cc56206a160066bc79cb0ca2d0897c0233895cda
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.h
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Please try to maintain the following order within this file unless it makes
24  * sense to do otherwise. From top to bottom:
25  * 1. typedefs
26  * 2. #defines, and macros
27  * 3. structure definitions
28  * 4. function prototypes
29  *
30  * Within each section, please try to order by generation in ascending order,
31  * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32  */
33
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
36
37 #include <linux/io-mapping.h>
38
39 #include "i915_gem_request.h"
40
41 struct drm_i915_file_private;
42
43 typedef uint32_t gen6_pte_t;
44 typedef uint64_t gen8_pte_t;
45 typedef uint64_t gen8_pde_t;
46 typedef uint64_t gen8_ppgtt_pdpe_t;
47 typedef uint64_t gen8_ppgtt_pml4e_t;
48
49 #define ggtt_total_entries(ggtt) ((ggtt)->base.total >> PAGE_SHIFT)
50
51 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
52 #define GEN6_GTT_ADDR_ENCODE(addr)      ((addr) | (((addr) >> 28) & 0xff0))
53 #define GEN6_PTE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
54 #define GEN6_PDE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
55 #define GEN6_PTE_CACHE_LLC              (2 << 1)
56 #define GEN6_PTE_UNCACHED               (1 << 1)
57 #define GEN6_PTE_VALID                  (1 << 0)
58
59 #define I915_PTES(pte_len)              (PAGE_SIZE / (pte_len))
60 #define I915_PTE_MASK(pte_len)          (I915_PTES(pte_len) - 1)
61 #define I915_PDES                       512
62 #define I915_PDE_MASK                   (I915_PDES - 1)
63 #define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
64
65 #define GEN6_PTES                       I915_PTES(sizeof(gen6_pte_t))
66 #define GEN6_PD_SIZE                    (I915_PDES * PAGE_SIZE)
67 #define GEN6_PD_ALIGN                   (PAGE_SIZE * 16)
68 #define GEN6_PDE_SHIFT                  22
69 #define GEN6_PDE_VALID                  (1 << 0)
70
71 #define GEN7_PTE_CACHE_L3_LLC           (3 << 1)
72
73 #define BYT_PTE_SNOOPED_BY_CPU_CACHES   (1 << 2)
74 #define BYT_PTE_WRITEABLE               (1 << 1)
75
76 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
77  * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
78  */
79 #define HSW_CACHEABILITY_CONTROL(bits)  ((((bits) & 0x7) << 1) | \
80                                          (((bits) & 0x8) << (11 - 3)))
81 #define HSW_WB_LLC_AGE3                 HSW_CACHEABILITY_CONTROL(0x2)
82 #define HSW_WB_LLC_AGE0                 HSW_CACHEABILITY_CONTROL(0x3)
83 #define HSW_WB_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x8)
84 #define HSW_WB_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0xb)
85 #define HSW_WT_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x7)
86 #define HSW_WT_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0x6)
87 #define HSW_PTE_UNCACHED                (0)
88 #define HSW_GTT_ADDR_ENCODE(addr)       ((addr) | (((addr) >> 28) & 0x7f0))
89 #define HSW_PTE_ADDR_ENCODE(addr)       HSW_GTT_ADDR_ENCODE(addr)
90
91 /* GEN8 legacy style address is defined as a 3 level page table:
92  * 31:30 | 29:21 | 20:12 |  11:0
93  * PDPE  |  PDE  |  PTE  | offset
94  * The difference as compared to normal x86 3 level page table is the PDPEs are
95  * programmed via register.
96  *
97  * GEN8 48b legacy style address is defined as a 4 level page table:
98  * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
99  * PML4E | PDPE  |  PDE  |  PTE  | offset
100  */
101 #define GEN8_PML4ES_PER_PML4            512
102 #define GEN8_PML4E_SHIFT                39
103 #define GEN8_PML4E_MASK                 (GEN8_PML4ES_PER_PML4 - 1)
104 #define GEN8_PDPE_SHIFT                 30
105 /* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
106  * tables */
107 #define GEN8_PDPE_MASK                  0x1ff
108 #define GEN8_PDE_SHIFT                  21
109 #define GEN8_PDE_MASK                   0x1ff
110 #define GEN8_PTE_SHIFT                  12
111 #define GEN8_PTE_MASK                   0x1ff
112 #define GEN8_LEGACY_PDPES               4
113 #define GEN8_PTES                       I915_PTES(sizeof(gen8_pte_t))
114
115 #define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
116                                  GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
117
118 #define PPAT_UNCACHED_INDEX             (_PAGE_PWT | _PAGE_PCD)
119 #define PPAT_CACHED_PDE_INDEX           0 /* WB LLC */
120 #define PPAT_CACHED_INDEX               _PAGE_PAT /* WB LLCeLLC */
121 #define PPAT_DISPLAY_ELLC_INDEX         _PAGE_PCD /* WT eLLC */
122
123 #define CHV_PPAT_SNOOP                  (1<<6)
124 #define GEN8_PPAT_AGE(x)                (x<<4)
125 #define GEN8_PPAT_LLCeLLC               (3<<2)
126 #define GEN8_PPAT_LLCELLC               (2<<2)
127 #define GEN8_PPAT_LLC                   (1<<2)
128 #define GEN8_PPAT_WB                    (3<<0)
129 #define GEN8_PPAT_WT                    (2<<0)
130 #define GEN8_PPAT_WC                    (1<<0)
131 #define GEN8_PPAT_UC                    (0<<0)
132 #define GEN8_PPAT_ELLC_OVERRIDE         (0<<2)
133 #define GEN8_PPAT(i, x)                 ((uint64_t) (x) << ((i) * 8))
134
135 enum i915_ggtt_view_type {
136         I915_GGTT_VIEW_NORMAL = 0,
137         I915_GGTT_VIEW_ROTATED,
138         I915_GGTT_VIEW_PARTIAL,
139 };
140
141 struct intel_rotation_info {
142         unsigned int uv_offset;
143         uint32_t pixel_format;
144         unsigned int uv_start_page;
145         struct {
146                 /* tiles */
147                 unsigned int width, height;
148         } plane[2];
149 };
150
151 struct i915_ggtt_view {
152         enum i915_ggtt_view_type type;
153
154         union {
155                 struct {
156                         u64 offset;
157                         unsigned int size;
158                 } partial;
159                 struct intel_rotation_info rotated;
160         } params;
161
162         struct sg_table *pages;
163 };
164
165 extern const struct i915_ggtt_view i915_ggtt_view_normal;
166 extern const struct i915_ggtt_view i915_ggtt_view_rotated;
167
168 enum i915_cache_level;
169
170 /**
171  * A VMA represents a GEM BO that is bound into an address space. Therefore, a
172  * VMA's presence cannot be guaranteed before binding, or after unbinding the
173  * object into/from the address space.
174  *
175  * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
176  * will always be <= an objects lifetime. So object refcounting should cover us.
177  */
178 struct i915_vma {
179         struct drm_mm_node node;
180         struct drm_i915_gem_object *obj;
181         struct i915_address_space *vm;
182         void __iomem *iomap;
183         u64 size;
184
185         unsigned int flags;
186         /**
187          * How many users have pinned this object in GTT space. The following
188          * users can each hold at most one reference: pwrite/pread, execbuffer
189          * (objects are not allowed multiple times for the same batchbuffer),
190          * and the framebuffer code. When switching/pageflipping, the
191          * framebuffer code has at most two buffers pinned per crtc.
192          *
193          * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
194          * bits with absolutely no headroom. So use 4 bits.
195          */
196 #define I915_VMA_PIN_MASK 0xf
197 #define I915_VMA_PIN_OVERFLOW   BIT(5)
198
199         /** Flags and address space this VMA is bound to */
200 #define I915_VMA_GLOBAL_BIND    BIT(6)
201 #define I915_VMA_LOCAL_BIND     BIT(7)
202 #define I915_VMA_BIND_MASK (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND | I915_VMA_PIN_OVERFLOW)
203
204 #define I915_VMA_GGTT   BIT(8)
205 #define I915_VMA_CLOSED BIT(9)
206
207         unsigned int active;
208         struct i915_gem_active last_read[I915_NUM_ENGINES];
209
210         /**
211          * Support different GGTT views into the same object.
212          * This means there can be multiple VMA mappings per object and per VM.
213          * i915_ggtt_view_type is used to distinguish between those entries.
214          * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
215          * assumed in GEM functions which take no ggtt view parameter.
216          */
217         struct i915_ggtt_view ggtt_view;
218
219         /** This object's place on the active/inactive lists */
220         struct list_head vm_link;
221
222         struct list_head obj_link; /* Link in the object's VMA list */
223
224         /** This vma's place in the batchbuffer or on the eviction list */
225         struct list_head exec_list;
226
227         /**
228          * Used for performing relocations during execbuffer insertion.
229          */
230         struct hlist_node exec_node;
231         unsigned long exec_handle;
232         struct drm_i915_gem_exec_object2 *exec_entry;
233 };
234
235 static inline bool i915_vma_is_ggtt(const struct i915_vma *vma)
236 {
237         return vma->flags & I915_VMA_GGTT;
238 }
239
240 static inline bool i915_vma_is_closed(const struct i915_vma *vma)
241 {
242         return vma->flags & I915_VMA_CLOSED;
243 }
244
245 static inline unsigned int i915_vma_get_active(const struct i915_vma *vma)
246 {
247         return vma->active;
248 }
249
250 static inline bool i915_vma_is_active(const struct i915_vma *vma)
251 {
252         return i915_vma_get_active(vma);
253 }
254
255 static inline void i915_vma_set_active(struct i915_vma *vma,
256                                        unsigned int engine)
257 {
258         vma->active |= BIT(engine);
259 }
260
261 static inline void i915_vma_clear_active(struct i915_vma *vma,
262                                          unsigned int engine)
263 {
264         vma->active &= ~BIT(engine);
265 }
266
267 static inline bool i915_vma_has_active_engine(const struct i915_vma *vma,
268                                               unsigned int engine)
269 {
270         return vma->active & BIT(engine);
271 }
272
273 struct i915_page_dma {
274         struct page *page;
275         union {
276                 dma_addr_t daddr;
277
278                 /* For gen6/gen7 only. This is the offset in the GGTT
279                  * where the page directory entries for PPGTT begin
280                  */
281                 uint32_t ggtt_offset;
282         };
283 };
284
285 #define px_base(px) (&(px)->base)
286 #define px_page(px) (px_base(px)->page)
287 #define px_dma(px) (px_base(px)->daddr)
288
289 struct i915_page_scratch {
290         struct i915_page_dma base;
291 };
292
293 struct i915_page_table {
294         struct i915_page_dma base;
295
296         unsigned long *used_ptes;
297 };
298
299 struct i915_page_directory {
300         struct i915_page_dma base;
301
302         unsigned long *used_pdes;
303         struct i915_page_table *page_table[I915_PDES]; /* PDEs */
304 };
305
306 struct i915_page_directory_pointer {
307         struct i915_page_dma base;
308
309         unsigned long *used_pdpes;
310         struct i915_page_directory **page_directory;
311 };
312
313 struct i915_pml4 {
314         struct i915_page_dma base;
315
316         DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
317         struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
318 };
319
320 struct i915_address_space {
321         struct drm_mm mm;
322         struct drm_device *dev;
323         /* Every address space belongs to a struct file - except for the global
324          * GTT that is owned by the driver (and so @file is set to NULL). In
325          * principle, no information should leak from one context to another
326          * (or between files/processes etc) unless explicitly shared by the
327          * owner. Tracking the owner is important in order to free up per-file
328          * objects along with the file, to aide resource tracking, and to
329          * assign blame.
330          */
331         struct drm_i915_file_private *file;
332         struct list_head global_link;
333         u64 start;              /* Start offset always 0 for dri2 */
334         u64 total;              /* size addr space maps (ex. 2GB for ggtt) */
335
336         bool closed;
337
338         struct i915_page_scratch *scratch_page;
339         struct i915_page_table *scratch_pt;
340         struct i915_page_directory *scratch_pd;
341         struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
342
343         /**
344          * List of objects currently involved in rendering.
345          *
346          * Includes buffers having the contents of their GPU caches
347          * flushed, not necessarily primitives. last_read_req
348          * represents when the rendering involved will be completed.
349          *
350          * A reference is held on the buffer while on this list.
351          */
352         struct list_head active_list;
353
354         /**
355          * LRU list of objects which are not in the ringbuffer and
356          * are ready to unbind, but are still in the GTT.
357          *
358          * last_read_req is NULL while an object is in this list.
359          *
360          * A reference is not held on the buffer while on this list,
361          * as merely being GTT-bound shouldn't prevent its being
362          * freed, and we'll pull it off the list in the free path.
363          */
364         struct list_head inactive_list;
365
366         /**
367          * List of vma that have been unbound.
368          *
369          * A reference is not held on the buffer while on this list.
370          */
371         struct list_head unbound_list;
372
373         /* FIXME: Need a more generic return type */
374         gen6_pte_t (*pte_encode)(dma_addr_t addr,
375                                  enum i915_cache_level level,
376                                  bool valid, u32 flags); /* Create a valid PTE */
377         /* flags for pte_encode */
378 #define PTE_READ_ONLY   (1<<0)
379         int (*allocate_va_range)(struct i915_address_space *vm,
380                                  uint64_t start,
381                                  uint64_t length);
382         void (*clear_range)(struct i915_address_space *vm,
383                             uint64_t start,
384                             uint64_t length,
385                             bool use_scratch);
386         void (*insert_page)(struct i915_address_space *vm,
387                             dma_addr_t addr,
388                             uint64_t offset,
389                             enum i915_cache_level cache_level,
390                             u32 flags);
391         void (*insert_entries)(struct i915_address_space *vm,
392                                struct sg_table *st,
393                                uint64_t start,
394                                enum i915_cache_level cache_level, u32 flags);
395         void (*cleanup)(struct i915_address_space *vm);
396         /** Unmap an object from an address space. This usually consists of
397          * setting the valid PTE entries to a reserved scratch page. */
398         void (*unbind_vma)(struct i915_vma *vma);
399         /* Map an object into an address space with the given cache flags. */
400         int (*bind_vma)(struct i915_vma *vma,
401                         enum i915_cache_level cache_level,
402                         u32 flags);
403 };
404
405 #define i915_is_ggtt(V) (!(V)->file)
406
407 /* The Graphics Translation Table is the way in which GEN hardware translates a
408  * Graphics Virtual Address into a Physical Address. In addition to the normal
409  * collateral associated with any va->pa translations GEN hardware also has a
410  * portion of the GTT which can be mapped by the CPU and remain both coherent
411  * and correct (in cases like swizzling). That region is referred to as GMADR in
412  * the spec.
413  */
414 struct i915_ggtt {
415         struct i915_address_space base;
416
417         size_t stolen_size;             /* Total size of stolen memory */
418         size_t stolen_usable_size;      /* Total size minus BIOS reserved */
419         size_t stolen_reserved_base;
420         size_t stolen_reserved_size;
421         u64 mappable_end;               /* End offset that we can CPU map */
422         struct io_mapping *mappable;    /* Mapping to our CPU mappable region */
423         phys_addr_t mappable_base;      /* PA of our GMADR */
424
425         /** "Graphics Stolen Memory" holds the global PTEs */
426         void __iomem *gsm;
427
428         bool do_idle_maps;
429
430         int mtrr;
431 };
432
433 struct i915_hw_ppgtt {
434         struct i915_address_space base;
435         struct kref ref;
436         struct drm_mm_node node;
437         unsigned long pd_dirty_rings;
438         union {
439                 struct i915_pml4 pml4;          /* GEN8+ & 48b PPGTT */
440                 struct i915_page_directory_pointer pdp; /* GEN8+ */
441                 struct i915_page_directory pd;          /* GEN6-7 */
442         };
443
444         gen6_pte_t __iomem *pd_addr;
445
446         int (*enable)(struct i915_hw_ppgtt *ppgtt);
447         int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
448                          struct drm_i915_gem_request *req);
449         void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
450 };
451
452 /*
453  * gen6_for_each_pde() iterates over every pde from start until start+length.
454  * If start and start+length are not perfectly divisible, the macro will round
455  * down and up as needed. Start=0 and length=2G effectively iterates over
456  * every PDE in the system. The macro modifies ALL its parameters except 'pd',
457  * so each of the other parameters should preferably be a simple variable, or
458  * at most an lvalue with no side-effects!
459  */
460 #define gen6_for_each_pde(pt, pd, start, length, iter)                  \
461         for (iter = gen6_pde_index(start);                              \
462              length > 0 && iter < I915_PDES &&                          \
463                 (pt = (pd)->page_table[iter], true);                    \
464              ({ u32 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT);         \
465                     temp = min(temp - start, length);                   \
466                     start += temp, length -= temp; }), ++iter)
467
468 #define gen6_for_all_pdes(pt, pd, iter)                                 \
469         for (iter = 0;                                                  \
470              iter < I915_PDES &&                                        \
471                 (pt = (pd)->page_table[iter], true);                    \
472              ++iter)
473
474 static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
475 {
476         const uint32_t mask = NUM_PTE(pde_shift) - 1;
477
478         return (address >> PAGE_SHIFT) & mask;
479 }
480
481 /* Helper to counts the number of PTEs within the given length. This count
482  * does not cross a page table boundary, so the max value would be
483  * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
484 */
485 static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
486                                       uint32_t pde_shift)
487 {
488         const uint64_t mask = ~((1ULL << pde_shift) - 1);
489         uint64_t end;
490
491         WARN_ON(length == 0);
492         WARN_ON(offset_in_page(addr|length));
493
494         end = addr + length;
495
496         if ((addr & mask) != (end & mask))
497                 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
498
499         return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
500 }
501
502 static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
503 {
504         return (addr >> shift) & I915_PDE_MASK;
505 }
506
507 static inline uint32_t gen6_pte_index(uint32_t addr)
508 {
509         return i915_pte_index(addr, GEN6_PDE_SHIFT);
510 }
511
512 static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
513 {
514         return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
515 }
516
517 static inline uint32_t gen6_pde_index(uint32_t addr)
518 {
519         return i915_pde_index(addr, GEN6_PDE_SHIFT);
520 }
521
522 /* Equivalent to the gen6 version, For each pde iterates over every pde
523  * between from start until start + length. On gen8+ it simply iterates
524  * over every page directory entry in a page directory.
525  */
526 #define gen8_for_each_pde(pt, pd, start, length, iter)                  \
527         for (iter = gen8_pde_index(start);                              \
528              length > 0 && iter < I915_PDES &&                          \
529                 (pt = (pd)->page_table[iter], true);                    \
530              ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT);         \
531                     temp = min(temp - start, length);                   \
532                     start += temp, length -= temp; }), ++iter)
533
534 #define gen8_for_each_pdpe(pd, pdp, start, length, iter)                \
535         for (iter = gen8_pdpe_index(start);                             \
536              length > 0 && iter < I915_PDPES_PER_PDP(dev) &&            \
537                 (pd = (pdp)->page_directory[iter], true);               \
538              ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT);        \
539                     temp = min(temp - start, length);                   \
540                     start += temp, length -= temp; }), ++iter)
541
542 #define gen8_for_each_pml4e(pdp, pml4, start, length, iter)             \
543         for (iter = gen8_pml4e_index(start);                            \
544              length > 0 && iter < GEN8_PML4ES_PER_PML4 &&               \
545                 (pdp = (pml4)->pdps[iter], true);                       \
546              ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT);    \
547                     temp = min(temp - start, length);                   \
548                     start += temp, length -= temp; }), ++iter)
549
550 static inline uint32_t gen8_pte_index(uint64_t address)
551 {
552         return i915_pte_index(address, GEN8_PDE_SHIFT);
553 }
554
555 static inline uint32_t gen8_pde_index(uint64_t address)
556 {
557         return i915_pde_index(address, GEN8_PDE_SHIFT);
558 }
559
560 static inline uint32_t gen8_pdpe_index(uint64_t address)
561 {
562         return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
563 }
564
565 static inline uint32_t gen8_pml4e_index(uint64_t address)
566 {
567         return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
568 }
569
570 static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
571 {
572         return i915_pte_count(address, length, GEN8_PDE_SHIFT);
573 }
574
575 static inline dma_addr_t
576 i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
577 {
578         return test_bit(n, ppgtt->pdp.used_pdpes) ?
579                 px_dma(ppgtt->pdp.page_directory[n]) :
580                 px_dma(ppgtt->base.scratch_pd);
581 }
582
583 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv);
584 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv);
585 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv);
586 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv);
587 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv);
588
589 int i915_ppgtt_init_hw(struct drm_device *dev);
590 void i915_ppgtt_release(struct kref *kref);
591 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_i915_private *dev_priv,
592                                         struct drm_i915_file_private *fpriv);
593 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
594 {
595         if (ppgtt)
596                 kref_get(&ppgtt->ref);
597 }
598 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
599 {
600         if (ppgtt)
601                 kref_put(&ppgtt->ref, i915_ppgtt_release);
602 }
603
604 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv);
605 void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
606 void i915_gem_restore_gtt_mappings(struct drm_device *dev);
607
608 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
609 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
610
611 static inline bool
612 i915_ggtt_view_equal(const struct i915_ggtt_view *a,
613                      const struct i915_ggtt_view *b)
614 {
615         if (WARN_ON(!a || !b))
616                 return false;
617
618         if (a->type != b->type)
619                 return false;
620         if (a->type != I915_GGTT_VIEW_NORMAL)
621                 return !memcmp(&a->params, &b->params, sizeof(a->params));
622         return true;
623 }
624
625 /* Flags used by pin/bind&friends. */
626 #define PIN_NONBLOCK            BIT(0)
627 #define PIN_MAPPABLE            BIT(1)
628 #define PIN_ZONE_4G             BIT(2)
629
630 #define PIN_MBZ                 BIT(5) /* I915_VMA_PIN_OVERFLOW */
631 #define PIN_GLOBAL              BIT(6) /* I915_VMA_GLOBAL_BIND */
632 #define PIN_USER                BIT(7) /* I915_VMA_LOCAL_BIND */
633 #define PIN_UPDATE              BIT(8)
634
635 #define PIN_HIGH                BIT(9)
636 #define PIN_OFFSET_BIAS         BIT(10)
637 #define PIN_OFFSET_FIXED        BIT(11)
638 #define PIN_OFFSET_MASK         (~4095)
639
640 int __i915_vma_do_pin(struct i915_vma *vma,
641                       u64 size, u64 alignment, u64 flags);
642 static inline int __must_check
643 i915_vma_pin(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
644 {
645         BUILD_BUG_ON(PIN_MBZ != I915_VMA_PIN_OVERFLOW);
646         BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
647         BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
648
649         /* Pin early to prevent the shrinker/eviction logic from destroying
650          * our vma as we insert and bind.
651          */
652         if (likely(((++vma->flags ^ flags) & I915_VMA_BIND_MASK) == 0))
653                 return 0;
654
655         return __i915_vma_do_pin(vma, size, alignment, flags);
656 }
657
658 static inline int i915_vma_pin_count(const struct i915_vma *vma)
659 {
660         return vma->flags & I915_VMA_PIN_MASK;
661 }
662
663 static inline bool i915_vma_is_pinned(const struct i915_vma *vma)
664 {
665         return i915_vma_pin_count(vma);
666 }
667
668 static inline void __i915_vma_pin(struct i915_vma *vma)
669 {
670         vma->flags++;
671         GEM_BUG_ON(vma->flags & I915_VMA_PIN_OVERFLOW);
672 }
673
674 static inline void __i915_vma_unpin(struct i915_vma *vma)
675 {
676         GEM_BUG_ON(!i915_vma_is_pinned(vma));
677         vma->flags--;
678 }
679
680 static inline void i915_vma_unpin(struct i915_vma *vma)
681 {
682         GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
683         __i915_vma_unpin(vma);
684 }
685
686 /**
687  * i915_vma_pin_iomap - calls ioremap_wc to map the GGTT VMA via the aperture
688  * @vma: VMA to iomap
689  *
690  * The passed in VMA has to be pinned in the global GTT mappable region.
691  * An extra pinning of the VMA is acquired for the return iomapping,
692  * the caller must call i915_vma_unpin_iomap to relinquish the pinning
693  * after the iomapping is no longer required.
694  *
695  * Callers must hold the struct_mutex.
696  *
697  * Returns a valid iomapped pointer or ERR_PTR.
698  */
699 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma);
700 #define IO_ERR_PTR(x) ((void __iomem *)ERR_PTR(x))
701
702 /**
703  * i915_vma_unpin_iomap - unpins the mapping returned from i915_vma_iomap
704  * @vma: VMA to unpin
705  *
706  * Unpins the previously iomapped VMA from i915_vma_pin_iomap().
707  *
708  * Callers must hold the struct_mutex. This function is only valid to be
709  * called on a VMA previously iomapped by the caller with i915_vma_pin_iomap().
710  */
711 static inline void i915_vma_unpin_iomap(struct i915_vma *vma)
712 {
713         lockdep_assert_held(&vma->vm->dev->struct_mutex);
714         GEM_BUG_ON(vma->iomap == NULL);
715         i915_vma_unpin(vma);
716 }
717
718 #endif