Merge tag 'xfs-for-linus-3.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_trace.h"
31 #include "intel_drv.h"
32
33 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
34 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
35
36 bool intel_enable_ppgtt(struct drm_device *dev, bool full)
37 {
38         if (i915.enable_ppgtt == 0)
39                 return false;
40
41         if (i915.enable_ppgtt == 1 && full)
42                 return false;
43
44         return true;
45 }
46
47 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
48 {
49         if (enable_ppgtt == 0 || !HAS_ALIASING_PPGTT(dev))
50                 return 0;
51
52         if (enable_ppgtt == 1)
53                 return 1;
54
55         if (enable_ppgtt == 2 && HAS_PPGTT(dev))
56                 return 2;
57
58 #ifdef CONFIG_INTEL_IOMMU
59         /* Disable ppgtt on SNB if VT-d is on. */
60         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
61                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
62                 return 0;
63         }
64 #endif
65
66         /* Early VLV doesn't have this */
67         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
68             dev->pdev->revision < 0xb) {
69                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
70                 return 0;
71         }
72
73         return HAS_ALIASING_PPGTT(dev) ? 1 : 0;
74 }
75
76
77 static void ppgtt_bind_vma(struct i915_vma *vma,
78                            enum i915_cache_level cache_level,
79                            u32 flags);
80 static void ppgtt_unbind_vma(struct i915_vma *vma);
81 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
82
83 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
84                                              enum i915_cache_level level,
85                                              bool valid)
86 {
87         gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
88         pte |= addr;
89
90         switch (level) {
91         case I915_CACHE_NONE:
92                 pte |= PPAT_UNCACHED_INDEX;
93                 break;
94         case I915_CACHE_WT:
95                 pte |= PPAT_DISPLAY_ELLC_INDEX;
96                 break;
97         default:
98                 pte |= PPAT_CACHED_INDEX;
99                 break;
100         }
101
102         return pte;
103 }
104
105 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
106                                              dma_addr_t addr,
107                                              enum i915_cache_level level)
108 {
109         gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
110         pde |= addr;
111         if (level != I915_CACHE_NONE)
112                 pde |= PPAT_CACHED_PDE_INDEX;
113         else
114                 pde |= PPAT_UNCACHED_INDEX;
115         return pde;
116 }
117
118 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
119                                      enum i915_cache_level level,
120                                      bool valid, u32 unused)
121 {
122         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
123         pte |= GEN6_PTE_ADDR_ENCODE(addr);
124
125         switch (level) {
126         case I915_CACHE_L3_LLC:
127         case I915_CACHE_LLC:
128                 pte |= GEN6_PTE_CACHE_LLC;
129                 break;
130         case I915_CACHE_NONE:
131                 pte |= GEN6_PTE_UNCACHED;
132                 break;
133         default:
134                 WARN_ON(1);
135         }
136
137         return pte;
138 }
139
140 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
141                                      enum i915_cache_level level,
142                                      bool valid, u32 unused)
143 {
144         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
145         pte |= GEN6_PTE_ADDR_ENCODE(addr);
146
147         switch (level) {
148         case I915_CACHE_L3_LLC:
149                 pte |= GEN7_PTE_CACHE_L3_LLC;
150                 break;
151         case I915_CACHE_LLC:
152                 pte |= GEN6_PTE_CACHE_LLC;
153                 break;
154         case I915_CACHE_NONE:
155                 pte |= GEN6_PTE_UNCACHED;
156                 break;
157         default:
158                 WARN_ON(1);
159         }
160
161         return pte;
162 }
163
164 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
165                                      enum i915_cache_level level,
166                                      bool valid, u32 flags)
167 {
168         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
169         pte |= GEN6_PTE_ADDR_ENCODE(addr);
170
171         /* Mark the page as writeable.  Other platforms don't have a
172          * setting for read-only/writable, so this matches that behavior.
173          */
174         if (!(flags & PTE_READ_ONLY))
175                 pte |= BYT_PTE_WRITEABLE;
176
177         if (level != I915_CACHE_NONE)
178                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
179
180         return pte;
181 }
182
183 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
184                                      enum i915_cache_level level,
185                                      bool valid, u32 unused)
186 {
187         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
188         pte |= HSW_PTE_ADDR_ENCODE(addr);
189
190         if (level != I915_CACHE_NONE)
191                 pte |= HSW_WB_LLC_AGE3;
192
193         return pte;
194 }
195
196 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
197                                       enum i915_cache_level level,
198                                       bool valid, u32 unused)
199 {
200         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
201         pte |= HSW_PTE_ADDR_ENCODE(addr);
202
203         switch (level) {
204         case I915_CACHE_NONE:
205                 break;
206         case I915_CACHE_WT:
207                 pte |= HSW_WT_ELLC_LLC_AGE3;
208                 break;
209         default:
210                 pte |= HSW_WB_ELLC_LLC_AGE3;
211                 break;
212         }
213
214         return pte;
215 }
216
217 /* Broadwell Page Directory Pointer Descriptors */
218 static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
219                            uint64_t val, bool synchronous)
220 {
221         struct drm_i915_private *dev_priv = ring->dev->dev_private;
222         int ret;
223
224         BUG_ON(entry >= 4);
225
226         if (synchronous) {
227                 I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
228                 I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
229                 return 0;
230         }
231
232         ret = intel_ring_begin(ring, 6);
233         if (ret)
234                 return ret;
235
236         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
237         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
238         intel_ring_emit(ring, (u32)(val >> 32));
239         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
240         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
241         intel_ring_emit(ring, (u32)(val));
242         intel_ring_advance(ring);
243
244         return 0;
245 }
246
247 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
248                           struct intel_engine_cs *ring,
249                           bool synchronous)
250 {
251         int i, ret;
252
253         /* bit of a hack to find the actual last used pd */
254         int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
255
256         for (i = used_pd - 1; i >= 0; i--) {
257                 dma_addr_t addr = ppgtt->pd_dma_addr[i];
258                 ret = gen8_write_pdp(ring, i, addr, synchronous);
259                 if (ret)
260                         return ret;
261         }
262
263         return 0;
264 }
265
266 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
267                                    uint64_t start,
268                                    uint64_t length,
269                                    bool use_scratch)
270 {
271         struct i915_hw_ppgtt *ppgtt =
272                 container_of(vm, struct i915_hw_ppgtt, base);
273         gen8_gtt_pte_t *pt_vaddr, scratch_pte;
274         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
275         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
276         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
277         unsigned num_entries = length >> PAGE_SHIFT;
278         unsigned last_pte, i;
279
280         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
281                                       I915_CACHE_LLC, use_scratch);
282
283         while (num_entries) {
284                 struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
285
286                 last_pte = pte + num_entries;
287                 if (last_pte > GEN8_PTES_PER_PAGE)
288                         last_pte = GEN8_PTES_PER_PAGE;
289
290                 pt_vaddr = kmap_atomic(page_table);
291
292                 for (i = pte; i < last_pte; i++) {
293                         pt_vaddr[i] = scratch_pte;
294                         num_entries--;
295                 }
296
297                 if (!HAS_LLC(ppgtt->base.dev))
298                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
299                 kunmap_atomic(pt_vaddr);
300
301                 pte = 0;
302                 if (++pde == GEN8_PDES_PER_PAGE) {
303                         pdpe++;
304                         pde = 0;
305                 }
306         }
307 }
308
309 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
310                                       struct sg_table *pages,
311                                       uint64_t start,
312                                       enum i915_cache_level cache_level, u32 unused)
313 {
314         struct i915_hw_ppgtt *ppgtt =
315                 container_of(vm, struct i915_hw_ppgtt, base);
316         gen8_gtt_pte_t *pt_vaddr;
317         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
318         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
319         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
320         struct sg_page_iter sg_iter;
321
322         pt_vaddr = NULL;
323
324         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
325                 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
326                         break;
327
328                 if (pt_vaddr == NULL)
329                         pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
330
331                 pt_vaddr[pte] =
332                         gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
333                                         cache_level, true);
334                 if (++pte == GEN8_PTES_PER_PAGE) {
335                         if (!HAS_LLC(ppgtt->base.dev))
336                                 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
337                         kunmap_atomic(pt_vaddr);
338                         pt_vaddr = NULL;
339                         if (++pde == GEN8_PDES_PER_PAGE) {
340                                 pdpe++;
341                                 pde = 0;
342                         }
343                         pte = 0;
344                 }
345         }
346         if (pt_vaddr) {
347                 if (!HAS_LLC(ppgtt->base.dev))
348                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
349                 kunmap_atomic(pt_vaddr);
350         }
351 }
352
353 static void gen8_free_page_tables(struct page **pt_pages)
354 {
355         int i;
356
357         if (pt_pages == NULL)
358                 return;
359
360         for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
361                 if (pt_pages[i])
362                         __free_pages(pt_pages[i], 0);
363 }
364
365 static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
366 {
367         int i;
368
369         for (i = 0; i < ppgtt->num_pd_pages; i++) {
370                 gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
371                 kfree(ppgtt->gen8_pt_pages[i]);
372                 kfree(ppgtt->gen8_pt_dma_addr[i]);
373         }
374
375         __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
376 }
377
378 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
379 {
380         struct pci_dev *hwdev = ppgtt->base.dev->pdev;
381         int i, j;
382
383         for (i = 0; i < ppgtt->num_pd_pages; i++) {
384                 /* TODO: In the future we'll support sparse mappings, so this
385                  * will have to change. */
386                 if (!ppgtt->pd_dma_addr[i])
387                         continue;
388
389                 pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
390                                PCI_DMA_BIDIRECTIONAL);
391
392                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
393                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
394                         if (addr)
395                                 pci_unmap_page(hwdev, addr, PAGE_SIZE,
396                                                PCI_DMA_BIDIRECTIONAL);
397                 }
398         }
399 }
400
401 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
402 {
403         struct i915_hw_ppgtt *ppgtt =
404                 container_of(vm, struct i915_hw_ppgtt, base);
405
406         list_del(&vm->global_link);
407         drm_mm_takedown(&vm->mm);
408
409         gen8_ppgtt_unmap_pages(ppgtt);
410         gen8_ppgtt_free(ppgtt);
411 }
412
413 static struct page **__gen8_alloc_page_tables(void)
414 {
415         struct page **pt_pages;
416         int i;
417
418         pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
419         if (!pt_pages)
420                 return ERR_PTR(-ENOMEM);
421
422         for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
423                 pt_pages[i] = alloc_page(GFP_KERNEL);
424                 if (!pt_pages[i])
425                         goto bail;
426         }
427
428         return pt_pages;
429
430 bail:
431         gen8_free_page_tables(pt_pages);
432         kfree(pt_pages);
433         return ERR_PTR(-ENOMEM);
434 }
435
436 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
437                                            const int max_pdp)
438 {
439         struct page **pt_pages[GEN8_LEGACY_PDPS];
440         int i, ret;
441
442         for (i = 0; i < max_pdp; i++) {
443                 pt_pages[i] = __gen8_alloc_page_tables();
444                 if (IS_ERR(pt_pages[i])) {
445                         ret = PTR_ERR(pt_pages[i]);
446                         goto unwind_out;
447                 }
448         }
449
450         /* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
451          * "atomic" - for cleanup purposes.
452          */
453         for (i = 0; i < max_pdp; i++)
454                 ppgtt->gen8_pt_pages[i] = pt_pages[i];
455
456         return 0;
457
458 unwind_out:
459         while (i--) {
460                 gen8_free_page_tables(pt_pages[i]);
461                 kfree(pt_pages[i]);
462         }
463
464         return ret;
465 }
466
467 static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
468 {
469         int i;
470
471         for (i = 0; i < ppgtt->num_pd_pages; i++) {
472                 ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
473                                                      sizeof(dma_addr_t),
474                                                      GFP_KERNEL);
475                 if (!ppgtt->gen8_pt_dma_addr[i])
476                         return -ENOMEM;
477         }
478
479         return 0;
480 }
481
482 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
483                                                 const int max_pdp)
484 {
485         ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
486         if (!ppgtt->pd_pages)
487                 return -ENOMEM;
488
489         ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
490         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
491
492         return 0;
493 }
494
495 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
496                             const int max_pdp)
497 {
498         int ret;
499
500         ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
501         if (ret)
502                 return ret;
503
504         ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
505         if (ret) {
506                 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
507                 return ret;
508         }
509
510         ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
511
512         ret = gen8_ppgtt_allocate_dma(ppgtt);
513         if (ret)
514                 gen8_ppgtt_free(ppgtt);
515
516         return ret;
517 }
518
519 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
520                                              const int pd)
521 {
522         dma_addr_t pd_addr;
523         int ret;
524
525         pd_addr = pci_map_page(ppgtt->base.dev->pdev,
526                                &ppgtt->pd_pages[pd], 0,
527                                PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
528
529         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
530         if (ret)
531                 return ret;
532
533         ppgtt->pd_dma_addr[pd] = pd_addr;
534
535         return 0;
536 }
537
538 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
539                                         const int pd,
540                                         const int pt)
541 {
542         dma_addr_t pt_addr;
543         struct page *p;
544         int ret;
545
546         p = ppgtt->gen8_pt_pages[pd][pt];
547         pt_addr = pci_map_page(ppgtt->base.dev->pdev,
548                                p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
549         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
550         if (ret)
551                 return ret;
552
553         ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
554
555         return 0;
556 }
557
558 /**
559  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
560  * with a net effect resembling a 2-level page table in normal x86 terms. Each
561  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
562  * space.
563  *
564  * FIXME: split allocation into smaller pieces. For now we only ever do this
565  * once, but with full PPGTT, the multiple contiguous allocations will be bad.
566  * TODO: Do something with the size parameter
567  */
568 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
569 {
570         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
571         const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
572         int i, j, ret;
573
574         if (size % (1<<30))
575                 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
576
577         /* 1. Do all our allocations for page directories and page tables. */
578         ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
579         if (ret)
580                 return ret;
581
582         /*
583          * 2. Create DMA mappings for the page directories and page tables.
584          */
585         for (i = 0; i < max_pdp; i++) {
586                 ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
587                 if (ret)
588                         goto bail;
589
590                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
591                         ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
592                         if (ret)
593                                 goto bail;
594                 }
595         }
596
597         /*
598          * 3. Map all the page directory entires to point to the page tables
599          * we've allocated.
600          *
601          * For now, the PPGTT helper functions all require that the PDEs are
602          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
603          * will never need to touch the PDEs again.
604          */
605         for (i = 0; i < max_pdp; i++) {
606                 gen8_ppgtt_pde_t *pd_vaddr;
607                 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
608                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
609                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
610                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
611                                                       I915_CACHE_LLC);
612                 }
613                 if (!HAS_LLC(ppgtt->base.dev))
614                         drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
615                 kunmap_atomic(pd_vaddr);
616         }
617
618         ppgtt->enable = gen8_ppgtt_enable;
619         ppgtt->switch_mm = gen8_mm_switch;
620         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
621         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
622         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
623         ppgtt->base.start = 0;
624         ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
625
626         ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
627
628         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
629                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
630         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
631                          ppgtt->num_pd_entries,
632                          (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
633         return 0;
634
635 bail:
636         gen8_ppgtt_unmap_pages(ppgtt);
637         gen8_ppgtt_free(ppgtt);
638         return ret;
639 }
640
641 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
642 {
643         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
644         struct i915_address_space *vm = &ppgtt->base;
645         gen6_gtt_pte_t __iomem *pd_addr;
646         gen6_gtt_pte_t scratch_pte;
647         uint32_t pd_entry;
648         int pte, pde;
649
650         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
651
652         pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
653                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
654
655         seq_printf(m, "  VM %p (pd_offset %x-%x):\n", vm,
656                    ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
657         for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
658                 u32 expected;
659                 gen6_gtt_pte_t *pt_vaddr;
660                 dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
661                 pd_entry = readl(pd_addr + pde);
662                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
663
664                 if (pd_entry != expected)
665                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
666                                    pde,
667                                    pd_entry,
668                                    expected);
669                 seq_printf(m, "\tPDE: %x\n", pd_entry);
670
671                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
672                 for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
673                         unsigned long va =
674                                 (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
675                                 (pte * PAGE_SIZE);
676                         int i;
677                         bool found = false;
678                         for (i = 0; i < 4; i++)
679                                 if (pt_vaddr[pte + i] != scratch_pte)
680                                         found = true;
681                         if (!found)
682                                 continue;
683
684                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
685                         for (i = 0; i < 4; i++) {
686                                 if (pt_vaddr[pte + i] != scratch_pte)
687                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
688                                 else
689                                         seq_puts(m, "  SCRATCH ");
690                         }
691                         seq_puts(m, "\n");
692                 }
693                 kunmap_atomic(pt_vaddr);
694         }
695 }
696
697 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
698 {
699         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
700         gen6_gtt_pte_t __iomem *pd_addr;
701         uint32_t pd_entry;
702         int i;
703
704         WARN_ON(ppgtt->pd_offset & 0x3f);
705         pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
706                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
707         for (i = 0; i < ppgtt->num_pd_entries; i++) {
708                 dma_addr_t pt_addr;
709
710                 pt_addr = ppgtt->pt_dma_addr[i];
711                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
712                 pd_entry |= GEN6_PDE_VALID;
713
714                 writel(pd_entry, pd_addr + i);
715         }
716         readl(pd_addr);
717 }
718
719 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
720 {
721         BUG_ON(ppgtt->pd_offset & 0x3f);
722
723         return (ppgtt->pd_offset / 64) << 16;
724 }
725
726 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
727                          struct intel_engine_cs *ring,
728                          bool synchronous)
729 {
730         struct drm_device *dev = ppgtt->base.dev;
731         struct drm_i915_private *dev_priv = dev->dev_private;
732         int ret;
733
734         /* If we're in reset, we can assume the GPU is sufficiently idle to
735          * manually frob these bits. Ideally we could use the ring functions,
736          * except our error handling makes it quite difficult (can't use
737          * intel_ring_begin, ring->flush, or intel_ring_advance)
738          *
739          * FIXME: We should try not to special case reset
740          */
741         if (synchronous ||
742             i915_reset_in_progress(&dev_priv->gpu_error)) {
743                 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
744                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
745                 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
746                 POSTING_READ(RING_PP_DIR_BASE(ring));
747                 return 0;
748         }
749
750         /* NB: TLBs must be flushed and invalidated before a switch */
751         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
752         if (ret)
753                 return ret;
754
755         ret = intel_ring_begin(ring, 6);
756         if (ret)
757                 return ret;
758
759         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
760         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
761         intel_ring_emit(ring, PP_DIR_DCLV_2G);
762         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
763         intel_ring_emit(ring, get_pd_offset(ppgtt));
764         intel_ring_emit(ring, MI_NOOP);
765         intel_ring_advance(ring);
766
767         return 0;
768 }
769
770 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
771                           struct intel_engine_cs *ring,
772                           bool synchronous)
773 {
774         struct drm_device *dev = ppgtt->base.dev;
775         struct drm_i915_private *dev_priv = dev->dev_private;
776         int ret;
777
778         /* If we're in reset, we can assume the GPU is sufficiently idle to
779          * manually frob these bits. Ideally we could use the ring functions,
780          * except our error handling makes it quite difficult (can't use
781          * intel_ring_begin, ring->flush, or intel_ring_advance)
782          *
783          * FIXME: We should try not to special case reset
784          */
785         if (synchronous ||
786             i915_reset_in_progress(&dev_priv->gpu_error)) {
787                 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
788                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
789                 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
790                 POSTING_READ(RING_PP_DIR_BASE(ring));
791                 return 0;
792         }
793
794         /* NB: TLBs must be flushed and invalidated before a switch */
795         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
796         if (ret)
797                 return ret;
798
799         ret = intel_ring_begin(ring, 6);
800         if (ret)
801                 return ret;
802
803         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
804         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
805         intel_ring_emit(ring, PP_DIR_DCLV_2G);
806         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
807         intel_ring_emit(ring, get_pd_offset(ppgtt));
808         intel_ring_emit(ring, MI_NOOP);
809         intel_ring_advance(ring);
810
811         /* XXX: RCS is the only one to auto invalidate the TLBs? */
812         if (ring->id != RCS) {
813                 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
814                 if (ret)
815                         return ret;
816         }
817
818         return 0;
819 }
820
821 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
822                           struct intel_engine_cs *ring,
823                           bool synchronous)
824 {
825         struct drm_device *dev = ppgtt->base.dev;
826         struct drm_i915_private *dev_priv = dev->dev_private;
827
828         if (!synchronous)
829                 return 0;
830
831         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
832         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
833
834         POSTING_READ(RING_PP_DIR_DCLV(ring));
835
836         return 0;
837 }
838
839 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
840 {
841         struct drm_device *dev = ppgtt->base.dev;
842         struct drm_i915_private *dev_priv = dev->dev_private;
843         struct intel_engine_cs *ring;
844         int j, ret;
845
846         for_each_ring(ring, dev_priv, j) {
847                 I915_WRITE(RING_MODE_GEN7(ring),
848                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
849
850                 /* We promise to do a switch later with FULL PPGTT. If this is
851                  * aliasing, this is the one and only switch we'll do */
852                 if (USES_FULL_PPGTT(dev))
853                         continue;
854
855                 ret = ppgtt->switch_mm(ppgtt, ring, true);
856                 if (ret)
857                         goto err_out;
858         }
859
860         return 0;
861
862 err_out:
863         for_each_ring(ring, dev_priv, j)
864                 I915_WRITE(RING_MODE_GEN7(ring),
865                            _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
866         return ret;
867 }
868
869 static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
870 {
871         struct drm_device *dev = ppgtt->base.dev;
872         struct drm_i915_private *dev_priv = dev->dev_private;
873         struct intel_engine_cs *ring;
874         uint32_t ecochk, ecobits;
875         int i;
876
877         ecobits = I915_READ(GAC_ECO_BITS);
878         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
879
880         ecochk = I915_READ(GAM_ECOCHK);
881         if (IS_HASWELL(dev)) {
882                 ecochk |= ECOCHK_PPGTT_WB_HSW;
883         } else {
884                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
885                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
886         }
887         I915_WRITE(GAM_ECOCHK, ecochk);
888
889         for_each_ring(ring, dev_priv, i) {
890                 int ret;
891                 /* GFX_MODE is per-ring on gen7+ */
892                 I915_WRITE(RING_MODE_GEN7(ring),
893                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
894
895                 /* We promise to do a switch later with FULL PPGTT. If this is
896                  * aliasing, this is the one and only switch we'll do */
897                 if (USES_FULL_PPGTT(dev))
898                         continue;
899
900                 ret = ppgtt->switch_mm(ppgtt, ring, true);
901                 if (ret)
902                         return ret;
903         }
904
905         return 0;
906 }
907
908 static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
909 {
910         struct drm_device *dev = ppgtt->base.dev;
911         struct drm_i915_private *dev_priv = dev->dev_private;
912         struct intel_engine_cs *ring;
913         uint32_t ecochk, gab_ctl, ecobits;
914         int i;
915
916         ecobits = I915_READ(GAC_ECO_BITS);
917         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
918                    ECOBITS_PPGTT_CACHE64B);
919
920         gab_ctl = I915_READ(GAB_CTL);
921         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
922
923         ecochk = I915_READ(GAM_ECOCHK);
924         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
925
926         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
927
928         for_each_ring(ring, dev_priv, i) {
929                 int ret = ppgtt->switch_mm(ppgtt, ring, true);
930                 if (ret)
931                         return ret;
932         }
933
934         return 0;
935 }
936
937 /* PPGTT support for Sandybdrige/Gen6 and later */
938 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
939                                    uint64_t start,
940                                    uint64_t length,
941                                    bool use_scratch)
942 {
943         struct i915_hw_ppgtt *ppgtt =
944                 container_of(vm, struct i915_hw_ppgtt, base);
945         gen6_gtt_pte_t *pt_vaddr, scratch_pte;
946         unsigned first_entry = start >> PAGE_SHIFT;
947         unsigned num_entries = length >> PAGE_SHIFT;
948         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
949         unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
950         unsigned last_pte, i;
951
952         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
953
954         while (num_entries) {
955                 last_pte = first_pte + num_entries;
956                 if (last_pte > I915_PPGTT_PT_ENTRIES)
957                         last_pte = I915_PPGTT_PT_ENTRIES;
958
959                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
960
961                 for (i = first_pte; i < last_pte; i++)
962                         pt_vaddr[i] = scratch_pte;
963
964                 kunmap_atomic(pt_vaddr);
965
966                 num_entries -= last_pte - first_pte;
967                 first_pte = 0;
968                 act_pt++;
969         }
970 }
971
972 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
973                                       struct sg_table *pages,
974                                       uint64_t start,
975                                       enum i915_cache_level cache_level, u32 flags)
976 {
977         struct i915_hw_ppgtt *ppgtt =
978                 container_of(vm, struct i915_hw_ppgtt, base);
979         gen6_gtt_pte_t *pt_vaddr;
980         unsigned first_entry = start >> PAGE_SHIFT;
981         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
982         unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
983         struct sg_page_iter sg_iter;
984
985         pt_vaddr = NULL;
986         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
987                 if (pt_vaddr == NULL)
988                         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
989
990                 pt_vaddr[act_pte] =
991                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
992                                        cache_level, true, flags);
993
994                 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
995                         kunmap_atomic(pt_vaddr);
996                         pt_vaddr = NULL;
997                         act_pt++;
998                         act_pte = 0;
999                 }
1000         }
1001         if (pt_vaddr)
1002                 kunmap_atomic(pt_vaddr);
1003 }
1004
1005 static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
1006 {
1007         int i;
1008
1009         if (ppgtt->pt_dma_addr) {
1010                 for (i = 0; i < ppgtt->num_pd_entries; i++)
1011                         pci_unmap_page(ppgtt->base.dev->pdev,
1012                                        ppgtt->pt_dma_addr[i],
1013                                        4096, PCI_DMA_BIDIRECTIONAL);
1014         }
1015 }
1016
1017 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
1018 {
1019         int i;
1020
1021         kfree(ppgtt->pt_dma_addr);
1022         for (i = 0; i < ppgtt->num_pd_entries; i++)
1023                 __free_page(ppgtt->pt_pages[i]);
1024         kfree(ppgtt->pt_pages);
1025 }
1026
1027 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1028 {
1029         struct i915_hw_ppgtt *ppgtt =
1030                 container_of(vm, struct i915_hw_ppgtt, base);
1031
1032         list_del(&vm->global_link);
1033         drm_mm_takedown(&ppgtt->base.mm);
1034         drm_mm_remove_node(&ppgtt->node);
1035
1036         gen6_ppgtt_unmap_pages(ppgtt);
1037         gen6_ppgtt_free(ppgtt);
1038 }
1039
1040 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1041 {
1042         struct drm_device *dev = ppgtt->base.dev;
1043         struct drm_i915_private *dev_priv = dev->dev_private;
1044         bool retried = false;
1045         int ret;
1046
1047         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1048          * allocator works in address space sizes, so it's multiplied by page
1049          * size. We allocate at the top of the GTT to avoid fragmentation.
1050          */
1051         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1052 alloc:
1053         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1054                                                   &ppgtt->node, GEN6_PD_SIZE,
1055                                                   GEN6_PD_ALIGN, 0,
1056                                                   0, dev_priv->gtt.base.total,
1057                                                   DRM_MM_TOPDOWN);
1058         if (ret == -ENOSPC && !retried) {
1059                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1060                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
1061                                                I915_CACHE_NONE,
1062                                                0, dev_priv->gtt.base.total,
1063                                                0);
1064                 if (ret)
1065                         return ret;
1066
1067                 retried = true;
1068                 goto alloc;
1069         }
1070
1071         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1072                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1073
1074         ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
1075         return ret;
1076 }
1077
1078 static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
1079 {
1080         int i;
1081
1082         ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
1083                                   GFP_KERNEL);
1084
1085         if (!ppgtt->pt_pages)
1086                 return -ENOMEM;
1087
1088         for (i = 0; i < ppgtt->num_pd_entries; i++) {
1089                 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
1090                 if (!ppgtt->pt_pages[i]) {
1091                         gen6_ppgtt_free(ppgtt);
1092                         return -ENOMEM;
1093                 }
1094         }
1095
1096         return 0;
1097 }
1098
1099 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1100 {
1101         int ret;
1102
1103         ret = gen6_ppgtt_allocate_page_directories(ppgtt);
1104         if (ret)
1105                 return ret;
1106
1107         ret = gen6_ppgtt_allocate_page_tables(ppgtt);
1108         if (ret) {
1109                 drm_mm_remove_node(&ppgtt->node);
1110                 return ret;
1111         }
1112
1113         ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
1114                                      GFP_KERNEL);
1115         if (!ppgtt->pt_dma_addr) {
1116                 drm_mm_remove_node(&ppgtt->node);
1117                 gen6_ppgtt_free(ppgtt);
1118                 return -ENOMEM;
1119         }
1120
1121         return 0;
1122 }
1123
1124 static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
1125 {
1126         struct drm_device *dev = ppgtt->base.dev;
1127         int i;
1128
1129         for (i = 0; i < ppgtt->num_pd_entries; i++) {
1130                 dma_addr_t pt_addr;
1131
1132                 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
1133                                        PCI_DMA_BIDIRECTIONAL);
1134
1135                 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
1136                         gen6_ppgtt_unmap_pages(ppgtt);
1137                         return -EIO;
1138                 }
1139
1140                 ppgtt->pt_dma_addr[i] = pt_addr;
1141         }
1142
1143         return 0;
1144 }
1145
1146 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1147 {
1148         struct drm_device *dev = ppgtt->base.dev;
1149         struct drm_i915_private *dev_priv = dev->dev_private;
1150         int ret;
1151
1152         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1153         if (IS_GEN6(dev)) {
1154                 ppgtt->enable = gen6_ppgtt_enable;
1155                 ppgtt->switch_mm = gen6_mm_switch;
1156         } else if (IS_HASWELL(dev)) {
1157                 ppgtt->enable = gen7_ppgtt_enable;
1158                 ppgtt->switch_mm = hsw_mm_switch;
1159         } else if (IS_GEN7(dev)) {
1160                 ppgtt->enable = gen7_ppgtt_enable;
1161                 ppgtt->switch_mm = gen7_mm_switch;
1162         } else
1163                 BUG();
1164
1165         ret = gen6_ppgtt_alloc(ppgtt);
1166         if (ret)
1167                 return ret;
1168
1169         ret = gen6_ppgtt_setup_page_tables(ppgtt);
1170         if (ret) {
1171                 gen6_ppgtt_free(ppgtt);
1172                 return ret;
1173         }
1174
1175         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1176         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1177         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1178         ppgtt->base.start = 0;
1179         ppgtt->base.total =  ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
1180         ppgtt->debug_dump = gen6_dump_ppgtt;
1181
1182         ppgtt->pd_offset =
1183                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1184
1185         ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1186
1187         DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1188                          ppgtt->node.size >> 20,
1189                          ppgtt->node.start / PAGE_SIZE);
1190
1191         return 0;
1192 }
1193
1194 int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1195 {
1196         struct drm_i915_private *dev_priv = dev->dev_private;
1197         int ret = 0;
1198
1199         ppgtt->base.dev = dev;
1200         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1201
1202         if (INTEL_INFO(dev)->gen < 8)
1203                 ret = gen6_ppgtt_init(ppgtt);
1204         else if (IS_GEN8(dev))
1205                 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1206         else
1207                 BUG();
1208
1209         if (!ret) {
1210                 struct drm_i915_private *dev_priv = dev->dev_private;
1211                 kref_init(&ppgtt->ref);
1212                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1213                             ppgtt->base.total);
1214                 i915_init_vm(dev_priv, &ppgtt->base);
1215                 if (INTEL_INFO(dev)->gen < 8) {
1216                         gen6_write_pdes(ppgtt);
1217                         DRM_DEBUG("Adding PPGTT at offset %x\n",
1218                                   ppgtt->pd_offset << 10);
1219                 }
1220         }
1221
1222         return ret;
1223 }
1224
1225 static void
1226 ppgtt_bind_vma(struct i915_vma *vma,
1227                enum i915_cache_level cache_level,
1228                u32 flags)
1229 {
1230         /* Currently applicable only to VLV */
1231         if (vma->obj->gt_ro)
1232                 flags |= PTE_READ_ONLY;
1233
1234         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1235                                 cache_level, flags);
1236 }
1237
1238 static void ppgtt_unbind_vma(struct i915_vma *vma)
1239 {
1240         vma->vm->clear_range(vma->vm,
1241                              vma->node.start,
1242                              vma->obj->base.size,
1243                              true);
1244 }
1245
1246 extern int intel_iommu_gfx_mapped;
1247 /* Certain Gen5 chipsets require require idling the GPU before
1248  * unmapping anything from the GTT when VT-d is enabled.
1249  */
1250 static inline bool needs_idle_maps(struct drm_device *dev)
1251 {
1252 #ifdef CONFIG_INTEL_IOMMU
1253         /* Query intel_iommu to see if we need the workaround. Presumably that
1254          * was loaded first.
1255          */
1256         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1257                 return true;
1258 #endif
1259         return false;
1260 }
1261
1262 static bool do_idling(struct drm_i915_private *dev_priv)
1263 {
1264         bool ret = dev_priv->mm.interruptible;
1265
1266         if (unlikely(dev_priv->gtt.do_idle_maps)) {
1267                 dev_priv->mm.interruptible = false;
1268                 if (i915_gpu_idle(dev_priv->dev)) {
1269                         DRM_ERROR("Couldn't idle GPU\n");
1270                         /* Wait a bit, in hopes it avoids the hang */
1271                         udelay(10);
1272                 }
1273         }
1274
1275         return ret;
1276 }
1277
1278 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1279 {
1280         if (unlikely(dev_priv->gtt.do_idle_maps))
1281                 dev_priv->mm.interruptible = interruptible;
1282 }
1283
1284 void i915_check_and_clear_faults(struct drm_device *dev)
1285 {
1286         struct drm_i915_private *dev_priv = dev->dev_private;
1287         struct intel_engine_cs *ring;
1288         int i;
1289
1290         if (INTEL_INFO(dev)->gen < 6)
1291                 return;
1292
1293         for_each_ring(ring, dev_priv, i) {
1294                 u32 fault_reg;
1295                 fault_reg = I915_READ(RING_FAULT_REG(ring));
1296                 if (fault_reg & RING_FAULT_VALID) {
1297                         DRM_DEBUG_DRIVER("Unexpected fault\n"
1298                                          "\tAddr: 0x%08lx\\n"
1299                                          "\tAddress space: %s\n"
1300                                          "\tSource ID: %d\n"
1301                                          "\tType: %d\n",
1302                                          fault_reg & PAGE_MASK,
1303                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1304                                          RING_FAULT_SRCID(fault_reg),
1305                                          RING_FAULT_FAULT_TYPE(fault_reg));
1306                         I915_WRITE(RING_FAULT_REG(ring),
1307                                    fault_reg & ~RING_FAULT_VALID);
1308                 }
1309         }
1310         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1311 }
1312
1313 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1314 {
1315         if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1316                 intel_gtt_chipset_flush();
1317         } else {
1318                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1319                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1320         }
1321 }
1322
1323 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1324 {
1325         struct drm_i915_private *dev_priv = dev->dev_private;
1326
1327         /* Don't bother messing with faults pre GEN6 as we have little
1328          * documentation supporting that it's a good idea.
1329          */
1330         if (INTEL_INFO(dev)->gen < 6)
1331                 return;
1332
1333         i915_check_and_clear_faults(dev);
1334
1335         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1336                                        dev_priv->gtt.base.start,
1337                                        dev_priv->gtt.base.total,
1338                                        true);
1339
1340         i915_ggtt_flush(dev_priv);
1341 }
1342
1343 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1344 {
1345         struct drm_i915_private *dev_priv = dev->dev_private;
1346         struct drm_i915_gem_object *obj;
1347         struct i915_address_space *vm;
1348
1349         i915_check_and_clear_faults(dev);
1350
1351         /* First fill our portion of the GTT with scratch pages */
1352         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1353                                        dev_priv->gtt.base.start,
1354                                        dev_priv->gtt.base.total,
1355                                        true);
1356
1357         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1358                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1359                                                            &dev_priv->gtt.base);
1360                 if (!vma)
1361                         continue;
1362
1363                 i915_gem_clflush_object(obj, obj->pin_display);
1364                 /* The bind_vma code tries to be smart about tracking mappings.
1365                  * Unfortunately above, we've just wiped out the mappings
1366                  * without telling our object about it. So we need to fake it.
1367                  */
1368                 obj->has_global_gtt_mapping = 0;
1369                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
1370         }
1371
1372
1373         if (INTEL_INFO(dev)->gen >= 8) {
1374                 if (IS_CHERRYVIEW(dev))
1375                         chv_setup_private_ppat(dev_priv);
1376                 else
1377                         bdw_setup_private_ppat(dev_priv);
1378
1379                 return;
1380         }
1381
1382         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1383                 /* TODO: Perhaps it shouldn't be gen6 specific */
1384                 if (i915_is_ggtt(vm)) {
1385                         if (dev_priv->mm.aliasing_ppgtt)
1386                                 gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1387                         continue;
1388                 }
1389
1390                 gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1391         }
1392
1393         i915_ggtt_flush(dev_priv);
1394 }
1395
1396 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1397 {
1398         if (obj->has_dma_mapping)
1399                 return 0;
1400
1401         if (!dma_map_sg(&obj->base.dev->pdev->dev,
1402                         obj->pages->sgl, obj->pages->nents,
1403                         PCI_DMA_BIDIRECTIONAL))
1404                 return -ENOSPC;
1405
1406         return 0;
1407 }
1408
1409 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1410 {
1411 #ifdef writeq
1412         writeq(pte, addr);
1413 #else
1414         iowrite32((u32)pte, addr);
1415         iowrite32(pte >> 32, addr + 4);
1416 #endif
1417 }
1418
1419 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1420                                      struct sg_table *st,
1421                                      uint64_t start,
1422                                      enum i915_cache_level level, u32 unused)
1423 {
1424         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1425         unsigned first_entry = start >> PAGE_SHIFT;
1426         gen8_gtt_pte_t __iomem *gtt_entries =
1427                 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1428         int i = 0;
1429         struct sg_page_iter sg_iter;
1430         dma_addr_t addr = 0; /* shut up gcc */
1431
1432         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1433                 addr = sg_dma_address(sg_iter.sg) +
1434                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
1435                 gen8_set_pte(&gtt_entries[i],
1436                              gen8_pte_encode(addr, level, true));
1437                 i++;
1438         }
1439
1440         /*
1441          * XXX: This serves as a posting read to make sure that the PTE has
1442          * actually been updated. There is some concern that even though
1443          * registers and PTEs are within the same BAR that they are potentially
1444          * of NUMA access patterns. Therefore, even with the way we assume
1445          * hardware should work, we must keep this posting read for paranoia.
1446          */
1447         if (i != 0)
1448                 WARN_ON(readq(&gtt_entries[i-1])
1449                         != gen8_pte_encode(addr, level, true));
1450
1451         /* This next bit makes the above posting read even more important. We
1452          * want to flush the TLBs only after we're certain all the PTE updates
1453          * have finished.
1454          */
1455         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1456         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1457 }
1458
1459 /*
1460  * Binds an object into the global gtt with the specified cache level. The object
1461  * will be accessible to the GPU via commands whose operands reference offsets
1462  * within the global GTT as well as accessible by the GPU through the GMADR
1463  * mapped BAR (dev_priv->mm.gtt->gtt).
1464  */
1465 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1466                                      struct sg_table *st,
1467                                      uint64_t start,
1468                                      enum i915_cache_level level, u32 flags)
1469 {
1470         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1471         unsigned first_entry = start >> PAGE_SHIFT;
1472         gen6_gtt_pte_t __iomem *gtt_entries =
1473                 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1474         int i = 0;
1475         struct sg_page_iter sg_iter;
1476         dma_addr_t addr = 0;
1477
1478         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1479                 addr = sg_page_iter_dma_address(&sg_iter);
1480                 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1481                 i++;
1482         }
1483
1484         /* XXX: This serves as a posting read to make sure that the PTE has
1485          * actually been updated. There is some concern that even though
1486          * registers and PTEs are within the same BAR that they are potentially
1487          * of NUMA access patterns. Therefore, even with the way we assume
1488          * hardware should work, we must keep this posting read for paranoia.
1489          */
1490         if (i != 0) {
1491                 unsigned long gtt = readl(&gtt_entries[i-1]);
1492                 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1493         }
1494
1495         /* This next bit makes the above posting read even more important. We
1496          * want to flush the TLBs only after we're certain all the PTE updates
1497          * have finished.
1498          */
1499         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1500         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1501 }
1502
1503 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1504                                   uint64_t start,
1505                                   uint64_t length,
1506                                   bool use_scratch)
1507 {
1508         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1509         unsigned first_entry = start >> PAGE_SHIFT;
1510         unsigned num_entries = length >> PAGE_SHIFT;
1511         gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1512                 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1513         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1514         int i;
1515
1516         if (WARN(num_entries > max_entries,
1517                  "First entry = %d; Num entries = %d (max=%d)\n",
1518                  first_entry, num_entries, max_entries))
1519                 num_entries = max_entries;
1520
1521         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1522                                       I915_CACHE_LLC,
1523                                       use_scratch);
1524         for (i = 0; i < num_entries; i++)
1525                 gen8_set_pte(&gtt_base[i], scratch_pte);
1526         readl(gtt_base);
1527 }
1528
1529 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1530                                   uint64_t start,
1531                                   uint64_t length,
1532                                   bool use_scratch)
1533 {
1534         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1535         unsigned first_entry = start >> PAGE_SHIFT;
1536         unsigned num_entries = length >> PAGE_SHIFT;
1537         gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1538                 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1539         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1540         int i;
1541
1542         if (WARN(num_entries > max_entries,
1543                  "First entry = %d; Num entries = %d (max=%d)\n",
1544                  first_entry, num_entries, max_entries))
1545                 num_entries = max_entries;
1546
1547         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1548
1549         for (i = 0; i < num_entries; i++)
1550                 iowrite32(scratch_pte, &gtt_base[i]);
1551         readl(gtt_base);
1552 }
1553
1554
1555 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1556                                enum i915_cache_level cache_level,
1557                                u32 unused)
1558 {
1559         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1560         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1561                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1562
1563         BUG_ON(!i915_is_ggtt(vma->vm));
1564         intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
1565         vma->obj->has_global_gtt_mapping = 1;
1566 }
1567
1568 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1569                                   uint64_t start,
1570                                   uint64_t length,
1571                                   bool unused)
1572 {
1573         unsigned first_entry = start >> PAGE_SHIFT;
1574         unsigned num_entries = length >> PAGE_SHIFT;
1575         intel_gtt_clear_range(first_entry, num_entries);
1576 }
1577
1578 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1579 {
1580         const unsigned int first = vma->node.start >> PAGE_SHIFT;
1581         const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1582
1583         BUG_ON(!i915_is_ggtt(vma->vm));
1584         vma->obj->has_global_gtt_mapping = 0;
1585         intel_gtt_clear_range(first, size);
1586 }
1587
1588 static void ggtt_bind_vma(struct i915_vma *vma,
1589                           enum i915_cache_level cache_level,
1590                           u32 flags)
1591 {
1592         struct drm_device *dev = vma->vm->dev;
1593         struct drm_i915_private *dev_priv = dev->dev_private;
1594         struct drm_i915_gem_object *obj = vma->obj;
1595
1596         /* Currently applicable only to VLV */
1597         if (obj->gt_ro)
1598                 flags |= PTE_READ_ONLY;
1599
1600         /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1601          * or we have a global mapping already but the cacheability flags have
1602          * changed, set the global PTEs.
1603          *
1604          * If there is an aliasing PPGTT it is anecdotally faster, so use that
1605          * instead if none of the above hold true.
1606          *
1607          * NB: A global mapping should only be needed for special regions like
1608          * "gtt mappable", SNB errata, or if specified via special execbuf
1609          * flags. At all other times, the GPU will use the aliasing PPGTT.
1610          */
1611         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1612                 if (!obj->has_global_gtt_mapping ||
1613                     (cache_level != obj->cache_level)) {
1614                         vma->vm->insert_entries(vma->vm, obj->pages,
1615                                                 vma->node.start,
1616                                                 cache_level, flags);
1617                         obj->has_global_gtt_mapping = 1;
1618                 }
1619         }
1620
1621         if (dev_priv->mm.aliasing_ppgtt &&
1622             (!obj->has_aliasing_ppgtt_mapping ||
1623              (cache_level != obj->cache_level))) {
1624                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1625                 appgtt->base.insert_entries(&appgtt->base,
1626                                             vma->obj->pages,
1627                                             vma->node.start,
1628                                             cache_level, flags);
1629                 vma->obj->has_aliasing_ppgtt_mapping = 1;
1630         }
1631 }
1632
1633 static void ggtt_unbind_vma(struct i915_vma *vma)
1634 {
1635         struct drm_device *dev = vma->vm->dev;
1636         struct drm_i915_private *dev_priv = dev->dev_private;
1637         struct drm_i915_gem_object *obj = vma->obj;
1638
1639         if (obj->has_global_gtt_mapping) {
1640                 vma->vm->clear_range(vma->vm,
1641                                      vma->node.start,
1642                                      obj->base.size,
1643                                      true);
1644                 obj->has_global_gtt_mapping = 0;
1645         }
1646
1647         if (obj->has_aliasing_ppgtt_mapping) {
1648                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1649                 appgtt->base.clear_range(&appgtt->base,
1650                                          vma->node.start,
1651                                          obj->base.size,
1652                                          true);
1653                 obj->has_aliasing_ppgtt_mapping = 0;
1654         }
1655 }
1656
1657 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1658 {
1659         struct drm_device *dev = obj->base.dev;
1660         struct drm_i915_private *dev_priv = dev->dev_private;
1661         bool interruptible;
1662
1663         interruptible = do_idling(dev_priv);
1664
1665         if (!obj->has_dma_mapping)
1666                 dma_unmap_sg(&dev->pdev->dev,
1667                              obj->pages->sgl, obj->pages->nents,
1668                              PCI_DMA_BIDIRECTIONAL);
1669
1670         undo_idling(dev_priv, interruptible);
1671 }
1672
1673 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1674                                   unsigned long color,
1675                                   unsigned long *start,
1676                                   unsigned long *end)
1677 {
1678         if (node->color != color)
1679                 *start += 4096;
1680
1681         if (!list_empty(&node->node_list)) {
1682                 node = list_entry(node->node_list.next,
1683                                   struct drm_mm_node,
1684                                   node_list);
1685                 if (node->allocated && node->color != color)
1686                         *end -= 4096;
1687         }
1688 }
1689
1690 void i915_gem_setup_global_gtt(struct drm_device *dev,
1691                                unsigned long start,
1692                                unsigned long mappable_end,
1693                                unsigned long end)
1694 {
1695         /* Let GEM Manage all of the aperture.
1696          *
1697          * However, leave one page at the end still bound to the scratch page.
1698          * There are a number of places where the hardware apparently prefetches
1699          * past the end of the object, and we've seen multiple hangs with the
1700          * GPU head pointer stuck in a batchbuffer bound at the last page of the
1701          * aperture.  One page should be enough to keep any prefetching inside
1702          * of the aperture.
1703          */
1704         struct drm_i915_private *dev_priv = dev->dev_private;
1705         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1706         struct drm_mm_node *entry;
1707         struct drm_i915_gem_object *obj;
1708         unsigned long hole_start, hole_end;
1709
1710         BUG_ON(mappable_end > end);
1711
1712         /* Subtract the guard page ... */
1713         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1714         if (!HAS_LLC(dev))
1715                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1716
1717         /* Mark any preallocated objects as occupied */
1718         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1719                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1720                 int ret;
1721                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1722                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
1723
1724                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1725                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1726                 if (ret)
1727                         DRM_DEBUG_KMS("Reservation failed\n");
1728                 obj->has_global_gtt_mapping = 1;
1729         }
1730
1731         dev_priv->gtt.base.start = start;
1732         dev_priv->gtt.base.total = end - start;
1733
1734         /* Clear any non-preallocated blocks */
1735         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1736                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1737                               hole_start, hole_end);
1738                 ggtt_vm->clear_range(ggtt_vm, hole_start,
1739                                      hole_end - hole_start, true);
1740         }
1741
1742         /* And finally clear the reserved guard page */
1743         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
1744 }
1745
1746 void i915_gem_init_global_gtt(struct drm_device *dev)
1747 {
1748         struct drm_i915_private *dev_priv = dev->dev_private;
1749         unsigned long gtt_size, mappable_size;
1750
1751         gtt_size = dev_priv->gtt.base.total;
1752         mappable_size = dev_priv->gtt.mappable_end;
1753
1754         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1755 }
1756
1757 static int setup_scratch_page(struct drm_device *dev)
1758 {
1759         struct drm_i915_private *dev_priv = dev->dev_private;
1760         struct page *page;
1761         dma_addr_t dma_addr;
1762
1763         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1764         if (page == NULL)
1765                 return -ENOMEM;
1766         get_page(page);
1767         set_pages_uc(page, 1);
1768
1769 #ifdef CONFIG_INTEL_IOMMU
1770         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1771                                 PCI_DMA_BIDIRECTIONAL);
1772         if (pci_dma_mapping_error(dev->pdev, dma_addr))
1773                 return -EINVAL;
1774 #else
1775         dma_addr = page_to_phys(page);
1776 #endif
1777         dev_priv->gtt.base.scratch.page = page;
1778         dev_priv->gtt.base.scratch.addr = dma_addr;
1779
1780         return 0;
1781 }
1782
1783 static void teardown_scratch_page(struct drm_device *dev)
1784 {
1785         struct drm_i915_private *dev_priv = dev->dev_private;
1786         struct page *page = dev_priv->gtt.base.scratch.page;
1787
1788         set_pages_wb(page, 1);
1789         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1790                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1791         put_page(page);
1792         __free_page(page);
1793 }
1794
1795 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1796 {
1797         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1798         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1799         return snb_gmch_ctl << 20;
1800 }
1801
1802 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1803 {
1804         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1805         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1806         if (bdw_gmch_ctl)
1807                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1808
1809 #ifdef CONFIG_X86_32
1810         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
1811         if (bdw_gmch_ctl > 4)
1812                 bdw_gmch_ctl = 4;
1813 #endif
1814
1815         return bdw_gmch_ctl << 20;
1816 }
1817
1818 static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1819 {
1820         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1821         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1822
1823         if (gmch_ctrl)
1824                 return 1 << (20 + gmch_ctrl);
1825
1826         return 0;
1827 }
1828
1829 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1830 {
1831         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1832         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1833         return snb_gmch_ctl << 25; /* 32 MB units */
1834 }
1835
1836 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1837 {
1838         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1839         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1840         return bdw_gmch_ctl << 25; /* 32 MB units */
1841 }
1842
1843 static size_t chv_get_stolen_size(u16 gmch_ctrl)
1844 {
1845         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
1846         gmch_ctrl &= SNB_GMCH_GMS_MASK;
1847
1848         /*
1849          * 0x0  to 0x10: 32MB increments starting at 0MB
1850          * 0x11 to 0x16: 4MB increments starting at 8MB
1851          * 0x17 to 0x1d: 4MB increments start at 36MB
1852          */
1853         if (gmch_ctrl < 0x11)
1854                 return gmch_ctrl << 25;
1855         else if (gmch_ctrl < 0x17)
1856                 return (gmch_ctrl - 0x11 + 2) << 22;
1857         else
1858                 return (gmch_ctrl - 0x17 + 9) << 22;
1859 }
1860
1861 static int ggtt_probe_common(struct drm_device *dev,
1862                              size_t gtt_size)
1863 {
1864         struct drm_i915_private *dev_priv = dev->dev_private;
1865         phys_addr_t gtt_phys_addr;
1866         int ret;
1867
1868         /* For Modern GENs the PTEs and register space are split in the BAR */
1869         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1870                 (pci_resource_len(dev->pdev, 0) / 2);
1871
1872         dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1873         if (!dev_priv->gtt.gsm) {
1874                 DRM_ERROR("Failed to map the gtt page table\n");
1875                 return -ENOMEM;
1876         }
1877
1878         ret = setup_scratch_page(dev);
1879         if (ret) {
1880                 DRM_ERROR("Scratch setup failed\n");
1881                 /* iounmap will also get called at remove, but meh */
1882                 iounmap(dev_priv->gtt.gsm);
1883         }
1884
1885         return ret;
1886 }
1887
1888 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1889  * bits. When using advanced contexts each context stores its own PAT, but
1890  * writing this data shouldn't be harmful even in those cases. */
1891 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
1892 {
1893         uint64_t pat;
1894
1895         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1896               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1897               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1898               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1899               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1900               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1901               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1902               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1903
1904         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1905          * write would work. */
1906         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1907         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1908 }
1909
1910 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
1911 {
1912         uint64_t pat;
1913
1914         /*
1915          * Map WB on BDW to snooped on CHV.
1916          *
1917          * Only the snoop bit has meaning for CHV, the rest is
1918          * ignored.
1919          *
1920          * Note that the harware enforces snooping for all page
1921          * table accesses. The snoop bit is actually ignored for
1922          * PDEs.
1923          */
1924         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
1925               GEN8_PPAT(1, 0) |
1926               GEN8_PPAT(2, 0) |
1927               GEN8_PPAT(3, 0) |
1928               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
1929               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
1930               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
1931               GEN8_PPAT(7, CHV_PPAT_SNOOP);
1932
1933         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1934         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1935 }
1936
1937 static int gen8_gmch_probe(struct drm_device *dev,
1938                            size_t *gtt_total,
1939                            size_t *stolen,
1940                            phys_addr_t *mappable_base,
1941                            unsigned long *mappable_end)
1942 {
1943         struct drm_i915_private *dev_priv = dev->dev_private;
1944         unsigned int gtt_size;
1945         u16 snb_gmch_ctl;
1946         int ret;
1947
1948         /* TODO: We're not aware of mappable constraints on gen8 yet */
1949         *mappable_base = pci_resource_start(dev->pdev, 2);
1950         *mappable_end = pci_resource_len(dev->pdev, 2);
1951
1952         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1953                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1954
1955         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1956
1957         if (IS_CHERRYVIEW(dev)) {
1958                 *stolen = chv_get_stolen_size(snb_gmch_ctl);
1959                 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
1960         } else {
1961                 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1962                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1963         }
1964
1965         *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1966
1967         if (IS_CHERRYVIEW(dev))
1968                 chv_setup_private_ppat(dev_priv);
1969         else
1970                 bdw_setup_private_ppat(dev_priv);
1971
1972         ret = ggtt_probe_common(dev, gtt_size);
1973
1974         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1975         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1976
1977         return ret;
1978 }
1979
1980 static int gen6_gmch_probe(struct drm_device *dev,
1981                            size_t *gtt_total,
1982                            size_t *stolen,
1983                            phys_addr_t *mappable_base,
1984                            unsigned long *mappable_end)
1985 {
1986         struct drm_i915_private *dev_priv = dev->dev_private;
1987         unsigned int gtt_size;
1988         u16 snb_gmch_ctl;
1989         int ret;
1990
1991         *mappable_base = pci_resource_start(dev->pdev, 2);
1992         *mappable_end = pci_resource_len(dev->pdev, 2);
1993
1994         /* 64/512MB is the current min/max we actually know of, but this is just
1995          * a coarse sanity check.
1996          */
1997         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1998                 DRM_ERROR("Unknown GMADR size (%lx)\n",
1999                           dev_priv->gtt.mappable_end);
2000                 return -ENXIO;
2001         }
2002
2003         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2004                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2005         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2006
2007         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2008
2009         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2010         *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
2011
2012         ret = ggtt_probe_common(dev, gtt_size);
2013
2014         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2015         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2016
2017         return ret;
2018 }
2019
2020 static void gen6_gmch_remove(struct i915_address_space *vm)
2021 {
2022
2023         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2024
2025         if (drm_mm_initialized(&vm->mm)) {
2026                 drm_mm_takedown(&vm->mm);
2027                 list_del(&vm->global_link);
2028         }
2029         iounmap(gtt->gsm);
2030         teardown_scratch_page(vm->dev);
2031 }
2032
2033 static int i915_gmch_probe(struct drm_device *dev,
2034                            size_t *gtt_total,
2035                            size_t *stolen,
2036                            phys_addr_t *mappable_base,
2037                            unsigned long *mappable_end)
2038 {
2039         struct drm_i915_private *dev_priv = dev->dev_private;
2040         int ret;
2041
2042         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2043         if (!ret) {
2044                 DRM_ERROR("failed to set up gmch\n");
2045                 return -EIO;
2046         }
2047
2048         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2049
2050         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2051         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2052
2053         if (unlikely(dev_priv->gtt.do_idle_maps))
2054                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2055
2056         return 0;
2057 }
2058
2059 static void i915_gmch_remove(struct i915_address_space *vm)
2060 {
2061         if (drm_mm_initialized(&vm->mm)) {
2062                 drm_mm_takedown(&vm->mm);
2063                 list_del(&vm->global_link);
2064         }
2065         intel_gmch_remove();
2066 }
2067
2068 int i915_gem_gtt_init(struct drm_device *dev)
2069 {
2070         struct drm_i915_private *dev_priv = dev->dev_private;
2071         struct i915_gtt *gtt = &dev_priv->gtt;
2072         int ret;
2073
2074         if (INTEL_INFO(dev)->gen <= 5) {
2075                 gtt->gtt_probe = i915_gmch_probe;
2076                 gtt->base.cleanup = i915_gmch_remove;
2077         } else if (INTEL_INFO(dev)->gen < 8) {
2078                 gtt->gtt_probe = gen6_gmch_probe;
2079                 gtt->base.cleanup = gen6_gmch_remove;
2080                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2081                         gtt->base.pte_encode = iris_pte_encode;
2082                 else if (IS_HASWELL(dev))
2083                         gtt->base.pte_encode = hsw_pte_encode;
2084                 else if (IS_VALLEYVIEW(dev))
2085                         gtt->base.pte_encode = byt_pte_encode;
2086                 else if (INTEL_INFO(dev)->gen >= 7)
2087                         gtt->base.pte_encode = ivb_pte_encode;
2088                 else
2089                         gtt->base.pte_encode = snb_pte_encode;
2090         } else {
2091                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2092                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2093         }
2094
2095         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2096                              &gtt->mappable_base, &gtt->mappable_end);
2097         if (ret)
2098                 return ret;
2099
2100         gtt->base.dev = dev;
2101
2102         /* GMADR is the PCI mmio aperture into the global GTT. */
2103         DRM_INFO("Memory usable by graphics device = %zdM\n",
2104                  gtt->base.total >> 20);
2105         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2106         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2107 #ifdef CONFIG_INTEL_IOMMU
2108         if (intel_iommu_gfx_mapped)
2109                 DRM_INFO("VT-d active for gfx access\n");
2110 #endif
2111         /*
2112          * i915.enable_ppgtt is read-only, so do an early pass to validate the
2113          * user's requested state against the hardware/driver capabilities.  We
2114          * do this now so that we can print out any log messages once rather
2115          * than every time we check intel_enable_ppgtt().
2116          */
2117         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2118         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2119
2120         return 0;
2121 }
2122
2123 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
2124                                               struct i915_address_space *vm)
2125 {
2126         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2127         if (vma == NULL)
2128                 return ERR_PTR(-ENOMEM);
2129
2130         INIT_LIST_HEAD(&vma->vma_link);
2131         INIT_LIST_HEAD(&vma->mm_list);
2132         INIT_LIST_HEAD(&vma->exec_list);
2133         vma->vm = vm;
2134         vma->obj = obj;
2135
2136         switch (INTEL_INFO(vm->dev)->gen) {
2137         case 8:
2138         case 7:
2139         case 6:
2140                 if (i915_is_ggtt(vm)) {
2141                         vma->unbind_vma = ggtt_unbind_vma;
2142                         vma->bind_vma = ggtt_bind_vma;
2143                 } else {
2144                         vma->unbind_vma = ppgtt_unbind_vma;
2145                         vma->bind_vma = ppgtt_bind_vma;
2146                 }
2147                 break;
2148         case 5:
2149         case 4:
2150         case 3:
2151         case 2:
2152                 BUG_ON(!i915_is_ggtt(vm));
2153                 vma->unbind_vma = i915_ggtt_unbind_vma;
2154                 vma->bind_vma = i915_ggtt_bind_vma;
2155                 break;
2156         default:
2157                 BUG();
2158         }
2159
2160         /* Keep GGTT vmas first to make debug easier */
2161         if (i915_is_ggtt(vm))
2162                 list_add(&vma->vma_link, &obj->vma_list);
2163         else
2164                 list_add_tail(&vma->vma_link, &obj->vma_list);
2165
2166         return vma;
2167 }
2168
2169 struct i915_vma *
2170 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2171                                   struct i915_address_space *vm)
2172 {
2173         struct i915_vma *vma;
2174
2175         vma = i915_gem_obj_to_vma(obj, vm);
2176         if (!vma)
2177                 vma = __i915_gem_vma_create(obj, vm);
2178
2179         return vma;
2180 }