read_domains;
3728
3729         /* It should now be out of any other write domains, and we can update
3730          * the domain values for our changes.
3731          */
3732         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3733         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3734         if (write) {
3735                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3736                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3737                 obj->dirty = 1;
3738         }
3739
3740         if (write)
3741                 intel_fb_obj_invalidate(obj, NULL);
3742
3743         trace_i915_gem_object_change_domain(obj,
3744                                             old_read_domains,
3745                                             old_write_domain);
3746
3747         /* And bump the LRU for this access */
3748         if (i915_gem_object_is_inactive(obj))
3749                 list_move_tail(&vma->mm_list,
3750                                &dev_priv->gtt.base.inactive_list);
3751
3752         return 0;
3753 }
3754
3755 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3756                                     enum i915_cache_level cache_level)
3757 {
3758         struct drm_device *dev = obj->base.dev;
3759         struct i915_vma *vma, *next;
3760         int ret;
3761
3762         if (obj->cache_level == cache_level)
3763                 return 0;
3764
3765         if (i915_gem_obj_is_pinned(obj)) {
3766                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3767                 return -EBUSY;
3768         }
3769
3770         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3771                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3772                         ret = i915_vma_unbind(vma);
3773                         if (ret)
3774                                 return ret;
3775                 }
3776         }
3777
3778         if (i915_gem_obj_bound_any(obj)) {
3779                 ret = i915_gem_object_finish_gpu(obj);
3780                 if (ret)
3781                         return ret;
3782
3783                 i915_gem_object_finish_gtt(obj);
3784
3785                 /* Before SandyBridge, you could not use tiling or fence
3786                  * registers with snooped memory, so relinquish any fences
3787                  * currently pointing to our region in the aperture.
3788                  */
3789                 if (INTEL_INFO(dev)->gen < 6) {
3790                         ret = i915_gem_object_put_fence(obj);
3791                         if (ret)
3792                                 return ret;
3793                 }
3794
3795                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3796                         if (drm_mm_node_allocated(&vma->node))
3797                                 vma->bind_vma(vma, cache_level,
3798                                                 vma->bound & GLOBAL_BIND);
3799         }
3800
3801         list_for_each_entry(vma, &obj->vma_list, vma_link)
3802                 vma->node.color = cache_level;
3803         obj->cache_level = cache_level;
3804
3805         if (cpu_write_needs_clflush(obj)) {
3806                 u32 old_read_domains, old_write_domain;
3807
3808                 /* If we're coming from LLC cached, then we haven't
3809                  * actually been tracking whether the data is in the
3810                  * CPU cache or not, since we only allow one bit set
3811                  * in obj->write_domain and have been skipping the clflushes.
3812                  * Just set it to the CPU cache for now.
3813                  */
3814                 i915_gem_object_retire(obj);
3815                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3816
3817                 old_read_domains = obj->base.read_domains;
3818                 old_write_domain = obj->base.write_domain;
3819
3820                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3821                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3822
3823                 trace_i915_gem_object_change_domain(obj,
3824                                                     old_read_domains,
3825                                                     old_write_domain);
3826         }
3827
3828         return 0;
3829 }
3830
3831 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3832                                struct drm_file *file)
3833 {
3834         struct drm_i915_gem_caching *args = data;
3835         struct drm_i915_gem_object *obj;
3836         int ret;
3837
3838         ret = i915_mutex_lock_interruptible(dev);
3839         if (ret)
3840                 return ret;
3841
3842         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3843         if (&obj->base == NULL) {
3844                 ret = -ENOENT;
3845                 goto unlock;
3846         }
3847
3848         switch (obj->cache_level) {
3849         case I915_CACHE_LLC:
3850         case I915_CACHE_L3_LLC:
3851                 args->caching = I915_CACHING_CACHED;
3852                 break;
3853
3854         case I915_CACHE_WT:
3855                 args->caching = I915_CACHING_DISPLAY;
3856                 break;
3857
3858         default:
3859                 args->caching = I915_CACHING_NONE;
3860                 break;
3861         }
3862
3863         drm_gem_object_unreference(&obj->base);
3864 unlock:
3865         mutex_unlock(&dev->struct_mutex);
3866         return ret;
3867 }
3868
3869 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3870                                struct drm_file *file)
3871 {
3872         struct drm_i915_gem_caching *args = data;
3873         struct drm_i915_gem_object *obj;
3874         enum i915_cache_level level;
3875         int ret;
3876
3877         switch (args->caching) {
3878         case I915_CACHING_NONE:
3879                 level = I915_CACHE_NONE;
3880                 break;
3881         case I915_CACHING_CACHED:
3882                 level = I915_CACHE_LLC;
3883                 break;
3884         case I915_CACHING_DISPLAY:
3885                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3886                 break;
3887         default:
3888                 return -EINVAL;
3889         }
3890
3891         ret = i915_mutex_lock_interruptible(dev);
3892         if (ret)
3893                 return ret;
3894
3895         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3896         if (&obj->base == NULL) {
3897                 ret = -ENOENT;
3898                 goto unlock;
3899         }
3900
3901         ret = i915_gem_object_set_cache_level(obj, level);
3902
3903         drm_gem_object_unreference(&obj->base);
3904 unlock:
3905         mutex_unlock(&dev->struct_mutex);
3906         return ret;
3907 }
3908
3909 static bool is_pin_display(struct drm_i915_gem_object *obj)
3910 {
3911         struct i915_vma *vma;
3912
3913         vma = i915_gem_obj_to_ggtt(obj);
3914         if (!vma)
3915                 return false;
3916
3917         /* There are 3 sources that pin objects:
3918          *   1. The display engine (scanouts, sprites, cursors);
3919          *   2. Reservations for execbuffer;
3920          *   3. The user.
3921          *
3922          * We can ignore reservations as we hold the struct_mutex and
3923          * are only called outside of the reservation path.  The user
3924          * can only increment pin_count once, and so if after
3925          * subtracting the potential reference by the user, any pin_count
3926          * remains, it must be due to another use by the display engine.
3927          */
3928         return vma->pin_count - !!obj->user_pin_count;
3929 }
3930
3931 /*
3932  * Prepare buffer for display plane (scanout, cursors, etc).
3933  * Can be called from an uninterruptible phase (modesetting) and allows
3934  * any flushes to be pipelined (for pageflips).
3935  */
3936 int
3937 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3938                                      u32 alignment,
3939                                      struct intel_engine_cs *pipelined)
3940 {
3941         u32 old_read_domains, old_write_domain;
3942         bool was_pin_display;
3943         int ret;
3944
3945         if (pipelined != obj->ring) {
3946                 ret = i915_gem_object_sync(obj, pipelined);
3947                 if (ret)
3948                         return ret;
3949         }
3950
3951         /* Mark the pin_display early so that we account for the
3952          * display coherency whilst setting up the cache domains.
3953          */
3954         was_pin_display = obj->pin_display;
3955         obj->pin_display = true;
3956
3957         /* The display engine is not coherent with the LLC cache on gen6.  As
3958          * a result, we make sure that the pinning that is about to occur is
3959          * done with uncached PTEs. This is lowest common denominator for all
3960          * chipsets.
3961          *
3962          * However for gen6+, we could do better by using the GFDT bit instead
3963          * of uncaching, which would allow us to flush all the LLC-cached data
3964          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3965          */
3966         ret = i915_gem_object_set_cache_level(obj,
3967                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3968         if (ret)
3969                 goto err_unpin_display;
3970
3971         /* As the user may map the buffer once pinned in the display plane
3972          * (e.g. libkms for the bootup splash), we have to ensure that we
3973          * always use map_and_fenceable for all scanout buffers.
3974          */
3975         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3976         if (ret)
3977                 goto err_unpin_display;
3978
3979         i915_gem_object_flush_cpu_write_domain(obj, true);
3980
3981         old_write_domain = obj->base.write_domain;
3982         old_read_domains = obj->base.read_domains;
3983
3984         /* It should now be out of any other write domains, and we can update
3985          * the domain values for our changes.
3986          */
3987         obj->base.write_domain = 0;
3988         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3989
3990         trace_i915_gem_object_change_domain(obj,
3991                                             old_read_domains,
3992                                             old_write_domain);
3993
3994         return 0;
3995
3996 err_unpin_display:
3997         WARN_ON(was_pin_display != is_pin_display(obj));
3998         obj->pin_display = was_pin_display;
3999         return ret;
4000 }
4001
4002 void
4003 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4004 {
4005         i915_gem_object_ggtt_unpin(obj);
4006         obj->pin_display = is_pin_display(obj);
4007 }
4008
4009 int
4010 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4011 {
4012         int ret;
4013
4014         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4015                 return 0;
4016
4017         ret = i915_gem_object_wait_rendering(obj, false);
4018         if (ret)
4019                 return ret;
4020
4021         /* Ensure that we invalidate the GPU's caches and TLBs. */
4022         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4023         return 0;
4024 }
4025
4026 /**
4027  * Moves a single object to the CPU read, and possibly write domain.
4028  *
4029  * This function returns when the move is complete, including waiting on
4030  * flushes to occur.
4031  */
4032 int
4033 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4034 {
4035         uint32_t old_write_domain, old_read_domains;
4036         int ret;
4037
4038         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4039                 return 0;
4040
4041         ret = i915_gem_object_wait_rendering(obj, !write);
4042         if (ret)
4043                 return ret;
4044
4045         i915_gem_object_retire(obj);
4046         i915_gem_object_flush_gtt_write_domain(obj);
4047
4048         old_write_domain = obj->base.write_domain;
4049         old_read_domains = obj->base.read_domains;
4050
4051         /* Flush the CPU cache if it's still invalid. */
4052         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4053                 i915_gem_clflush_object(obj, false);
4054
4055                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4056         }
4057
4058         /* It should now be out of any other write domains, and we can update
4059          * the domain values for our changes.
4060          */
4061         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4062
4063         /* If we're writing through the CPU, then the GPU read domains will
4064          * need to be invalidated at next use.
4065          */
4066         if (write) {
4067                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4068                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4069         }
4070
4071         if (write)
4072                 intel_fb_obj_invalidate(obj, NULL);
4073
4074         trace_i915_gem_object_change_domain(obj,
4075                                             old_read_domains,
4076                                             old_write_domain);
4077
4078         return 0;
4079 }
4080
4081 /* Throttle our rendering by waiting until the ring has completed our requests
4082  * emitted over 20 msec ago.
4083  *
4084  * Note that if we were to use the current jiffies each time around the loop,
4085  * we wouldn't escape the function with any frames outstanding if the time to
4086  * render a frame was over 20ms.
4087  *
4088  * This should get us reasonable parallelism between CPU and GPU but also
4089  * relatively low latency when blocking on a particular request to finish.
4090  */
4091 static int
4092 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4093 {
4094         struct drm_i915_private *dev_priv = dev->dev_private;
4095         struct drm_i915_file_private *file_priv = file->driver_priv;
4096         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4097         struct drm_i915_gem_request *request;
4098         struct intel_engine_cs *ring = NULL;
4099         unsigned reset_counter;
4100         u32 seqno = 0;
4101         int ret;
4102
4103         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4104         if (ret)
4105                 return ret;
4106
4107         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4108         if (ret)
4109                 return ret;
4110
4111         spin_lock(&file_priv->mm.lock);
4112         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4113                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4114                         break;
4115
4116                 ring = request->ring;
4117                 seqno = request->seqno;
4118         }
4119         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4120         spin_unlock(&file_priv->mm.lock);
4121
4122         if (seqno == 0)
4123                 return 0;
4124
4125         ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4126         if (ret == 0)
4127                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4128
4129         return ret;
4130 }
4131
4132 static bool
4133 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4134 {
4135         struct drm_i915_gem_object *obj = vma->obj;
4136
4137         if (alignment &&
4138             vma->node.start & (alignment - 1))
4139                 return true;
4140
4141         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4142                 return true;
4143
4144         if (flags & PIN_OFFSET_BIAS &&
4145             vma->node.start < (flags & PIN_OFFSET_MASK))
4146                 return true;
4147
4148         return false;
4149 }
4150
4151 int
4152 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4153                     struct i915_address_space *vm,
4154                     uint32_t alignment,
4155                     uint64_t flags)
4156 {
4157         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4158         struct i915_vma *vma;
4159         unsigned bound;
4160         int ret;
4161
4162         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4163                 return -ENODEV;
4164
4165         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4166                 return -EINVAL;
4167
4168         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4169                 return -EINVAL;
4170
4171         vma = i915_gem_obj_to_vma(obj, vm);
4172         if (vma) {
4173                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4174                         return -EBUSY;
4175
4176                 if (i915_vma_misplaced(vma, alignment, flags)) {
4177                         WARN(vma->pin_count,
4178                              "bo is already pinned with incorrect alignment:"
4179                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4180                              " obj->map_and_fenceable=%d\n",
4181                              i915_gem_obj_offset(obj, vm), alignment,
4182                              !!(flags & PIN_MAPPABLE),
4183                              obj->map_and_fenceable);
4184                         ret = i915_vma_unbind(vma);
4185                         if (ret)
4186                                 return ret;
4187
4188                         vma = NULL;
4189                 }
4190         }
4191
4192         bound = vma ? vma->bound : 0;
4193         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4194                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4195                 if (IS_ERR(vma))
4196                         return PTR_ERR(vma);
4197         }
4198
4199         if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4200                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4201
4202         if ((bound ^ vma->bound) & GLOBAL_BIND) {
4203                 bool mappable, fenceable;
4204                 u32 fence_size, fence_alignment;
4205
4206                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4207                                                    obj->base.size,
4208                                                    obj->tiling_mode);
4209                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4210                                                              obj->base.size,
4211                                                              obj->tiling_mode,
4212                                                              true);
4213
4214                 fenceable = (vma->node.size == fence_size &&
4215                              (vma->node.start & (fence_alignment - 1)) == 0);
4216
4217                 mappable = (vma->node.start + obj->base.size <=
4218                             dev_priv->gtt.mappable_end);
4219
4220                 obj->map_and_fenceable = mappable && fenceable;
4221         }
4222
4223         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4224
4225         vma->pin_count++;
4226         if (flags & PIN_MAPPABLE)
4227                 obj->pin_mappable |= true;
4228
4229         return 0;
4230 }
4231
4232 void
4233 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4234 {
4235         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4236
4237         BUG_ON(!vma);
4238         BUG_ON(vma->pin_count == 0);
4239         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4240
4241         if (--vma->pin_count == 0)
4242                 obj->pin_mappable = false;
4243 }
4244
4245 bool
4246 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4247 {
4248         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4249                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4250                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4251
4252                 WARN_ON(!ggtt_vma ||
4253                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4254                         ggtt_vma->pin_count);
4255                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4256                 return true;
4257         } else
4258                 return false;
4259 }
4260
4261 void
4262 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4263 {
4264         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4265                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4266                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4267                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4268         }
4269 }
4270
4271 int
4272 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4273                    struct drm_file *file)
4274 {
4275         struct drm_i915_gem_pin *args = data;
4276         struct drm_i915_gem_object *obj;
4277         int ret;
4278
4279         if (drm_core_check_feature(dev, DRIVER_MODESET))
4280                 return -ENODEV;
4281
4282         ret = i915_mutex_lock_interruptible(dev);
4283         if (ret)
4284                 return ret;
4285
4286         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4287         if (&obj->base == NULL) {
4288                 ret = -ENOENT;
4289                 goto unlock;
4290         }
4291
4292         if (obj->madv != I915_MADV_WILLNEED) {
4293                 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4294                 ret = -EFAULT;
4295                 goto out;
4296         }
4297
4298         if (obj->pin_filp != NULL && obj->pin_filp != file) {
4299                 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4300                           args->handle);
4301                 ret = -EINVAL;
4302                 goto out;
4303         }
4304
4305         if (obj->user_pin_count == ULONG_MAX) {
4306                 ret = -EBUSY;
4307                 goto out;
4308         }
4309
4310         if (obj->user_pin_count == 0) {
4311                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4312                 if (ret)
4313                         goto out;
4314         }
4315
4316         obj->user_pin_count++;
4317         obj->pin_filp = file;
4318
4319         args->offset = i915_gem_obj_ggtt_offset(obj);
4320 out:
4321         drm_gem_object_unreference(&obj->base);
4322 unlock:
4323         mutex_unlock(&dev->struct_mutex);
4324         return ret;
4325 }
4326
4327 int
4328 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4329                      struct drm_file *file)
4330 {
4331         struct drm_i915_gem_pin *args = data;
4332         struct drm_i915_gem_object *obj;
4333         int ret;
4334
4335         if (drm_core_check_feature(dev, DRIVER_MODESET))
4336                 return -ENODEV;
4337
4338         ret = i915_mutex_lock_interruptible(dev);
4339         if (ret)
4340                 return ret;
4341
4342         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4343         if (&obj->base == NULL) {
4344                 ret = -ENOENT;
4345                 goto unlock;
4346         }
4347
4348         if (obj->pin_filp != file) {
4349                 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4350                           args->handle);
4351                 ret = -EINVAL;
4352                 goto out;
4353         }
4354         obj->user_pin_count--;
4355         if (obj->user_pin_count == 0) {
4356                 obj->pin_filp = NULL;
4357                 i915_gem_object_ggtt_unpin(obj);
4358         }
4359
4360 out:
4361         drm_gem_object_unreference(&obj->base);
4362 unlock:
4363         mutex_unlock(&dev->struct_mutex);
4364         return ret;
4365 }
4366
4367 int
4368 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4369                     struct drm_file *file)
4370 {
4371         struct drm_i915_gem_busy *args = data;
4372         struct drm_i915_gem_object *obj;
4373         int ret;
4374
4375         ret = i915_mutex_lock_interruptible(dev);
4376         if (ret)
4377                 return ret;
4378
4379         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4380         if (&obj->base == NULL) {
4381                 ret = -ENOENT;
4382                 goto unlock;
4383         }
4384
4385         /* Count all active objects as busy, even if they are currently not used
4386          * by the gpu. Users of this interface expect objects to eventually
4387          * become non-busy without any further actions, therefore emit any
4388          * necessary flushes here.
4389          */
4390         ret = i915_gem_object_flush_active(obj);
4391
4392         args->busy = obj->active;
4393         if (obj->ring) {
4394                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4395                 args->busy |= intel_ring_flag(obj->ring) << 16;
4396         }
4397
4398         drm_gem_object_unreference(&obj->base);
4399 unlock:
4400         mutex_unlock(&dev->struct_mutex);
4401         return ret;
4402 }
4403
4404 int
4405 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4406                         struct drm_file *file_priv)
4407 {
4408         return i915_gem_ring_throttle(dev, file_priv);
4409 }
4410
4411 int
4412 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4413                        struct drm_file *file_priv)
4414 {
4415         struct drm_i915_private *dev_priv = dev->dev_private;
4416         struct drm_i915_gem_madvise *args = data;
4417         struct drm_i915_gem_object *obj;
4418         int ret;
4419
4420         switch (args->madv) {
4421         case I915_MADV_DONTNEED:
4422         case I915_MADV_WILLNEED:
4423             break;
4424         default:
4425             return -EINVAL;
4426         }
4427
4428         ret = i915_mutex_lock_interruptible(dev);
4429         if (ret)
4430                 return ret;
4431
4432         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4433         if (&obj->base == NULL) {
4434                 ret = -ENOENT;
4435                 goto unlock;
4436         }
4437
4438         if (i915_gem_obj_is_pinned(obj)) {
4439                 ret = -EINVAL;
4440                 goto out;
4441         }
4442
4443         if (obj->pages &&
4444             obj->tiling_mode != I915_TILING_NONE &&
4445             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4446                 if (obj->madv == I915_MADV_WILLNEED)
4447                         i915_gem_object_unpin_pages(obj);
4448                 if (args->madv == I915_MADV_WILLNEED)
4449                         i915_gem_object_pin_pages(obj);
4450         }
4451
4452         if (obj->madv != __I915_MADV_PURGED)
4453                 obj->madv = args->madv;
4454
4455         /* if the object is no longer attached, discard its backing storage */
4456         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4457                 i915_gem_object_truncate(obj);
4458
4459         args->retained = obj->madv != __I915_MADV_PURGED;
4460
4461 out:
4462         drm_gem_object_unreference(&obj->base);
4463 unlock:
4464         mutex_unlock(&dev->struct_mutex);
4465         return ret;
4466 }
4467
4468 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4469                           const struct drm_i915_gem_object_ops *ops)
4470 {
4471         INIT_LIST_HEAD(&obj->global_list);
4472         INIT_LIST_HEAD(&obj->ring_list);
4473         INIT_LIST_HEAD(&obj->obj_exec_link);
4474         INIT_LIST_HEAD(&obj->vma_list);
4475
4476         obj->ops = ops;
4477
4478         obj->fence_reg = I915_FENCE_REG_NONE;
4479         obj->madv = I915_MADV_WILLNEED;
4480
4481         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4482 }
4483
4484 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4485         .get_pages = i915_gem_object_get_pages_gtt,
4486         .put_pages = i915_gem_object_put_pages_gtt,
4487 };
4488
4489 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4490                                                   size_t size)
4491 {
4492         struct drm_i915_gem_object *obj;
4493         struct address_space *mapping;
4494         gfp_t mask;
4495
4496         obj = i915_gem_object_alloc(dev);
4497         if (obj == NULL)
4498                 return NULL;
4499
4500         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4501                 i915_gem_object_free(obj);
4502                 return NULL;
4503         }
4504
4505         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4506         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4507                 /* 965gm cannot relocate objects above 4GiB. */
4508                 mask &= ~__GFP_HIGHMEM;
4509                 mask |= __GFP_DMA32;
4510         }
4511
4512         mapping = file_inode(obj->base.filp)->i_mapping;
4513         mapping_set_gfp_mask(mapping, mask);
4514
4515         i915_gem_object_init(obj, &i915_gem_object_ops);
4516
4517         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4518         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4519
4520         if (HAS_LLC(dev)) {
4521                 /* On some devices, we can have the GPU use the LLC (the CPU
4522                  * cache) for about a 10% performance improvement
4523                  * compared to uncached.  Graphics requests other than
4524                  * display scanout are coherent with the CPU in
4525                  * accessing this cache.  This means in this mode we
4526                  * don't need to clflush on the CPU side, and on the
4527                  * GPU side we only need to flush internal caches to
4528                  * get data visible to the CPU.
4529                  *
4530                  * However, we maintain the display planes as UC, and so
4531                  * need to rebind when first used as such.
4532                  */
4533                 obj->cache_level = I915_CACHE_LLC;
4534         } else
4535                 obj->cache_level = I915_CACHE_NONE;
4536
4537         trace_i915_gem_object_create(obj);
4538
4539         return obj;
4540 }
4541
4542 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4543 {
4544         /* If we are the last user of the backing storage (be it shmemfs
4545          * pages or stolen etc), we know that the pages are going to be
4546          * immediately released. In this case, we can then skip copying
4547          * back the contents from the GPU.
4548          */
4549
4550         if (obj->madv != I915_MADV_WILLNEED)
4551                 return false;
4552
4553         if (obj->base.filp == NULL)
4554                 return true;
4555
4556         /* At first glance, this looks racy, but then again so would be
4557          * userspace racing mmap against close. However, the first external
4558          * reference to the filp can only be obtained through the
4559          * i915_gem_mmap_ioctl() which safeguards us against the user
4560          * acquiring such a reference whilst we are in the middle of
4561          * freeing the object.
4562          */
4563         return atomic_long_read(&obj->base.filp->f_count) == 1;
4564 }
4565
4566 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4567 {
4568         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4569         struct drm_device *dev = obj->base.dev;
4570         struct drm_i915_private *dev_priv = dev->dev_private;
4571         struct i915_vma *vma, *next;
4572
4573         intel_runtime_pm_get(dev_priv);
4574
4575         trace_i915_gem_object_destroy(obj);
4576
4577         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4578                 int ret;
4579
4580                 vma->pin_count = 0;
4581                 ret = i915_vma_unbind(vma);
4582                 if (WARN_ON(ret == -ERESTARTSYS)) {
4583                         bool was_interruptible;
4584
4585                         was_interruptible = dev_priv->mm.interruptible;
4586                         dev_priv->mm.interruptible = false;
4587
4588                         WARN_ON(i915_vma_unbind(vma));
4589
4590                         dev_priv->mm.interruptible = was_interruptible;
4591                 }
4592         }
4593
4594         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4595          * before progressing. */
4596         if (obj->stolen)
4597                 i915_gem_object_unpin_pages(obj);
4598
4599         WARN_ON(obj->frontbuffer_bits);
4600
4601         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4602             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4603             obj->tiling_mode != I915_TILING_NONE)
4604                 i915_gem_object_unpin_pages(obj);
4605
4606         if (WARN_ON(obj->pages_pin_count))
4607                 obj->pages_pin_count = 0;
4608         if (discard_backing_storage(obj))
4609                 obj->madv = I915_MADV_DONTNEED;
4610         i915_gem_object_put_pages(obj);
4611         i915_gem_object_free_mmap_offset(obj);
4612
4613         BUG_ON(obj->pages);
4614
4615         if (obj->base.import_attach)
4616                 drm_prime_gem_destroy(&obj->base, NULL);
4617
4618         if (obj->ops->release)
4619                 obj->ops->release(obj);
4620
4621         drm_gem_object_release(&obj->base);
4622         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4623
4624         kfree(obj->bit_17);
4625         i915_gem_object_free(obj);
4626
4627         intel_runtime_pm_put(dev_priv);
4628 }
4629
4630 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4631                                      struct i915_address_space *vm)
4632 {
4633         struct i915_vma *vma;
4634         list_for_each_entry(vma, &obj->vma_list, vma_link)
4635                 if (vma->vm == vm)
4636                         return vma;
4637
4638         return NULL;
4639 }
4640
4641 void i915_gem_vma_destroy(struct i915_vma *vma)
4642 {
4643         struct i915_address_space *vm = NULL;
4644         WARN_ON(vma->node.allocated);
4645
4646         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4647         if (!list_empty(&vma->exec_list))
4648                 return;
4649
4650         vm = vma->vm;
4651
4652         if (!i915_is_ggtt(vm))
4653                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4654
4655         list_del(&vma->vma_link);
4656
4657         kfree(vma);
4658 }
4659
4660 static void
4661 i915_gem_stop_ringbuffers(struct drm_device *dev)
4662 {
4663         struct drm_i915_private *dev_priv = dev->dev_private;
4664         struct intel_engine_cs *ring;
4665         int i;
4666
4667         for_each_ring(ring, dev_priv, i)
4668                 dev_priv->gt.stop_ring(ring);
4669 }
4670
4671 int
4672 i915_gem_suspend(struct drm_device *dev)
4673 {
4674         struct drm_i915_private *dev_priv = dev->dev_private;
4675         int ret = 0;
4676
4677         mutex_lock(&dev->struct_mutex);
4678         ret = i915_gpu_idle(dev);
4679         if (ret)
4680                 goto err;
4681
4682         i915_gem_retire_requests(dev);
4683
4684         /* Under UMS, be paranoid and evict. */
4685         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4686                 i915_gem_evict_everything(dev);
4687
4688         i915_gem_stop_ringbuffers(dev);
4689         mutex_unlock(&dev->struct_mutex);
4690
4691         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4692         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4693         flush_delayed_work(&dev_priv->mm.idle_work);
4694
4695         return 0;
4696
4697 err:
4698         mutex_unlock(&dev->struct_mutex);
4699         return ret;
4700 }
4701
4702 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4703 {
4704         struct drm_device *dev = ring->dev;
4705         struct drm_i915_private *dev_priv = dev->dev_private;
4706         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4707         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4708         int i, ret;
4709
4710         if (!HAS_L3_DPF(dev) || !remap_info)
4711                 return 0;
4712
4713         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4714         if (ret)
4715                 return ret;
4716
4717         /*
4718          * Note: We do not worry about the concurrent register cacheline hang
4719          * here because no other code should access these registers other than
4720          * at initialization time.
4721          */
4722         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4723                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4724                 intel_ring_emit(ring, reg_base + i);
4725                 intel_ring_emit(ring, remap_info[i/4]);
4726         }
4727
4728         intel_ring_advance(ring);
4729
4730         return ret;
4731 }
4732
4733 void i915_gem_init_swizzling(struct drm_device *dev)
4734 {
4735         struct drm_i915_private *dev_priv = dev->dev_private;
4736
4737         if (INTEL_INFO(dev)->gen < 5 ||
4738             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4739                 return;
4740
4741         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4742                                  DISP_TILE_SURFACE_SWIZZLING);
4743
4744         if (IS_GEN5(dev))
4745                 return;
4746
4747         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4748         if (IS_GEN6(dev))
4749                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4750         else if (IS_GEN7(dev))
4751                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4752         else if (IS_GEN8(dev))
4753                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4754         else
4755                 BUG();
4756 }
4757
4758 static bool
4759 intel_enable_blt(struct drm_device *dev)
4760 {
4761         if (!HAS_BLT(dev))
4762                 return false;
4763
4764         /* The blitter was dysfunctional on early prototypes */
4765         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4766                 DRM_INFO("BLT not supported on this pre-production hardware;"
4767                          " graphics performance will be degraded.\n");
4768                 return false;
4769         }
4770
4771         return true;
4772 }
4773
4774 static void init_unused_ring(struct drm_device *dev, u32 base)
4775 {
4776         struct drm_i915_private *dev_priv = dev->dev_private;
4777
4778         I915_WRITE(RING_CTL(base), 0);
4779         I915_WRITE(RING_HEAD(base), 0);
4780         I915_WRITE(RING_TAIL(base), 0);
4781         I915_WRITE(RING_START(base), 0);
4782 }
4783
4784 static void init_unused_rings(struct drm_device *dev)
4785 {
4786         if (IS_I830(dev)) {
4787                 init_unused_ring(dev, PRB1_BASE);
4788                 init_unused_ring(dev, SRB0_BASE);
4789                 init_unused_ring(dev, SRB1_BASE);
4790                 init_unused_ring(dev, SRB2_BASE);
4791                 init_unused_ring(dev, SRB3_BASE);
4792         } else if (IS_GEN2(dev)) {
4793                 init_unused_ring(dev, SRB0_BASE);
4794                 init_unused_ring(dev, SRB1_BASE);
4795         } else if (IS_GEN3(dev)) {
4796                 init_unused_ring(dev, PRB1_BASE);
4797                 init_unused_ring(dev, PRB2_BASE);
4798         }
4799 }
4800
4801 int i915_gem_init_rings(struct drm_device *dev)
4802 {
4803         struct drm_i915_private *dev_priv = dev->dev_private;
4804         int ret;
4805
4806         /*
4807          * At least 830 can leave some of the unused rings
4808          * "active" (ie. head != tail) after resume which
4809          * will prevent c3 entry. Makes sure all unused rings
4810          * are totally idle.
4811          */
4812         init_unused_rings(dev);
4813
4814         ret = intel_init_render_ring_buffer(dev);
4815         if (ret)
4816                 return ret;
4817
4818         if (HAS_BSD(dev)) {
4819                 ret = intel_init_bsd_ring_buffer(dev);
4820                 if (ret)
4821                         goto cleanup_render_ring;
4822         }
4823
4824         if (intel_enable_blt(dev)) {
4825                 ret = intel_init_blt_ring_buffer(dev);
4826                 if (ret)
4827                         goto cleanup_bsd_ring;
4828         }
4829
4830         if (HAS_VEBOX(dev)) {
4831                 ret = intel_init_vebox_ring_buffer(dev);
4832                 if (ret)
4833                         goto cleanup_blt_ring;
4834         }
4835
4836         if (HAS_BSD2(dev)) {
4837                 ret = intel_init_bsd2_ring_buffer(dev);
4838                 if (ret)
4839                         goto cleanup_vebox_ring;
4840         }
4841
4842         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4843         if (ret)
4844                 goto cleanup_bsd2_ring;
4845
4846         return 0;
4847
4848 cleanup_bsd2_ring:
4849         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4850 cleanup_vebox_ring:
4851         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4852 cleanup_blt_ring:
4853         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4854 cleanup_bsd_ring:
4855         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4856 cleanup_render_ring:
4857         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4858
4859         return ret;
4860 }
4861
4862 int
4863 i915_gem_init_hw(struct drm_device *dev)
4864 {
4865         struct drm_i915_private *dev_priv = dev->dev_private;
4866         int ret, i;
4867
4868         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4869                 return -EIO;
4870
4871         if (dev_priv->ellc_size)
4872                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4873
4874         if (IS_HASWELL(dev))
4875                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4876                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4877
4878         if (HAS_PCH_NOP(dev)) {
4879                 if (IS_IVYBRIDGE(dev)) {
4880                         u32 temp = I915_READ(GEN7_MSG_CTL);
4881                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4882                         I915_WRITE(GEN7_MSG_CTL, temp);
4883                 } else if (INTEL_INFO(dev)->gen >= 7) {
4884                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4885                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4886                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4887                 }
4888         }
4889
4890         i915_gem_init_swizzling(dev);
4891
4892         ret = dev_priv->gt.init_rings(dev);
4893         if (ret)
4894                 return ret;
4895
4896         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4897                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4898
4899         /*
4900          * XXX: Contexts should only be initialized once. Doing a switch to the
4901          * default context switch however is something we'd like to do after
4902          * reset or thaw (the latter may not actually be necessary for HW, but
4903          * goes with our code better). Context switching requires rings (for
4904          * the do_switch), but before enabling PPGTT. So don't move this.
4905          */
4906         ret = i915_gem_context_enable(dev_priv);
4907         if (ret && ret != -EIO) {
4908                 DRM_ERROR("Context enable failed %d\n", ret);
4909                 i915_gem_cleanup_ringbuffer(dev);
4910
4911                 return ret;
4912         }
4913
4914         ret = i915_ppgtt_init_hw(dev);
4915         if (ret && ret != -EIO) {
4916                 DRM_ERROR("PPGTT enable failed %d\n", ret);
4917                 i915_gem_cleanup_ringbuffer(dev);
4918         }
4919
4920         return ret;
4921 }
4922
4923 int i915_gem_init(struct drm_device *dev)
4924 {
4925         struct drm_i915_private *dev_priv = dev->dev_private;
4926         int ret;
4927
4928         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4929                         i915.enable_execlists);
4930
4931         mutex_lock(&dev->struct_mutex);
4932
4933         if (IS_VALLEYVIEW(dev)) {
4934                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4935                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4936                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4937                               VLV_GTLC_ALLOWWAKEACK), 10))
4938                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4939         }
4940
4941         if (!i915.enable_execlists) {
4942                 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4943                 dev_priv->gt.init_rings = i915_gem_init_rings;
4944                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4945                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4946         } else {
4947                 dev_priv->gt.do_execbuf = intel_execlists_submission;
4948                 dev_priv->gt.init_rings = intel_logical_rings_init;
4949                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4950                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4951         }
4952
4953         ret = i915_gem_init_userptr(dev);
4954         if (ret) {
4955                 mutex_unlock(&dev->struct_mutex);
4956                 return ret;
4957         }
4958
4959         i915_gem_init_global_gtt(dev);
4960
4961         ret = i915_gem_context_init(dev);
4962         if (ret) {
4963                 mutex_unlock(&dev->struct_mutex);
4964                 return ret;
4965         }
4966
4967         ret = i915_gem_init_hw(dev);
4968         if (ret == -EIO) {
4969                 /* Allow ring initialisation to fail by marking the GPU as
4970                  * wedged. But we only want to do this where the GPU is angry,
4971                  * for all other failure, such as an allocation failure, bail.
4972                  */
4973                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4974                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4975                 ret = 0;
4976         }
4977         mutex_unlock(&dev->struct_mutex);
4978
4979         return ret;
4980 }
4981
4982 void
4983 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4984 {
4985         struct drm_i915_private *dev_priv = dev->dev_private;
4986         struct intel_engine_cs *ring;
4987         int i;
4988
4989         for_each_ring(ring, dev_priv, i)
4990                 dev_priv->gt.cleanup_ring(ring);
4991 }
4992
4993 static void
4994 init_ring_lists(struct intel_engine_cs *ring)
4995 {
4996         INIT_LIST_HEAD(&ring->active_list);
4997         INIT_LIST_HEAD(&ring->request_list);
4998 }
4999
5000 void i915_init_vm(struct drm_i915_private *dev_priv,
5001                   struct i915_address_space *vm)
5002 {
5003         if (!i915_is_ggtt(vm))
5004                 drm_mm_init(&vm->mm, vm->start, vm->total);
5005         vm->dev = dev_priv->dev;
5006         INIT_LIST_HEAD(&vm->active_list);
5007         INIT_LIST_HEAD(&vm->inactive_list);
5008         INIT_LIST_HEAD(&vm->global_link);
5009         list_add_tail(&vm->global_link, &dev_priv->vm_list);
5010 }
5011
5012 void
5013 i915_gem_load(struct drm_device *dev)
5014 {
5015         struct drm_i915_private *dev_priv = dev->dev_private;
5016         int i;
5017
5018         dev_priv->slab =
5019                 kmem_cache_create("i915_gem_object",
5020                                   sizeof(struct drm_i915_gem_object), 0,
5021                                   SLAB_HWCACHE_ALIGN,
5022                                   NULL);
5023
5024         INIT_LIST_HEAD(&dev_priv->vm_list);
5025         i915_init_vm(dev_priv, &dev_priv->gtt.base);
5026
5027         INIT_LIST_HEAD(&dev_priv->context_list);
5028         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5029         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5030         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5031         for (i = 0; i < I915_NUM_RINGS; i++)
5032                 init_ring_lists(&dev_priv->ring[i]);
5033         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5034                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5035         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5036                           i915_gem_retire_work_handler);
5037         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5038                           i915_gem_idle_work_handler);
5039         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5040
5041         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5042         if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5043                 I915_WRITE(MI_ARB_STATE,
5044                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5045         }
5046
5047         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5048
5049         /* Old X drivers will take 0-2 for front, back, depth buffers */
5050         if (!drm_core_check_feature(dev, DRIVER_MODESET))
5051                 dev_priv->fence_reg_start = 3;
5052
5053         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5054                 dev_priv->num_fence_regs = 32;
5055         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5056                 dev_priv->num_fence_regs = 16;
5057         else
5058                 dev_priv->num_fence_regs = 8;
5059
5060         /* Initialize fence registers to zero */
5061         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5062         i915_gem_restore_fences(dev);
5063
5064         i915_gem_detect_bit_6_swizzle(dev);
5065         init_waitqueue_head(&dev_priv->pending_flip_queue);
5066
5067         dev_priv->mm.interruptible = true;
5068
5069         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5070         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5071         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5072         register_shrinker(&dev_priv->mm.shrinker);
5073
5074         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5075         register_oom_notifier(&dev_priv->mm.oom_notifier);
5076
5077         mutex_init(&dev_priv->fb_tracking.lock);
5078 }
5079
5080 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5081 {
5082         struct drm_i915_file_private *file_priv = file->driver_priv;
5083
5084         cancel_delayed_work_sync(&file_priv->mm.idle_work);
5085
5086         /* Clean up our request list when the client is going away, so that
5087          * later retire_requests won't dereference our soon-to-be-gone
5088          * file_priv.
5089          */
5090         spin_lock(&file_priv->mm.lock);
5091         while (!list_empty(&file_priv->mm.request_list)) {
5092                 struct drm_i915_gem_request *request;
5093
5094                 request = list_first_entry(&file_priv->mm.request_list,
5095                                            struct drm_i915_gem_request,
5096                                            client_list);
5097                 list_del(&request->client_list);
5098                 request->file_priv = NULL;
5099         }
5100         spin_unlock(&file_priv->mm.lock);
5101 }
5102
5103 static void
5104 i915_gem_file_idle_work_handler(struct work_struct *work)
5105 {
5106         struct drm_i915_file_private *file_priv =
5107                 container_of(work, typeof(*file_priv), mm.idle_work.work);
5108
5109         atomic_set(&file_priv->rps_wait_boost, false);
5110 }
5111
5112 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5113 {
5114         struct drm_i915_file_private *file_priv;
5115         int ret;
5116
5117         DRM_DEBUG_DRIVER("\n");
5118
5119         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5120         if (!file_priv)
5121                 return -ENOMEM;
5122
5123         file->driver_priv = file_priv;
5124         file_priv->dev_priv = dev->dev_private;
5125         file_priv->file = file;
5126
5127         spin_lock_init(&file_priv->mm.lock);
5128         INIT_LIST_HEAD(&file_priv->mm.request_list);
5129         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5130                           i915_gem_file_idle_work_handler);
5131
5132         ret = i915_gem_context_open(dev, file);
5133         if (ret)
5134                 kfree(file_priv);
5135
5136         return ret;
5137 }
5138
5139 /**
5140  * i915_gem_track_fb - update frontbuffer tracking
5141  * old: current GEM buffer for the frontbuffer slots
5142  * new: new GEM buffer for the frontbuffer slots
5143  * frontbuffer_bits: bitmask of frontbuffer slots
5144  *
5145  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5146  * from @old and setting them in @new. Both @old and @new can be NULL.
5147  */
5148 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5149                        struct drm_i915_gem_object *new,
5150                        unsigned frontbuffer_bits)
5151 {
5152         if (old) {
5153                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5154                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5155                 old->frontbuffer_bits &= ~frontbuffer_bits;
5156         }
5157
5158         if (new) {
5159                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5160                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5161                 new->frontbuffer_bits |= frontbuffer_bits;
5162         }
5163 }
5164
5165 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5166 {
5167         if (!mutex_is_locked(mutex))
5168                 return false;
5169
5170 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5171         return mutex->owner == task;
5172 #else
5173         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5174         return false;
5175 #endif
5176 }
5177
5178 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5179 {
5180         if (!mutex_trylock(&dev->struct_mutex)) {
5181                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5182                         return false;
5183
5184                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5185                         return false;
5186
5187                 *unlock = false;
5188         } else
5189                 *unlock = true;
5190
5191         return true;
5192 }
5193
5194 static int num_vma_bound(struct drm_i915_gem_object *obj)
5195 {
5196         struct i915_vma *vma;
5197         int count = 0;
5198
5199         list_for_each_entry(vma, &obj->vma_list, vma_link)
5200                 if (drm_mm_node_allocated(&vma->node))
5201                         count++;
5202
5203         return count;
5204 }
5205
5206 static unsigned long
5207 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5208 {
5209         struct drm_i915_private *dev_priv =
5210                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5211         struct drm_device *dev = dev_priv->dev;
5212         struct drm_i915_gem_object *obj;
5213         unsigned long count;
5214         bool unlock;
5215
5216         if (!i915_gem_shrinker_lock(dev, &unlock))
5217                 return 0;
5218
5219         count = 0;
5220         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5221                 if (obj->pages_pin_count == 0)
5222                         count += obj->base.size >> PAGE_SHIFT;
5223
5224         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5225                 if (!i915_gem_obj_is_pinned(obj) &&
5226                     obj->pages_pin_count == num_vma_bound(obj))
5227                         count += obj->base.size >> PAGE_SHIFT;
5228         }
5229
5230         if (unlock)
5231                 mutex_unlock(&dev->struct_mutex);
5232
5233         return count;
5234 }
5235
5236 /* All the new VM stuff */
5237 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5238                                   struct i915_address_space *vm)
5239 {
5240         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5241         struct i915_vma *vma;
5242
5243         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5244
5245         list_for_each_entry(vma, &o->vma_list, vma_link) {
5246                 if (vma->vm == vm)
5247                         return vma->node.start;
5248
5249         }
5250         WARN(1, "%s vma for this object not found.\n",
5251              i915_is_ggtt(vm) ? "global" : "ppgtt");
5252         return -1;
5253 }
5254
5255 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5256                         struct i915_address_space *vm)
5257 {
5258         struct i915_vma *vma;
5259
5260         list_for_each_entry(vma, &o->vma_list, vma_link)
5261                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5262                         return true;
5263
5264         return false;
5265 }
5266
5267 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5268 {
5269         struct i915_vma *vma;
5270
5271         list_for_each_entry(vma, &o->vma_list, vma_link)
5272                 if (drm_mm_node_allocated(&vma->node))
5273                         return true;
5274
5275         return false;
5276 }
5277
5278 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5279                                 struct i915_address_space *vm)
5280 {
5281         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5282         struct i915_vma *vma;
5283
5284         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5285
5286         BUG_ON(list_empty(&o->vma_list));
5287
5288         list_for_each_entry(vma, &o->vma_list, vma_link)
5289                 if (vma->vm == vm)
5290                         return vma->node.size;
5291
5292         return 0;
5293 }
5294
5295 static unsigned long
5296 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5297 {
5298         struct drm_i915_private *dev_priv =
5299                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5300         struct drm_device *dev = dev_priv->dev;
5301         unsigned long freed;
5302         bool unlock;
5303
5304         if (!i915_gem_shrinker_lock(dev, &unlock))
5305                 return SHRINK_STOP;
5306
5307         freed = i915_gem_shrink(dev_priv,
5308                                 sc->nr_to_scan,
5309                                 I915_SHRINK_BOUND |
5310                                 I915_SHRINK_UNBOUND |
5311                                 I915_SHRINK_PURGEABLE);
5312         if (freed < sc->nr_to_scan)
5313                 freed += i915_gem_shrink(dev_priv,
5314                                          sc->nr_to_scan - freed,
5315                                          I915_SHRINK_BOUND |
5316                                          I915_SHRINK_UNBOUND);
5317         if (unlock)
5318                 mutex_unlock(&dev->struct_mutex);
5319
5320         return freed;
5321 }
5322
5323 static int
5324 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5325 {
5326         struct drm_i915_private *dev_priv =
5327                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5328         struct drm_device *dev = dev_priv->dev;
5329         struct drm_i915_gem_object *obj;
5330         unsigned long timeout = msecs_to_jiffies(5000) + 1;
5331         unsigned long pinned, bound, unbound, freed_pages;
5332         bool was_interruptible;
5333         bool unlock;
5334
5335         while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5336                 schedule_timeout_killable(1);
5337                 if (fatal_signal_pending(current))
5338                         return NOTIFY_DONE;
5339         }
5340         if (timeout == 0) {
5341                 pr_err("Unable to purge GPU memory due lock contention.\n");
5342                 return NOTIFY_DONE;
5343         }
5344
5345         was_interruptible = dev_priv->mm.interruptible;
5346         dev_priv->mm.interruptible = false;
5347
5348         freed_pages = i915_gem_shrink_all(dev_priv);
5349
5350         dev_priv->mm.interruptible = was_interruptible;
5351
5352         /* Because we may be allocating inside our own driver, we cannot
5353          * assert that there are no objects with pinned pages that are not
5354          * being pointed to by hardware.
5355          */
5356         unbound = bound = pinned = 0;
5357         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5358                 if (!obj->base.filp) /* not backed by a freeable object */
5359                         continue;
5360
5361                 if (obj->pages_pin_count)
5362                         pinned += obj->base.size;
5363                 else
5364                         unbound += obj->base.size;
5365         }
5366         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5367                 if (!obj->base.filp)
5368                         continue;
5369
5370                 if (obj->pages_pin_count)
5371                         pinned += obj->base.size;
5372                 else
5373                         bound += obj->base.size;
5374         }
5375
5376         if (unlock)
5377                 mutex_unlock(&dev->struct_mutex);
5378
5379         if (freed_pages || unbound || bound)
5380                 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5381                         freed_pages << PAGE_SHIFT, pinned);
5382         if (unbound || bound)
5383                 pr_err("%lu and %lu bytes still available in the "
5384                        "bound and unbound GPU page lists.\n",
5385                        bound, unbound);
5386
5387         *(unsigned long *)ptr += freed_pages;
5388         return NOTIFY_DONE;
5389 }
5390
5391 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5392 {
5393         struct i915_vma *vma;
5394
5395         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5396         if (vma->vm != i915_obj_to_ggtt(obj))
5397                 return NULL;
5398
5399         return vma;
5400 }