Merge branch 'drm-intel-next' of git://anongit.freedesktop.org/drm-intel into drm...
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "intel_dsi.h"
40 #include "i915_trace.h"
41 #include <drm/drm_atomic.h>
42 #include <drm/drm_atomic_helper.h>
43 #include <drm/drm_dp_helper.h>
44 #include <drm/drm_crtc_helper.h>
45 #include <drm/drm_plane_helper.h>
46 #include <drm/drm_rect.h>
47 #include <linux/dma_remapping.h>
48 #include <linux/reservation.h>
49 #include <linux/dma-buf.h>
50
51 static bool is_mmio_work(struct intel_flip_work *work)
52 {
53         return work->mmio_work.func;
54 }
55
56 /* Primary plane formats for gen <= 3 */
57 static const uint32_t i8xx_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB1555,
61         DRM_FORMAT_XRGB8888,
62 };
63
64 /* Primary plane formats for gen >= 4 */
65 static const uint32_t i965_primary_formats[] = {
66         DRM_FORMAT_C8,
67         DRM_FORMAT_RGB565,
68         DRM_FORMAT_XRGB8888,
69         DRM_FORMAT_XBGR8888,
70         DRM_FORMAT_XRGB2101010,
71         DRM_FORMAT_XBGR2101010,
72 };
73
74 static const uint32_t skl_primary_formats[] = {
75         DRM_FORMAT_C8,
76         DRM_FORMAT_RGB565,
77         DRM_FORMAT_XRGB8888,
78         DRM_FORMAT_XBGR8888,
79         DRM_FORMAT_ARGB8888,
80         DRM_FORMAT_ABGR8888,
81         DRM_FORMAT_XRGB2101010,
82         DRM_FORMAT_XBGR2101010,
83         DRM_FORMAT_YUYV,
84         DRM_FORMAT_YVYU,
85         DRM_FORMAT_UYVY,
86         DRM_FORMAT_VYUY,
87 };
88
89 /* Cursor formats */
90 static const uint32_t intel_cursor_formats[] = {
91         DRM_FORMAT_ARGB8888,
92 };
93
94 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
95                                 struct intel_crtc_state *pipe_config);
96 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
97                                    struct intel_crtc_state *pipe_config);
98
99 static int intel_framebuffer_init(struct drm_device *dev,
100                                   struct intel_framebuffer *ifb,
101                                   struct drm_mode_fb_cmd2 *mode_cmd,
102                                   struct drm_i915_gem_object *obj);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107                                          struct intel_link_m_n *m_n,
108                                          struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113                             const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115                             const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
119         struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev);
124 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
125 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
126
127 struct intel_limit {
128         struct {
129                 int min, max;
130         } dot, vco, n, m, m1, m2, p, p1;
131
132         struct {
133                 int dot_limit;
134                 int p2_slow, p2_fast;
135         } p2;
136 };
137
138 /* returns HPLL frequency in kHz */
139 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
140 {
141         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
142
143         /* Obtain SKU information */
144         mutex_lock(&dev_priv->sb_lock);
145         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
146                 CCK_FUSE_HPLL_FREQ_MASK;
147         mutex_unlock(&dev_priv->sb_lock);
148
149         return vco_freq[hpll_freq] * 1000;
150 }
151
152 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
153                       const char *name, u32 reg, int ref_freq)
154 {
155         u32 val;
156         int divider;
157
158         mutex_lock(&dev_priv->sb_lock);
159         val = vlv_cck_read(dev_priv, reg);
160         mutex_unlock(&dev_priv->sb_lock);
161
162         divider = val & CCK_FREQUENCY_VALUES;
163
164         WARN((val & CCK_FREQUENCY_STATUS) !=
165              (divider << CCK_FREQUENCY_STATUS_SHIFT),
166              "%s change in progress\n", name);
167
168         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
169 }
170
171 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
172                                   const char *name, u32 reg)
173 {
174         if (dev_priv->hpll_freq == 0)
175                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
176
177         return vlv_get_cck_clock(dev_priv, name, reg,
178                                  dev_priv->hpll_freq);
179 }
180
181 static int
182 intel_pch_rawclk(struct drm_i915_private *dev_priv)
183 {
184         return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
185 }
186
187 static int
188 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
189 {
190         /* RAWCLK_FREQ_VLV register updated from power well code */
191         return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
192                                       CCK_DISPLAY_REF_CLOCK_CONTROL);
193 }
194
195 static int
196 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
197 {
198         uint32_t clkcfg;
199
200         /* hrawclock is 1/4 the FSB frequency */
201         clkcfg = I915_READ(CLKCFG);
202         switch (clkcfg & CLKCFG_FSB_MASK) {
203         case CLKCFG_FSB_400:
204                 return 100000;
205         case CLKCFG_FSB_533:
206                 return 133333;
207         case CLKCFG_FSB_667:
208                 return 166667;
209         case CLKCFG_FSB_800:
210                 return 200000;
211         case CLKCFG_FSB_1067:
212                 return 266667;
213         case CLKCFG_FSB_1333:
214                 return 333333;
215         /* these two are just a guess; one of them might be right */
216         case CLKCFG_FSB_1600:
217         case CLKCFG_FSB_1600_ALT:
218                 return 400000;
219         default:
220                 return 133333;
221         }
222 }
223
224 void intel_update_rawclk(struct drm_i915_private *dev_priv)
225 {
226         if (HAS_PCH_SPLIT(dev_priv))
227                 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
228         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
229                 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
230         else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
231                 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
232         else
233                 return; /* no rawclk on other platforms, or no need to know it */
234
235         DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
236 }
237
238 static void intel_update_czclk(struct drm_i915_private *dev_priv)
239 {
240         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
241                 return;
242
243         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
244                                                       CCK_CZ_CLOCK_CONTROL);
245
246         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
247 }
248
249 static inline u32 /* units of 100MHz */
250 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
251                     const struct intel_crtc_state *pipe_config)
252 {
253         if (HAS_DDI(dev_priv))
254                 return pipe_config->port_clock; /* SPLL */
255         else if (IS_GEN5(dev_priv))
256                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
257         else
258                 return 270000;
259 }
260
261 static const struct intel_limit intel_limits_i8xx_dac = {
262         .dot = { .min = 25000, .max = 350000 },
263         .vco = { .min = 908000, .max = 1512000 },
264         .n = { .min = 2, .max = 16 },
265         .m = { .min = 96, .max = 140 },
266         .m1 = { .min = 18, .max = 26 },
267         .m2 = { .min = 6, .max = 16 },
268         .p = { .min = 4, .max = 128 },
269         .p1 = { .min = 2, .max = 33 },
270         .p2 = { .dot_limit = 165000,
271                 .p2_slow = 4, .p2_fast = 2 },
272 };
273
274 static const struct intel_limit intel_limits_i8xx_dvo = {
275         .dot = { .min = 25000, .max = 350000 },
276         .vco = { .min = 908000, .max = 1512000 },
277         .n = { .min = 2, .max = 16 },
278         .m = { .min = 96, .max = 140 },
279         .m1 = { .min = 18, .max = 26 },
280         .m2 = { .min = 6, .max = 16 },
281         .p = { .min = 4, .max = 128 },
282         .p1 = { .min = 2, .max = 33 },
283         .p2 = { .dot_limit = 165000,
284                 .p2_slow = 4, .p2_fast = 4 },
285 };
286
287 static const struct intel_limit intel_limits_i8xx_lvds = {
288         .dot = { .min = 25000, .max = 350000 },
289         .vco = { .min = 908000, .max = 1512000 },
290         .n = { .min = 2, .max = 16 },
291         .m = { .min = 96, .max = 140 },
292         .m1 = { .min = 18, .max = 26 },
293         .m2 = { .min = 6, .max = 16 },
294         .p = { .min = 4, .max = 128 },
295         .p1 = { .min = 1, .max = 6 },
296         .p2 = { .dot_limit = 165000,
297                 .p2_slow = 14, .p2_fast = 7 },
298 };
299
300 static const struct intel_limit intel_limits_i9xx_sdvo = {
301         .dot = { .min = 20000, .max = 400000 },
302         .vco = { .min = 1400000, .max = 2800000 },
303         .n = { .min = 1, .max = 6 },
304         .m = { .min = 70, .max = 120 },
305         .m1 = { .min = 8, .max = 18 },
306         .m2 = { .min = 3, .max = 7 },
307         .p = { .min = 5, .max = 80 },
308         .p1 = { .min = 1, .max = 8 },
309         .p2 = { .dot_limit = 200000,
310                 .p2_slow = 10, .p2_fast = 5 },
311 };
312
313 static const struct intel_limit intel_limits_i9xx_lvds = {
314         .dot = { .min = 20000, .max = 400000 },
315         .vco = { .min = 1400000, .max = 2800000 },
316         .n = { .min = 1, .max = 6 },
317         .m = { .min = 70, .max = 120 },
318         .m1 = { .min = 8, .max = 18 },
319         .m2 = { .min = 3, .max = 7 },
320         .p = { .min = 7, .max = 98 },
321         .p1 = { .min = 1, .max = 8 },
322         .p2 = { .dot_limit = 112000,
323                 .p2_slow = 14, .p2_fast = 7 },
324 };
325
326
327 static const struct intel_limit intel_limits_g4x_sdvo = {
328         .dot = { .min = 25000, .max = 270000 },
329         .vco = { .min = 1750000, .max = 3500000},
330         .n = { .min = 1, .max = 4 },
331         .m = { .min = 104, .max = 138 },
332         .m1 = { .min = 17, .max = 23 },
333         .m2 = { .min = 5, .max = 11 },
334         .p = { .min = 10, .max = 30 },
335         .p1 = { .min = 1, .max = 3},
336         .p2 = { .dot_limit = 270000,
337                 .p2_slow = 10,
338                 .p2_fast = 10
339         },
340 };
341
342 static const struct intel_limit intel_limits_g4x_hdmi = {
343         .dot = { .min = 22000, .max = 400000 },
344         .vco = { .min = 1750000, .max = 3500000},
345         .n = { .min = 1, .max = 4 },
346         .m = { .min = 104, .max = 138 },
347         .m1 = { .min = 16, .max = 23 },
348         .m2 = { .min = 5, .max = 11 },
349         .p = { .min = 5, .max = 80 },
350         .p1 = { .min = 1, .max = 8},
351         .p2 = { .dot_limit = 165000,
352                 .p2_slow = 10, .p2_fast = 5 },
353 };
354
355 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
356         .dot = { .min = 20000, .max = 115000 },
357         .vco = { .min = 1750000, .max = 3500000 },
358         .n = { .min = 1, .max = 3 },
359         .m = { .min = 104, .max = 138 },
360         .m1 = { .min = 17, .max = 23 },
361         .m2 = { .min = 5, .max = 11 },
362         .p = { .min = 28, .max = 112 },
363         .p1 = { .min = 2, .max = 8 },
364         .p2 = { .dot_limit = 0,
365                 .p2_slow = 14, .p2_fast = 14
366         },
367 };
368
369 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
370         .dot = { .min = 80000, .max = 224000 },
371         .vco = { .min = 1750000, .max = 3500000 },
372         .n = { .min = 1, .max = 3 },
373         .m = { .min = 104, .max = 138 },
374         .m1 = { .min = 17, .max = 23 },
375         .m2 = { .min = 5, .max = 11 },
376         .p = { .min = 14, .max = 42 },
377         .p1 = { .min = 2, .max = 6 },
378         .p2 = { .dot_limit = 0,
379                 .p2_slow = 7, .p2_fast = 7
380         },
381 };
382
383 static const struct intel_limit intel_limits_pineview_sdvo = {
384         .dot = { .min = 20000, .max = 400000},
385         .vco = { .min = 1700000, .max = 3500000 },
386         /* Pineview's Ncounter is a ring counter */
387         .n = { .min = 3, .max = 6 },
388         .m = { .min = 2, .max = 256 },
389         /* Pineview only has one combined m divider, which we treat as m2. */
390         .m1 = { .min = 0, .max = 0 },
391         .m2 = { .min = 0, .max = 254 },
392         .p = { .min = 5, .max = 80 },
393         .p1 = { .min = 1, .max = 8 },
394         .p2 = { .dot_limit = 200000,
395                 .p2_slow = 10, .p2_fast = 5 },
396 };
397
398 static const struct intel_limit intel_limits_pineview_lvds = {
399         .dot = { .min = 20000, .max = 400000 },
400         .vco = { .min = 1700000, .max = 3500000 },
401         .n = { .min = 3, .max = 6 },
402         .m = { .min = 2, .max = 256 },
403         .m1 = { .min = 0, .max = 0 },
404         .m2 = { .min = 0, .max = 254 },
405         .p = { .min = 7, .max = 112 },
406         .p1 = { .min = 1, .max = 8 },
407         .p2 = { .dot_limit = 112000,
408                 .p2_slow = 14, .p2_fast = 14 },
409 };
410
411 /* Ironlake / Sandybridge
412  *
413  * We calculate clock using (register_value + 2) for N/M1/M2, so here
414  * the range value for them is (actual_value - 2).
415  */
416 static const struct intel_limit intel_limits_ironlake_dac = {
417         .dot = { .min = 25000, .max = 350000 },
418         .vco = { .min = 1760000, .max = 3510000 },
419         .n = { .min = 1, .max = 5 },
420         .m = { .min = 79, .max = 127 },
421         .m1 = { .min = 12, .max = 22 },
422         .m2 = { .min = 5, .max = 9 },
423         .p = { .min = 5, .max = 80 },
424         .p1 = { .min = 1, .max = 8 },
425         .p2 = { .dot_limit = 225000,
426                 .p2_slow = 10, .p2_fast = 5 },
427 };
428
429 static const struct intel_limit intel_limits_ironlake_single_lvds = {
430         .dot = { .min = 25000, .max = 350000 },
431         .vco = { .min = 1760000, .max = 3510000 },
432         .n = { .min = 1, .max = 3 },
433         .m = { .min = 79, .max = 118 },
434         .m1 = { .min = 12, .max = 22 },
435         .m2 = { .min = 5, .max = 9 },
436         .p = { .min = 28, .max = 112 },
437         .p1 = { .min = 2, .max = 8 },
438         .p2 = { .dot_limit = 225000,
439                 .p2_slow = 14, .p2_fast = 14 },
440 };
441
442 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
443         .dot = { .min = 25000, .max = 350000 },
444         .vco = { .min = 1760000, .max = 3510000 },
445         .n = { .min = 1, .max = 3 },
446         .m = { .min = 79, .max = 127 },
447         .m1 = { .min = 12, .max = 22 },
448         .m2 = { .min = 5, .max = 9 },
449         .p = { .min = 14, .max = 56 },
450         .p1 = { .min = 2, .max = 8 },
451         .p2 = { .dot_limit = 225000,
452                 .p2_slow = 7, .p2_fast = 7 },
453 };
454
455 /* LVDS 100mhz refclk limits. */
456 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
457         .dot = { .min = 25000, .max = 350000 },
458         .vco = { .min = 1760000, .max = 3510000 },
459         .n = { .min = 1, .max = 2 },
460         .m = { .min = 79, .max = 126 },
461         .m1 = { .min = 12, .max = 22 },
462         .m2 = { .min = 5, .max = 9 },
463         .p = { .min = 28, .max = 112 },
464         .p1 = { .min = 2, .max = 8 },
465         .p2 = { .dot_limit = 225000,
466                 .p2_slow = 14, .p2_fast = 14 },
467 };
468
469 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
470         .dot = { .min = 25000, .max = 350000 },
471         .vco = { .min = 1760000, .max = 3510000 },
472         .n = { .min = 1, .max = 3 },
473         .m = { .min = 79, .max = 126 },
474         .m1 = { .min = 12, .max = 22 },
475         .m2 = { .min = 5, .max = 9 },
476         .p = { .min = 14, .max = 42 },
477         .p1 = { .min = 2, .max = 6 },
478         .p2 = { .dot_limit = 225000,
479                 .p2_slow = 7, .p2_fast = 7 },
480 };
481
482 static const struct intel_limit intel_limits_vlv = {
483          /*
484           * These are the data rate limits (measured in fast clocks)
485           * since those are the strictest limits we have. The fast
486           * clock and actual rate limits are more relaxed, so checking
487           * them would make no difference.
488           */
489         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
490         .vco = { .min = 4000000, .max = 6000000 },
491         .n = { .min = 1, .max = 7 },
492         .m1 = { .min = 2, .max = 3 },
493         .m2 = { .min = 11, .max = 156 },
494         .p1 = { .min = 2, .max = 3 },
495         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
496 };
497
498 static const struct intel_limit intel_limits_chv = {
499         /*
500          * These are the data rate limits (measured in fast clocks)
501          * since those are the strictest limits we have.  The fast
502          * clock and actual rate limits are more relaxed, so checking
503          * them would make no difference.
504          */
505         .dot = { .min = 25000 * 5, .max = 540000 * 5},
506         .vco = { .min = 4800000, .max = 6480000 },
507         .n = { .min = 1, .max = 1 },
508         .m1 = { .min = 2, .max = 2 },
509         .m2 = { .min = 24 << 22, .max = 175 << 22 },
510         .p1 = { .min = 2, .max = 4 },
511         .p2 = { .p2_slow = 1, .p2_fast = 14 },
512 };
513
514 static const struct intel_limit intel_limits_bxt = {
515         /* FIXME: find real dot limits */
516         .dot = { .min = 0, .max = INT_MAX },
517         .vco = { .min = 4800000, .max = 6700000 },
518         .n = { .min = 1, .max = 1 },
519         .m1 = { .min = 2, .max = 2 },
520         /* FIXME: find real m2 limits */
521         .m2 = { .min = 2 << 22, .max = 255 << 22 },
522         .p1 = { .min = 2, .max = 4 },
523         .p2 = { .p2_slow = 1, .p2_fast = 20 },
524 };
525
526 static bool
527 needs_modeset(struct drm_crtc_state *state)
528 {
529         return drm_atomic_crtc_needs_modeset(state);
530 }
531
532 /**
533  * Returns whether any output on the specified pipe is of the specified type
534  */
535 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
536 {
537         struct drm_device *dev = crtc->base.dev;
538         struct intel_encoder *encoder;
539
540         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
541                 if (encoder->type == type)
542                         return true;
543
544         return false;
545 }
546
547 /**
548  * Returns whether any output on the specified pipe will have the specified
549  * type after a staged modeset is complete, i.e., the same as
550  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
551  * encoder->crtc.
552  */
553 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
554                                       int type)
555 {
556         struct drm_atomic_state *state = crtc_state->base.state;
557         struct drm_connector *connector;
558         struct drm_connector_state *connector_state;
559         struct intel_encoder *encoder;
560         int i, num_connectors = 0;
561
562         for_each_connector_in_state(state, connector, connector_state, i) {
563                 if (connector_state->crtc != crtc_state->base.crtc)
564                         continue;
565
566                 num_connectors++;
567
568                 encoder = to_intel_encoder(connector_state->best_encoder);
569                 if (encoder->type == type)
570                         return true;
571         }
572
573         WARN_ON(num_connectors == 0);
574
575         return false;
576 }
577
578 /*
579  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
580  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
581  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
582  * The helpers' return value is the rate of the clock that is fed to the
583  * display engine's pipe which can be the above fast dot clock rate or a
584  * divided-down version of it.
585  */
586 /* m1 is reserved as 0 in Pineview, n is a ring counter */
587 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
588 {
589         clock->m = clock->m2 + 2;
590         clock->p = clock->p1 * clock->p2;
591         if (WARN_ON(clock->n == 0 || clock->p == 0))
592                 return 0;
593         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
594         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
595
596         return clock->dot;
597 }
598
599 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
600 {
601         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
602 }
603
604 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
605 {
606         clock->m = i9xx_dpll_compute_m(clock);
607         clock->p = clock->p1 * clock->p2;
608         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
609                 return 0;
610         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
611         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
612
613         return clock->dot;
614 }
615
616 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
617 {
618         clock->m = clock->m1 * clock->m2;
619         clock->p = clock->p1 * clock->p2;
620         if (WARN_ON(clock->n == 0 || clock->p == 0))
621                 return 0;
622         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
623         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
624
625         return clock->dot / 5;
626 }
627
628 int chv_calc_dpll_params(int refclk, struct dpll *clock)
629 {
630         clock->m = clock->m1 * clock->m2;
631         clock->p = clock->p1 * clock->p2;
632         if (WARN_ON(clock->n == 0 || clock->p == 0))
633                 return 0;
634         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
635                         clock->n << 22);
636         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
637
638         return clock->dot / 5;
639 }
640
641 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
642 /**
643  * Returns whether the given set of divisors are valid for a given refclk with
644  * the given connectors.
645  */
646
647 static bool intel_PLL_is_valid(struct drm_device *dev,
648                                const struct intel_limit *limit,
649                                const struct dpll *clock)
650 {
651         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
652                 INTELPllInvalid("n out of range\n");
653         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
654                 INTELPllInvalid("p1 out of range\n");
655         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
656                 INTELPllInvalid("m2 out of range\n");
657         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
658                 INTELPllInvalid("m1 out of range\n");
659
660         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
661             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
662                 if (clock->m1 <= clock->m2)
663                         INTELPllInvalid("m1 <= m2\n");
664
665         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
666                 if (clock->p < limit->p.min || limit->p.max < clock->p)
667                         INTELPllInvalid("p out of range\n");
668                 if (clock->m < limit->m.min || limit->m.max < clock->m)
669                         INTELPllInvalid("m out of range\n");
670         }
671
672         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
673                 INTELPllInvalid("vco out of range\n");
674         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
675          * connector, etc., rather than just a single range.
676          */
677         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
678                 INTELPllInvalid("dot out of range\n");
679
680         return true;
681 }
682
683 static int
684 i9xx_select_p2_div(const struct intel_limit *limit,
685                    const struct intel_crtc_state *crtc_state,
686                    int target)
687 {
688         struct drm_device *dev = crtc_state->base.crtc->dev;
689
690         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
691                 /*
692                  * For LVDS just rely on its current settings for dual-channel.
693                  * We haven't figured out how to reliably set up different
694                  * single/dual channel state, if we even can.
695                  */
696                 if (intel_is_dual_link_lvds(dev))
697                         return limit->p2.p2_fast;
698                 else
699                         return limit->p2.p2_slow;
700         } else {
701                 if (target < limit->p2.dot_limit)
702                         return limit->p2.p2_slow;
703                 else
704                         return limit->p2.p2_fast;
705         }
706 }
707
708 /*
709  * Returns a set of divisors for the desired target clock with the given
710  * refclk, or FALSE.  The returned values represent the clock equation:
711  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
712  *
713  * Target and reference clocks are specified in kHz.
714  *
715  * If match_clock is provided, then best_clock P divider must match the P
716  * divider from @match_clock used for LVDS downclocking.
717  */
718 static bool
719 i9xx_find_best_dpll(const struct intel_limit *limit,
720                     struct intel_crtc_state *crtc_state,
721                     int target, int refclk, struct dpll *match_clock,
722                     struct dpll *best_clock)
723 {
724         struct drm_device *dev = crtc_state->base.crtc->dev;
725         struct dpll clock;
726         int err = target;
727
728         memset(best_clock, 0, sizeof(*best_clock));
729
730         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
731
732         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
733              clock.m1++) {
734                 for (clock.m2 = limit->m2.min;
735                      clock.m2 <= limit->m2.max; clock.m2++) {
736                         if (clock.m2 >= clock.m1)
737                                 break;
738                         for (clock.n = limit->n.min;
739                              clock.n <= limit->n.max; clock.n++) {
740                                 for (clock.p1 = limit->p1.min;
741                                         clock.p1 <= limit->p1.max; clock.p1++) {
742                                         int this_err;
743
744                                         i9xx_calc_dpll_params(refclk, &clock);
745                                         if (!intel_PLL_is_valid(dev, limit,
746                                                                 &clock))
747                                                 continue;
748                                         if (match_clock &&
749                                             clock.p != match_clock->p)
750                                                 continue;
751
752                                         this_err = abs(clock.dot - target);
753                                         if (this_err < err) {
754                                                 *best_clock = clock;
755                                                 err = this_err;
756                                         }
757                                 }
758                         }
759                 }
760         }
761
762         return (err != target);
763 }
764
765 /*
766  * Returns a set of divisors for the desired target clock with the given
767  * refclk, or FALSE.  The returned values represent the clock equation:
768  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
769  *
770  * Target and reference clocks are specified in kHz.
771  *
772  * If match_clock is provided, then best_clock P divider must match the P
773  * divider from @match_clock used for LVDS downclocking.
774  */
775 static bool
776 pnv_find_best_dpll(const struct intel_limit *limit,
777                    struct intel_crtc_state *crtc_state,
778                    int target, int refclk, struct dpll *match_clock,
779                    struct dpll *best_clock)
780 {
781         struct drm_device *dev = crtc_state->base.crtc->dev;
782         struct dpll clock;
783         int err = target;
784
785         memset(best_clock, 0, sizeof(*best_clock));
786
787         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
788
789         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
790              clock.m1++) {
791                 for (clock.m2 = limit->m2.min;
792                      clock.m2 <= limit->m2.max; clock.m2++) {
793                         for (clock.n = limit->n.min;
794                              clock.n <= limit->n.max; clock.n++) {
795                                 for (clock.p1 = limit->p1.min;
796                                         clock.p1 <= limit->p1.max; clock.p1++) {
797                                         int this_err;
798
799                                         pnv_calc_dpll_params(refclk, &clock);
800                                         if (!intel_PLL_is_valid(dev, limit,
801                                                                 &clock))
802                                                 continue;
803                                         if (match_clock &&
804                                             clock.p != match_clock->p)
805                                                 continue;
806
807                                         this_err = abs(clock.dot - target);
808                                         if (this_err < err) {
809                                                 *best_clock = clock;
810                                                 err = this_err;
811                                         }
812                                 }
813                         }
814                 }
815         }
816
817         return (err != target);
818 }
819
820 /*
821  * Returns a set of divisors for the desired target clock with the given
822  * refclk, or FALSE.  The returned values represent the clock equation:
823  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
824  *
825  * Target and reference clocks are specified in kHz.
826  *
827  * If match_clock is provided, then best_clock P divider must match the P
828  * divider from @match_clock used for LVDS downclocking.
829  */
830 static bool
831 g4x_find_best_dpll(const struct intel_limit *limit,
832                    struct intel_crtc_state *crtc_state,
833                    int target, int refclk, struct dpll *match_clock,
834                    struct dpll *best_clock)
835 {
836         struct drm_device *dev = crtc_state->base.crtc->dev;
837         struct dpll clock;
838         int max_n;
839         bool found = false;
840         /* approximately equals target * 0.00585 */
841         int err_most = (target >> 8) + (target >> 9);
842
843         memset(best_clock, 0, sizeof(*best_clock));
844
845         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
846
847         max_n = limit->n.max;
848         /* based on hardware requirement, prefer smaller n to precision */
849         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
850                 /* based on hardware requirement, prefere larger m1,m2 */
851                 for (clock.m1 = limit->m1.max;
852                      clock.m1 >= limit->m1.min; clock.m1--) {
853                         for (clock.m2 = limit->m2.max;
854                              clock.m2 >= limit->m2.min; clock.m2--) {
855                                 for (clock.p1 = limit->p1.max;
856                                      clock.p1 >= limit->p1.min; clock.p1--) {
857                                         int this_err;
858
859                                         i9xx_calc_dpll_params(refclk, &clock);
860                                         if (!intel_PLL_is_valid(dev, limit,
861                                                                 &clock))
862                                                 continue;
863
864                                         this_err = abs(clock.dot - target);
865                                         if (this_err < err_most) {
866                                                 *best_clock = clock;
867                                                 err_most = this_err;
868                                                 max_n = clock.n;
869                                                 found = true;
870                                         }
871                                 }
872                         }
873                 }
874         }
875         return found;
876 }
877
878 /*
879  * Check if the calculated PLL configuration is more optimal compared to the
880  * best configuration and error found so far. Return the calculated error.
881  */
882 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
883                                const struct dpll *calculated_clock,
884                                const struct dpll *best_clock,
885                                unsigned int best_error_ppm,
886                                unsigned int *error_ppm)
887 {
888         /*
889          * For CHV ignore the error and consider only the P value.
890          * Prefer a bigger P value based on HW requirements.
891          */
892         if (IS_CHERRYVIEW(dev)) {
893                 *error_ppm = 0;
894
895                 return calculated_clock->p > best_clock->p;
896         }
897
898         if (WARN_ON_ONCE(!target_freq))
899                 return false;
900
901         *error_ppm = div_u64(1000000ULL *
902                                 abs(target_freq - calculated_clock->dot),
903                              target_freq);
904         /*
905          * Prefer a better P value over a better (smaller) error if the error
906          * is small. Ensure this preference for future configurations too by
907          * setting the error to 0.
908          */
909         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
910                 *error_ppm = 0;
911
912                 return true;
913         }
914
915         return *error_ppm + 10 < best_error_ppm;
916 }
917
918 /*
919  * Returns a set of divisors for the desired target clock with the given
920  * refclk, or FALSE.  The returned values represent the clock equation:
921  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
922  */
923 static bool
924 vlv_find_best_dpll(const struct intel_limit *limit,
925                    struct intel_crtc_state *crtc_state,
926                    int target, int refclk, struct dpll *match_clock,
927                    struct dpll *best_clock)
928 {
929         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
930         struct drm_device *dev = crtc->base.dev;
931         struct dpll clock;
932         unsigned int bestppm = 1000000;
933         /* min update 19.2 MHz */
934         int max_n = min(limit->n.max, refclk / 19200);
935         bool found = false;
936
937         target *= 5; /* fast clock */
938
939         memset(best_clock, 0, sizeof(*best_clock));
940
941         /* based on hardware requirement, prefer smaller n to precision */
942         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
943                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
944                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
945                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
946                                 clock.p = clock.p1 * clock.p2;
947                                 /* based on hardware requirement, prefer bigger m1,m2 values */
948                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
949                                         unsigned int ppm;
950
951                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
952                                                                      refclk * clock.m1);
953
954                                         vlv_calc_dpll_params(refclk, &clock);
955
956                                         if (!intel_PLL_is_valid(dev, limit,
957                                                                 &clock))
958                                                 continue;
959
960                                         if (!vlv_PLL_is_optimal(dev, target,
961                                                                 &clock,
962                                                                 best_clock,
963                                                                 bestppm, &ppm))
964                                                 continue;
965
966                                         *best_clock = clock;
967                                         bestppm = ppm;
968                                         found = true;
969                                 }
970                         }
971                 }
972         }
973
974         return found;
975 }
976
977 /*
978  * Returns a set of divisors for the desired target clock with the given
979  * refclk, or FALSE.  The returned values represent the clock equation:
980  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
981  */
982 static bool
983 chv_find_best_dpll(const struct intel_limit *limit,
984                    struct intel_crtc_state *crtc_state,
985                    int target, int refclk, struct dpll *match_clock,
986                    struct dpll *best_clock)
987 {
988         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
989         struct drm_device *dev = crtc->base.dev;
990         unsigned int best_error_ppm;
991         struct dpll clock;
992         uint64_t m2;
993         int found = false;
994
995         memset(best_clock, 0, sizeof(*best_clock));
996         best_error_ppm = 1000000;
997
998         /*
999          * Based on hardware doc, the n always set to 1, and m1 always
1000          * set to 2.  If requires to support 200Mhz refclk, we need to
1001          * revisit this because n may not 1 anymore.
1002          */
1003         clock.n = 1, clock.m1 = 2;
1004         target *= 5;    /* fast clock */
1005
1006         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1007                 for (clock.p2 = limit->p2.p2_fast;
1008                                 clock.p2 >= limit->p2.p2_slow;
1009                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1010                         unsigned int error_ppm;
1011
1012                         clock.p = clock.p1 * clock.p2;
1013
1014                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1015                                         clock.n) << 22, refclk * clock.m1);
1016
1017                         if (m2 > INT_MAX/clock.m1)
1018                                 continue;
1019
1020                         clock.m2 = m2;
1021
1022                         chv_calc_dpll_params(refclk, &clock);
1023
1024                         if (!intel_PLL_is_valid(dev, limit, &clock))
1025                                 continue;
1026
1027                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1028                                                 best_error_ppm, &error_ppm))
1029                                 continue;
1030
1031                         *best_clock = clock;
1032                         best_error_ppm = error_ppm;
1033                         found = true;
1034                 }
1035         }
1036
1037         return found;
1038 }
1039
1040 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1041                         struct dpll *best_clock)
1042 {
1043         int refclk = 100000;
1044         const struct intel_limit *limit = &intel_limits_bxt;
1045
1046         return chv_find_best_dpll(limit, crtc_state,
1047                                   target_clock, refclk, NULL, best_clock);
1048 }
1049
1050 bool intel_crtc_active(struct drm_crtc *crtc)
1051 {
1052         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1053
1054         /* Be paranoid as we can arrive here with only partial
1055          * state retrieved from the hardware during setup.
1056          *
1057          * We can ditch the adjusted_mode.crtc_clock check as soon
1058          * as Haswell has gained clock readout/fastboot support.
1059          *
1060          * We can ditch the crtc->primary->fb check as soon as we can
1061          * properly reconstruct framebuffers.
1062          *
1063          * FIXME: The intel_crtc->active here should be switched to
1064          * crtc->state->active once we have proper CRTC states wired up
1065          * for atomic.
1066          */
1067         return intel_crtc->active && crtc->primary->state->fb &&
1068                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1069 }
1070
1071 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1072                                              enum pipe pipe)
1073 {
1074         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1075         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1076
1077         return intel_crtc->config->cpu_transcoder;
1078 }
1079
1080 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1081 {
1082         struct drm_i915_private *dev_priv = dev->dev_private;
1083         i915_reg_t reg = PIPEDSL(pipe);
1084         u32 line1, line2;
1085         u32 line_mask;
1086
1087         if (IS_GEN2(dev))
1088                 line_mask = DSL_LINEMASK_GEN2;
1089         else
1090                 line_mask = DSL_LINEMASK_GEN3;
1091
1092         line1 = I915_READ(reg) & line_mask;
1093         msleep(5);
1094         line2 = I915_READ(reg) & line_mask;
1095
1096         return line1 == line2;
1097 }
1098
1099 /*
1100  * intel_wait_for_pipe_off - wait for pipe to turn off
1101  * @crtc: crtc whose pipe to wait for
1102  *
1103  * After disabling a pipe, we can't wait for vblank in the usual way,
1104  * spinning on the vblank interrupt status bit, since we won't actually
1105  * see an interrupt when the pipe is disabled.
1106  *
1107  * On Gen4 and above:
1108  *   wait for the pipe register state bit to turn off
1109  *
1110  * Otherwise:
1111  *   wait for the display line value to settle (it usually
1112  *   ends up stopping at the start of the next frame).
1113  *
1114  */
1115 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1116 {
1117         struct drm_device *dev = crtc->base.dev;
1118         struct drm_i915_private *dev_priv = dev->dev_private;
1119         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1120         enum pipe pipe = crtc->pipe;
1121
1122         if (INTEL_INFO(dev)->gen >= 4) {
1123                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1124
1125                 /* Wait for the Pipe State to go off */
1126                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1127                              100))
1128                         WARN(1, "pipe_off wait timed out\n");
1129         } else {
1130                 /* Wait for the display line to settle */
1131                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1132                         WARN(1, "pipe_off wait timed out\n");
1133         }
1134 }
1135
1136 /* Only for pre-ILK configs */
1137 void assert_pll(struct drm_i915_private *dev_priv,
1138                 enum pipe pipe, bool state)
1139 {
1140         u32 val;
1141         bool cur_state;
1142
1143         val = I915_READ(DPLL(pipe));
1144         cur_state = !!(val & DPLL_VCO_ENABLE);
1145         I915_STATE_WARN(cur_state != state,
1146              "PLL state assertion failure (expected %s, current %s)\n",
1147                         onoff(state), onoff(cur_state));
1148 }
1149
1150 /* XXX: the dsi pll is shared between MIPI DSI ports */
1151 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1152 {
1153         u32 val;
1154         bool cur_state;
1155
1156         mutex_lock(&dev_priv->sb_lock);
1157         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1158         mutex_unlock(&dev_priv->sb_lock);
1159
1160         cur_state = val & DSI_PLL_VCO_EN;
1161         I915_STATE_WARN(cur_state != state,
1162              "DSI PLL state assertion failure (expected %s, current %s)\n",
1163                         onoff(state), onoff(cur_state));
1164 }
1165
1166 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1167                           enum pipe pipe, bool state)
1168 {
1169         bool cur_state;
1170         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1171                                                                       pipe);
1172
1173         if (HAS_DDI(dev_priv)) {
1174                 /* DDI does not have a specific FDI_TX register */
1175                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1176                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1177         } else {
1178                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1179                 cur_state = !!(val & FDI_TX_ENABLE);
1180         }
1181         I915_STATE_WARN(cur_state != state,
1182              "FDI TX state assertion failure (expected %s, current %s)\n",
1183                         onoff(state), onoff(cur_state));
1184 }
1185 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1186 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1187
1188 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1189                           enum pipe pipe, bool state)
1190 {
1191         u32 val;
1192         bool cur_state;
1193
1194         val = I915_READ(FDI_RX_CTL(pipe));
1195         cur_state = !!(val & FDI_RX_ENABLE);
1196         I915_STATE_WARN(cur_state != state,
1197              "FDI RX state assertion failure (expected %s, current %s)\n",
1198                         onoff(state), onoff(cur_state));
1199 }
1200 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1201 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1202
1203 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1204                                       enum pipe pipe)
1205 {
1206         u32 val;
1207
1208         /* ILK FDI PLL is always enabled */
1209         if (IS_GEN5(dev_priv))
1210                 return;
1211
1212         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1213         if (HAS_DDI(dev_priv))
1214                 return;
1215
1216         val = I915_READ(FDI_TX_CTL(pipe));
1217         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1218 }
1219
1220 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1221                        enum pipe pipe, bool state)
1222 {
1223         u32 val;
1224         bool cur_state;
1225
1226         val = I915_READ(FDI_RX_CTL(pipe));
1227         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1228         I915_STATE_WARN(cur_state != state,
1229              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1230                         onoff(state), onoff(cur_state));
1231 }
1232
1233 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1234                            enum pipe pipe)
1235 {
1236         struct drm_device *dev = dev_priv->dev;
1237         i915_reg_t pp_reg;
1238         u32 val;
1239         enum pipe panel_pipe = PIPE_A;
1240         bool locked = true;
1241
1242         if (WARN_ON(HAS_DDI(dev)))
1243                 return;
1244
1245         if (HAS_PCH_SPLIT(dev)) {
1246                 u32 port_sel;
1247
1248                 pp_reg = PCH_PP_CONTROL;
1249                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1250
1251                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1252                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1253                         panel_pipe = PIPE_B;
1254                 /* XXX: else fix for eDP */
1255         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1256                 /* presumably write lock depends on pipe, not port select */
1257                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1258                 panel_pipe = pipe;
1259         } else {
1260                 pp_reg = PP_CONTROL;
1261                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1262                         panel_pipe = PIPE_B;
1263         }
1264
1265         val = I915_READ(pp_reg);
1266         if (!(val & PANEL_POWER_ON) ||
1267             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1268                 locked = false;
1269
1270         I915_STATE_WARN(panel_pipe == pipe && locked,
1271              "panel assertion failure, pipe %c regs locked\n",
1272              pipe_name(pipe));
1273 }
1274
1275 static void assert_cursor(struct drm_i915_private *dev_priv,
1276                           enum pipe pipe, bool state)
1277 {
1278         struct drm_device *dev = dev_priv->dev;
1279         bool cur_state;
1280
1281         if (IS_845G(dev) || IS_I865G(dev))
1282                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1283         else
1284                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1285
1286         I915_STATE_WARN(cur_state != state,
1287              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1288                         pipe_name(pipe), onoff(state), onoff(cur_state));
1289 }
1290 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1291 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1292
1293 void assert_pipe(struct drm_i915_private *dev_priv,
1294                  enum pipe pipe, bool state)
1295 {
1296         bool cur_state;
1297         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1298                                                                       pipe);
1299         enum intel_display_power_domain power_domain;
1300
1301         /* if we need the pipe quirk it must be always on */
1302         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1303             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1304                 state = true;
1305
1306         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1307         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1308                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1309                 cur_state = !!(val & PIPECONF_ENABLE);
1310
1311                 intel_display_power_put(dev_priv, power_domain);
1312         } else {
1313                 cur_state = false;
1314         }
1315
1316         I915_STATE_WARN(cur_state != state,
1317              "pipe %c assertion failure (expected %s, current %s)\n",
1318                         pipe_name(pipe), onoff(state), onoff(cur_state));
1319 }
1320
1321 static void assert_plane(struct drm_i915_private *dev_priv,
1322                          enum plane plane, bool state)
1323 {
1324         u32 val;
1325         bool cur_state;
1326
1327         val = I915_READ(DSPCNTR(plane));
1328         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1329         I915_STATE_WARN(cur_state != state,
1330              "plane %c assertion failure (expected %s, current %s)\n",
1331                         plane_name(plane), onoff(state), onoff(cur_state));
1332 }
1333
1334 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1335 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1336
1337 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1338                                    enum pipe pipe)
1339 {
1340         struct drm_device *dev = dev_priv->dev;
1341         int i;
1342
1343         /* Primary planes are fixed to pipes on gen4+ */
1344         if (INTEL_INFO(dev)->gen >= 4) {
1345                 u32 val = I915_READ(DSPCNTR(pipe));
1346                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1347                      "plane %c assertion failure, should be disabled but not\n",
1348                      plane_name(pipe));
1349                 return;
1350         }
1351
1352         /* Need to check both planes against the pipe */
1353         for_each_pipe(dev_priv, i) {
1354                 u32 val = I915_READ(DSPCNTR(i));
1355                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1356                         DISPPLANE_SEL_PIPE_SHIFT;
1357                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1358                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1359                      plane_name(i), pipe_name(pipe));
1360         }
1361 }
1362
1363 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1364                                     enum pipe pipe)
1365 {
1366         struct drm_device *dev = dev_priv->dev;
1367         int sprite;
1368
1369         if (INTEL_INFO(dev)->gen >= 9) {
1370                 for_each_sprite(dev_priv, pipe, sprite) {
1371                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1372                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1373                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1374                              sprite, pipe_name(pipe));
1375                 }
1376         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1377                 for_each_sprite(dev_priv, pipe, sprite) {
1378                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1379                         I915_STATE_WARN(val & SP_ENABLE,
1380                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1381                              sprite_name(pipe, sprite), pipe_name(pipe));
1382                 }
1383         } else if (INTEL_INFO(dev)->gen >= 7) {
1384                 u32 val = I915_READ(SPRCTL(pipe));
1385                 I915_STATE_WARN(val & SPRITE_ENABLE,
1386                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1387                      plane_name(pipe), pipe_name(pipe));
1388         } else if (INTEL_INFO(dev)->gen >= 5) {
1389                 u32 val = I915_READ(DVSCNTR(pipe));
1390                 I915_STATE_WARN(val & DVS_ENABLE,
1391                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1392                      plane_name(pipe), pipe_name(pipe));
1393         }
1394 }
1395
1396 static void assert_vblank_disabled(struct drm_crtc *crtc)
1397 {
1398         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1399                 drm_crtc_vblank_put(crtc);
1400 }
1401
1402 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1403                                     enum pipe pipe)
1404 {
1405         u32 val;
1406         bool enabled;
1407
1408         val = I915_READ(PCH_TRANSCONF(pipe));
1409         enabled = !!(val & TRANS_ENABLE);
1410         I915_STATE_WARN(enabled,
1411              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1412              pipe_name(pipe));
1413 }
1414
1415 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1416                             enum pipe pipe, u32 port_sel, u32 val)
1417 {
1418         if ((val & DP_PORT_EN) == 0)
1419                 return false;
1420
1421         if (HAS_PCH_CPT(dev_priv)) {
1422                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1423                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1424                         return false;
1425         } else if (IS_CHERRYVIEW(dev_priv)) {
1426                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1427                         return false;
1428         } else {
1429                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1430                         return false;
1431         }
1432         return true;
1433 }
1434
1435 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1436                               enum pipe pipe, u32 val)
1437 {
1438         if ((val & SDVO_ENABLE) == 0)
1439                 return false;
1440
1441         if (HAS_PCH_CPT(dev_priv)) {
1442                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1443                         return false;
1444         } else if (IS_CHERRYVIEW(dev_priv)) {
1445                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1446                         return false;
1447         } else {
1448                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1449                         return false;
1450         }
1451         return true;
1452 }
1453
1454 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1455                               enum pipe pipe, u32 val)
1456 {
1457         if ((val & LVDS_PORT_EN) == 0)
1458                 return false;
1459
1460         if (HAS_PCH_CPT(dev_priv)) {
1461                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1462                         return false;
1463         } else {
1464                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1465                         return false;
1466         }
1467         return true;
1468 }
1469
1470 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1471                               enum pipe pipe, u32 val)
1472 {
1473         if ((val & ADPA_DAC_ENABLE) == 0)
1474                 return false;
1475         if (HAS_PCH_CPT(dev_priv)) {
1476                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1477                         return false;
1478         } else {
1479                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1480                         return false;
1481         }
1482         return true;
1483 }
1484
1485 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1486                                    enum pipe pipe, i915_reg_t reg,
1487                                    u32 port_sel)
1488 {
1489         u32 val = I915_READ(reg);
1490         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1491              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1492              i915_mmio_reg_offset(reg), pipe_name(pipe));
1493
1494         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1495              && (val & DP_PIPEB_SELECT),
1496              "IBX PCH dp port still using transcoder B\n");
1497 }
1498
1499 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1500                                      enum pipe pipe, i915_reg_t reg)
1501 {
1502         u32 val = I915_READ(reg);
1503         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1504              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1505              i915_mmio_reg_offset(reg), pipe_name(pipe));
1506
1507         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1508              && (val & SDVO_PIPE_B_SELECT),
1509              "IBX PCH hdmi port still using transcoder B\n");
1510 }
1511
1512 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1513                                       enum pipe pipe)
1514 {
1515         u32 val;
1516
1517         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1518         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1519         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1520
1521         val = I915_READ(PCH_ADPA);
1522         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1523              "PCH VGA enabled on transcoder %c, should be disabled\n",
1524              pipe_name(pipe));
1525
1526         val = I915_READ(PCH_LVDS);
1527         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1528              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1529              pipe_name(pipe));
1530
1531         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1532         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1533         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1534 }
1535
1536 static void _vlv_enable_pll(struct intel_crtc *crtc,
1537                             const struct intel_crtc_state *pipe_config)
1538 {
1539         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1540         enum pipe pipe = crtc->pipe;
1541
1542         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1543         POSTING_READ(DPLL(pipe));
1544         udelay(150);
1545
1546         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1547                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1548 }
1549
1550 static void vlv_enable_pll(struct intel_crtc *crtc,
1551                            const struct intel_crtc_state *pipe_config)
1552 {
1553         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1554         enum pipe pipe = crtc->pipe;
1555
1556         assert_pipe_disabled(dev_priv, pipe);
1557
1558         /* PLL is protected by panel, make sure we can write it */
1559         assert_panel_unlocked(dev_priv, pipe);
1560
1561         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1562                 _vlv_enable_pll(crtc, pipe_config);
1563
1564         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1565         POSTING_READ(DPLL_MD(pipe));
1566 }
1567
1568
1569 static void _chv_enable_pll(struct intel_crtc *crtc,
1570                             const struct intel_crtc_state *pipe_config)
1571 {
1572         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1573         enum pipe pipe = crtc->pipe;
1574         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1575         u32 tmp;
1576
1577         mutex_lock(&dev_priv->sb_lock);
1578
1579         /* Enable back the 10bit clock to display controller */
1580         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1581         tmp |= DPIO_DCLKP_EN;
1582         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1583
1584         mutex_unlock(&dev_priv->sb_lock);
1585
1586         /*
1587          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1588          */
1589         udelay(1);
1590
1591         /* Enable PLL */
1592         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1593
1594         /* Check PLL is locked */
1595         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1596                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1597 }
1598
1599 static void chv_enable_pll(struct intel_crtc *crtc,
1600                            const struct intel_crtc_state *pipe_config)
1601 {
1602         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1603         enum pipe pipe = crtc->pipe;
1604
1605         assert_pipe_disabled(dev_priv, pipe);
1606
1607         /* PLL is protected by panel, make sure we can write it */
1608         assert_panel_unlocked(dev_priv, pipe);
1609
1610         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1611                 _chv_enable_pll(crtc, pipe_config);
1612
1613         if (pipe != PIPE_A) {
1614                 /*
1615                  * WaPixelRepeatModeFixForC0:chv
1616                  *
1617                  * DPLLCMD is AWOL. Use chicken bits to propagate
1618                  * the value from DPLLBMD to either pipe B or C.
1619                  */
1620                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1621                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1622                 I915_WRITE(CBR4_VLV, 0);
1623                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1624
1625                 /*
1626                  * DPLLB VGA mode also seems to cause problems.
1627                  * We should always have it disabled.
1628                  */
1629                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1630         } else {
1631                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1632                 POSTING_READ(DPLL_MD(pipe));
1633         }
1634 }
1635
1636 static int intel_num_dvo_pipes(struct drm_device *dev)
1637 {
1638         struct intel_crtc *crtc;
1639         int count = 0;
1640
1641         for_each_intel_crtc(dev, crtc)
1642                 count += crtc->base.state->active &&
1643                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1644
1645         return count;
1646 }
1647
1648 static void i9xx_enable_pll(struct intel_crtc *crtc)
1649 {
1650         struct drm_device *dev = crtc->base.dev;
1651         struct drm_i915_private *dev_priv = dev->dev_private;
1652         i915_reg_t reg = DPLL(crtc->pipe);
1653         u32 dpll = crtc->config->dpll_hw_state.dpll;
1654
1655         assert_pipe_disabled(dev_priv, crtc->pipe);
1656
1657         /* PLL is protected by panel, make sure we can write it */
1658         if (IS_MOBILE(dev) && !IS_I830(dev))
1659                 assert_panel_unlocked(dev_priv, crtc->pipe);
1660
1661         /* Enable DVO 2x clock on both PLLs if necessary */
1662         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1663                 /*
1664                  * It appears to be important that we don't enable this
1665                  * for the current pipe before otherwise configuring the
1666                  * PLL. No idea how this should be handled if multiple
1667                  * DVO outputs are enabled simultaneosly.
1668                  */
1669                 dpll |= DPLL_DVO_2X_MODE;
1670                 I915_WRITE(DPLL(!crtc->pipe),
1671                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1672         }
1673
1674         /*
1675          * Apparently we need to have VGA mode enabled prior to changing
1676          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1677          * dividers, even though the register value does change.
1678          */
1679         I915_WRITE(reg, 0);
1680
1681         I915_WRITE(reg, dpll);
1682
1683         /* Wait for the clocks to stabilize. */
1684         POSTING_READ(reg);
1685         udelay(150);
1686
1687         if (INTEL_INFO(dev)->gen >= 4) {
1688                 I915_WRITE(DPLL_MD(crtc->pipe),
1689                            crtc->config->dpll_hw_state.dpll_md);
1690         } else {
1691                 /* The pixel multiplier can only be updated once the
1692                  * DPLL is enabled and the clocks are stable.
1693                  *
1694                  * So write it again.
1695                  */
1696                 I915_WRITE(reg, dpll);
1697         }
1698
1699         /* We do this three times for luck */
1700         I915_WRITE(reg, dpll);
1701         POSTING_READ(reg);
1702         udelay(150); /* wait for warmup */
1703         I915_WRITE(reg, dpll);
1704         POSTING_READ(reg);
1705         udelay(150); /* wait for warmup */
1706         I915_WRITE(reg, dpll);
1707         POSTING_READ(reg);
1708         udelay(150); /* wait for warmup */
1709 }
1710
1711 /**
1712  * i9xx_disable_pll - disable a PLL
1713  * @dev_priv: i915 private structure
1714  * @pipe: pipe PLL to disable
1715  *
1716  * Disable the PLL for @pipe, making sure the pipe is off first.
1717  *
1718  * Note!  This is for pre-ILK only.
1719  */
1720 static void i9xx_disable_pll(struct intel_crtc *crtc)
1721 {
1722         struct drm_device *dev = crtc->base.dev;
1723         struct drm_i915_private *dev_priv = dev->dev_private;
1724         enum pipe pipe = crtc->pipe;
1725
1726         /* Disable DVO 2x clock on both PLLs if necessary */
1727         if (IS_I830(dev) &&
1728             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1729             !intel_num_dvo_pipes(dev)) {
1730                 I915_WRITE(DPLL(PIPE_B),
1731                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1732                 I915_WRITE(DPLL(PIPE_A),
1733                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1734         }
1735
1736         /* Don't disable pipe or pipe PLLs if needed */
1737         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1738             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1739                 return;
1740
1741         /* Make sure the pipe isn't still relying on us */
1742         assert_pipe_disabled(dev_priv, pipe);
1743
1744         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1745         POSTING_READ(DPLL(pipe));
1746 }
1747
1748 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1749 {
1750         u32 val;
1751
1752         /* Make sure the pipe isn't still relying on us */
1753         assert_pipe_disabled(dev_priv, pipe);
1754
1755         val = DPLL_INTEGRATED_REF_CLK_VLV |
1756                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1757         if (pipe != PIPE_A)
1758                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1759
1760         I915_WRITE(DPLL(pipe), val);
1761         POSTING_READ(DPLL(pipe));
1762 }
1763
1764 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1765 {
1766         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1767         u32 val;
1768
1769         /* Make sure the pipe isn't still relying on us */
1770         assert_pipe_disabled(dev_priv, pipe);
1771
1772         val = DPLL_SSC_REF_CLK_CHV |
1773                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1774         if (pipe != PIPE_A)
1775                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1776
1777         I915_WRITE(DPLL(pipe), val);
1778         POSTING_READ(DPLL(pipe));
1779
1780         mutex_lock(&dev_priv->sb_lock);
1781
1782         /* Disable 10bit clock to display controller */
1783         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1784         val &= ~DPIO_DCLKP_EN;
1785         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1786
1787         mutex_unlock(&dev_priv->sb_lock);
1788 }
1789
1790 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1791                          struct intel_digital_port *dport,
1792                          unsigned int expected_mask)
1793 {
1794         u32 port_mask;
1795         i915_reg_t dpll_reg;
1796
1797         switch (dport->port) {
1798         case PORT_B:
1799                 port_mask = DPLL_PORTB_READY_MASK;
1800                 dpll_reg = DPLL(0);
1801                 break;
1802         case PORT_C:
1803                 port_mask = DPLL_PORTC_READY_MASK;
1804                 dpll_reg = DPLL(0);
1805                 expected_mask <<= 4;
1806                 break;
1807         case PORT_D:
1808                 port_mask = DPLL_PORTD_READY_MASK;
1809                 dpll_reg = DPIO_PHY_STATUS;
1810                 break;
1811         default:
1812                 BUG();
1813         }
1814
1815         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1816                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1817                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1818 }
1819
1820 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1821                                            enum pipe pipe)
1822 {
1823         struct drm_device *dev = dev_priv->dev;
1824         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1825         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1826         i915_reg_t reg;
1827         uint32_t val, pipeconf_val;
1828
1829         /* Make sure PCH DPLL is enabled */
1830         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1831
1832         /* FDI must be feeding us bits for PCH ports */
1833         assert_fdi_tx_enabled(dev_priv, pipe);
1834         assert_fdi_rx_enabled(dev_priv, pipe);
1835
1836         if (HAS_PCH_CPT(dev)) {
1837                 /* Workaround: Set the timing override bit before enabling the
1838                  * pch transcoder. */
1839                 reg = TRANS_CHICKEN2(pipe);
1840                 val = I915_READ(reg);
1841                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1842                 I915_WRITE(reg, val);
1843         }
1844
1845         reg = PCH_TRANSCONF(pipe);
1846         val = I915_READ(reg);
1847         pipeconf_val = I915_READ(PIPECONF(pipe));
1848
1849         if (HAS_PCH_IBX(dev_priv)) {
1850                 /*
1851                  * Make the BPC in transcoder be consistent with
1852                  * that in pipeconf reg. For HDMI we must use 8bpc
1853                  * here for both 8bpc and 12bpc.
1854                  */
1855                 val &= ~PIPECONF_BPC_MASK;
1856                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1857                         val |= PIPECONF_8BPC;
1858                 else
1859                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1860         }
1861
1862         val &= ~TRANS_INTERLACE_MASK;
1863         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1864                 if (HAS_PCH_IBX(dev_priv) &&
1865                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1866                         val |= TRANS_LEGACY_INTERLACED_ILK;
1867                 else
1868                         val |= TRANS_INTERLACED;
1869         else
1870                 val |= TRANS_PROGRESSIVE;
1871
1872         I915_WRITE(reg, val | TRANS_ENABLE);
1873         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1874                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1875 }
1876
1877 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1878                                       enum transcoder cpu_transcoder)
1879 {
1880         u32 val, pipeconf_val;
1881
1882         /* FDI must be feeding us bits for PCH ports */
1883         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1884         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1885
1886         /* Workaround: set timing override bit. */
1887         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1888         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1889         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1890
1891         val = TRANS_ENABLE;
1892         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1893
1894         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1895             PIPECONF_INTERLACED_ILK)
1896                 val |= TRANS_INTERLACED;
1897         else
1898                 val |= TRANS_PROGRESSIVE;
1899
1900         I915_WRITE(LPT_TRANSCONF, val);
1901         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1902                 DRM_ERROR("Failed to enable PCH transcoder\n");
1903 }
1904
1905 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1906                                             enum pipe pipe)
1907 {
1908         struct drm_device *dev = dev_priv->dev;
1909         i915_reg_t reg;
1910         uint32_t val;
1911
1912         /* FDI relies on the transcoder */
1913         assert_fdi_tx_disabled(dev_priv, pipe);
1914         assert_fdi_rx_disabled(dev_priv, pipe);
1915
1916         /* Ports must be off as well */
1917         assert_pch_ports_disabled(dev_priv, pipe);
1918
1919         reg = PCH_TRANSCONF(pipe);
1920         val = I915_READ(reg);
1921         val &= ~TRANS_ENABLE;
1922         I915_WRITE(reg, val);
1923         /* wait for PCH transcoder off, transcoder state */
1924         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1925                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1926
1927         if (HAS_PCH_CPT(dev)) {
1928                 /* Workaround: Clear the timing override chicken bit again. */
1929                 reg = TRANS_CHICKEN2(pipe);
1930                 val = I915_READ(reg);
1931                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1932                 I915_WRITE(reg, val);
1933         }
1934 }
1935
1936 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1937 {
1938         u32 val;
1939
1940         val = I915_READ(LPT_TRANSCONF);
1941         val &= ~TRANS_ENABLE;
1942         I915_WRITE(LPT_TRANSCONF, val);
1943         /* wait for PCH transcoder off, transcoder state */
1944         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1945                 DRM_ERROR("Failed to disable PCH transcoder\n");
1946
1947         /* Workaround: clear timing override bit. */
1948         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1949         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1950         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1951 }
1952
1953 /**
1954  * intel_enable_pipe - enable a pipe, asserting requirements
1955  * @crtc: crtc responsible for the pipe
1956  *
1957  * Enable @crtc's pipe, making sure that various hardware specific requirements
1958  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1959  */
1960 static void intel_enable_pipe(struct intel_crtc *crtc)
1961 {
1962         struct drm_device *dev = crtc->base.dev;
1963         struct drm_i915_private *dev_priv = dev->dev_private;
1964         enum pipe pipe = crtc->pipe;
1965         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1966         enum pipe pch_transcoder;
1967         i915_reg_t reg;
1968         u32 val;
1969
1970         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1971
1972         assert_planes_disabled(dev_priv, pipe);
1973         assert_cursor_disabled(dev_priv, pipe);
1974         assert_sprites_disabled(dev_priv, pipe);
1975
1976         if (HAS_PCH_LPT(dev_priv))
1977                 pch_transcoder = TRANSCODER_A;
1978         else
1979                 pch_transcoder = pipe;
1980
1981         /*
1982          * A pipe without a PLL won't actually be able to drive bits from
1983          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1984          * need the check.
1985          */
1986         if (HAS_GMCH_DISPLAY(dev_priv))
1987                 if (crtc->config->has_dsi_encoder)
1988                         assert_dsi_pll_enabled(dev_priv);
1989                 else
1990                         assert_pll_enabled(dev_priv, pipe);
1991         else {
1992                 if (crtc->config->has_pch_encoder) {
1993                         /* if driving the PCH, we need FDI enabled */
1994                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1995                         assert_fdi_tx_pll_enabled(dev_priv,
1996                                                   (enum pipe) cpu_transcoder);
1997                 }
1998                 /* FIXME: assert CPU port conditions for SNB+ */
1999         }
2000
2001         reg = PIPECONF(cpu_transcoder);
2002         val = I915_READ(reg);
2003         if (val & PIPECONF_ENABLE) {
2004                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2005                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2006                 return;
2007         }
2008
2009         I915_WRITE(reg, val | PIPECONF_ENABLE);
2010         POSTING_READ(reg);
2011
2012         /*
2013          * Until the pipe starts DSL will read as 0, which would cause
2014          * an apparent vblank timestamp jump, which messes up also the
2015          * frame count when it's derived from the timestamps. So let's
2016          * wait for the pipe to start properly before we call
2017          * drm_crtc_vblank_on()
2018          */
2019         if (dev->max_vblank_count == 0 &&
2020             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2021                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2022 }
2023
2024 /**
2025  * intel_disable_pipe - disable a pipe, asserting requirements
2026  * @crtc: crtc whose pipes is to be disabled
2027  *
2028  * Disable the pipe of @crtc, making sure that various hardware
2029  * specific requirements are met, if applicable, e.g. plane
2030  * disabled, panel fitter off, etc.
2031  *
2032  * Will wait until the pipe has shut down before returning.
2033  */
2034 static void intel_disable_pipe(struct intel_crtc *crtc)
2035 {
2036         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2037         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2038         enum pipe pipe = crtc->pipe;
2039         i915_reg_t reg;
2040         u32 val;
2041
2042         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2043
2044         /*
2045          * Make sure planes won't keep trying to pump pixels to us,
2046          * or we might hang the display.
2047          */
2048         assert_planes_disabled(dev_priv, pipe);
2049         assert_cursor_disabled(dev_priv, pipe);
2050         assert_sprites_disabled(dev_priv, pipe);
2051
2052         reg = PIPECONF(cpu_transcoder);
2053         val = I915_READ(reg);
2054         if ((val & PIPECONF_ENABLE) == 0)
2055                 return;
2056
2057         /*
2058          * Double wide has implications for planes
2059          * so best keep it disabled when not needed.
2060          */
2061         if (crtc->config->double_wide)
2062                 val &= ~PIPECONF_DOUBLE_WIDE;
2063
2064         /* Don't disable pipe or pipe PLLs if needed */
2065         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2066             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2067                 val &= ~PIPECONF_ENABLE;
2068
2069         I915_WRITE(reg, val);
2070         if ((val & PIPECONF_ENABLE) == 0)
2071                 intel_wait_for_pipe_off(crtc);
2072 }
2073
2074 static bool need_vtd_wa(struct drm_device *dev)
2075 {
2076 #ifdef CONFIG_INTEL_IOMMU
2077         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2078                 return true;
2079 #endif
2080         return false;
2081 }
2082
2083 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2084 {
2085         return IS_GEN2(dev_priv) ? 2048 : 4096;
2086 }
2087
2088 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2089                                            uint64_t fb_modifier, unsigned int cpp)
2090 {
2091         switch (fb_modifier) {
2092         case DRM_FORMAT_MOD_NONE:
2093                 return cpp;
2094         case I915_FORMAT_MOD_X_TILED:
2095                 if (IS_GEN2(dev_priv))
2096                         return 128;
2097                 else
2098                         return 512;
2099         case I915_FORMAT_MOD_Y_TILED:
2100                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2101                         return 128;
2102                 else
2103                         return 512;
2104         case I915_FORMAT_MOD_Yf_TILED:
2105                 switch (cpp) {
2106                 case 1:
2107                         return 64;
2108                 case 2:
2109                 case 4:
2110                         return 128;
2111                 case 8:
2112                 case 16:
2113                         return 256;
2114                 default:
2115                         MISSING_CASE(cpp);
2116                         return cpp;
2117                 }
2118                 break;
2119         default:
2120                 MISSING_CASE(fb_modifier);
2121                 return cpp;
2122         }
2123 }
2124
2125 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2126                                uint64_t fb_modifier, unsigned int cpp)
2127 {
2128         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2129                 return 1;
2130         else
2131                 return intel_tile_size(dev_priv) /
2132                         intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2133 }
2134
2135 /* Return the tile dimensions in pixel units */
2136 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2137                             unsigned int *tile_width,
2138                             unsigned int *tile_height,
2139                             uint64_t fb_modifier,
2140                             unsigned int cpp)
2141 {
2142         unsigned int tile_width_bytes =
2143                 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2144
2145         *tile_width = tile_width_bytes / cpp;
2146         *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2147 }
2148
2149 unsigned int
2150 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2151                       uint32_t pixel_format, uint64_t fb_modifier)
2152 {
2153         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2154         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2155
2156         return ALIGN(height, tile_height);
2157 }
2158
2159 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2160 {
2161         unsigned int size = 0;
2162         int i;
2163
2164         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2165                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2166
2167         return size;
2168 }
2169
2170 static void
2171 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2172                         const struct drm_framebuffer *fb,
2173                         unsigned int rotation)
2174 {
2175         if (intel_rotation_90_or_270(rotation)) {
2176                 *view = i915_ggtt_view_rotated;
2177                 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2178         } else {
2179                 *view = i915_ggtt_view_normal;
2180         }
2181 }
2182
2183 static void
2184 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2185                    struct drm_framebuffer *fb)
2186 {
2187         struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2188         unsigned int tile_size, tile_width, tile_height, cpp;
2189
2190         tile_size = intel_tile_size(dev_priv);
2191
2192         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2193         intel_tile_dims(dev_priv, &tile_width, &tile_height,
2194                         fb->modifier[0], cpp);
2195
2196         info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2197         info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2198
2199         if (info->pixel_format == DRM_FORMAT_NV12) {
2200                 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2201                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2202                                 fb->modifier[1], cpp);
2203
2204                 info->uv_offset = fb->offsets[1];
2205                 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2206                 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2207         }
2208 }
2209
2210 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2211 {
2212         if (INTEL_INFO(dev_priv)->gen >= 9)
2213                 return 256 * 1024;
2214         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2215                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2216                 return 128 * 1024;
2217         else if (INTEL_INFO(dev_priv)->gen >= 4)
2218                 return 4 * 1024;
2219         else
2220                 return 0;
2221 }
2222
2223 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2224                                          uint64_t fb_modifier)
2225 {
2226         switch (fb_modifier) {
2227         case DRM_FORMAT_MOD_NONE:
2228                 return intel_linear_alignment(dev_priv);
2229         case I915_FORMAT_MOD_X_TILED:
2230                 if (INTEL_INFO(dev_priv)->gen >= 9)
2231                         return 256 * 1024;
2232                 return 0;
2233         case I915_FORMAT_MOD_Y_TILED:
2234         case I915_FORMAT_MOD_Yf_TILED:
2235                 return 1 * 1024 * 1024;
2236         default:
2237                 MISSING_CASE(fb_modifier);
2238                 return 0;
2239         }
2240 }
2241
2242 int
2243 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2244                            unsigned int rotation)
2245 {
2246         struct drm_device *dev = fb->dev;
2247         struct drm_i915_private *dev_priv = dev->dev_private;
2248         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2249         struct i915_ggtt_view view;
2250         u32 alignment;
2251         int ret;
2252
2253         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2254
2255         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2256
2257         intel_fill_fb_ggtt_view(&view, fb, rotation);
2258
2259         /* Note that the w/a also requires 64 PTE of padding following the
2260          * bo. We currently fill all unused PTE with the shadow page and so
2261          * we should always have valid PTE following the scanout preventing
2262          * the VT-d warning.
2263          */
2264         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2265                 alignment = 256 * 1024;
2266
2267         /*
2268          * Global gtt pte registers are special registers which actually forward
2269          * writes to a chunk of system memory. Which means that there is no risk
2270          * that the register values disappear as soon as we call
2271          * intel_runtime_pm_put(), so it is correct to wrap only the
2272          * pin/unpin/fence and not more.
2273          */
2274         intel_runtime_pm_get(dev_priv);
2275
2276         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2277                                                    &view);
2278         if (ret)
2279                 goto err_pm;
2280
2281         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2282          * fence, whereas 965+ only requires a fence if using
2283          * framebuffer compression.  For simplicity, we always install
2284          * a fence as the cost is not that onerous.
2285          */
2286         if (view.type == I915_GGTT_VIEW_NORMAL) {
2287                 ret = i915_gem_object_get_fence(obj);
2288                 if (ret == -EDEADLK) {
2289                         /*
2290                          * -EDEADLK means there are no free fences
2291                          * no pending flips.
2292                          *
2293                          * This is propagated to atomic, but it uses
2294                          * -EDEADLK to force a locking recovery, so
2295                          * change the returned error to -EBUSY.
2296                          */
2297                         ret = -EBUSY;
2298                         goto err_unpin;
2299                 } else if (ret)
2300                         goto err_unpin;
2301
2302                 i915_gem_object_pin_fence(obj);
2303         }
2304
2305         intel_runtime_pm_put(dev_priv);
2306         return 0;
2307
2308 err_unpin:
2309         i915_gem_object_unpin_from_display_plane(obj, &view);
2310 err_pm:
2311         intel_runtime_pm_put(dev_priv);
2312         return ret;
2313 }
2314
2315 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2316 {
2317         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2318         struct i915_ggtt_view view;
2319
2320         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2321
2322         intel_fill_fb_ggtt_view(&view, fb, rotation);
2323
2324         if (view.type == I915_GGTT_VIEW_NORMAL)
2325                 i915_gem_object_unpin_fence(obj);
2326
2327         i915_gem_object_unpin_from_display_plane(obj, &view);
2328 }
2329
2330 /*
2331  * Adjust the tile offset by moving the difference into
2332  * the x/y offsets.
2333  *
2334  * Input tile dimensions and pitch must already be
2335  * rotated to match x and y, and in pixel units.
2336  */
2337 static u32 intel_adjust_tile_offset(int *x, int *y,
2338                                     unsigned int tile_width,
2339                                     unsigned int tile_height,
2340                                     unsigned int tile_size,
2341                                     unsigned int pitch_tiles,
2342                                     u32 old_offset,
2343                                     u32 new_offset)
2344 {
2345         unsigned int tiles;
2346
2347         WARN_ON(old_offset & (tile_size - 1));
2348         WARN_ON(new_offset & (tile_size - 1));
2349         WARN_ON(new_offset > old_offset);
2350
2351         tiles = (old_offset - new_offset) / tile_size;
2352
2353         *y += tiles / pitch_tiles * tile_height;
2354         *x += tiles % pitch_tiles * tile_width;
2355
2356         return new_offset;
2357 }
2358
2359 /*
2360  * Computes the linear offset to the base tile and adjusts
2361  * x, y. bytes per pixel is assumed to be a power-of-two.
2362  *
2363  * In the 90/270 rotated case, x and y are assumed
2364  * to be already rotated to match the rotated GTT view, and
2365  * pitch is the tile_height aligned framebuffer height.
2366  */
2367 u32 intel_compute_tile_offset(int *x, int *y,
2368                               const struct drm_framebuffer *fb, int plane,
2369                               unsigned int pitch,
2370                               unsigned int rotation)
2371 {
2372         const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2373         uint64_t fb_modifier = fb->modifier[plane];
2374         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2375         u32 offset, offset_aligned, alignment;
2376
2377         alignment = intel_surf_alignment(dev_priv, fb_modifier);
2378         if (alignment)
2379                 alignment--;
2380
2381         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2382                 unsigned int tile_size, tile_width, tile_height;
2383                 unsigned int tile_rows, tiles, pitch_tiles;
2384
2385                 tile_size = intel_tile_size(dev_priv);
2386                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2387                                 fb_modifier, cpp);
2388
2389                 if (intel_rotation_90_or_270(rotation)) {
2390                         pitch_tiles = pitch / tile_height;
2391                         swap(tile_width, tile_height);
2392                 } else {
2393                         pitch_tiles = pitch / (tile_width * cpp);
2394                 }
2395
2396                 tile_rows = *y / tile_height;
2397                 *y %= tile_height;
2398
2399                 tiles = *x / tile_width;
2400                 *x %= tile_width;
2401
2402                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2403                 offset_aligned = offset & ~alignment;
2404
2405                 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2406                                          tile_size, pitch_tiles,
2407                                          offset, offset_aligned);
2408         } else {
2409                 offset = *y * pitch + *x * cpp;
2410                 offset_aligned = offset & ~alignment;
2411
2412                 *y = (offset & alignment) / pitch;
2413                 *x = ((offset & alignment) - *y * pitch) / cpp;
2414         }
2415
2416         return offset_aligned;
2417 }
2418
2419 static int i9xx_format_to_fourcc(int format)
2420 {
2421         switch (format) {
2422         case DISPPLANE_8BPP:
2423                 return DRM_FORMAT_C8;
2424         case DISPPLANE_BGRX555:
2425                 return DRM_FORMAT_XRGB1555;
2426         case DISPPLANE_BGRX565:
2427                 return DRM_FORMAT_RGB565;
2428         default:
2429         case DISPPLANE_BGRX888:
2430                 return DRM_FORMAT_XRGB8888;
2431         case DISPPLANE_RGBX888:
2432                 return DRM_FORMAT_XBGR8888;
2433         case DISPPLANE_BGRX101010:
2434                 return DRM_FORMAT_XRGB2101010;
2435         case DISPPLANE_RGBX101010:
2436                 return DRM_FORMAT_XBGR2101010;
2437         }
2438 }
2439
2440 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2441 {
2442         switch (format) {
2443         case PLANE_CTL_FORMAT_RGB_565:
2444                 return DRM_FORMAT_RGB565;
2445         default:
2446         case PLANE_CTL_FORMAT_XRGB_8888:
2447                 if (rgb_order) {
2448                         if (alpha)
2449                                 return DRM_FORMAT_ABGR8888;
2450                         else
2451                                 return DRM_FORMAT_XBGR8888;
2452                 } else {
2453                         if (alpha)
2454                                 return DRM_FORMAT_ARGB8888;
2455                         else
2456                                 return DRM_FORMAT_XRGB8888;
2457                 }
2458         case PLANE_CTL_FORMAT_XRGB_2101010:
2459                 if (rgb_order)
2460                         return DRM_FORMAT_XBGR2101010;
2461                 else
2462                         return DRM_FORMAT_XRGB2101010;
2463         }
2464 }
2465
2466 static bool
2467 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2468                               struct intel_initial_plane_config *plane_config)
2469 {
2470         struct drm_device *dev = crtc->base.dev;
2471         struct drm_i915_private *dev_priv = to_i915(dev);
2472         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2473         struct drm_i915_gem_object *obj = NULL;
2474         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2475         struct drm_framebuffer *fb = &plane_config->fb->base;
2476         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2477         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2478                                     PAGE_SIZE);
2479
2480         size_aligned -= base_aligned;
2481
2482         if (plane_config->size == 0)
2483                 return false;
2484
2485         /* If the FB is too big, just don't use it since fbdev is not very
2486          * important and we should probably use that space with FBC or other
2487          * features. */
2488         if (size_aligned * 2 > ggtt->stolen_usable_size)
2489                 return false;
2490
2491         mutex_lock(&dev->struct_mutex);
2492
2493         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2494                                                              base_aligned,
2495                                                              base_aligned,
2496                                                              size_aligned);
2497         if (!obj) {
2498                 mutex_unlock(&dev->struct_mutex);
2499                 return false;
2500         }
2501
2502         obj->tiling_mode = plane_config->tiling;
2503         if (obj->tiling_mode == I915_TILING_X)
2504                 obj->stride = fb->pitches[0];
2505
2506         mode_cmd.pixel_format = fb->pixel_format;
2507         mode_cmd.width = fb->width;
2508         mode_cmd.height = fb->height;
2509         mode_cmd.pitches[0] = fb->pitches[0];
2510         mode_cmd.modifier[0] = fb->modifier[0];
2511         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2512
2513         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2514                                    &mode_cmd, obj)) {
2515                 DRM_DEBUG_KMS("intel fb init failed\n");
2516                 goto out_unref_obj;
2517         }
2518
2519         mutex_unlock(&dev->struct_mutex);
2520
2521         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2522         return true;
2523
2524 out_unref_obj:
2525         drm_gem_object_unreference(&obj->base);
2526         mutex_unlock(&dev->struct_mutex);
2527         return false;
2528 }
2529
2530 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2531 static void
2532 update_state_fb(struct drm_plane *plane)
2533 {
2534         if (plane->fb == plane->state->fb)
2535                 return;
2536
2537         if (plane->state->fb)
2538                 drm_framebuffer_unreference(plane->state->fb);
2539         plane->state->fb = plane->fb;
2540         if (plane->state->fb)
2541                 drm_framebuffer_reference(plane->state->fb);
2542 }
2543
2544 static void
2545 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2546                              struct intel_initial_plane_config *plane_config)
2547 {
2548         struct drm_device *dev = intel_crtc->base.dev;
2549         struct drm_i915_private *dev_priv = dev->dev_private;
2550         struct drm_crtc *c;
2551         struct intel_crtc *i;
2552         struct drm_i915_gem_object *obj;
2553         struct drm_plane *primary = intel_crtc->base.primary;
2554         struct drm_plane_state *plane_state = primary->state;
2555         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2556         struct intel_plane *intel_plane = to_intel_plane(primary);
2557         struct intel_plane_state *intel_state =
2558                 to_intel_plane_state(plane_state);
2559         struct drm_framebuffer *fb;
2560
2561         if (!plane_config->fb)
2562                 return;
2563
2564         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2565                 fb = &plane_config->fb->base;
2566                 goto valid_fb;
2567         }
2568
2569         kfree(plane_config->fb);
2570
2571         /*
2572          * Failed to alloc the obj, check to see if we should share
2573          * an fb with another CRTC instead
2574          */
2575         for_each_crtc(dev, c) {
2576                 i = to_intel_crtc(c);
2577
2578                 if (c == &intel_crtc->base)
2579                         continue;
2580
2581                 if (!i->active)
2582                         continue;
2583
2584                 fb = c->primary->fb;
2585                 if (!fb)
2586                         continue;
2587
2588                 obj = intel_fb_obj(fb);
2589                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2590                         drm_framebuffer_reference(fb);
2591                         goto valid_fb;
2592                 }
2593         }
2594
2595         /*
2596          * We've failed to reconstruct the BIOS FB.  Current display state
2597          * indicates that the primary plane is visible, but has a NULL FB,
2598          * which will lead to problems later if we don't fix it up.  The
2599          * simplest solution is to just disable the primary plane now and
2600          * pretend the BIOS never had it enabled.
2601          */
2602         to_intel_plane_state(plane_state)->visible = false;
2603         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2604         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2605         intel_plane->disable_plane(primary, &intel_crtc->base);
2606
2607         return;
2608
2609 valid_fb:
2610         plane_state->src_x = 0;
2611         plane_state->src_y = 0;
2612         plane_state->src_w = fb->width << 16;
2613         plane_state->src_h = fb->height << 16;
2614
2615         plane_state->crtc_x = 0;
2616         plane_state->crtc_y = 0;
2617         plane_state->crtc_w = fb->width;
2618         plane_state->crtc_h = fb->height;
2619
2620         intel_state->src.x1 = plane_state->src_x;
2621         intel_state->src.y1 = plane_state->src_y;
2622         intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2623         intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2624         intel_state->dst.x1 = plane_state->crtc_x;
2625         intel_state->dst.y1 = plane_state->crtc_y;
2626         intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2627         intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2628
2629         obj = intel_fb_obj(fb);
2630         if (obj->tiling_mode != I915_TILING_NONE)
2631                 dev_priv->preserve_bios_swizzle = true;
2632
2633         drm_framebuffer_reference(fb);
2634         primary->fb = primary->state->fb = fb;
2635         primary->crtc = primary->state->crtc = &intel_crtc->base;
2636         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2637         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2638 }
2639
2640 static void i9xx_update_primary_plane(struct drm_plane *primary,
2641                                       const struct intel_crtc_state *crtc_state,
2642                                       const struct intel_plane_state *plane_state)
2643 {
2644         struct drm_device *dev = primary->dev;
2645         struct drm_i915_private *dev_priv = dev->dev_private;
2646         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2647         struct drm_framebuffer *fb = plane_state->base.fb;
2648         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2649         int plane = intel_crtc->plane;
2650         u32 linear_offset;
2651         u32 dspcntr;
2652         i915_reg_t reg = DSPCNTR(plane);
2653         unsigned int rotation = plane_state->base.rotation;
2654         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2655         int x = plane_state->src.x1 >> 16;
2656         int y = plane_state->src.y1 >> 16;
2657
2658         dspcntr = DISPPLANE_GAMMA_ENABLE;
2659
2660         dspcntr |= DISPLAY_PLANE_ENABLE;
2661
2662         if (INTEL_INFO(dev)->gen < 4) {
2663                 if (intel_crtc->pipe == PIPE_B)
2664                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2665
2666                 /* pipesrc and dspsize control the size that is scaled from,
2667                  * which should always be the user's requested size.
2668                  */
2669                 I915_WRITE(DSPSIZE(plane),
2670                            ((crtc_state->pipe_src_h - 1) << 16) |
2671                            (crtc_state->pipe_src_w - 1));
2672                 I915_WRITE(DSPPOS(plane), 0);
2673         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2674                 I915_WRITE(PRIMSIZE(plane),
2675                            ((crtc_state->pipe_src_h - 1) << 16) |
2676                            (crtc_state->pipe_src_w - 1));
2677                 I915_WRITE(PRIMPOS(plane), 0);
2678                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2679         }
2680
2681         switch (fb->pixel_format) {
2682         case DRM_FORMAT_C8:
2683                 dspcntr |= DISPPLANE_8BPP;
2684                 break;
2685         case DRM_FORMAT_XRGB1555:
2686                 dspcntr |= DISPPLANE_BGRX555;
2687                 break;
2688         case DRM_FORMAT_RGB565:
2689                 dspcntr |= DISPPLANE_BGRX565;
2690                 break;
2691         case DRM_FORMAT_XRGB8888:
2692                 dspcntr |= DISPPLANE_BGRX888;
2693                 break;
2694         case DRM_FORMAT_XBGR8888:
2695                 dspcntr |= DISPPLANE_RGBX888;
2696                 break;
2697         case DRM_FORMAT_XRGB2101010:
2698                 dspcntr |= DISPPLANE_BGRX101010;
2699                 break;
2700         case DRM_FORMAT_XBGR2101010:
2701                 dspcntr |= DISPPLANE_RGBX101010;
2702                 break;
2703         default:
2704                 BUG();
2705         }
2706
2707         if (INTEL_INFO(dev)->gen >= 4 &&
2708             obj->tiling_mode != I915_TILING_NONE)
2709                 dspcntr |= DISPPLANE_TILED;
2710
2711         if (IS_G4X(dev))
2712                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2713
2714         linear_offset = y * fb->pitches[0] + x * cpp;
2715
2716         if (INTEL_INFO(dev)->gen >= 4) {
2717                 intel_crtc->dspaddr_offset =
2718                         intel_compute_tile_offset(&x, &y, fb, 0,
2719                                                   fb->pitches[0], rotation);
2720                 linear_offset -= intel_crtc->dspaddr_offset;
2721         } else {
2722                 intel_crtc->dspaddr_offset = linear_offset;
2723         }
2724
2725         if (rotation == BIT(DRM_ROTATE_180)) {
2726                 dspcntr |= DISPPLANE_ROTATE_180;
2727
2728                 x += (crtc_state->pipe_src_w - 1);
2729                 y += (crtc_state->pipe_src_h - 1);
2730
2731                 /* Finding the last pixel of the last line of the display
2732                 data and adding to linear_offset*/
2733                 linear_offset +=
2734                         (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2735                         (crtc_state->pipe_src_w - 1) * cpp;
2736         }
2737
2738         intel_crtc->adjusted_x = x;
2739         intel_crtc->adjusted_y = y;
2740
2741         I915_WRITE(reg, dspcntr);
2742
2743         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2744         if (INTEL_INFO(dev)->gen >= 4) {
2745                 I915_WRITE(DSPSURF(plane),
2746                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2747                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2748                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2749         } else
2750                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2751         POSTING_READ(reg);
2752 }
2753
2754 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2755                                        struct drm_crtc *crtc)
2756 {
2757         struct drm_device *dev = crtc->dev;
2758         struct drm_i915_private *dev_priv = dev->dev_private;
2759         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2760         int plane = intel_crtc->plane;
2761
2762         I915_WRITE(DSPCNTR(plane), 0);
2763         if (INTEL_INFO(dev_priv)->gen >= 4)
2764                 I915_WRITE(DSPSURF(plane), 0);
2765         else
2766                 I915_WRITE(DSPADDR(plane), 0);
2767         POSTING_READ(DSPCNTR(plane));
2768 }
2769
2770 static void ironlake_update_primary_plane(struct drm_plane *primary,
2771                                           const struct intel_crtc_state *crtc_state,
2772                                           const struct intel_plane_state *plane_state)
2773 {
2774         struct drm_device *dev = primary->dev;
2775         struct drm_i915_private *dev_priv = dev->dev_private;
2776         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2777         struct drm_framebuffer *fb = plane_state->base.fb;
2778         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2779         int plane = intel_crtc->plane;
2780         u32 linear_offset;
2781         u32 dspcntr;
2782         i915_reg_t reg = DSPCNTR(plane);
2783         unsigned int rotation = plane_state->base.rotation;
2784         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2785         int x = plane_state->src.x1 >> 16;
2786         int y = plane_state->src.y1 >> 16;
2787
2788         dspcntr = DISPPLANE_GAMMA_ENABLE;
2789         dspcntr |= DISPLAY_PLANE_ENABLE;
2790
2791         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2792                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2793
2794         switch (fb->pixel_format) {
2795         case DRM_FORMAT_C8:
2796                 dspcntr |= DISPPLANE_8BPP;
2797                 break;
2798         case DRM_FORMAT_RGB565:
2799                 dspcntr |= DISPPLANE_BGRX565;
2800                 break;
2801         case DRM_FORMAT_XRGB8888:
2802                 dspcntr |= DISPPLANE_BGRX888;
2803                 break;
2804         case DRM_FORMAT_XBGR8888:
2805                 dspcntr |= DISPPLANE_RGBX888;
2806                 break;
2807         case DRM_FORMAT_XRGB2101010:
2808                 dspcntr |= DISPPLANE_BGRX101010;
2809                 break;
2810         case DRM_FORMAT_XBGR2101010:
2811                 dspcntr |= DISPPLANE_RGBX101010;
2812                 break;
2813         default:
2814                 BUG();
2815         }
2816
2817         if (obj->tiling_mode != I915_TILING_NONE)
2818                 dspcntr |= DISPPLANE_TILED;
2819
2820         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2821                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2822
2823         linear_offset = y * fb->pitches[0] + x * cpp;
2824         intel_crtc->dspaddr_offset =
2825                 intel_compute_tile_offset(&x, &y, fb, 0,
2826                                           fb->pitches[0], rotation);
2827         linear_offset -= intel_crtc->dspaddr_offset;
2828         if (rotation == BIT(DRM_ROTATE_180)) {
2829                 dspcntr |= DISPPLANE_ROTATE_180;
2830
2831                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2832                         x += (crtc_state->pipe_src_w - 1);
2833                         y += (crtc_state->pipe_src_h - 1);
2834
2835                         /* Finding the last pixel of the last line of the display
2836                         data and adding to linear_offset*/
2837                         linear_offset +=
2838                                 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2839                                 (crtc_state->pipe_src_w - 1) * cpp;
2840                 }
2841         }
2842
2843         intel_crtc->adjusted_x = x;
2844         intel_crtc->adjusted_y = y;
2845
2846         I915_WRITE(reg, dspcntr);
2847
2848         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2849         I915_WRITE(DSPSURF(plane),
2850                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2851         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2852                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2853         } else {
2854                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2855                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2856         }
2857         POSTING_READ(reg);
2858 }
2859
2860 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2861                               uint64_t fb_modifier, uint32_t pixel_format)
2862 {
2863         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2864                 return 64;
2865         } else {
2866                 int cpp = drm_format_plane_cpp(pixel_format, 0);
2867
2868                 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2869         }
2870 }
2871
2872 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2873                            struct drm_i915_gem_object *obj,
2874                            unsigned int plane)
2875 {
2876         struct i915_ggtt_view view;
2877         struct i915_vma *vma;
2878         u64 offset;
2879
2880         intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2881                                 intel_plane->base.state->rotation);
2882
2883         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2884         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2885                 view.type))
2886                 return -1;
2887
2888         offset = vma->node.start;
2889
2890         if (plane == 1) {
2891                 offset += vma->ggtt_view.params.rotated.uv_start_page *
2892                           PAGE_SIZE;
2893         }
2894
2895         WARN_ON(upper_32_bits(offset));
2896
2897         return lower_32_bits(offset);
2898 }
2899
2900 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2901 {
2902         struct drm_device *dev = intel_crtc->base.dev;
2903         struct drm_i915_private *dev_priv = dev->dev_private;
2904
2905         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2906         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2907         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2908 }
2909
2910 /*
2911  * This function detaches (aka. unbinds) unused scalers in hardware
2912  */
2913 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2914 {
2915         struct intel_crtc_scaler_state *scaler_state;
2916         int i;
2917
2918         scaler_state = &intel_crtc->config->scaler_state;
2919
2920         /* loop through and disable scalers that aren't in use */
2921         for (i = 0; i < intel_crtc->num_scalers; i++) {
2922                 if (!scaler_state->scalers[i].in_use)
2923                         skl_detach_scaler(intel_crtc, i);
2924         }
2925 }
2926
2927 u32 skl_plane_ctl_format(uint32_t pixel_format)
2928 {
2929         switch (pixel_format) {
2930         case DRM_FORMAT_C8:
2931                 return PLANE_CTL_FORMAT_INDEXED;
2932         case DRM_FORMAT_RGB565:
2933                 return PLANE_CTL_FORMAT_RGB_565;
2934         case DRM_FORMAT_XBGR8888:
2935                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2936         case DRM_FORMAT_XRGB8888:
2937                 return PLANE_CTL_FORMAT_XRGB_8888;
2938         /*
2939          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2940          * to be already pre-multiplied. We need to add a knob (or a different
2941          * DRM_FORMAT) for user-space to configure that.
2942          */
2943         case DRM_FORMAT_ABGR8888:
2944                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2945                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2946         case DRM_FORMAT_ARGB8888:
2947                 return PLANE_CTL_FORMAT_XRGB_8888 |
2948                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2949         case DRM_FORMAT_XRGB2101010:
2950                 return PLANE_CTL_FORMAT_XRGB_2101010;
2951         case DRM_FORMAT_XBGR2101010:
2952                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2953         case DRM_FORMAT_YUYV:
2954                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2955         case DRM_FORMAT_YVYU:
2956                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2957         case DRM_FORMAT_UYVY:
2958                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2959         case DRM_FORMAT_VYUY:
2960                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2961         default:
2962                 MISSING_CASE(pixel_format);
2963         }
2964
2965         return 0;
2966 }
2967
2968 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2969 {
2970         switch (fb_modifier) {
2971         case DRM_FORMAT_MOD_NONE:
2972                 break;
2973         case I915_FORMAT_MOD_X_TILED:
2974                 return PLANE_CTL_TILED_X;
2975         case I915_FORMAT_MOD_Y_TILED:
2976                 return PLANE_CTL_TILED_Y;
2977         case I915_FORMAT_MOD_Yf_TILED:
2978                 return PLANE_CTL_TILED_YF;
2979         default:
2980                 MISSING_CASE(fb_modifier);
2981         }
2982
2983         return 0;
2984 }
2985
2986 u32 skl_plane_ctl_rotation(unsigned int rotation)
2987 {
2988         switch (rotation) {
2989         case BIT(DRM_ROTATE_0):
2990                 break;
2991         /*
2992          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2993          * while i915 HW rotation is clockwise, thats why this swapping.
2994          */
2995         case BIT(DRM_ROTATE_90):
2996                 return PLANE_CTL_ROTATE_270;
2997         case BIT(DRM_ROTATE_180):
2998                 return PLANE_CTL_ROTATE_180;
2999         case BIT(DRM_ROTATE_270):
3000                 return PLANE_CTL_ROTATE_90;
3001         default:
3002                 MISSING_CASE(rotation);
3003         }
3004
3005         return 0;
3006 }
3007
3008 static void skylake_update_primary_plane(struct drm_plane *plane,
3009                                          const struct intel_crtc_state *crtc_state,
3010                                          const struct intel_plane_state *plane_state)
3011 {
3012         struct drm_device *dev = plane->dev;
3013         struct drm_i915_private *dev_priv = dev->dev_private;
3014         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3015         struct drm_framebuffer *fb = plane_state->base.fb;
3016         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3017         int pipe = intel_crtc->pipe;
3018         u32 plane_ctl, stride_div, stride;
3019         u32 tile_height, plane_offset, plane_size;
3020         unsigned int rotation = plane_state->base.rotation;
3021         int x_offset, y_offset;
3022         u32 surf_addr;
3023         int scaler_id = plane_state->scaler_id;
3024         int src_x = plane_state->src.x1 >> 16;
3025         int src_y = plane_state->src.y1 >> 16;
3026         int src_w = drm_rect_width(&plane_state->src) >> 16;
3027         int src_h = drm_rect_height(&plane_state->src) >> 16;
3028         int dst_x = plane_state->dst.x1;
3029         int dst_y = plane_state->dst.y1;
3030         int dst_w = drm_rect_width(&plane_state->dst);
3031         int dst_h = drm_rect_height(&plane_state->dst);
3032
3033         plane_ctl = PLANE_CTL_ENABLE |
3034                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3035                     PLANE_CTL_PIPE_CSC_ENABLE;
3036
3037         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3038         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3039         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3040         plane_ctl |= skl_plane_ctl_rotation(rotation);
3041
3042         stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3043                                                fb->pixel_format);
3044         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3045
3046         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3047
3048         if (intel_rotation_90_or_270(rotation)) {
3049                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3050
3051                 /* stride = Surface height in tiles */
3052                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3053                 stride = DIV_ROUND_UP(fb->height, tile_height);
3054                 x_offset = stride * tile_height - src_y - src_h;
3055                 y_offset = src_x;
3056                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3057         } else {
3058                 stride = fb->pitches[0] / stride_div;
3059                 x_offset = src_x;
3060                 y_offset = src_y;
3061                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3062         }
3063         plane_offset = y_offset << 16 | x_offset;
3064
3065         intel_crtc->adjusted_x = x_offset;
3066         intel_crtc->adjusted_y = y_offset;
3067
3068         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3069         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3070         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3071         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3072
3073         if (scaler_id >= 0) {
3074                 uint32_t ps_ctrl = 0;
3075
3076                 WARN_ON(!dst_w || !dst_h);
3077                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3078                         crtc_state->scaler_state.scalers[scaler_id].mode;
3079                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3080                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3081                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3082                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3083                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3084         } else {
3085                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3086         }
3087
3088         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3089
3090         POSTING_READ(PLANE_SURF(pipe, 0));
3091 }
3092
3093 static void skylake_disable_primary_plane(struct drm_plane *primary,
3094                                           struct drm_crtc *crtc)
3095 {
3096         struct drm_device *dev = crtc->dev;
3097         struct drm_i915_private *dev_priv = dev->dev_private;
3098         int pipe = to_intel_crtc(crtc)->pipe;
3099
3100         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3101         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3102         POSTING_READ(PLANE_SURF(pipe, 0));
3103 }
3104
3105 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3106 static int
3107 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3108                            int x, int y, enum mode_set_atomic state)
3109 {
3110         /* Support for kgdboc is disabled, this needs a major rework. */
3111         DRM_ERROR("legacy panic handler not supported any more.\n");
3112
3113         return -ENODEV;
3114 }
3115
3116 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3117 {
3118         struct intel_crtc *crtc;
3119
3120         for_each_intel_crtc(dev_priv->dev, crtc)
3121                 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3122 }
3123
3124 static void intel_update_primary_planes(struct drm_device *dev)
3125 {
3126         struct drm_crtc *crtc;
3127
3128         for_each_crtc(dev, crtc) {
3129                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3130                 struct intel_plane_state *plane_state;
3131
3132                 drm_modeset_lock_crtc(crtc, &plane->base);
3133                 plane_state = to_intel_plane_state(plane->base.state);
3134
3135                 if (plane_state->visible)
3136                         plane->update_plane(&plane->base,
3137                                             to_intel_crtc_state(crtc->state),
3138                                             plane_state);
3139
3140                 drm_modeset_unlock_crtc(crtc);
3141         }
3142 }
3143
3144 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3145 {
3146         /* no reset support for gen2 */
3147         if (IS_GEN2(dev_priv))
3148                 return;
3149
3150         /* reset doesn't touch the display */
3151         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
3152                 return;
3153
3154         drm_modeset_lock_all(dev_priv->dev);
3155         /*
3156          * Disabling the crtcs gracefully seems nicer. Also the
3157          * g33 docs say we should at least disable all the planes.
3158          */
3159         intel_display_suspend(dev_priv->dev);
3160 }
3161
3162 void intel_finish_reset(struct drm_i915_private *dev_priv)
3163 {
3164         /*
3165          * Flips in the rings will be nuked by the reset,
3166          * so complete all pending flips so that user space
3167          * will get its events and not get stuck.
3168          */
3169         intel_complete_page_flips(dev_priv);
3170
3171         /* no reset support for gen2 */
3172         if (IS_GEN2(dev_priv))
3173                 return;
3174
3175         /* reset doesn't touch the display */
3176         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
3177                 /*
3178                  * Flips in the rings have been nuked by the reset,
3179                  * so update the base address of all primary
3180                  * planes to the the last fb to make sure we're
3181                  * showing the correct fb after a reset.
3182                  *
3183                  * FIXME: Atomic will make this obsolete since we won't schedule
3184                  * CS-based flips (which might get lost in gpu resets) any more.
3185                  */
3186                 intel_update_primary_planes(dev_priv->dev);
3187                 return;
3188         }
3189
3190         /*
3191          * The display has been reset as well,
3192          * so need a full re-initialization.
3193          */
3194         intel_runtime_pm_disable_interrupts(dev_priv);
3195         intel_runtime_pm_enable_interrupts(dev_priv);
3196
3197         intel_modeset_init_hw(dev_priv->dev);
3198
3199         spin_lock_irq(&dev_priv->irq_lock);
3200         if (dev_priv->display.hpd_irq_setup)
3201                 dev_priv->display.hpd_irq_setup(dev_priv);
3202         spin_unlock_irq(&dev_priv->irq_lock);
3203
3204         intel_display_resume(dev_priv->dev);
3205
3206         intel_hpd_init(dev_priv);
3207
3208         drm_modeset_unlock_all(dev_priv->dev);
3209 }
3210
3211 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3212 {
3213         struct drm_device *dev = crtc->dev;
3214         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3215         unsigned reset_counter;
3216         bool pending;
3217
3218         reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3219         if (intel_crtc->reset_counter != reset_counter)
3220                 return false;
3221
3222         spin_lock_irq(&dev->event_lock);
3223         pending = to_intel_crtc(crtc)->flip_work != NULL;
3224         spin_unlock_irq(&dev->event_lock);
3225
3226         return pending;
3227 }
3228
3229 static void intel_update_pipe_config(struct intel_crtc *crtc,
3230                                      struct intel_crtc_state *old_crtc_state)
3231 {
3232         struct drm_device *dev = crtc->base.dev;
3233         struct drm_i915_private *dev_priv = dev->dev_private;
3234         struct intel_crtc_state *pipe_config =
3235                 to_intel_crtc_state(crtc->base.state);
3236
3237         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3238         crtc->base.mode = crtc->base.state->mode;
3239
3240         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3241                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3242                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3243
3244         /*
3245          * Update pipe size and adjust fitter if needed: the reason for this is
3246          * that in compute_mode_changes we check the native mode (not the pfit
3247          * mode) to see if we can flip rather than do a full mode set. In the
3248          * fastboot case, we'll flip, but if we don't update the pipesrc and
3249          * pfit state, we'll end up with a big fb scanned out into the wrong
3250          * sized surface.
3251          */
3252
3253         I915_WRITE(PIPESRC(crtc->pipe),
3254                    ((pipe_config->pipe_src_w - 1) << 16) |
3255                    (pipe_config->pipe_src_h - 1));
3256
3257         /* on skylake this is done by detaching scalers */
3258         if (INTEL_INFO(dev)->gen >= 9) {
3259                 skl_detach_scalers(crtc);
3260
3261                 if (pipe_config->pch_pfit.enabled)
3262                         skylake_pfit_enable(crtc);
3263         } else if (HAS_PCH_SPLIT(dev)) {
3264                 if (pipe_config->pch_pfit.enabled)
3265                         ironlake_pfit_enable(crtc);
3266                 else if (old_crtc_state->pch_pfit.enabled)
3267                         ironlake_pfit_disable(crtc, true);
3268         }
3269 }
3270
3271 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3272 {
3273         struct drm_device *dev = crtc->dev;
3274         struct drm_i915_private *dev_priv = dev->dev_private;
3275         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3276         int pipe = intel_crtc->pipe;
3277         i915_reg_t reg;
3278         u32 temp;
3279
3280         /* enable normal train */
3281         reg = FDI_TX_CTL(pipe);
3282         temp = I915_READ(reg);
3283         if (IS_IVYBRIDGE(dev)) {
3284                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3285                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3286         } else {
3287                 temp &= ~FDI_LINK_TRAIN_NONE;
3288                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3289         }
3290         I915_WRITE(reg, temp);
3291
3292         reg = FDI_RX_CTL(pipe);
3293         temp = I915_READ(reg);
3294         if (HAS_PCH_CPT(dev)) {
3295                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3296                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3297         } else {
3298                 temp &= ~FDI_LINK_TRAIN_NONE;
3299                 temp |= FDI_LINK_TRAIN_NONE;
3300         }
3301         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3302
3303         /* wait one idle pattern time */
3304         POSTING_READ(reg);
3305         udelay(1000);
3306
3307         /* IVB wants error correction enabled */
3308         if (IS_IVYBRIDGE(dev))
3309                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3310                            FDI_FE_ERRC_ENABLE);
3311 }
3312
3313 /* The FDI link training functions for ILK/Ibexpeak. */
3314 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3315 {
3316         struct drm_device *dev = crtc->dev;
3317         struct drm_i915_private *dev_priv = dev->dev_private;
3318         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3319         int pipe = intel_crtc->pipe;
3320         i915_reg_t reg;
3321         u32 temp, tries;
3322
3323         /* FDI needs bits from pipe first */
3324         assert_pipe_enabled(dev_priv, pipe);
3325
3326         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3327            for train result */
3328         reg = FDI_RX_IMR(pipe);
3329         temp = I915_READ(reg);
3330         temp &= ~FDI_RX_SYMBOL_LOCK;
3331         temp &= ~FDI_RX_BIT_LOCK;
3332         I915_WRITE(reg, temp);
3333         I915_READ(reg);
3334         udelay(150);
3335
3336         /* enable CPU FDI TX and PCH FDI RX */
3337         reg = FDI_TX_CTL(pipe);
3338         temp = I915_READ(reg);
3339         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3340         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3341         temp &= ~FDI_LINK_TRAIN_NONE;
3342         temp |= FDI_LINK_TRAIN_PATTERN_1;
3343         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3344
3345         reg = FDI_RX_CTL(pipe);
3346         temp = I915_READ(reg);
3347         temp &= ~FDI_LINK_TRAIN_NONE;
3348         temp |= FDI_LINK_TRAIN_PATTERN_1;
3349         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3350
3351         POSTING_READ(reg);
3352         udelay(150);
3353
3354         /* Ironlake workaround, enable clock pointer after FDI enable*/
3355         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3356         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3357                    FDI_RX_PHASE_SYNC_POINTER_EN);
3358
3359         reg = FDI_RX_IIR(pipe);
3360         for (tries = 0; tries < 5; tries++) {
3361                 temp = I915_READ(reg);
3362                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3363
3364                 if ((temp & FDI_RX_BIT_LOCK)) {
3365                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3366                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3367                         break;
3368                 }
3369         }
3370         if (tries == 5)
3371                 DRM_ERROR("FDI train 1 fail!\n");
3372
3373         /* Train 2 */
3374         reg = FDI_TX_CTL(pipe);
3375         temp = I915_READ(reg);
3376         temp &= ~FDI_LINK_TRAIN_NONE;
3377         temp |= FDI_LINK_TRAIN_PATTERN_2;
3378         I915_WRITE(reg, temp);
3379
3380         reg = FDI_RX_CTL(pipe);
3381         temp = I915_READ(reg);
3382         temp &= ~FDI_LINK_TRAIN_NONE;
3383         temp |= FDI_LINK_TRAIN_PATTERN_2;
3384         I915_WRITE(reg, temp);
3385
3386         POSTING_READ(reg);
3387         udelay(150);
3388
3389         reg = FDI_RX_IIR(pipe);
3390         for (tries = 0; tries < 5; tries++) {
3391                 temp = I915_READ(reg);
3392                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3393
3394                 if (temp & FDI_RX_SYMBOL_LOCK) {
3395                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3396                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3397                         break;
3398                 }
3399         }
3400         if (tries == 5)
3401                 DRM_ERROR("FDI train 2 fail!\n");
3402
3403         DRM_DEBUG_KMS("FDI train done\n");
3404
3405 }
3406
3407 static const int snb_b_fdi_train_param[] = {
3408         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3409         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3410         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3411         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3412 };
3413
3414 /* The FDI link training functions for SNB/Cougarpoint. */
3415 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3416 {
3417         struct drm_device *dev = crtc->dev;
3418         struct drm_i915_private *dev_priv = dev->dev_private;
3419         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3420         int pipe = intel_crtc->pipe;
3421         i915_reg_t reg;
3422         u32 temp, i, retry;
3423
3424         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3425            for train result */
3426         reg = FDI_RX_IMR(pipe);
3427         temp = I915_READ(reg);
3428         temp &= ~FDI_RX_SYMBOL_LOCK;
3429         temp &= ~FDI_RX_BIT_LOCK;
3430         I915_WRITE(reg, temp);
3431
3432         POSTING_READ(reg);
3433         udelay(150);
3434
3435         /* enable CPU FDI TX and PCH FDI RX */
3436         reg = FDI_TX_CTL(pipe);
3437         temp = I915_READ(reg);
3438         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3439         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3440         temp &= ~FDI_LINK_TRAIN_NONE;
3441         temp |= FDI_LINK_TRAIN_PATTERN_1;
3442         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3443         /* SNB-B */
3444         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3445         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3446
3447         I915_WRITE(FDI_RX_MISC(pipe),
3448                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3449
3450         reg = FDI_RX_CTL(pipe);
3451         temp = I915_READ(reg);
3452         if (HAS_PCH_CPT(dev)) {
3453                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3454                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3455         } else {
3456                 temp &= ~FDI_LINK_TRAIN_NONE;
3457                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3458         }
3459         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3460
3461         POSTING_READ(reg);
3462         udelay(150);
3463
3464         for (i = 0; i < 4; i++) {
3465                 reg = FDI_TX_CTL(pipe);
3466                 temp = I915_READ(reg);
3467                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3468                 temp |= snb_b_fdi_train_param[i];
3469                 I915_WRITE(reg, temp);
3470
3471                 POSTING_READ(reg);
3472                 udelay(500);
3473
3474                 for (retry = 0; retry < 5; retry++) {
3475                         reg = FDI_RX_IIR(pipe);
3476                         temp = I915_READ(reg);
3477                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3478                         if (temp & FDI_RX_BIT_LOCK) {
3479                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3480                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3481                                 break;
3482                         }
3483                         udelay(50);
3484                 }
3485                 if (retry < 5)
3486                         break;
3487         }
3488         if (i == 4)
3489                 DRM_ERROR("FDI train 1 fail!\n");
3490
3491         /* Train 2 */
3492         reg = FDI_TX_CTL(pipe);
3493         temp = I915_READ(reg);
3494         temp &= ~FDI_LINK_TRAIN_NONE;
3495         temp |= FDI_LINK_TRAIN_PATTERN_2;
3496         if (IS_GEN6(dev)) {
3497                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3498                 /* SNB-B */
3499                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3500         }
3501         I915_WRITE(reg, temp);
3502
3503         reg = FDI_RX_CTL(pipe);
3504         temp = I915_READ(reg);
3505         if (HAS_PCH_CPT(dev)) {
3506                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3507                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3508         } else {
3509                 temp &= ~FDI_LINK_TRAIN_NONE;
3510                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3511         }
3512         I915_WRITE(reg, temp);
3513
3514         POSTING_READ(reg);
3515         udelay(150);
3516
3517         for (i = 0; i < 4; i++) {
3518                 reg = FDI_TX_CTL(pipe);
3519                 temp = I915_READ(reg);
3520                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3521                 temp |= snb_b_fdi_train_param[i];
3522                 I915_WRITE(reg, temp);
3523
3524                 POSTING_READ(reg);
3525                 udelay(500);
3526
3527                 for (retry = 0; retry < 5; retry++) {
3528                         reg = FDI_RX_IIR(pipe);
3529                         temp = I915_READ(reg);
3530                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3531                         if (temp & FDI_RX_SYMBOL_LOCK) {
3532                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3533                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3534                                 break;
3535                         }
3536                         udelay(50);
3537                 }
3538                 if (retry < 5)
3539                         break;
3540         }
3541         if (i == 4)
3542                 DRM_ERROR("FDI train 2 fail!\n");
3543
3544         DRM_DEBUG_KMS("FDI train done.\n");
3545 }
3546
3547 /* Manual link training for Ivy Bridge A0 parts */
3548 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3549 {
3550         struct drm_device *dev = crtc->dev;
3551         struct drm_i915_private *dev_priv = dev->dev_private;
3552         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3553         int pipe = intel_crtc->pipe;
3554         i915_reg_t reg;
3555         u32 temp, i, j;
3556
3557         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3558            for train result */
3559         reg = FDI_RX_IMR(pipe);
3560         temp = I915_READ(reg);
3561         temp &= ~FDI_RX_SYMBOL_LOCK;
3562         temp &= ~FDI_RX_BIT_LOCK;
3563         I915_WRITE(reg, temp);
3564
3565         POSTING_READ(reg);
3566         udelay(150);
3567
3568         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3569                       I915_READ(FDI_RX_IIR(pipe)));
3570
3571         /* Try each vswing and preemphasis setting twice before moving on */
3572         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3573                 /* disable first in case we need to retry */
3574                 reg = FDI_TX_CTL(pipe);
3575                 temp = I915_READ(reg);
3576                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3577                 temp &= ~FDI_TX_ENABLE;
3578                 I915_WRITE(reg, temp);
3579
3580                 reg = FDI_RX_CTL(pipe);
3581                 temp = I915_READ(reg);
3582                 temp &= ~FDI_LINK_TRAIN_AUTO;
3583                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3584                 temp &= ~FDI_RX_ENABLE;
3585                 I915_WRITE(reg, temp);
3586
3587                 /* enable CPU FDI TX and PCH FDI RX */
3588                 reg = FDI_TX_CTL(pipe);
3589                 temp = I915_READ(reg);
3590                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3591                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3592                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3593                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3594                 temp |= snb_b_fdi_train_param[j/2];
3595                 temp |= FDI_COMPOSITE_SYNC;
3596                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3597
3598                 I915_WRITE(FDI_RX_MISC(pipe),
3599                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3600
3601                 reg = FDI_RX_CTL(pipe);
3602                 temp = I915_READ(reg);
3603                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3604                 temp |= FDI_COMPOSITE_SYNC;
3605                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3606
3607                 POSTING_READ(reg);
3608                 udelay(1); /* should be 0.5us */
3609
3610                 for (i = 0; i < 4; i++) {
3611                         reg = FDI_RX_IIR(pipe);
3612                         temp = I915_READ(reg);
3613                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3614
3615                         if (temp & FDI_RX_BIT_LOCK ||
3616                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3617                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3618                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3619                                               i);
3620                                 break;
3621                         }
3622                         udelay(1); /* should be 0.5us */
3623                 }
3624                 if (i == 4) {
3625                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3626                         continue;
3627                 }
3628
3629                 /* Train 2 */
3630                 reg = FDI_TX_CTL(pipe);
3631                 temp = I915_READ(reg);
3632                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3633                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3634                 I915_WRITE(reg, temp);
3635
3636                 reg = FDI_RX_CTL(pipe);
3637                 temp = I915_READ(reg);
3638                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3639                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3640                 I915_WRITE(reg, temp);
3641
3642                 POSTING_READ(reg);
3643                 udelay(2); /* should be 1.5us */
3644
3645                 for (i = 0; i < 4; i++) {
3646                         reg = FDI_RX_IIR(pipe);
3647                         temp = I915_READ(reg);
3648                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3649
3650                         if (temp & FDI_RX_SYMBOL_LOCK ||
3651                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3652                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3653                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3654                                               i);
3655                                 goto train_done;
3656                         }
3657                         udelay(2); /* should be 1.5us */
3658                 }
3659                 if (i == 4)
3660                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3661         }
3662
3663 train_done:
3664         DRM_DEBUG_KMS("FDI train done.\n");
3665 }
3666
3667 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3668 {
3669         struct drm_device *dev = intel_crtc->base.dev;
3670         struct drm_i915_private *dev_priv = dev->dev_private;
3671         int pipe = intel_crtc->pipe;
3672         i915_reg_t reg;
3673         u32 temp;
3674
3675         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3676         reg = FDI_RX_CTL(pipe);
3677         temp = I915_READ(reg);
3678         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3679         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3680         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3681         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3682
3683         POSTING_READ(reg);
3684         udelay(200);
3685
3686         /* Switch from Rawclk to PCDclk */
3687         temp = I915_READ(reg);
3688         I915_WRITE(reg, temp | FDI_PCDCLK);
3689
3690         POSTING_READ(reg);
3691         udelay(200);
3692
3693         /* Enable CPU FDI TX PLL, always on for Ironlake */
3694         reg = FDI_TX_CTL(pipe);
3695         temp = I915_READ(reg);
3696         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3697                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3698
3699                 POSTING_READ(reg);
3700                 udelay(100);
3701         }
3702 }
3703
3704 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3705 {
3706         struct drm_device *dev = intel_crtc->base.dev;
3707         struct drm_i915_private *dev_priv = dev->dev_private;
3708         int pipe = intel_crtc->pipe;
3709         i915_reg_t reg;
3710         u32 temp;
3711
3712         /* Switch from PCDclk to Rawclk */
3713         reg = FDI_RX_CTL(pipe);
3714         temp = I915_READ(reg);
3715         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3716
3717         /* Disable CPU FDI TX PLL */
3718         reg = FDI_TX_CTL(pipe);
3719         temp = I915_READ(reg);
3720         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3721
3722         POSTING_READ(reg);
3723         udelay(100);
3724
3725         reg = FDI_RX_CTL(pipe);
3726         temp = I915_READ(reg);
3727         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3728
3729         /* Wait for the clocks to turn off. */
3730         POSTING_READ(reg);
3731         udelay(100);
3732 }
3733
3734 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3735 {
3736         struct drm_device *dev = crtc->dev;
3737         struct drm_i915_private *dev_priv = dev->dev_private;
3738         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3739         int pipe = intel_crtc->pipe;
3740         i915_reg_t reg;
3741         u32 temp;
3742
3743         /* disable CPU FDI tx and PCH FDI rx */
3744         reg = FDI_TX_CTL(pipe);
3745         temp = I915_READ(reg);
3746         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3747         POSTING_READ(reg);
3748
3749         reg = FDI_RX_CTL(pipe);
3750         temp = I915_READ(reg);
3751         temp &= ~(0x7 << 16);
3752         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3753         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3754
3755         POSTING_READ(reg);
3756         udelay(100);
3757
3758         /* Ironlake workaround, disable clock pointer after downing FDI */
3759         if (HAS_PCH_IBX(dev))
3760                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3761
3762         /* still set train pattern 1 */
3763         reg = FDI_TX_CTL(pipe);
3764         temp = I915_READ(reg);
3765         temp &= ~FDI_LINK_TRAIN_NONE;
3766         temp |= FDI_LINK_TRAIN_PATTERN_1;
3767         I915_WRITE(reg, temp);
3768
3769         reg = FDI_RX_CTL(pipe);
3770         temp = I915_READ(reg);
3771         if (HAS_PCH_CPT(dev)) {
3772                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3773                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3774         } else {
3775                 temp &= ~FDI_LINK_TRAIN_NONE;
3776                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3777         }
3778         /* BPC in FDI rx is consistent with that in PIPECONF */
3779         temp &= ~(0x07 << 16);
3780         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3781         I915_WRITE(reg, temp);
3782
3783         POSTING_READ(reg);
3784         udelay(100);
3785 }
3786
3787 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3788 {
3789         struct intel_crtc *crtc;
3790
3791         /* Note that we don't need to be called with mode_config.lock here
3792          * as our list of CRTC objects is static for the lifetime of the
3793          * device and so cannot disappear as we iterate. Similarly, we can
3794          * happily treat the predicates as racy, atomic checks as userspace
3795          * cannot claim and pin a new fb without at least acquring the
3796          * struct_mutex and so serialising with us.
3797          */
3798         for_each_intel_crtc(dev, crtc) {
3799                 if (atomic_read(&crtc->unpin_work_count) == 0)
3800                         continue;
3801
3802                 if (crtc->flip_work)
3803                         intel_wait_for_vblank(dev, crtc->pipe);
3804
3805                 return true;
3806         }
3807
3808         return false;
3809 }
3810
3811 static void page_flip_completed(struct intel_crtc *intel_crtc)
3812 {
3813         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3814         struct intel_flip_work *work = intel_crtc->flip_work;
3815
3816         intel_crtc->flip_work = NULL;
3817
3818         if (work->event)
3819                 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
3820
3821         drm_crtc_vblank_put(&intel_crtc->base);
3822
3823         wake_up_all(&dev_priv->pending_flip_queue);
3824         queue_work(dev_priv->wq, &work->unpin_work);
3825
3826         trace_i915_flip_complete(intel_crtc->plane,
3827                                  work->pending_flip_obj);
3828 }
3829
3830 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3831 {
3832         struct drm_device *dev = crtc->dev;
3833         struct drm_i915_private *dev_priv = dev->dev_private;
3834         long ret;
3835
3836         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3837
3838         ret = wait_event_interruptible_timeout(
3839                                         dev_priv->pending_flip_queue,
3840                                         !intel_crtc_has_pending_flip(crtc),
3841                                         60*HZ);
3842
3843         if (ret < 0)
3844                 return ret;
3845
3846         if (ret == 0) {
3847                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3848                 struct intel_flip_work *work;
3849
3850                 spin_lock_irq(&dev->event_lock);
3851                 work = intel_crtc->flip_work;
3852                 if (work && !is_mmio_work(work)) {
3853                         WARN_ONCE(1, "Removing stuck page flip\n");
3854                         page_flip_completed(intel_crtc);
3855                 }
3856                 spin_unlock_irq(&dev->event_lock);
3857         }
3858
3859         return 0;
3860 }
3861
3862 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3863 {
3864         u32 temp;
3865
3866         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3867
3868         mutex_lock(&dev_priv->sb_lock);
3869
3870         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3871         temp |= SBI_SSCCTL_DISABLE;
3872         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3873
3874         mutex_unlock(&dev_priv->sb_lock);
3875 }
3876
3877 /* Program iCLKIP clock to the desired frequency */
3878 static void lpt_program_iclkip(struct drm_crtc *crtc)
3879 {
3880         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3881         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3882         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3883         u32 temp;
3884
3885         lpt_disable_iclkip(dev_priv);
3886
3887         /* The iCLK virtual clock root frequency is in MHz,
3888          * but the adjusted_mode->crtc_clock in in KHz. To get the
3889          * divisors, it is necessary to divide one by another, so we
3890          * convert the virtual clock precision to KHz here for higher
3891          * precision.
3892          */
3893         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3894                 u32 iclk_virtual_root_freq = 172800 * 1000;
3895                 u32 iclk_pi_range = 64;
3896                 u32 desired_divisor;
3897
3898                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3899                                                     clock << auxdiv);
3900                 divsel = (desired_divisor / iclk_pi_range) - 2;
3901                 phaseinc = desired_divisor % iclk_pi_range;
3902
3903                 /*
3904                  * Near 20MHz is a corner case which is
3905                  * out of range for the 7-bit divisor
3906                  */
3907                 if (divsel <= 0x7f)
3908                         break;
3909         }
3910
3911         /* This should not happen with any sane values */
3912         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3913                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3914         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3915                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3916
3917         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3918                         clock,
3919                         auxdiv,
3920                         divsel,
3921                         phasedir,
3922                         phaseinc);
3923
3924         mutex_lock(&dev_priv->sb_lock);
3925
3926         /* Program SSCDIVINTPHASE6 */
3927         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3928         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3929         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3930         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3931         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3932         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3933         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3934         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3935
3936         /* Program SSCAUXDIV */
3937         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3938         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3939         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3940         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3941
3942         /* Enable modulator and associated divider */
3943         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3944         temp &= ~SBI_SSCCTL_DISABLE;
3945         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3946
3947         mutex_unlock(&dev_priv->sb_lock);
3948
3949         /* Wait for initialization time */
3950         udelay(24);
3951
3952         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3953 }
3954
3955 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3956 {
3957         u32 divsel, phaseinc, auxdiv;
3958         u32 iclk_virtual_root_freq = 172800 * 1000;
3959         u32 iclk_pi_range = 64;
3960         u32 desired_divisor;
3961         u32 temp;
3962
3963         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3964                 return 0;
3965
3966         mutex_lock(&dev_priv->sb_lock);
3967
3968         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3969         if (temp & SBI_SSCCTL_DISABLE) {
3970                 mutex_unlock(&dev_priv->sb_lock);
3971                 return 0;
3972         }
3973
3974         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3975         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3976                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3977         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3978                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3979
3980         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3981         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
3982                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
3983
3984         mutex_unlock(&dev_priv->sb_lock);
3985
3986         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
3987
3988         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3989                                  desired_divisor << auxdiv);
3990 }
3991
3992 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3993                                                 enum pipe pch_transcoder)
3994 {
3995         struct drm_device *dev = crtc->base.dev;
3996         struct drm_i915_private *dev_priv = dev->dev_private;
3997         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3998
3999         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4000                    I915_READ(HTOTAL(cpu_transcoder)));
4001         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4002                    I915_READ(HBLANK(cpu_transcoder)));
4003         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4004                    I915_READ(HSYNC(cpu_transcoder)));
4005
4006         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4007                    I915_READ(VTOTAL(cpu_transcoder)));
4008         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4009                    I915_READ(VBLANK(cpu_transcoder)));
4010         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4011                    I915_READ(VSYNC(cpu_transcoder)));
4012         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4013                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4014 }
4015
4016 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4017 {
4018         struct drm_i915_private *dev_priv = dev->dev_private;
4019         uint32_t temp;
4020
4021         temp = I915_READ(SOUTH_CHICKEN1);
4022         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4023                 return;
4024
4025         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4026         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4027
4028         temp &= ~FDI_BC_BIFURCATION_SELECT;
4029         if (enable)
4030                 temp |= FDI_BC_BIFURCATION_SELECT;
4031
4032         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4033         I915_WRITE(SOUTH_CHICKEN1, temp);
4034         POSTING_READ(SOUTH_CHICKEN1);
4035 }
4036
4037 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4038 {
4039         struct drm_device *dev = intel_crtc->base.dev;
4040
4041         switch (intel_crtc->pipe) {
4042         case PIPE_A:
4043                 break;
4044         case PIPE_B:
4045                 if (intel_crtc->config->fdi_lanes > 2)
4046                         cpt_set_fdi_bc_bifurcation(dev, false);
4047                 else
4048                         cpt_set_fdi_bc_bifurcation(dev, true);
4049
4050                 break;
4051         case PIPE_C:
4052                 cpt_set_fdi_bc_bifurcation(dev, true);
4053
4054                 break;
4055         default:
4056                 BUG();
4057         }
4058 }
4059
4060 /* Return which DP Port should be selected for Transcoder DP control */
4061 static enum port
4062 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4063 {
4064         struct drm_device *dev = crtc->dev;
4065         struct intel_encoder *encoder;
4066
4067         for_each_encoder_on_crtc(dev, crtc, encoder) {
4068                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4069                     encoder->type == INTEL_OUTPUT_EDP)
4070                         return enc_to_dig_port(&encoder->base)->port;
4071         }
4072
4073         return -1;
4074 }
4075
4076 /*
4077  * Enable PCH resources required for PCH ports:
4078  *   - PCH PLLs
4079  *   - FDI training & RX/TX
4080  *   - update transcoder timings
4081  *   - DP transcoding bits
4082  *   - transcoder
4083  */
4084 static void ironlake_pch_enable(struct drm_crtc *crtc)
4085 {
4086         struct drm_device *dev = crtc->dev;
4087         struct drm_i915_private *dev_priv = dev->dev_private;
4088         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4089         int pipe = intel_crtc->pipe;
4090         u32 temp;
4091
4092         assert_pch_transcoder_disabled(dev_priv, pipe);
4093
4094         if (IS_IVYBRIDGE(dev))
4095                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4096
4097         /* Write the TU size bits before fdi link training, so that error
4098          * detection works. */
4099         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4100                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4101
4102         /* For PCH output, training FDI link */
4103         dev_priv->display.fdi_link_train(crtc);
4104
4105         /* We need to program the right clock selection before writing the pixel
4106          * mutliplier into the DPLL. */
4107         if (HAS_PCH_CPT(dev)) {
4108                 u32 sel;
4109
4110                 temp = I915_READ(PCH_DPLL_SEL);
4111                 temp |= TRANS_DPLL_ENABLE(pipe);
4112                 sel = TRANS_DPLLB_SEL(pipe);
4113                 if (intel_crtc->config->shared_dpll ==
4114                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4115                         temp |= sel;
4116                 else
4117                         temp &= ~sel;
4118                 I915_WRITE(PCH_DPLL_SEL, temp);
4119         }
4120
4121         /* XXX: pch pll's can be enabled any time before we enable the PCH
4122          * transcoder, and we actually should do this to not upset any PCH
4123          * transcoder that already use the clock when we share it.
4124          *
4125          * Note that enable_shared_dpll tries to do the right thing, but
4126          * get_shared_dpll unconditionally resets the pll - we need that to have
4127          * the right LVDS enable sequence. */
4128         intel_enable_shared_dpll(intel_crtc);
4129
4130         /* set transcoder timing, panel must allow it */
4131         assert_panel_unlocked(dev_priv, pipe);
4132         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4133
4134         intel_fdi_normal_train(crtc);
4135
4136         /* For PCH DP, enable TRANS_DP_CTL */
4137         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4138                 const struct drm_display_mode *adjusted_mode =
4139                         &intel_crtc->config->base.adjusted_mode;
4140                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4141                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4142                 temp = I915_READ(reg);
4143                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4144                           TRANS_DP_SYNC_MASK |
4145                           TRANS_DP_BPC_MASK);
4146                 temp |= TRANS_DP_OUTPUT_ENABLE;
4147                 temp |= bpc << 9; /* same format but at 11:9 */
4148
4149                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4150                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4151                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4152                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4153
4154                 switch (intel_trans_dp_port_sel(crtc)) {
4155                 case PORT_B:
4156                         temp |= TRANS_DP_PORT_SEL_B;
4157                         break;
4158                 case PORT_C:
4159                         temp |= TRANS_DP_PORT_SEL_C;
4160                         break;
4161                 case PORT_D:
4162                         temp |= TRANS_DP_PORT_SEL_D;
4163                         break;
4164                 default:
4165                         BUG();
4166                 }
4167
4168                 I915_WRITE(reg, temp);
4169         }
4170
4171         ironlake_enable_pch_transcoder(dev_priv, pipe);
4172 }
4173
4174 static void lpt_pch_enable(struct drm_crtc *crtc)
4175 {
4176         struct drm_device *dev = crtc->dev;
4177         struct drm_i915_private *dev_priv = dev->dev_private;
4178         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4179         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4180
4181         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4182
4183         lpt_program_iclkip(crtc);
4184
4185         /* Set transcoder timing. */
4186         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4187
4188         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4189 }
4190
4191 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4192 {
4193         struct drm_i915_private *dev_priv = dev->dev_private;
4194         i915_reg_t dslreg = PIPEDSL(pipe);
4195         u32 temp;
4196
4197         temp = I915_READ(dslreg);
4198         udelay(500);
4199         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4200                 if (wait_for(I915_READ(dslreg) != temp, 5))
4201                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4202         }
4203 }
4204
4205 static int
4206 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4207                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4208                   int src_w, int src_h, int dst_w, int dst_h)
4209 {
4210         struct intel_crtc_scaler_state *scaler_state =
4211                 &crtc_state->scaler_state;
4212         struct intel_crtc *intel_crtc =
4213                 to_intel_crtc(crtc_state->base.crtc);
4214         int need_scaling;
4215
4216         need_scaling = intel_rotation_90_or_270(rotation) ?
4217                 (src_h != dst_w || src_w != dst_h):
4218                 (src_w != dst_w || src_h != dst_h);
4219
4220         /*
4221          * if plane is being disabled or scaler is no more required or force detach
4222          *  - free scaler binded to this plane/crtc
4223          *  - in order to do this, update crtc->scaler_usage
4224          *
4225          * Here scaler state in crtc_state is set free so that
4226          * scaler can be assigned to other user. Actual register
4227          * update to free the scaler is done in plane/panel-fit programming.
4228          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4229          */
4230         if (force_detach || !need_scaling) {
4231                 if (*scaler_id >= 0) {
4232                         scaler_state->scaler_users &= ~(1 << scaler_user);
4233                         scaler_state->scalers[*scaler_id].in_use = 0;
4234
4235                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4236                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4237                                 intel_crtc->pipe, scaler_user, *scaler_id,
4238                                 scaler_state->scaler_users);
4239                         *scaler_id = -1;
4240                 }
4241                 return 0;
4242         }
4243
4244         /* range checks */
4245         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4246                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4247
4248                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4249                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4250                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4251                         "size is out of scaler range\n",
4252                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4253                 return -EINVAL;
4254         }
4255
4256         /* mark this plane as a scaler user in crtc_state */
4257         scaler_state->scaler_users |= (1 << scaler_user);
4258         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4259                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4260                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4261                 scaler_state->scaler_users);
4262
4263         return 0;
4264 }
4265
4266 /**
4267  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4268  *
4269  * @state: crtc's scaler state
4270  *
4271  * Return
4272  *     0 - scaler_usage updated successfully
4273  *    error - requested scaling cannot be supported or other error condition
4274  */
4275 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4276 {
4277         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4278         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4279
4280         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4281                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4282
4283         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4284                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4285                 state->pipe_src_w, state->pipe_src_h,
4286                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4287 }
4288
4289 /**
4290  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4291  *
4292  * @state: crtc's scaler state
4293  * @plane_state: atomic plane state to update
4294  *
4295  * Return
4296  *     0 - scaler_usage updated successfully
4297  *    error - requested scaling cannot be supported or other error condition
4298  */
4299 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4300                                    struct intel_plane_state *plane_state)
4301 {
4302
4303         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4304         struct intel_plane *intel_plane =
4305                 to_intel_plane(plane_state->base.plane);
4306         struct drm_framebuffer *fb = plane_state->base.fb;
4307         int ret;
4308
4309         bool force_detach = !fb || !plane_state->visible;
4310
4311         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4312                       intel_plane->base.base.id, intel_crtc->pipe,
4313                       drm_plane_index(&intel_plane->base));
4314
4315         ret = skl_update_scaler(crtc_state, force_detach,
4316                                 drm_plane_index(&intel_plane->base),
4317                                 &plane_state->scaler_id,
4318                                 plane_state->base.rotation,
4319                                 drm_rect_width(&plane_state->src) >> 16,
4320                                 drm_rect_height(&plane_state->src) >> 16,
4321                                 drm_rect_width(&plane_state->dst),
4322                                 drm_rect_height(&plane_state->dst));
4323
4324         if (ret || plane_state->scaler_id < 0)
4325                 return ret;
4326
4327         /* check colorkey */
4328         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4329                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4330                               intel_plane->base.base.id);
4331                 return -EINVAL;
4332         }
4333
4334         /* Check src format */
4335         switch (fb->pixel_format) {
4336         case DRM_FORMAT_RGB565:
4337         case DRM_FORMAT_XBGR8888:
4338         case DRM_FORMAT_XRGB8888:
4339         case DRM_FORMAT_ABGR8888:
4340         case DRM_FORMAT_ARGB8888:
4341         case DRM_FORMAT_XRGB2101010:
4342         case DRM_FORMAT_XBGR2101010:
4343         case DRM_FORMAT_YUYV:
4344         case DRM_FORMAT_YVYU:
4345         case DRM_FORMAT_UYVY:
4346         case DRM_FORMAT_VYUY:
4347                 break;
4348         default:
4349                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4350                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4351                 return -EINVAL;
4352         }
4353
4354         return 0;
4355 }
4356
4357 static void skylake_scaler_disable(struct intel_crtc *crtc)
4358 {
4359         int i;
4360
4361         for (i = 0; i < crtc->num_scalers; i++)
4362                 skl_detach_scaler(crtc, i);
4363 }
4364
4365 static void skylake_pfit_enable(struct intel_crtc *crtc)
4366 {
4367         struct drm_device *dev = crtc->base.dev;
4368         struct drm_i915_private *dev_priv = dev->dev_private;
4369         int pipe = crtc->pipe;
4370         struct intel_crtc_scaler_state *scaler_state =
4371                 &crtc->config->scaler_state;
4372
4373         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4374
4375         if (crtc->config->pch_pfit.enabled) {
4376                 int id;
4377
4378                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4379                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4380                         return;
4381                 }
4382
4383                 id = scaler_state->scaler_id;
4384                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4385                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4386                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4387                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4388
4389                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4390         }
4391 }
4392
4393 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4394 {
4395         struct drm_device *dev = crtc->base.dev;
4396         struct drm_i915_private *dev_priv = dev->dev_private;
4397         int pipe = crtc->pipe;
4398
4399         if (crtc->config->pch_pfit.enabled) {
4400                 /* Force use of hard-coded filter coefficients
4401                  * as some pre-programmed values are broken,
4402                  * e.g. x201.
4403                  */
4404                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4405                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4406                                                  PF_PIPE_SEL_IVB(pipe));
4407                 else
4408                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4409                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4410                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4411         }
4412 }
4413
4414 void hsw_enable_ips(struct intel_crtc *crtc)
4415 {
4416         struct drm_device *dev = crtc->base.dev;
4417         struct drm_i915_private *dev_priv = dev->dev_private;
4418
4419         if (!crtc->config->ips_enabled)
4420                 return;
4421
4422         /*
4423          * We can only enable IPS after we enable a plane and wait for a vblank
4424          * This function is called from post_plane_update, which is run after
4425          * a vblank wait.
4426          */
4427
4428         assert_plane_enabled(dev_priv, crtc->plane);
4429         if (IS_BROADWELL(dev)) {
4430                 mutex_lock(&dev_priv->rps.hw_lock);
4431                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4432                 mutex_unlock(&dev_priv->rps.hw_lock);
4433                 /* Quoting Art Runyan: "its not safe to expect any particular
4434                  * value in IPS_CTL bit 31 after enabling IPS through the
4435                  * mailbox." Moreover, the mailbox may return a bogus state,
4436                  * so we need to just enable it and continue on.
4437                  */
4438         } else {
4439                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4440                 /* The bit only becomes 1 in the next vblank, so this wait here
4441                  * is essentially intel_wait_for_vblank. If we don't have this
4442                  * and don't wait for vblanks until the end of crtc_enable, then
4443                  * the HW state readout code will complain that the expected
4444                  * IPS_CTL value is not the one we read. */
4445                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4446                         DRM_ERROR("Timed out waiting for IPS enable\n");
4447         }
4448 }
4449
4450 void hsw_disable_ips(struct intel_crtc *crtc)
4451 {
4452         struct drm_device *dev = crtc->base.dev;
4453         struct drm_i915_private *dev_priv = dev->dev_private;
4454
4455         if (!crtc->config->ips_enabled)
4456                 return;
4457
4458         assert_plane_enabled(dev_priv, crtc->plane);
4459         if (IS_BROADWELL(dev)) {
4460                 mutex_lock(&dev_priv->rps.hw_lock);
4461                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4462                 mutex_unlock(&dev_priv->rps.hw_lock);
4463                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4464                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4465                         DRM_ERROR("Timed out waiting for IPS disable\n");
4466         } else {
4467                 I915_WRITE(IPS_CTL, 0);
4468                 POSTING_READ(IPS_CTL);
4469         }
4470
4471         /* We need to wait for a vblank before we can disable the plane. */
4472         intel_wait_for_vblank(dev, crtc->pipe);
4473 }
4474
4475 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4476 {
4477         if (intel_crtc->overlay) {
4478                 struct drm_device *dev = intel_crtc->base.dev;
4479                 struct drm_i915_private *dev_priv = dev->dev_private;
4480
4481                 mutex_lock(&dev->struct_mutex);
4482                 dev_priv->mm.interruptible = false;
4483                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4484                 dev_priv->mm.interruptible = true;
4485                 mutex_unlock(&dev->struct_mutex);
4486         }
4487
4488         /* Let userspace switch the overlay on again. In most cases userspace
4489          * has to recompute where to put it anyway.
4490          */
4491 }
4492
4493 /**
4494  * intel_post_enable_primary - Perform operations after enabling primary plane
4495  * @crtc: the CRTC whose primary plane was just enabled
4496  *
4497  * Performs potentially sleeping operations that must be done after the primary
4498  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4499  * called due to an explicit primary plane update, or due to an implicit
4500  * re-enable that is caused when a sprite plane is updated to no longer
4501  * completely hide the primary plane.
4502  */
4503 static void
4504 intel_post_enable_primary(struct drm_crtc *crtc)
4505 {
4506         struct drm_device *dev = crtc->dev;
4507         struct drm_i915_private *dev_priv = dev->dev_private;
4508         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4509         int pipe = intel_crtc->pipe;
4510
4511         /*
4512          * FIXME IPS should be fine as long as one plane is
4513          * enabled, but in practice it seems to have problems
4514          * when going from primary only to sprite only and vice
4515          * versa.
4516          */
4517         hsw_enable_ips(intel_crtc);
4518
4519         /*
4520          * Gen2 reports pipe underruns whenever all planes are disabled.
4521          * So don't enable underrun reporting before at least some planes
4522          * are enabled.
4523          * FIXME: Need to fix the logic to work when we turn off all planes
4524          * but leave the pipe running.
4525          */
4526         if (IS_GEN2(dev))
4527                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4528
4529         /* Underruns don't always raise interrupts, so check manually. */
4530         intel_check_cpu_fifo_underruns(dev_priv);
4531         intel_check_pch_fifo_underruns(dev_priv);
4532 }
4533
4534 /* FIXME move all this to pre_plane_update() with proper state tracking */
4535 static void
4536 intel_pre_disable_primary(struct drm_crtc *crtc)
4537 {
4538         struct drm_device *dev = crtc->dev;
4539         struct drm_i915_private *dev_priv = dev->dev_private;
4540         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4541         int pipe = intel_crtc->pipe;
4542
4543         /*
4544          * Gen2 reports pipe underruns whenever all planes are disabled.
4545          * So diasble underrun reporting before all the planes get disabled.
4546          * FIXME: Need to fix the logic to work when we turn off all planes
4547          * but leave the pipe running.
4548          */
4549         if (IS_GEN2(dev))
4550                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4551
4552         /*
4553          * FIXME IPS should be fine as long as one plane is
4554          * enabled, but in practice it seems to have problems
4555          * when going from primary only to sprite only and vice
4556          * versa.
4557          */
4558         hsw_disable_ips(intel_crtc);
4559 }
4560
4561 /* FIXME get rid of this and use pre_plane_update */
4562 static void
4563 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4564 {
4565         struct drm_device *dev = crtc->dev;
4566         struct drm_i915_private *dev_priv = dev->dev_private;
4567         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4568         int pipe = intel_crtc->pipe;
4569
4570         intel_pre_disable_primary(crtc);
4571
4572         /*
4573          * Vblank time updates from the shadow to live plane control register
4574          * are blocked if the memory self-refresh mode is active at that
4575          * moment. So to make sure the plane gets truly disabled, disable
4576          * first the self-refresh mode. The self-refresh enable bit in turn
4577          * will be checked/applied by the HW only at the next frame start
4578          * event which is after the vblank start event, so we need to have a
4579          * wait-for-vblank between disabling the plane and the pipe.
4580          */
4581         if (HAS_GMCH_DISPLAY(dev)) {
4582                 intel_set_memory_cxsr(dev_priv, false);
4583                 dev_priv->wm.vlv.cxsr = false;
4584                 intel_wait_for_vblank(dev, pipe);
4585         }
4586 }
4587
4588 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4589 {
4590         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4591         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4592         struct intel_crtc_state *pipe_config =
4593                 to_intel_crtc_state(crtc->base.state);
4594         struct drm_device *dev = crtc->base.dev;
4595         struct drm_plane *primary = crtc->base.primary;
4596         struct drm_plane_state *old_pri_state =
4597                 drm_atomic_get_existing_plane_state(old_state, primary);
4598
4599         intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4600
4601         crtc->wm.cxsr_allowed = true;
4602
4603         if (pipe_config->update_wm_post && pipe_config->base.active)
4604                 intel_update_watermarks(&crtc->base);
4605
4606         if (old_pri_state) {
4607                 struct intel_plane_state *primary_state =
4608                         to_intel_plane_state(primary->state);
4609                 struct intel_plane_state *old_primary_state =
4610                         to_intel_plane_state(old_pri_state);
4611
4612                 intel_fbc_post_update(crtc);
4613
4614                 if (primary_state->visible &&
4615                     (needs_modeset(&pipe_config->base) ||
4616                      !old_primary_state->visible))
4617                         intel_post_enable_primary(&crtc->base);
4618         }
4619 }
4620
4621 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4622 {
4623         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4624         struct drm_device *dev = crtc->base.dev;
4625         struct drm_i915_private *dev_priv = dev->dev_private;
4626         struct intel_crtc_state *pipe_config =
4627                 to_intel_crtc_state(crtc->base.state);
4628         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4629         struct drm_plane *primary = crtc->base.primary;
4630         struct drm_plane_state *old_pri_state =
4631                 drm_atomic_get_existing_plane_state(old_state, primary);
4632         bool modeset = needs_modeset(&pipe_config->base);
4633
4634         if (old_pri_state) {
4635                 struct intel_plane_state *primary_state =
4636                         to_intel_plane_state(primary->state);
4637                 struct intel_plane_state *old_primary_state =
4638                         to_intel_plane_state(old_pri_state);
4639
4640                 intel_fbc_pre_update(crtc);
4641
4642                 if (old_primary_state->visible &&
4643                     (modeset || !primary_state->visible))
4644                         intel_pre_disable_primary(&crtc->base);
4645         }
4646
4647         if (pipe_config->disable_cxsr) {
4648                 crtc->wm.cxsr_allowed = false;
4649
4650                 /*
4651                  * Vblank time updates from the shadow to live plane control register
4652                  * are blocked if the memory self-refresh mode is active at that
4653                  * moment. So to make sure the plane gets truly disabled, disable
4654                  * first the self-refresh mode. The self-refresh enable bit in turn
4655                  * will be checked/applied by the HW only at the next frame start
4656                  * event which is after the vblank start event, so we need to have a
4657                  * wait-for-vblank between disabling the plane and the pipe.
4658                  */
4659                 if (old_crtc_state->base.active) {
4660                         intel_set_memory_cxsr(dev_priv, false);
4661                         dev_priv->wm.vlv.cxsr = false;
4662                         intel_wait_for_vblank(dev, crtc->pipe);
4663                 }
4664         }
4665
4666         /*
4667          * IVB workaround: must disable low power watermarks for at least
4668          * one frame before enabling scaling.  LP watermarks can be re-enabled
4669          * when scaling is disabled.
4670          *
4671          * WaCxSRDisabledForSpriteScaling:ivb
4672          */
4673         if (pipe_config->disable_lp_wm) {
4674                 ilk_disable_lp_wm(dev);
4675                 intel_wait_for_vblank(dev, crtc->pipe);
4676         }
4677
4678         /*
4679          * If we're doing a modeset, we're done.  No need to do any pre-vblank
4680          * watermark programming here.
4681          */
4682         if (needs_modeset(&pipe_config->base))
4683                 return;
4684
4685         /*
4686          * For platforms that support atomic watermarks, program the
4687          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
4688          * will be the intermediate values that are safe for both pre- and
4689          * post- vblank; when vblank happens, the 'active' values will be set
4690          * to the final 'target' values and we'll do this again to get the
4691          * optimal watermarks.  For gen9+ platforms, the values we program here
4692          * will be the final target values which will get automatically latched
4693          * at vblank time; no further programming will be necessary.
4694          *
4695          * If a platform hasn't been transitioned to atomic watermarks yet,
4696          * we'll continue to update watermarks the old way, if flags tell
4697          * us to.
4698          */
4699         if (dev_priv->display.initial_watermarks != NULL)
4700                 dev_priv->display.initial_watermarks(pipe_config);
4701         else if (pipe_config->update_wm_pre)
4702                 intel_update_watermarks(&crtc->base);
4703 }
4704
4705 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4706 {
4707         struct drm_device *dev = crtc->dev;
4708         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4709         struct drm_plane *p;
4710         int pipe = intel_crtc->pipe;
4711
4712         intel_crtc_dpms_overlay_disable(intel_crtc);
4713
4714         drm_for_each_plane_mask(p, dev, plane_mask)
4715                 to_intel_plane(p)->disable_plane(p, crtc);
4716
4717         /*
4718          * FIXME: Once we grow proper nuclear flip support out of this we need
4719          * to compute the mask of flip planes precisely. For the time being
4720          * consider this a flip to a NULL plane.
4721          */
4722         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4723 }
4724
4725 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4726 {
4727         struct drm_device *dev = crtc->dev;
4728         struct drm_i915_private *dev_priv = dev->dev_private;
4729         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4730         struct intel_encoder *encoder;
4731         int pipe = intel_crtc->pipe;
4732         struct intel_crtc_state *pipe_config =
4733                 to_intel_crtc_state(crtc->state);
4734
4735         if (WARN_ON(intel_crtc->active))
4736                 return;
4737
4738         /*
4739          * Sometimes spurious CPU pipe underruns happen during FDI
4740          * training, at least with VGA+HDMI cloning. Suppress them.
4741          *
4742          * On ILK we get an occasional spurious CPU pipe underruns
4743          * between eDP port A enable and vdd enable. Also PCH port
4744          * enable seems to result in the occasional CPU pipe underrun.
4745          *
4746          * Spurious PCH underruns also occur during PCH enabling.
4747          */
4748         if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4749                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4750         if (intel_crtc->config->has_pch_encoder)
4751                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4752
4753         if (intel_crtc->config->has_pch_encoder)
4754                 intel_prepare_shared_dpll(intel_crtc);
4755
4756         if (intel_crtc->config->has_dp_encoder)
4757                 intel_dp_set_m_n(intel_crtc, M1_N1);
4758
4759         intel_set_pipe_timings(intel_crtc);
4760         intel_set_pipe_src_size(intel_crtc);
4761
4762         if (intel_crtc->config->has_pch_encoder) {
4763                 intel_cpu_transcoder_set_m_n(intel_crtc,
4764                                      &intel_crtc->config->fdi_m_n, NULL);
4765         }
4766
4767         ironlake_set_pipeconf(crtc);
4768
4769         intel_crtc->active = true;
4770
4771         for_each_encoder_on_crtc(dev, crtc, encoder)
4772                 if (encoder->pre_enable)
4773                         encoder->pre_enable(encoder);
4774
4775         if (intel_crtc->config->has_pch_encoder) {
4776                 /* Note: FDI PLL enabling _must_ be done before we enable the
4777                  * cpu pipes, hence this is separate from all the other fdi/pch
4778                  * enabling. */
4779                 ironlake_fdi_pll_enable(intel_crtc);
4780         } else {
4781                 assert_fdi_tx_disabled(dev_priv, pipe);
4782                 assert_fdi_rx_disabled(dev_priv, pipe);
4783         }
4784
4785         ironlake_pfit_enable(intel_crtc);
4786
4787         /*
4788          * On ILK+ LUT must be loaded before the pipe is running but with
4789          * clocks enabled
4790          */
4791         intel_color_load_luts(&pipe_config->base);
4792
4793         if (dev_priv->display.initial_watermarks != NULL)
4794                 dev_priv->display.initial_watermarks(intel_crtc->config);
4795         intel_enable_pipe(intel_crtc);
4796
4797         if (intel_crtc->config->has_pch_encoder)
4798                 ironlake_pch_enable(crtc);
4799
4800         assert_vblank_disabled(crtc);
4801         drm_crtc_vblank_on(crtc);
4802
4803         for_each_encoder_on_crtc(dev, crtc, encoder)
4804                 encoder->enable(encoder);
4805
4806         if (HAS_PCH_CPT(dev))
4807                 cpt_verify_modeset(dev, intel_crtc->pipe);
4808
4809         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4810         if (intel_crtc->config->has_pch_encoder)
4811                 intel_wait_for_vblank(dev, pipe);
4812         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4813         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4814 }
4815
4816 /* IPS only exists on ULT machines and is tied to pipe A. */
4817 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4818 {
4819         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4820 }
4821
4822 static void haswell_crtc_enable(struct drm_crtc *crtc)
4823 {
4824         struct drm_device *dev = crtc->dev;
4825         struct drm_i915_private *dev_priv = dev->dev_private;
4826         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4827         struct intel_encoder *encoder;
4828         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4829         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4830         struct intel_crtc_state *pipe_config =
4831                 to_intel_crtc_state(crtc->state);
4832
4833         if (WARN_ON(intel_crtc->active))
4834                 return;
4835
4836         if (intel_crtc->config->has_pch_encoder)
4837                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4838                                                       false);
4839
4840         if (intel_crtc->config->shared_dpll)
4841                 intel_enable_shared_dpll(intel_crtc);
4842
4843         if (intel_crtc->config->has_dp_encoder)
4844                 intel_dp_set_m_n(intel_crtc, M1_N1);
4845
4846         if (!intel_crtc->config->has_dsi_encoder)
4847                 intel_set_pipe_timings(intel_crtc);
4848
4849         intel_set_pipe_src_size(intel_crtc);
4850
4851         if (cpu_transcoder != TRANSCODER_EDP &&
4852             !transcoder_is_dsi(cpu_transcoder)) {
4853                 I915_WRITE(PIPE_MULT(cpu_transcoder),
4854                            intel_crtc->config->pixel_multiplier - 1);
4855         }
4856
4857         if (intel_crtc->config->has_pch_encoder) {
4858                 intel_cpu_transcoder_set_m_n(intel_crtc,
4859                                      &intel_crtc->config->fdi_m_n, NULL);
4860         }
4861
4862         if (!intel_crtc->config->has_dsi_encoder)
4863                 haswell_set_pipeconf(crtc);
4864
4865         haswell_set_pipemisc(crtc);
4866
4867         intel_color_set_csc(&pipe_config->base);
4868
4869         intel_crtc->active = true;
4870
4871         if (intel_crtc->config->has_pch_encoder)
4872                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4873         else
4874                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4875
4876         for_each_encoder_on_crtc(dev, crtc, encoder) {
4877                 if (encoder->pre_enable)
4878                         encoder->pre_enable(encoder);
4879         }
4880
4881         if (intel_crtc->config->has_pch_encoder)
4882                 dev_priv->display.fdi_link_train(crtc);
4883
4884         if (!intel_crtc->config->has_dsi_encoder)
4885                 intel_ddi_enable_pipe_clock(intel_crtc);
4886
4887         if (INTEL_INFO(dev)->gen >= 9)
4888                 skylake_pfit_enable(intel_crtc);
4889         else
4890                 ironlake_pfit_enable(intel_crtc);
4891
4892         /*
4893          * On ILK+ LUT must be loaded before the pipe is running but with
4894          * clocks enabled
4895          */
4896         intel_color_load_luts(&pipe_config->base);
4897
4898         intel_ddi_set_pipe_settings(crtc);
4899         if (!intel_crtc->config->has_dsi_encoder)
4900                 intel_ddi_enable_transcoder_func(crtc);
4901
4902         if (dev_priv->display.initial_watermarks != NULL)
4903                 dev_priv->display.initial_watermarks(pipe_config);
4904         else
4905                 intel_update_watermarks(crtc);
4906
4907         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4908         if (!intel_crtc->config->has_dsi_encoder)
4909                 intel_enable_pipe(intel_crtc);
4910
4911         if (intel_crtc->config->has_pch_encoder)
4912                 lpt_pch_enable(crtc);
4913
4914         if (intel_crtc->config->dp_encoder_is_mst)
4915                 intel_ddi_set_vc_payload_alloc(crtc, true);
4916
4917         assert_vblank_disabled(crtc);
4918         drm_crtc_vblank_on(crtc);
4919
4920         for_each_encoder_on_crtc(dev, crtc, encoder) {
4921                 encoder->enable(encoder);
4922                 intel_opregion_notify_encoder(encoder, true);
4923         }
4924
4925         if (intel_crtc->config->has_pch_encoder) {
4926                 intel_wait_for_vblank(dev, pipe);
4927                 intel_wait_for_vblank(dev, pipe);
4928                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4929                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4930                                                       true);
4931         }
4932
4933         /* If we change the relative order between pipe/planes enabling, we need
4934          * to change the workaround. */
4935         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4936         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4937                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4938                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4939         }
4940 }
4941
4942 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4943 {
4944         struct drm_device *dev = crtc->base.dev;
4945         struct drm_i915_private *dev_priv = dev->dev_private;
4946         int pipe = crtc->pipe;
4947
4948         /* To avoid upsetting the power well on haswell only disable the pfit if
4949          * it's in use. The hw state code will make sure we get this right. */
4950         if (force || crtc->config->pch_pfit.enabled) {
4951                 I915_WRITE(PF_CTL(pipe), 0);
4952                 I915_WRITE(PF_WIN_POS(pipe), 0);
4953                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4954         }
4955 }
4956
4957 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4958 {
4959         struct drm_device *dev = crtc->dev;
4960         struct drm_i915_private *dev_priv = dev->dev_private;
4961         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4962         struct intel_encoder *encoder;
4963         int pipe = intel_crtc->pipe;
4964
4965         /*
4966          * Sometimes spurious CPU pipe underruns happen when the
4967          * pipe is already disabled, but FDI RX/TX is still enabled.
4968          * Happens at least with VGA+HDMI cloning. Suppress them.
4969          */
4970         if (intel_crtc->config->has_pch_encoder) {
4971                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4972                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4973         }
4974
4975         for_each_encoder_on_crtc(dev, crtc, encoder)
4976                 encoder->disable(encoder);
4977
4978         drm_crtc_vblank_off(crtc);
4979         assert_vblank_disabled(crtc);
4980
4981         intel_disable_pipe(intel_crtc);
4982
4983         ironlake_pfit_disable(intel_crtc, false);
4984
4985         if (intel_crtc->config->has_pch_encoder)
4986                 ironlake_fdi_disable(crtc);
4987
4988         for_each_encoder_on_crtc(dev, crtc, encoder)
4989                 if (encoder->post_disable)
4990                         encoder->post_disable(encoder);
4991
4992         if (intel_crtc->config->has_pch_encoder) {
4993                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4994
4995                 if (HAS_PCH_CPT(dev)) {
4996                         i915_reg_t reg;
4997                         u32 temp;
4998
4999                         /* disable TRANS_DP_CTL */
5000                         reg = TRANS_DP_CTL(pipe);
5001                         temp = I915_READ(reg);
5002                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5003                                   TRANS_DP_PORT_SEL_MASK);
5004                         temp |= TRANS_DP_PORT_SEL_NONE;
5005                         I915_WRITE(reg, temp);
5006
5007                         /* disable DPLL_SEL */
5008                         temp = I915_READ(PCH_DPLL_SEL);
5009                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5010                         I915_WRITE(PCH_DPLL_SEL, temp);
5011                 }
5012
5013                 ironlake_fdi_pll_disable(intel_crtc);
5014         }
5015
5016         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5017         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5018 }
5019
5020 static void haswell_crtc_disable(struct drm_crtc *crtc)
5021 {
5022         struct drm_device *dev = crtc->dev;
5023         struct drm_i915_private *dev_priv = dev->dev_private;
5024         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5025         struct intel_encoder *encoder;
5026         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5027
5028         if (intel_crtc->config->has_pch_encoder)
5029                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5030                                                       false);
5031
5032         for_each_encoder_on_crtc(dev, crtc, encoder) {
5033                 intel_opregion_notify_encoder(encoder, false);
5034                 encoder->disable(encoder);
5035         }
5036
5037         drm_crtc_vblank_off(crtc);
5038         assert_vblank_disabled(crtc);
5039
5040         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5041         if (!intel_crtc->config->has_dsi_encoder)
5042                 intel_disable_pipe(intel_crtc);
5043
5044         if (intel_crtc->config->dp_encoder_is_mst)
5045                 intel_ddi_set_vc_payload_alloc(crtc, false);
5046
5047         if (!intel_crtc->config->has_dsi_encoder)
5048                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5049
5050         if (INTEL_INFO(dev)->gen >= 9)
5051                 skylake_scaler_disable(intel_crtc);
5052         else
5053                 ironlake_pfit_disable(intel_crtc, false);
5054
5055         if (!intel_crtc->config->has_dsi_encoder)
5056                 intel_ddi_disable_pipe_clock(intel_crtc);
5057
5058         for_each_encoder_on_crtc(dev, crtc, encoder)
5059                 if (encoder->post_disable)
5060                         encoder->post_disable(encoder);
5061
5062         if (intel_crtc->config->has_pch_encoder) {
5063                 lpt_disable_pch_transcoder(dev_priv);
5064                 lpt_disable_iclkip(dev_priv);
5065                 intel_ddi_fdi_disable(crtc);
5066
5067                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5068                                                       true);
5069         }
5070 }
5071
5072 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5073 {
5074         struct drm_device *dev = crtc->base.dev;
5075         struct drm_i915_private *dev_priv = dev->dev_private;
5076         struct intel_crtc_state *pipe_config = crtc->config;
5077
5078         if (!pipe_config->gmch_pfit.control)
5079                 return;
5080
5081         /*
5082          * The panel fitter should only be adjusted whilst the pipe is disabled,
5083          * according to register description and PRM.
5084          */
5085         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5086         assert_pipe_disabled(dev_priv, crtc->pipe);
5087
5088         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5089         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5090
5091         /* Border color in case we don't scale up to the full screen. Black by
5092          * default, change to something else for debugging. */
5093         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5094 }
5095
5096 static enum intel_display_power_domain port_to_power_domain(enum port port)
5097 {
5098         switch (port) {
5099         case PORT_A:
5100                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5101         case PORT_B:
5102                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5103         case PORT_C:
5104                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5105         case PORT_D:
5106                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5107         case PORT_E:
5108                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5109         default:
5110                 MISSING_CASE(port);
5111                 return POWER_DOMAIN_PORT_OTHER;
5112         }
5113 }
5114
5115 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5116 {
5117         switch (port) {
5118         case PORT_A:
5119                 return POWER_DOMAIN_AUX_A;
5120         case PORT_B:
5121                 return POWER_DOMAIN_AUX_B;
5122         case PORT_C:
5123                 return POWER_DOMAIN_AUX_C;
5124         case PORT_D:
5125                 return POWER_DOMAIN_AUX_D;
5126         case PORT_E:
5127                 /* FIXME: Check VBT for actual wiring of PORT E */
5128                 return POWER_DOMAIN_AUX_D;
5129         default:
5130                 MISSING_CASE(port);
5131                 return POWER_DOMAIN_AUX_A;
5132         }
5133 }
5134
5135 enum intel_display_power_domain
5136 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5137 {
5138         struct drm_device *dev = intel_encoder->base.dev;
5139         struct intel_digital_port *intel_dig_port;
5140
5141         switch (intel_encoder->type) {
5142         case INTEL_OUTPUT_UNKNOWN:
5143                 /* Only DDI platforms should ever use this output type */
5144                 WARN_ON_ONCE(!HAS_DDI(dev));
5145         case INTEL_OUTPUT_DISPLAYPORT:
5146         case INTEL_OUTPUT_HDMI:
5147         case INTEL_OUTPUT_EDP:
5148                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5149                 return port_to_power_domain(intel_dig_port->port);
5150         case INTEL_OUTPUT_DP_MST:
5151                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5152                 return port_to_power_domain(intel_dig_port->port);
5153         case INTEL_OUTPUT_ANALOG:
5154                 return POWER_DOMAIN_PORT_CRT;
5155         case INTEL_OUTPUT_DSI:
5156                 return POWER_DOMAIN_PORT_DSI;
5157         default:
5158                 return POWER_DOMAIN_PORT_OTHER;
5159         }
5160 }
5161
5162 enum intel_display_power_domain
5163 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5164 {
5165         struct drm_device *dev = intel_encoder->base.dev;
5166         struct intel_digital_port *intel_dig_port;
5167
5168         switch (intel_encoder->type) {
5169         case INTEL_OUTPUT_UNKNOWN:
5170         case INTEL_OUTPUT_HDMI:
5171                 /*
5172                  * Only DDI platforms should ever use these output types.
5173                  * We can get here after the HDMI detect code has already set
5174                  * the type of the shared encoder. Since we can't be sure
5175                  * what's the status of the given connectors, play safe and
5176                  * run the DP detection too.
5177                  */
5178                 WARN_ON_ONCE(!HAS_DDI(dev));
5179         case INTEL_OUTPUT_DISPLAYPORT:
5180         case INTEL_OUTPUT_EDP:
5181                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5182                 return port_to_aux_power_domain(intel_dig_port->port);
5183         case INTEL_OUTPUT_DP_MST:
5184                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5185                 return port_to_aux_power_domain(intel_dig_port->port);
5186         default:
5187                 MISSING_CASE(intel_encoder->type);
5188                 return POWER_DOMAIN_AUX_A;
5189         }
5190 }
5191
5192 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5193                                             struct intel_crtc_state *crtc_state)
5194 {
5195         struct drm_device *dev = crtc->dev;
5196         struct drm_encoder *encoder;
5197         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5198         enum pipe pipe = intel_crtc->pipe;
5199         unsigned long mask;
5200         enum transcoder transcoder = crtc_state->cpu_transcoder;
5201
5202         if (!crtc_state->base.active)
5203                 return 0;
5204
5205         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5206         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5207         if (crtc_state->pch_pfit.enabled ||
5208             crtc_state->pch_pfit.force_thru)
5209                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5210
5211         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5212                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5213
5214                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5215         }
5216
5217         if (crtc_state->shared_dpll)
5218                 mask |= BIT(POWER_DOMAIN_PLLS);
5219
5220         return mask;
5221 }
5222
5223 static unsigned long
5224 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5225                                struct intel_crtc_state *crtc_state)
5226 {
5227         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5228         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5229         enum intel_display_power_domain domain;
5230         unsigned long domains, new_domains, old_domains;
5231
5232         old_domains = intel_crtc->enabled_power_domains;
5233         intel_crtc->enabled_power_domains = new_domains =
5234                 get_crtc_power_domains(crtc, crtc_state);
5235
5236         domains = new_domains & ~old_domains;
5237
5238         for_each_power_domain(domain, domains)
5239                 intel_display_power_get(dev_priv, domain);
5240
5241         return old_domains & ~new_domains;
5242 }
5243
5244 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5245                                       unsigned long domains)
5246 {
5247         enum intel_display_power_domain domain;
5248
5249         for_each_power_domain(domain, domains)
5250                 intel_display_power_put(dev_priv, domain);
5251 }
5252
5253 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5254 {
5255         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5256
5257         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5258             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5259                 return max_cdclk_freq;
5260         else if (IS_CHERRYVIEW(dev_priv))
5261                 return max_cdclk_freq*95/100;
5262         else if (INTEL_INFO(dev_priv)->gen < 4)
5263                 return 2*max_cdclk_freq*90/100;
5264         else
5265                 return max_cdclk_freq*90/100;
5266 }
5267
5268 static void intel_update_max_cdclk(struct drm_device *dev)
5269 {
5270         struct drm_i915_private *dev_priv = dev->dev_private;
5271
5272         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5273                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5274
5275                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5276                         dev_priv->max_cdclk_freq = 675000;
5277                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5278                         dev_priv->max_cdclk_freq = 540000;
5279                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5280                         dev_priv->max_cdclk_freq = 450000;
5281                 else
5282                         dev_priv->max_cdclk_freq = 337500;
5283         } else if (IS_BROXTON(dev)) {
5284                 dev_priv->max_cdclk_freq = 624000;
5285         } else if (IS_BROADWELL(dev))  {
5286                 /*
5287                  * FIXME with extra cooling we can allow
5288                  * 540 MHz for ULX and 675 Mhz for ULT.
5289                  * How can we know if extra cooling is
5290                  * available? PCI ID, VTB, something else?
5291                  */
5292                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5293                         dev_priv->max_cdclk_freq = 450000;
5294                 else if (IS_BDW_ULX(dev))
5295                         dev_priv->max_cdclk_freq = 450000;
5296                 else if (IS_BDW_ULT(dev))
5297                         dev_priv->max_cdclk_freq = 540000;
5298                 else
5299                         dev_priv->max_cdclk_freq = 675000;
5300         } else if (IS_CHERRYVIEW(dev)) {
5301                 dev_priv->max_cdclk_freq = 320000;
5302         } else if (IS_VALLEYVIEW(dev)) {
5303                 dev_priv->max_cdclk_freq = 400000;
5304         } else {
5305                 /* otherwise assume cdclk is fixed */
5306                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5307         }
5308
5309         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5310
5311         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5312                          dev_priv->max_cdclk_freq);
5313
5314         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5315                          dev_priv->max_dotclk_freq);
5316 }
5317
5318 static void intel_update_cdclk(struct drm_device *dev)
5319 {
5320         struct drm_i915_private *dev_priv = dev->dev_private;
5321
5322         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5323         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5324                          dev_priv->cdclk_freq);
5325
5326         /*
5327          * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5328          * Programmng [sic] note: bit[9:2] should be programmed to the number
5329          * of cdclk that generates 4MHz reference clock freq which is used to
5330          * generate GMBus clock. This will vary with the cdclk freq.
5331          */
5332         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5333                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5334
5335         if (dev_priv->max_cdclk_freq == 0)
5336                 intel_update_max_cdclk(dev);
5337 }
5338
5339 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5340 static int skl_cdclk_decimal(int cdclk)
5341 {
5342         return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5343 }
5344
5345 static void broxton_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5346 {
5347         uint32_t divider;
5348         uint32_t ratio;
5349         uint32_t current_cdclk;
5350         int ret;
5351
5352         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5353         switch (cdclk) {
5354         case 144000:
5355                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5356                 ratio = BXT_DE_PLL_RATIO(60);
5357                 break;
5358         case 288000:
5359                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5360                 ratio = BXT_DE_PLL_RATIO(60);
5361                 break;
5362         case 384000:
5363                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5364                 ratio = BXT_DE_PLL_RATIO(60);
5365                 break;
5366         case 576000:
5367                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5368                 ratio = BXT_DE_PLL_RATIO(60);
5369                 break;
5370         case 624000:
5371                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5372                 ratio = BXT_DE_PLL_RATIO(65);
5373                 break;
5374         case 19200:
5375                 /*
5376                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5377                  * to suppress GCC warning.
5378                  */
5379                 ratio = 0;
5380                 divider = 0;
5381                 break;
5382         default:
5383                 DRM_ERROR("unsupported CDCLK freq %d", cdclk);
5384
5385                 return;
5386         }
5387
5388         mutex_lock(&dev_priv->rps.hw_lock);
5389         /* Inform power controller of upcoming frequency change */
5390         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5391                                       0x80000000);
5392         mutex_unlock(&dev_priv->rps.hw_lock);
5393
5394         if (ret) {
5395                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5396                           ret, cdclk);
5397                 return;
5398         }
5399
5400         current_cdclk = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5401         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5402         current_cdclk = current_cdclk * 500 + 1000;
5403
5404         /*
5405          * DE PLL has to be disabled when
5406          * - setting to 19.2MHz (bypass, PLL isn't used)
5407          * - before setting to 624MHz (PLL needs toggling)
5408          * - before setting to any frequency from 624MHz (PLL needs toggling)
5409          */
5410         if (cdclk == 19200 || cdclk == 624000 ||
5411             current_cdclk == 624000) {
5412                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5413                 /* Timeout 200us */
5414                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5415                              1))
5416                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5417         }
5418
5419         if (cdclk != 19200) {
5420                 uint32_t val;
5421
5422                 val = I915_READ(BXT_DE_PLL_CTL);
5423                 val &= ~BXT_DE_PLL_RATIO_MASK;
5424                 val |= ratio;
5425                 I915_WRITE(BXT_DE_PLL_CTL, val);
5426
5427                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5428                 /* Timeout 200us */
5429                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5430                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5431
5432                 val = divider | skl_cdclk_decimal(cdclk);
5433                 /*
5434                  * FIXME if only the cd2x divider needs changing, it could be done
5435                  * without shutting off the pipe (if only one pipe is active).
5436                  */
5437                 val |= BXT_CDCLK_CD2X_PIPE_NONE;
5438                 /*
5439                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5440                  * enable otherwise.
5441                  */
5442                 if (cdclk >= 500000)
5443                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5444                 I915_WRITE(CDCLK_CTL, val);
5445         }
5446
5447         mutex_lock(&dev_priv->rps.hw_lock);
5448         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5449                                       DIV_ROUND_UP(cdclk, 25000));
5450         mutex_unlock(&dev_priv->rps.hw_lock);
5451
5452         if (ret) {
5453                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5454                           ret, cdclk);
5455                 return;
5456         }
5457
5458         intel_update_cdclk(dev_priv->dev);
5459 }
5460
5461 static bool broxton_cdclk_is_enabled(struct drm_i915_private *dev_priv)
5462 {
5463         if (!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE))
5464                 return false;
5465
5466         /* TODO: Check for a valid CDCLK rate */
5467
5468         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_REQUEST)) {
5469                 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power not requested\n");
5470
5471                 return false;
5472         }
5473
5474         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE)) {
5475                 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power hasn't settled\n");
5476
5477                 return false;
5478         }
5479
5480         return true;
5481 }
5482
5483 bool broxton_cdclk_verify_state(struct drm_i915_private *dev_priv)
5484 {
5485         return broxton_cdclk_is_enabled(dev_priv);
5486 }
5487
5488 void broxton_init_cdclk(struct drm_i915_private *dev_priv)
5489 {
5490         /* check if cd clock is enabled */
5491         if (broxton_cdclk_is_enabled(dev_priv)) {
5492                 DRM_DEBUG_KMS("CDCLK already enabled, won't reprogram it\n");
5493                 return;
5494         }
5495
5496         DRM_DEBUG_KMS("CDCLK not enabled, enabling it\n");
5497
5498         /*
5499          * FIXME:
5500          * - The initial CDCLK needs to be read from VBT.
5501          *   Need to make this change after VBT has changes for BXT.
5502          * - check if setting the max (or any) cdclk freq is really necessary
5503          *   here, it belongs to modeset time
5504          */
5505         broxton_set_cdclk(dev_priv, 624000);
5506
5507         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5508         POSTING_READ(DBUF_CTL);
5509
5510         udelay(10);
5511
5512         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5513                 DRM_ERROR("DBuf power enable timeout!\n");
5514 }
5515
5516 void broxton_uninit_cdclk(struct drm_i915_private *dev_priv)
5517 {
5518         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5519         POSTING_READ(DBUF_CTL);
5520
5521         udelay(10);
5522
5523         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5524                 DRM_ERROR("DBuf power disable timeout!\n");
5525
5526         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5527         broxton_set_cdclk(dev_priv, 19200);
5528 }
5529
5530 static const struct skl_cdclk_entry {
5531         unsigned int freq;
5532         unsigned int vco;
5533 } skl_cdclk_frequencies[] = {
5534         { .freq = 308570, .vco = 8640 },
5535         { .freq = 337500, .vco = 8100 },
5536         { .freq = 432000, .vco = 8640 },
5537         { .freq = 450000, .vco = 8100 },
5538         { .freq = 540000, .vco = 8100 },
5539         { .freq = 617140, .vco = 8640 },
5540         { .freq = 675000, .vco = 8100 },
5541 };
5542
5543 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5544 {
5545         unsigned int i;
5546
5547         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5548                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5549
5550                 if (e->freq == freq)
5551                         return e->vco;
5552         }
5553
5554         return 8100;
5555 }
5556
5557 static void
5558 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
5559 {
5560         int min_cdclk;
5561         u32 val;
5562
5563         /* select the minimum CDCLK before enabling DPLL 0 */
5564         if (vco == 8640)
5565                 min_cdclk = 308570;
5566         else
5567                 min_cdclk = 337500;
5568
5569         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
5570         I915_WRITE(CDCLK_CTL, val);
5571         POSTING_READ(CDCLK_CTL);
5572
5573         /*
5574          * We always enable DPLL0 with the lowest link rate possible, but still
5575          * taking into account the VCO required to operate the eDP panel at the
5576          * desired frequency. The usual DP link rates operate with a VCO of
5577          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5578          * The modeset code is responsible for the selection of the exact link
5579          * rate later on, with the constraint of choosing a frequency that
5580          * works with required_vco.
5581          */
5582         val = I915_READ(DPLL_CTRL1);
5583
5584         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5585                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5586         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5587         if (vco == 8640)
5588                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5589                                             SKL_DPLL0);
5590         else
5591                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5592                                             SKL_DPLL0);
5593
5594         I915_WRITE(DPLL_CTRL1, val);
5595         POSTING_READ(DPLL_CTRL1);
5596
5597         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5598
5599         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5600                 DRM_ERROR("DPLL0 not locked\n");
5601 }
5602
5603 static void
5604 skl_dpll0_disable(struct drm_i915_private *dev_priv)
5605 {
5606         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5607         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5608                 DRM_ERROR("Couldn't disable DPLL0\n");
5609 }
5610
5611 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5612 {
5613         int ret;
5614         u32 val;
5615
5616         /* inform PCU we want to change CDCLK */
5617         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5618         mutex_lock(&dev_priv->rps.hw_lock);
5619         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5620         mutex_unlock(&dev_priv->rps.hw_lock);
5621
5622         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5623 }
5624
5625 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5626 {
5627         unsigned int i;
5628
5629         for (i = 0; i < 15; i++) {
5630                 if (skl_cdclk_pcu_ready(dev_priv))
5631                         return true;
5632                 udelay(10);
5633         }
5634
5635         return false;
5636 }
5637
5638 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5639 {
5640         struct drm_device *dev = dev_priv->dev;
5641         u32 freq_select, pcu_ack;
5642
5643         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", cdclk);
5644
5645         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5646                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5647                 return;
5648         }
5649
5650         /* set CDCLK_CTL */
5651         switch (cdclk) {
5652         case 450000:
5653         case 432000:
5654                 freq_select = CDCLK_FREQ_450_432;
5655                 pcu_ack = 1;
5656                 break;
5657         case 540000:
5658                 freq_select = CDCLK_FREQ_540;
5659                 pcu_ack = 2;
5660                 break;
5661         case 308570:
5662         case 337500:
5663         default:
5664                 freq_select = CDCLK_FREQ_337_308;
5665                 pcu_ack = 0;
5666                 break;
5667         case 617140:
5668         case 675000:
5669                 freq_select = CDCLK_FREQ_675_617;
5670                 pcu_ack = 3;
5671                 break;
5672         }
5673
5674         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
5675         POSTING_READ(CDCLK_CTL);
5676
5677         /* inform PCU of the change */
5678         mutex_lock(&dev_priv->rps.hw_lock);
5679         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5680         mutex_unlock(&dev_priv->rps.hw_lock);
5681
5682         intel_update_cdclk(dev);
5683 }
5684
5685 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5686 {
5687         /* disable DBUF power */
5688         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5689         POSTING_READ(DBUF_CTL);
5690
5691         udelay(10);
5692
5693         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5694                 DRM_ERROR("DBuf power disable timeout\n");
5695
5696         skl_dpll0_disable(dev_priv);
5697 }
5698
5699 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5700 {
5701         unsigned int vco;
5702
5703         /* DPLL0 not enabled (happens on early BIOS versions) */
5704         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5705                 /* enable DPLL0 */
5706                 vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5707                 skl_dpll0_enable(dev_priv, vco);
5708         }
5709
5710         /* set CDCLK to the frequency the BIOS chose */
5711         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5712
5713         /* enable DBUF power */
5714         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5715         POSTING_READ(DBUF_CTL);
5716
5717         udelay(10);
5718
5719         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5720                 DRM_ERROR("DBuf power enable timeout\n");
5721 }
5722
5723 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5724 {
5725         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5726         uint32_t cdctl = I915_READ(CDCLK_CTL);
5727         int freq = dev_priv->skl_boot_cdclk;
5728
5729         /*
5730          * check if the pre-os intialized the display
5731          * There is SWF18 scratchpad register defined which is set by the
5732          * pre-os which can be used by the OS drivers to check the status
5733          */
5734         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5735                 goto sanitize;
5736
5737         /* Is PLL enabled and locked ? */
5738         if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5739                 goto sanitize;
5740
5741         /* DPLL okay; verify the cdclock
5742          *
5743          * Noticed in some instances that the freq selection is correct but
5744          * decimal part is programmed wrong from BIOS where pre-os does not
5745          * enable display. Verify the same as well.
5746          */
5747         if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5748                 /* All well; nothing to sanitize */
5749                 return false;
5750 sanitize:
5751         /*
5752          * As of now initialize with max cdclk till
5753          * we get dynamic cdclk support
5754          * */
5755         dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5756         skl_init_cdclk(dev_priv);
5757
5758         /* we did have to sanitize */
5759         return true;
5760 }
5761
5762 /* Adjust CDclk dividers to allow high res or save power if possible */
5763 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5764 {
5765         struct drm_i915_private *dev_priv = dev->dev_private;
5766         u32 val, cmd;
5767
5768         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5769                                         != dev_priv->cdclk_freq);
5770
5771         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5772                 cmd = 2;
5773         else if (cdclk == 266667)
5774                 cmd = 1;
5775         else
5776                 cmd = 0;
5777
5778         mutex_lock(&dev_priv->rps.hw_lock);
5779         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5780         val &= ~DSPFREQGUAR_MASK;
5781         val |= (cmd << DSPFREQGUAR_SHIFT);
5782         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5783         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5784                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5785                      50)) {
5786                 DRM_ERROR("timed out waiting for CDclk change\n");
5787         }
5788         mutex_unlock(&dev_priv->rps.hw_lock);
5789
5790         mutex_lock(&dev_priv->sb_lock);
5791
5792         if (cdclk == 400000) {
5793                 u32 divider;
5794
5795                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5796
5797                 /* adjust cdclk divider */
5798                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5799                 val &= ~CCK_FREQUENCY_VALUES;
5800                 val |= divider;
5801                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5802
5803                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5804                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5805                              50))
5806                         DRM_ERROR("timed out waiting for CDclk change\n");
5807         }
5808
5809         /* adjust self-refresh exit latency value */
5810         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5811         val &= ~0x7f;
5812
5813         /*
5814          * For high bandwidth configs, we set a higher latency in the bunit
5815          * so that the core display fetch happens in time to avoid underruns.
5816          */
5817         if (cdclk == 400000)
5818                 val |= 4500 / 250; /* 4.5 usec */
5819         else
5820                 val |= 3000 / 250; /* 3.0 usec */
5821         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5822
5823         mutex_unlock(&dev_priv->sb_lock);
5824
5825         intel_update_cdclk(dev);
5826 }
5827
5828 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5829 {
5830         struct drm_i915_private *dev_priv = dev->dev_private;
5831         u32 val, cmd;
5832
5833         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5834                                                 != dev_priv->cdclk_freq);
5835
5836         switch (cdclk) {
5837         case 333333:
5838         case 320000:
5839         case 266667:
5840         case 200000:
5841                 break;
5842         default:
5843                 MISSING_CASE(cdclk);
5844                 return;
5845         }
5846
5847         /*
5848          * Specs are full of misinformation, but testing on actual
5849          * hardware has shown that we just need to write the desired
5850          * CCK divider into the Punit register.
5851          */
5852         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5853
5854         mutex_lock(&dev_priv->rps.hw_lock);
5855         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5856         val &= ~DSPFREQGUAR_MASK_CHV;
5857         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5858         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5859         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5860                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5861                      50)) {
5862                 DRM_ERROR("timed out waiting for CDclk change\n");
5863         }
5864         mutex_unlock(&dev_priv->rps.hw_lock);
5865
5866         intel_update_cdclk(dev);
5867 }
5868
5869 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5870                                  int max_pixclk)
5871 {
5872         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5873         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5874
5875         /*
5876          * Really only a few cases to deal with, as only 4 CDclks are supported:
5877          *   200MHz
5878          *   267MHz
5879          *   320/333MHz (depends on HPLL freq)
5880          *   400MHz (VLV only)
5881          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5882          * of the lower bin and adjust if needed.
5883          *
5884          * We seem to get an unstable or solid color picture at 200MHz.
5885          * Not sure what's wrong. For now use 200MHz only when all pipes
5886          * are off.
5887          */
5888         if (!IS_CHERRYVIEW(dev_priv) &&
5889             max_pixclk > freq_320*limit/100)
5890                 return 400000;
5891         else if (max_pixclk > 266667*limit/100)
5892                 return freq_320;
5893         else if (max_pixclk > 0)
5894                 return 266667;
5895         else
5896                 return 200000;
5897 }
5898
5899 static int broxton_calc_cdclk(int max_pixclk)
5900 {
5901         /*
5902          * FIXME:
5903          * - set 19.2MHz bypass frequency if there are no active pipes
5904          */
5905         if (max_pixclk > 576000)
5906                 return 624000;
5907         else if (max_pixclk > 384000)
5908                 return 576000;
5909         else if (max_pixclk > 288000)
5910                 return 384000;
5911         else if (max_pixclk > 144000)
5912                 return 288000;
5913         else
5914                 return 144000;
5915 }
5916
5917 /* Compute the max pixel clock for new configuration. */
5918 static int intel_mode_max_pixclk(struct drm_device *dev,
5919                                  struct drm_atomic_state *state)
5920 {
5921         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5922         struct drm_i915_private *dev_priv = dev->dev_private;
5923         struct drm_crtc *crtc;
5924         struct drm_crtc_state *crtc_state;
5925         unsigned max_pixclk = 0, i;
5926         enum pipe pipe;
5927
5928         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5929                sizeof(intel_state->min_pixclk));
5930
5931         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5932                 int pixclk = 0;
5933
5934                 if (crtc_state->enable)
5935                         pixclk = crtc_state->adjusted_mode.crtc_clock;
5936
5937                 intel_state->min_pixclk[i] = pixclk;
5938         }
5939
5940         for_each_pipe(dev_priv, pipe)
5941                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
5942
5943         return max_pixclk;
5944 }
5945
5946 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5947 {
5948         struct drm_device *dev = state->dev;
5949         struct drm_i915_private *dev_priv = dev->dev_private;
5950         int max_pixclk = intel_mode_max_pixclk(dev, state);
5951         struct intel_atomic_state *intel_state =
5952                 to_intel_atomic_state(state);
5953
5954         intel_state->cdclk = intel_state->dev_cdclk =
5955                 valleyview_calc_cdclk(dev_priv, max_pixclk);
5956
5957         if (!intel_state->active_crtcs)
5958                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
5959
5960         return 0;
5961 }
5962
5963 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5964 {
5965         int max_pixclk = ilk_max_pixel_rate(state);
5966         struct intel_atomic_state *intel_state =
5967                 to_intel_atomic_state(state);
5968
5969         intel_state->cdclk = intel_state->dev_cdclk =
5970                 broxton_calc_cdclk(max_pixclk);
5971
5972         if (!intel_state->active_crtcs)
5973                 intel_state->dev_cdclk = broxton_calc_cdclk(0);
5974
5975         return 0;
5976 }
5977
5978 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5979 {
5980         unsigned int credits, default_credits;
5981
5982         if (IS_CHERRYVIEW(dev_priv))
5983                 default_credits = PFI_CREDIT(12);
5984         else
5985                 default_credits = PFI_CREDIT(8);
5986
5987         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
5988                 /* CHV suggested value is 31 or 63 */
5989                 if (IS_CHERRYVIEW(dev_priv))
5990                         credits = PFI_CREDIT_63;
5991                 else
5992                         credits = PFI_CREDIT(15);
5993         } else {
5994                 credits = default_credits;
5995         }
5996
5997         /*
5998          * WA - write default credits before re-programming
5999          * FIXME: should we also set the resend bit here?
6000          */
6001         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6002                    default_credits);
6003
6004         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6005                    credits | PFI_CREDIT_RESEND);
6006
6007         /*
6008          * FIXME is this guaranteed to clear
6009          * immediately or should we poll for it?
6010          */
6011         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6012 }
6013
6014 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6015 {
6016         struct drm_device *dev = old_state->dev;
6017         struct drm_i915_private *dev_priv = dev->dev_private;
6018         struct intel_atomic_state *old_intel_state =
6019                 to_intel_atomic_state(old_state);
6020         unsigned req_cdclk = old_intel_state->dev_cdclk;
6021
6022         /*
6023          * FIXME: We can end up here with all power domains off, yet
6024          * with a CDCLK frequency other than the minimum. To account
6025          * for this take the PIPE-A power domain, which covers the HW
6026          * blocks needed for the following programming. This can be
6027          * removed once it's guaranteed that we get here either with
6028          * the minimum CDCLK set, or the required power domains
6029          * enabled.
6030          */
6031         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6032
6033         if (IS_CHERRYVIEW(dev))
6034                 cherryview_set_cdclk(dev, req_cdclk);
6035         else
6036                 valleyview_set_cdclk(dev, req_cdclk);
6037
6038         vlv_program_pfi_credits(dev_priv);
6039
6040         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6041 }
6042
6043 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6044 {
6045         struct drm_device *dev = crtc->dev;
6046         struct drm_i915_private *dev_priv = to_i915(dev);
6047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6048         struct intel_encoder *encoder;
6049         struct intel_crtc_state *pipe_config =
6050                 to_intel_crtc_state(crtc->state);
6051         int pipe = intel_crtc->pipe;
6052
6053         if (WARN_ON(intel_crtc->active))
6054                 return;
6055
6056         if (intel_crtc->config->has_dp_encoder)
6057                 intel_dp_set_m_n(intel_crtc, M1_N1);
6058
6059         intel_set_pipe_timings(intel_crtc);
6060         intel_set_pipe_src_size(intel_crtc);
6061
6062         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6063                 struct drm_i915_private *dev_priv = dev->dev_private;
6064
6065                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6066                 I915_WRITE(CHV_CANVAS(pipe), 0);
6067         }
6068
6069         i9xx_set_pipeconf(intel_crtc);
6070
6071         intel_crtc->active = true;
6072
6073         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6074
6075         for_each_encoder_on_crtc(dev, crtc, encoder)
6076                 if (encoder->pre_pll_enable)
6077                         encoder->pre_pll_enable(encoder);
6078
6079         if (IS_CHERRYVIEW(dev)) {
6080                 chv_prepare_pll(intel_crtc, intel_crtc->config);
6081                 chv_enable_pll(intel_crtc, intel_crtc->config);
6082         } else {
6083                 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6084                 vlv_enable_pll(intel_crtc, intel_crtc->config);
6085         }
6086
6087         for_each_encoder_on_crtc(dev, crtc, encoder)
6088                 if (encoder->pre_enable)
6089                         encoder->pre_enable(encoder);
6090
6091         i9xx_pfit_enable(intel_crtc);
6092
6093         intel_color_load_luts(&pipe_config->base);
6094
6095         intel_update_watermarks(crtc);
6096         intel_enable_pipe(intel_crtc);
6097
6098         assert_vblank_disabled(crtc);
6099         drm_crtc_vblank_on(crtc);
6100
6101         for_each_encoder_on_crtc(dev, crtc, encoder)
6102                 encoder->enable(encoder);
6103 }
6104
6105 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6106 {
6107         struct drm_device *dev = crtc->base.dev;
6108         struct drm_i915_private *dev_priv = dev->dev_private;
6109
6110         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6111         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6112 }
6113
6114 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6115 {
6116         struct drm_device *dev = crtc->dev;
6117         struct drm_i915_private *dev_priv = to_i915(dev);
6118         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6119         struct intel_encoder *encoder;
6120         struct intel_crtc_state *pipe_config =
6121                 to_intel_crtc_state(crtc->state);
6122         enum pipe pipe = intel_crtc->pipe;
6123
6124         if (WARN_ON(intel_crtc->active))
6125                 return;
6126
6127         i9xx_set_pll_dividers(intel_crtc);
6128
6129         if (intel_crtc->config->has_dp_encoder)
6130                 intel_dp_set_m_n(intel_crtc, M1_N1);
6131
6132         intel_set_pipe_timings(intel_crtc);
6133         intel_set_pipe_src_size(intel_crtc);
6134
6135         i9xx_set_pipeconf(intel_crtc);
6136
6137         intel_crtc->active = true;
6138
6139         if (!IS_GEN2(dev))
6140                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6141
6142         for_each_encoder_on_crtc(dev, crtc, encoder)
6143                 if (encoder->pre_enable)
6144                         encoder->pre_enable(encoder);
6145
6146         i9xx_enable_pll(intel_crtc);
6147
6148         i9xx_pfit_enable(intel_crtc);
6149
6150         intel_color_load_luts(&pipe_config->base);
6151
6152         intel_update_watermarks(crtc);
6153         intel_enable_pipe(intel_crtc);
6154
6155         assert_vblank_disabled(crtc);
6156         drm_crtc_vblank_on(crtc);
6157
6158         for_each_encoder_on_crtc(dev, crtc, encoder)
6159                 encoder->enable(encoder);
6160 }
6161
6162 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6163 {
6164         struct drm_device *dev = crtc->base.dev;
6165         struct drm_i915_private *dev_priv = dev->dev_private;
6166
6167         if (!crtc->config->gmch_pfit.control)
6168                 return;
6169
6170         assert_pipe_disabled(dev_priv, crtc->pipe);
6171
6172         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6173                          I915_READ(PFIT_CONTROL));
6174         I915_WRITE(PFIT_CONTROL, 0);
6175 }
6176
6177 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6178 {
6179         struct drm_device *dev = crtc->dev;
6180         struct drm_i915_private *dev_priv = dev->dev_private;
6181         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6182         struct intel_encoder *encoder;
6183         int pipe = intel_crtc->pipe;
6184
6185         /*
6186          * On gen2 planes are double buffered but the pipe isn't, so we must
6187          * wait for planes to fully turn off before disabling the pipe.
6188          */
6189         if (IS_GEN2(dev))
6190                 intel_wait_for_vblank(dev, pipe);
6191
6192         for_each_encoder_on_crtc(dev, crtc, encoder)
6193                 encoder->disable(encoder);
6194
6195         drm_crtc_vblank_off(crtc);
6196         assert_vblank_disabled(crtc);
6197
6198         intel_disable_pipe(intel_crtc);
6199
6200         i9xx_pfit_disable(intel_crtc);
6201
6202         for_each_encoder_on_crtc(dev, crtc, encoder)
6203                 if (encoder->post_disable)
6204                         encoder->post_disable(encoder);
6205
6206         if (!intel_crtc->config->has_dsi_encoder) {
6207                 if (IS_CHERRYVIEW(dev))
6208                         chv_disable_pll(dev_priv, pipe);
6209                 else if (IS_VALLEYVIEW(dev))
6210                         vlv_disable_pll(dev_priv, pipe);
6211                 else
6212                         i9xx_disable_pll(intel_crtc);
6213         }
6214
6215         for_each_encoder_on_crtc(dev, crtc, encoder)
6216                 if (encoder->post_pll_disable)
6217                         encoder->post_pll_disable(encoder);
6218
6219         if (!IS_GEN2(dev))
6220                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6221 }
6222
6223 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6224 {
6225         struct intel_encoder *encoder;
6226         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6227         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6228         enum intel_display_power_domain domain;
6229         unsigned long domains;
6230
6231         if (!intel_crtc->active)
6232                 return;
6233
6234         if (to_intel_plane_state(crtc->primary->state)->visible) {
6235                 WARN_ON(intel_crtc->flip_work);
6236
6237                 intel_pre_disable_primary_noatomic(crtc);
6238
6239                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6240                 to_intel_plane_state(crtc->primary->state)->visible = false;
6241         }
6242
6243         dev_priv->display.crtc_disable(crtc);
6244
6245         DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was enabled, now disabled\n",
6246                       crtc->base.id);
6247
6248         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6249         crtc->state->active = false;
6250         intel_crtc->active = false;
6251         crtc->enabled = false;
6252         crtc->state->connector_mask = 0;
6253         crtc->state->encoder_mask = 0;
6254
6255         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6256                 encoder->base.crtc = NULL;
6257
6258         intel_fbc_disable(intel_crtc);
6259         intel_update_watermarks(crtc);
6260         intel_disable_shared_dpll(intel_crtc);
6261
6262         domains = intel_crtc->enabled_power_domains;
6263         for_each_power_domain(domain, domains)
6264                 intel_display_power_put(dev_priv, domain);
6265         intel_crtc->enabled_power_domains = 0;
6266
6267         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6268         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6269 }
6270
6271 /*
6272  * turn all crtc's off, but do not adjust state
6273  * This has to be paired with a call to intel_modeset_setup_hw_state.
6274  */
6275 int intel_display_suspend(struct drm_device *dev)
6276 {
6277         struct drm_i915_private *dev_priv = to_i915(dev);
6278         struct drm_atomic_state *state;
6279         int ret;
6280
6281         state = drm_atomic_helper_suspend(dev);
6282         ret = PTR_ERR_OR_ZERO(state);
6283         if (ret)
6284                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6285         else
6286                 dev_priv->modeset_restore_state = state;
6287         return ret;
6288 }
6289
6290 void intel_encoder_destroy(struct drm_encoder *encoder)
6291 {
6292         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6293
6294         drm_encoder_cleanup(encoder);
6295         kfree(intel_encoder);
6296 }
6297
6298 /* Cross check the actual hw state with our own modeset state tracking (and it's
6299  * internal consistency). */
6300 static void intel_connector_verify_state(struct intel_connector *connector)
6301 {
6302         struct drm_crtc *crtc = connector->base.state->crtc;
6303
6304         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6305                       connector->base.base.id,
6306                       connector->base.name);
6307
6308         if (connector->get_hw_state(connector)) {
6309                 struct intel_encoder *encoder = connector->encoder;
6310                 struct drm_connector_state *conn_state = connector->base.state;
6311
6312                 I915_STATE_WARN(!crtc,
6313                          "connector enabled without attached crtc\n");
6314
6315                 if (!crtc)
6316                         return;
6317
6318                 I915_STATE_WARN(!crtc->state->active,
6319                       "connector is active, but attached crtc isn't\n");
6320
6321                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6322                         return;
6323
6324                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6325                         "atomic encoder doesn't match attached encoder\n");
6326
6327                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6328                         "attached encoder crtc differs from connector crtc\n");
6329         } else {
6330                 I915_STATE_WARN(crtc && crtc->state->active,
6331                         "attached crtc is active, but connector isn't\n");
6332                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6333                         "best encoder set without crtc!\n");
6334         }
6335 }
6336
6337 int intel_connector_init(struct intel_connector *connector)
6338 {
6339         drm_atomic_helper_connector_reset(&connector->base);
6340
6341         if (!connector->base.state)
6342                 return -ENOMEM;
6343
6344         return 0;
6345 }
6346
6347 struct intel_connector *intel_connector_alloc(void)
6348 {
6349         struct intel_connector *connector;
6350
6351         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6352         if (!connector)
6353                 return NULL;
6354
6355         if (intel_connector_init(connector) < 0) {
6356                 kfree(connector);
6357                 return NULL;
6358         }
6359
6360         return connector;
6361 }
6362
6363 /* Simple connector->get_hw_state implementation for encoders that support only
6364  * one connector and no cloning and hence the encoder state determines the state
6365  * of the connector. */
6366 bool intel_connector_get_hw_state(struct intel_connector *connector)
6367 {
6368         enum pipe pipe = 0;
6369         struct intel_encoder *encoder = connector->encoder;
6370
6371         return encoder->get_hw_state(encoder, &pipe);
6372 }
6373
6374 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6375 {
6376         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6377                 return crtc_state->fdi_lanes;
6378
6379         return 0;
6380 }
6381
6382 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6383                                      struct intel_crtc_state *pipe_config)
6384 {
6385         struct drm_atomic_state *state = pipe_config->base.state;
6386         struct intel_crtc *other_crtc;
6387         struct intel_crtc_state *other_crtc_state;
6388
6389         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6390                       pipe_name(pipe), pipe_config->fdi_lanes);
6391         if (pipe_config->fdi_lanes > 4) {
6392                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6393                               pipe_name(pipe), pipe_config->fdi_lanes);
6394                 return -EINVAL;
6395         }
6396
6397         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6398                 if (pipe_config->fdi_lanes > 2) {
6399                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6400                                       pipe_config->fdi_lanes);
6401                         return -EINVAL;
6402                 } else {
6403                         return 0;
6404                 }
6405         }
6406
6407         if (INTEL_INFO(dev)->num_pipes == 2)
6408                 return 0;
6409
6410         /* Ivybridge 3 pipe is really complicated */
6411         switch (pipe) {
6412         case PIPE_A:
6413                 return 0;
6414         case PIPE_B:
6415                 if (pipe_config->fdi_lanes <= 2)
6416                         return 0;
6417
6418                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6419                 other_crtc_state =
6420                         intel_atomic_get_crtc_state(state, other_crtc);
6421                 if (IS_ERR(other_crtc_state))
6422                         return PTR_ERR(other_crtc_state);
6423
6424                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6425                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6426                                       pipe_name(pipe), pipe_config->fdi_lanes);
6427                         return -EINVAL;
6428                 }
6429                 return 0;
6430         case PIPE_C:
6431                 if (pipe_config->fdi_lanes > 2) {
6432                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6433                                       pipe_name(pipe), pipe_config->fdi_lanes);
6434                         return -EINVAL;
6435                 }
6436
6437                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6438                 other_crtc_state =
6439                         intel_atomic_get_crtc_state(state, other_crtc);
6440                 if (IS_ERR(other_crtc_state))
6441                         return PTR_ERR(other_crtc_state);
6442
6443                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6444                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6445                         return -EINVAL;
6446                 }
6447                 return 0;
6448         default:
6449                 BUG();
6450         }
6451 }
6452
6453 #define RETRY 1
6454 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6455                                        struct intel_crtc_state *pipe_config)
6456 {
6457         struct drm_device *dev = intel_crtc->base.dev;
6458         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6459         int lane, link_bw, fdi_dotclock, ret;
6460         bool needs_recompute = false;
6461
6462 retry:
6463         /* FDI is a binary signal running at ~2.7GHz, encoding
6464          * each output octet as 10 bits. The actual frequency
6465          * is stored as a divider into a 100MHz clock, and the
6466          * mode pixel clock is stored in units of 1KHz.
6467          * Hence the bw of each lane in terms of the mode signal
6468          * is:
6469          */
6470         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6471
6472         fdi_dotclock = adjusted_mode->crtc_clock;
6473
6474         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6475                                            pipe_config->pipe_bpp);
6476
6477         pipe_config->fdi_lanes = lane;
6478
6479         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6480                                link_bw, &pipe_config->fdi_m_n);
6481
6482         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6483         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6484                 pipe_config->pipe_bpp -= 2*3;
6485                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6486                               pipe_config->pipe_bpp);
6487                 needs_recompute = true;
6488                 pipe_config->bw_constrained = true;
6489
6490                 goto retry;
6491         }
6492
6493         if (needs_recompute)
6494                 return RETRY;
6495
6496         return ret;
6497 }
6498
6499 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6500                                      struct intel_crtc_state *pipe_config)
6501 {
6502         if (pipe_config->pipe_bpp > 24)
6503                 return false;
6504
6505         /* HSW can handle pixel rate up to cdclk? */
6506         if (IS_HASWELL(dev_priv))
6507                 return true;
6508
6509         /*
6510          * We compare against max which means we must take
6511          * the increased cdclk requirement into account when
6512          * calculating the new cdclk.
6513          *
6514          * Should measure whether using a lower cdclk w/o IPS
6515          */
6516         return ilk_pipe_pixel_rate(pipe_config) <=
6517                 dev_priv->max_cdclk_freq * 95 / 100;
6518 }
6519
6520 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6521                                    struct intel_crtc_state *pipe_config)
6522 {
6523         struct drm_device *dev = crtc->base.dev;
6524         struct drm_i915_private *dev_priv = dev->dev_private;
6525
6526         pipe_config->ips_enabled = i915.enable_ips &&
6527                 hsw_crtc_supports_ips(crtc) &&
6528                 pipe_config_supports_ips(dev_priv, pipe_config);
6529 }
6530
6531 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6532 {
6533         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6534
6535         /* GDG double wide on either pipe, otherwise pipe A only */
6536         return INTEL_INFO(dev_priv)->gen < 4 &&
6537                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6538 }
6539
6540 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6541                                      struct intel_crtc_state *pipe_config)
6542 {
6543         struct drm_device *dev = crtc->base.dev;
6544         struct drm_i915_private *dev_priv = dev->dev_private;
6545         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6546
6547         /* FIXME should check pixel clock limits on all platforms */
6548         if (INTEL_INFO(dev)->gen < 4) {
6549                 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6550
6551                 /*
6552                  * Enable double wide mode when the dot clock
6553                  * is > 90% of the (display) core speed.
6554                  */
6555                 if (intel_crtc_supports_double_wide(crtc) &&
6556                     adjusted_mode->crtc_clock > clock_limit) {
6557                         clock_limit *= 2;
6558                         pipe_config->double_wide = true;
6559                 }
6560
6561                 if (adjusted_mode->crtc_clock > clock_limit) {
6562                         DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6563                                       adjusted_mode->crtc_clock, clock_limit,
6564                                       yesno(pipe_config->double_wide));
6565                         return -EINVAL;
6566                 }
6567         }
6568
6569         /*
6570          * Pipe horizontal size must be even in:
6571          * - DVO ganged mode
6572          * - LVDS dual channel mode
6573          * - Double wide pipe
6574          */
6575         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6576              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6577                 pipe_config->pipe_src_w &= ~1;
6578
6579         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6580          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6581          */
6582         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6583                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6584                 return -EINVAL;
6585
6586         if (HAS_IPS(dev))
6587                 hsw_compute_ips_config(crtc, pipe_config);
6588
6589         if (pipe_config->has_pch_encoder)
6590                 return ironlake_fdi_compute_config(crtc, pipe_config);
6591
6592         return 0;
6593 }
6594
6595 static int skylake_get_display_clock_speed(struct drm_device *dev)
6596 {
6597         struct drm_i915_private *dev_priv = to_i915(dev);
6598         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6599         uint32_t cdctl = I915_READ(CDCLK_CTL);
6600         uint32_t linkrate;
6601
6602         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6603                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6604
6605         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6606                 return 540000;
6607
6608         linkrate = (I915_READ(DPLL_CTRL1) &
6609                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6610
6611         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6612             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6613                 /* vco 8640 */
6614                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6615                 case CDCLK_FREQ_450_432:
6616                         return 432000;
6617                 case CDCLK_FREQ_337_308:
6618                         return 308570;
6619                 case CDCLK_FREQ_675_617:
6620                         return 617140;
6621                 default:
6622                         WARN(1, "Unknown cd freq selection\n");
6623                 }
6624         } else {
6625                 /* vco 8100 */
6626                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6627                 case CDCLK_FREQ_450_432:
6628                         return 450000;
6629                 case CDCLK_FREQ_337_308:
6630                         return 337500;
6631                 case CDCLK_FREQ_675_617:
6632                         return 675000;
6633                 default:
6634                         WARN(1, "Unknown cd freq selection\n");
6635                 }
6636         }
6637
6638         /* error case, do as if DPLL0 isn't enabled */
6639         return 24000;
6640 }
6641
6642 static int broxton_get_display_clock_speed(struct drm_device *dev)
6643 {
6644         struct drm_i915_private *dev_priv = to_i915(dev);
6645         uint32_t cdctl = I915_READ(CDCLK_CTL);
6646         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6647         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6648         int cdclk;
6649
6650         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6651                 return 19200;
6652
6653         cdclk = 19200 * pll_ratio / 2;
6654
6655         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6656         case BXT_CDCLK_CD2X_DIV_SEL_1:
6657                 return cdclk;  /* 576MHz or 624MHz */
6658         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6659                 return cdclk * 2 / 3; /* 384MHz */
6660         case BXT_CDCLK_CD2X_DIV_SEL_2:
6661                 return cdclk / 2; /* 288MHz */
6662         case BXT_CDCLK_CD2X_DIV_SEL_4:
6663                 return cdclk / 4; /* 144MHz */
6664         }
6665
6666         /* error case, do as if DE PLL isn't enabled */
6667         return 19200;
6668 }
6669
6670 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6671 {
6672         struct drm_i915_private *dev_priv = dev->dev_private;
6673         uint32_t lcpll = I915_READ(LCPLL_CTL);
6674         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6675
6676         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6677                 return 800000;
6678         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6679                 return 450000;
6680         else if (freq == LCPLL_CLK_FREQ_450)
6681                 return 450000;
6682         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6683                 return 540000;
6684         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6685                 return 337500;
6686         else
6687                 return 675000;
6688 }
6689
6690 static int haswell_get_display_clock_speed(struct drm_device *dev)
6691 {
6692         struct drm_i915_private *dev_priv = dev->dev_private;
6693         uint32_t lcpll = I915_READ(LCPLL_CTL);
6694         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6695
6696         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6697                 return 800000;
6698         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6699                 return 450000;
6700         else if (freq == LCPLL_CLK_FREQ_450)
6701                 return 450000;
6702         else if (IS_HSW_ULT(dev))
6703                 return 337500;
6704         else
6705                 return 540000;
6706 }
6707
6708 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6709 {
6710         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6711                                       CCK_DISPLAY_CLOCK_CONTROL);
6712 }
6713
6714 static int ilk_get_display_clock_speed(struct drm_device *dev)
6715 {
6716         return 450000;
6717 }
6718
6719 static int i945_get_display_clock_speed(struct drm_device *dev)
6720 {
6721         return 400000;
6722 }
6723
6724 static int i915_get_display_clock_speed(struct drm_device *dev)
6725 {
6726         return 333333;
6727 }
6728
6729 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6730 {
6731         return 200000;
6732 }
6733
6734 static int pnv_get_display_clock_speed(struct drm_device *dev)
6735 {
6736         u16 gcfgc = 0;
6737
6738         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6739
6740         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6741         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6742                 return 266667;
6743         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6744                 return 333333;
6745         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6746                 return 444444;
6747         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6748                 return 200000;
6749         default:
6750                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6751         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6752                 return 133333;
6753         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6754                 return 166667;
6755         }
6756 }
6757
6758 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6759 {
6760         u16 gcfgc = 0;
6761
6762         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6763
6764         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6765                 return 133333;
6766         else {
6767                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6768                 case GC_DISPLAY_CLOCK_333_MHZ:
6769                         return 333333;
6770                 default:
6771                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6772                         return 190000;
6773                 }
6774         }
6775 }
6776
6777 static int i865_get_display_clock_speed(struct drm_device *dev)
6778 {
6779         return 266667;
6780 }
6781
6782 static int i85x_get_display_clock_speed(struct drm_device *dev)
6783 {
6784         u16 hpllcc = 0;
6785
6786         /*
6787          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6788          * encoding is different :(
6789          * FIXME is this the right way to detect 852GM/852GMV?
6790          */
6791         if (dev->pdev->revision == 0x1)
6792                 return 133333;
6793
6794         pci_bus_read_config_word(dev->pdev->bus,
6795                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6796
6797         /* Assume that the hardware is in the high speed state.  This
6798          * should be the default.
6799          */
6800         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6801         case GC_CLOCK_133_200:
6802         case GC_CLOCK_133_200_2:
6803         case GC_CLOCK_100_200:
6804                 return 200000;
6805         case GC_CLOCK_166_250:
6806                 return 250000;
6807         case GC_CLOCK_100_133:
6808                 return 133333;
6809         case GC_CLOCK_133_266:
6810         case GC_CLOCK_133_266_2:
6811         case GC_CLOCK_166_266:
6812                 return 266667;
6813         }
6814
6815         /* Shouldn't happen */
6816         return 0;
6817 }
6818
6819 static int i830_get_display_clock_speed(struct drm_device *dev)
6820 {
6821         return 133333;
6822 }
6823
6824 static unsigned int intel_hpll_vco(struct drm_device *dev)
6825 {
6826         struct drm_i915_private *dev_priv = dev->dev_private;
6827         static const unsigned int blb_vco[8] = {
6828                 [0] = 3200000,
6829                 [1] = 4000000,
6830                 [2] = 5333333,
6831                 [3] = 4800000,
6832                 [4] = 6400000,
6833         };
6834         static const unsigned int pnv_vco[8] = {
6835                 [0] = 3200000,
6836                 [1] = 4000000,
6837                 [2] = 5333333,
6838                 [3] = 4800000,
6839                 [4] = 2666667,
6840         };
6841         static const unsigned int cl_vco[8] = {
6842                 [0] = 3200000,
6843                 [1] = 4000000,
6844                 [2] = 5333333,
6845                 [3] = 6400000,
6846                 [4] = 3333333,
6847                 [5] = 3566667,
6848                 [6] = 4266667,
6849         };
6850         static const unsigned int elk_vco[8] = {
6851                 [0] = 3200000,
6852                 [1] = 4000000,
6853                 [2] = 5333333,
6854                 [3] = 4800000,
6855         };
6856         static const unsigned int ctg_vco[8] = {
6857                 [0] = 3200000,
6858                 [1] = 4000000,
6859                 [2] = 5333333,
6860                 [3] = 6400000,
6861                 [4] = 2666667,
6862                 [5] = 4266667,
6863         };
6864         const unsigned int *vco_table;
6865         unsigned int vco;
6866         uint8_t tmp = 0;
6867
6868         /* FIXME other chipsets? */
6869         if (IS_GM45(dev))
6870                 vco_table = ctg_vco;
6871         else if (IS_G4X(dev))
6872                 vco_table = elk_vco;
6873         else if (IS_CRESTLINE(dev))
6874                 vco_table = cl_vco;
6875         else if (IS_PINEVIEW(dev))
6876                 vco_table = pnv_vco;
6877         else if (IS_G33(dev))
6878                 vco_table = blb_vco;
6879         else
6880                 return 0;
6881
6882         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6883
6884         vco = vco_table[tmp & 0x7];
6885         if (vco == 0)
6886                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6887         else
6888                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6889
6890         return vco;
6891 }
6892
6893 static int gm45_get_display_clock_speed(struct drm_device *dev)
6894 {
6895         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6896         uint16_t tmp = 0;
6897
6898         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6899
6900         cdclk_sel = (tmp >> 12) & 0x1;
6901
6902         switch (vco) {
6903         case 2666667:
6904         case 4000000:
6905         case 5333333:
6906                 return cdclk_sel ? 333333 : 222222;
6907         case 3200000:
6908                 return cdclk_sel ? 320000 : 228571;
6909         default:
6910                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6911                 return 222222;
6912         }
6913 }
6914
6915 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6916 {
6917         static const uint8_t div_3200[] = { 16, 10,  8 };
6918         static const uint8_t div_4000[] = { 20, 12, 10 };
6919         static const uint8_t div_5333[] = { 24, 16, 14 };
6920         const uint8_t *div_table;
6921         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6922         uint16_t tmp = 0;
6923
6924         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6925
6926         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6927
6928         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6929                 goto fail;
6930
6931         switch (vco) {
6932         case 3200000:
6933                 div_table = div_3200;
6934                 break;
6935         case 4000000:
6936                 div_table = div_4000;
6937                 break;
6938         case 5333333:
6939                 div_table = div_5333;
6940                 break;
6941         default:
6942                 goto fail;
6943         }
6944
6945         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6946
6947 fail:
6948         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6949         return 200000;
6950 }
6951
6952 static int g33_get_display_clock_speed(struct drm_device *dev)
6953 {
6954         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
6955         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
6956         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6957         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6958         const uint8_t *div_table;
6959         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6960         uint16_t tmp = 0;
6961
6962         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6963
6964         cdclk_sel = (tmp >> 4) & 0x7;
6965
6966         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6967                 goto fail;
6968
6969         switch (vco) {
6970         case 3200000:
6971                 div_table = div_3200;
6972                 break;
6973         case 4000000:
6974                 div_table = div_4000;
6975                 break;
6976         case 4800000:
6977                 div_table = div_4800;
6978                 break;
6979         case 5333333:
6980                 div_table = div_5333;
6981                 break;
6982         default:
6983                 goto fail;
6984         }
6985
6986         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6987
6988 fail:
6989         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
6990         return 190476;
6991 }
6992
6993 static void
6994 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6995 {
6996         while (*num > DATA_LINK_M_N_MASK ||
6997                *den > DATA_LINK_M_N_MASK) {
6998                 *num >>= 1;
6999                 *den >>= 1;
7000         }
7001 }
7002
7003 static void compute_m_n(unsigned int m, unsigned int n,
7004                         uint32_t *ret_m, uint32_t *ret_n)
7005 {
7006         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7007         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7008         intel_reduce_m_n_ratio(ret_m, ret_n);
7009 }
7010
7011 void
7012 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7013                        int pixel_clock, int link_clock,
7014                        struct intel_link_m_n *m_n)
7015 {
7016         m_n->tu = 64;
7017
7018         compute_m_n(bits_per_pixel * pixel_clock,
7019                     link_clock * nlanes * 8,
7020                     &m_n->gmch_m, &m_n->gmch_n);
7021
7022         compute_m_n(pixel_clock, link_clock,
7023                     &m_n->link_m, &m_n->link_n);
7024 }
7025
7026 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7027 {
7028         if (i915.panel_use_ssc >= 0)
7029                 return i915.panel_use_ssc != 0;
7030         return dev_priv->vbt.lvds_use_ssc
7031                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7032 }
7033
7034 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7035 {
7036         return (1 << dpll->n) << 16 | dpll->m2;
7037 }
7038
7039 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7040 {
7041         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7042 }
7043
7044 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7045                                      struct intel_crtc_state *crtc_state,
7046                                      struct dpll *reduced_clock)
7047 {
7048         struct drm_device *dev = crtc->base.dev;
7049         u32 fp, fp2 = 0;
7050
7051         if (IS_PINEVIEW(dev)) {
7052                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7053                 if (reduced_clock)
7054                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7055         } else {
7056                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7057                 if (reduced_clock)
7058                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7059         }
7060
7061         crtc_state->dpll_hw_state.fp0 = fp;
7062
7063         crtc->lowfreq_avail = false;
7064         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7065             reduced_clock) {
7066                 crtc_state->dpll_hw_state.fp1 = fp2;
7067                 crtc->lowfreq_avail = true;
7068         } else {
7069                 crtc_state->dpll_hw_state.fp1 = fp;
7070         }
7071 }
7072
7073 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7074                 pipe)
7075 {
7076         u32 reg_val;
7077
7078         /*
7079          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7080          * and set it to a reasonable value instead.
7081          */
7082         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7083         reg_val &= 0xffffff00;
7084         reg_val |= 0x00000030;
7085         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7086
7087         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7088         reg_val &= 0x8cffffff;
7089         reg_val = 0x8c000000;
7090         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7091
7092         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7093         reg_val &= 0xffffff00;
7094         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7095
7096         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7097         reg_val &= 0x00ffffff;
7098         reg_val |= 0xb0000000;
7099         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7100 }
7101
7102 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7103                                          struct intel_link_m_n *m_n)
7104 {
7105         struct drm_device *dev = crtc->base.dev;
7106         struct drm_i915_private *dev_priv = dev->dev_private;
7107         int pipe = crtc->pipe;
7108
7109         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7110         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7111         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7112         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7113 }
7114
7115 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7116                                          struct intel_link_m_n *m_n,
7117                                          struct intel_link_m_n *m2_n2)
7118 {
7119         struct drm_device *dev = crtc->base.dev;
7120         struct drm_i915_private *dev_priv = dev->dev_private;
7121         int pipe = crtc->pipe;
7122         enum transcoder transcoder = crtc->config->cpu_transcoder;
7123
7124         if (INTEL_INFO(dev)->gen >= 5) {
7125                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7126                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7127                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7128                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7129                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7130                  * for gen < 8) and if DRRS is supported (to make sure the
7131                  * registers are not unnecessarily accessed).
7132                  */
7133                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7134                         crtc->config->has_drrs) {
7135                         I915_WRITE(PIPE_DATA_M2(transcoder),
7136                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7137                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7138                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7139                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7140                 }
7141         } else {
7142                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7143                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7144                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7145                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7146         }
7147 }
7148
7149 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7150 {
7151         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7152
7153         if (m_n == M1_N1) {
7154                 dp_m_n = &crtc->config->dp_m_n;
7155                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7156         } else if (m_n == M2_N2) {
7157
7158                 /*
7159                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7160                  * needs to be programmed into M1_N1.
7161                  */
7162                 dp_m_n = &crtc->config->dp_m2_n2;
7163         } else {
7164                 DRM_ERROR("Unsupported divider value\n");
7165                 return;
7166         }
7167
7168         if (crtc->config->has_pch_encoder)
7169                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7170         else
7171                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7172 }
7173
7174 static void vlv_compute_dpll(struct intel_crtc *crtc,
7175                              struct intel_crtc_state *pipe_config)
7176 {
7177         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7178                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7179         if (crtc->pipe != PIPE_A)
7180                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7181
7182         /* DPLL not used with DSI, but still need the rest set up */
7183         if (!pipe_config->has_dsi_encoder)
7184                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7185                         DPLL_EXT_BUFFER_ENABLE_VLV;
7186
7187         pipe_config->dpll_hw_state.dpll_md =
7188                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7189 }
7190
7191 static void chv_compute_dpll(struct intel_crtc *crtc,
7192                              struct intel_crtc_state *pipe_config)
7193 {
7194         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7195                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7196         if (crtc->pipe != PIPE_A)
7197                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7198
7199         /* DPLL not used with DSI, but still need the rest set up */
7200         if (!pipe_config->has_dsi_encoder)
7201                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7202
7203         pipe_config->dpll_hw_state.dpll_md =
7204                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7205 }
7206
7207 static void vlv_prepare_pll(struct intel_crtc *crtc,
7208                             const struct intel_crtc_state *pipe_config)
7209 {
7210         struct drm_device *dev = crtc->base.dev;
7211         struct drm_i915_private *dev_priv = dev->dev_private;
7212         enum pipe pipe = crtc->pipe;
7213         u32 mdiv;
7214         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7215         u32 coreclk, reg_val;
7216
7217         /* Enable Refclk */
7218         I915_WRITE(DPLL(pipe),
7219                    pipe_config->dpll_hw_state.dpll &
7220                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7221
7222         /* No need to actually set up the DPLL with DSI */
7223         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7224                 return;
7225
7226         mutex_lock(&dev_priv->sb_lock);
7227
7228         bestn = pipe_config->dpll.n;
7229         bestm1 = pipe_config->dpll.m1;
7230         bestm2 = pipe_config->dpll.m2;
7231         bestp1 = pipe_config->dpll.p1;
7232         bestp2 = pipe_config->dpll.p2;
7233
7234         /* See eDP HDMI DPIO driver vbios notes doc */
7235
7236         /* PLL B needs special handling */
7237         if (pipe == PIPE_B)
7238                 vlv_pllb_recal_opamp(dev_priv, pipe);
7239
7240         /* Set up Tx target for periodic Rcomp update */
7241         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7242
7243         /* Disable target IRef on PLL */
7244         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7245         reg_val &= 0x00ffffff;
7246         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7247
7248         /* Disable fast lock */
7249         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7250
7251         /* Set idtafcrecal before PLL is enabled */
7252         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7253         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7254         mdiv |= ((bestn << DPIO_N_SHIFT));
7255         mdiv |= (1 << DPIO_K_SHIFT);
7256
7257         /*
7258          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7259          * but we don't support that).
7260          * Note: don't use the DAC post divider as it seems unstable.
7261          */
7262         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7263         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7264
7265         mdiv |= DPIO_ENABLE_CALIBRATION;
7266         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7267
7268         /* Set HBR and RBR LPF coefficients */
7269         if (pipe_config->port_clock == 162000 ||
7270             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7271             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7272                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7273                                  0x009f0003);
7274         else
7275                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7276                                  0x00d0000f);
7277
7278         if (pipe_config->has_dp_encoder) {
7279                 /* Use SSC source */
7280                 if (pipe == PIPE_A)
7281                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7282                                          0x0df40000);
7283                 else
7284                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7285                                          0x0df70000);
7286         } else { /* HDMI or VGA */
7287                 /* Use bend source */
7288                 if (pipe == PIPE_A)
7289                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7290                                          0x0df70000);
7291                 else
7292                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7293                                          0x0df40000);
7294         }
7295
7296         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7297         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7298         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7299             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7300                 coreclk |= 0x01000000;
7301         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7302
7303         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7304         mutex_unlock(&dev_priv->sb_lock);
7305 }
7306
7307 static void chv_prepare_pll(struct intel_crtc *crtc,
7308                             const struct intel_crtc_state *pipe_config)
7309 {
7310         struct drm_device *dev = crtc->base.dev;
7311         struct drm_i915_private *dev_priv = dev->dev_private;
7312         enum pipe pipe = crtc->pipe;
7313         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7314         u32 loopfilter, tribuf_calcntr;
7315         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7316         u32 dpio_val;
7317         int vco;
7318
7319         /* Enable Refclk and SSC */
7320         I915_WRITE(DPLL(pipe),
7321                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7322
7323         /* No need to actually set up the DPLL with DSI */
7324         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7325                 return;
7326
7327         bestn = pipe_config->dpll.n;
7328         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7329         bestm1 = pipe_config->dpll.m1;
7330         bestm2 = pipe_config->dpll.m2 >> 22;
7331         bestp1 = pipe_config->dpll.p1;
7332         bestp2 = pipe_config->dpll.p2;
7333         vco = pipe_config->dpll.vco;
7334         dpio_val = 0;
7335         loopfilter = 0;
7336
7337         mutex_lock(&dev_priv->sb_lock);
7338
7339         /* p1 and p2 divider */
7340         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7341                         5 << DPIO_CHV_S1_DIV_SHIFT |
7342                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7343                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7344                         1 << DPIO_CHV_K_DIV_SHIFT);
7345
7346         /* Feedback post-divider - m2 */
7347         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7348
7349         /* Feedback refclk divider - n and m1 */
7350         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7351                         DPIO_CHV_M1_DIV_BY_2 |
7352                         1 << DPIO_CHV_N_DIV_SHIFT);
7353
7354         /* M2 fraction division */
7355         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7356
7357         /* M2 fraction division enable */
7358         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7359         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7360         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7361         if (bestm2_frac)
7362                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7363         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7364
7365         /* Program digital lock detect threshold */
7366         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7367         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7368                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7369         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7370         if (!bestm2_frac)
7371                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7372         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7373
7374         /* Loop filter */
7375         if (vco == 5400000) {
7376                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7377                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7378                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7379                 tribuf_calcntr = 0x9;
7380         } else if (vco <= 6200000) {
7381                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7382                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7383                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7384                 tribuf_calcntr = 0x9;
7385         } else if (vco <= 6480000) {
7386                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7387                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7388                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7389                 tribuf_calcntr = 0x8;
7390         } else {
7391                 /* Not supported. Apply the same limits as in the max case */
7392                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7393                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7394                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7395                 tribuf_calcntr = 0;
7396         }
7397         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7398
7399         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7400         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7401         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7402         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7403
7404         /* AFC Recal */
7405         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7406                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7407                         DPIO_AFC_RECAL);
7408
7409         mutex_unlock(&dev_priv->sb_lock);
7410 }
7411
7412 /**
7413  * vlv_force_pll_on - forcibly enable just the PLL
7414  * @dev_priv: i915 private structure
7415  * @pipe: pipe PLL to enable
7416  * @dpll: PLL configuration
7417  *
7418  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7419  * in cases where we need the PLL enabled even when @pipe is not going to
7420  * be enabled.
7421  */
7422 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7423                      const struct dpll *dpll)
7424 {
7425         struct intel_crtc *crtc =
7426                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7427         struct intel_crtc_state *pipe_config;
7428
7429         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7430         if (!pipe_config)
7431                 return -ENOMEM;
7432
7433         pipe_config->base.crtc = &crtc->base;
7434         pipe_config->pixel_multiplier = 1;
7435         pipe_config->dpll = *dpll;
7436
7437         if (IS_CHERRYVIEW(dev)) {
7438                 chv_compute_dpll(crtc, pipe_config);
7439                 chv_prepare_pll(crtc, pipe_config);
7440                 chv_enable_pll(crtc, pipe_config);
7441         } else {
7442                 vlv_compute_dpll(crtc, pipe_config);
7443                 vlv_prepare_pll(crtc, pipe_config);
7444                 vlv_enable_pll(crtc, pipe_config);
7445         }
7446
7447         kfree(pipe_config);
7448
7449         return 0;
7450 }
7451
7452 /**
7453  * vlv_force_pll_off - forcibly disable just the PLL
7454  * @dev_priv: i915 private structure
7455  * @pipe: pipe PLL to disable
7456  *
7457  * Disable the PLL for @pipe. To be used in cases where we need
7458  * the PLL enabled even when @pipe is not going to be enabled.
7459  */
7460 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7461 {
7462         if (IS_CHERRYVIEW(dev))
7463                 chv_disable_pll(to_i915(dev), pipe);
7464         else
7465                 vlv_disable_pll(to_i915(dev), pipe);
7466 }
7467
7468 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7469                               struct intel_crtc_state *crtc_state,
7470                               struct dpll *reduced_clock)
7471 {
7472         struct drm_device *dev = crtc->base.dev;
7473         struct drm_i915_private *dev_priv = dev->dev_private;
7474         u32 dpll;
7475         bool is_sdvo;
7476         struct dpll *clock = &crtc_state->dpll;
7477
7478         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7479
7480         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7481                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7482
7483         dpll = DPLL_VGA_MODE_DIS;
7484
7485         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7486                 dpll |= DPLLB_MODE_LVDS;
7487         else
7488                 dpll |= DPLLB_MODE_DAC_SERIAL;
7489
7490         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7491                 dpll |= (crtc_state->pixel_multiplier - 1)
7492                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7493         }
7494
7495         if (is_sdvo)
7496                 dpll |= DPLL_SDVO_HIGH_SPEED;
7497
7498         if (crtc_state->has_dp_encoder)
7499                 dpll |= DPLL_SDVO_HIGH_SPEED;
7500
7501         /* compute bitmask from p1 value */
7502         if (IS_PINEVIEW(dev))
7503                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7504         else {
7505                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7506                 if (IS_G4X(dev) && reduced_clock)
7507                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7508         }
7509         switch (clock->p2) {
7510         case 5:
7511                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7512                 break;
7513         case 7:
7514                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7515                 break;
7516         case 10:
7517                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7518                 break;
7519         case 14:
7520                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7521                 break;
7522         }
7523         if (INTEL_INFO(dev)->gen >= 4)
7524                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7525
7526         if (crtc_state->sdvo_tv_clock)
7527                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7528         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7529                  intel_panel_use_ssc(dev_priv))
7530                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7531         else
7532                 dpll |= PLL_REF_INPUT_DREFCLK;
7533
7534         dpll |= DPLL_VCO_ENABLE;
7535         crtc_state->dpll_hw_state.dpll = dpll;
7536
7537         if (INTEL_INFO(dev)->gen >= 4) {
7538                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7539                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7540                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7541         }
7542 }
7543
7544 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7545                               struct intel_crtc_state *crtc_state,
7546                               struct dpll *reduced_clock)
7547 {
7548         struct drm_device *dev = crtc->base.dev;
7549         struct drm_i915_private *dev_priv = dev->dev_private;
7550         u32 dpll;
7551         struct dpll *clock = &crtc_state->dpll;
7552
7553         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7554
7555         dpll = DPLL_VGA_MODE_DIS;
7556
7557         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7558                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7559         } else {
7560                 if (clock->p1 == 2)
7561                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7562                 else
7563                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7564                 if (clock->p2 == 4)
7565                         dpll |= PLL_P2_DIVIDE_BY_4;
7566         }
7567
7568         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7569                 dpll |= DPLL_DVO_2X_MODE;
7570
7571         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7572             intel_panel_use_ssc(dev_priv))
7573                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7574         else
7575                 dpll |= PLL_REF_INPUT_DREFCLK;
7576
7577         dpll |= DPLL_VCO_ENABLE;
7578         crtc_state->dpll_hw_state.dpll = dpll;
7579 }
7580
7581 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7582 {
7583         struct drm_device *dev = intel_crtc->base.dev;
7584         struct drm_i915_private *dev_priv = dev->dev_private;
7585         enum pipe pipe = intel_crtc->pipe;
7586         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7587         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7588         uint32_t crtc_vtotal, crtc_vblank_end;
7589         int vsyncshift = 0;
7590
7591         /* We need to be careful not to changed the adjusted mode, for otherwise
7592          * the hw state checker will get angry at the mismatch. */
7593         crtc_vtotal = adjusted_mode->crtc_vtotal;
7594         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7595
7596         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7597                 /* the chip adds 2 halflines automatically */
7598                 crtc_vtotal -= 1;
7599                 crtc_vblank_end -= 1;
7600
7601                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7602                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7603                 else
7604                         vsyncshift = adjusted_mode->crtc_hsync_start -
7605                                 adjusted_mode->crtc_htotal / 2;
7606                 if (vsyncshift < 0)
7607                         vsyncshift += adjusted_mode->crtc_htotal;
7608         }
7609
7610         if (INTEL_INFO(dev)->gen > 3)
7611                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7612
7613         I915_WRITE(HTOTAL(cpu_transcoder),
7614                    (adjusted_mode->crtc_hdisplay - 1) |
7615                    ((adjusted_mode->crtc_htotal - 1) << 16));
7616         I915_WRITE(HBLANK(cpu_transcoder),
7617                    (adjusted_mode->crtc_hblank_start - 1) |
7618                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7619         I915_WRITE(HSYNC(cpu_transcoder),
7620                    (adjusted_mode->crtc_hsync_start - 1) |
7621                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7622
7623         I915_WRITE(VTOTAL(cpu_transcoder),
7624                    (adjusted_mode->crtc_vdisplay - 1) |
7625                    ((crtc_vtotal - 1) << 16));
7626         I915_WRITE(VBLANK(cpu_transcoder),
7627                    (adjusted_mode->crtc_vblank_start - 1) |
7628                    ((crtc_vblank_end - 1) << 16));
7629         I915_WRITE(VSYNC(cpu_transcoder),
7630                    (adjusted_mode->crtc_vsync_start - 1) |
7631                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7632
7633         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7634          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7635          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7636          * bits. */
7637         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7638             (pipe == PIPE_B || pipe == PIPE_C))
7639                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7640
7641 }
7642
7643 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7644 {
7645         struct drm_device *dev = intel_crtc->base.dev;
7646         struct drm_i915_private *dev_priv = dev->dev_private;
7647         enum pipe pipe = intel_crtc->pipe;
7648
7649         /* pipesrc controls the size that is scaled from, which should
7650          * always be the user's requested size.
7651          */
7652         I915_WRITE(PIPESRC(pipe),
7653                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7654                    (intel_crtc->config->pipe_src_h - 1));
7655 }
7656
7657 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7658                                    struct intel_crtc_state *pipe_config)
7659 {
7660         struct drm_device *dev = crtc->base.dev;
7661         struct drm_i915_private *dev_priv = dev->dev_private;
7662         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7663         uint32_t tmp;
7664
7665         tmp = I915_READ(HTOTAL(cpu_transcoder));
7666         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7667         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7668         tmp = I915_READ(HBLANK(cpu_transcoder));
7669         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7670         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7671         tmp = I915_READ(HSYNC(cpu_transcoder));
7672         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7673         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7674
7675         tmp = I915_READ(VTOTAL(cpu_transcoder));
7676         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7677         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7678         tmp = I915_READ(VBLANK(cpu_transcoder));
7679         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7680         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7681         tmp = I915_READ(VSYNC(cpu_transcoder));
7682         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7683         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7684
7685         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7686                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7687                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7688                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7689         }
7690 }
7691
7692 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7693                                     struct intel_crtc_state *pipe_config)
7694 {
7695         struct drm_device *dev = crtc->base.dev;
7696         struct drm_i915_private *dev_priv = dev->dev_private;
7697         u32 tmp;
7698
7699         tmp = I915_READ(PIPESRC(crtc->pipe));
7700         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7701         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7702
7703         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7704         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7705 }
7706
7707 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7708                                  struct intel_crtc_state *pipe_config)
7709 {
7710         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7711         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7712         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7713         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7714
7715         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7716         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7717         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7718         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7719
7720         mode->flags = pipe_config->base.adjusted_mode.flags;
7721         mode->type = DRM_MODE_TYPE_DRIVER;
7722
7723         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7724         mode->flags |= pipe_config->base.adjusted_mode.flags;
7725
7726         mode->hsync = drm_mode_hsync(mode);
7727         mode->vrefresh = drm_mode_vrefresh(mode);
7728         drm_mode_set_name(mode);
7729 }
7730
7731 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7732 {
7733         struct drm_device *dev = intel_crtc->base.dev;
7734         struct drm_i915_private *dev_priv = dev->dev_private;
7735         uint32_t pipeconf;
7736
7737         pipeconf = 0;
7738
7739         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7740             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7741                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7742
7743         if (intel_crtc->config->double_wide)
7744                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7745
7746         /* only g4x and later have fancy bpc/dither controls */
7747         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7748                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7749                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7750                         pipeconf |= PIPECONF_DITHER_EN |
7751                                     PIPECONF_DITHER_TYPE_SP;
7752
7753                 switch (intel_crtc->config->pipe_bpp) {
7754                 case 18:
7755                         pipeconf |= PIPECONF_6BPC;
7756                         break;
7757                 case 24:
7758                         pipeconf |= PIPECONF_8BPC;
7759                         break;
7760                 case 30:
7761                         pipeconf |= PIPECONF_10BPC;
7762                         break;
7763                 default:
7764                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7765                         BUG();
7766                 }
7767         }
7768
7769         if (HAS_PIPE_CXSR(dev)) {
7770                 if (intel_crtc->lowfreq_avail) {
7771                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7772                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7773                 } else {
7774                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7775                 }
7776         }
7777
7778         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7779                 if (INTEL_INFO(dev)->gen < 4 ||
7780                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7781                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7782                 else
7783                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7784         } else
7785                 pipeconf |= PIPECONF_PROGRESSIVE;
7786
7787         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7788              intel_crtc->config->limited_color_range)
7789                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7790
7791         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7792         POSTING_READ(PIPECONF(intel_crtc->pipe));
7793 }
7794
7795 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7796                                    struct intel_crtc_state *crtc_state)
7797 {
7798         struct drm_device *dev = crtc->base.dev;
7799         struct drm_i915_private *dev_priv = dev->dev_private;
7800         const struct intel_limit *limit;
7801         int refclk = 48000;
7802
7803         memset(&crtc_state->dpll_hw_state, 0,
7804                sizeof(crtc_state->dpll_hw_state));
7805
7806         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7807                 if (intel_panel_use_ssc(dev_priv)) {
7808                         refclk = dev_priv->vbt.lvds_ssc_freq;
7809                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7810                 }
7811
7812                 limit = &intel_limits_i8xx_lvds;
7813         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) {
7814                 limit = &intel_limits_i8xx_dvo;
7815         } else {
7816                 limit = &intel_limits_i8xx_dac;
7817         }
7818
7819         if (!crtc_state->clock_set &&
7820             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7821                                  refclk, NULL, &crtc_state->dpll)) {
7822                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7823                 return -EINVAL;
7824         }
7825
7826         i8xx_compute_dpll(crtc, crtc_state, NULL);
7827
7828         return 0;
7829 }
7830
7831 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7832                                   struct intel_crtc_state *crtc_state)
7833 {
7834         struct drm_device *dev = crtc->base.dev;
7835         struct drm_i915_private *dev_priv = dev->dev_private;
7836         const struct intel_limit *limit;
7837         int refclk = 96000;
7838
7839         memset(&crtc_state->dpll_hw_state, 0,
7840                sizeof(crtc_state->dpll_hw_state));
7841
7842         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7843                 if (intel_panel_use_ssc(dev_priv)) {
7844                         refclk = dev_priv->vbt.lvds_ssc_freq;
7845                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7846                 }
7847
7848                 if (intel_is_dual_link_lvds(dev))
7849                         limit = &intel_limits_g4x_dual_channel_lvds;
7850                 else
7851                         limit = &intel_limits_g4x_single_channel_lvds;
7852         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7853                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7854                 limit = &intel_limits_g4x_hdmi;
7855         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7856                 limit = &intel_limits_g4x_sdvo;
7857         } else {
7858                 /* The option is for other outputs */
7859                 limit = &intel_limits_i9xx_sdvo;
7860         }
7861
7862         if (!crtc_state->clock_set &&
7863             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7864                                 refclk, NULL, &crtc_state->dpll)) {
7865                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7866                 return -EINVAL;
7867         }
7868
7869         i9xx_compute_dpll(crtc, crtc_state, NULL);
7870
7871         return 0;
7872 }
7873
7874 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7875                                   struct intel_crtc_state *crtc_state)
7876 {
7877         struct drm_device *dev = crtc->base.dev;
7878         struct drm_i915_private *dev_priv = dev->dev_private;
7879         const struct intel_limit *limit;
7880         int refclk = 96000;
7881
7882         memset(&crtc_state->dpll_hw_state, 0,
7883                sizeof(crtc_state->dpll_hw_state));
7884
7885         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7886                 if (intel_panel_use_ssc(dev_priv)) {
7887                         refclk = dev_priv->vbt.lvds_ssc_freq;
7888                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7889                 }
7890
7891                 limit = &intel_limits_pineview_lvds;
7892         } else {
7893                 limit = &intel_limits_pineview_sdvo;
7894         }
7895
7896         if (!crtc_state->clock_set &&
7897             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7898                                 refclk, NULL, &crtc_state->dpll)) {
7899                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7900                 return -EINVAL;
7901         }
7902
7903         i9xx_compute_dpll(crtc, crtc_state, NULL);
7904
7905         return 0;
7906 }
7907
7908 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7909                                    struct intel_crtc_state *crtc_state)
7910 {
7911         struct drm_device *dev = crtc->base.dev;
7912         struct drm_i915_private *dev_priv = dev->dev_private;
7913         const struct intel_limit *limit;
7914         int refclk = 96000;
7915
7916         memset(&crtc_state->dpll_hw_state, 0,
7917                sizeof(crtc_state->dpll_hw_state));
7918
7919         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7920                 if (intel_panel_use_ssc(dev_priv)) {
7921                         refclk = dev_priv->vbt.lvds_ssc_freq;
7922                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7923                 }
7924
7925                 limit = &intel_limits_i9xx_lvds;
7926         } else {
7927                 limit = &intel_limits_i9xx_sdvo;
7928         }
7929
7930         if (!crtc_state->clock_set &&
7931             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7932                                  refclk, NULL, &crtc_state->dpll)) {
7933                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7934                 return -EINVAL;
7935         }
7936
7937         i9xx_compute_dpll(crtc, crtc_state, NULL);
7938
7939         return 0;
7940 }
7941
7942 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7943                                   struct intel_crtc_state *crtc_state)
7944 {
7945         int refclk = 100000;
7946         const struct intel_limit *limit = &intel_limits_chv;
7947
7948         memset(&crtc_state->dpll_hw_state, 0,
7949                sizeof(crtc_state->dpll_hw_state));
7950
7951         if (!crtc_state->clock_set &&
7952             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7953                                 refclk, NULL, &crtc_state->dpll)) {
7954                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7955                 return -EINVAL;
7956         }
7957
7958         chv_compute_dpll(crtc, crtc_state);
7959
7960         return 0;
7961 }
7962
7963 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7964                                   struct intel_crtc_state *crtc_state)
7965 {
7966         int refclk = 100000;
7967         const struct intel_limit *limit = &intel_limits_vlv;
7968
7969         memset(&crtc_state->dpll_hw_state, 0,
7970                sizeof(crtc_state->dpll_hw_state));
7971
7972         if (!crtc_state->clock_set &&
7973             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7974                                 refclk, NULL, &crtc_state->dpll)) {
7975                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7976                 return -EINVAL;
7977         }
7978
7979         vlv_compute_dpll(crtc, crtc_state);
7980
7981         return 0;
7982 }
7983
7984 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7985                                  struct intel_crtc_state *pipe_config)
7986 {
7987         struct drm_device *dev = crtc->base.dev;
7988         struct drm_i915_private *dev_priv = dev->dev_private;
7989         uint32_t tmp;
7990
7991         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7992                 return;
7993
7994         tmp = I915_READ(PFIT_CONTROL);
7995         if (!(tmp & PFIT_ENABLE))
7996                 return;
7997
7998         /* Check whether the pfit is attached to our pipe. */
7999         if (INTEL_INFO(dev)->gen < 4) {
8000                 if (crtc->pipe != PIPE_B)
8001                         return;
8002         } else {
8003                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8004                         return;
8005         }
8006
8007         pipe_config->gmch_pfit.control = tmp;
8008         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8009 }
8010
8011 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8012                                struct intel_crtc_state *pipe_config)
8013 {
8014         struct drm_device *dev = crtc->base.dev;
8015         struct drm_i915_private *dev_priv = dev->dev_private;
8016         int pipe = pipe_config->cpu_transcoder;
8017         struct dpll clock;
8018         u32 mdiv;
8019         int refclk = 100000;
8020
8021         /* In case of DSI, DPLL will not be used */
8022         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8023                 return;
8024
8025         mutex_lock(&dev_priv->sb_lock);
8026         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8027         mutex_unlock(&dev_priv->sb_lock);
8028
8029         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8030         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8031         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8032         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8033         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8034
8035         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8036 }
8037
8038 static void
8039 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8040                               struct intel_initial_plane_config *plane_config)
8041 {
8042         struct drm_device *dev = crtc->base.dev;
8043         struct drm_i915_private *dev_priv = dev->dev_private;
8044         u32 val, base, offset;
8045         int pipe = crtc->pipe, plane = crtc->plane;
8046         int fourcc, pixel_format;
8047         unsigned int aligned_height;
8048         struct drm_framebuffer *fb;
8049         struct intel_framebuffer *intel_fb;
8050
8051         val = I915_READ(DSPCNTR(plane));
8052         if (!(val & DISPLAY_PLANE_ENABLE))
8053                 return;
8054
8055         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8056         if (!intel_fb) {
8057                 DRM_DEBUG_KMS("failed to alloc fb\n");
8058                 return;
8059         }
8060
8061         fb = &intel_fb->base;
8062
8063         if (INTEL_INFO(dev)->gen >= 4) {
8064                 if (val & DISPPLANE_TILED) {
8065                         plane_config->tiling = I915_TILING_X;
8066                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8067                 }
8068         }
8069
8070         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8071         fourcc = i9xx_format_to_fourcc(pixel_format);
8072         fb->pixel_format = fourcc;
8073         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8074
8075         if (INTEL_INFO(dev)->gen >= 4) {
8076                 if (plane_config->tiling)
8077                         offset = I915_READ(DSPTILEOFF(plane));
8078                 else
8079                         offset = I915_READ(DSPLINOFF(plane));
8080                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8081         } else {
8082                 base = I915_READ(DSPADDR(plane));
8083         }
8084         plane_config->base = base;
8085
8086         val = I915_READ(PIPESRC(pipe));
8087         fb->width = ((val >> 16) & 0xfff) + 1;
8088         fb->height = ((val >> 0) & 0xfff) + 1;
8089
8090         val = I915_READ(DSPSTRIDE(pipe));
8091         fb->pitches[0] = val & 0xffffffc0;
8092
8093         aligned_height = intel_fb_align_height(dev, fb->height,
8094                                                fb->pixel_format,
8095                                                fb->modifier[0]);
8096
8097         plane_config->size = fb->pitches[0] * aligned_height;
8098
8099         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8100                       pipe_name(pipe), plane, fb->width, fb->height,
8101                       fb->bits_per_pixel, base, fb->pitches[0],
8102                       plane_config->size);
8103
8104         plane_config->fb = intel_fb;
8105 }
8106
8107 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8108                                struct intel_crtc_state *pipe_config)
8109 {
8110         struct drm_device *dev = crtc->base.dev;
8111         struct drm_i915_private *dev_priv = dev->dev_private;
8112         int pipe = pipe_config->cpu_transcoder;
8113         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8114         struct dpll clock;
8115         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8116         int refclk = 100000;
8117
8118         /* In case of DSI, DPLL will not be used */
8119         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8120                 return;
8121
8122         mutex_lock(&dev_priv->sb_lock);
8123         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8124         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8125         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8126         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8127         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8128         mutex_unlock(&dev_priv->sb_lock);
8129
8130         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8131         clock.m2 = (pll_dw0 & 0xff) << 22;
8132         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8133                 clock.m2 |= pll_dw2 & 0x3fffff;
8134         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8135         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8136         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8137
8138         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8139 }
8140
8141 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8142                                  struct intel_crtc_state *pipe_config)
8143 {
8144         struct drm_device *dev = crtc->base.dev;
8145         struct drm_i915_private *dev_priv = dev->dev_private;
8146         enum intel_display_power_domain power_domain;
8147         uint32_t tmp;
8148         bool ret;
8149
8150         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8151         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8152                 return false;
8153
8154         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8155         pipe_config->shared_dpll = NULL;
8156
8157         ret = false;
8158
8159         tmp = I915_READ(PIPECONF(crtc->pipe));
8160         if (!(tmp & PIPECONF_ENABLE))
8161                 goto out;
8162
8163         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8164                 switch (tmp & PIPECONF_BPC_MASK) {
8165                 case PIPECONF_6BPC:
8166                         pipe_config->pipe_bpp = 18;
8167                         break;
8168                 case PIPECONF_8BPC:
8169                         pipe_config->pipe_bpp = 24;
8170                         break;
8171                 case PIPECONF_10BPC:
8172                         pipe_config->pipe_bpp = 30;
8173                         break;
8174                 default:
8175                         break;
8176                 }
8177         }
8178
8179         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8180             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8181                 pipe_config->limited_color_range = true;
8182
8183         if (INTEL_INFO(dev)->gen < 4)
8184                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8185
8186         intel_get_pipe_timings(crtc, pipe_config);
8187         intel_get_pipe_src_size(crtc, pipe_config);
8188
8189         i9xx_get_pfit_config(crtc, pipe_config);
8190
8191         if (INTEL_INFO(dev)->gen >= 4) {
8192                 /* No way to read it out on pipes B and C */
8193                 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8194                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
8195                 else
8196                         tmp = I915_READ(DPLL_MD(crtc->pipe));
8197                 pipe_config->pixel_multiplier =
8198                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8199                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8200                 pipe_config->dpll_hw_state.dpll_md = tmp;
8201         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8202                 tmp = I915_READ(DPLL(crtc->pipe));
8203                 pipe_config->pixel_multiplier =
8204                         ((tmp & SDVO_MULTIPLIER_MASK)
8205                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8206         } else {
8207                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8208                  * port and will be fixed up in the encoder->get_config
8209                  * function. */
8210                 pipe_config->pixel_multiplier = 1;
8211         }
8212         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8213         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8214                 /*
8215                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8216                  * on 830. Filter it out here so that we don't
8217                  * report errors due to that.
8218                  */
8219                 if (IS_I830(dev))
8220                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8221
8222                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8223                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8224         } else {
8225                 /* Mask out read-only status bits. */
8226                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8227                                                      DPLL_PORTC_READY_MASK |
8228                                                      DPLL_PORTB_READY_MASK);
8229         }
8230
8231         if (IS_CHERRYVIEW(dev))
8232                 chv_crtc_clock_get(crtc, pipe_config);
8233         else if (IS_VALLEYVIEW(dev))
8234                 vlv_crtc_clock_get(crtc, pipe_config);
8235         else
8236                 i9xx_crtc_clock_get(crtc, pipe_config);
8237
8238         /*
8239          * Normally the dotclock is filled in by the encoder .get_config()
8240          * but in case the pipe is enabled w/o any ports we need a sane
8241          * default.
8242          */
8243         pipe_config->base.adjusted_mode.crtc_clock =
8244                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8245
8246         ret = true;
8247
8248 out:
8249         intel_display_power_put(dev_priv, power_domain);
8250
8251         return ret;
8252 }
8253
8254 static void ironlake_init_pch_refclk(struct drm_device *dev)
8255 {
8256         struct drm_i915_private *dev_priv = dev->dev_private;
8257         struct intel_encoder *encoder;
8258         u32 val, final;
8259         bool has_lvds = false;
8260         bool has_cpu_edp = false;
8261         bool has_panel = false;
8262         bool has_ck505 = false;
8263         bool can_ssc = false;
8264
8265         /* We need to take the global config into account */
8266         for_each_intel_encoder(dev, encoder) {
8267                 switch (encoder->type) {
8268                 case INTEL_OUTPUT_LVDS:
8269                         has_panel = true;
8270                         has_lvds = true;
8271                         break;
8272                 case INTEL_OUTPUT_EDP:
8273                         has_panel = true;
8274                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8275                                 has_cpu_edp = true;
8276                         break;
8277                 default:
8278                         break;
8279                 }
8280         }
8281
8282         if (HAS_PCH_IBX(dev)) {
8283                 has_ck505 = dev_priv->vbt.display_clock_mode;
8284                 can_ssc = has_ck505;
8285         } else {
8286                 has_ck505 = false;
8287                 can_ssc = true;
8288         }
8289
8290         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8291                       has_panel, has_lvds, has_ck505);
8292
8293         /* Ironlake: try to setup display ref clock before DPLL
8294          * enabling. This is only under driver's control after
8295          * PCH B stepping, previous chipset stepping should be
8296          * ignoring this setting.
8297          */
8298         val = I915_READ(PCH_DREF_CONTROL);
8299
8300         /* As we must carefully and slowly disable/enable each source in turn,
8301          * compute the final state we want first and check if we need to
8302          * make any changes at all.
8303          */
8304         final = val;
8305         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8306         if (has_ck505)
8307                 final |= DREF_NONSPREAD_CK505_ENABLE;
8308         else
8309                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8310
8311         final &= ~DREF_SSC_SOURCE_MASK;
8312         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8313         final &= ~DREF_SSC1_ENABLE;
8314
8315         if (has_panel) {
8316                 final |= DREF_SSC_SOURCE_ENABLE;
8317
8318                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8319                         final |= DREF_SSC1_ENABLE;
8320
8321                 if (has_cpu_edp) {
8322                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8323                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8324                         else
8325                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8326                 } else
8327                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8328         } else {
8329                 final |= DREF_SSC_SOURCE_DISABLE;
8330                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8331         }
8332
8333         if (final == val)
8334                 return;
8335
8336         /* Always enable nonspread source */
8337         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8338
8339         if (has_ck505)
8340                 val |= DREF_NONSPREAD_CK505_ENABLE;
8341         else
8342                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8343
8344         if (has_panel) {
8345                 val &= ~DREF_SSC_SOURCE_MASK;
8346                 val |= DREF_SSC_SOURCE_ENABLE;
8347
8348                 /* SSC must be turned on before enabling the CPU output  */
8349                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8350                         DRM_DEBUG_KMS("Using SSC on panel\n");
8351                         val |= DREF_SSC1_ENABLE;
8352                 } else
8353                         val &= ~DREF_SSC1_ENABLE;
8354
8355                 /* Get SSC going before enabling the outputs */
8356                 I915_WRITE(PCH_DREF_CONTROL, val);
8357                 POSTING_READ(PCH_DREF_CONTROL);
8358                 udelay(200);
8359
8360                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8361
8362                 /* Enable CPU source on CPU attached eDP */
8363                 if (has_cpu_edp) {
8364                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8365                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8366                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8367                         } else
8368                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8369                 } else
8370                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8371
8372                 I915_WRITE(PCH_DREF_CONTROL, val);
8373                 POSTING_READ(PCH_DREF_CONTROL);
8374                 udelay(200);
8375         } else {
8376                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8377
8378                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8379
8380                 /* Turn off CPU output */
8381                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8382
8383                 I915_WRITE(PCH_DREF_CONTROL, val);
8384                 POSTING_READ(PCH_DREF_CONTROL);
8385                 udelay(200);
8386
8387                 /* Turn off the SSC source */
8388                 val &= ~DREF_SSC_SOURCE_MASK;
8389                 val |= DREF_SSC_SOURCE_DISABLE;
8390
8391                 /* Turn off SSC1 */
8392                 val &= ~DREF_SSC1_ENABLE;
8393
8394                 I915_WRITE(PCH_DREF_CONTROL, val);
8395                 POSTING_READ(PCH_DREF_CONTROL);
8396                 udelay(200);
8397         }
8398
8399         BUG_ON(val != final);
8400 }
8401
8402 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8403 {
8404         uint32_t tmp;
8405
8406         tmp = I915_READ(SOUTH_CHICKEN2);
8407         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8408         I915_WRITE(SOUTH_CHICKEN2, tmp);
8409
8410         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8411                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8412                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8413
8414         tmp = I915_READ(SOUTH_CHICKEN2);
8415         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8416         I915_WRITE(SOUTH_CHICKEN2, tmp);
8417
8418         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8419                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8420                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8421 }
8422
8423 /* WaMPhyProgramming:hsw */
8424 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8425 {
8426         uint32_t tmp;
8427
8428         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8429         tmp &= ~(0xFF << 24);
8430         tmp |= (0x12 << 24);
8431         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8432
8433         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8434         tmp |= (1 << 11);
8435         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8436
8437         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8438         tmp |= (1 << 11);
8439         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8440
8441         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8442         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8443         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8444
8445         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8446         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8447         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8448
8449         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8450         tmp &= ~(7 << 13);
8451         tmp |= (5 << 13);
8452         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8453
8454         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8455         tmp &= ~(7 << 13);
8456         tmp |= (5 << 13);
8457         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8458
8459         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8460         tmp &= ~0xFF;
8461         tmp |= 0x1C;
8462         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8463
8464         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8465         tmp &= ~0xFF;
8466         tmp |= 0x1C;
8467         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8468
8469         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8470         tmp &= ~(0xFF << 16);
8471         tmp |= (0x1C << 16);
8472         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8473
8474         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8475         tmp &= ~(0xFF << 16);
8476         tmp |= (0x1C << 16);
8477         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8478
8479         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8480         tmp |= (1 << 27);
8481         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8482
8483         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8484         tmp |= (1 << 27);
8485         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8486
8487         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8488         tmp &= ~(0xF << 28);
8489         tmp |= (4 << 28);
8490         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8491
8492         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8493         tmp &= ~(0xF << 28);
8494         tmp |= (4 << 28);
8495         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8496 }
8497
8498 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8499  * Programming" based on the parameters passed:
8500  * - Sequence to enable CLKOUT_DP
8501  * - Sequence to enable CLKOUT_DP without spread
8502  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8503  */
8504 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8505                                  bool with_fdi)
8506 {
8507         struct drm_i915_private *dev_priv = dev->dev_private;
8508         uint32_t reg, tmp;
8509
8510         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8511                 with_spread = true;
8512         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8513                 with_fdi = false;
8514
8515         mutex_lock(&dev_priv->sb_lock);
8516
8517         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8518         tmp &= ~SBI_SSCCTL_DISABLE;
8519         tmp |= SBI_SSCCTL_PATHALT;
8520         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8521
8522         udelay(24);
8523
8524         if (with_spread) {
8525                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8526                 tmp &= ~SBI_SSCCTL_PATHALT;
8527                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8528
8529                 if (with_fdi) {
8530                         lpt_reset_fdi_mphy(dev_priv);
8531                         lpt_program_fdi_mphy(dev_priv);
8532                 }
8533         }
8534
8535         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8536         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8537         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8538         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8539
8540         mutex_unlock(&dev_priv->sb_lock);
8541 }
8542
8543 /* Sequence to disable CLKOUT_DP */
8544 static void lpt_disable_clkout_dp(struct drm_device *dev)
8545 {
8546         struct drm_i915_private *dev_priv = dev->dev_private;
8547         uint32_t reg, tmp;
8548
8549         mutex_lock(&dev_priv->sb_lock);
8550
8551         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8552         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8553         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8554         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8555
8556         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8557         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8558                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8559                         tmp |= SBI_SSCCTL_PATHALT;
8560                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8561                         udelay(32);
8562                 }
8563                 tmp |= SBI_SSCCTL_DISABLE;
8564                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8565         }
8566
8567         mutex_unlock(&dev_priv->sb_lock);
8568 }
8569
8570 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8571
8572 static const uint16_t sscdivintphase[] = {
8573         [BEND_IDX( 50)] = 0x3B23,
8574         [BEND_IDX( 45)] = 0x3B23,
8575         [BEND_IDX( 40)] = 0x3C23,
8576         [BEND_IDX( 35)] = 0x3C23,
8577         [BEND_IDX( 30)] = 0x3D23,
8578         [BEND_IDX( 25)] = 0x3D23,
8579         [BEND_IDX( 20)] = 0x3E23,
8580         [BEND_IDX( 15)] = 0x3E23,
8581         [BEND_IDX( 10)] = 0x3F23,
8582         [BEND_IDX(  5)] = 0x3F23,
8583         [BEND_IDX(  0)] = 0x0025,
8584         [BEND_IDX( -5)] = 0x0025,
8585         [BEND_IDX(-10)] = 0x0125,
8586         [BEND_IDX(-15)] = 0x0125,
8587         [BEND_IDX(-20)] = 0x0225,
8588         [BEND_IDX(-25)] = 0x0225,
8589         [BEND_IDX(-30)] = 0x0325,
8590         [BEND_IDX(-35)] = 0x0325,
8591         [BEND_IDX(-40)] = 0x0425,
8592         [BEND_IDX(-45)] = 0x0425,
8593         [BEND_IDX(-50)] = 0x0525,
8594 };
8595
8596 /*
8597  * Bend CLKOUT_DP
8598  * steps -50 to 50 inclusive, in steps of 5
8599  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8600  * change in clock period = -(steps / 10) * 5.787 ps
8601  */
8602 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8603 {
8604         uint32_t tmp;
8605         int idx = BEND_IDX(steps);
8606
8607         if (WARN_ON(steps % 5 != 0))
8608                 return;
8609
8610         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8611                 return;
8612
8613         mutex_lock(&dev_priv->sb_lock);
8614
8615         if (steps % 10 != 0)
8616                 tmp = 0xAAAAAAAB;
8617         else
8618                 tmp = 0x00000000;
8619         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8620
8621         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8622         tmp &= 0xffff0000;
8623         tmp |= sscdivintphase[idx];
8624         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8625
8626         mutex_unlock(&dev_priv->sb_lock);
8627 }
8628
8629 #undef BEND_IDX
8630
8631 static void lpt_init_pch_refclk(struct drm_device *dev)
8632 {
8633         struct intel_encoder *encoder;
8634         bool has_vga = false;
8635
8636         for_each_intel_encoder(dev, encoder) {
8637                 switch (encoder->type) {
8638                 case INTEL_OUTPUT_ANALOG:
8639                         has_vga = true;
8640                         break;
8641                 default:
8642                         break;
8643                 }
8644         }
8645
8646         if (has_vga) {
8647                 lpt_bend_clkout_dp(to_i915(dev), 0);
8648                 lpt_enable_clkout_dp(dev, true, true);
8649         } else {
8650                 lpt_disable_clkout_dp(dev);
8651         }
8652 }
8653
8654 /*
8655  * Initialize reference clocks when the driver loads
8656  */
8657 void intel_init_pch_refclk(struct drm_device *dev)
8658 {
8659         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8660                 ironlake_init_pch_refclk(dev);
8661         else if (HAS_PCH_LPT(dev))
8662                 lpt_init_pch_refclk(dev);
8663 }
8664
8665 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8666 {
8667         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8668         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8669         int pipe = intel_crtc->pipe;
8670         uint32_t val;
8671
8672         val = 0;
8673
8674         switch (intel_crtc->config->pipe_bpp) {
8675         case 18:
8676                 val |= PIPECONF_6BPC;
8677                 break;
8678         case 24:
8679                 val |= PIPECONF_8BPC;
8680                 break;
8681         case 30:
8682                 val |= PIPECONF_10BPC;
8683                 break;
8684         case 36:
8685                 val |= PIPECONF_12BPC;
8686                 break;
8687         default:
8688                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8689                 BUG();
8690         }
8691
8692         if (intel_crtc->config->dither)
8693                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8694
8695         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8696                 val |= PIPECONF_INTERLACED_ILK;
8697         else
8698                 val |= PIPECONF_PROGRESSIVE;
8699
8700         if (intel_crtc->config->limited_color_range)
8701                 val |= PIPECONF_COLOR_RANGE_SELECT;
8702
8703         I915_WRITE(PIPECONF(pipe), val);
8704         POSTING_READ(PIPECONF(pipe));
8705 }
8706
8707 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8708 {
8709         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8710         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8711         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8712         u32 val = 0;
8713
8714         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8715                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8716
8717         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8718                 val |= PIPECONF_INTERLACED_ILK;
8719         else
8720                 val |= PIPECONF_PROGRESSIVE;
8721
8722         I915_WRITE(PIPECONF(cpu_transcoder), val);
8723         POSTING_READ(PIPECONF(cpu_transcoder));
8724 }
8725
8726 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8727 {
8728         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8729         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8730
8731         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8732                 u32 val = 0;
8733
8734                 switch (intel_crtc->config->pipe_bpp) {
8735                 case 18:
8736                         val |= PIPEMISC_DITHER_6_BPC;
8737                         break;
8738                 case 24:
8739                         val |= PIPEMISC_DITHER_8_BPC;
8740                         break;
8741                 case 30:
8742                         val |= PIPEMISC_DITHER_10_BPC;
8743                         break;
8744                 case 36:
8745                         val |= PIPEMISC_DITHER_12_BPC;
8746                         break;
8747                 default:
8748                         /* Case prevented by pipe_config_set_bpp. */
8749                         BUG();
8750                 }
8751
8752                 if (intel_crtc->config->dither)
8753                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8754
8755                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8756         }
8757 }
8758
8759 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8760 {
8761         /*
8762          * Account for spread spectrum to avoid
8763          * oversubscribing the link. Max center spread
8764          * is 2.5%; use 5% for safety's sake.
8765          */
8766         u32 bps = target_clock * bpp * 21 / 20;
8767         return DIV_ROUND_UP(bps, link_bw * 8);
8768 }
8769
8770 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8771 {
8772         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8773 }
8774
8775 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8776                                   struct intel_crtc_state *crtc_state,
8777                                   struct dpll *reduced_clock)
8778 {
8779         struct drm_crtc *crtc = &intel_crtc->base;
8780         struct drm_device *dev = crtc->dev;
8781         struct drm_i915_private *dev_priv = dev->dev_private;
8782         struct drm_atomic_state *state = crtc_state->base.state;
8783         struct drm_connector *connector;
8784         struct drm_connector_state *connector_state;
8785         struct intel_encoder *encoder;
8786         u32 dpll, fp, fp2;
8787         int factor, i;
8788         bool is_lvds = false, is_sdvo = false;
8789
8790         for_each_connector_in_state(state, connector, connector_state, i) {
8791                 if (connector_state->crtc != crtc_state->base.crtc)
8792                         continue;
8793
8794                 encoder = to_intel_encoder(connector_state->best_encoder);
8795
8796                 switch (encoder->type) {
8797                 case INTEL_OUTPUT_LVDS:
8798                         is_lvds = true;
8799                         break;
8800                 case INTEL_OUTPUT_SDVO:
8801                 case INTEL_OUTPUT_HDMI:
8802                         is_sdvo = true;
8803                         break;
8804                 default:
8805                         break;
8806                 }
8807         }
8808
8809         /* Enable autotuning of the PLL clock (if permissible) */
8810         factor = 21;
8811         if (is_lvds) {
8812                 if ((intel_panel_use_ssc(dev_priv) &&
8813                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8814                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8815                         factor = 25;
8816         } else if (crtc_state->sdvo_tv_clock)
8817                 factor = 20;
8818
8819         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8820
8821         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8822                 fp |= FP_CB_TUNE;
8823
8824         if (reduced_clock) {
8825                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8826
8827                 if (reduced_clock->m < factor * reduced_clock->n)
8828                         fp2 |= FP_CB_TUNE;
8829         } else {
8830                 fp2 = fp;
8831         }
8832
8833         dpll = 0;
8834
8835         if (is_lvds)
8836                 dpll |= DPLLB_MODE_LVDS;
8837         else
8838                 dpll |= DPLLB_MODE_DAC_SERIAL;
8839
8840         dpll |= (crtc_state->pixel_multiplier - 1)
8841                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8842
8843         if (is_sdvo)
8844                 dpll |= DPLL_SDVO_HIGH_SPEED;
8845         if (crtc_state->has_dp_encoder)
8846                 dpll |= DPLL_SDVO_HIGH_SPEED;
8847
8848         /* compute bitmask from p1 value */
8849         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8850         /* also FPA1 */
8851         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8852
8853         switch (crtc_state->dpll.p2) {
8854         case 5:
8855                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8856                 break;
8857         case 7:
8858                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8859                 break;
8860         case 10:
8861                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8862                 break;
8863         case 14:
8864                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8865                 break;
8866         }
8867
8868         if (is_lvds && intel_panel_use_ssc(dev_priv))
8869                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8870         else
8871                 dpll |= PLL_REF_INPUT_DREFCLK;
8872
8873         dpll |= DPLL_VCO_ENABLE;
8874
8875         crtc_state->dpll_hw_state.dpll = dpll;
8876         crtc_state->dpll_hw_state.fp0 = fp;
8877         crtc_state->dpll_hw_state.fp1 = fp2;
8878 }
8879
8880 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8881                                        struct intel_crtc_state *crtc_state)
8882 {
8883         struct drm_device *dev = crtc->base.dev;
8884         struct drm_i915_private *dev_priv = dev->dev_private;
8885         struct dpll reduced_clock;
8886         bool has_reduced_clock = false;
8887         struct intel_shared_dpll *pll;
8888         const struct intel_limit *limit;
8889         int refclk = 120000;
8890
8891         memset(&crtc_state->dpll_hw_state, 0,
8892                sizeof(crtc_state->dpll_hw_state));
8893
8894         crtc->lowfreq_avail = false;
8895
8896         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8897         if (!crtc_state->has_pch_encoder)
8898                 return 0;
8899
8900         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8901                 if (intel_panel_use_ssc(dev_priv)) {
8902                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8903                                       dev_priv->vbt.lvds_ssc_freq);
8904                         refclk = dev_priv->vbt.lvds_ssc_freq;
8905                 }
8906
8907                 if (intel_is_dual_link_lvds(dev)) {
8908                         if (refclk == 100000)
8909                                 limit = &intel_limits_ironlake_dual_lvds_100m;
8910                         else
8911                                 limit = &intel_limits_ironlake_dual_lvds;
8912                 } else {
8913                         if (refclk == 100000)
8914                                 limit = &intel_limits_ironlake_single_lvds_100m;
8915                         else
8916                                 limit = &intel_limits_ironlake_single_lvds;
8917                 }
8918         } else {
8919                 limit = &intel_limits_ironlake_dac;
8920         }
8921
8922         if (!crtc_state->clock_set &&
8923             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8924                                 refclk, NULL, &crtc_state->dpll)) {
8925                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8926                 return -EINVAL;
8927         }
8928
8929         ironlake_compute_dpll(crtc, crtc_state,
8930                               has_reduced_clock ? &reduced_clock : NULL);
8931
8932         pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
8933         if (pll == NULL) {
8934                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8935                                  pipe_name(crtc->pipe));
8936                 return -EINVAL;
8937         }
8938
8939         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8940             has_reduced_clock)
8941                 crtc->lowfreq_avail = true;
8942
8943         return 0;
8944 }
8945
8946 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8947                                          struct intel_link_m_n *m_n)
8948 {
8949         struct drm_device *dev = crtc->base.dev;
8950         struct drm_i915_private *dev_priv = dev->dev_private;
8951         enum pipe pipe = crtc->pipe;
8952
8953         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8954         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8955         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8956                 & ~TU_SIZE_MASK;
8957         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8958         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8959                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8960 }
8961
8962 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8963                                          enum transcoder transcoder,
8964                                          struct intel_link_m_n *m_n,
8965                                          struct intel_link_m_n *m2_n2)
8966 {
8967         struct drm_device *dev = crtc->base.dev;
8968         struct drm_i915_private *dev_priv = dev->dev_private;
8969         enum pipe pipe = crtc->pipe;
8970
8971         if (INTEL_INFO(dev)->gen >= 5) {
8972                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8973                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8974                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8975                         & ~TU_SIZE_MASK;
8976                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8977                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8978                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8979                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8980                  * gen < 8) and if DRRS is supported (to make sure the
8981                  * registers are not unnecessarily read).
8982                  */
8983                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8984                         crtc->config->has_drrs) {
8985                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8986                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8987                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8988                                         & ~TU_SIZE_MASK;
8989                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8990                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8991                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8992                 }
8993         } else {
8994                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8995                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8996                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8997                         & ~TU_SIZE_MASK;
8998                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8999                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9000                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9001         }
9002 }
9003
9004 void intel_dp_get_m_n(struct intel_crtc *crtc,
9005                       struct intel_crtc_state *pipe_config)
9006 {
9007         if (pipe_config->has_pch_encoder)
9008                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9009         else
9010                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9011                                              &pipe_config->dp_m_n,
9012                                              &pipe_config->dp_m2_n2);
9013 }
9014
9015 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9016                                         struct intel_crtc_state *pipe_config)
9017 {
9018         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9019                                      &pipe_config->fdi_m_n, NULL);
9020 }
9021
9022 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9023                                     struct intel_crtc_state *pipe_config)
9024 {
9025         struct drm_device *dev = crtc->base.dev;
9026         struct drm_i915_private *dev_priv = dev->dev_private;
9027         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9028         uint32_t ps_ctrl = 0;
9029         int id = -1;
9030         int i;
9031
9032         /* find scaler attached to this pipe */
9033         for (i = 0; i < crtc->num_scalers; i++) {
9034                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9035                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9036                         id = i;
9037                         pipe_config->pch_pfit.enabled = true;
9038                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9039                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9040                         break;
9041                 }
9042         }
9043
9044         scaler_state->scaler_id = id;
9045         if (id >= 0) {
9046                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9047         } else {
9048                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9049         }
9050 }
9051
9052 static void
9053 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9054                                  struct intel_initial_plane_config *plane_config)
9055 {
9056         struct drm_device *dev = crtc->base.dev;
9057         struct drm_i915_private *dev_priv = dev->dev_private;
9058         u32 val, base, offset, stride_mult, tiling;
9059         int pipe = crtc->pipe;
9060         int fourcc, pixel_format;
9061         unsigned int aligned_height;
9062         struct drm_framebuffer *fb;
9063         struct intel_framebuffer *intel_fb;
9064
9065         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9066         if (!intel_fb) {
9067                 DRM_DEBUG_KMS("failed to alloc fb\n");
9068                 return;
9069         }
9070
9071         fb = &intel_fb->base;
9072
9073         val = I915_READ(PLANE_CTL(pipe, 0));
9074         if (!(val & PLANE_CTL_ENABLE))
9075                 goto error;
9076
9077         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9078         fourcc = skl_format_to_fourcc(pixel_format,
9079                                       val & PLANE_CTL_ORDER_RGBX,
9080                                       val & PLANE_CTL_ALPHA_MASK);
9081         fb->pixel_format = fourcc;
9082         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9083
9084         tiling = val & PLANE_CTL_TILED_MASK;
9085         switch (tiling) {
9086         case PLANE_CTL_TILED_LINEAR:
9087                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9088                 break;
9089         case PLANE_CTL_TILED_X:
9090                 plane_config->tiling = I915_TILING_X;
9091                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9092                 break;
9093         case PLANE_CTL_TILED_Y:
9094                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9095                 break;
9096         case PLANE_CTL_TILED_YF:
9097                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9098                 break;
9099         default:
9100                 MISSING_CASE(tiling);
9101                 goto error;
9102         }
9103
9104         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9105         plane_config->base = base;
9106
9107         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9108
9109         val = I915_READ(PLANE_SIZE(pipe, 0));
9110         fb->height = ((val >> 16) & 0xfff) + 1;
9111         fb->width = ((val >> 0) & 0x1fff) + 1;
9112
9113         val = I915_READ(PLANE_STRIDE(pipe, 0));
9114         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9115                                                 fb->pixel_format);
9116         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9117
9118         aligned_height = intel_fb_align_height(dev, fb->height,
9119                                                fb->pixel_format,
9120                                                fb->modifier[0]);
9121
9122         plane_config->size = fb->pitches[0] * aligned_height;
9123
9124         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9125                       pipe_name(pipe), fb->width, fb->height,
9126                       fb->bits_per_pixel, base, fb->pitches[0],
9127                       plane_config->size);
9128
9129         plane_config->fb = intel_fb;
9130         return;
9131
9132 error:
9133         kfree(fb);
9134 }
9135
9136 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9137                                      struct intel_crtc_state *pipe_config)
9138 {
9139         struct drm_device *dev = crtc->base.dev;
9140         struct drm_i915_private *dev_priv = dev->dev_private;
9141         uint32_t tmp;
9142
9143         tmp = I915_READ(PF_CTL(crtc->pipe));
9144
9145         if (tmp & PF_ENABLE) {
9146                 pipe_config->pch_pfit.enabled = true;
9147                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9148                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9149
9150                 /* We currently do not free assignements of panel fitters on
9151                  * ivb/hsw (since we don't use the higher upscaling modes which
9152                  * differentiates them) so just WARN about this case for now. */
9153                 if (IS_GEN7(dev)) {
9154                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9155                                 PF_PIPE_SEL_IVB(crtc->pipe));
9156                 }
9157         }
9158 }
9159
9160 static void
9161 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9162                                   struct intel_initial_plane_config *plane_config)
9163 {
9164         struct drm_device *dev = crtc->base.dev;
9165         struct drm_i915_private *dev_priv = dev->dev_private;
9166         u32 val, base, offset;
9167         int pipe = crtc->pipe;
9168         int fourcc, pixel_format;
9169         unsigned int aligned_height;
9170         struct drm_framebuffer *fb;
9171         struct intel_framebuffer *intel_fb;
9172
9173         val = I915_READ(DSPCNTR(pipe));
9174         if (!(val & DISPLAY_PLANE_ENABLE))
9175                 return;
9176
9177         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9178         if (!intel_fb) {
9179                 DRM_DEBUG_KMS("failed to alloc fb\n");
9180                 return;
9181         }
9182
9183         fb = &intel_fb->base;
9184
9185         if (INTEL_INFO(dev)->gen >= 4) {
9186                 if (val & DISPPLANE_TILED) {
9187                         plane_config->tiling = I915_TILING_X;
9188                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9189                 }
9190         }
9191
9192         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9193         fourcc = i9xx_format_to_fourcc(pixel_format);
9194         fb->pixel_format = fourcc;
9195         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9196
9197         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9198         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9199                 offset = I915_READ(DSPOFFSET(pipe));
9200         } else {
9201                 if (plane_config->tiling)
9202                         offset = I915_READ(DSPTILEOFF(pipe));
9203                 else
9204                         offset = I915_READ(DSPLINOFF(pipe));
9205         }
9206         plane_config->base = base;
9207
9208         val = I915_READ(PIPESRC(pipe));
9209         fb->width = ((val >> 16) & 0xfff) + 1;
9210         fb->height = ((val >> 0) & 0xfff) + 1;
9211
9212         val = I915_READ(DSPSTRIDE(pipe));
9213         fb->pitches[0] = val & 0xffffffc0;
9214
9215         aligned_height = intel_fb_align_height(dev, fb->height,
9216                                                fb->pixel_format,
9217                                                fb->modifier[0]);
9218
9219         plane_config->size = fb->pitches[0] * aligned_height;
9220
9221         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9222                       pipe_name(pipe), fb->width, fb->height,
9223                       fb->bits_per_pixel, base, fb->pitches[0],
9224                       plane_config->size);
9225
9226         plane_config->fb = intel_fb;
9227 }
9228
9229 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9230                                      struct intel_crtc_state *pipe_config)
9231 {
9232         struct drm_device *dev = crtc->base.dev;
9233         struct drm_i915_private *dev_priv = dev->dev_private;
9234         enum intel_display_power_domain power_domain;
9235         uint32_t tmp;
9236         bool ret;
9237
9238         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9239         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9240                 return false;
9241
9242         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9243         pipe_config->shared_dpll = NULL;
9244
9245         ret = false;
9246         tmp = I915_READ(PIPECONF(crtc->pipe));
9247         if (!(tmp & PIPECONF_ENABLE))
9248                 goto out;
9249
9250         switch (tmp & PIPECONF_BPC_MASK) {
9251         case PIPECONF_6BPC:
9252                 pipe_config->pipe_bpp = 18;
9253                 break;
9254         case PIPECONF_8BPC:
9255                 pipe_config->pipe_bpp = 24;
9256                 break;
9257         case PIPECONF_10BPC:
9258                 pipe_config->pipe_bpp = 30;
9259                 break;
9260         case PIPECONF_12BPC:
9261                 pipe_config->pipe_bpp = 36;
9262                 break;
9263         default:
9264                 break;
9265         }
9266
9267         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9268                 pipe_config->limited_color_range = true;
9269
9270         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9271                 struct intel_shared_dpll *pll;
9272                 enum intel_dpll_id pll_id;
9273
9274                 pipe_config->has_pch_encoder = true;
9275
9276                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9277                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9278                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9279
9280                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9281
9282                 if (HAS_PCH_IBX(dev_priv)) {
9283                         /*
9284                          * The pipe->pch transcoder and pch transcoder->pll
9285                          * mapping is fixed.
9286                          */
9287                         pll_id = (enum intel_dpll_id) crtc->pipe;
9288                 } else {
9289                         tmp = I915_READ(PCH_DPLL_SEL);
9290                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9291                                 pll_id = DPLL_ID_PCH_PLL_B;
9292                         else
9293                                 pll_id= DPLL_ID_PCH_PLL_A;
9294                 }
9295
9296                 pipe_config->shared_dpll =
9297                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
9298                 pll = pipe_config->shared_dpll;
9299
9300                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9301                                                  &pipe_config->dpll_hw_state));
9302
9303                 tmp = pipe_config->dpll_hw_state.dpll;
9304                 pipe_config->pixel_multiplier =
9305                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9306                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9307
9308                 ironlake_pch_clock_get(crtc, pipe_config);
9309         } else {
9310                 pipe_config->pixel_multiplier = 1;
9311         }
9312
9313         intel_get_pipe_timings(crtc, pipe_config);
9314         intel_get_pipe_src_size(crtc, pipe_config);
9315
9316         ironlake_get_pfit_config(crtc, pipe_config);
9317
9318         ret = true;
9319
9320 out:
9321         intel_display_power_put(dev_priv, power_domain);
9322
9323         return ret;
9324 }
9325
9326 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9327 {
9328         struct drm_device *dev = dev_priv->dev;
9329         struct intel_crtc *crtc;
9330
9331         for_each_intel_crtc(dev, crtc)
9332                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9333                      pipe_name(crtc->pipe));
9334
9335         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9336         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9337         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9338         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9339         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9340         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9341              "CPU PWM1 enabled\n");
9342         if (IS_HASWELL(dev))
9343                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9344                      "CPU PWM2 enabled\n");
9345         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9346              "PCH PWM1 enabled\n");
9347         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9348              "Utility pin enabled\n");
9349         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9350
9351         /*
9352          * In theory we can still leave IRQs enabled, as long as only the HPD
9353          * interrupts remain enabled. We used to check for that, but since it's
9354          * gen-specific and since we only disable LCPLL after we fully disable
9355          * the interrupts, the check below should be enough.
9356          */
9357         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9358 }
9359
9360 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9361 {
9362         struct drm_device *dev = dev_priv->dev;
9363
9364         if (IS_HASWELL(dev))
9365                 return I915_READ(D_COMP_HSW);
9366         else
9367                 return I915_READ(D_COMP_BDW);
9368 }
9369
9370 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9371 {
9372         struct drm_device *dev = dev_priv->dev;
9373
9374         if (IS_HASWELL(dev)) {
9375                 mutex_lock(&dev_priv->rps.hw_lock);
9376                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9377                                             val))
9378                         DRM_ERROR("Failed to write to D_COMP\n");
9379                 mutex_unlock(&dev_priv->rps.hw_lock);
9380         } else {
9381                 I915_WRITE(D_COMP_BDW, val);
9382                 POSTING_READ(D_COMP_BDW);
9383         }
9384 }
9385
9386 /*
9387  * This function implements pieces of two sequences from BSpec:
9388  * - Sequence for display software to disable LCPLL
9389  * - Sequence for display software to allow package C8+
9390  * The steps implemented here are just the steps that actually touch the LCPLL
9391  * register. Callers should take care of disabling all the display engine
9392  * functions, doing the mode unset, fixing interrupts, etc.
9393  */
9394 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9395                               bool switch_to_fclk, bool allow_power_down)
9396 {
9397         uint32_t val;
9398
9399         assert_can_disable_lcpll(dev_priv);
9400
9401         val = I915_READ(LCPLL_CTL);
9402
9403         if (switch_to_fclk) {
9404                 val |= LCPLL_CD_SOURCE_FCLK;
9405                 I915_WRITE(LCPLL_CTL, val);
9406
9407                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9408                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9409                         DRM_ERROR("Switching to FCLK failed\n");
9410
9411                 val = I915_READ(LCPLL_CTL);
9412         }
9413
9414         val |= LCPLL_PLL_DISABLE;
9415         I915_WRITE(LCPLL_CTL, val);
9416         POSTING_READ(LCPLL_CTL);
9417
9418         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9419                 DRM_ERROR("LCPLL still locked\n");
9420
9421         val = hsw_read_dcomp(dev_priv);
9422         val |= D_COMP_COMP_DISABLE;
9423         hsw_write_dcomp(dev_priv, val);
9424         ndelay(100);
9425
9426         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9427                      1))
9428                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9429
9430         if (allow_power_down) {
9431                 val = I915_READ(LCPLL_CTL);
9432                 val |= LCPLL_POWER_DOWN_ALLOW;
9433                 I915_WRITE(LCPLL_CTL, val);
9434                 POSTING_READ(LCPLL_CTL);
9435         }
9436 }
9437
9438 /*
9439  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9440  * source.
9441  */
9442 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9443 {
9444         uint32_t val;
9445
9446         val = I915_READ(LCPLL_CTL);
9447
9448         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9449                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9450                 return;
9451
9452         /*
9453          * Make sure we're not on PC8 state before disabling PC8, otherwise
9454          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9455          */
9456         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9457
9458         if (val & LCPLL_POWER_DOWN_ALLOW) {
9459                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9460                 I915_WRITE(LCPLL_CTL, val);
9461                 POSTING_READ(LCPLL_CTL);
9462         }
9463
9464         val = hsw_read_dcomp(dev_priv);
9465         val |= D_COMP_COMP_FORCE;
9466         val &= ~D_COMP_COMP_DISABLE;
9467         hsw_write_dcomp(dev_priv, val);
9468
9469         val = I915_READ(LCPLL_CTL);
9470         val &= ~LCPLL_PLL_DISABLE;
9471         I915_WRITE(LCPLL_CTL, val);
9472
9473         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9474                 DRM_ERROR("LCPLL not locked yet\n");
9475
9476         if (val & LCPLL_CD_SOURCE_FCLK) {
9477                 val = I915_READ(LCPLL_CTL);
9478                 val &= ~LCPLL_CD_SOURCE_FCLK;
9479                 I915_WRITE(LCPLL_CTL, val);
9480
9481                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9482                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9483                         DRM_ERROR("Switching back to LCPLL failed\n");
9484         }
9485
9486         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9487         intel_update_cdclk(dev_priv->dev);
9488 }
9489
9490 /*
9491  * Package states C8 and deeper are really deep PC states that can only be
9492  * reached when all the devices on the system allow it, so even if the graphics
9493  * device allows PC8+, it doesn't mean the system will actually get to these
9494  * states. Our driver only allows PC8+ when going into runtime PM.
9495  *
9496  * The requirements for PC8+ are that all the outputs are disabled, the power
9497  * well is disabled and most interrupts are disabled, and these are also
9498  * requirements for runtime PM. When these conditions are met, we manually do
9499  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9500  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9501  * hang the machine.
9502  *
9503  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9504  * the state of some registers, so when we come back from PC8+ we need to
9505  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9506  * need to take care of the registers kept by RC6. Notice that this happens even
9507  * if we don't put the device in PCI D3 state (which is what currently happens
9508  * because of the runtime PM support).
9509  *
9510  * For more, read "Display Sequences for Package C8" on the hardware
9511  * documentation.
9512  */
9513 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9514 {
9515         struct drm_device *dev = dev_priv->dev;
9516         uint32_t val;
9517
9518         DRM_DEBUG_KMS("Enabling package C8+\n");
9519
9520         if (HAS_PCH_LPT_LP(dev)) {
9521                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9522                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9523                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9524         }
9525
9526         lpt_disable_clkout_dp(dev);
9527         hsw_disable_lcpll(dev_priv, true, true);
9528 }
9529
9530 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9531 {
9532         struct drm_device *dev = dev_priv->dev;
9533         uint32_t val;
9534
9535         DRM_DEBUG_KMS("Disabling package C8+\n");
9536
9537         hsw_restore_lcpll(dev_priv);
9538         lpt_init_pch_refclk(dev);
9539
9540         if (HAS_PCH_LPT_LP(dev)) {
9541                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9542                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9543                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9544         }
9545 }
9546
9547 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9548 {
9549         struct drm_device *dev = old_state->dev;
9550         struct intel_atomic_state *old_intel_state =
9551                 to_intel_atomic_state(old_state);
9552         unsigned int req_cdclk = old_intel_state->dev_cdclk;
9553
9554         broxton_set_cdclk(to_i915(dev), req_cdclk);
9555 }
9556
9557 /* compute the max rate for new configuration */
9558 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9559 {
9560         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9561         struct drm_i915_private *dev_priv = state->dev->dev_private;
9562         struct drm_crtc *crtc;
9563         struct drm_crtc_state *cstate;
9564         struct intel_crtc_state *crtc_state;
9565         unsigned max_pixel_rate = 0, i;
9566         enum pipe pipe;
9567
9568         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9569                sizeof(intel_state->min_pixclk));
9570
9571         for_each_crtc_in_state(state, crtc, cstate, i) {
9572                 int pixel_rate;
9573
9574                 crtc_state = to_intel_crtc_state(cstate);
9575                 if (!crtc_state->base.enable) {
9576                         intel_state->min_pixclk[i] = 0;
9577                         continue;
9578                 }
9579
9580                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9581
9582                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9583                 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9584                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9585
9586                 intel_state->min_pixclk[i] = pixel_rate;
9587         }
9588
9589         for_each_pipe(dev_priv, pipe)
9590                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9591
9592         return max_pixel_rate;
9593 }
9594
9595 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9596 {
9597         struct drm_i915_private *dev_priv = dev->dev_private;
9598         uint32_t val, data;
9599         int ret;
9600
9601         if (WARN((I915_READ(LCPLL_CTL) &
9602                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9603                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9604                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9605                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9606                  "trying to change cdclk frequency with cdclk not enabled\n"))
9607                 return;
9608
9609         mutex_lock(&dev_priv->rps.hw_lock);
9610         ret = sandybridge_pcode_write(dev_priv,
9611                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9612         mutex_unlock(&dev_priv->rps.hw_lock);
9613         if (ret) {
9614                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9615                 return;
9616         }
9617
9618         val = I915_READ(LCPLL_CTL);
9619         val |= LCPLL_CD_SOURCE_FCLK;
9620         I915_WRITE(LCPLL_CTL, val);
9621
9622         if (wait_for_us(I915_READ(LCPLL_CTL) &
9623                         LCPLL_CD_SOURCE_FCLK_DONE, 1))
9624                 DRM_ERROR("Switching to FCLK failed\n");
9625
9626         val = I915_READ(LCPLL_CTL);
9627         val &= ~LCPLL_CLK_FREQ_MASK;
9628
9629         switch (cdclk) {
9630         case 450000:
9631                 val |= LCPLL_CLK_FREQ_450;
9632                 data = 0;
9633                 break;
9634         case 540000:
9635                 val |= LCPLL_CLK_FREQ_54O_BDW;
9636                 data = 1;
9637                 break;
9638         case 337500:
9639                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9640                 data = 2;
9641                 break;
9642         case 675000:
9643                 val |= LCPLL_CLK_FREQ_675_BDW;
9644                 data = 3;
9645                 break;
9646         default:
9647                 WARN(1, "invalid cdclk frequency\n");
9648                 return;
9649         }
9650
9651         I915_WRITE(LCPLL_CTL, val);
9652
9653         val = I915_READ(LCPLL_CTL);
9654         val &= ~LCPLL_CD_SOURCE_FCLK;
9655         I915_WRITE(LCPLL_CTL, val);
9656
9657         if (wait_for_us((I915_READ(LCPLL_CTL) &
9658                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9659                 DRM_ERROR("Switching back to LCPLL failed\n");
9660
9661         mutex_lock(&dev_priv->rps.hw_lock);
9662         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9663         mutex_unlock(&dev_priv->rps.hw_lock);
9664
9665         I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9666
9667         intel_update_cdclk(dev);
9668
9669         WARN(cdclk != dev_priv->cdclk_freq,
9670              "cdclk requested %d kHz but got %d kHz\n",
9671              cdclk, dev_priv->cdclk_freq);
9672 }
9673
9674 static int broadwell_calc_cdclk(int max_pixclk)
9675 {
9676         if (max_pixclk > 540000)
9677                 return 675000;
9678         else if (max_pixclk > 450000)
9679                 return 540000;
9680         else if (max_pixclk > 337500)
9681                 return 450000;
9682         else
9683                 return 337500;
9684 }
9685
9686 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9687 {
9688         struct drm_i915_private *dev_priv = to_i915(state->dev);
9689         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9690         int max_pixclk = ilk_max_pixel_rate(state);
9691         int cdclk;
9692
9693         /*
9694          * FIXME should also account for plane ratio
9695          * once 64bpp pixel formats are supported.
9696          */
9697         cdclk = broadwell_calc_cdclk(max_pixclk);
9698
9699         if (cdclk > dev_priv->max_cdclk_freq) {
9700                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9701                               cdclk, dev_priv->max_cdclk_freq);
9702                 return -EINVAL;
9703         }
9704
9705         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9706         if (!intel_state->active_crtcs)
9707                 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
9708
9709         return 0;
9710 }
9711
9712 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9713 {
9714         struct drm_device *dev = old_state->dev;
9715         struct intel_atomic_state *old_intel_state =
9716                 to_intel_atomic_state(old_state);
9717         unsigned req_cdclk = old_intel_state->dev_cdclk;
9718
9719         broadwell_set_cdclk(dev, req_cdclk);
9720 }
9721
9722 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9723                                       struct intel_crtc_state *crtc_state)
9724 {
9725         struct intel_encoder *intel_encoder =
9726                 intel_ddi_get_crtc_new_encoder(crtc_state);
9727
9728         if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9729                 if (!intel_ddi_pll_select(crtc, crtc_state))
9730                         return -EINVAL;
9731         }
9732
9733         crtc->lowfreq_avail = false;
9734
9735         return 0;
9736 }
9737
9738 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9739                                 enum port port,
9740                                 struct intel_crtc_state *pipe_config)
9741 {
9742         enum intel_dpll_id id;
9743
9744         switch (port) {
9745         case PORT_A:
9746                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9747                 id = DPLL_ID_SKL_DPLL0;
9748                 break;
9749         case PORT_B:
9750                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9751                 id = DPLL_ID_SKL_DPLL1;
9752                 break;
9753         case PORT_C:
9754                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9755                 id = DPLL_ID_SKL_DPLL2;
9756                 break;
9757         default:
9758                 DRM_ERROR("Incorrect port type\n");
9759                 return;
9760         }
9761
9762         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9763 }
9764
9765 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9766                                 enum port port,
9767                                 struct intel_crtc_state *pipe_config)
9768 {
9769         enum intel_dpll_id id;
9770         u32 temp;
9771
9772         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9773         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9774
9775         switch (pipe_config->ddi_pll_sel) {
9776         case SKL_DPLL0:
9777                 id = DPLL_ID_SKL_DPLL0;
9778                 break;
9779         case SKL_DPLL1:
9780                 id = DPLL_ID_SKL_DPLL1;
9781                 break;
9782         case SKL_DPLL2:
9783                 id = DPLL_ID_SKL_DPLL2;
9784                 break;
9785         case SKL_DPLL3:
9786                 id = DPLL_ID_SKL_DPLL3;
9787                 break;
9788         default:
9789                 MISSING_CASE(pipe_config->ddi_pll_sel);
9790                 return;
9791         }
9792
9793         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9794 }
9795
9796 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9797                                 enum port port,
9798                                 struct intel_crtc_state *pipe_config)
9799 {
9800         enum intel_dpll_id id;
9801
9802         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9803
9804         switch (pipe_config->ddi_pll_sel) {
9805         case PORT_CLK_SEL_WRPLL1:
9806                 id = DPLL_ID_WRPLL1;
9807                 break;
9808         case PORT_CLK_SEL_WRPLL2:
9809                 id = DPLL_ID_WRPLL2;
9810                 break;
9811         case PORT_CLK_SEL_SPLL:
9812                 id = DPLL_ID_SPLL;
9813                 break;
9814         case PORT_CLK_SEL_LCPLL_810:
9815                 id = DPLL_ID_LCPLL_810;
9816                 break;
9817         case PORT_CLK_SEL_LCPLL_1350:
9818                 id = DPLL_ID_LCPLL_1350;
9819                 break;
9820         case PORT_CLK_SEL_LCPLL_2700:
9821                 id = DPLL_ID_LCPLL_2700;
9822                 break;
9823         default:
9824                 MISSING_CASE(pipe_config->ddi_pll_sel);
9825                 /* fall through */
9826         case PORT_CLK_SEL_NONE:
9827                 return;
9828         }
9829
9830         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9831 }
9832
9833 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9834                                      struct intel_crtc_state *pipe_config,
9835                                      unsigned long *power_domain_mask)
9836 {
9837         struct drm_device *dev = crtc->base.dev;
9838         struct drm_i915_private *dev_priv = dev->dev_private;
9839         enum intel_display_power_domain power_domain;
9840         u32 tmp;
9841
9842         /*
9843          * The pipe->transcoder mapping is fixed with the exception of the eDP
9844          * transcoder handled below.
9845          */
9846         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9847
9848         /*
9849          * XXX: Do intel_display_power_get_if_enabled before reading this (for
9850          * consistency and less surprising code; it's in always on power).
9851          */
9852         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9853         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9854                 enum pipe trans_edp_pipe;
9855                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9856                 default:
9857                         WARN(1, "unknown pipe linked to edp transcoder\n");
9858                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9859                 case TRANS_DDI_EDP_INPUT_A_ON:
9860                         trans_edp_pipe = PIPE_A;
9861                         break;
9862                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9863                         trans_edp_pipe = PIPE_B;
9864                         break;
9865                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9866                         trans_edp_pipe = PIPE_C;
9867                         break;
9868                 }
9869
9870                 if (trans_edp_pipe == crtc->pipe)
9871                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9872         }
9873
9874         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9875         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9876                 return false;
9877         *power_domain_mask |= BIT(power_domain);
9878
9879         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9880
9881         return tmp & PIPECONF_ENABLE;
9882 }
9883
9884 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9885                                          struct intel_crtc_state *pipe_config,
9886                                          unsigned long *power_domain_mask)
9887 {
9888         struct drm_device *dev = crtc->base.dev;
9889         struct drm_i915_private *dev_priv = dev->dev_private;
9890         enum intel_display_power_domain power_domain;
9891         enum port port;
9892         enum transcoder cpu_transcoder;
9893         u32 tmp;
9894
9895         pipe_config->has_dsi_encoder = false;
9896
9897         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9898                 if (port == PORT_A)
9899                         cpu_transcoder = TRANSCODER_DSI_A;
9900                 else
9901                         cpu_transcoder = TRANSCODER_DSI_C;
9902
9903                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9904                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9905                         continue;
9906                 *power_domain_mask |= BIT(power_domain);
9907
9908                 /*
9909                  * The PLL needs to be enabled with a valid divider
9910                  * configuration, otherwise accessing DSI registers will hang
9911                  * the machine. See BSpec North Display Engine
9912                  * registers/MIPI[BXT]. We can break out here early, since we
9913                  * need the same DSI PLL to be enabled for both DSI ports.
9914                  */
9915                 if (!intel_dsi_pll_is_enabled(dev_priv))
9916                         break;
9917
9918                 /* XXX: this works for video mode only */
9919                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9920                 if (!(tmp & DPI_ENABLE))
9921                         continue;
9922
9923                 tmp = I915_READ(MIPI_CTRL(port));
9924                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9925                         continue;
9926
9927                 pipe_config->cpu_transcoder = cpu_transcoder;
9928                 pipe_config->has_dsi_encoder = true;
9929                 break;
9930         }
9931
9932         return pipe_config->has_dsi_encoder;
9933 }
9934
9935 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9936                                        struct intel_crtc_state *pipe_config)
9937 {
9938         struct drm_device *dev = crtc->base.dev;
9939         struct drm_i915_private *dev_priv = dev->dev_private;
9940         struct intel_shared_dpll *pll;
9941         enum port port;
9942         uint32_t tmp;
9943
9944         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9945
9946         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9947
9948         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9949                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9950         else if (IS_BROXTON(dev))
9951                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9952         else
9953                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9954
9955         pll = pipe_config->shared_dpll;
9956         if (pll) {
9957                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9958                                                  &pipe_config->dpll_hw_state));
9959         }
9960
9961         /*
9962          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9963          * DDI E. So just check whether this pipe is wired to DDI E and whether
9964          * the PCH transcoder is on.
9965          */
9966         if (INTEL_INFO(dev)->gen < 9 &&
9967             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9968                 pipe_config->has_pch_encoder = true;
9969
9970                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9971                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9972                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9973
9974                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9975         }
9976 }
9977
9978 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9979                                     struct intel_crtc_state *pipe_config)
9980 {
9981         struct drm_device *dev = crtc->base.dev;
9982         struct drm_i915_private *dev_priv = dev->dev_private;
9983         enum intel_display_power_domain power_domain;
9984         unsigned long power_domain_mask;
9985         bool active;
9986
9987         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9988         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9989                 return false;
9990         power_domain_mask = BIT(power_domain);
9991
9992         pipe_config->shared_dpll = NULL;
9993
9994         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9995
9996         if (IS_BROXTON(dev_priv)) {
9997                 bxt_get_dsi_transcoder_state(crtc, pipe_config,
9998                                              &power_domain_mask);
9999                 WARN_ON(active && pipe_config->has_dsi_encoder);
10000                 if (pipe_config->has_dsi_encoder)
10001                         active = true;
10002         }
10003
10004         if (!active)
10005                 goto out;
10006
10007         if (!pipe_config->has_dsi_encoder) {
10008                 haswell_get_ddi_port_state(crtc, pipe_config);
10009                 intel_get_pipe_timings(crtc, pipe_config);
10010         }
10011
10012         intel_get_pipe_src_size(crtc, pipe_config);
10013
10014         pipe_config->gamma_mode =
10015                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10016
10017         if (INTEL_INFO(dev)->gen >= 9) {
10018                 skl_init_scalers(dev, crtc, pipe_config);
10019         }
10020
10021         if (INTEL_INFO(dev)->gen >= 9) {
10022                 pipe_config->scaler_state.scaler_id = -1;
10023                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10024         }
10025
10026         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10027         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10028                 power_domain_mask |= BIT(power_domain);
10029                 if (INTEL_INFO(dev)->gen >= 9)
10030                         skylake_get_pfit_config(crtc, pipe_config);
10031                 else
10032                         ironlake_get_pfit_config(crtc, pipe_config);
10033         }
10034
10035         if (IS_HASWELL(dev))
10036                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10037                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10038
10039         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10040             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10041                 pipe_config->pixel_multiplier =
10042                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10043         } else {
10044                 pipe_config->pixel_multiplier = 1;
10045         }
10046
10047 out:
10048         for_each_power_domain(power_domain, power_domain_mask)
10049                 intel_display_power_put(dev_priv, power_domain);
10050
10051         return active;
10052 }
10053
10054 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10055                                const struct intel_plane_state *plane_state)
10056 {
10057         struct drm_device *dev = crtc->dev;
10058         struct drm_i915_private *dev_priv = dev->dev_private;
10059         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10060         uint32_t cntl = 0, size = 0;
10061
10062         if (plane_state && plane_state->visible) {
10063                 unsigned int width = plane_state->base.crtc_w;
10064                 unsigned int height = plane_state->base.crtc_h;
10065                 unsigned int stride = roundup_pow_of_two(width) * 4;
10066
10067                 switch (stride) {
10068                 default:
10069                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10070                                   width, stride);
10071                         stride = 256;
10072                         /* fallthrough */
10073                 case 256:
10074                 case 512:
10075                 case 1024:
10076                 case 2048:
10077                         break;
10078                 }
10079
10080                 cntl |= CURSOR_ENABLE |
10081                         CURSOR_GAMMA_ENABLE |
10082                         CURSOR_FORMAT_ARGB |
10083                         CURSOR_STRIDE(stride);
10084
10085                 size = (height << 12) | width;
10086         }
10087
10088         if (intel_crtc->cursor_cntl != 0 &&
10089             (intel_crtc->cursor_base != base ||
10090              intel_crtc->cursor_size != size ||
10091              intel_crtc->cursor_cntl != cntl)) {
10092                 /* On these chipsets we can only modify the base/size/stride
10093                  * whilst the cursor is disabled.
10094                  */
10095                 I915_WRITE(CURCNTR(PIPE_A), 0);
10096                 POSTING_READ(CURCNTR(PIPE_A));
10097                 intel_crtc->cursor_cntl = 0;
10098         }
10099
10100         if (intel_crtc->cursor_base != base) {
10101                 I915_WRITE(CURBASE(PIPE_A), base);
10102                 intel_crtc->cursor_base = base;
10103         }
10104
10105         if (intel_crtc->cursor_size != size) {
10106                 I915_WRITE(CURSIZE, size);
10107                 intel_crtc->cursor_size = size;
10108         }
10109
10110         if (intel_crtc->cursor_cntl != cntl) {
10111                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10112                 POSTING_READ(CURCNTR(PIPE_A));
10113                 intel_crtc->cursor_cntl = cntl;
10114         }
10115 }
10116
10117 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10118                                const struct intel_plane_state *plane_state)
10119 {
10120         struct drm_device *dev = crtc->dev;
10121         struct drm_i915_private *dev_priv = dev->dev_private;
10122         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10123         int pipe = intel_crtc->pipe;
10124         uint32_t cntl = 0;
10125
10126         if (plane_state && plane_state->visible) {
10127                 cntl = MCURSOR_GAMMA_ENABLE;
10128                 switch (plane_state->base.crtc_w) {
10129                         case 64:
10130                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10131                                 break;
10132                         case 128:
10133                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10134                                 break;
10135                         case 256:
10136                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10137                                 break;
10138                         default:
10139                                 MISSING_CASE(plane_state->base.crtc_w);
10140                                 return;
10141                 }
10142                 cntl |= pipe << 28; /* Connect to correct pipe */
10143
10144                 if (HAS_DDI(dev))
10145                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10146
10147                 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10148                         cntl |= CURSOR_ROTATE_180;
10149         }
10150
10151         if (intel_crtc->cursor_cntl != cntl) {
10152                 I915_WRITE(CURCNTR(pipe), cntl);
10153                 POSTING_READ(CURCNTR(pipe));
10154                 intel_crtc->cursor_cntl = cntl;
10155         }
10156
10157         /* and commit changes on next vblank */
10158         I915_WRITE(CURBASE(pipe), base);
10159         POSTING_READ(CURBASE(pipe));
10160
10161         intel_crtc->cursor_base = base;
10162 }
10163
10164 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10165 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10166                                      const struct intel_plane_state *plane_state)
10167 {
10168         struct drm_device *dev = crtc->dev;
10169         struct drm_i915_private *dev_priv = dev->dev_private;
10170         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10171         int pipe = intel_crtc->pipe;
10172         u32 base = intel_crtc->cursor_addr;
10173         u32 pos = 0;
10174
10175         if (plane_state) {
10176                 int x = plane_state->base.crtc_x;
10177                 int y = plane_state->base.crtc_y;
10178
10179                 if (x < 0) {
10180                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10181                         x = -x;
10182                 }
10183                 pos |= x << CURSOR_X_SHIFT;
10184
10185                 if (y < 0) {
10186                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10187                         y = -y;
10188                 }
10189                 pos |= y << CURSOR_Y_SHIFT;
10190
10191                 /* ILK+ do this automagically */
10192                 if (HAS_GMCH_DISPLAY(dev) &&
10193                     plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10194                         base += (plane_state->base.crtc_h *
10195                                  plane_state->base.crtc_w - 1) * 4;
10196                 }
10197         }
10198
10199         I915_WRITE(CURPOS(pipe), pos);
10200
10201         if (IS_845G(dev) || IS_I865G(dev))
10202                 i845_update_cursor(crtc, base, plane_state);
10203         else
10204                 i9xx_update_cursor(crtc, base, plane_state);
10205 }
10206
10207 static bool cursor_size_ok(struct drm_device *dev,
10208                            uint32_t width, uint32_t height)
10209 {
10210         if (width == 0 || height == 0)
10211                 return false;
10212
10213         /*
10214          * 845g/865g are special in that they are only limited by
10215          * the width of their cursors, the height is arbitrary up to
10216          * the precision of the register. Everything else requires
10217          * square cursors, limited to a few power-of-two sizes.
10218          */
10219         if (IS_845G(dev) || IS_I865G(dev)) {
10220                 if ((width & 63) != 0)
10221                         return false;
10222
10223                 if (width > (IS_845G(dev) ? 64 : 512))
10224                         return false;
10225
10226                 if (height > 1023)
10227                         return false;
10228         } else {
10229                 switch (width | height) {
10230                 case 256:
10231                 case 128:
10232                         if (IS_GEN2(dev))
10233                                 return false;
10234                 case 64:
10235                         break;
10236                 default:
10237                         return false;
10238                 }
10239         }
10240
10241         return true;
10242 }
10243
10244 /* VESA 640x480x72Hz mode to set on the pipe */
10245 static struct drm_display_mode load_detect_mode = {
10246         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10247                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10248 };
10249
10250 struct drm_framebuffer *
10251 __intel_framebuffer_create(struct drm_device *dev,
10252                            struct drm_mode_fb_cmd2 *mode_cmd,
10253                            struct drm_i915_gem_object *obj)
10254 {
10255         struct intel_framebuffer *intel_fb;
10256         int ret;
10257
10258         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10259         if (!intel_fb)
10260                 return ERR_PTR(-ENOMEM);
10261
10262         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10263         if (ret)
10264                 goto err;
10265
10266         return &intel_fb->base;
10267
10268 err:
10269         kfree(intel_fb);
10270         return ERR_PTR(ret);
10271 }
10272
10273 static struct drm_framebuffer *
10274 intel_framebuffer_create(struct drm_device *dev,
10275                          struct drm_mode_fb_cmd2 *mode_cmd,
10276                          struct drm_i915_gem_object *obj)
10277 {
10278         struct drm_framebuffer *fb;
10279         int ret;
10280
10281         ret = i915_mutex_lock_interruptible(dev);
10282         if (ret)
10283                 return ERR_PTR(ret);
10284         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10285         mutex_unlock(&dev->struct_mutex);
10286
10287         return fb;
10288 }
10289
10290 static u32
10291 intel_framebuffer_pitch_for_width(int width, int bpp)
10292 {
10293         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10294         return ALIGN(pitch, 64);
10295 }
10296
10297 static u32
10298 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10299 {
10300         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10301         return PAGE_ALIGN(pitch * mode->vdisplay);
10302 }
10303
10304 static struct drm_framebuffer *
10305 intel_framebuffer_create_for_mode(struct drm_device *dev,
10306                                   struct drm_display_mode *mode,
10307                                   int depth, int bpp)
10308 {
10309         struct drm_framebuffer *fb;
10310         struct drm_i915_gem_object *obj;
10311         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10312
10313         obj = i915_gem_object_create(dev,
10314                                     intel_framebuffer_size_for_mode(mode, bpp));
10315         if (IS_ERR(obj))
10316                 return ERR_CAST(obj);
10317
10318         mode_cmd.width = mode->hdisplay;
10319         mode_cmd.height = mode->vdisplay;
10320         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10321                                                                 bpp);
10322         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10323
10324         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10325         if (IS_ERR(fb))
10326                 drm_gem_object_unreference_unlocked(&obj->base);
10327
10328         return fb;
10329 }
10330
10331 static struct drm_framebuffer *
10332 mode_fits_in_fbdev(struct drm_device *dev,
10333                    struct drm_display_mode *mode)
10334 {
10335 #ifdef CONFIG_DRM_FBDEV_EMULATION
10336         struct drm_i915_private *dev_priv = dev->dev_private;
10337         struct drm_i915_gem_object *obj;
10338         struct drm_framebuffer *fb;
10339
10340         if (!dev_priv->fbdev)
10341                 return NULL;
10342
10343         if (!dev_priv->fbdev->fb)
10344                 return NULL;
10345
10346         obj = dev_priv->fbdev->fb->obj;
10347         BUG_ON(!obj);
10348
10349         fb = &dev_priv->fbdev->fb->base;
10350         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10351                                                                fb->bits_per_pixel))
10352                 return NULL;
10353
10354         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10355                 return NULL;
10356
10357         drm_framebuffer_reference(fb);
10358         return fb;
10359 #else
10360         return NULL;
10361 #endif
10362 }
10363
10364 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10365                                            struct drm_crtc *crtc,
10366                                            struct drm_display_mode *mode,
10367                                            struct drm_framebuffer *fb,
10368                                            int x, int y)
10369 {
10370         struct drm_plane_state *plane_state;
10371         int hdisplay, vdisplay;
10372         int ret;
10373
10374         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10375         if (IS_ERR(plane_state))
10376                 return PTR_ERR(plane_state);
10377
10378         if (mode)
10379                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10380         else
10381                 hdisplay = vdisplay = 0;
10382
10383         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10384         if (ret)
10385                 return ret;
10386         drm_atomic_set_fb_for_plane(plane_state, fb);
10387         plane_state->crtc_x = 0;
10388         plane_state->crtc_y = 0;
10389         plane_state->crtc_w = hdisplay;
10390         plane_state->crtc_h = vdisplay;
10391         plane_state->src_x = x << 16;
10392         plane_state->src_y = y << 16;
10393         plane_state->src_w = hdisplay << 16;
10394         plane_state->src_h = vdisplay << 16;
10395
10396         return 0;
10397 }
10398
10399 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10400                                 struct drm_display_mode *mode,
10401                                 struct intel_load_detect_pipe *old,
10402                                 struct drm_modeset_acquire_ctx *ctx)
10403 {
10404         struct intel_crtc *intel_crtc;
10405         struct intel_encoder *intel_encoder =
10406                 intel_attached_encoder(connector);
10407         struct drm_crtc *possible_crtc;
10408         struct drm_encoder *encoder = &intel_encoder->base;
10409         struct drm_crtc *crtc = NULL;
10410         struct drm_device *dev = encoder->dev;
10411         struct drm_framebuffer *fb;
10412         struct drm_mode_config *config = &dev->mode_config;
10413         struct drm_atomic_state *state = NULL, *restore_state = NULL;
10414         struct drm_connector_state *connector_state;
10415         struct intel_crtc_state *crtc_state;
10416         int ret, i = -1;
10417
10418         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10419                       connector->base.id, connector->name,
10420                       encoder->base.id, encoder->name);
10421
10422         old->restore_state = NULL;
10423
10424 retry:
10425         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10426         if (ret)
10427                 goto fail;
10428
10429         /*
10430          * Algorithm gets a little messy:
10431          *
10432          *   - if the connector already has an assigned crtc, use it (but make
10433          *     sure it's on first)
10434          *
10435          *   - try to find the first unused crtc that can drive this connector,
10436          *     and use that if we find one
10437          */
10438
10439         /* See if we already have a CRTC for this connector */
10440         if (connector->state->crtc) {
10441                 crtc = connector->state->crtc;
10442
10443                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10444                 if (ret)
10445                         goto fail;
10446
10447                 /* Make sure the crtc and connector are running */
10448                 goto found;
10449         }
10450
10451         /* Find an unused one (if possible) */
10452         for_each_crtc(dev, possible_crtc) {
10453                 i++;
10454                 if (!(encoder->possible_crtcs & (1 << i)))
10455                         continue;
10456
10457                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10458                 if (ret)
10459                         goto fail;
10460
10461                 if (possible_crtc->state->enable) {
10462                         drm_modeset_unlock(&possible_crtc->mutex);
10463                         continue;
10464                 }
10465
10466                 crtc = possible_crtc;
10467                 break;
10468         }
10469
10470         /*
10471          * If we didn't find an unused CRTC, don't use any.
10472          */
10473         if (!crtc) {
10474                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10475                 goto fail;
10476         }
10477
10478 found:
10479         intel_crtc = to_intel_crtc(crtc);
10480
10481         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10482         if (ret)
10483                 goto fail;
10484
10485         state = drm_atomic_state_alloc(dev);
10486         restore_state = drm_atomic_state_alloc(dev);
10487         if (!state || !restore_state) {
10488                 ret = -ENOMEM;
10489                 goto fail;
10490         }
10491
10492         state->acquire_ctx = ctx;
10493         restore_state->acquire_ctx = ctx;
10494
10495         connector_state = drm_atomic_get_connector_state(state, connector);
10496         if (IS_ERR(connector_state)) {
10497                 ret = PTR_ERR(connector_state);
10498                 goto fail;
10499         }
10500
10501         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10502         if (ret)
10503                 goto fail;
10504
10505         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10506         if (IS_ERR(crtc_state)) {
10507                 ret = PTR_ERR(crtc_state);
10508                 goto fail;
10509         }
10510
10511         crtc_state->base.active = crtc_state->base.enable = true;
10512
10513         if (!mode)
10514                 mode = &load_detect_mode;
10515
10516         /* We need a framebuffer large enough to accommodate all accesses
10517          * that the plane may generate whilst we perform load detection.
10518          * We can not rely on the fbcon either being present (we get called
10519          * during its initialisation to detect all boot displays, or it may
10520          * not even exist) or that it is large enough to satisfy the
10521          * requested mode.
10522          */
10523         fb = mode_fits_in_fbdev(dev, mode);
10524         if (fb == NULL) {
10525                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10526                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10527         } else
10528                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10529         if (IS_ERR(fb)) {
10530                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10531                 goto fail;
10532         }
10533
10534         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10535         if (ret)
10536                 goto fail;
10537
10538         drm_framebuffer_unreference(fb);
10539
10540         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10541         if (ret)
10542                 goto fail;
10543
10544         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10545         if (!ret)
10546                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10547         if (!ret)
10548                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10549         if (ret) {
10550                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10551                 goto fail;
10552         }
10553
10554         ret = drm_atomic_commit(state);
10555         if (ret) {
10556                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10557                 goto fail;
10558         }
10559
10560         old->restore_state = restore_state;
10561
10562         /* let the connector get through one full cycle before testing */
10563         intel_wait_for_vblank(dev, intel_crtc->pipe);
10564         return true;
10565
10566 fail:
10567         drm_atomic_state_free(state);
10568         drm_atomic_state_free(restore_state);
10569         restore_state = state = NULL;
10570
10571         if (ret == -EDEADLK) {
10572                 drm_modeset_backoff(ctx);
10573                 goto retry;
10574         }
10575
10576         return false;
10577 }
10578
10579 void intel_release_load_detect_pipe(struct drm_connector *connector,
10580                                     struct intel_load_detect_pipe *old,
10581                                     struct drm_modeset_acquire_ctx *ctx)
10582 {
10583         struct intel_encoder *intel_encoder =
10584                 intel_attached_encoder(connector);
10585         struct drm_encoder *encoder = &intel_encoder->base;
10586         struct drm_atomic_state *state = old->restore_state;
10587         int ret;
10588
10589         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10590                       connector->base.id, connector->name,
10591                       encoder->base.id, encoder->name);
10592
10593         if (!state)
10594                 return;
10595
10596         ret = drm_atomic_commit(state);
10597         if (ret) {
10598                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10599                 drm_atomic_state_free(state);
10600         }
10601 }
10602
10603 static int i9xx_pll_refclk(struct drm_device *dev,
10604                            const struct intel_crtc_state *pipe_config)
10605 {
10606         struct drm_i915_private *dev_priv = dev->dev_private;
10607         u32 dpll = pipe_config->dpll_hw_state.dpll;
10608
10609         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10610                 return dev_priv->vbt.lvds_ssc_freq;
10611         else if (HAS_PCH_SPLIT(dev))
10612                 return 120000;
10613         else if (!IS_GEN2(dev))
10614                 return 96000;
10615         else
10616                 return 48000;
10617 }
10618
10619 /* Returns the clock of the currently programmed mode of the given pipe. */
10620 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10621                                 struct intel_crtc_state *pipe_config)
10622 {
10623         struct drm_device *dev = crtc->base.dev;
10624         struct drm_i915_private *dev_priv = dev->dev_private;
10625         int pipe = pipe_config->cpu_transcoder;
10626         u32 dpll = pipe_config->dpll_hw_state.dpll;
10627         u32 fp;
10628         struct dpll clock;
10629         int port_clock;
10630         int refclk = i9xx_pll_refclk(dev, pipe_config);
10631
10632         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10633                 fp = pipe_config->dpll_hw_state.fp0;
10634         else
10635                 fp = pipe_config->dpll_hw_state.fp1;
10636
10637         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10638         if (IS_PINEVIEW(dev)) {
10639                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10640                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10641         } else {
10642                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10643                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10644         }
10645
10646         if (!IS_GEN2(dev)) {
10647                 if (IS_PINEVIEW(dev))
10648                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10649                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10650                 else
10651                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10652                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10653
10654                 switch (dpll & DPLL_MODE_MASK) {
10655                 case DPLLB_MODE_DAC_SERIAL:
10656                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10657                                 5 : 10;
10658                         break;
10659                 case DPLLB_MODE_LVDS:
10660                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10661                                 7 : 14;
10662                         break;
10663                 default:
10664                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10665                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10666                         return;
10667                 }
10668
10669                 if (IS_PINEVIEW(dev))
10670                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10671                 else
10672                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10673         } else {
10674                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10675                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10676
10677                 if (is_lvds) {
10678                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10679                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10680
10681                         if (lvds & LVDS_CLKB_POWER_UP)
10682                                 clock.p2 = 7;
10683                         else
10684                                 clock.p2 = 14;
10685                 } else {
10686                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10687                                 clock.p1 = 2;
10688                         else {
10689                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10690                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10691                         }
10692                         if (dpll & PLL_P2_DIVIDE_BY_4)
10693                                 clock.p2 = 4;
10694                         else
10695                                 clock.p2 = 2;
10696                 }
10697
10698                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10699         }
10700
10701         /*
10702          * This value includes pixel_multiplier. We will use
10703          * port_clock to compute adjusted_mode.crtc_clock in the
10704          * encoder's get_config() function.
10705          */
10706         pipe_config->port_clock = port_clock;
10707 }
10708
10709 int intel_dotclock_calculate(int link_freq,
10710                              const struct intel_link_m_n *m_n)
10711 {
10712         /*
10713          * The calculation for the data clock is:
10714          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10715          * But we want to avoid losing precison if possible, so:
10716          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10717          *
10718          * and the link clock is simpler:
10719          * link_clock = (m * link_clock) / n
10720          */
10721
10722         if (!m_n->link_n)
10723                 return 0;
10724
10725         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10726 }
10727
10728 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10729                                    struct intel_crtc_state *pipe_config)
10730 {
10731         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10732
10733         /* read out port_clock from the DPLL */
10734         i9xx_crtc_clock_get(crtc, pipe_config);
10735
10736         /*
10737          * In case there is an active pipe without active ports,
10738          * we may need some idea for the dotclock anyway.
10739          * Calculate one based on the FDI configuration.
10740          */
10741         pipe_config->base.adjusted_mode.crtc_clock =
10742                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10743                                          &pipe_config->fdi_m_n);
10744 }
10745
10746 /** Returns the currently programmed mode of the given pipe. */
10747 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10748                                              struct drm_crtc *crtc)
10749 {
10750         struct drm_i915_private *dev_priv = dev->dev_private;
10751         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10752         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10753         struct drm_display_mode *mode;
10754         struct intel_crtc_state *pipe_config;
10755         int htot = I915_READ(HTOTAL(cpu_transcoder));
10756         int hsync = I915_READ(HSYNC(cpu_transcoder));
10757         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10758         int vsync = I915_READ(VSYNC(cpu_transcoder));
10759         enum pipe pipe = intel_crtc->pipe;
10760
10761         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10762         if (!mode)
10763                 return NULL;
10764
10765         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10766         if (!pipe_config) {
10767                 kfree(mode);
10768                 return NULL;
10769         }
10770
10771         /*
10772          * Construct a pipe_config sufficient for getting the clock info
10773          * back out of crtc_clock_get.
10774          *
10775          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10776          * to use a real value here instead.
10777          */
10778         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10779         pipe_config->pixel_multiplier = 1;
10780         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10781         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10782         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10783         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10784
10785         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10786         mode->hdisplay = (htot & 0xffff) + 1;
10787         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10788         mode->hsync_start = (hsync & 0xffff) + 1;
10789         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10790         mode->vdisplay = (vtot & 0xffff) + 1;
10791         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10792         mode->vsync_start = (vsync & 0xffff) + 1;
10793         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10794
10795         drm_mode_set_name(mode);
10796
10797         kfree(pipe_config);
10798
10799         return mode;
10800 }
10801
10802 void intel_mark_busy(struct drm_i915_private *dev_priv)
10803 {
10804         if (dev_priv->mm.busy)
10805                 return;
10806
10807         intel_runtime_pm_get(dev_priv);
10808         i915_update_gfx_val(dev_priv);
10809         if (INTEL_GEN(dev_priv) >= 6)
10810                 gen6_rps_busy(dev_priv);
10811         dev_priv->mm.busy = true;
10812 }
10813
10814 void intel_mark_idle(struct drm_i915_private *dev_priv)
10815 {
10816         if (!dev_priv->mm.busy)
10817                 return;
10818
10819         dev_priv->mm.busy = false;
10820
10821         if (INTEL_GEN(dev_priv) >= 6)
10822                 gen6_rps_idle(dev_priv);
10823
10824         intel_runtime_pm_put(dev_priv);
10825 }
10826
10827 static void intel_crtc_destroy(struct drm_crtc *crtc)
10828 {
10829         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10830         struct drm_device *dev = crtc->dev;
10831         struct intel_flip_work *work;
10832
10833         spin_lock_irq(&dev->event_lock);
10834         work = intel_crtc->flip_work;
10835         intel_crtc->flip_work = NULL;
10836         spin_unlock_irq(&dev->event_lock);
10837
10838         if (work) {
10839                 cancel_work_sync(&work->mmio_work);
10840                 cancel_work_sync(&work->unpin_work);
10841                 kfree(work);
10842         }
10843
10844         drm_crtc_cleanup(crtc);
10845
10846         kfree(intel_crtc);
10847 }
10848
10849 static void intel_unpin_work_fn(struct work_struct *__work)
10850 {
10851         struct intel_flip_work *work =
10852                 container_of(__work, struct intel_flip_work, unpin_work);
10853         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10854         struct drm_device *dev = crtc->base.dev;
10855         struct drm_plane *primary = crtc->base.primary;
10856
10857         if (is_mmio_work(work))
10858                 flush_work(&work->mmio_work);
10859
10860         mutex_lock(&dev->struct_mutex);
10861         intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
10862         drm_gem_object_unreference(&work->pending_flip_obj->base);
10863
10864         if (work->flip_queued_req)
10865                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10866         mutex_unlock(&dev->struct_mutex);
10867
10868         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10869         intel_fbc_post_update(crtc);
10870         drm_framebuffer_unreference(work->old_fb);
10871
10872         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10873         atomic_dec(&crtc->unpin_work_count);
10874
10875         kfree(work);
10876 }
10877
10878 /* Is 'a' after or equal to 'b'? */
10879 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10880 {
10881         return !((a - b) & 0x80000000);
10882 }
10883
10884 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
10885                                    struct intel_flip_work *work)
10886 {
10887         struct drm_device *dev = crtc->base.dev;
10888         struct drm_i915_private *dev_priv = dev->dev_private;
10889         unsigned reset_counter;
10890
10891         reset_counter = i915_reset_counter(&dev_priv->gpu_error);
10892         if (crtc->reset_counter != reset_counter)
10893                 return true;
10894
10895         /*
10896          * The relevant registers doen't exist on pre-ctg.
10897          * As the flip done interrupt doesn't trigger for mmio
10898          * flips on gmch platforms, a flip count check isn't
10899          * really needed there. But since ctg has the registers,
10900          * include it in the check anyway.
10901          */
10902         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10903                 return true;
10904
10905         /*
10906          * BDW signals flip done immediately if the plane
10907          * is disabled, even if the plane enable is already
10908          * armed to occur at the next vblank :(
10909          */
10910
10911         /*
10912          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10913          * used the same base address. In that case the mmio flip might
10914          * have completed, but the CS hasn't even executed the flip yet.
10915          *
10916          * A flip count check isn't enough as the CS might have updated
10917          * the base address just after start of vblank, but before we
10918          * managed to process the interrupt. This means we'd complete the
10919          * CS flip too soon.
10920          *
10921          * Combining both checks should get us a good enough result. It may
10922          * still happen that the CS flip has been executed, but has not
10923          * yet actually completed. But in case the base address is the same
10924          * anyway, we don't really care.
10925          */
10926         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10927                 crtc->flip_work->gtt_offset &&
10928                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10929                                     crtc->flip_work->flip_count);
10930 }
10931
10932 static bool
10933 __pageflip_finished_mmio(struct intel_crtc *crtc,
10934                                struct intel_flip_work *work)
10935 {
10936         /*
10937          * MMIO work completes when vblank is different from
10938          * flip_queued_vblank.
10939          *
10940          * Reset counter value doesn't matter, this is handled by
10941          * i915_wait_request finishing early, so no need to handle
10942          * reset here.
10943          */
10944         return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
10945 }
10946
10947
10948 static bool pageflip_finished(struct intel_crtc *crtc,
10949                               struct intel_flip_work *work)
10950 {
10951         if (!atomic_read(&work->pending))
10952                 return false;
10953
10954         smp_rmb();
10955
10956         if (is_mmio_work(work))
10957                 return __pageflip_finished_mmio(crtc, work);
10958         else
10959                 return __pageflip_finished_cs(crtc, work);
10960 }
10961
10962 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
10963 {
10964         struct drm_device *dev = dev_priv->dev;
10965         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10966         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10967         struct intel_flip_work *work;
10968         unsigned long flags;
10969
10970         /* Ignore early vblank irqs */
10971         if (!crtc)
10972                 return;
10973
10974         /*
10975          * This is called both by irq handlers and the reset code (to complete
10976          * lost pageflips) so needs the full irqsave spinlocks.
10977          */
10978         spin_lock_irqsave(&dev->event_lock, flags);
10979         work = intel_crtc->flip_work;
10980
10981         if (work != NULL &&
10982             !is_mmio_work(work) &&
10983             pageflip_finished(intel_crtc, work))
10984                 page_flip_completed(intel_crtc);
10985
10986         spin_unlock_irqrestore(&dev->event_lock, flags);
10987 }
10988
10989 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
10990 {
10991         struct drm_device *dev = dev_priv->dev;
10992         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10993         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10994         struct intel_flip_work *work;
10995         unsigned long flags;
10996
10997         /* Ignore early vblank irqs */
10998         if (!crtc)
10999                 return;
11000
11001         /*
11002          * This is called both by irq handlers and the reset code (to complete
11003          * lost pageflips) so needs the full irqsave spinlocks.
11004          */
11005         spin_lock_irqsave(&dev->event_lock, flags);
11006         work = intel_crtc->flip_work;
11007
11008         if (work != NULL &&
11009             is_mmio_work(work) &&
11010             pageflip_finished(intel_crtc, work))
11011                 page_flip_completed(intel_crtc);
11012
11013         spin_unlock_irqrestore(&dev->event_lock, flags);
11014 }
11015
11016 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11017                                                struct intel_flip_work *work)
11018 {
11019         work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11020
11021         /* Ensure that the work item is consistent when activating it ... */
11022         smp_mb__before_atomic();
11023         atomic_set(&work->pending, 1);
11024 }
11025
11026 static int intel_gen2_queue_flip(struct drm_device *dev,
11027                                  struct drm_crtc *crtc,
11028                                  struct drm_framebuffer *fb,
11029                                  struct drm_i915_gem_object *obj,
11030                                  struct drm_i915_gem_request *req,
11031                                  uint32_t flags)
11032 {
11033         struct intel_engine_cs *engine = req->engine;
11034         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11035         u32 flip_mask;
11036         int ret;
11037
11038         ret = intel_ring_begin(req, 6);
11039         if (ret)
11040                 return ret;
11041
11042         /* Can't queue multiple flips, so wait for the previous
11043          * one to finish before executing the next.
11044          */
11045         if (intel_crtc->plane)
11046                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11047         else
11048                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11049         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11050         intel_ring_emit(engine, MI_NOOP);
11051         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11052                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11053         intel_ring_emit(engine, fb->pitches[0]);
11054         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11055         intel_ring_emit(engine, 0); /* aux display base address, unused */
11056
11057         return 0;
11058 }
11059
11060 static int intel_gen3_queue_flip(struct drm_device *dev,
11061                                  struct drm_crtc *crtc,
11062                                  struct drm_framebuffer *fb,
11063                                  struct drm_i915_gem_object *obj,
11064                                  struct drm_i915_gem_request *req,
11065                                  uint32_t flags)
11066 {
11067         struct intel_engine_cs *engine = req->engine;
11068         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11069         u32 flip_mask;
11070         int ret;
11071
11072         ret = intel_ring_begin(req, 6);
11073         if (ret)
11074                 return ret;
11075
11076         if (intel_crtc->plane)
11077                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11078         else
11079                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11080         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11081         intel_ring_emit(engine, MI_NOOP);
11082         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11083                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11084         intel_ring_emit(engine, fb->pitches[0]);
11085         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11086         intel_ring_emit(engine, MI_NOOP);
11087
11088         return 0;
11089 }
11090
11091 static int intel_gen4_queue_flip(struct drm_device *dev,
11092                                  struct drm_crtc *crtc,
11093                                  struct drm_framebuffer *fb,
11094                                  struct drm_i915_gem_object *obj,
11095                                  struct drm_i915_gem_request *req,
11096                                  uint32_t flags)
11097 {
11098         struct intel_engine_cs *engine = req->engine;
11099         struct drm_i915_private *dev_priv = dev->dev_private;
11100         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11101         uint32_t pf, pipesrc;
11102         int ret;
11103
11104         ret = intel_ring_begin(req, 4);
11105         if (ret)
11106                 return ret;
11107
11108         /* i965+ uses the linear or tiled offsets from the
11109          * Display Registers (which do not change across a page-flip)
11110          * so we need only reprogram the base address.
11111          */
11112         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11113                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11114         intel_ring_emit(engine, fb->pitches[0]);
11115         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset |
11116                         obj->tiling_mode);
11117
11118         /* XXX Enabling the panel-fitter across page-flip is so far
11119          * untested on non-native modes, so ignore it for now.
11120          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11121          */
11122         pf = 0;
11123         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11124         intel_ring_emit(engine, pf | pipesrc);
11125
11126         return 0;
11127 }
11128
11129 static int intel_gen6_queue_flip(struct drm_device *dev,
11130                                  struct drm_crtc *crtc,
11131                                  struct drm_framebuffer *fb,
11132                                  struct drm_i915_gem_object *obj,
11133                                  struct drm_i915_gem_request *req,
11134                                  uint32_t flags)
11135 {
11136         struct intel_engine_cs *engine = req->engine;
11137         struct drm_i915_private *dev_priv = dev->dev_private;
11138         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11139         uint32_t pf, pipesrc;
11140         int ret;
11141
11142         ret = intel_ring_begin(req, 4);
11143         if (ret)
11144                 return ret;
11145
11146         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11147                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11148         intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11149         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11150
11151         /* Contrary to the suggestions in the documentation,
11152          * "Enable Panel Fitter" does not seem to be required when page
11153          * flipping with a non-native mode, and worse causes a normal
11154          * modeset to fail.
11155          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11156          */
11157         pf = 0;
11158         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11159         intel_ring_emit(engine, pf | pipesrc);
11160
11161         return 0;
11162 }
11163
11164 static int intel_gen7_queue_flip(struct drm_device *dev,
11165                                  struct drm_crtc *crtc,
11166                                  struct drm_framebuffer *fb,
11167                                  struct drm_i915_gem_object *obj,
11168                                  struct drm_i915_gem_request *req,
11169                                  uint32_t flags)
11170 {
11171         struct intel_engine_cs *engine = req->engine;
11172         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11173         uint32_t plane_bit = 0;
11174         int len, ret;
11175
11176         switch (intel_crtc->plane) {
11177         case PLANE_A:
11178                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11179                 break;
11180         case PLANE_B:
11181                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11182                 break;
11183         case PLANE_C:
11184                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11185                 break;
11186         default:
11187                 WARN_ONCE(1, "unknown plane in flip command\n");
11188                 return -ENODEV;
11189         }
11190
11191         len = 4;
11192         if (engine->id == RCS) {
11193                 len += 6;
11194                 /*
11195                  * On Gen 8, SRM is now taking an extra dword to accommodate
11196                  * 48bits addresses, and we need a NOOP for the batch size to
11197                  * stay even.
11198                  */
11199                 if (IS_GEN8(dev))
11200                         len += 2;
11201         }
11202
11203         /*
11204          * BSpec MI_DISPLAY_FLIP for IVB:
11205          * "The full packet must be contained within the same cache line."
11206          *
11207          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11208          * cacheline, if we ever start emitting more commands before
11209          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11210          * then do the cacheline alignment, and finally emit the
11211          * MI_DISPLAY_FLIP.
11212          */
11213         ret = intel_ring_cacheline_align(req);
11214         if (ret)
11215                 return ret;
11216
11217         ret = intel_ring_begin(req, len);
11218         if (ret)
11219                 return ret;
11220
11221         /* Unmask the flip-done completion message. Note that the bspec says that
11222          * we should do this for both the BCS and RCS, and that we must not unmask
11223          * more than one flip event at any time (or ensure that one flip message
11224          * can be sent by waiting for flip-done prior to queueing new flips).
11225          * Experimentation says that BCS works despite DERRMR masking all
11226          * flip-done completion events and that unmasking all planes at once
11227          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11228          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11229          */
11230         if (engine->id == RCS) {
11231                 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11232                 intel_ring_emit_reg(engine, DERRMR);
11233                 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11234                                           DERRMR_PIPEB_PRI_FLIP_DONE |
11235                                           DERRMR_PIPEC_PRI_FLIP_DONE));
11236                 if (IS_GEN8(dev))
11237                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11238                                               MI_SRM_LRM_GLOBAL_GTT);
11239                 else
11240                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11241                                               MI_SRM_LRM_GLOBAL_GTT);
11242                 intel_ring_emit_reg(engine, DERRMR);
11243                 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11244                 if (IS_GEN8(dev)) {
11245                         intel_ring_emit(engine, 0);
11246                         intel_ring_emit(engine, MI_NOOP);
11247                 }
11248         }
11249
11250         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11251         intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11252         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11253         intel_ring_emit(engine, (MI_NOOP));
11254
11255         return 0;
11256 }
11257
11258 static bool use_mmio_flip(struct intel_engine_cs *engine,
11259                           struct drm_i915_gem_object *obj)
11260 {
11261         /*
11262          * This is not being used for older platforms, because
11263          * non-availability of flip done interrupt forces us to use
11264          * CS flips. Older platforms derive flip done using some clever
11265          * tricks involving the flip_pending status bits and vblank irqs.
11266          * So using MMIO flips there would disrupt this mechanism.
11267          */
11268
11269         if (engine == NULL)
11270                 return true;
11271
11272         if (INTEL_GEN(engine->i915) < 5)
11273                 return false;
11274
11275         if (i915.use_mmio_flip < 0)
11276                 return false;
11277         else if (i915.use_mmio_flip > 0)
11278                 return true;
11279         else if (i915.enable_execlists)
11280                 return true;
11281         else if (obj->base.dma_buf &&
11282                  !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11283                                                        false))
11284                 return true;
11285         else
11286                 return engine != i915_gem_request_get_engine(obj->last_write_req);
11287 }
11288
11289 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11290                              unsigned int rotation,
11291                              struct intel_flip_work *work)
11292 {
11293         struct drm_device *dev = intel_crtc->base.dev;
11294         struct drm_i915_private *dev_priv = dev->dev_private;
11295         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11296         const enum pipe pipe = intel_crtc->pipe;
11297         u32 ctl, stride, tile_height;
11298
11299         ctl = I915_READ(PLANE_CTL(pipe, 0));
11300         ctl &= ~PLANE_CTL_TILED_MASK;
11301         switch (fb->modifier[0]) {
11302         case DRM_FORMAT_MOD_NONE:
11303                 break;
11304         case I915_FORMAT_MOD_X_TILED:
11305                 ctl |= PLANE_CTL_TILED_X;
11306                 break;
11307         case I915_FORMAT_MOD_Y_TILED:
11308                 ctl |= PLANE_CTL_TILED_Y;
11309                 break;
11310         case I915_FORMAT_MOD_Yf_TILED:
11311                 ctl |= PLANE_CTL_TILED_YF;
11312                 break;
11313         default:
11314                 MISSING_CASE(fb->modifier[0]);
11315         }
11316
11317         /*
11318          * The stride is either expressed as a multiple of 64 bytes chunks for
11319          * linear buffers or in number of tiles for tiled buffers.
11320          */
11321         if (intel_rotation_90_or_270(rotation)) {
11322                 /* stride = Surface height in tiles */
11323                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11324                 stride = DIV_ROUND_UP(fb->height, tile_height);
11325         } else {
11326                 stride = fb->pitches[0] /
11327                         intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11328                                                   fb->pixel_format);
11329         }
11330
11331         /*
11332          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11333          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11334          */
11335         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11336         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11337
11338         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11339         POSTING_READ(PLANE_SURF(pipe, 0));
11340 }
11341
11342 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11343                              struct intel_flip_work *work)
11344 {
11345         struct drm_device *dev = intel_crtc->base.dev;
11346         struct drm_i915_private *dev_priv = dev->dev_private;
11347         struct intel_framebuffer *intel_fb =
11348                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11349         struct drm_i915_gem_object *obj = intel_fb->obj;
11350         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11351         u32 dspcntr;
11352
11353         dspcntr = I915_READ(reg);
11354
11355         if (obj->tiling_mode != I915_TILING_NONE)
11356                 dspcntr |= DISPPLANE_TILED;
11357         else
11358                 dspcntr &= ~DISPPLANE_TILED;
11359
11360         I915_WRITE(reg, dspcntr);
11361
11362         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11363         POSTING_READ(DSPSURF(intel_crtc->plane));
11364 }
11365
11366 static void intel_mmio_flip_work_func(struct work_struct *w)
11367 {
11368         struct intel_flip_work *work =
11369                 container_of(w, struct intel_flip_work, mmio_work);
11370         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11371         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11372         struct intel_framebuffer *intel_fb =
11373                 to_intel_framebuffer(crtc->base.primary->fb);
11374         struct drm_i915_gem_object *obj = intel_fb->obj;
11375
11376         if (work->flip_queued_req)
11377                 WARN_ON(__i915_wait_request(work->flip_queued_req,
11378                                             false, NULL,
11379                                             &dev_priv->rps.mmioflips));
11380
11381         /* For framebuffer backed by dmabuf, wait for fence */
11382         if (obj->base.dma_buf)
11383                 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11384                                                             false, false,
11385                                                             MAX_SCHEDULE_TIMEOUT) < 0);
11386
11387         intel_pipe_update_start(crtc);
11388
11389         if (INTEL_GEN(dev_priv) >= 9)
11390                 skl_do_mmio_flip(crtc, work->rotation, work);
11391         else
11392                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11393                 ilk_do_mmio_flip(crtc, work);
11394
11395         intel_pipe_update_end(crtc, work);
11396 }
11397
11398 static int intel_default_queue_flip(struct drm_device *dev,
11399                                     struct drm_crtc *crtc,
11400                                     struct drm_framebuffer *fb,
11401                                     struct drm_i915_gem_object *obj,
11402                                     struct drm_i915_gem_request *req,
11403                                     uint32_t flags)
11404 {
11405         return -ENODEV;
11406 }
11407
11408 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
11409                                       struct intel_crtc *intel_crtc,
11410                                       struct intel_flip_work *work)
11411 {
11412         u32 addr, vblank;
11413
11414         if (!atomic_read(&work->pending))
11415                 return false;
11416
11417         smp_rmb();
11418
11419         vblank = intel_crtc_get_vblank_counter(intel_crtc);
11420         if (work->flip_ready_vblank == 0) {
11421                 if (work->flip_queued_req &&
11422                     !i915_gem_request_completed(work->flip_queued_req, true))
11423                         return false;
11424
11425                 work->flip_ready_vblank = vblank;
11426         }
11427
11428         if (vblank - work->flip_ready_vblank < 3)
11429                 return false;
11430
11431         /* Potential stall - if we see that the flip has happened,
11432          * assume a missed interrupt. */
11433         if (INTEL_GEN(dev_priv) >= 4)
11434                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11435         else
11436                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11437
11438         /* There is a potential issue here with a false positive after a flip
11439          * to the same address. We could address this by checking for a
11440          * non-incrementing frame counter.
11441          */
11442         return addr == work->gtt_offset;
11443 }
11444
11445 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
11446 {
11447         struct drm_device *dev = dev_priv->dev;
11448         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11449         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11450         struct intel_flip_work *work;
11451
11452         WARN_ON(!in_interrupt());
11453
11454         if (crtc == NULL)
11455                 return;
11456
11457         spin_lock(&dev->event_lock);
11458         work = intel_crtc->flip_work;
11459
11460         if (work != NULL && !is_mmio_work(work) &&
11461             __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
11462                 WARN_ONCE(1,
11463                           "Kicking stuck page flip: queued at %d, now %d\n",
11464                         work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
11465                 page_flip_completed(intel_crtc);
11466                 work = NULL;
11467         }
11468
11469         if (work != NULL && !is_mmio_work(work) &&
11470             intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
11471                 intel_queue_rps_boost_for_request(work->flip_queued_req);
11472         spin_unlock(&dev->event_lock);
11473 }
11474
11475 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11476                                 struct drm_framebuffer *fb,
11477                                 struct drm_pending_vblank_event *event,
11478                                 uint32_t page_flip_flags)
11479 {
11480         struct drm_device *dev = crtc->dev;
11481         struct drm_i915_private *dev_priv = dev->dev_private;
11482         struct drm_framebuffer *old_fb = crtc->primary->fb;
11483         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11484         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11485         struct drm_plane *primary = crtc->primary;
11486         enum pipe pipe = intel_crtc->pipe;
11487         struct intel_flip_work *work;
11488         struct intel_engine_cs *engine;
11489         bool mmio_flip;
11490         struct drm_i915_gem_request *request = NULL;
11491         int ret;
11492
11493         /*
11494          * drm_mode_page_flip_ioctl() should already catch this, but double
11495          * check to be safe.  In the future we may enable pageflipping from
11496          * a disabled primary plane.
11497          */
11498         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11499                 return -EBUSY;
11500
11501         /* Can't change pixel format via MI display flips. */
11502         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11503                 return -EINVAL;
11504
11505         /*
11506          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11507          * Note that pitch changes could also affect these register.
11508          */
11509         if (INTEL_INFO(dev)->gen > 3 &&
11510             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11511              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11512                 return -EINVAL;
11513
11514         if (i915_terminally_wedged(&dev_priv->gpu_error))
11515                 goto out_hang;
11516
11517         work = kzalloc(sizeof(*work), GFP_KERNEL);
11518         if (work == NULL)
11519                 return -ENOMEM;
11520
11521         work->event = event;
11522         work->crtc = crtc;
11523         work->old_fb = old_fb;
11524         INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
11525
11526         ret = drm_crtc_vblank_get(crtc);
11527         if (ret)
11528                 goto free_work;
11529
11530         /* We borrow the event spin lock for protecting flip_work */
11531         spin_lock_irq(&dev->event_lock);
11532         if (intel_crtc->flip_work) {
11533                 /* Before declaring the flip queue wedged, check if
11534                  * the hardware completed the operation behind our backs.
11535                  */
11536                 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
11537                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11538                         page_flip_completed(intel_crtc);
11539                 } else {
11540                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11541                         spin_unlock_irq(&dev->event_lock);
11542
11543                         drm_crtc_vblank_put(crtc);
11544                         kfree(work);
11545                         return -EBUSY;
11546                 }
11547         }
11548         intel_crtc->flip_work = work;
11549         spin_unlock_irq(&dev->event_lock);
11550
11551         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11552                 flush_workqueue(dev_priv->wq);
11553
11554         /* Reference the objects for the scheduled work. */
11555         drm_framebuffer_reference(work->old_fb);
11556         drm_gem_object_reference(&obj->base);
11557
11558         crtc->primary->fb = fb;
11559         update_state_fb(crtc->primary);
11560         intel_fbc_pre_update(intel_crtc);
11561
11562         work->pending_flip_obj = obj;
11563
11564         ret = i915_mutex_lock_interruptible(dev);
11565         if (ret)
11566                 goto cleanup;
11567
11568         intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11569         if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11570                 ret = -EIO;
11571                 goto cleanup;
11572         }
11573
11574         atomic_inc(&intel_crtc->unpin_work_count);
11575
11576         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11577                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11578
11579         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11580                 engine = &dev_priv->engine[BCS];
11581                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11582                         /* vlv: DISPLAY_FLIP fails to change tiling */
11583                         engine = NULL;
11584         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11585                 engine = &dev_priv->engine[BCS];
11586         } else if (INTEL_INFO(dev)->gen >= 7) {
11587                 engine = i915_gem_request_get_engine(obj->last_write_req);
11588                 if (engine == NULL || engine->id != RCS)
11589                         engine = &dev_priv->engine[BCS];
11590         } else {
11591                 engine = &dev_priv->engine[RCS];
11592         }
11593
11594         mmio_flip = use_mmio_flip(engine, obj);
11595
11596         /* When using CS flips, we want to emit semaphores between rings.
11597          * However, when using mmio flips we will create a task to do the
11598          * synchronisation, so all we want here is to pin the framebuffer
11599          * into the display plane and skip any waits.
11600          */
11601         if (!mmio_flip) {
11602                 ret = i915_gem_object_sync(obj, engine, &request);
11603                 if (!ret && !request) {
11604                         request = i915_gem_request_alloc(engine, NULL);
11605                         ret = PTR_ERR_OR_ZERO(request);
11606                 }
11607
11608                 if (ret)
11609                         goto cleanup_pending;
11610         }
11611
11612         ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11613         if (ret)
11614                 goto cleanup_pending;
11615
11616         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11617                                                   obj, 0);
11618         work->gtt_offset += intel_crtc->dspaddr_offset;
11619         work->rotation = crtc->primary->state->rotation;
11620
11621         if (mmio_flip) {
11622                 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
11623
11624                 i915_gem_request_assign(&work->flip_queued_req,
11625                                         obj->last_write_req);
11626
11627                 schedule_work(&work->mmio_work);
11628         } else {
11629                 i915_gem_request_assign(&work->flip_queued_req, request);
11630                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11631                                                    page_flip_flags);
11632                 if (ret)
11633                         goto cleanup_unpin;
11634
11635                 intel_mark_page_flip_active(intel_crtc, work);
11636
11637                 i915_add_request_no_flush(request);
11638         }
11639
11640         i915_gem_track_fb(intel_fb_obj(old_fb), obj,
11641                           to_intel_plane(primary)->frontbuffer_bit);
11642         mutex_unlock(&dev->struct_mutex);
11643
11644         intel_frontbuffer_flip_prepare(dev,
11645                                        to_intel_plane(primary)->frontbuffer_bit);
11646
11647         trace_i915_flip_request(intel_crtc->plane, obj);
11648
11649         return 0;
11650
11651 cleanup_unpin:
11652         intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11653 cleanup_pending:
11654         if (!IS_ERR_OR_NULL(request))
11655                 i915_add_request_no_flush(request);
11656         atomic_dec(&intel_crtc->unpin_work_count);
11657         mutex_unlock(&dev->struct_mutex);
11658 cleanup:
11659         crtc->primary->fb = old_fb;
11660         update_state_fb(crtc->primary);
11661
11662         drm_gem_object_unreference_unlocked(&obj->base);
11663         drm_framebuffer_unreference(work->old_fb);
11664
11665         spin_lock_irq(&dev->event_lock);
11666         intel_crtc->flip_work = NULL;
11667         spin_unlock_irq(&dev->event_lock);
11668
11669         drm_crtc_vblank_put(crtc);
11670 free_work:
11671         kfree(work);
11672
11673         if (ret == -EIO) {
11674                 struct drm_atomic_state *state;
11675                 struct drm_plane_state *plane_state;
11676
11677 out_hang:
11678                 state = drm_atomic_state_alloc(dev);
11679                 if (!state)
11680                         return -ENOMEM;
11681                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11682
11683 retry:
11684                 plane_state = drm_atomic_get_plane_state(state, primary);
11685                 ret = PTR_ERR_OR_ZERO(plane_state);
11686                 if (!ret) {
11687                         drm_atomic_set_fb_for_plane(plane_state, fb);
11688
11689                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11690                         if (!ret)
11691                                 ret = drm_atomic_commit(state);
11692                 }
11693
11694                 if (ret == -EDEADLK) {
11695                         drm_modeset_backoff(state->acquire_ctx);
11696                         drm_atomic_state_clear(state);
11697                         goto retry;
11698                 }
11699
11700                 if (ret)
11701                         drm_atomic_state_free(state);
11702
11703                 if (ret == 0 && event) {
11704                         spin_lock_irq(&dev->event_lock);
11705                         drm_crtc_send_vblank_event(crtc, event);
11706                         spin_unlock_irq(&dev->event_lock);
11707                 }
11708         }
11709         return ret;
11710 }
11711
11712
11713 /**
11714  * intel_wm_need_update - Check whether watermarks need updating
11715  * @plane: drm plane
11716  * @state: new plane state
11717  *
11718  * Check current plane state versus the new one to determine whether
11719  * watermarks need to be recalculated.
11720  *
11721  * Returns true or false.
11722  */
11723 static bool intel_wm_need_update(struct drm_plane *plane,
11724                                  struct drm_plane_state *state)
11725 {
11726         struct intel_plane_state *new = to_intel_plane_state(state);
11727         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11728
11729         /* Update watermarks on tiling or size changes. */
11730         if (new->visible != cur->visible)
11731                 return true;
11732
11733         if (!cur->base.fb || !new->base.fb)
11734                 return false;
11735
11736         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11737             cur->base.rotation != new->base.rotation ||
11738             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11739             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11740             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11741             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11742                 return true;
11743
11744         return false;
11745 }
11746
11747 static bool needs_scaling(struct intel_plane_state *state)
11748 {
11749         int src_w = drm_rect_width(&state->src) >> 16;
11750         int src_h = drm_rect_height(&state->src) >> 16;
11751         int dst_w = drm_rect_width(&state->dst);
11752         int dst_h = drm_rect_height(&state->dst);
11753
11754         return (src_w != dst_w || src_h != dst_h);
11755 }
11756
11757 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11758                                     struct drm_plane_state *plane_state)
11759 {
11760         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11761         struct drm_crtc *crtc = crtc_state->crtc;
11762         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11763         struct drm_plane *plane = plane_state->plane;
11764         struct drm_device *dev = crtc->dev;
11765         struct drm_i915_private *dev_priv = to_i915(dev);
11766         struct intel_plane_state *old_plane_state =
11767                 to_intel_plane_state(plane->state);
11768         int idx = intel_crtc->base.base.id, ret;
11769         bool mode_changed = needs_modeset(crtc_state);
11770         bool was_crtc_enabled = crtc->state->active;
11771         bool is_crtc_enabled = crtc_state->active;
11772         bool turn_off, turn_on, visible, was_visible;
11773         struct drm_framebuffer *fb = plane_state->fb;
11774
11775         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11776             plane->type != DRM_PLANE_TYPE_CURSOR) {
11777                 ret = skl_update_scaler_plane(
11778                         to_intel_crtc_state(crtc_state),
11779                         to_intel_plane_state(plane_state));
11780                 if (ret)
11781                         return ret;
11782         }
11783
11784         was_visible = old_plane_state->visible;
11785         visible = to_intel_plane_state(plane_state)->visible;
11786
11787         if (!was_crtc_enabled && WARN_ON(was_visible))
11788                 was_visible = false;
11789
11790         /*
11791          * Visibility is calculated as if the crtc was on, but
11792          * after scaler setup everything depends on it being off
11793          * when the crtc isn't active.
11794          *
11795          * FIXME this is wrong for watermarks. Watermarks should also
11796          * be computed as if the pipe would be active. Perhaps move
11797          * per-plane wm computation to the .check_plane() hook, and
11798          * only combine the results from all planes in the current place?
11799          */
11800         if (!is_crtc_enabled)
11801                 to_intel_plane_state(plane_state)->visible = visible = false;
11802
11803         if (!was_visible && !visible)
11804                 return 0;
11805
11806         if (fb != old_plane_state->base.fb)
11807                 pipe_config->fb_changed = true;
11808
11809         turn_off = was_visible && (!visible || mode_changed);
11810         turn_on = visible && (!was_visible || mode_changed);
11811
11812         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11813                          plane->base.id, fb ? fb->base.id : -1);
11814
11815         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11816                          plane->base.id, was_visible, visible,
11817                          turn_off, turn_on, mode_changed);
11818
11819         if (turn_on) {
11820                 pipe_config->update_wm_pre = true;
11821
11822                 /* must disable cxsr around plane enable/disable */
11823                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11824                         pipe_config->disable_cxsr = true;
11825         } else if (turn_off) {
11826                 pipe_config->update_wm_post = true;
11827
11828                 /* must disable cxsr around plane enable/disable */
11829                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11830                         pipe_config->disable_cxsr = true;
11831         } else if (intel_wm_need_update(plane, plane_state)) {
11832                 /* FIXME bollocks */
11833                 pipe_config->update_wm_pre = true;
11834                 pipe_config->update_wm_post = true;
11835         }
11836
11837         /* Pre-gen9 platforms need two-step watermark updates */
11838         if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11839             INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
11840                 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11841
11842         if (visible || was_visible)
11843                 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
11844
11845         /*
11846          * WaCxSRDisabledForSpriteScaling:ivb
11847          *
11848          * cstate->update_wm was already set above, so this flag will
11849          * take effect when we commit and program watermarks.
11850          */
11851         if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
11852             needs_scaling(to_intel_plane_state(plane_state)) &&
11853             !needs_scaling(old_plane_state))
11854                 pipe_config->disable_lp_wm = true;
11855
11856         return 0;
11857 }
11858
11859 static bool encoders_cloneable(const struct intel_encoder *a,
11860                                const struct intel_encoder *b)
11861 {
11862         /* masks could be asymmetric, so check both ways */
11863         return a == b || (a->cloneable & (1 << b->type) &&
11864                           b->cloneable & (1 << a->type));
11865 }
11866
11867 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11868                                          struct intel_crtc *crtc,
11869                                          struct intel_encoder *encoder)
11870 {
11871         struct intel_encoder *source_encoder;
11872         struct drm_connector *connector;
11873         struct drm_connector_state *connector_state;
11874         int i;
11875
11876         for_each_connector_in_state(state, connector, connector_state, i) {
11877                 if (connector_state->crtc != &crtc->base)
11878                         continue;
11879
11880                 source_encoder =
11881                         to_intel_encoder(connector_state->best_encoder);
11882                 if (!encoders_cloneable(encoder, source_encoder))
11883                         return false;
11884         }
11885
11886         return true;
11887 }
11888
11889 static bool check_encoder_cloning(struct drm_atomic_state *state,
11890                                   struct intel_crtc *crtc)
11891 {
11892         struct intel_encoder *encoder;
11893         struct drm_connector *connector;
11894         struct drm_connector_state *connector_state;
11895         int i;
11896
11897         for_each_connector_in_state(state, connector, connector_state, i) {
11898                 if (connector_state->crtc != &crtc->base)
11899                         continue;
11900
11901                 encoder = to_intel_encoder(connector_state->best_encoder);
11902                 if (!check_single_encoder_cloning(state, crtc, encoder))
11903                         return false;
11904         }
11905
11906         return true;
11907 }
11908
11909 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11910                                    struct drm_crtc_state *crtc_state)
11911 {
11912         struct drm_device *dev = crtc->dev;
11913         struct drm_i915_private *dev_priv = dev->dev_private;
11914         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11915         struct intel_crtc_state *pipe_config =
11916                 to_intel_crtc_state(crtc_state);
11917         struct drm_atomic_state *state = crtc_state->state;
11918         int ret;
11919         bool mode_changed = needs_modeset(crtc_state);
11920
11921         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11922                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11923                 return -EINVAL;
11924         }
11925
11926         if (mode_changed && !crtc_state->active)
11927                 pipe_config->update_wm_post = true;
11928
11929         if (mode_changed && crtc_state->enable &&
11930             dev_priv->display.crtc_compute_clock &&
11931             !WARN_ON(pipe_config->shared_dpll)) {
11932                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11933                                                            pipe_config);
11934                 if (ret)
11935                         return ret;
11936         }
11937
11938         if (crtc_state->color_mgmt_changed) {
11939                 ret = intel_color_check(crtc, crtc_state);
11940                 if (ret)
11941                         return ret;
11942         }
11943
11944         ret = 0;
11945         if (dev_priv->display.compute_pipe_wm) {
11946                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
11947                 if (ret) {
11948                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11949                         return ret;
11950                 }
11951         }
11952
11953         if (dev_priv->display.compute_intermediate_wm &&
11954             !to_intel_atomic_state(state)->skip_intermediate_wm) {
11955                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11956                         return 0;
11957
11958                 /*
11959                  * Calculate 'intermediate' watermarks that satisfy both the
11960                  * old state and the new state.  We can program these
11961                  * immediately.
11962                  */
11963                 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
11964                                                                 intel_crtc,
11965                                                                 pipe_config);
11966                 if (ret) {
11967                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
11968                         return ret;
11969                 }
11970         } else if (dev_priv->display.compute_intermediate_wm) {
11971                 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
11972                         pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
11973         }
11974
11975         if (INTEL_INFO(dev)->gen >= 9) {
11976                 if (mode_changed)
11977                         ret = skl_update_scaler_crtc(pipe_config);
11978
11979                 if (!ret)
11980                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
11981                                                          pipe_config);
11982         }
11983
11984         return ret;
11985 }
11986
11987 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11988         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11989         .atomic_begin = intel_begin_crtc_commit,
11990         .atomic_flush = intel_finish_crtc_commit,
11991         .atomic_check = intel_crtc_atomic_check,
11992 };
11993
11994 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11995 {
11996         struct intel_connector *connector;
11997
11998         for_each_intel_connector(dev, connector) {
11999                 if (connector->base.state->crtc)
12000                         drm_connector_unreference(&connector->base);
12001
12002                 if (connector->base.encoder) {
12003                         connector->base.state->best_encoder =
12004                                 connector->base.encoder;
12005                         connector->base.state->crtc =
12006                                 connector->base.encoder->crtc;
12007
12008                         drm_connector_reference(&connector->base);
12009                 } else {
12010                         connector->base.state->best_encoder = NULL;
12011                         connector->base.state->crtc = NULL;
12012                 }
12013         }
12014 }
12015
12016 static void
12017 connected_sink_compute_bpp(struct intel_connector *connector,
12018                            struct intel_crtc_state *pipe_config)
12019 {
12020         int bpp = pipe_config->pipe_bpp;
12021
12022         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12023                 connector->base.base.id,
12024                 connector->base.name);
12025
12026         /* Don't use an invalid EDID bpc value */
12027         if (connector->base.display_info.bpc &&
12028             connector->base.display_info.bpc * 3 < bpp) {
12029                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12030                               bpp, connector->base.display_info.bpc*3);
12031                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12032         }
12033
12034         /* Clamp bpp to default limit on screens without EDID 1.4 */
12035         if (connector->base.display_info.bpc == 0) {
12036                 int type = connector->base.connector_type;
12037                 int clamp_bpp = 24;
12038
12039                 /* Fall back to 18 bpp when DP sink capability is unknown. */
12040                 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12041                     type == DRM_MODE_CONNECTOR_eDP)
12042                         clamp_bpp = 18;
12043
12044                 if (bpp > clamp_bpp) {
12045                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12046                                       bpp, clamp_bpp);
12047                         pipe_config->pipe_bpp = clamp_bpp;
12048                 }
12049         }
12050 }
12051
12052 static int
12053 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12054                           struct intel_crtc_state *pipe_config)
12055 {
12056         struct drm_device *dev = crtc->base.dev;
12057         struct drm_atomic_state *state;
12058         struct drm_connector *connector;
12059         struct drm_connector_state *connector_state;
12060         int bpp, i;
12061
12062         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12063                 bpp = 10*3;
12064         else if (INTEL_INFO(dev)->gen >= 5)
12065                 bpp = 12*3;
12066         else
12067                 bpp = 8*3;
12068
12069
12070         pipe_config->pipe_bpp = bpp;
12071
12072         state = pipe_config->base.state;
12073
12074         /* Clamp display bpp to EDID value */
12075         for_each_connector_in_state(state, connector, connector_state, i) {
12076                 if (connector_state->crtc != &crtc->base)
12077                         continue;
12078
12079                 connected_sink_compute_bpp(to_intel_connector(connector),
12080                                            pipe_config);
12081         }
12082
12083         return bpp;
12084 }
12085
12086 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12087 {
12088         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12089                         "type: 0x%x flags: 0x%x\n",
12090                 mode->crtc_clock,
12091                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12092                 mode->crtc_hsync_end, mode->crtc_htotal,
12093                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12094                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12095 }
12096
12097 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12098                                    struct intel_crtc_state *pipe_config,
12099                                    const char *context)
12100 {
12101         struct drm_device *dev = crtc->base.dev;
12102         struct drm_plane *plane;
12103         struct intel_plane *intel_plane;
12104         struct intel_plane_state *state;
12105         struct drm_framebuffer *fb;
12106
12107         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12108                       context, pipe_config, pipe_name(crtc->pipe));
12109
12110         DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12111         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12112                       pipe_config->pipe_bpp, pipe_config->dither);
12113         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12114                       pipe_config->has_pch_encoder,
12115                       pipe_config->fdi_lanes,
12116                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12117                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12118                       pipe_config->fdi_m_n.tu);
12119         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12120                       pipe_config->has_dp_encoder,
12121                       pipe_config->lane_count,
12122                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12123                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12124                       pipe_config->dp_m_n.tu);
12125
12126         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12127                       pipe_config->has_dp_encoder,
12128                       pipe_config->lane_count,
12129                       pipe_config->dp_m2_n2.gmch_m,
12130                       pipe_config->dp_m2_n2.gmch_n,
12131                       pipe_config->dp_m2_n2.link_m,
12132                       pipe_config->dp_m2_n2.link_n,
12133                       pipe_config->dp_m2_n2.tu);
12134
12135         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12136                       pipe_config->has_audio,
12137                       pipe_config->has_infoframe);
12138
12139         DRM_DEBUG_KMS("requested mode:\n");
12140         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12141         DRM_DEBUG_KMS("adjusted mode:\n");
12142         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12143         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12144         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12145         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12146                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12147         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12148                       crtc->num_scalers,
12149                       pipe_config->scaler_state.scaler_users,
12150                       pipe_config->scaler_state.scaler_id);
12151         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12152                       pipe_config->gmch_pfit.control,
12153                       pipe_config->gmch_pfit.pgm_ratios,
12154                       pipe_config->gmch_pfit.lvds_border_bits);
12155         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12156                       pipe_config->pch_pfit.pos,
12157                       pipe_config->pch_pfit.size,
12158                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12159         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12160         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12161
12162         if (IS_BROXTON(dev)) {
12163                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12164                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12165                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12166                               pipe_config->ddi_pll_sel,
12167                               pipe_config->dpll_hw_state.ebb0,
12168                               pipe_config->dpll_hw_state.ebb4,
12169                               pipe_config->dpll_hw_state.pll0,
12170                               pipe_config->dpll_hw_state.pll1,
12171                               pipe_config->dpll_hw_state.pll2,
12172                               pipe_config->dpll_hw_state.pll3,
12173                               pipe_config->dpll_hw_state.pll6,
12174                               pipe_config->dpll_hw_state.pll8,
12175                               pipe_config->dpll_hw_state.pll9,
12176                               pipe_config->dpll_hw_state.pll10,
12177                               pipe_config->dpll_hw_state.pcsdw12);
12178         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12179                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12180                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12181                               pipe_config->ddi_pll_sel,
12182                               pipe_config->dpll_hw_state.ctrl1,
12183                               pipe_config->dpll_hw_state.cfgcr1,
12184                               pipe_config->dpll_hw_state.cfgcr2);
12185         } else if (HAS_DDI(dev)) {
12186                 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12187                               pipe_config->ddi_pll_sel,
12188                               pipe_config->dpll_hw_state.wrpll,
12189                               pipe_config->dpll_hw_state.spll);
12190         } else {
12191                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12192                               "fp0: 0x%x, fp1: 0x%x\n",
12193                               pipe_config->dpll_hw_state.dpll,
12194                               pipe_config->dpll_hw_state.dpll_md,
12195                               pipe_config->dpll_hw_state.fp0,
12196                               pipe_config->dpll_hw_state.fp1);
12197         }
12198
12199         DRM_DEBUG_KMS("planes on this crtc\n");
12200         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12201                 intel_plane = to_intel_plane(plane);
12202                 if (intel_plane->pipe != crtc->pipe)
12203                         continue;
12204
12205                 state = to_intel_plane_state(plane->state);
12206                 fb = state->base.fb;
12207                 if (!fb) {
12208                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12209                                 "disabled, scaler_id = %d\n",
12210                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12211                                 plane->base.id, intel_plane->pipe,
12212                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12213                                 drm_plane_index(plane), state->scaler_id);
12214                         continue;
12215                 }
12216
12217                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12218                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12219                         plane->base.id, intel_plane->pipe,
12220                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12221                         drm_plane_index(plane));
12222                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12223                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12224                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12225                         state->scaler_id,
12226                         state->src.x1 >> 16, state->src.y1 >> 16,
12227                         drm_rect_width(&state->src) >> 16,
12228                         drm_rect_height(&state->src) >> 16,
12229                         state->dst.x1, state->dst.y1,
12230                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12231         }
12232 }
12233
12234 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12235 {
12236         struct drm_device *dev = state->dev;
12237         struct drm_connector *connector;
12238         unsigned int used_ports = 0;
12239
12240         /*
12241          * Walk the connector list instead of the encoder
12242          * list to detect the problem on ddi platforms
12243          * where there's just one encoder per digital port.
12244          */
12245         drm_for_each_connector(connector, dev) {
12246                 struct drm_connector_state *connector_state;
12247                 struct intel_encoder *encoder;
12248
12249                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12250                 if (!connector_state)
12251                         connector_state = connector->state;
12252
12253                 if (!connector_state->best_encoder)
12254                         continue;
12255
12256                 encoder = to_intel_encoder(connector_state->best_encoder);
12257
12258                 WARN_ON(!connector_state->crtc);
12259
12260                 switch (encoder->type) {
12261                         unsigned int port_mask;
12262                 case INTEL_OUTPUT_UNKNOWN:
12263                         if (WARN_ON(!HAS_DDI(dev)))
12264                                 break;
12265                 case INTEL_OUTPUT_DISPLAYPORT:
12266                 case INTEL_OUTPUT_HDMI:
12267                 case INTEL_OUTPUT_EDP:
12268                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12269
12270                         /* the same port mustn't appear more than once */
12271                         if (used_ports & port_mask)
12272                                 return false;
12273
12274                         used_ports |= port_mask;
12275                 default:
12276                         break;
12277                 }
12278         }
12279
12280         return true;
12281 }
12282
12283 static void
12284 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12285 {
12286         struct drm_crtc_state tmp_state;
12287         struct intel_crtc_scaler_state scaler_state;
12288         struct intel_dpll_hw_state dpll_hw_state;
12289         struct intel_shared_dpll *shared_dpll;
12290         uint32_t ddi_pll_sel;
12291         bool force_thru;
12292
12293         /* FIXME: before the switch to atomic started, a new pipe_config was
12294          * kzalloc'd. Code that depends on any field being zero should be
12295          * fixed, so that the crtc_state can be safely duplicated. For now,
12296          * only fields that are know to not cause problems are preserved. */
12297
12298         tmp_state = crtc_state->base;
12299         scaler_state = crtc_state->scaler_state;
12300         shared_dpll = crtc_state->shared_dpll;
12301         dpll_hw_state = crtc_state->dpll_hw_state;
12302         ddi_pll_sel = crtc_state->ddi_pll_sel;
12303         force_thru = crtc_state->pch_pfit.force_thru;
12304
12305         memset(crtc_state, 0, sizeof *crtc_state);
12306
12307         crtc_state->base = tmp_state;
12308         crtc_state->scaler_state = scaler_state;
12309         crtc_state->shared_dpll = shared_dpll;
12310         crtc_state->dpll_hw_state = dpll_hw_state;
12311         crtc_state->ddi_pll_sel = ddi_pll_sel;
12312         crtc_state->pch_pfit.force_thru = force_thru;
12313 }
12314
12315 static int
12316 intel_modeset_pipe_config(struct drm_crtc *crtc,
12317                           struct intel_crtc_state *pipe_config)
12318 {
12319         struct drm_atomic_state *state = pipe_config->base.state;
12320         struct intel_encoder *encoder;
12321         struct drm_connector *connector;
12322         struct drm_connector_state *connector_state;
12323         int base_bpp, ret = -EINVAL;
12324         int i;
12325         bool retry = true;
12326
12327         clear_intel_crtc_state(pipe_config);
12328
12329         pipe_config->cpu_transcoder =
12330                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12331
12332         /*
12333          * Sanitize sync polarity flags based on requested ones. If neither
12334          * positive or negative polarity is requested, treat this as meaning
12335          * negative polarity.
12336          */
12337         if (!(pipe_config->base.adjusted_mode.flags &
12338               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12339                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12340
12341         if (!(pipe_config->base.adjusted_mode.flags &
12342               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12343                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12344
12345         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12346                                              pipe_config);
12347         if (base_bpp < 0)
12348                 goto fail;
12349
12350         /*
12351          * Determine the real pipe dimensions. Note that stereo modes can
12352          * increase the actual pipe size due to the frame doubling and
12353          * insertion of additional space for blanks between the frame. This
12354          * is stored in the crtc timings. We use the requested mode to do this
12355          * computation to clearly distinguish it from the adjusted mode, which
12356          * can be changed by the connectors in the below retry loop.
12357          */
12358         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12359                                &pipe_config->pipe_src_w,
12360                                &pipe_config->pipe_src_h);
12361
12362 encoder_retry:
12363         /* Ensure the port clock defaults are reset when retrying. */
12364         pipe_config->port_clock = 0;
12365         pipe_config->pixel_multiplier = 1;
12366
12367         /* Fill in default crtc timings, allow encoders to overwrite them. */
12368         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12369                               CRTC_STEREO_DOUBLE);
12370
12371         /* Pass our mode to the connectors and the CRTC to give them a chance to
12372          * adjust it according to limitations or connector properties, and also
12373          * a chance to reject the mode entirely.
12374          */
12375         for_each_connector_in_state(state, connector, connector_state, i) {
12376                 if (connector_state->crtc != crtc)
12377                         continue;
12378
12379                 encoder = to_intel_encoder(connector_state->best_encoder);
12380
12381                 if (!(encoder->compute_config(encoder, pipe_config))) {
12382                         DRM_DEBUG_KMS("Encoder config failure\n");
12383                         goto fail;
12384                 }
12385         }
12386
12387         /* Set default port clock if not overwritten by the encoder. Needs to be
12388          * done afterwards in case the encoder adjusts the mode. */
12389         if (!pipe_config->port_clock)
12390                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12391                         * pipe_config->pixel_multiplier;
12392
12393         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12394         if (ret < 0) {
12395                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12396                 goto fail;
12397         }
12398
12399         if (ret == RETRY) {
12400                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12401                         ret = -EINVAL;
12402                         goto fail;
12403                 }
12404
12405                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12406                 retry = false;
12407                 goto encoder_retry;
12408         }
12409
12410         /* Dithering seems to not pass-through bits correctly when it should, so
12411          * only enable it on 6bpc panels. */
12412         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12413         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12414                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12415
12416 fail:
12417         return ret;
12418 }
12419
12420 static void
12421 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12422 {
12423         struct drm_crtc *crtc;
12424         struct drm_crtc_state *crtc_state;
12425         int i;
12426
12427         /* Double check state. */
12428         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12429                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12430
12431                 /* Update hwmode for vblank functions */
12432                 if (crtc->state->active)
12433                         crtc->hwmode = crtc->state->adjusted_mode;
12434                 else
12435                         crtc->hwmode.crtc_clock = 0;
12436
12437                 /*
12438                  * Update legacy state to satisfy fbc code. This can
12439                  * be removed when fbc uses the atomic state.
12440                  */
12441                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12442                         struct drm_plane_state *plane_state = crtc->primary->state;
12443
12444                         crtc->primary->fb = plane_state->fb;
12445                         crtc->x = plane_state->src_x >> 16;
12446                         crtc->y = plane_state->src_y >> 16;
12447                 }
12448         }
12449 }
12450
12451 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12452 {
12453         int diff;
12454
12455         if (clock1 == clock2)
12456                 return true;
12457
12458         if (!clock1 || !clock2)
12459                 return false;
12460
12461         diff = abs(clock1 - clock2);
12462
12463         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12464                 return true;
12465
12466         return false;
12467 }
12468
12469 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12470         list_for_each_entry((intel_crtc), \
12471                             &(dev)->mode_config.crtc_list, \
12472                             base.head) \
12473                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12474
12475 static bool
12476 intel_compare_m_n(unsigned int m, unsigned int n,
12477                   unsigned int m2, unsigned int n2,
12478                   bool exact)
12479 {
12480         if (m == m2 && n == n2)
12481                 return true;
12482
12483         if (exact || !m || !n || !m2 || !n2)
12484                 return false;
12485
12486         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12487
12488         if (n > n2) {
12489                 while (n > n2) {
12490                         m2 <<= 1;
12491                         n2 <<= 1;
12492                 }
12493         } else if (n < n2) {
12494                 while (n < n2) {
12495                         m <<= 1;
12496                         n <<= 1;
12497                 }
12498         }
12499
12500         if (n != n2)
12501                 return false;
12502
12503         return intel_fuzzy_clock_check(m, m2);
12504 }
12505
12506 static bool
12507 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12508                        struct intel_link_m_n *m2_n2,
12509                        bool adjust)
12510 {
12511         if (m_n->tu == m2_n2->tu &&
12512             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12513                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12514             intel_compare_m_n(m_n->link_m, m_n->link_n,
12515                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12516                 if (adjust)
12517                         *m2_n2 = *m_n;
12518
12519                 return true;
12520         }
12521
12522         return false;
12523 }
12524
12525 static bool
12526 intel_pipe_config_compare(struct drm_device *dev,
12527                           struct intel_crtc_state *current_config,
12528                           struct intel_crtc_state *pipe_config,
12529                           bool adjust)
12530 {
12531         bool ret = true;
12532
12533 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12534         do { \
12535                 if (!adjust) \
12536                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12537                 else \
12538                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12539         } while (0)
12540
12541 #define PIPE_CONF_CHECK_X(name) \
12542         if (current_config->name != pipe_config->name) { \
12543                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12544                           "(expected 0x%08x, found 0x%08x)\n", \
12545                           current_config->name, \
12546                           pipe_config->name); \
12547                 ret = false; \
12548         }
12549
12550 #define PIPE_CONF_CHECK_I(name) \
12551         if (current_config->name != pipe_config->name) { \
12552                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12553                           "(expected %i, found %i)\n", \
12554                           current_config->name, \
12555                           pipe_config->name); \
12556                 ret = false; \
12557         }
12558
12559 #define PIPE_CONF_CHECK_P(name) \
12560         if (current_config->name != pipe_config->name) { \
12561                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12562                           "(expected %p, found %p)\n", \
12563                           current_config->name, \
12564                           pipe_config->name); \
12565                 ret = false; \
12566         }
12567
12568 #define PIPE_CONF_CHECK_M_N(name) \
12569         if (!intel_compare_link_m_n(&current_config->name, \
12570                                     &pipe_config->name,\
12571                                     adjust)) { \
12572                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12573                           "(expected tu %i gmch %i/%i link %i/%i, " \
12574                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12575                           current_config->name.tu, \
12576                           current_config->name.gmch_m, \
12577                           current_config->name.gmch_n, \
12578                           current_config->name.link_m, \
12579                           current_config->name.link_n, \
12580                           pipe_config->name.tu, \
12581                           pipe_config->name.gmch_m, \
12582                           pipe_config->name.gmch_n, \
12583                           pipe_config->name.link_m, \
12584                           pipe_config->name.link_n); \
12585                 ret = false; \
12586         }
12587
12588 /* This is required for BDW+ where there is only one set of registers for
12589  * switching between high and low RR.
12590  * This macro can be used whenever a comparison has to be made between one
12591  * hw state and multiple sw state variables.
12592  */
12593 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12594         if (!intel_compare_link_m_n(&current_config->name, \
12595                                     &pipe_config->name, adjust) && \
12596             !intel_compare_link_m_n(&current_config->alt_name, \
12597                                     &pipe_config->name, adjust)) { \
12598                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12599                           "(expected tu %i gmch %i/%i link %i/%i, " \
12600                           "or tu %i gmch %i/%i link %i/%i, " \
12601                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12602                           current_config->name.tu, \
12603                           current_config->name.gmch_m, \
12604                           current_config->name.gmch_n, \
12605                           current_config->name.link_m, \
12606                           current_config->name.link_n, \
12607                           current_config->alt_name.tu, \
12608                           current_config->alt_name.gmch_m, \
12609                           current_config->alt_name.gmch_n, \
12610                           current_config->alt_name.link_m, \
12611                           current_config->alt_name.link_n, \
12612                           pipe_config->name.tu, \
12613                           pipe_config->name.gmch_m, \
12614                           pipe_config->name.gmch_n, \
12615                           pipe_config->name.link_m, \
12616                           pipe_config->name.link_n); \
12617                 ret = false; \
12618         }
12619
12620 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12621         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12622                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12623                           "(expected %i, found %i)\n", \
12624                           current_config->name & (mask), \
12625                           pipe_config->name & (mask)); \
12626                 ret = false; \
12627         }
12628
12629 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12630         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12631                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12632                           "(expected %i, found %i)\n", \
12633                           current_config->name, \
12634                           pipe_config->name); \
12635                 ret = false; \
12636         }
12637
12638 #define PIPE_CONF_QUIRK(quirk)  \
12639         ((current_config->quirks | pipe_config->quirks) & (quirk))
12640
12641         PIPE_CONF_CHECK_I(cpu_transcoder);
12642
12643         PIPE_CONF_CHECK_I(has_pch_encoder);
12644         PIPE_CONF_CHECK_I(fdi_lanes);
12645         PIPE_CONF_CHECK_M_N(fdi_m_n);
12646
12647         PIPE_CONF_CHECK_I(has_dp_encoder);
12648         PIPE_CONF_CHECK_I(lane_count);
12649
12650         if (INTEL_INFO(dev)->gen < 8) {
12651                 PIPE_CONF_CHECK_M_N(dp_m_n);
12652
12653                 if (current_config->has_drrs)
12654                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12655         } else
12656                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12657
12658         PIPE_CONF_CHECK_I(has_dsi_encoder);
12659
12660         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12661         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12662         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12663         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12664         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12665         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12666
12667         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12668         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12669         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12670         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12671         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12672         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12673
12674         PIPE_CONF_CHECK_I(pixel_multiplier);
12675         PIPE_CONF_CHECK_I(has_hdmi_sink);
12676         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12677             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12678                 PIPE_CONF_CHECK_I(limited_color_range);
12679         PIPE_CONF_CHECK_I(has_infoframe);
12680
12681         PIPE_CONF_CHECK_I(has_audio);
12682
12683         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12684                               DRM_MODE_FLAG_INTERLACE);
12685
12686         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12687                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12688                                       DRM_MODE_FLAG_PHSYNC);
12689                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12690                                       DRM_MODE_FLAG_NHSYNC);
12691                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12692                                       DRM_MODE_FLAG_PVSYNC);
12693                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12694                                       DRM_MODE_FLAG_NVSYNC);
12695         }
12696
12697         PIPE_CONF_CHECK_X(gmch_pfit.control);
12698         /* pfit ratios are autocomputed by the hw on gen4+ */
12699         if (INTEL_INFO(dev)->gen < 4)
12700                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12701         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12702
12703         if (!adjust) {
12704                 PIPE_CONF_CHECK_I(pipe_src_w);
12705                 PIPE_CONF_CHECK_I(pipe_src_h);
12706
12707                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12708                 if (current_config->pch_pfit.enabled) {
12709                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12710                         PIPE_CONF_CHECK_X(pch_pfit.size);
12711                 }
12712
12713                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12714         }
12715
12716         /* BDW+ don't expose a synchronous way to read the state */
12717         if (IS_HASWELL(dev))
12718                 PIPE_CONF_CHECK_I(ips_enabled);
12719
12720         PIPE_CONF_CHECK_I(double_wide);
12721
12722         PIPE_CONF_CHECK_X(ddi_pll_sel);
12723
12724         PIPE_CONF_CHECK_P(shared_dpll);
12725         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12726         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12727         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12728         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12729         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12730         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12731         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12732         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12733         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12734
12735         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12736         PIPE_CONF_CHECK_X(dsi_pll.div);
12737
12738         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12739                 PIPE_CONF_CHECK_I(pipe_bpp);
12740
12741         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12742         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12743
12744 #undef PIPE_CONF_CHECK_X
12745 #undef PIPE_CONF_CHECK_I
12746 #undef PIPE_CONF_CHECK_P
12747 #undef PIPE_CONF_CHECK_FLAGS
12748 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12749 #undef PIPE_CONF_QUIRK
12750 #undef INTEL_ERR_OR_DBG_KMS
12751
12752         return ret;
12753 }
12754
12755 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12756                                            const struct intel_crtc_state *pipe_config)
12757 {
12758         if (pipe_config->has_pch_encoder) {
12759                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12760                                                             &pipe_config->fdi_m_n);
12761                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12762
12763                 /*
12764                  * FDI already provided one idea for the dotclock.
12765                  * Yell if the encoder disagrees.
12766                  */
12767                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12768                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12769                      fdi_dotclock, dotclock);
12770         }
12771 }
12772
12773 static void verify_wm_state(struct drm_crtc *crtc,
12774                             struct drm_crtc_state *new_state)
12775 {
12776         struct drm_device *dev = crtc->dev;
12777         struct drm_i915_private *dev_priv = dev->dev_private;
12778         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12779         struct skl_ddb_entry *hw_entry, *sw_entry;
12780         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12781         const enum pipe pipe = intel_crtc->pipe;
12782         int plane;
12783
12784         if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
12785                 return;
12786
12787         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12788         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12789
12790         /* planes */
12791         for_each_plane(dev_priv, pipe, plane) {
12792                 hw_entry = &hw_ddb.plane[pipe][plane];
12793                 sw_entry = &sw_ddb->plane[pipe][plane];
12794
12795                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12796                         continue;
12797
12798                 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12799                           "(expected (%u,%u), found (%u,%u))\n",
12800                           pipe_name(pipe), plane + 1,
12801                           sw_entry->start, sw_entry->end,
12802                           hw_entry->start, hw_entry->end);
12803         }
12804
12805         /* cursor */
12806         hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12807         sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12808
12809         if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
12810                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12811                           "(expected (%u,%u), found (%u,%u))\n",
12812                           pipe_name(pipe),
12813                           sw_entry->start, sw_entry->end,
12814                           hw_entry->start, hw_entry->end);
12815         }
12816 }
12817
12818 static void
12819 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
12820 {
12821         struct drm_connector *connector;
12822
12823         drm_for_each_connector(connector, dev) {
12824                 struct drm_encoder *encoder = connector->encoder;
12825                 struct drm_connector_state *state = connector->state;
12826
12827                 if (state->crtc != crtc)
12828                         continue;
12829
12830                 intel_connector_verify_state(to_intel_connector(connector));
12831
12832                 I915_STATE_WARN(state->best_encoder != encoder,
12833                      "connector's atomic encoder doesn't match legacy encoder\n");
12834         }
12835 }
12836
12837 static void
12838 verify_encoder_state(struct drm_device *dev)
12839 {
12840         struct intel_encoder *encoder;
12841         struct intel_connector *connector;
12842
12843         for_each_intel_encoder(dev, encoder) {
12844                 bool enabled = false;
12845                 enum pipe pipe;
12846
12847                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12848                               encoder->base.base.id,
12849                               encoder->base.name);
12850
12851                 for_each_intel_connector(dev, connector) {
12852                         if (connector->base.state->best_encoder != &encoder->base)
12853                                 continue;
12854                         enabled = true;
12855
12856                         I915_STATE_WARN(connector->base.state->crtc !=
12857                                         encoder->base.crtc,
12858                              "connector's crtc doesn't match encoder crtc\n");
12859                 }
12860
12861                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12862                      "encoder's enabled state mismatch "
12863                      "(expected %i, found %i)\n",
12864                      !!encoder->base.crtc, enabled);
12865
12866                 if (!encoder->base.crtc) {
12867                         bool active;
12868
12869                         active = encoder->get_hw_state(encoder, &pipe);
12870                         I915_STATE_WARN(active,
12871                              "encoder detached but still enabled on pipe %c.\n",
12872                              pipe_name(pipe));
12873                 }
12874         }
12875 }
12876
12877 static void
12878 verify_crtc_state(struct drm_crtc *crtc,
12879                   struct drm_crtc_state *old_crtc_state,
12880                   struct drm_crtc_state *new_crtc_state)
12881 {
12882         struct drm_device *dev = crtc->dev;
12883         struct drm_i915_private *dev_priv = dev->dev_private;
12884         struct intel_encoder *encoder;
12885         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12886         struct intel_crtc_state *pipe_config, *sw_config;
12887         struct drm_atomic_state *old_state;
12888         bool active;
12889
12890         old_state = old_crtc_state->state;
12891         __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
12892         pipe_config = to_intel_crtc_state(old_crtc_state);
12893         memset(pipe_config, 0, sizeof(*pipe_config));
12894         pipe_config->base.crtc = crtc;
12895         pipe_config->base.state = old_state;
12896
12897         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
12898
12899         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12900
12901         /* hw state is inconsistent with the pipe quirk */
12902         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12903             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12904                 active = new_crtc_state->active;
12905
12906         I915_STATE_WARN(new_crtc_state->active != active,
12907              "crtc active state doesn't match with hw state "
12908              "(expected %i, found %i)\n", new_crtc_state->active, active);
12909
12910         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12911              "transitional active state does not match atomic hw state "
12912              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12913
12914         for_each_encoder_on_crtc(dev, crtc, encoder) {
12915                 enum pipe pipe;
12916
12917                 active = encoder->get_hw_state(encoder, &pipe);
12918                 I915_STATE_WARN(active != new_crtc_state->active,
12919                         "[ENCODER:%i] active %i with crtc active %i\n",
12920                         encoder->base.base.id, active, new_crtc_state->active);
12921
12922                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12923                                 "Encoder connected to wrong pipe %c\n",
12924                                 pipe_name(pipe));
12925
12926                 if (active)
12927                         encoder->get_config(encoder, pipe_config);
12928         }
12929
12930         if (!new_crtc_state->active)
12931                 return;
12932
12933         intel_pipe_config_sanity_check(dev_priv, pipe_config);
12934
12935         sw_config = to_intel_crtc_state(crtc->state);
12936         if (!intel_pipe_config_compare(dev, sw_config,
12937                                        pipe_config, false)) {
12938                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12939                 intel_dump_pipe_config(intel_crtc, pipe_config,
12940                                        "[hw state]");
12941                 intel_dump_pipe_config(intel_crtc, sw_config,
12942                                        "[sw state]");
12943         }
12944 }
12945
12946 static void
12947 verify_single_dpll_state(struct drm_i915_private *dev_priv,
12948                          struct intel_shared_dpll *pll,
12949                          struct drm_crtc *crtc,
12950                          struct drm_crtc_state *new_state)
12951 {
12952         struct intel_dpll_hw_state dpll_hw_state;
12953         unsigned crtc_mask;
12954         bool active;
12955
12956         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12957
12958         DRM_DEBUG_KMS("%s\n", pll->name);
12959
12960         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
12961
12962         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12963                 I915_STATE_WARN(!pll->on && pll->active_mask,
12964                      "pll in active use but not on in sw tracking\n");
12965                 I915_STATE_WARN(pll->on && !pll->active_mask,
12966                      "pll is on but not used by any active crtc\n");
12967                 I915_STATE_WARN(pll->on != active,
12968                      "pll on state mismatch (expected %i, found %i)\n",
12969                      pll->on, active);
12970         }
12971
12972         if (!crtc) {
12973                 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
12974                                 "more active pll users than references: %x vs %x\n",
12975                                 pll->active_mask, pll->config.crtc_mask);
12976
12977                 return;
12978         }
12979
12980         crtc_mask = 1 << drm_crtc_index(crtc);
12981
12982         if (new_state->active)
12983                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
12984                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
12985                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12986         else
12987                 I915_STATE_WARN(pll->active_mask & crtc_mask,
12988                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
12989                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12990
12991         I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
12992                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
12993                         crtc_mask, pll->config.crtc_mask);
12994
12995         I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
12996                                           &dpll_hw_state,
12997                                           sizeof(dpll_hw_state)),
12998                         "pll hw state mismatch\n");
12999 }
13000
13001 static void
13002 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13003                          struct drm_crtc_state *old_crtc_state,
13004                          struct drm_crtc_state *new_crtc_state)
13005 {
13006         struct drm_i915_private *dev_priv = dev->dev_private;
13007         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13008         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13009
13010         if (new_state->shared_dpll)
13011                 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13012
13013         if (old_state->shared_dpll &&
13014             old_state->shared_dpll != new_state->shared_dpll) {
13015                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13016                 struct intel_shared_dpll *pll = old_state->shared_dpll;
13017
13018                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13019                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13020                                 pipe_name(drm_crtc_index(crtc)));
13021                 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13022                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13023                                 pipe_name(drm_crtc_index(crtc)));
13024         }
13025 }
13026
13027 static void
13028 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13029                          struct drm_crtc_state *old_state,
13030                          struct drm_crtc_state *new_state)
13031 {
13032         if (!needs_modeset(new_state) &&
13033             !to_intel_crtc_state(new_state)->update_pipe)
13034                 return;
13035
13036         verify_wm_state(crtc, new_state);
13037         verify_connector_state(crtc->dev, crtc);
13038         verify_crtc_state(crtc, old_state, new_state);
13039         verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13040 }
13041
13042 static void
13043 verify_disabled_dpll_state(struct drm_device *dev)
13044 {
13045         struct drm_i915_private *dev_priv = dev->dev_private;
13046         int i;
13047
13048         for (i = 0; i < dev_priv->num_shared_dpll; i++)
13049                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13050 }
13051
13052 static void
13053 intel_modeset_verify_disabled(struct drm_device *dev)
13054 {
13055         verify_encoder_state(dev);
13056         verify_connector_state(dev, NULL);
13057         verify_disabled_dpll_state(dev);
13058 }
13059
13060 static void update_scanline_offset(struct intel_crtc *crtc)
13061 {
13062         struct drm_device *dev = crtc->base.dev;
13063
13064         /*
13065          * The scanline counter increments at the leading edge of hsync.
13066          *
13067          * On most platforms it starts counting from vtotal-1 on the
13068          * first active line. That means the scanline counter value is
13069          * always one less than what we would expect. Ie. just after
13070          * start of vblank, which also occurs at start of hsync (on the
13071          * last active line), the scanline counter will read vblank_start-1.
13072          *
13073          * On gen2 the scanline counter starts counting from 1 instead
13074          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13075          * to keep the value positive), instead of adding one.
13076          *
13077          * On HSW+ the behaviour of the scanline counter depends on the output
13078          * type. For DP ports it behaves like most other platforms, but on HDMI
13079          * there's an extra 1 line difference. So we need to add two instead of
13080          * one to the value.
13081          */
13082         if (IS_GEN2(dev)) {
13083                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13084                 int vtotal;
13085
13086                 vtotal = adjusted_mode->crtc_vtotal;
13087                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13088                         vtotal /= 2;
13089
13090                 crtc->scanline_offset = vtotal - 1;
13091         } else if (HAS_DDI(dev) &&
13092                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13093                 crtc->scanline_offset = 2;
13094         } else
13095                 crtc->scanline_offset = 1;
13096 }
13097
13098 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13099 {
13100         struct drm_device *dev = state->dev;
13101         struct drm_i915_private *dev_priv = to_i915(dev);
13102         struct intel_shared_dpll_config *shared_dpll = NULL;
13103         struct drm_crtc *crtc;
13104         struct drm_crtc_state *crtc_state;
13105         int i;
13106
13107         if (!dev_priv->display.crtc_compute_clock)
13108                 return;
13109
13110         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13111                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13112                 struct intel_shared_dpll *old_dpll =
13113                         to_intel_crtc_state(crtc->state)->shared_dpll;
13114
13115                 if (!needs_modeset(crtc_state))
13116                         continue;
13117
13118                 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13119
13120                 if (!old_dpll)
13121                         continue;
13122
13123                 if (!shared_dpll)
13124                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13125
13126                 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13127         }
13128 }
13129
13130 /*
13131  * This implements the workaround described in the "notes" section of the mode
13132  * set sequence documentation. When going from no pipes or single pipe to
13133  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13134  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13135  */
13136 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13137 {
13138         struct drm_crtc_state *crtc_state;
13139         struct intel_crtc *intel_crtc;
13140         struct drm_crtc *crtc;
13141         struct intel_crtc_state *first_crtc_state = NULL;
13142         struct intel_crtc_state *other_crtc_state = NULL;
13143         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13144         int i;
13145
13146         /* look at all crtc's that are going to be enabled in during modeset */
13147         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13148                 intel_crtc = to_intel_crtc(crtc);
13149
13150                 if (!crtc_state->active || !needs_modeset(crtc_state))
13151                         continue;
13152
13153                 if (first_crtc_state) {
13154                         other_crtc_state = to_intel_crtc_state(crtc_state);
13155                         break;
13156                 } else {
13157                         first_crtc_state = to_intel_crtc_state(crtc_state);
13158                         first_pipe = intel_crtc->pipe;
13159                 }
13160         }
13161
13162         /* No workaround needed? */
13163         if (!first_crtc_state)
13164                 return 0;
13165
13166         /* w/a possibly needed, check how many crtc's are already enabled. */
13167         for_each_intel_crtc(state->dev, intel_crtc) {
13168                 struct intel_crtc_state *pipe_config;
13169
13170                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13171                 if (IS_ERR(pipe_config))
13172                         return PTR_ERR(pipe_config);
13173
13174                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13175
13176                 if (!pipe_config->base.active ||
13177                     needs_modeset(&pipe_config->base))
13178                         continue;
13179
13180                 /* 2 or more enabled crtcs means no need for w/a */
13181                 if (enabled_pipe != INVALID_PIPE)
13182                         return 0;
13183
13184                 enabled_pipe = intel_crtc->pipe;
13185         }
13186
13187         if (enabled_pipe != INVALID_PIPE)
13188                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13189         else if (other_crtc_state)
13190                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13191
13192         return 0;
13193 }
13194
13195 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13196 {
13197         struct drm_crtc *crtc;
13198         struct drm_crtc_state *crtc_state;
13199         int ret = 0;
13200
13201         /* add all active pipes to the state */
13202         for_each_crtc(state->dev, crtc) {
13203                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13204                 if (IS_ERR(crtc_state))
13205                         return PTR_ERR(crtc_state);
13206
13207                 if (!crtc_state->active || needs_modeset(crtc_state))
13208                         continue;
13209
13210                 crtc_state->mode_changed = true;
13211
13212                 ret = drm_atomic_add_affected_connectors(state, crtc);
13213                 if (ret)
13214                         break;
13215
13216                 ret = drm_atomic_add_affected_planes(state, crtc);
13217                 if (ret)
13218                         break;
13219         }
13220
13221         return ret;
13222 }
13223
13224 static int intel_modeset_checks(struct drm_atomic_state *state)
13225 {
13226         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13227         struct drm_i915_private *dev_priv = state->dev->dev_private;
13228         struct drm_crtc *crtc;
13229         struct drm_crtc_state *crtc_state;
13230         int ret = 0, i;
13231
13232         if (!check_digital_port_conflicts(state)) {
13233                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13234                 return -EINVAL;
13235         }
13236
13237         intel_state->modeset = true;
13238         intel_state->active_crtcs = dev_priv->active_crtcs;
13239
13240         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13241                 if (crtc_state->active)
13242                         intel_state->active_crtcs |= 1 << i;
13243                 else
13244                         intel_state->active_crtcs &= ~(1 << i);
13245
13246                 if (crtc_state->active != crtc->state->active)
13247                         intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13248         }
13249
13250         /*
13251          * See if the config requires any additional preparation, e.g.
13252          * to adjust global state with pipes off.  We need to do this
13253          * here so we can get the modeset_pipe updated config for the new
13254          * mode set on this crtc.  For other crtcs we need to use the
13255          * adjusted_mode bits in the crtc directly.
13256          */
13257         if (dev_priv->display.modeset_calc_cdclk) {
13258                 ret = dev_priv->display.modeset_calc_cdclk(state);
13259
13260                 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
13261                         ret = intel_modeset_all_pipes(state);
13262
13263                 if (ret < 0)
13264                         return ret;
13265
13266                 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13267                               intel_state->cdclk, intel_state->dev_cdclk);
13268         } else
13269                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13270
13271         intel_modeset_clear_plls(state);
13272
13273         if (IS_HASWELL(dev_priv))
13274                 return haswell_mode_set_planes_workaround(state);
13275
13276         return 0;
13277 }
13278
13279 /*
13280  * Handle calculation of various watermark data at the end of the atomic check
13281  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13282  * handlers to ensure that all derived state has been updated.
13283  */
13284 static int calc_watermark_data(struct drm_atomic_state *state)
13285 {
13286         struct drm_device *dev = state->dev;
13287         struct drm_i915_private *dev_priv = to_i915(dev);
13288
13289         /* Is there platform-specific watermark information to calculate? */
13290         if (dev_priv->display.compute_global_watermarks)
13291                 return dev_priv->display.compute_global_watermarks(state);
13292
13293         return 0;
13294 }
13295
13296 /**
13297  * intel_atomic_check - validate state object
13298  * @dev: drm device
13299  * @state: state to validate
13300  */
13301 static int intel_atomic_check(struct drm_device *dev,
13302                               struct drm_atomic_state *state)
13303 {
13304         struct drm_i915_private *dev_priv = to_i915(dev);
13305         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13306         struct drm_crtc *crtc;
13307         struct drm_crtc_state *crtc_state;
13308         int ret, i;
13309         bool any_ms = false;
13310
13311         ret = drm_atomic_helper_check_modeset(dev, state);
13312         if (ret)
13313                 return ret;
13314
13315         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13316                 struct intel_crtc_state *pipe_config =
13317                         to_intel_crtc_state(crtc_state);
13318
13319                 /* Catch I915_MODE_FLAG_INHERITED */
13320                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13321                         crtc_state->mode_changed = true;
13322
13323                 if (!needs_modeset(crtc_state))
13324                         continue;
13325
13326                 if (!crtc_state->enable) {
13327                         any_ms = true;
13328                         continue;
13329                 }
13330
13331                 /* FIXME: For only active_changed we shouldn't need to do any
13332                  * state recomputation at all. */
13333
13334                 ret = drm_atomic_add_affected_connectors(state, crtc);
13335                 if (ret)
13336                         return ret;
13337
13338                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13339                 if (ret) {
13340                         intel_dump_pipe_config(to_intel_crtc(crtc),
13341                                                pipe_config, "[failed]");
13342                         return ret;
13343                 }
13344
13345                 if (i915.fastboot &&
13346                     intel_pipe_config_compare(dev,
13347                                         to_intel_crtc_state(crtc->state),
13348                                         pipe_config, true)) {
13349                         crtc_state->mode_changed = false;
13350                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13351                 }
13352
13353                 if (needs_modeset(crtc_state))
13354                         any_ms = true;
13355
13356                 ret = drm_atomic_add_affected_planes(state, crtc);
13357                 if (ret)
13358                         return ret;
13359
13360                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13361                                        needs_modeset(crtc_state) ?
13362                                        "[modeset]" : "[fastset]");
13363         }
13364
13365         if (any_ms) {
13366                 ret = intel_modeset_checks(state);
13367
13368                 if (ret)
13369                         return ret;
13370         } else
13371                 intel_state->cdclk = dev_priv->cdclk_freq;
13372
13373         ret = drm_atomic_helper_check_planes(dev, state);
13374         if (ret)
13375                 return ret;
13376
13377         intel_fbc_choose_crtc(dev_priv, state);
13378         return calc_watermark_data(state);
13379 }
13380
13381 static int intel_atomic_prepare_commit(struct drm_device *dev,
13382                                        struct drm_atomic_state *state,
13383                                        bool nonblock)
13384 {
13385         struct drm_i915_private *dev_priv = dev->dev_private;
13386         struct drm_plane_state *plane_state;
13387         struct drm_crtc_state *crtc_state;
13388         struct drm_plane *plane;
13389         struct drm_crtc *crtc;
13390         int i, ret;
13391
13392         if (nonblock) {
13393                 DRM_DEBUG_KMS("i915 does not yet support nonblocking commit\n");
13394                 return -EINVAL;
13395         }
13396
13397         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13398                 if (state->legacy_cursor_update)
13399                         continue;
13400
13401                 ret = intel_crtc_wait_for_pending_flips(crtc);
13402                 if (ret)
13403                         return ret;
13404
13405                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13406                         flush_workqueue(dev_priv->wq);
13407         }
13408
13409         ret = mutex_lock_interruptible(&dev->struct_mutex);
13410         if (ret)
13411                 return ret;
13412
13413         ret = drm_atomic_helper_prepare_planes(dev, state);
13414         mutex_unlock(&dev->struct_mutex);
13415
13416         if (!ret && !nonblock) {
13417                 for_each_plane_in_state(state, plane, plane_state, i) {
13418                         struct intel_plane_state *intel_plane_state =
13419                                 to_intel_plane_state(plane_state);
13420
13421                         if (!intel_plane_state->wait_req)
13422                                 continue;
13423
13424                         ret = __i915_wait_request(intel_plane_state->wait_req,
13425                                                   true, NULL, NULL);
13426                         if (ret) {
13427                                 /* Any hang should be swallowed by the wait */
13428                                 WARN_ON(ret == -EIO);
13429                                 mutex_lock(&dev->struct_mutex);
13430                                 drm_atomic_helper_cleanup_planes(dev, state);
13431                                 mutex_unlock(&dev->struct_mutex);
13432                                 break;
13433                         }
13434                 }
13435         }
13436
13437         return ret;
13438 }
13439
13440 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
13441 {
13442         struct drm_device *dev = crtc->base.dev;
13443
13444         if (!dev->max_vblank_count)
13445                 return drm_accurate_vblank_count(&crtc->base);
13446
13447         return dev->driver->get_vblank_counter(dev, crtc->pipe);
13448 }
13449
13450 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13451                                           struct drm_i915_private *dev_priv,
13452                                           unsigned crtc_mask)
13453 {
13454         unsigned last_vblank_count[I915_MAX_PIPES];
13455         enum pipe pipe;
13456         int ret;
13457
13458         if (!crtc_mask)
13459                 return;
13460
13461         for_each_pipe(dev_priv, pipe) {
13462                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13463
13464                 if (!((1 << pipe) & crtc_mask))
13465                         continue;
13466
13467                 ret = drm_crtc_vblank_get(crtc);
13468                 if (WARN_ON(ret != 0)) {
13469                         crtc_mask &= ~(1 << pipe);
13470                         continue;
13471                 }
13472
13473                 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13474         }
13475
13476         for_each_pipe(dev_priv, pipe) {
13477                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13478                 long lret;
13479
13480                 if (!((1 << pipe) & crtc_mask))
13481                         continue;
13482
13483                 lret = wait_event_timeout(dev->vblank[pipe].queue,
13484                                 last_vblank_count[pipe] !=
13485                                         drm_crtc_vblank_count(crtc),
13486                                 msecs_to_jiffies(50));
13487
13488                 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
13489
13490                 drm_crtc_vblank_put(crtc);
13491         }
13492 }
13493
13494 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13495 {
13496         /* fb updated, need to unpin old fb */
13497         if (crtc_state->fb_changed)
13498                 return true;
13499
13500         /* wm changes, need vblank before final wm's */
13501         if (crtc_state->update_wm_post)
13502                 return true;
13503
13504         /*
13505          * cxsr is re-enabled after vblank.
13506          * This is already handled by crtc_state->update_wm_post,
13507          * but added for clarity.
13508          */
13509         if (crtc_state->disable_cxsr)
13510                 return true;
13511
13512         return false;
13513 }
13514
13515 /**
13516  * intel_atomic_commit - commit validated state object
13517  * @dev: DRM device
13518  * @state: the top-level driver state object
13519  * @nonblock: nonblocking commit
13520  *
13521  * This function commits a top-level state object that has been validated
13522  * with drm_atomic_helper_check().
13523  *
13524  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13525  * we can only handle plane-related operations and do not yet support
13526  * nonblocking commit.
13527  *
13528  * RETURNS
13529  * Zero for success or -errno.
13530  */
13531 static int intel_atomic_commit(struct drm_device *dev,
13532                                struct drm_atomic_state *state,
13533                                bool nonblock)
13534 {
13535         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13536         struct drm_i915_private *dev_priv = dev->dev_private;
13537         struct drm_crtc_state *old_crtc_state;
13538         struct drm_crtc *crtc;
13539         struct intel_crtc_state *intel_cstate;
13540         int ret = 0, i;
13541         bool hw_check = intel_state->modeset;
13542         unsigned long put_domains[I915_MAX_PIPES] = {};
13543         unsigned crtc_vblank_mask = 0;
13544
13545         ret = intel_atomic_prepare_commit(dev, state, nonblock);
13546         if (ret) {
13547                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13548                 return ret;
13549         }
13550
13551         drm_atomic_helper_swap_state(dev, state);
13552         dev_priv->wm.distrust_bios_wm = false;
13553         dev_priv->wm.skl_results = intel_state->wm_results;
13554         intel_shared_dpll_commit(state);
13555
13556         if (intel_state->modeset) {
13557                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13558                        sizeof(intel_state->min_pixclk));
13559                 dev_priv->active_crtcs = intel_state->active_crtcs;
13560                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13561
13562                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13563         }
13564
13565         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13566                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13567
13568                 if (needs_modeset(crtc->state) ||
13569                     to_intel_crtc_state(crtc->state)->update_pipe) {
13570                         hw_check = true;
13571
13572                         put_domains[to_intel_crtc(crtc)->pipe] =
13573                                 modeset_get_crtc_power_domains(crtc,
13574                                         to_intel_crtc_state(crtc->state));
13575                 }
13576
13577                 if (!needs_modeset(crtc->state))
13578                         continue;
13579
13580                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13581
13582                 if (old_crtc_state->active) {
13583                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13584                         dev_priv->display.crtc_disable(crtc);
13585                         intel_crtc->active = false;
13586                         intel_fbc_disable(intel_crtc);
13587                         intel_disable_shared_dpll(intel_crtc);
13588
13589                         /*
13590                          * Underruns don't always raise
13591                          * interrupts, so check manually.
13592                          */
13593                         intel_check_cpu_fifo_underruns(dev_priv);
13594                         intel_check_pch_fifo_underruns(dev_priv);
13595
13596                         if (!crtc->state->active)
13597                                 intel_update_watermarks(crtc);
13598                 }
13599         }
13600
13601         /* Only after disabling all output pipelines that will be changed can we
13602          * update the the output configuration. */
13603         intel_modeset_update_crtc_state(state);
13604
13605         if (intel_state->modeset) {
13606                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13607
13608                 if (dev_priv->display.modeset_commit_cdclk &&
13609                     intel_state->dev_cdclk != dev_priv->cdclk_freq)
13610                         dev_priv->display.modeset_commit_cdclk(state);
13611
13612                 intel_modeset_verify_disabled(dev);
13613         }
13614
13615         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13616         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13617                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13618                 bool modeset = needs_modeset(crtc->state);
13619                 struct intel_crtc_state *pipe_config =
13620                         to_intel_crtc_state(crtc->state);
13621                 bool update_pipe = !modeset && pipe_config->update_pipe;
13622
13623                 if (modeset && crtc->state->active) {
13624                         update_scanline_offset(to_intel_crtc(crtc));
13625                         dev_priv->display.crtc_enable(crtc);
13626                 }
13627
13628                 if (!modeset)
13629                         intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13630
13631                 if (crtc->state->active &&
13632                     drm_atomic_get_existing_plane_state(state, crtc->primary))
13633                         intel_fbc_enable(intel_crtc);
13634
13635                 if (crtc->state->active &&
13636                     (crtc->state->planes_changed || update_pipe))
13637                         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13638
13639                 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13640                         crtc_vblank_mask |= 1 << i;
13641         }
13642
13643         /* FIXME: add subpixel order */
13644
13645         if (!state->legacy_cursor_update)
13646                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13647
13648         /*
13649          * Now that the vblank has passed, we can go ahead and program the
13650          * optimal watermarks on platforms that need two-step watermark
13651          * programming.
13652          *
13653          * TODO: Move this (and other cleanup) to an async worker eventually.
13654          */
13655         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13656                 intel_cstate = to_intel_crtc_state(crtc->state);
13657
13658                 if (dev_priv->display.optimize_watermarks)
13659                         dev_priv->display.optimize_watermarks(intel_cstate);
13660         }
13661
13662         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13663                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13664
13665                 if (put_domains[i])
13666                         modeset_put_power_domains(dev_priv, put_domains[i]);
13667
13668                 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
13669         }
13670
13671         if (intel_state->modeset)
13672                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13673
13674         mutex_lock(&dev->struct_mutex);
13675         drm_atomic_helper_cleanup_planes(dev, state);
13676         mutex_unlock(&dev->struct_mutex);
13677
13678         drm_atomic_state_free(state);
13679
13680         /* As one of the primary mmio accessors, KMS has a high likelihood
13681          * of triggering bugs in unclaimed access. After we finish
13682          * modesetting, see if an error has been flagged, and if so
13683          * enable debugging for the next modeset - and hope we catch
13684          * the culprit.
13685          *
13686          * XXX note that we assume display power is on at this point.
13687          * This might hold true now but we need to add pm helper to check
13688          * unclaimed only when the hardware is on, as atomic commits
13689          * can happen also when the device is completely off.
13690          */
13691         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13692
13693         return 0;
13694 }
13695
13696 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13697 {
13698         struct drm_device *dev = crtc->dev;
13699         struct drm_atomic_state *state;
13700         struct drm_crtc_state *crtc_state;
13701         int ret;
13702
13703         state = drm_atomic_state_alloc(dev);
13704         if (!state) {
13705                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13706                               crtc->base.id);
13707                 return;
13708         }
13709
13710         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13711
13712 retry:
13713         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13714         ret = PTR_ERR_OR_ZERO(crtc_state);
13715         if (!ret) {
13716                 if (!crtc_state->active)
13717                         goto out;
13718
13719                 crtc_state->mode_changed = true;
13720                 ret = drm_atomic_commit(state);
13721         }
13722
13723         if (ret == -EDEADLK) {
13724                 drm_atomic_state_clear(state);
13725                 drm_modeset_backoff(state->acquire_ctx);
13726                 goto retry;
13727         }
13728
13729         if (ret)
13730 out:
13731                 drm_atomic_state_free(state);
13732 }
13733
13734 #undef for_each_intel_crtc_masked
13735
13736 static const struct drm_crtc_funcs intel_crtc_funcs = {
13737         .gamma_set = drm_atomic_helper_legacy_gamma_set,
13738         .set_config = drm_atomic_helper_set_config,
13739         .set_property = drm_atomic_helper_crtc_set_property,
13740         .destroy = intel_crtc_destroy,
13741         .page_flip = intel_crtc_page_flip,
13742         .atomic_duplicate_state = intel_crtc_duplicate_state,
13743         .atomic_destroy_state = intel_crtc_destroy_state,
13744 };
13745
13746 /**
13747  * intel_prepare_plane_fb - Prepare fb for usage on plane
13748  * @plane: drm plane to prepare for
13749  * @fb: framebuffer to prepare for presentation
13750  *
13751  * Prepares a framebuffer for usage on a display plane.  Generally this
13752  * involves pinning the underlying object and updating the frontbuffer tracking
13753  * bits.  Some older platforms need special physical address handling for
13754  * cursor planes.
13755  *
13756  * Must be called with struct_mutex held.
13757  *
13758  * Returns 0 on success, negative error code on failure.
13759  */
13760 int
13761 intel_prepare_plane_fb(struct drm_plane *plane,
13762                        const struct drm_plane_state *new_state)
13763 {
13764         struct drm_device *dev = plane->dev;
13765         struct drm_framebuffer *fb = new_state->fb;
13766         struct intel_plane *intel_plane = to_intel_plane(plane);
13767         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13768         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13769         int ret = 0;
13770
13771         if (!obj && !old_obj)
13772                 return 0;
13773
13774         if (old_obj) {
13775                 struct drm_crtc_state *crtc_state =
13776                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13777
13778                 /* Big Hammer, we also need to ensure that any pending
13779                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13780                  * current scanout is retired before unpinning the old
13781                  * framebuffer. Note that we rely on userspace rendering
13782                  * into the buffer attached to the pipe they are waiting
13783                  * on. If not, userspace generates a GPU hang with IPEHR
13784                  * point to the MI_WAIT_FOR_EVENT.
13785                  *
13786                  * This should only fail upon a hung GPU, in which case we
13787                  * can safely continue.
13788                  */
13789                 if (needs_modeset(crtc_state))
13790                         ret = i915_gem_object_wait_rendering(old_obj, true);
13791                 if (ret) {
13792                         /* GPU hangs should have been swallowed by the wait */
13793                         WARN_ON(ret == -EIO);
13794                         return ret;
13795                 }
13796         }
13797
13798         /* For framebuffer backed by dmabuf, wait for fence */
13799         if (obj && obj->base.dma_buf) {
13800                 long lret;
13801
13802                 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13803                                                            false, true,
13804                                                            MAX_SCHEDULE_TIMEOUT);
13805                 if (lret == -ERESTARTSYS)
13806                         return lret;
13807
13808                 WARN(lret < 0, "waiting returns %li\n", lret);
13809         }
13810
13811         if (!obj) {
13812                 ret = 0;
13813         } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13814             INTEL_INFO(dev)->cursor_needs_physical) {
13815                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13816                 ret = i915_gem_object_attach_phys(obj, align);
13817                 if (ret)
13818                         DRM_DEBUG_KMS("failed to attach phys object\n");
13819         } else {
13820                 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13821         }
13822
13823         if (ret == 0) {
13824                 if (obj) {
13825                         struct intel_plane_state *plane_state =
13826                                 to_intel_plane_state(new_state);
13827
13828                         i915_gem_request_assign(&plane_state->wait_req,
13829                                                 obj->last_write_req);
13830                 }
13831
13832                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13833         }
13834
13835         return ret;
13836 }
13837
13838 /**
13839  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13840  * @plane: drm plane to clean up for
13841  * @fb: old framebuffer that was on plane
13842  *
13843  * Cleans up a framebuffer that has just been removed from a plane.
13844  *
13845  * Must be called with struct_mutex held.
13846  */
13847 void
13848 intel_cleanup_plane_fb(struct drm_plane *plane,
13849                        const struct drm_plane_state *old_state)
13850 {
13851         struct drm_device *dev = plane->dev;
13852         struct intel_plane *intel_plane = to_intel_plane(plane);
13853         struct intel_plane_state *old_intel_state;
13854         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13855         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13856
13857         old_intel_state = to_intel_plane_state(old_state);
13858
13859         if (!obj && !old_obj)
13860                 return;
13861
13862         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13863             !INTEL_INFO(dev)->cursor_needs_physical))
13864                 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
13865
13866         /* prepare_fb aborted? */
13867         if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13868             (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13869                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13870
13871         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13872 }
13873
13874 int
13875 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13876 {
13877         int max_scale;
13878         struct drm_device *dev;
13879         struct drm_i915_private *dev_priv;
13880         int crtc_clock, cdclk;
13881
13882         if (!intel_crtc || !crtc_state->base.enable)
13883                 return DRM_PLANE_HELPER_NO_SCALING;
13884
13885         dev = intel_crtc->base.dev;
13886         dev_priv = dev->dev_private;
13887         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13888         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13889
13890         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13891                 return DRM_PLANE_HELPER_NO_SCALING;
13892
13893         /*
13894          * skl max scale is lower of:
13895          *    close to 3 but not 3, -1 is for that purpose
13896          *            or
13897          *    cdclk/crtc_clock
13898          */
13899         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13900
13901         return max_scale;
13902 }
13903
13904 static int
13905 intel_check_primary_plane(struct drm_plane *plane,
13906                           struct intel_crtc_state *crtc_state,
13907                           struct intel_plane_state *state)
13908 {
13909         struct drm_crtc *crtc = state->base.crtc;
13910         struct drm_framebuffer *fb = state->base.fb;
13911         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13912         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13913         bool can_position = false;
13914
13915         if (INTEL_INFO(plane->dev)->gen >= 9) {
13916                 /* use scaler when colorkey is not required */
13917                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13918                         min_scale = 1;
13919                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13920                 }
13921                 can_position = true;
13922         }
13923
13924         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13925                                              &state->dst, &state->clip,
13926                                              min_scale, max_scale,
13927                                              can_position, true,
13928                                              &state->visible);
13929 }
13930
13931 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13932                                     struct drm_crtc_state *old_crtc_state)
13933 {
13934         struct drm_device *dev = crtc->dev;
13935         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13936         struct intel_crtc_state *old_intel_state =
13937                 to_intel_crtc_state(old_crtc_state);
13938         bool modeset = needs_modeset(crtc->state);
13939
13940         /* Perform vblank evasion around commit operation */
13941         intel_pipe_update_start(intel_crtc);
13942
13943         if (modeset)
13944                 return;
13945
13946         if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
13947                 intel_color_set_csc(crtc->state);
13948                 intel_color_load_luts(crtc->state);
13949         }
13950
13951         if (to_intel_crtc_state(crtc->state)->update_pipe)
13952                 intel_update_pipe_config(intel_crtc, old_intel_state);
13953         else if (INTEL_INFO(dev)->gen >= 9)
13954                 skl_detach_scalers(intel_crtc);
13955 }
13956
13957 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13958                                      struct drm_crtc_state *old_crtc_state)
13959 {
13960         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13961
13962         intel_pipe_update_end(intel_crtc, NULL);
13963 }
13964
13965 /**
13966  * intel_plane_destroy - destroy a plane
13967  * @plane: plane to destroy
13968  *
13969  * Common destruction function for all types of planes (primary, cursor,
13970  * sprite).
13971  */
13972 void intel_plane_destroy(struct drm_plane *plane)
13973 {
13974         struct intel_plane *intel_plane = to_intel_plane(plane);
13975         drm_plane_cleanup(plane);
13976         kfree(intel_plane);
13977 }
13978
13979 const struct drm_plane_funcs intel_plane_funcs = {
13980         .update_plane = drm_atomic_helper_update_plane,
13981         .disable_plane = drm_atomic_helper_disable_plane,
13982         .destroy = intel_plane_destroy,
13983         .set_property = drm_atomic_helper_plane_set_property,
13984         .atomic_get_property = intel_plane_atomic_get_property,
13985         .atomic_set_property = intel_plane_atomic_set_property,
13986         .atomic_duplicate_state = intel_plane_duplicate_state,
13987         .atomic_destroy_state = intel_plane_destroy_state,
13988
13989 };
13990
13991 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13992                                                     int pipe)
13993 {
13994         struct intel_plane *primary = NULL;
13995         struct intel_plane_state *state = NULL;
13996         const uint32_t *intel_primary_formats;
13997         unsigned int num_formats;
13998         int ret;
13999
14000         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14001         if (!primary)
14002                 goto fail;
14003
14004         state = intel_create_plane_state(&primary->base);
14005         if (!state)
14006                 goto fail;
14007         primary->base.state = &state->base;
14008
14009         primary->can_scale = false;
14010         primary->max_downscale = 1;
14011         if (INTEL_INFO(dev)->gen >= 9) {
14012                 primary->can_scale = true;
14013                 state->scaler_id = -1;
14014         }
14015         primary->pipe = pipe;
14016         primary->plane = pipe;
14017         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14018         primary->check_plane = intel_check_primary_plane;
14019         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14020                 primary->plane = !pipe;
14021
14022         if (INTEL_INFO(dev)->gen >= 9) {
14023                 intel_primary_formats = skl_primary_formats;
14024                 num_formats = ARRAY_SIZE(skl_primary_formats);
14025
14026                 primary->update_plane = skylake_update_primary_plane;
14027                 primary->disable_plane = skylake_disable_primary_plane;
14028         } else if (HAS_PCH_SPLIT(dev)) {
14029                 intel_primary_formats = i965_primary_formats;
14030                 num_formats = ARRAY_SIZE(i965_primary_formats);
14031
14032                 primary->update_plane = ironlake_update_primary_plane;
14033                 primary->disable_plane = i9xx_disable_primary_plane;
14034         } else if (INTEL_INFO(dev)->gen >= 4) {
14035                 intel_primary_formats = i965_primary_formats;
14036                 num_formats = ARRAY_SIZE(i965_primary_formats);
14037
14038                 primary->update_plane = i9xx_update_primary_plane;
14039                 primary->disable_plane = i9xx_disable_primary_plane;
14040         } else {
14041                 intel_primary_formats = i8xx_primary_formats;
14042                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14043
14044                 primary->update_plane = i9xx_update_primary_plane;
14045                 primary->disable_plane = i9xx_disable_primary_plane;
14046         }
14047
14048         ret = drm_universal_plane_init(dev, &primary->base, 0,
14049                                        &intel_plane_funcs,
14050                                        intel_primary_formats, num_formats,
14051                                        DRM_PLANE_TYPE_PRIMARY, NULL);
14052         if (ret)
14053                 goto fail;
14054
14055         if (INTEL_INFO(dev)->gen >= 4)
14056                 intel_create_rotation_property(dev, primary);
14057
14058         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14059
14060         return &primary->base;
14061
14062 fail:
14063         kfree(state);
14064         kfree(primary);
14065
14066         return NULL;
14067 }
14068
14069 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14070 {
14071         if (!dev->mode_config.rotation_property) {
14072                 unsigned long flags = BIT(DRM_ROTATE_0) |
14073                         BIT(DRM_ROTATE_180);
14074
14075                 if (INTEL_INFO(dev)->gen >= 9)
14076                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14077
14078                 dev->mode_config.rotation_property =
14079                         drm_mode_create_rotation_property(dev, flags);
14080         }
14081         if (dev->mode_config.rotation_property)
14082                 drm_object_attach_property(&plane->base.base,
14083                                 dev->mode_config.rotation_property,
14084                                 plane->base.state->rotation);
14085 }
14086
14087 static int
14088 intel_check_cursor_plane(struct drm_plane *plane,
14089                          struct intel_crtc_state *crtc_state,
14090                          struct intel_plane_state *state)
14091 {
14092         struct drm_crtc *crtc = crtc_state->base.crtc;
14093         struct drm_framebuffer *fb = state->base.fb;
14094         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14095         enum pipe pipe = to_intel_plane(plane)->pipe;
14096         unsigned stride;
14097         int ret;
14098
14099         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14100                                             &state->dst, &state->clip,
14101                                             DRM_PLANE_HELPER_NO_SCALING,
14102                                             DRM_PLANE_HELPER_NO_SCALING,
14103                                             true, true, &state->visible);
14104         if (ret)
14105                 return ret;
14106
14107         /* if we want to turn off the cursor ignore width and height */
14108         if (!obj)
14109                 return 0;
14110
14111         /* Check for which cursor types we support */
14112         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14113                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14114                           state->base.crtc_w, state->base.crtc_h);
14115                 return -EINVAL;
14116         }
14117
14118         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14119         if (obj->base.size < stride * state->base.crtc_h) {
14120                 DRM_DEBUG_KMS("buffer is too small\n");
14121                 return -ENOMEM;
14122         }
14123
14124         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14125                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14126                 return -EINVAL;
14127         }
14128
14129         /*
14130          * There's something wrong with the cursor on CHV pipe C.
14131          * If it straddles the left edge of the screen then
14132          * moving it away from the edge or disabling it often
14133          * results in a pipe underrun, and often that can lead to
14134          * dead pipe (constant underrun reported, and it scans
14135          * out just a solid color). To recover from that, the
14136          * display power well must be turned off and on again.
14137          * Refuse the put the cursor into that compromised position.
14138          */
14139         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14140             state->visible && state->base.crtc_x < 0) {
14141                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14142                 return -EINVAL;
14143         }
14144
14145         return 0;
14146 }
14147
14148 static void
14149 intel_disable_cursor_plane(struct drm_plane *plane,
14150                            struct drm_crtc *crtc)
14151 {
14152         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14153
14154         intel_crtc->cursor_addr = 0;
14155         intel_crtc_update_cursor(crtc, NULL);
14156 }
14157
14158 static void
14159 intel_update_cursor_plane(struct drm_plane *plane,
14160                           const struct intel_crtc_state *crtc_state,
14161                           const struct intel_plane_state *state)
14162 {
14163         struct drm_crtc *crtc = crtc_state->base.crtc;
14164         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14165         struct drm_device *dev = plane->dev;
14166         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14167         uint32_t addr;
14168
14169         if (!obj)
14170                 addr = 0;
14171         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14172                 addr = i915_gem_obj_ggtt_offset(obj);
14173         else
14174                 addr = obj->phys_handle->busaddr;
14175
14176         intel_crtc->cursor_addr = addr;
14177         intel_crtc_update_cursor(crtc, state);
14178 }
14179
14180 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14181                                                    int pipe)
14182 {
14183         struct intel_plane *cursor = NULL;
14184         struct intel_plane_state *state = NULL;
14185         int ret;
14186
14187         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14188         if (!cursor)
14189                 goto fail;
14190
14191         state = intel_create_plane_state(&cursor->base);
14192         if (!state)
14193                 goto fail;
14194         cursor->base.state = &state->base;
14195
14196         cursor->can_scale = false;
14197         cursor->max_downscale = 1;
14198         cursor->pipe = pipe;
14199         cursor->plane = pipe;
14200         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14201         cursor->check_plane = intel_check_cursor_plane;
14202         cursor->update_plane = intel_update_cursor_plane;
14203         cursor->disable_plane = intel_disable_cursor_plane;
14204
14205         ret = drm_universal_plane_init(dev, &cursor->base, 0,
14206                                        &intel_plane_funcs,
14207                                        intel_cursor_formats,
14208                                        ARRAY_SIZE(intel_cursor_formats),
14209                                        DRM_PLANE_TYPE_CURSOR, NULL);
14210         if (ret)
14211                 goto fail;
14212
14213         if (INTEL_INFO(dev)->gen >= 4) {
14214                 if (!dev->mode_config.rotation_property)
14215                         dev->mode_config.rotation_property =
14216                                 drm_mode_create_rotation_property(dev,
14217                                                         BIT(DRM_ROTATE_0) |
14218                                                         BIT(DRM_ROTATE_180));
14219                 if (dev->mode_config.rotation_property)
14220                         drm_object_attach_property(&cursor->base.base,
14221                                 dev->mode_config.rotation_property,
14222                                 state->base.rotation);
14223         }
14224
14225         if (INTEL_INFO(dev)->gen >=9)
14226                 state->scaler_id = -1;
14227
14228         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14229
14230         return &cursor->base;
14231
14232 fail:
14233         kfree(state);
14234         kfree(cursor);
14235
14236         return NULL;
14237 }
14238
14239 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14240         struct intel_crtc_state *crtc_state)
14241 {
14242         int i;
14243         struct intel_scaler *intel_scaler;
14244         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14245
14246         for (i = 0; i < intel_crtc->num_scalers; i++) {
14247                 intel_scaler = &scaler_state->scalers[i];
14248                 intel_scaler->in_use = 0;
14249                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14250         }
14251
14252         scaler_state->scaler_id = -1;
14253 }
14254
14255 static void intel_crtc_init(struct drm_device *dev, int pipe)
14256 {
14257         struct drm_i915_private *dev_priv = dev->dev_private;
14258         struct intel_crtc *intel_crtc;
14259         struct intel_crtc_state *crtc_state = NULL;
14260         struct drm_plane *primary = NULL;
14261         struct drm_plane *cursor = NULL;
14262         int ret;
14263
14264         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14265         if (intel_crtc == NULL)
14266                 return;
14267
14268         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14269         if (!crtc_state)
14270                 goto fail;
14271         intel_crtc->config = crtc_state;
14272         intel_crtc->base.state = &crtc_state->base;
14273         crtc_state->base.crtc = &intel_crtc->base;
14274
14275         /* initialize shared scalers */
14276         if (INTEL_INFO(dev)->gen >= 9) {
14277                 if (pipe == PIPE_C)
14278                         intel_crtc->num_scalers = 1;
14279                 else
14280                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14281
14282                 skl_init_scalers(dev, intel_crtc, crtc_state);
14283         }
14284
14285         primary = intel_primary_plane_create(dev, pipe);
14286         if (!primary)
14287                 goto fail;
14288
14289         cursor = intel_cursor_plane_create(dev, pipe);
14290         if (!cursor)
14291                 goto fail;
14292
14293         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14294                                         cursor, &intel_crtc_funcs, NULL);
14295         if (ret)
14296                 goto fail;
14297
14298         /*
14299          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14300          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14301          */
14302         intel_crtc->pipe = pipe;
14303         intel_crtc->plane = pipe;
14304         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14305                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14306                 intel_crtc->plane = !pipe;
14307         }
14308
14309         intel_crtc->cursor_base = ~0;
14310         intel_crtc->cursor_cntl = ~0;
14311         intel_crtc->cursor_size = ~0;
14312
14313         intel_crtc->wm.cxsr_allowed = true;
14314
14315         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14316                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14317         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14318         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14319
14320         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14321
14322         intel_color_init(&intel_crtc->base);
14323
14324         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14325         return;
14326
14327 fail:
14328         if (primary)
14329                 drm_plane_cleanup(primary);
14330         if (cursor)
14331                 drm_plane_cleanup(cursor);
14332         kfree(crtc_state);
14333         kfree(intel_crtc);
14334 }
14335
14336 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14337 {
14338         struct drm_encoder *encoder = connector->base.encoder;
14339         struct drm_device *dev = connector->base.dev;
14340
14341         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14342
14343         if (!encoder || WARN_ON(!encoder->crtc))
14344                 return INVALID_PIPE;
14345
14346         return to_intel_crtc(encoder->crtc)->pipe;
14347 }
14348
14349 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14350                                 struct drm_file *file)
14351 {
14352         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14353         struct drm_crtc *drmmode_crtc;
14354         struct intel_crtc *crtc;
14355
14356         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14357
14358         if (!drmmode_crtc) {
14359                 DRM_ERROR("no such CRTC id\n");
14360                 return -ENOENT;
14361         }
14362
14363         crtc = to_intel_crtc(drmmode_crtc);
14364         pipe_from_crtc_id->pipe = crtc->pipe;
14365
14366         return 0;
14367 }
14368
14369 static int intel_encoder_clones(struct intel_encoder *encoder)
14370 {
14371         struct drm_device *dev = encoder->base.dev;
14372         struct intel_encoder *source_encoder;
14373         int index_mask = 0;
14374         int entry = 0;
14375
14376         for_each_intel_encoder(dev, source_encoder) {
14377                 if (encoders_cloneable(encoder, source_encoder))
14378                         index_mask |= (1 << entry);
14379
14380                 entry++;
14381         }
14382
14383         return index_mask;
14384 }
14385
14386 static bool has_edp_a(struct drm_device *dev)
14387 {
14388         struct drm_i915_private *dev_priv = dev->dev_private;
14389
14390         if (!IS_MOBILE(dev))
14391                 return false;
14392
14393         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14394                 return false;
14395
14396         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14397                 return false;
14398
14399         return true;
14400 }
14401
14402 static bool intel_crt_present(struct drm_device *dev)
14403 {
14404         struct drm_i915_private *dev_priv = dev->dev_private;
14405
14406         if (INTEL_INFO(dev)->gen >= 9)
14407                 return false;
14408
14409         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14410                 return false;
14411
14412         if (IS_CHERRYVIEW(dev))
14413                 return false;
14414
14415         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14416                 return false;
14417
14418         /* DDI E can't be used if DDI A requires 4 lanes */
14419         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14420                 return false;
14421
14422         if (!dev_priv->vbt.int_crt_support)
14423                 return false;
14424
14425         return true;
14426 }
14427
14428 static void intel_setup_outputs(struct drm_device *dev)
14429 {
14430         struct drm_i915_private *dev_priv = dev->dev_private;
14431         struct intel_encoder *encoder;
14432         bool dpd_is_edp = false;
14433
14434         intel_lvds_init(dev);
14435
14436         if (intel_crt_present(dev))
14437                 intel_crt_init(dev);
14438
14439         if (IS_BROXTON(dev)) {
14440                 /*
14441                  * FIXME: Broxton doesn't support port detection via the
14442                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14443                  * detect the ports.
14444                  */
14445                 intel_ddi_init(dev, PORT_A);
14446                 intel_ddi_init(dev, PORT_B);
14447                 intel_ddi_init(dev, PORT_C);
14448
14449                 intel_dsi_init(dev);
14450         } else if (HAS_DDI(dev)) {
14451                 int found;
14452
14453                 /*
14454                  * Haswell uses DDI functions to detect digital outputs.
14455                  * On SKL pre-D0 the strap isn't connected, so we assume
14456                  * it's there.
14457                  */
14458                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14459                 /* WaIgnoreDDIAStrap: skl */
14460                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14461                         intel_ddi_init(dev, PORT_A);
14462
14463                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14464                  * register */
14465                 found = I915_READ(SFUSE_STRAP);
14466
14467                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14468                         intel_ddi_init(dev, PORT_B);
14469                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14470                         intel_ddi_init(dev, PORT_C);
14471                 if (found & SFUSE_STRAP_DDID_DETECTED)
14472                         intel_ddi_init(dev, PORT_D);
14473                 /*
14474                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14475                  */
14476                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14477                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14478                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14479                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14480                         intel_ddi_init(dev, PORT_E);
14481
14482         } else if (HAS_PCH_SPLIT(dev)) {
14483                 int found;
14484                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14485
14486                 if (has_edp_a(dev))
14487                         intel_dp_init(dev, DP_A, PORT_A);
14488
14489                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14490                         /* PCH SDVOB multiplex with HDMIB */
14491                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14492                         if (!found)
14493                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14494                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14495                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14496                 }
14497
14498                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14499                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14500
14501                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14502                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14503
14504                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14505                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14506
14507                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14508                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14509         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14510                 /*
14511                  * The DP_DETECTED bit is the latched state of the DDC
14512                  * SDA pin at boot. However since eDP doesn't require DDC
14513                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14514                  * eDP ports may have been muxed to an alternate function.
14515                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14516                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14517                  * detect eDP ports.
14518                  */
14519                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14520                     !intel_dp_is_edp(dev, PORT_B))
14521                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14522                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14523                     intel_dp_is_edp(dev, PORT_B))
14524                         intel_dp_init(dev, VLV_DP_B, PORT_B);
14525
14526                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14527                     !intel_dp_is_edp(dev, PORT_C))
14528                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14529                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14530                     intel_dp_is_edp(dev, PORT_C))
14531                         intel_dp_init(dev, VLV_DP_C, PORT_C);
14532
14533                 if (IS_CHERRYVIEW(dev)) {
14534                         /* eDP not supported on port D, so don't check VBT */
14535                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14536                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14537                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
14538                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14539                 }
14540
14541                 intel_dsi_init(dev);
14542         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14543                 bool found = false;
14544
14545                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14546                         DRM_DEBUG_KMS("probing SDVOB\n");
14547                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14548                         if (!found && IS_G4X(dev)) {
14549                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14550                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14551                         }
14552
14553                         if (!found && IS_G4X(dev))
14554                                 intel_dp_init(dev, DP_B, PORT_B);
14555                 }
14556
14557                 /* Before G4X SDVOC doesn't have its own detect register */
14558
14559                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14560                         DRM_DEBUG_KMS("probing SDVOC\n");
14561                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14562                 }
14563
14564                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14565
14566                         if (IS_G4X(dev)) {
14567                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14568                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14569                         }
14570                         if (IS_G4X(dev))
14571                                 intel_dp_init(dev, DP_C, PORT_C);
14572                 }
14573
14574                 if (IS_G4X(dev) &&
14575                     (I915_READ(DP_D) & DP_DETECTED))
14576                         intel_dp_init(dev, DP_D, PORT_D);
14577         } else if (IS_GEN2(dev))
14578                 intel_dvo_init(dev);
14579
14580         if (SUPPORTS_TV(dev))
14581                 intel_tv_init(dev);
14582
14583         intel_psr_init(dev);
14584
14585         for_each_intel_encoder(dev, encoder) {
14586                 encoder->base.possible_crtcs = encoder->crtc_mask;
14587                 encoder->base.possible_clones =
14588                         intel_encoder_clones(encoder);
14589         }
14590
14591         intel_init_pch_refclk(dev);
14592
14593         drm_helper_move_panel_connectors_to_head(dev);
14594 }
14595
14596 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14597 {
14598         struct drm_device *dev = fb->dev;
14599         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14600
14601         drm_framebuffer_cleanup(fb);
14602         mutex_lock(&dev->struct_mutex);
14603         WARN_ON(!intel_fb->obj->framebuffer_references--);
14604         drm_gem_object_unreference(&intel_fb->obj->base);
14605         mutex_unlock(&dev->struct_mutex);
14606         kfree(intel_fb);
14607 }
14608
14609 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14610                                                 struct drm_file *file,
14611                                                 unsigned int *handle)
14612 {
14613         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14614         struct drm_i915_gem_object *obj = intel_fb->obj;
14615
14616         if (obj->userptr.mm) {
14617                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14618                 return -EINVAL;
14619         }
14620
14621         return drm_gem_handle_create(file, &obj->base, handle);
14622 }
14623
14624 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14625                                         struct drm_file *file,
14626                                         unsigned flags, unsigned color,
14627                                         struct drm_clip_rect *clips,
14628                                         unsigned num_clips)
14629 {
14630         struct drm_device *dev = fb->dev;
14631         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14632         struct drm_i915_gem_object *obj = intel_fb->obj;
14633
14634         mutex_lock(&dev->struct_mutex);
14635         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14636         mutex_unlock(&dev->struct_mutex);
14637
14638         return 0;
14639 }
14640
14641 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14642         .destroy = intel_user_framebuffer_destroy,
14643         .create_handle = intel_user_framebuffer_create_handle,
14644         .dirty = intel_user_framebuffer_dirty,
14645 };
14646
14647 static
14648 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14649                          uint32_t pixel_format)
14650 {
14651         u32 gen = INTEL_INFO(dev)->gen;
14652
14653         if (gen >= 9) {
14654                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14655
14656                 /* "The stride in bytes must not exceed the of the size of 8K
14657                  *  pixels and 32K bytes."
14658                  */
14659                 return min(8192 * cpp, 32768);
14660         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14661                 return 32*1024;
14662         } else if (gen >= 4) {
14663                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14664                         return 16*1024;
14665                 else
14666                         return 32*1024;
14667         } else if (gen >= 3) {
14668                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14669                         return 8*1024;
14670                 else
14671                         return 16*1024;
14672         } else {
14673                 /* XXX DSPC is limited to 4k tiled */
14674                 return 8*1024;
14675         }
14676 }
14677
14678 static int intel_framebuffer_init(struct drm_device *dev,
14679                                   struct intel_framebuffer *intel_fb,
14680                                   struct drm_mode_fb_cmd2 *mode_cmd,
14681                                   struct drm_i915_gem_object *obj)
14682 {
14683         struct drm_i915_private *dev_priv = to_i915(dev);
14684         unsigned int aligned_height;
14685         int ret;
14686         u32 pitch_limit, stride_alignment;
14687
14688         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14689
14690         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14691                 /* Enforce that fb modifier and tiling mode match, but only for
14692                  * X-tiled. This is needed for FBC. */
14693                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14694                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14695                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14696                         return -EINVAL;
14697                 }
14698         } else {
14699                 if (obj->tiling_mode == I915_TILING_X)
14700                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14701                 else if (obj->tiling_mode == I915_TILING_Y) {
14702                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14703                         return -EINVAL;
14704                 }
14705         }
14706
14707         /* Passed in modifier sanity checking. */
14708         switch (mode_cmd->modifier[0]) {
14709         case I915_FORMAT_MOD_Y_TILED:
14710         case I915_FORMAT_MOD_Yf_TILED:
14711                 if (INTEL_INFO(dev)->gen < 9) {
14712                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14713                                   mode_cmd->modifier[0]);
14714                         return -EINVAL;
14715                 }
14716         case DRM_FORMAT_MOD_NONE:
14717         case I915_FORMAT_MOD_X_TILED:
14718                 break;
14719         default:
14720                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14721                           mode_cmd->modifier[0]);
14722                 return -EINVAL;
14723         }
14724
14725         stride_alignment = intel_fb_stride_alignment(dev_priv,
14726                                                      mode_cmd->modifier[0],
14727                                                      mode_cmd->pixel_format);
14728         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14729                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14730                           mode_cmd->pitches[0], stride_alignment);
14731                 return -EINVAL;
14732         }
14733
14734         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14735                                            mode_cmd->pixel_format);
14736         if (mode_cmd->pitches[0] > pitch_limit) {
14737                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14738                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14739                           "tiled" : "linear",
14740                           mode_cmd->pitches[0], pitch_limit);
14741                 return -EINVAL;
14742         }
14743
14744         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14745             mode_cmd->pitches[0] != obj->stride) {
14746                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14747                           mode_cmd->pitches[0], obj->stride);
14748                 return -EINVAL;
14749         }
14750
14751         /* Reject formats not supported by any plane early. */
14752         switch (mode_cmd->pixel_format) {
14753         case DRM_FORMAT_C8:
14754         case DRM_FORMAT_RGB565:
14755         case DRM_FORMAT_XRGB8888:
14756         case DRM_FORMAT_ARGB8888:
14757                 break;
14758         case DRM_FORMAT_XRGB1555:
14759                 if (INTEL_INFO(dev)->gen > 3) {
14760                         DRM_DEBUG("unsupported pixel format: %s\n",
14761                                   drm_get_format_name(mode_cmd->pixel_format));
14762                         return -EINVAL;
14763                 }
14764                 break;
14765         case DRM_FORMAT_ABGR8888:
14766                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14767                     INTEL_INFO(dev)->gen < 9) {
14768                         DRM_DEBUG("unsupported pixel format: %s\n",
14769                                   drm_get_format_name(mode_cmd->pixel_format));
14770                         return -EINVAL;
14771                 }
14772                 break;
14773         case DRM_FORMAT_XBGR8888:
14774         case DRM_FORMAT_XRGB2101010:
14775         case DRM_FORMAT_XBGR2101010:
14776                 if (INTEL_INFO(dev)->gen < 4) {
14777                         DRM_DEBUG("unsupported pixel format: %s\n",
14778                                   drm_get_format_name(mode_cmd->pixel_format));
14779                         return -EINVAL;
14780                 }
14781                 break;
14782         case DRM_FORMAT_ABGR2101010:
14783                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14784                         DRM_DEBUG("unsupported pixel format: %s\n",
14785                                   drm_get_format_name(mode_cmd->pixel_format));
14786                         return -EINVAL;
14787                 }
14788                 break;
14789         case DRM_FORMAT_YUYV:
14790         case DRM_FORMAT_UYVY:
14791         case DRM_FORMAT_YVYU:
14792         case DRM_FORMAT_VYUY:
14793                 if (INTEL_INFO(dev)->gen < 5) {
14794                         DRM_DEBUG("unsupported pixel format: %s\n",
14795                                   drm_get_format_name(mode_cmd->pixel_format));
14796                         return -EINVAL;
14797                 }
14798                 break;
14799         default:
14800                 DRM_DEBUG("unsupported pixel format: %s\n",
14801                           drm_get_format_name(mode_cmd->pixel_format));
14802                 return -EINVAL;
14803         }
14804
14805         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14806         if (mode_cmd->offsets[0] != 0)
14807                 return -EINVAL;
14808
14809         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14810                                                mode_cmd->pixel_format,
14811                                                mode_cmd->modifier[0]);
14812         /* FIXME drm helper for size checks (especially planar formats)? */
14813         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14814                 return -EINVAL;
14815
14816         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14817         intel_fb->obj = obj;
14818
14819         intel_fill_fb_info(dev_priv, &intel_fb->base);
14820
14821         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14822         if (ret) {
14823                 DRM_ERROR("framebuffer init failed %d\n", ret);
14824                 return ret;
14825         }
14826
14827         intel_fb->obj->framebuffer_references++;
14828
14829         return 0;
14830 }
14831
14832 static struct drm_framebuffer *
14833 intel_user_framebuffer_create(struct drm_device *dev,
14834                               struct drm_file *filp,
14835                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14836 {
14837         struct drm_framebuffer *fb;
14838         struct drm_i915_gem_object *obj;
14839         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14840
14841         obj = to_intel_bo(drm_gem_object_lookup(filp, mode_cmd.handles[0]));
14842         if (&obj->base == NULL)
14843                 return ERR_PTR(-ENOENT);
14844
14845         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14846         if (IS_ERR(fb))
14847                 drm_gem_object_unreference_unlocked(&obj->base);
14848
14849         return fb;
14850 }
14851
14852 #ifndef CONFIG_DRM_FBDEV_EMULATION
14853 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14854 {
14855 }
14856 #endif
14857
14858 static const struct drm_mode_config_funcs intel_mode_funcs = {
14859         .fb_create = intel_user_framebuffer_create,
14860         .output_poll_changed = intel_fbdev_output_poll_changed,
14861         .atomic_check = intel_atomic_check,
14862         .atomic_commit = intel_atomic_commit,
14863         .atomic_state_alloc = intel_atomic_state_alloc,
14864         .atomic_state_clear = intel_atomic_state_clear,
14865 };
14866
14867 /**
14868  * intel_init_display_hooks - initialize the display modesetting hooks
14869  * @dev_priv: device private
14870  */
14871 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14872 {
14873         if (INTEL_INFO(dev_priv)->gen >= 9) {
14874                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14875                 dev_priv->display.get_initial_plane_config =
14876                         skylake_get_initial_plane_config;
14877                 dev_priv->display.crtc_compute_clock =
14878                         haswell_crtc_compute_clock;
14879                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14880                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14881         } else if (HAS_DDI(dev_priv)) {
14882                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14883                 dev_priv->display.get_initial_plane_config =
14884                         ironlake_get_initial_plane_config;
14885                 dev_priv->display.crtc_compute_clock =
14886                         haswell_crtc_compute_clock;
14887                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14888                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14889         } else if (HAS_PCH_SPLIT(dev_priv)) {
14890                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14891                 dev_priv->display.get_initial_plane_config =
14892                         ironlake_get_initial_plane_config;
14893                 dev_priv->display.crtc_compute_clock =
14894                         ironlake_crtc_compute_clock;
14895                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14896                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14897         } else if (IS_CHERRYVIEW(dev_priv)) {
14898                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14899                 dev_priv->display.get_initial_plane_config =
14900                         i9xx_get_initial_plane_config;
14901                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14902                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14903                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14904         } else if (IS_VALLEYVIEW(dev_priv)) {
14905                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14906                 dev_priv->display.get_initial_plane_config =
14907                         i9xx_get_initial_plane_config;
14908                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14909                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14910                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14911         } else if (IS_G4X(dev_priv)) {
14912                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14913                 dev_priv->display.get_initial_plane_config =
14914                         i9xx_get_initial_plane_config;
14915                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14916                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14917                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14918         } else if (IS_PINEVIEW(dev_priv)) {
14919                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14920                 dev_priv->display.get_initial_plane_config =
14921                         i9xx_get_initial_plane_config;
14922                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14923                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14924                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14925         } else if (!IS_GEN2(dev_priv)) {
14926                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14927                 dev_priv->display.get_initial_plane_config =
14928                         i9xx_get_initial_plane_config;
14929                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14930                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14931                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14932         } else {
14933                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14934                 dev_priv->display.get_initial_plane_config =
14935                         i9xx_get_initial_plane_config;
14936                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14937                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14938                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14939         }
14940
14941         /* Returns the core display clock speed */
14942         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
14943                 dev_priv->display.get_display_clock_speed =
14944                         skylake_get_display_clock_speed;
14945         else if (IS_BROXTON(dev_priv))
14946                 dev_priv->display.get_display_clock_speed =
14947                         broxton_get_display_clock_speed;
14948         else if (IS_BROADWELL(dev_priv))
14949                 dev_priv->display.get_display_clock_speed =
14950                         broadwell_get_display_clock_speed;
14951         else if (IS_HASWELL(dev_priv))
14952                 dev_priv->display.get_display_clock_speed =
14953                         haswell_get_display_clock_speed;
14954         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14955                 dev_priv->display.get_display_clock_speed =
14956                         valleyview_get_display_clock_speed;
14957         else if (IS_GEN5(dev_priv))
14958                 dev_priv->display.get_display_clock_speed =
14959                         ilk_get_display_clock_speed;
14960         else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
14961                  IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
14962                 dev_priv->display.get_display_clock_speed =
14963                         i945_get_display_clock_speed;
14964         else if (IS_GM45(dev_priv))
14965                 dev_priv->display.get_display_clock_speed =
14966                         gm45_get_display_clock_speed;
14967         else if (IS_CRESTLINE(dev_priv))
14968                 dev_priv->display.get_display_clock_speed =
14969                         i965gm_get_display_clock_speed;
14970         else if (IS_PINEVIEW(dev_priv))
14971                 dev_priv->display.get_display_clock_speed =
14972                         pnv_get_display_clock_speed;
14973         else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
14974                 dev_priv->display.get_display_clock_speed =
14975                         g33_get_display_clock_speed;
14976         else if (IS_I915G(dev_priv))
14977                 dev_priv->display.get_display_clock_speed =
14978                         i915_get_display_clock_speed;
14979         else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
14980                 dev_priv->display.get_display_clock_speed =
14981                         i9xx_misc_get_display_clock_speed;
14982         else if (IS_I915GM(dev_priv))
14983                 dev_priv->display.get_display_clock_speed =
14984                         i915gm_get_display_clock_speed;
14985         else if (IS_I865G(dev_priv))
14986                 dev_priv->display.get_display_clock_speed =
14987                         i865_get_display_clock_speed;
14988         else if (IS_I85X(dev_priv))
14989                 dev_priv->display.get_display_clock_speed =
14990                         i85x_get_display_clock_speed;
14991         else { /* 830 */
14992                 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
14993                 dev_priv->display.get_display_clock_speed =
14994                         i830_get_display_clock_speed;
14995         }
14996
14997         if (IS_GEN5(dev_priv)) {
14998                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14999         } else if (IS_GEN6(dev_priv)) {
15000                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15001         } else if (IS_IVYBRIDGE(dev_priv)) {
15002                 /* FIXME: detect B0+ stepping and use auto training */
15003                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15004         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15005                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15006         }
15007
15008         if (IS_BROADWELL(dev_priv)) {
15009                 dev_priv->display.modeset_commit_cdclk =
15010                         broadwell_modeset_commit_cdclk;
15011                 dev_priv->display.modeset_calc_cdclk =
15012                         broadwell_modeset_calc_cdclk;
15013         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15014                 dev_priv->display.modeset_commit_cdclk =
15015                         valleyview_modeset_commit_cdclk;
15016                 dev_priv->display.modeset_calc_cdclk =
15017                         valleyview_modeset_calc_cdclk;
15018         } else if (IS_BROXTON(dev_priv)) {
15019                 dev_priv->display.modeset_commit_cdclk =
15020                         broxton_modeset_commit_cdclk;
15021                 dev_priv->display.modeset_calc_cdclk =
15022                         broxton_modeset_calc_cdclk;
15023         }
15024
15025         switch (INTEL_INFO(dev_priv)->gen) {
15026         case 2:
15027                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15028                 break;
15029
15030         case 3:
15031                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15032                 break;
15033
15034         case 4:
15035         case 5:
15036                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15037                 break;
15038
15039         case 6:
15040                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15041                 break;
15042         case 7:
15043         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15044                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15045                 break;
15046         case 9:
15047                 /* Drop through - unsupported since execlist only. */
15048         default:
15049                 /* Default just returns -ENODEV to indicate unsupported */
15050                 dev_priv->display.queue_flip = intel_default_queue_flip;
15051         }
15052 }
15053
15054 /*
15055  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15056  * resume, or other times.  This quirk makes sure that's the case for
15057  * affected systems.
15058  */
15059 static void quirk_pipea_force(struct drm_device *dev)
15060 {
15061         struct drm_i915_private *dev_priv = dev->dev_private;
15062
15063         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15064         DRM_INFO("applying pipe a force quirk\n");
15065 }
15066
15067 static void quirk_pipeb_force(struct drm_device *dev)
15068 {
15069         struct drm_i915_private *dev_priv = dev->dev_private;
15070
15071         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15072         DRM_INFO("applying pipe b force quirk\n");
15073 }
15074
15075 /*
15076  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15077  */
15078 static void quirk_ssc_force_disable(struct drm_device *dev)
15079 {
15080         struct drm_i915_private *dev_priv = dev->dev_private;
15081         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15082         DRM_INFO("applying lvds SSC disable quirk\n");
15083 }
15084
15085 /*
15086  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15087  * brightness value
15088  */
15089 static void quirk_invert_brightness(struct drm_device *dev)
15090 {
15091         struct drm_i915_private *dev_priv = dev->dev_private;
15092         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15093         DRM_INFO("applying inverted panel brightness quirk\n");
15094 }
15095
15096 /* Some VBT's incorrectly indicate no backlight is present */
15097 static void quirk_backlight_present(struct drm_device *dev)
15098 {
15099         struct drm_i915_private *dev_priv = dev->dev_private;
15100         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15101         DRM_INFO("applying backlight present quirk\n");
15102 }
15103
15104 struct intel_quirk {
15105         int device;
15106         int subsystem_vendor;
15107         int subsystem_device;
15108         void (*hook)(struct drm_device *dev);
15109 };
15110
15111 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15112 struct intel_dmi_quirk {
15113         void (*hook)(struct drm_device *dev);
15114         const struct dmi_system_id (*dmi_id_list)[];
15115 };
15116
15117 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15118 {
15119         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15120         return 1;
15121 }
15122
15123 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15124         {
15125                 .dmi_id_list = &(const struct dmi_system_id[]) {
15126                         {
15127                                 .callback = intel_dmi_reverse_brightness,
15128                                 .ident = "NCR Corporation",
15129                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15130                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
15131                                 },
15132                         },
15133                         { }  /* terminating entry */
15134                 },
15135                 .hook = quirk_invert_brightness,
15136         },
15137 };
15138
15139 static struct intel_quirk intel_quirks[] = {
15140         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15141         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15142
15143         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15144         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15145
15146         /* 830 needs to leave pipe A & dpll A up */
15147         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15148
15149         /* 830 needs to leave pipe B & dpll B up */
15150         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15151
15152         /* Lenovo U160 cannot use SSC on LVDS */
15153         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15154
15155         /* Sony Vaio Y cannot use SSC on LVDS */
15156         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15157
15158         /* Acer Aspire 5734Z must invert backlight brightness */
15159         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15160
15161         /* Acer/eMachines G725 */
15162         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15163
15164         /* Acer/eMachines e725 */
15165         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15166
15167         /* Acer/Packard Bell NCL20 */
15168         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15169
15170         /* Acer Aspire 4736Z */
15171         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15172
15173         /* Acer Aspire 5336 */
15174         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15175
15176         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15177         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15178
15179         /* Acer C720 Chromebook (Core i3 4005U) */
15180         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15181
15182         /* Apple Macbook 2,1 (Core 2 T7400) */
15183         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15184
15185         /* Apple Macbook 4,1 */
15186         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15187
15188         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15189         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15190
15191         /* HP Chromebook 14 (Celeron 2955U) */
15192         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15193
15194         /* Dell Chromebook 11 */
15195         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15196
15197         /* Dell Chromebook 11 (2015 version) */
15198         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15199 };
15200
15201 static void intel_init_quirks(struct drm_device *dev)
15202 {
15203         struct pci_dev *d = dev->pdev;
15204         int i;
15205
15206         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15207                 struct intel_quirk *q = &intel_quirks[i];
15208
15209                 if (d->device == q->device &&
15210                     (d->subsystem_vendor == q->subsystem_vendor ||
15211                      q->subsystem_vendor == PCI_ANY_ID) &&
15212                     (d->subsystem_device == q->subsystem_device ||
15213                      q->subsystem_device == PCI_ANY_ID))
15214                         q->hook(dev);
15215         }
15216         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15217                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15218                         intel_dmi_quirks[i].hook(dev);
15219         }
15220 }
15221
15222 /* Disable the VGA plane that we never use */
15223 static void i915_disable_vga(struct drm_device *dev)
15224 {
15225         struct drm_i915_private *dev_priv = dev->dev_private;
15226         u8 sr1;
15227         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15228
15229         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15230         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15231         outb(SR01, VGA_SR_INDEX);
15232         sr1 = inb(VGA_SR_DATA);
15233         outb(sr1 | 1<<5, VGA_SR_DATA);
15234         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15235         udelay(300);
15236
15237         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15238         POSTING_READ(vga_reg);
15239 }
15240
15241 void intel_modeset_init_hw(struct drm_device *dev)
15242 {
15243         struct drm_i915_private *dev_priv = dev->dev_private;
15244
15245         intel_update_cdclk(dev);
15246
15247         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15248
15249         intel_init_clock_gating(dev);
15250         intel_enable_gt_powersave(dev_priv);
15251 }
15252
15253 /*
15254  * Calculate what we think the watermarks should be for the state we've read
15255  * out of the hardware and then immediately program those watermarks so that
15256  * we ensure the hardware settings match our internal state.
15257  *
15258  * We can calculate what we think WM's should be by creating a duplicate of the
15259  * current state (which was constructed during hardware readout) and running it
15260  * through the atomic check code to calculate new watermark values in the
15261  * state object.
15262  */
15263 static void sanitize_watermarks(struct drm_device *dev)
15264 {
15265         struct drm_i915_private *dev_priv = to_i915(dev);
15266         struct drm_atomic_state *state;
15267         struct drm_crtc *crtc;
15268         struct drm_crtc_state *cstate;
15269         struct drm_modeset_acquire_ctx ctx;
15270         int ret;
15271         int i;
15272
15273         /* Only supported on platforms that use atomic watermark design */
15274         if (!dev_priv->display.optimize_watermarks)
15275                 return;
15276
15277         /*
15278          * We need to hold connection_mutex before calling duplicate_state so
15279          * that the connector loop is protected.
15280          */
15281         drm_modeset_acquire_init(&ctx, 0);
15282 retry:
15283         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15284         if (ret == -EDEADLK) {
15285                 drm_modeset_backoff(&ctx);
15286                 goto retry;
15287         } else if (WARN_ON(ret)) {
15288                 goto fail;
15289         }
15290
15291         state = drm_atomic_helper_duplicate_state(dev, &ctx);
15292         if (WARN_ON(IS_ERR(state)))
15293                 goto fail;
15294
15295         /*
15296          * Hardware readout is the only time we don't want to calculate
15297          * intermediate watermarks (since we don't trust the current
15298          * watermarks).
15299          */
15300         to_intel_atomic_state(state)->skip_intermediate_wm = true;
15301
15302         ret = intel_atomic_check(dev, state);
15303         if (ret) {
15304                 /*
15305                  * If we fail here, it means that the hardware appears to be
15306                  * programmed in a way that shouldn't be possible, given our
15307                  * understanding of watermark requirements.  This might mean a
15308                  * mistake in the hardware readout code or a mistake in the
15309                  * watermark calculations for a given platform.  Raise a WARN
15310                  * so that this is noticeable.
15311                  *
15312                  * If this actually happens, we'll have to just leave the
15313                  * BIOS-programmed watermarks untouched and hope for the best.
15314                  */
15315                 WARN(true, "Could not determine valid watermarks for inherited state\n");
15316                 goto fail;
15317         }
15318
15319         /* Write calculated watermark values back */
15320         for_each_crtc_in_state(state, crtc, cstate, i) {
15321                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15322
15323                 cs->wm.need_postvbl_update = true;
15324                 dev_priv->display.optimize_watermarks(cs);
15325         }
15326
15327         drm_atomic_state_free(state);
15328 fail:
15329         drm_modeset_drop_locks(&ctx);
15330         drm_modeset_acquire_fini(&ctx);
15331 }
15332
15333 void intel_modeset_init(struct drm_device *dev)
15334 {
15335         struct drm_i915_private *dev_priv = to_i915(dev);
15336         struct i915_ggtt *ggtt = &dev_priv->ggtt;
15337         int sprite, ret;
15338         enum pipe pipe;
15339         struct intel_crtc *crtc;
15340
15341         drm_mode_config_init(dev);
15342
15343         dev->mode_config.min_width = 0;
15344         dev->mode_config.min_height = 0;
15345
15346         dev->mode_config.preferred_depth = 24;
15347         dev->mode_config.prefer_shadow = 1;
15348
15349         dev->mode_config.allow_fb_modifiers = true;
15350
15351         dev->mode_config.funcs = &intel_mode_funcs;
15352
15353         intel_init_quirks(dev);
15354
15355         intel_init_pm(dev);
15356
15357         if (INTEL_INFO(dev)->num_pipes == 0)
15358                 return;
15359
15360         /*
15361          * There may be no VBT; and if the BIOS enabled SSC we can
15362          * just keep using it to avoid unnecessary flicker.  Whereas if the
15363          * BIOS isn't using it, don't assume it will work even if the VBT
15364          * indicates as much.
15365          */
15366         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15367                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15368                                             DREF_SSC1_ENABLE);
15369
15370                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15371                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15372                                      bios_lvds_use_ssc ? "en" : "dis",
15373                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15374                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15375                 }
15376         }
15377
15378         if (IS_GEN2(dev)) {
15379                 dev->mode_config.max_width = 2048;
15380                 dev->mode_config.max_height = 2048;
15381         } else if (IS_GEN3(dev)) {
15382                 dev->mode_config.max_width = 4096;
15383                 dev->mode_config.max_height = 4096;
15384         } else {
15385                 dev->mode_config.max_width = 8192;
15386                 dev->mode_config.max_height = 8192;
15387         }
15388
15389         if (IS_845G(dev) || IS_I865G(dev)) {
15390                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15391                 dev->mode_config.cursor_height = 1023;
15392         } else if (IS_GEN2(dev)) {
15393                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15394                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15395         } else {
15396                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15397                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15398         }
15399
15400         dev->mode_config.fb_base = ggtt->mappable_base;
15401
15402         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15403                       INTEL_INFO(dev)->num_pipes,
15404                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15405
15406         for_each_pipe(dev_priv, pipe) {
15407                 intel_crtc_init(dev, pipe);
15408                 for_each_sprite(dev_priv, pipe, sprite) {
15409                         ret = intel_plane_init(dev, pipe, sprite);
15410                         if (ret)
15411                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15412                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15413                 }
15414         }
15415
15416         intel_update_czclk(dev_priv);
15417         intel_update_cdclk(dev);
15418
15419         intel_shared_dpll_init(dev);
15420
15421         /* Just disable it once at startup */
15422         i915_disable_vga(dev);
15423         intel_setup_outputs(dev);
15424
15425         drm_modeset_lock_all(dev);
15426         intel_modeset_setup_hw_state(dev);
15427         drm_modeset_unlock_all(dev);
15428
15429         for_each_intel_crtc(dev, crtc) {
15430                 struct intel_initial_plane_config plane_config = {};
15431
15432                 if (!crtc->active)
15433                         continue;
15434
15435                 /*
15436                  * Note that reserving the BIOS fb up front prevents us
15437                  * from stuffing other stolen allocations like the ring
15438                  * on top.  This prevents some ugliness at boot time, and
15439                  * can even allow for smooth boot transitions if the BIOS
15440                  * fb is large enough for the active pipe configuration.
15441                  */
15442                 dev_priv->display.get_initial_plane_config(crtc,
15443                                                            &plane_config);
15444
15445                 /*
15446                  * If the fb is shared between multiple heads, we'll
15447                  * just get the first one.
15448                  */
15449                 intel_find_initial_plane_obj(crtc, &plane_config);
15450         }
15451
15452         /*
15453          * Make sure hardware watermarks really match the state we read out.
15454          * Note that we need to do this after reconstructing the BIOS fb's
15455          * since the watermark calculation done here will use pstate->fb.
15456          */
15457         sanitize_watermarks(dev);
15458 }
15459
15460 static void intel_enable_pipe_a(struct drm_device *dev)
15461 {
15462         struct intel_connector *connector;
15463         struct drm_connector *crt = NULL;
15464         struct intel_load_detect_pipe load_detect_temp;
15465         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15466
15467         /* We can't just switch on the pipe A, we need to set things up with a
15468          * proper mode and output configuration. As a gross hack, enable pipe A
15469          * by enabling the load detect pipe once. */
15470         for_each_intel_connector(dev, connector) {
15471                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15472                         crt = &connector->base;
15473                         break;
15474                 }
15475         }
15476
15477         if (!crt)
15478                 return;
15479
15480         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15481                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15482 }
15483
15484 static bool
15485 intel_check_plane_mapping(struct intel_crtc *crtc)
15486 {
15487         struct drm_device *dev = crtc->base.dev;
15488         struct drm_i915_private *dev_priv = dev->dev_private;
15489         u32 val;
15490
15491         if (INTEL_INFO(dev)->num_pipes == 1)
15492                 return true;
15493
15494         val = I915_READ(DSPCNTR(!crtc->plane));
15495
15496         if ((val & DISPLAY_PLANE_ENABLE) &&
15497             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15498                 return false;
15499
15500         return true;
15501 }
15502
15503 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15504 {
15505         struct drm_device *dev = crtc->base.dev;
15506         struct intel_encoder *encoder;
15507
15508         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15509                 return true;
15510
15511         return false;
15512 }
15513
15514 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15515 {
15516         struct drm_device *dev = encoder->base.dev;
15517         struct intel_connector *connector;
15518
15519         for_each_connector_on_encoder(dev, &encoder->base, connector)
15520                 return true;
15521
15522         return false;
15523 }
15524
15525 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15526 {
15527         struct drm_device *dev = crtc->base.dev;
15528         struct drm_i915_private *dev_priv = dev->dev_private;
15529         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15530
15531         /* Clear any frame start delays used for debugging left by the BIOS */
15532         if (!transcoder_is_dsi(cpu_transcoder)) {
15533                 i915_reg_t reg = PIPECONF(cpu_transcoder);
15534
15535                 I915_WRITE(reg,
15536                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15537         }
15538
15539         /* restore vblank interrupts to correct state */
15540         drm_crtc_vblank_reset(&crtc->base);
15541         if (crtc->active) {
15542                 struct intel_plane *plane;
15543
15544                 drm_crtc_vblank_on(&crtc->base);
15545
15546                 /* Disable everything but the primary plane */
15547                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15548                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15549                                 continue;
15550
15551                         plane->disable_plane(&plane->base, &crtc->base);
15552                 }
15553         }
15554
15555         /* We need to sanitize the plane -> pipe mapping first because this will
15556          * disable the crtc (and hence change the state) if it is wrong. Note
15557          * that gen4+ has a fixed plane -> pipe mapping.  */
15558         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15559                 bool plane;
15560
15561                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15562                               crtc->base.base.id);
15563
15564                 /* Pipe has the wrong plane attached and the plane is active.
15565                  * Temporarily change the plane mapping and disable everything
15566                  * ...  */
15567                 plane = crtc->plane;
15568                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15569                 crtc->plane = !plane;
15570                 intel_crtc_disable_noatomic(&crtc->base);
15571                 crtc->plane = plane;
15572         }
15573
15574         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15575             crtc->pipe == PIPE_A && !crtc->active) {
15576                 /* BIOS forgot to enable pipe A, this mostly happens after
15577                  * resume. Force-enable the pipe to fix this, the update_dpms
15578                  * call below we restore the pipe to the right state, but leave
15579                  * the required bits on. */
15580                 intel_enable_pipe_a(dev);
15581         }
15582
15583         /* Adjust the state of the output pipe according to whether we
15584          * have active connectors/encoders. */
15585         if (crtc->active && !intel_crtc_has_encoders(crtc))
15586                 intel_crtc_disable_noatomic(&crtc->base);
15587
15588         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15589                 /*
15590                  * We start out with underrun reporting disabled to avoid races.
15591                  * For correct bookkeeping mark this on active crtcs.
15592                  *
15593                  * Also on gmch platforms we dont have any hardware bits to
15594                  * disable the underrun reporting. Which means we need to start
15595                  * out with underrun reporting disabled also on inactive pipes,
15596                  * since otherwise we'll complain about the garbage we read when
15597                  * e.g. coming up after runtime pm.
15598                  *
15599                  * No protection against concurrent access is required - at
15600                  * worst a fifo underrun happens which also sets this to false.
15601                  */
15602                 crtc->cpu_fifo_underrun_disabled = true;
15603                 crtc->pch_fifo_underrun_disabled = true;
15604         }
15605 }
15606
15607 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15608 {
15609         struct intel_connector *connector;
15610         struct drm_device *dev = encoder->base.dev;
15611
15612         /* We need to check both for a crtc link (meaning that the
15613          * encoder is active and trying to read from a pipe) and the
15614          * pipe itself being active. */
15615         bool has_active_crtc = encoder->base.crtc &&
15616                 to_intel_crtc(encoder->base.crtc)->active;
15617
15618         if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15619                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15620                               encoder->base.base.id,
15621                               encoder->base.name);
15622
15623                 /* Connector is active, but has no active pipe. This is
15624                  * fallout from our resume register restoring. Disable
15625                  * the encoder manually again. */
15626                 if (encoder->base.crtc) {
15627                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15628                                       encoder->base.base.id,
15629                                       encoder->base.name);
15630                         encoder->disable(encoder);
15631                         if (encoder->post_disable)
15632                                 encoder->post_disable(encoder);
15633                 }
15634                 encoder->base.crtc = NULL;
15635
15636                 /* Inconsistent output/port/pipe state happens presumably due to
15637                  * a bug in one of the get_hw_state functions. Or someplace else
15638                  * in our code, like the register restore mess on resume. Clamp
15639                  * things to off as a safer default. */
15640                 for_each_intel_connector(dev, connector) {
15641                         if (connector->encoder != encoder)
15642                                 continue;
15643                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15644                         connector->base.encoder = NULL;
15645                 }
15646         }
15647         /* Enabled encoders without active connectors will be fixed in
15648          * the crtc fixup. */
15649 }
15650
15651 void i915_redisable_vga_power_on(struct drm_device *dev)
15652 {
15653         struct drm_i915_private *dev_priv = dev->dev_private;
15654         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15655
15656         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15657                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15658                 i915_disable_vga(dev);
15659         }
15660 }
15661
15662 void i915_redisable_vga(struct drm_device *dev)
15663 {
15664         struct drm_i915_private *dev_priv = dev->dev_private;
15665
15666         /* This function can be called both from intel_modeset_setup_hw_state or
15667          * at a very early point in our resume sequence, where the power well
15668          * structures are not yet restored. Since this function is at a very
15669          * paranoid "someone might have enabled VGA while we were not looking"
15670          * level, just check if the power well is enabled instead of trying to
15671          * follow the "don't touch the power well if we don't need it" policy
15672          * the rest of the driver uses. */
15673         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15674                 return;
15675
15676         i915_redisable_vga_power_on(dev);
15677
15678         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15679 }
15680
15681 static bool primary_get_hw_state(struct intel_plane *plane)
15682 {
15683         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15684
15685         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15686 }
15687
15688 /* FIXME read out full plane state for all planes */
15689 static void readout_plane_state(struct intel_crtc *crtc)
15690 {
15691         struct drm_plane *primary = crtc->base.primary;
15692         struct intel_plane_state *plane_state =
15693                 to_intel_plane_state(primary->state);
15694
15695         plane_state->visible = crtc->active &&
15696                 primary_get_hw_state(to_intel_plane(primary));
15697
15698         if (plane_state->visible)
15699                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15700 }
15701
15702 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15703 {
15704         struct drm_i915_private *dev_priv = dev->dev_private;
15705         enum pipe pipe;
15706         struct intel_crtc *crtc;
15707         struct intel_encoder *encoder;
15708         struct intel_connector *connector;
15709         int i;
15710
15711         dev_priv->active_crtcs = 0;
15712
15713         for_each_intel_crtc(dev, crtc) {
15714                 struct intel_crtc_state *crtc_state = crtc->config;
15715                 int pixclk = 0;
15716
15717                 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
15718                 memset(crtc_state, 0, sizeof(*crtc_state));
15719                 crtc_state->base.crtc = &crtc->base;
15720
15721                 crtc_state->base.active = crtc_state->base.enable =
15722                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15723
15724                 crtc->base.enabled = crtc_state->base.enable;
15725                 crtc->active = crtc_state->base.active;
15726
15727                 if (crtc_state->base.active) {
15728                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15729
15730                         if (IS_BROADWELL(dev_priv)) {
15731                                 pixclk = ilk_pipe_pixel_rate(crtc_state);
15732
15733                                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15734                                 if (crtc_state->ips_enabled)
15735                                         pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15736                         } else if (IS_VALLEYVIEW(dev_priv) ||
15737                                    IS_CHERRYVIEW(dev_priv) ||
15738                                    IS_BROXTON(dev_priv))
15739                                 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15740                         else
15741                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15742                 }
15743
15744                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15745
15746                 readout_plane_state(crtc);
15747
15748                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15749                               crtc->base.base.id,
15750                               crtc->active ? "enabled" : "disabled");
15751         }
15752
15753         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15754                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15755
15756                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15757                                                   &pll->config.hw_state);
15758                 pll->config.crtc_mask = 0;
15759                 for_each_intel_crtc(dev, crtc) {
15760                         if (crtc->active && crtc->config->shared_dpll == pll)
15761                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15762                 }
15763                 pll->active_mask = pll->config.crtc_mask;
15764
15765                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15766                               pll->name, pll->config.crtc_mask, pll->on);
15767         }
15768
15769         for_each_intel_encoder(dev, encoder) {
15770                 pipe = 0;
15771
15772                 if (encoder->get_hw_state(encoder, &pipe)) {
15773                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15774                         encoder->base.crtc = &crtc->base;
15775                         encoder->get_config(encoder, crtc->config);
15776                 } else {
15777                         encoder->base.crtc = NULL;
15778                 }
15779
15780                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15781                               encoder->base.base.id,
15782                               encoder->base.name,
15783                               encoder->base.crtc ? "enabled" : "disabled",
15784                               pipe_name(pipe));
15785         }
15786
15787         for_each_intel_connector(dev, connector) {
15788                 if (connector->get_hw_state(connector)) {
15789                         connector->base.dpms = DRM_MODE_DPMS_ON;
15790
15791                         encoder = connector->encoder;
15792                         connector->base.encoder = &encoder->base;
15793
15794                         if (encoder->base.crtc &&
15795                             encoder->base.crtc->state->active) {
15796                                 /*
15797                                  * This has to be done during hardware readout
15798                                  * because anything calling .crtc_disable may
15799                                  * rely on the connector_mask being accurate.
15800                                  */
15801                                 encoder->base.crtc->state->connector_mask |=
15802                                         1 << drm_connector_index(&connector->base);
15803                                 encoder->base.crtc->state->encoder_mask |=
15804                                         1 << drm_encoder_index(&encoder->base);
15805                         }
15806
15807                 } else {
15808                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15809                         connector->base.encoder = NULL;
15810                 }
15811                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15812                               connector->base.base.id,
15813                               connector->base.name,
15814                               connector->base.encoder ? "enabled" : "disabled");
15815         }
15816
15817         for_each_intel_crtc(dev, crtc) {
15818                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15819
15820                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15821                 if (crtc->base.state->active) {
15822                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15823                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15824                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15825
15826                         /*
15827                          * The initial mode needs to be set in order to keep
15828                          * the atomic core happy. It wants a valid mode if the
15829                          * crtc's enabled, so we do the above call.
15830                          *
15831                          * At this point some state updated by the connectors
15832                          * in their ->detect() callback has not run yet, so
15833                          * no recalculation can be done yet.
15834                          *
15835                          * Even if we could do a recalculation and modeset
15836                          * right now it would cause a double modeset if
15837                          * fbdev or userspace chooses a different initial mode.
15838                          *
15839                          * If that happens, someone indicated they wanted a
15840                          * mode change, which means it's safe to do a full
15841                          * recalculation.
15842                          */
15843                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15844
15845                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15846                         update_scanline_offset(crtc);
15847                 }
15848
15849                 intel_pipe_config_sanity_check(dev_priv, crtc->config);
15850         }
15851 }
15852
15853 /* Scan out the current hw modeset state,
15854  * and sanitizes it to the current state
15855  */
15856 static void
15857 intel_modeset_setup_hw_state(struct drm_device *dev)
15858 {
15859         struct drm_i915_private *dev_priv = dev->dev_private;
15860         enum pipe pipe;
15861         struct intel_crtc *crtc;
15862         struct intel_encoder *encoder;
15863         int i;
15864
15865         intel_modeset_readout_hw_state(dev);
15866
15867         /* HW state is read out, now we need to sanitize this mess. */
15868         for_each_intel_encoder(dev, encoder) {
15869                 intel_sanitize_encoder(encoder);
15870         }
15871
15872         for_each_pipe(dev_priv, pipe) {
15873                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15874                 intel_sanitize_crtc(crtc);
15875                 intel_dump_pipe_config(crtc, crtc->config,
15876                                        "[setup_hw_state]");
15877         }
15878
15879         intel_modeset_update_connector_atomic_state(dev);
15880
15881         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15882                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15883
15884                 if (!pll->on || pll->active_mask)
15885                         continue;
15886
15887                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15888
15889                 pll->funcs.disable(dev_priv, pll);
15890                 pll->on = false;
15891         }
15892
15893         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15894                 vlv_wm_get_hw_state(dev);
15895         else if (IS_GEN9(dev))
15896                 skl_wm_get_hw_state(dev);
15897         else if (HAS_PCH_SPLIT(dev))
15898                 ilk_wm_get_hw_state(dev);
15899
15900         for_each_intel_crtc(dev, crtc) {
15901                 unsigned long put_domains;
15902
15903                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15904                 if (WARN_ON(put_domains))
15905                         modeset_put_power_domains(dev_priv, put_domains);
15906         }
15907         intel_display_set_init_power(dev_priv, false);
15908
15909         intel_fbc_init_pipe_state(dev_priv);
15910 }
15911
15912 void intel_display_resume(struct drm_device *dev)
15913 {
15914         struct drm_i915_private *dev_priv = to_i915(dev);
15915         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15916         struct drm_modeset_acquire_ctx ctx;
15917         int ret;
15918         bool setup = false;
15919
15920         dev_priv->modeset_restore_state = NULL;
15921
15922         /*
15923          * This is a cludge because with real atomic modeset mode_config.mutex
15924          * won't be taken. Unfortunately some probed state like
15925          * audio_codec_enable is still protected by mode_config.mutex, so lock
15926          * it here for now.
15927          */
15928         mutex_lock(&dev->mode_config.mutex);
15929         drm_modeset_acquire_init(&ctx, 0);
15930
15931 retry:
15932         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15933
15934         if (ret == 0 && !setup) {
15935                 setup = true;
15936
15937                 intel_modeset_setup_hw_state(dev);
15938                 i915_redisable_vga(dev);
15939         }
15940
15941         if (ret == 0 && state) {
15942                 struct drm_crtc_state *crtc_state;
15943                 struct drm_crtc *crtc;
15944                 int i;
15945
15946                 state->acquire_ctx = &ctx;
15947
15948                 /* ignore any reset values/BIOS leftovers in the WM registers */
15949                 to_intel_atomic_state(state)->skip_intermediate_wm = true;
15950
15951                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
15952                         /*
15953                          * Force recalculation even if we restore
15954                          * current state. With fast modeset this may not result
15955                          * in a modeset when the state is compatible.
15956                          */
15957                         crtc_state->mode_changed = true;
15958                 }
15959
15960                 ret = drm_atomic_commit(state);
15961         }
15962
15963         if (ret == -EDEADLK) {
15964                 drm_modeset_backoff(&ctx);
15965                 goto retry;
15966         }
15967
15968         drm_modeset_drop_locks(&ctx);
15969         drm_modeset_acquire_fini(&ctx);
15970         mutex_unlock(&dev->mode_config.mutex);
15971
15972         if (ret) {
15973                 DRM_ERROR("Restoring old state failed with %i\n", ret);
15974                 drm_atomic_state_free(state);
15975         }
15976 }
15977
15978 void intel_modeset_gem_init(struct drm_device *dev)
15979 {
15980         struct drm_i915_private *dev_priv = to_i915(dev);
15981         struct drm_crtc *c;
15982         struct drm_i915_gem_object *obj;
15983         int ret;
15984
15985         intel_init_gt_powersave(dev_priv);
15986
15987         intel_modeset_init_hw(dev);
15988
15989         intel_setup_overlay(dev_priv);
15990
15991         /*
15992          * Make sure any fbs we allocated at startup are properly
15993          * pinned & fenced.  When we do the allocation it's too early
15994          * for this.
15995          */
15996         for_each_crtc(dev, c) {
15997                 obj = intel_fb_obj(c->primary->fb);
15998                 if (obj == NULL)
15999                         continue;
16000
16001                 mutex_lock(&dev->struct_mutex);
16002                 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16003                                                  c->primary->state->rotation);
16004                 mutex_unlock(&dev->struct_mutex);
16005                 if (ret) {
16006                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
16007                                   to_intel_crtc(c)->pipe);
16008                         drm_framebuffer_unreference(c->primary->fb);
16009                         c->primary->fb = NULL;
16010                         c->primary->crtc = c->primary->state->crtc = NULL;
16011                         update_state_fb(c->primary);
16012                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16013                 }
16014         }
16015
16016         intel_backlight_register(dev);
16017 }
16018
16019 void intel_connector_unregister(struct intel_connector *intel_connector)
16020 {
16021         struct drm_connector *connector = &intel_connector->base;
16022
16023         intel_panel_destroy_backlight(connector);
16024         drm_connector_unregister(connector);
16025 }
16026
16027 void intel_modeset_cleanup(struct drm_device *dev)
16028 {
16029         struct drm_i915_private *dev_priv = dev->dev_private;
16030         struct intel_connector *connector;
16031
16032         intel_disable_gt_powersave(dev_priv);
16033
16034         intel_backlight_unregister(dev);
16035
16036         /*
16037          * Interrupts and polling as the first thing to avoid creating havoc.
16038          * Too much stuff here (turning of connectors, ...) would
16039          * experience fancy races otherwise.
16040          */
16041         intel_irq_uninstall(dev_priv);
16042
16043         /*
16044          * Due to the hpd irq storm handling the hotplug work can re-arm the
16045          * poll handlers. Hence disable polling after hpd handling is shut down.
16046          */
16047         drm_kms_helper_poll_fini(dev);
16048
16049         intel_unregister_dsm_handler();
16050
16051         intel_fbc_global_disable(dev_priv);
16052
16053         /* flush any delayed tasks or pending work */
16054         flush_scheduled_work();
16055
16056         /* destroy the backlight and sysfs files before encoders/connectors */
16057         for_each_intel_connector(dev, connector)
16058                 connector->unregister(connector);
16059
16060         drm_mode_config_cleanup(dev);
16061
16062         intel_cleanup_overlay(dev_priv);
16063
16064         intel_cleanup_gt_powersave(dev_priv);
16065
16066         intel_teardown_gmbus(dev);
16067 }
16068
16069 /*
16070  * Return which encoder is currently attached for connector.
16071  */
16072 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
16073 {
16074         return &intel_attached_encoder(connector)->base;
16075 }
16076
16077 void intel_connector_attach_encoder(struct intel_connector *connector,
16078                                     struct intel_encoder *encoder)
16079 {
16080         connector->encoder = encoder;
16081         drm_mode_connector_attach_encoder(&connector->base,
16082                                           &encoder->base);
16083 }
16084
16085 /*
16086  * set vga decode state - true == enable VGA decode
16087  */
16088 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16089 {
16090         struct drm_i915_private *dev_priv = dev->dev_private;
16091         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16092         u16 gmch_ctrl;
16093
16094         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16095                 DRM_ERROR("failed to read control word\n");
16096                 return -EIO;
16097         }
16098
16099         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16100                 return 0;
16101
16102         if (state)
16103                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16104         else
16105                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16106
16107         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16108                 DRM_ERROR("failed to write control word\n");
16109                 return -EIO;
16110         }
16111
16112         return 0;
16113 }
16114
16115 struct intel_display_error_state {
16116
16117         u32 power_well_driver;
16118
16119         int num_transcoders;
16120
16121         struct intel_cursor_error_state {
16122                 u32 control;
16123                 u32 position;
16124                 u32 base;
16125                 u32 size;
16126         } cursor[I915_MAX_PIPES];
16127
16128         struct intel_pipe_error_state {
16129                 bool power_domain_on;
16130                 u32 source;
16131                 u32 stat;
16132         } pipe[I915_MAX_PIPES];
16133
16134         struct intel_plane_error_state {
16135                 u32 control;
16136                 u32 stride;
16137                 u32 size;
16138                 u32 pos;
16139                 u32 addr;
16140                 u32 surface;
16141                 u32 tile_offset;
16142         } plane[I915_MAX_PIPES];
16143
16144         struct intel_transcoder_error_state {
16145                 bool power_domain_on;
16146                 enum transcoder cpu_transcoder;
16147
16148                 u32 conf;
16149
16150                 u32 htotal;
16151                 u32 hblank;
16152                 u32 hsync;
16153                 u32 vtotal;
16154                 u32 vblank;
16155                 u32 vsync;
16156         } transcoder[4];
16157 };
16158
16159 struct intel_display_error_state *
16160 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
16161 {
16162         struct intel_display_error_state *error;
16163         int transcoders[] = {
16164                 TRANSCODER_A,
16165                 TRANSCODER_B,
16166                 TRANSCODER_C,
16167                 TRANSCODER_EDP,
16168         };
16169         int i;
16170
16171         if (INTEL_INFO(dev_priv)->num_pipes == 0)
16172                 return NULL;
16173
16174         error = kzalloc(sizeof(*error), GFP_ATOMIC);
16175         if (error == NULL)
16176                 return NULL;
16177
16178         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
16179                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16180
16181         for_each_pipe(dev_priv, i) {
16182                 error->pipe[i].power_domain_on =
16183                         __intel_display_power_is_enabled(dev_priv,
16184                                                          POWER_DOMAIN_PIPE(i));
16185                 if (!error->pipe[i].power_domain_on)
16186                         continue;
16187
16188                 error->cursor[i].control = I915_READ(CURCNTR(i));
16189                 error->cursor[i].position = I915_READ(CURPOS(i));
16190                 error->cursor[i].base = I915_READ(CURBASE(i));
16191
16192                 error->plane[i].control = I915_READ(DSPCNTR(i));
16193                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16194                 if (INTEL_GEN(dev_priv) <= 3) {
16195                         error->plane[i].size = I915_READ(DSPSIZE(i));
16196                         error->plane[i].pos = I915_READ(DSPPOS(i));
16197                 }
16198                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
16199                         error->plane[i].addr = I915_READ(DSPADDR(i));
16200                 if (INTEL_GEN(dev_priv) >= 4) {
16201                         error->plane[i].surface = I915_READ(DSPSURF(i));
16202                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16203                 }
16204
16205                 error->pipe[i].source = I915_READ(PIPESRC(i));
16206
16207                 if (HAS_GMCH_DISPLAY(dev_priv))
16208                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
16209         }
16210
16211         /* Note: this does not include DSI transcoders. */
16212         error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
16213         if (HAS_DDI(dev_priv))
16214                 error->num_transcoders++; /* Account for eDP. */
16215
16216         for (i = 0; i < error->num_transcoders; i++) {
16217                 enum transcoder cpu_transcoder = transcoders[i];
16218
16219                 error->transcoder[i].power_domain_on =
16220                         __intel_display_power_is_enabled(dev_priv,
16221                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16222                 if (!error->transcoder[i].power_domain_on)
16223                         continue;
16224
16225                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16226
16227                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16228                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16229                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16230                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16231                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16232                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16233                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16234         }
16235
16236         return error;
16237 }
16238
16239 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16240
16241 void
16242 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16243                                 struct drm_device *dev,
16244                                 struct intel_display_error_state *error)
16245 {
16246         struct drm_i915_private *dev_priv = dev->dev_private;
16247         int i;
16248
16249         if (!error)
16250                 return;
16251
16252         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16253         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16254                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16255                            error->power_well_driver);
16256         for_each_pipe(dev_priv, i) {
16257                 err_printf(m, "Pipe [%d]:\n", i);
16258                 err_printf(m, "  Power: %s\n",
16259                            onoff(error->pipe[i].power_domain_on));
16260                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16261                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16262
16263                 err_printf(m, "Plane [%d]:\n", i);
16264                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16265                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16266                 if (INTEL_INFO(dev)->gen <= 3) {
16267                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16268                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16269                 }
16270                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16271                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16272                 if (INTEL_INFO(dev)->gen >= 4) {
16273                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16274                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16275                 }
16276
16277                 err_printf(m, "Cursor [%d]:\n", i);
16278                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16279                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16280                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16281         }
16282
16283         for (i = 0; i < error->num_transcoders; i++) {
16284                 err_printf(m, "CPU transcoder: %s\n",
16285                            transcoder_name(error->transcoder[i].cpu_transcoder));
16286                 err_printf(m, "  Power: %s\n",
16287                            onoff(error->transcoder[i].power_domain_on));
16288                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16289                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16290                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16291                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16292                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16293                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16294                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16295         }
16296 }