Merge remote-tracking branches 'regulator/topic/ltc3589', 'regulator/topic/max77620...
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47 #include <linux/reservation.h>
48 #include <linux/dma-buf.h>
49
50 /* Primary plane formats for gen <= 3 */
51 static const uint32_t i8xx_primary_formats[] = {
52         DRM_FORMAT_C8,
53         DRM_FORMAT_RGB565,
54         DRM_FORMAT_XRGB1555,
55         DRM_FORMAT_XRGB8888,
56 };
57
58 /* Primary plane formats for gen >= 4 */
59 static const uint32_t i965_primary_formats[] = {
60         DRM_FORMAT_C8,
61         DRM_FORMAT_RGB565,
62         DRM_FORMAT_XRGB8888,
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_XRGB2101010,
65         DRM_FORMAT_XBGR2101010,
66 };
67
68 static const uint32_t skl_primary_formats[] = {
69         DRM_FORMAT_C8,
70         DRM_FORMAT_RGB565,
71         DRM_FORMAT_XRGB8888,
72         DRM_FORMAT_XBGR8888,
73         DRM_FORMAT_ARGB8888,
74         DRM_FORMAT_ABGR8888,
75         DRM_FORMAT_XRGB2101010,
76         DRM_FORMAT_XBGR2101010,
77         DRM_FORMAT_YUYV,
78         DRM_FORMAT_YVYU,
79         DRM_FORMAT_UYVY,
80         DRM_FORMAT_VYUY,
81 };
82
83 /* Cursor formats */
84 static const uint32_t intel_cursor_formats[] = {
85         DRM_FORMAT_ARGB8888,
86 };
87
88 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
89
90 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
91                                 struct intel_crtc_state *pipe_config);
92 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
93                                    struct intel_crtc_state *pipe_config);
94
95 static int intel_framebuffer_init(struct drm_device *dev,
96                                   struct intel_framebuffer *ifb,
97                                   struct drm_mode_fb_cmd2 *mode_cmd,
98                                   struct drm_i915_gem_object *obj);
99 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
100 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
101 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
102                                          struct intel_link_m_n *m_n,
103                                          struct intel_link_m_n *m2_n2);
104 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
105 static void haswell_set_pipeconf(struct drm_crtc *crtc);
106 static void intel_set_pipe_csc(struct drm_crtc *crtc);
107 static void vlv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void chv_prepare_pll(struct intel_crtc *crtc,
110                             const struct intel_crtc_state *pipe_config);
111 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
112 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
113 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
114         struct intel_crtc_state *crtc_state);
115 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
116                            int num_connectors);
117 static void skylake_pfit_enable(struct intel_crtc *crtc);
118 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
119 static void ironlake_pfit_enable(struct intel_crtc *crtc);
120 static void intel_modeset_setup_hw_state(struct drm_device *dev);
121 static void intel_pre_disable_primary(struct drm_crtc *crtc);
122
123 typedef struct {
124         int     min, max;
125 } intel_range_t;
126
127 typedef struct {
128         int     dot_limit;
129         int     p2_slow, p2_fast;
130 } intel_p2_t;
131
132 typedef struct intel_limit intel_limit_t;
133 struct intel_limit {
134         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
135         intel_p2_t          p2;
136 };
137
138 /* returns HPLL frequency in kHz */
139 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
140 {
141         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
142
143         /* Obtain SKU information */
144         mutex_lock(&dev_priv->sb_lock);
145         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
146                 CCK_FUSE_HPLL_FREQ_MASK;
147         mutex_unlock(&dev_priv->sb_lock);
148
149         return vco_freq[hpll_freq] * 1000;
150 }
151
152 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
153                                   const char *name, u32 reg)
154 {
155         u32 val;
156         int divider;
157
158         if (dev_priv->hpll_freq == 0)
159                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
160
161         mutex_lock(&dev_priv->sb_lock);
162         val = vlv_cck_read(dev_priv, reg);
163         mutex_unlock(&dev_priv->sb_lock);
164
165         divider = val & CCK_FREQUENCY_VALUES;
166
167         WARN((val & CCK_FREQUENCY_STATUS) !=
168              (divider << CCK_FREQUENCY_STATUS_SHIFT),
169              "%s change in progress\n", name);
170
171         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
172 }
173
174 int
175 intel_pch_rawclk(struct drm_device *dev)
176 {
177         struct drm_i915_private *dev_priv = dev->dev_private;
178
179         WARN_ON(!HAS_PCH_SPLIT(dev));
180
181         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
182 }
183
184 /* hrawclock is 1/4 the FSB frequency */
185 int intel_hrawclk(struct drm_device *dev)
186 {
187         struct drm_i915_private *dev_priv = dev->dev_private;
188         uint32_t clkcfg;
189
190         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
191         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
192                 return 200;
193
194         clkcfg = I915_READ(CLKCFG);
195         switch (clkcfg & CLKCFG_FSB_MASK) {
196         case CLKCFG_FSB_400:
197                 return 100;
198         case CLKCFG_FSB_533:
199                 return 133;
200         case CLKCFG_FSB_667:
201                 return 166;
202         case CLKCFG_FSB_800:
203                 return 200;
204         case CLKCFG_FSB_1067:
205                 return 266;
206         case CLKCFG_FSB_1333:
207                 return 333;
208         /* these two are just a guess; one of them might be right */
209         case CLKCFG_FSB_1600:
210         case CLKCFG_FSB_1600_ALT:
211                 return 400;
212         default:
213                 return 133;
214         }
215 }
216
217 static void intel_update_czclk(struct drm_i915_private *dev_priv)
218 {
219         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
220                 return;
221
222         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
223                                                       CCK_CZ_CLOCK_CONTROL);
224
225         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
226 }
227
228 static inline u32 /* units of 100MHz */
229 intel_fdi_link_freq(struct drm_device *dev)
230 {
231         if (IS_GEN5(dev)) {
232                 struct drm_i915_private *dev_priv = dev->dev_private;
233                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
234         } else
235                 return 27;
236 }
237
238 static const intel_limit_t intel_limits_i8xx_dac = {
239         .dot = { .min = 25000, .max = 350000 },
240         .vco = { .min = 908000, .max = 1512000 },
241         .n = { .min = 2, .max = 16 },
242         .m = { .min = 96, .max = 140 },
243         .m1 = { .min = 18, .max = 26 },
244         .m2 = { .min = 6, .max = 16 },
245         .p = { .min = 4, .max = 128 },
246         .p1 = { .min = 2, .max = 33 },
247         .p2 = { .dot_limit = 165000,
248                 .p2_slow = 4, .p2_fast = 2 },
249 };
250
251 static const intel_limit_t intel_limits_i8xx_dvo = {
252         .dot = { .min = 25000, .max = 350000 },
253         .vco = { .min = 908000, .max = 1512000 },
254         .n = { .min = 2, .max = 16 },
255         .m = { .min = 96, .max = 140 },
256         .m1 = { .min = 18, .max = 26 },
257         .m2 = { .min = 6, .max = 16 },
258         .p = { .min = 4, .max = 128 },
259         .p1 = { .min = 2, .max = 33 },
260         .p2 = { .dot_limit = 165000,
261                 .p2_slow = 4, .p2_fast = 4 },
262 };
263
264 static const intel_limit_t intel_limits_i8xx_lvds = {
265         .dot = { .min = 25000, .max = 350000 },
266         .vco = { .min = 908000, .max = 1512000 },
267         .n = { .min = 2, .max = 16 },
268         .m = { .min = 96, .max = 140 },
269         .m1 = { .min = 18, .max = 26 },
270         .m2 = { .min = 6, .max = 16 },
271         .p = { .min = 4, .max = 128 },
272         .p1 = { .min = 1, .max = 6 },
273         .p2 = { .dot_limit = 165000,
274                 .p2_slow = 14, .p2_fast = 7 },
275 };
276
277 static const intel_limit_t intel_limits_i9xx_sdvo = {
278         .dot = { .min = 20000, .max = 400000 },
279         .vco = { .min = 1400000, .max = 2800000 },
280         .n = { .min = 1, .max = 6 },
281         .m = { .min = 70, .max = 120 },
282         .m1 = { .min = 8, .max = 18 },
283         .m2 = { .min = 3, .max = 7 },
284         .p = { .min = 5, .max = 80 },
285         .p1 = { .min = 1, .max = 8 },
286         .p2 = { .dot_limit = 200000,
287                 .p2_slow = 10, .p2_fast = 5 },
288 };
289
290 static const intel_limit_t intel_limits_i9xx_lvds = {
291         .dot = { .min = 20000, .max = 400000 },
292         .vco = { .min = 1400000, .max = 2800000 },
293         .n = { .min = 1, .max = 6 },
294         .m = { .min = 70, .max = 120 },
295         .m1 = { .min = 8, .max = 18 },
296         .m2 = { .min = 3, .max = 7 },
297         .p = { .min = 7, .max = 98 },
298         .p1 = { .min = 1, .max = 8 },
299         .p2 = { .dot_limit = 112000,
300                 .p2_slow = 14, .p2_fast = 7 },
301 };
302
303
304 static const intel_limit_t intel_limits_g4x_sdvo = {
305         .dot = { .min = 25000, .max = 270000 },
306         .vco = { .min = 1750000, .max = 3500000},
307         .n = { .min = 1, .max = 4 },
308         .m = { .min = 104, .max = 138 },
309         .m1 = { .min = 17, .max = 23 },
310         .m2 = { .min = 5, .max = 11 },
311         .p = { .min = 10, .max = 30 },
312         .p1 = { .min = 1, .max = 3},
313         .p2 = { .dot_limit = 270000,
314                 .p2_slow = 10,
315                 .p2_fast = 10
316         },
317 };
318
319 static const intel_limit_t intel_limits_g4x_hdmi = {
320         .dot = { .min = 22000, .max = 400000 },
321         .vco = { .min = 1750000, .max = 3500000},
322         .n = { .min = 1, .max = 4 },
323         .m = { .min = 104, .max = 138 },
324         .m1 = { .min = 16, .max = 23 },
325         .m2 = { .min = 5, .max = 11 },
326         .p = { .min = 5, .max = 80 },
327         .p1 = { .min = 1, .max = 8},
328         .p2 = { .dot_limit = 165000,
329                 .p2_slow = 10, .p2_fast = 5 },
330 };
331
332 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
333         .dot = { .min = 20000, .max = 115000 },
334         .vco = { .min = 1750000, .max = 3500000 },
335         .n = { .min = 1, .max = 3 },
336         .m = { .min = 104, .max = 138 },
337         .m1 = { .min = 17, .max = 23 },
338         .m2 = { .min = 5, .max = 11 },
339         .p = { .min = 28, .max = 112 },
340         .p1 = { .min = 2, .max = 8 },
341         .p2 = { .dot_limit = 0,
342                 .p2_slow = 14, .p2_fast = 14
343         },
344 };
345
346 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
347         .dot = { .min = 80000, .max = 224000 },
348         .vco = { .min = 1750000, .max = 3500000 },
349         .n = { .min = 1, .max = 3 },
350         .m = { .min = 104, .max = 138 },
351         .m1 = { .min = 17, .max = 23 },
352         .m2 = { .min = 5, .max = 11 },
353         .p = { .min = 14, .max = 42 },
354         .p1 = { .min = 2, .max = 6 },
355         .p2 = { .dot_limit = 0,
356                 .p2_slow = 7, .p2_fast = 7
357         },
358 };
359
360 static const intel_limit_t intel_limits_pineview_sdvo = {
361         .dot = { .min = 20000, .max = 400000},
362         .vco = { .min = 1700000, .max = 3500000 },
363         /* Pineview's Ncounter is a ring counter */
364         .n = { .min = 3, .max = 6 },
365         .m = { .min = 2, .max = 256 },
366         /* Pineview only has one combined m divider, which we treat as m2. */
367         .m1 = { .min = 0, .max = 0 },
368         .m2 = { .min = 0, .max = 254 },
369         .p = { .min = 5, .max = 80 },
370         .p1 = { .min = 1, .max = 8 },
371         .p2 = { .dot_limit = 200000,
372                 .p2_slow = 10, .p2_fast = 5 },
373 };
374
375 static const intel_limit_t intel_limits_pineview_lvds = {
376         .dot = { .min = 20000, .max = 400000 },
377         .vco = { .min = 1700000, .max = 3500000 },
378         .n = { .min = 3, .max = 6 },
379         .m = { .min = 2, .max = 256 },
380         .m1 = { .min = 0, .max = 0 },
381         .m2 = { .min = 0, .max = 254 },
382         .p = { .min = 7, .max = 112 },
383         .p1 = { .min = 1, .max = 8 },
384         .p2 = { .dot_limit = 112000,
385                 .p2_slow = 14, .p2_fast = 14 },
386 };
387
388 /* Ironlake / Sandybridge
389  *
390  * We calculate clock using (register_value + 2) for N/M1/M2, so here
391  * the range value for them is (actual_value - 2).
392  */
393 static const intel_limit_t intel_limits_ironlake_dac = {
394         .dot = { .min = 25000, .max = 350000 },
395         .vco = { .min = 1760000, .max = 3510000 },
396         .n = { .min = 1, .max = 5 },
397         .m = { .min = 79, .max = 127 },
398         .m1 = { .min = 12, .max = 22 },
399         .m2 = { .min = 5, .max = 9 },
400         .p = { .min = 5, .max = 80 },
401         .p1 = { .min = 1, .max = 8 },
402         .p2 = { .dot_limit = 225000,
403                 .p2_slow = 10, .p2_fast = 5 },
404 };
405
406 static const intel_limit_t intel_limits_ironlake_single_lvds = {
407         .dot = { .min = 25000, .max = 350000 },
408         .vco = { .min = 1760000, .max = 3510000 },
409         .n = { .min = 1, .max = 3 },
410         .m = { .min = 79, .max = 118 },
411         .m1 = { .min = 12, .max = 22 },
412         .m2 = { .min = 5, .max = 9 },
413         .p = { .min = 28, .max = 112 },
414         .p1 = { .min = 2, .max = 8 },
415         .p2 = { .dot_limit = 225000,
416                 .p2_slow = 14, .p2_fast = 14 },
417 };
418
419 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
420         .dot = { .min = 25000, .max = 350000 },
421         .vco = { .min = 1760000, .max = 3510000 },
422         .n = { .min = 1, .max = 3 },
423         .m = { .min = 79, .max = 127 },
424         .m1 = { .min = 12, .max = 22 },
425         .m2 = { .min = 5, .max = 9 },
426         .p = { .min = 14, .max = 56 },
427         .p1 = { .min = 2, .max = 8 },
428         .p2 = { .dot_limit = 225000,
429                 .p2_slow = 7, .p2_fast = 7 },
430 };
431
432 /* LVDS 100mhz refclk limits. */
433 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
434         .dot = { .min = 25000, .max = 350000 },
435         .vco = { .min = 1760000, .max = 3510000 },
436         .n = { .min = 1, .max = 2 },
437         .m = { .min = 79, .max = 126 },
438         .m1 = { .min = 12, .max = 22 },
439         .m2 = { .min = 5, .max = 9 },
440         .p = { .min = 28, .max = 112 },
441         .p1 = { .min = 2, .max = 8 },
442         .p2 = { .dot_limit = 225000,
443                 .p2_slow = 14, .p2_fast = 14 },
444 };
445
446 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
447         .dot = { .min = 25000, .max = 350000 },
448         .vco = { .min = 1760000, .max = 3510000 },
449         .n = { .min = 1, .max = 3 },
450         .m = { .min = 79, .max = 126 },
451         .m1 = { .min = 12, .max = 22 },
452         .m2 = { .min = 5, .max = 9 },
453         .p = { .min = 14, .max = 42 },
454         .p1 = { .min = 2, .max = 6 },
455         .p2 = { .dot_limit = 225000,
456                 .p2_slow = 7, .p2_fast = 7 },
457 };
458
459 static const intel_limit_t intel_limits_vlv = {
460          /*
461           * These are the data rate limits (measured in fast clocks)
462           * since those are the strictest limits we have. The fast
463           * clock and actual rate limits are more relaxed, so checking
464           * them would make no difference.
465           */
466         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
467         .vco = { .min = 4000000, .max = 6000000 },
468         .n = { .min = 1, .max = 7 },
469         .m1 = { .min = 2, .max = 3 },
470         .m2 = { .min = 11, .max = 156 },
471         .p1 = { .min = 2, .max = 3 },
472         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
473 };
474
475 static const intel_limit_t intel_limits_chv = {
476         /*
477          * These are the data rate limits (measured in fast clocks)
478          * since those are the strictest limits we have.  The fast
479          * clock and actual rate limits are more relaxed, so checking
480          * them would make no difference.
481          */
482         .dot = { .min = 25000 * 5, .max = 540000 * 5},
483         .vco = { .min = 4800000, .max = 6480000 },
484         .n = { .min = 1, .max = 1 },
485         .m1 = { .min = 2, .max = 2 },
486         .m2 = { .min = 24 << 22, .max = 175 << 22 },
487         .p1 = { .min = 2, .max = 4 },
488         .p2 = { .p2_slow = 1, .p2_fast = 14 },
489 };
490
491 static const intel_limit_t intel_limits_bxt = {
492         /* FIXME: find real dot limits */
493         .dot = { .min = 0, .max = INT_MAX },
494         .vco = { .min = 4800000, .max = 6700000 },
495         .n = { .min = 1, .max = 1 },
496         .m1 = { .min = 2, .max = 2 },
497         /* FIXME: find real m2 limits */
498         .m2 = { .min = 2 << 22, .max = 255 << 22 },
499         .p1 = { .min = 2, .max = 4 },
500         .p2 = { .p2_slow = 1, .p2_fast = 20 },
501 };
502
503 static bool
504 needs_modeset(struct drm_crtc_state *state)
505 {
506         return drm_atomic_crtc_needs_modeset(state);
507 }
508
509 /**
510  * Returns whether any output on the specified pipe is of the specified type
511  */
512 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
513 {
514         struct drm_device *dev = crtc->base.dev;
515         struct intel_encoder *encoder;
516
517         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
518                 if (encoder->type == type)
519                         return true;
520
521         return false;
522 }
523
524 /**
525  * Returns whether any output on the specified pipe will have the specified
526  * type after a staged modeset is complete, i.e., the same as
527  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
528  * encoder->crtc.
529  */
530 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
531                                       int type)
532 {
533         struct drm_atomic_state *state = crtc_state->base.state;
534         struct drm_connector *connector;
535         struct drm_connector_state *connector_state;
536         struct intel_encoder *encoder;
537         int i, num_connectors = 0;
538
539         for_each_connector_in_state(state, connector, connector_state, i) {
540                 if (connector_state->crtc != crtc_state->base.crtc)
541                         continue;
542
543                 num_connectors++;
544
545                 encoder = to_intel_encoder(connector_state->best_encoder);
546                 if (encoder->type == type)
547                         return true;
548         }
549
550         WARN_ON(num_connectors == 0);
551
552         return false;
553 }
554
555 static const intel_limit_t *
556 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
557 {
558         struct drm_device *dev = crtc_state->base.crtc->dev;
559         const intel_limit_t *limit;
560
561         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
562                 if (intel_is_dual_link_lvds(dev)) {
563                         if (refclk == 100000)
564                                 limit = &intel_limits_ironlake_dual_lvds_100m;
565                         else
566                                 limit = &intel_limits_ironlake_dual_lvds;
567                 } else {
568                         if (refclk == 100000)
569                                 limit = &intel_limits_ironlake_single_lvds_100m;
570                         else
571                                 limit = &intel_limits_ironlake_single_lvds;
572                 }
573         } else
574                 limit = &intel_limits_ironlake_dac;
575
576         return limit;
577 }
578
579 static const intel_limit_t *
580 intel_g4x_limit(struct intel_crtc_state *crtc_state)
581 {
582         struct drm_device *dev = crtc_state->base.crtc->dev;
583         const intel_limit_t *limit;
584
585         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
586                 if (intel_is_dual_link_lvds(dev))
587                         limit = &intel_limits_g4x_dual_channel_lvds;
588                 else
589                         limit = &intel_limits_g4x_single_channel_lvds;
590         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
591                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
592                 limit = &intel_limits_g4x_hdmi;
593         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
594                 limit = &intel_limits_g4x_sdvo;
595         } else /* The option is for other outputs */
596                 limit = &intel_limits_i9xx_sdvo;
597
598         return limit;
599 }
600
601 static const intel_limit_t *
602 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
603 {
604         struct drm_device *dev = crtc_state->base.crtc->dev;
605         const intel_limit_t *limit;
606
607         if (IS_BROXTON(dev))
608                 limit = &intel_limits_bxt;
609         else if (HAS_PCH_SPLIT(dev))
610                 limit = intel_ironlake_limit(crtc_state, refclk);
611         else if (IS_G4X(dev)) {
612                 limit = intel_g4x_limit(crtc_state);
613         } else if (IS_PINEVIEW(dev)) {
614                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
615                         limit = &intel_limits_pineview_lvds;
616                 else
617                         limit = &intel_limits_pineview_sdvo;
618         } else if (IS_CHERRYVIEW(dev)) {
619                 limit = &intel_limits_chv;
620         } else if (IS_VALLEYVIEW(dev)) {
621                 limit = &intel_limits_vlv;
622         } else if (!IS_GEN2(dev)) {
623                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
624                         limit = &intel_limits_i9xx_lvds;
625                 else
626                         limit = &intel_limits_i9xx_sdvo;
627         } else {
628                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
629                         limit = &intel_limits_i8xx_lvds;
630                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
631                         limit = &intel_limits_i8xx_dvo;
632                 else
633                         limit = &intel_limits_i8xx_dac;
634         }
635         return limit;
636 }
637
638 /*
639  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
640  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
641  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
642  * The helpers' return value is the rate of the clock that is fed to the
643  * display engine's pipe which can be the above fast dot clock rate or a
644  * divided-down version of it.
645  */
646 /* m1 is reserved as 0 in Pineview, n is a ring counter */
647 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
648 {
649         clock->m = clock->m2 + 2;
650         clock->p = clock->p1 * clock->p2;
651         if (WARN_ON(clock->n == 0 || clock->p == 0))
652                 return 0;
653         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
654         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
655
656         return clock->dot;
657 }
658
659 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
660 {
661         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
662 }
663
664 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
665 {
666         clock->m = i9xx_dpll_compute_m(clock);
667         clock->p = clock->p1 * clock->p2;
668         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
669                 return 0;
670         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
671         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
672
673         return clock->dot;
674 }
675
676 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
677 {
678         clock->m = clock->m1 * clock->m2;
679         clock->p = clock->p1 * clock->p2;
680         if (WARN_ON(clock->n == 0 || clock->p == 0))
681                 return 0;
682         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
683         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
684
685         return clock->dot / 5;
686 }
687
688 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
689 {
690         clock->m = clock->m1 * clock->m2;
691         clock->p = clock->p1 * clock->p2;
692         if (WARN_ON(clock->n == 0 || clock->p == 0))
693                 return 0;
694         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
695                         clock->n << 22);
696         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
697
698         return clock->dot / 5;
699 }
700
701 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
702 /**
703  * Returns whether the given set of divisors are valid for a given refclk with
704  * the given connectors.
705  */
706
707 static bool intel_PLL_is_valid(struct drm_device *dev,
708                                const intel_limit_t *limit,
709                                const intel_clock_t *clock)
710 {
711         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
712                 INTELPllInvalid("n out of range\n");
713         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
714                 INTELPllInvalid("p1 out of range\n");
715         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
716                 INTELPllInvalid("m2 out of range\n");
717         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
718                 INTELPllInvalid("m1 out of range\n");
719
720         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
721             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
722                 if (clock->m1 <= clock->m2)
723                         INTELPllInvalid("m1 <= m2\n");
724
725         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
726                 if (clock->p < limit->p.min || limit->p.max < clock->p)
727                         INTELPllInvalid("p out of range\n");
728                 if (clock->m < limit->m.min || limit->m.max < clock->m)
729                         INTELPllInvalid("m out of range\n");
730         }
731
732         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
733                 INTELPllInvalid("vco out of range\n");
734         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
735          * connector, etc., rather than just a single range.
736          */
737         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
738                 INTELPllInvalid("dot out of range\n");
739
740         return true;
741 }
742
743 static int
744 i9xx_select_p2_div(const intel_limit_t *limit,
745                    const struct intel_crtc_state *crtc_state,
746                    int target)
747 {
748         struct drm_device *dev = crtc_state->base.crtc->dev;
749
750         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
751                 /*
752                  * For LVDS just rely on its current settings for dual-channel.
753                  * We haven't figured out how to reliably set up different
754                  * single/dual channel state, if we even can.
755                  */
756                 if (intel_is_dual_link_lvds(dev))
757                         return limit->p2.p2_fast;
758                 else
759                         return limit->p2.p2_slow;
760         } else {
761                 if (target < limit->p2.dot_limit)
762                         return limit->p2.p2_slow;
763                 else
764                         return limit->p2.p2_fast;
765         }
766 }
767
768 static bool
769 i9xx_find_best_dpll(const intel_limit_t *limit,
770                     struct intel_crtc_state *crtc_state,
771                     int target, int refclk, intel_clock_t *match_clock,
772                     intel_clock_t *best_clock)
773 {
774         struct drm_device *dev = crtc_state->base.crtc->dev;
775         intel_clock_t clock;
776         int err = target;
777
778         memset(best_clock, 0, sizeof(*best_clock));
779
780         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
781
782         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
783              clock.m1++) {
784                 for (clock.m2 = limit->m2.min;
785                      clock.m2 <= limit->m2.max; clock.m2++) {
786                         if (clock.m2 >= clock.m1)
787                                 break;
788                         for (clock.n = limit->n.min;
789                              clock.n <= limit->n.max; clock.n++) {
790                                 for (clock.p1 = limit->p1.min;
791                                         clock.p1 <= limit->p1.max; clock.p1++) {
792                                         int this_err;
793
794                                         i9xx_calc_dpll_params(refclk, &clock);
795                                         if (!intel_PLL_is_valid(dev, limit,
796                                                                 &clock))
797                                                 continue;
798                                         if (match_clock &&
799                                             clock.p != match_clock->p)
800                                                 continue;
801
802                                         this_err = abs(clock.dot - target);
803                                         if (this_err < err) {
804                                                 *best_clock = clock;
805                                                 err = this_err;
806                                         }
807                                 }
808                         }
809                 }
810         }
811
812         return (err != target);
813 }
814
815 static bool
816 pnv_find_best_dpll(const intel_limit_t *limit,
817                    struct intel_crtc_state *crtc_state,
818                    int target, int refclk, intel_clock_t *match_clock,
819                    intel_clock_t *best_clock)
820 {
821         struct drm_device *dev = crtc_state->base.crtc->dev;
822         intel_clock_t clock;
823         int err = target;
824
825         memset(best_clock, 0, sizeof(*best_clock));
826
827         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
828
829         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
830              clock.m1++) {
831                 for (clock.m2 = limit->m2.min;
832                      clock.m2 <= limit->m2.max; clock.m2++) {
833                         for (clock.n = limit->n.min;
834                              clock.n <= limit->n.max; clock.n++) {
835                                 for (clock.p1 = limit->p1.min;
836                                         clock.p1 <= limit->p1.max; clock.p1++) {
837                                         int this_err;
838
839                                         pnv_calc_dpll_params(refclk, &clock);
840                                         if (!intel_PLL_is_valid(dev, limit,
841                                                                 &clock))
842                                                 continue;
843                                         if (match_clock &&
844                                             clock.p != match_clock->p)
845                                                 continue;
846
847                                         this_err = abs(clock.dot - target);
848                                         if (this_err < err) {
849                                                 *best_clock = clock;
850                                                 err = this_err;
851                                         }
852                                 }
853                         }
854                 }
855         }
856
857         return (err != target);
858 }
859
860 static bool
861 g4x_find_best_dpll(const intel_limit_t *limit,
862                    struct intel_crtc_state *crtc_state,
863                    int target, int refclk, intel_clock_t *match_clock,
864                    intel_clock_t *best_clock)
865 {
866         struct drm_device *dev = crtc_state->base.crtc->dev;
867         intel_clock_t clock;
868         int max_n;
869         bool found = false;
870         /* approximately equals target * 0.00585 */
871         int err_most = (target >> 8) + (target >> 9);
872
873         memset(best_clock, 0, sizeof(*best_clock));
874
875         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
876
877         max_n = limit->n.max;
878         /* based on hardware requirement, prefer smaller n to precision */
879         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
880                 /* based on hardware requirement, prefere larger m1,m2 */
881                 for (clock.m1 = limit->m1.max;
882                      clock.m1 >= limit->m1.min; clock.m1--) {
883                         for (clock.m2 = limit->m2.max;
884                              clock.m2 >= limit->m2.min; clock.m2--) {
885                                 for (clock.p1 = limit->p1.max;
886                                      clock.p1 >= limit->p1.min; clock.p1--) {
887                                         int this_err;
888
889                                         i9xx_calc_dpll_params(refclk, &clock);
890                                         if (!intel_PLL_is_valid(dev, limit,
891                                                                 &clock))
892                                                 continue;
893
894                                         this_err = abs(clock.dot - target);
895                                         if (this_err < err_most) {
896                                                 *best_clock = clock;
897                                                 err_most = this_err;
898                                                 max_n = clock.n;
899                                                 found = true;
900                                         }
901                                 }
902                         }
903                 }
904         }
905         return found;
906 }
907
908 /*
909  * Check if the calculated PLL configuration is more optimal compared to the
910  * best configuration and error found so far. Return the calculated error.
911  */
912 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
913                                const intel_clock_t *calculated_clock,
914                                const intel_clock_t *best_clock,
915                                unsigned int best_error_ppm,
916                                unsigned int *error_ppm)
917 {
918         /*
919          * For CHV ignore the error and consider only the P value.
920          * Prefer a bigger P value based on HW requirements.
921          */
922         if (IS_CHERRYVIEW(dev)) {
923                 *error_ppm = 0;
924
925                 return calculated_clock->p > best_clock->p;
926         }
927
928         if (WARN_ON_ONCE(!target_freq))
929                 return false;
930
931         *error_ppm = div_u64(1000000ULL *
932                                 abs(target_freq - calculated_clock->dot),
933                              target_freq);
934         /*
935          * Prefer a better P value over a better (smaller) error if the error
936          * is small. Ensure this preference for future configurations too by
937          * setting the error to 0.
938          */
939         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
940                 *error_ppm = 0;
941
942                 return true;
943         }
944
945         return *error_ppm + 10 < best_error_ppm;
946 }
947
948 static bool
949 vlv_find_best_dpll(const intel_limit_t *limit,
950                    struct intel_crtc_state *crtc_state,
951                    int target, int refclk, intel_clock_t *match_clock,
952                    intel_clock_t *best_clock)
953 {
954         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
955         struct drm_device *dev = crtc->base.dev;
956         intel_clock_t clock;
957         unsigned int bestppm = 1000000;
958         /* min update 19.2 MHz */
959         int max_n = min(limit->n.max, refclk / 19200);
960         bool found = false;
961
962         target *= 5; /* fast clock */
963
964         memset(best_clock, 0, sizeof(*best_clock));
965
966         /* based on hardware requirement, prefer smaller n to precision */
967         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
968                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
969                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
970                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
971                                 clock.p = clock.p1 * clock.p2;
972                                 /* based on hardware requirement, prefer bigger m1,m2 values */
973                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
974                                         unsigned int ppm;
975
976                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
977                                                                      refclk * clock.m1);
978
979                                         vlv_calc_dpll_params(refclk, &clock);
980
981                                         if (!intel_PLL_is_valid(dev, limit,
982                                                                 &clock))
983                                                 continue;
984
985                                         if (!vlv_PLL_is_optimal(dev, target,
986                                                                 &clock,
987                                                                 best_clock,
988                                                                 bestppm, &ppm))
989                                                 continue;
990
991                                         *best_clock = clock;
992                                         bestppm = ppm;
993                                         found = true;
994                                 }
995                         }
996                 }
997         }
998
999         return found;
1000 }
1001
1002 static bool
1003 chv_find_best_dpll(const intel_limit_t *limit,
1004                    struct intel_crtc_state *crtc_state,
1005                    int target, int refclk, intel_clock_t *match_clock,
1006                    intel_clock_t *best_clock)
1007 {
1008         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1009         struct drm_device *dev = crtc->base.dev;
1010         unsigned int best_error_ppm;
1011         intel_clock_t clock;
1012         uint64_t m2;
1013         int found = false;
1014
1015         memset(best_clock, 0, sizeof(*best_clock));
1016         best_error_ppm = 1000000;
1017
1018         /*
1019          * Based on hardware doc, the n always set to 1, and m1 always
1020          * set to 2.  If requires to support 200Mhz refclk, we need to
1021          * revisit this because n may not 1 anymore.
1022          */
1023         clock.n = 1, clock.m1 = 2;
1024         target *= 5;    /* fast clock */
1025
1026         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1027                 for (clock.p2 = limit->p2.p2_fast;
1028                                 clock.p2 >= limit->p2.p2_slow;
1029                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1030                         unsigned int error_ppm;
1031
1032                         clock.p = clock.p1 * clock.p2;
1033
1034                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1035                                         clock.n) << 22, refclk * clock.m1);
1036
1037                         if (m2 > INT_MAX/clock.m1)
1038                                 continue;
1039
1040                         clock.m2 = m2;
1041
1042                         chv_calc_dpll_params(refclk, &clock);
1043
1044                         if (!intel_PLL_is_valid(dev, limit, &clock))
1045                                 continue;
1046
1047                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1048                                                 best_error_ppm, &error_ppm))
1049                                 continue;
1050
1051                         *best_clock = clock;
1052                         best_error_ppm = error_ppm;
1053                         found = true;
1054                 }
1055         }
1056
1057         return found;
1058 }
1059
1060 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1061                         intel_clock_t *best_clock)
1062 {
1063         int refclk = i9xx_get_refclk(crtc_state, 0);
1064
1065         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1066                                   target_clock, refclk, NULL, best_clock);
1067 }
1068
1069 bool intel_crtc_active(struct drm_crtc *crtc)
1070 {
1071         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1072
1073         /* Be paranoid as we can arrive here with only partial
1074          * state retrieved from the hardware during setup.
1075          *
1076          * We can ditch the adjusted_mode.crtc_clock check as soon
1077          * as Haswell has gained clock readout/fastboot support.
1078          *
1079          * We can ditch the crtc->primary->fb check as soon as we can
1080          * properly reconstruct framebuffers.
1081          *
1082          * FIXME: The intel_crtc->active here should be switched to
1083          * crtc->state->active once we have proper CRTC states wired up
1084          * for atomic.
1085          */
1086         return intel_crtc->active && crtc->primary->state->fb &&
1087                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1088 }
1089
1090 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1091                                              enum pipe pipe)
1092 {
1093         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1094         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1095
1096         return intel_crtc->config->cpu_transcoder;
1097 }
1098
1099 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1100 {
1101         struct drm_i915_private *dev_priv = dev->dev_private;
1102         i915_reg_t reg = PIPEDSL(pipe);
1103         u32 line1, line2;
1104         u32 line_mask;
1105
1106         if (IS_GEN2(dev))
1107                 line_mask = DSL_LINEMASK_GEN2;
1108         else
1109                 line_mask = DSL_LINEMASK_GEN3;
1110
1111         line1 = I915_READ(reg) & line_mask;
1112         msleep(5);
1113         line2 = I915_READ(reg) & line_mask;
1114
1115         return line1 == line2;
1116 }
1117
1118 /*
1119  * intel_wait_for_pipe_off - wait for pipe to turn off
1120  * @crtc: crtc whose pipe to wait for
1121  *
1122  * After disabling a pipe, we can't wait for vblank in the usual way,
1123  * spinning on the vblank interrupt status bit, since we won't actually
1124  * see an interrupt when the pipe is disabled.
1125  *
1126  * On Gen4 and above:
1127  *   wait for the pipe register state bit to turn off
1128  *
1129  * Otherwise:
1130  *   wait for the display line value to settle (it usually
1131  *   ends up stopping at the start of the next frame).
1132  *
1133  */
1134 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1135 {
1136         struct drm_device *dev = crtc->base.dev;
1137         struct drm_i915_private *dev_priv = dev->dev_private;
1138         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1139         enum pipe pipe = crtc->pipe;
1140
1141         if (INTEL_INFO(dev)->gen >= 4) {
1142                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1143
1144                 /* Wait for the Pipe State to go off */
1145                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1146                              100))
1147                         WARN(1, "pipe_off wait timed out\n");
1148         } else {
1149                 /* Wait for the display line to settle */
1150                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1151                         WARN(1, "pipe_off wait timed out\n");
1152         }
1153 }
1154
1155 static const char *state_string(bool enabled)
1156 {
1157         return enabled ? "on" : "off";
1158 }
1159
1160 /* Only for pre-ILK configs */
1161 void assert_pll(struct drm_i915_private *dev_priv,
1162                 enum pipe pipe, bool state)
1163 {
1164         u32 val;
1165         bool cur_state;
1166
1167         val = I915_READ(DPLL(pipe));
1168         cur_state = !!(val & DPLL_VCO_ENABLE);
1169         I915_STATE_WARN(cur_state != state,
1170              "PLL state assertion failure (expected %s, current %s)\n",
1171              state_string(state), state_string(cur_state));
1172 }
1173
1174 /* XXX: the dsi pll is shared between MIPI DSI ports */
1175 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1176 {
1177         u32 val;
1178         bool cur_state;
1179
1180         mutex_lock(&dev_priv->sb_lock);
1181         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1182         mutex_unlock(&dev_priv->sb_lock);
1183
1184         cur_state = val & DSI_PLL_VCO_EN;
1185         I915_STATE_WARN(cur_state != state,
1186              "DSI PLL state assertion failure (expected %s, current %s)\n",
1187              state_string(state), state_string(cur_state));
1188 }
1189 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1190 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1191
1192 struct intel_shared_dpll *
1193 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1194 {
1195         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1196
1197         if (crtc->config->shared_dpll < 0)
1198                 return NULL;
1199
1200         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1201 }
1202
1203 /* For ILK+ */
1204 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1205                         struct intel_shared_dpll *pll,
1206                         bool state)
1207 {
1208         bool cur_state;
1209         struct intel_dpll_hw_state hw_state;
1210
1211         if (WARN (!pll,
1212                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1213                 return;
1214
1215         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1216         I915_STATE_WARN(cur_state != state,
1217              "%s assertion failure (expected %s, current %s)\n",
1218              pll->name, state_string(state), state_string(cur_state));
1219 }
1220
1221 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1222                           enum pipe pipe, bool state)
1223 {
1224         bool cur_state;
1225         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1226                                                                       pipe);
1227
1228         if (HAS_DDI(dev_priv->dev)) {
1229                 /* DDI does not have a specific FDI_TX register */
1230                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1231                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1232         } else {
1233                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1234                 cur_state = !!(val & FDI_TX_ENABLE);
1235         }
1236         I915_STATE_WARN(cur_state != state,
1237              "FDI TX state assertion failure (expected %s, current %s)\n",
1238              state_string(state), state_string(cur_state));
1239 }
1240 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1241 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1242
1243 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1244                           enum pipe pipe, bool state)
1245 {
1246         u32 val;
1247         bool cur_state;
1248
1249         val = I915_READ(FDI_RX_CTL(pipe));
1250         cur_state = !!(val & FDI_RX_ENABLE);
1251         I915_STATE_WARN(cur_state != state,
1252              "FDI RX state assertion failure (expected %s, current %s)\n",
1253              state_string(state), state_string(cur_state));
1254 }
1255 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1256 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1257
1258 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1259                                       enum pipe pipe)
1260 {
1261         u32 val;
1262
1263         /* ILK FDI PLL is always enabled */
1264         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1265                 return;
1266
1267         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1268         if (HAS_DDI(dev_priv->dev))
1269                 return;
1270
1271         val = I915_READ(FDI_TX_CTL(pipe));
1272         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1273 }
1274
1275 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1276                        enum pipe pipe, bool state)
1277 {
1278         u32 val;
1279         bool cur_state;
1280
1281         val = I915_READ(FDI_RX_CTL(pipe));
1282         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1283         I915_STATE_WARN(cur_state != state,
1284              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1285              state_string(state), state_string(cur_state));
1286 }
1287
1288 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1289                            enum pipe pipe)
1290 {
1291         struct drm_device *dev = dev_priv->dev;
1292         i915_reg_t pp_reg;
1293         u32 val;
1294         enum pipe panel_pipe = PIPE_A;
1295         bool locked = true;
1296
1297         if (WARN_ON(HAS_DDI(dev)))
1298                 return;
1299
1300         if (HAS_PCH_SPLIT(dev)) {
1301                 u32 port_sel;
1302
1303                 pp_reg = PCH_PP_CONTROL;
1304                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1305
1306                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1307                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1308                         panel_pipe = PIPE_B;
1309                 /* XXX: else fix for eDP */
1310         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1311                 /* presumably write lock depends on pipe, not port select */
1312                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1313                 panel_pipe = pipe;
1314         } else {
1315                 pp_reg = PP_CONTROL;
1316                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1317                         panel_pipe = PIPE_B;
1318         }
1319
1320         val = I915_READ(pp_reg);
1321         if (!(val & PANEL_POWER_ON) ||
1322             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1323                 locked = false;
1324
1325         I915_STATE_WARN(panel_pipe == pipe && locked,
1326              "panel assertion failure, pipe %c regs locked\n",
1327              pipe_name(pipe));
1328 }
1329
1330 static void assert_cursor(struct drm_i915_private *dev_priv,
1331                           enum pipe pipe, bool state)
1332 {
1333         struct drm_device *dev = dev_priv->dev;
1334         bool cur_state;
1335
1336         if (IS_845G(dev) || IS_I865G(dev))
1337                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1338         else
1339                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1340
1341         I915_STATE_WARN(cur_state != state,
1342              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1343              pipe_name(pipe), state_string(state), state_string(cur_state));
1344 }
1345 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1346 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1347
1348 void assert_pipe(struct drm_i915_private *dev_priv,
1349                  enum pipe pipe, bool state)
1350 {
1351         bool cur_state;
1352         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1353                                                                       pipe);
1354         enum intel_display_power_domain power_domain;
1355
1356         /* if we need the pipe quirk it must be always on */
1357         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1358             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1359                 state = true;
1360
1361         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1362         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1363                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1364                 cur_state = !!(val & PIPECONF_ENABLE);
1365
1366                 intel_display_power_put(dev_priv, power_domain);
1367         } else {
1368                 cur_state = false;
1369         }
1370
1371         I915_STATE_WARN(cur_state != state,
1372              "pipe %c assertion failure (expected %s, current %s)\n",
1373              pipe_name(pipe), state_string(state), state_string(cur_state));
1374 }
1375
1376 static void assert_plane(struct drm_i915_private *dev_priv,
1377                          enum plane plane, bool state)
1378 {
1379         u32 val;
1380         bool cur_state;
1381
1382         val = I915_READ(DSPCNTR(plane));
1383         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1384         I915_STATE_WARN(cur_state != state,
1385              "plane %c assertion failure (expected %s, current %s)\n",
1386              plane_name(plane), state_string(state), state_string(cur_state));
1387 }
1388
1389 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1390 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1391
1392 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1393                                    enum pipe pipe)
1394 {
1395         struct drm_device *dev = dev_priv->dev;
1396         int i;
1397
1398         /* Primary planes are fixed to pipes on gen4+ */
1399         if (INTEL_INFO(dev)->gen >= 4) {
1400                 u32 val = I915_READ(DSPCNTR(pipe));
1401                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1402                      "plane %c assertion failure, should be disabled but not\n",
1403                      plane_name(pipe));
1404                 return;
1405         }
1406
1407         /* Need to check both planes against the pipe */
1408         for_each_pipe(dev_priv, i) {
1409                 u32 val = I915_READ(DSPCNTR(i));
1410                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1411                         DISPPLANE_SEL_PIPE_SHIFT;
1412                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1413                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1414                      plane_name(i), pipe_name(pipe));
1415         }
1416 }
1417
1418 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1419                                     enum pipe pipe)
1420 {
1421         struct drm_device *dev = dev_priv->dev;
1422         int sprite;
1423
1424         if (INTEL_INFO(dev)->gen >= 9) {
1425                 for_each_sprite(dev_priv, pipe, sprite) {
1426                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1427                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1428                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1429                              sprite, pipe_name(pipe));
1430                 }
1431         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1432                 for_each_sprite(dev_priv, pipe, sprite) {
1433                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1434                         I915_STATE_WARN(val & SP_ENABLE,
1435                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1436                              sprite_name(pipe, sprite), pipe_name(pipe));
1437                 }
1438         } else if (INTEL_INFO(dev)->gen >= 7) {
1439                 u32 val = I915_READ(SPRCTL(pipe));
1440                 I915_STATE_WARN(val & SPRITE_ENABLE,
1441                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1442                      plane_name(pipe), pipe_name(pipe));
1443         } else if (INTEL_INFO(dev)->gen >= 5) {
1444                 u32 val = I915_READ(DVSCNTR(pipe));
1445                 I915_STATE_WARN(val & DVS_ENABLE,
1446                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1447                      plane_name(pipe), pipe_name(pipe));
1448         }
1449 }
1450
1451 static void assert_vblank_disabled(struct drm_crtc *crtc)
1452 {
1453         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1454                 drm_crtc_vblank_put(crtc);
1455 }
1456
1457 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1458 {
1459         u32 val;
1460         bool enabled;
1461
1462         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1463
1464         val = I915_READ(PCH_DREF_CONTROL);
1465         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1466                             DREF_SUPERSPREAD_SOURCE_MASK));
1467         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1468 }
1469
1470 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1471                                            enum pipe pipe)
1472 {
1473         u32 val;
1474         bool enabled;
1475
1476         val = I915_READ(PCH_TRANSCONF(pipe));
1477         enabled = !!(val & TRANS_ENABLE);
1478         I915_STATE_WARN(enabled,
1479              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1480              pipe_name(pipe));
1481 }
1482
1483 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1484                             enum pipe pipe, u32 port_sel, u32 val)
1485 {
1486         if ((val & DP_PORT_EN) == 0)
1487                 return false;
1488
1489         if (HAS_PCH_CPT(dev_priv->dev)) {
1490                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1491                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1492                         return false;
1493         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1494                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1495                         return false;
1496         } else {
1497                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1498                         return false;
1499         }
1500         return true;
1501 }
1502
1503 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1504                               enum pipe pipe, u32 val)
1505 {
1506         if ((val & SDVO_ENABLE) == 0)
1507                 return false;
1508
1509         if (HAS_PCH_CPT(dev_priv->dev)) {
1510                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1511                         return false;
1512         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1513                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1514                         return false;
1515         } else {
1516                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1517                         return false;
1518         }
1519         return true;
1520 }
1521
1522 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1523                               enum pipe pipe, u32 val)
1524 {
1525         if ((val & LVDS_PORT_EN) == 0)
1526                 return false;
1527
1528         if (HAS_PCH_CPT(dev_priv->dev)) {
1529                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1530                         return false;
1531         } else {
1532                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1533                         return false;
1534         }
1535         return true;
1536 }
1537
1538 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1539                               enum pipe pipe, u32 val)
1540 {
1541         if ((val & ADPA_DAC_ENABLE) == 0)
1542                 return false;
1543         if (HAS_PCH_CPT(dev_priv->dev)) {
1544                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1545                         return false;
1546         } else {
1547                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1548                         return false;
1549         }
1550         return true;
1551 }
1552
1553 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1554                                    enum pipe pipe, i915_reg_t reg,
1555                                    u32 port_sel)
1556 {
1557         u32 val = I915_READ(reg);
1558         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1559              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1560              i915_mmio_reg_offset(reg), pipe_name(pipe));
1561
1562         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1563              && (val & DP_PIPEB_SELECT),
1564              "IBX PCH dp port still using transcoder B\n");
1565 }
1566
1567 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1568                                      enum pipe pipe, i915_reg_t reg)
1569 {
1570         u32 val = I915_READ(reg);
1571         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1572              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1573              i915_mmio_reg_offset(reg), pipe_name(pipe));
1574
1575         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1576              && (val & SDVO_PIPE_B_SELECT),
1577              "IBX PCH hdmi port still using transcoder B\n");
1578 }
1579
1580 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1581                                       enum pipe pipe)
1582 {
1583         u32 val;
1584
1585         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1586         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1587         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1588
1589         val = I915_READ(PCH_ADPA);
1590         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1591              "PCH VGA enabled on transcoder %c, should be disabled\n",
1592              pipe_name(pipe));
1593
1594         val = I915_READ(PCH_LVDS);
1595         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1596              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1597              pipe_name(pipe));
1598
1599         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1600         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1601         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1602 }
1603
1604 static void vlv_enable_pll(struct intel_crtc *crtc,
1605                            const struct intel_crtc_state *pipe_config)
1606 {
1607         struct drm_device *dev = crtc->base.dev;
1608         struct drm_i915_private *dev_priv = dev->dev_private;
1609         i915_reg_t reg = DPLL(crtc->pipe);
1610         u32 dpll = pipe_config->dpll_hw_state.dpll;
1611
1612         assert_pipe_disabled(dev_priv, crtc->pipe);
1613
1614         /* PLL is protected by panel, make sure we can write it */
1615         if (IS_MOBILE(dev_priv->dev))
1616                 assert_panel_unlocked(dev_priv, crtc->pipe);
1617
1618         I915_WRITE(reg, dpll);
1619         POSTING_READ(reg);
1620         udelay(150);
1621
1622         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1623                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1624
1625         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1626         POSTING_READ(DPLL_MD(crtc->pipe));
1627
1628         /* We do this three times for luck */
1629         I915_WRITE(reg, dpll);
1630         POSTING_READ(reg);
1631         udelay(150); /* wait for warmup */
1632         I915_WRITE(reg, dpll);
1633         POSTING_READ(reg);
1634         udelay(150); /* wait for warmup */
1635         I915_WRITE(reg, dpll);
1636         POSTING_READ(reg);
1637         udelay(150); /* wait for warmup */
1638 }
1639
1640 static void chv_enable_pll(struct intel_crtc *crtc,
1641                            const struct intel_crtc_state *pipe_config)
1642 {
1643         struct drm_device *dev = crtc->base.dev;
1644         struct drm_i915_private *dev_priv = dev->dev_private;
1645         int pipe = crtc->pipe;
1646         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1647         u32 tmp;
1648
1649         assert_pipe_disabled(dev_priv, crtc->pipe);
1650
1651         mutex_lock(&dev_priv->sb_lock);
1652
1653         /* Enable back the 10bit clock to display controller */
1654         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1655         tmp |= DPIO_DCLKP_EN;
1656         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1657
1658         mutex_unlock(&dev_priv->sb_lock);
1659
1660         /*
1661          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1662          */
1663         udelay(1);
1664
1665         /* Enable PLL */
1666         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1667
1668         /* Check PLL is locked */
1669         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1670                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1671
1672         /* not sure when this should be written */
1673         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1674         POSTING_READ(DPLL_MD(pipe));
1675 }
1676
1677 static int intel_num_dvo_pipes(struct drm_device *dev)
1678 {
1679         struct intel_crtc *crtc;
1680         int count = 0;
1681
1682         for_each_intel_crtc(dev, crtc)
1683                 count += crtc->base.state->active &&
1684                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1685
1686         return count;
1687 }
1688
1689 static void i9xx_enable_pll(struct intel_crtc *crtc)
1690 {
1691         struct drm_device *dev = crtc->base.dev;
1692         struct drm_i915_private *dev_priv = dev->dev_private;
1693         i915_reg_t reg = DPLL(crtc->pipe);
1694         u32 dpll = crtc->config->dpll_hw_state.dpll;
1695
1696         assert_pipe_disabled(dev_priv, crtc->pipe);
1697
1698         /* No really, not for ILK+ */
1699         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1700
1701         /* PLL is protected by panel, make sure we can write it */
1702         if (IS_MOBILE(dev) && !IS_I830(dev))
1703                 assert_panel_unlocked(dev_priv, crtc->pipe);
1704
1705         /* Enable DVO 2x clock on both PLLs if necessary */
1706         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1707                 /*
1708                  * It appears to be important that we don't enable this
1709                  * for the current pipe before otherwise configuring the
1710                  * PLL. No idea how this should be handled if multiple
1711                  * DVO outputs are enabled simultaneosly.
1712                  */
1713                 dpll |= DPLL_DVO_2X_MODE;
1714                 I915_WRITE(DPLL(!crtc->pipe),
1715                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1716         }
1717
1718         /*
1719          * Apparently we need to have VGA mode enabled prior to changing
1720          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1721          * dividers, even though the register value does change.
1722          */
1723         I915_WRITE(reg, 0);
1724
1725         I915_WRITE(reg, dpll);
1726
1727         /* Wait for the clocks to stabilize. */
1728         POSTING_READ(reg);
1729         udelay(150);
1730
1731         if (INTEL_INFO(dev)->gen >= 4) {
1732                 I915_WRITE(DPLL_MD(crtc->pipe),
1733                            crtc->config->dpll_hw_state.dpll_md);
1734         } else {
1735                 /* The pixel multiplier can only be updated once the
1736                  * DPLL is enabled and the clocks are stable.
1737                  *
1738                  * So write it again.
1739                  */
1740                 I915_WRITE(reg, dpll);
1741         }
1742
1743         /* We do this three times for luck */
1744         I915_WRITE(reg, dpll);
1745         POSTING_READ(reg);
1746         udelay(150); /* wait for warmup */
1747         I915_WRITE(reg, dpll);
1748         POSTING_READ(reg);
1749         udelay(150); /* wait for warmup */
1750         I915_WRITE(reg, dpll);
1751         POSTING_READ(reg);
1752         udelay(150); /* wait for warmup */
1753 }
1754
1755 /**
1756  * i9xx_disable_pll - disable a PLL
1757  * @dev_priv: i915 private structure
1758  * @pipe: pipe PLL to disable
1759  *
1760  * Disable the PLL for @pipe, making sure the pipe is off first.
1761  *
1762  * Note!  This is for pre-ILK only.
1763  */
1764 static void i9xx_disable_pll(struct intel_crtc *crtc)
1765 {
1766         struct drm_device *dev = crtc->base.dev;
1767         struct drm_i915_private *dev_priv = dev->dev_private;
1768         enum pipe pipe = crtc->pipe;
1769
1770         /* Disable DVO 2x clock on both PLLs if necessary */
1771         if (IS_I830(dev) &&
1772             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1773             !intel_num_dvo_pipes(dev)) {
1774                 I915_WRITE(DPLL(PIPE_B),
1775                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1776                 I915_WRITE(DPLL(PIPE_A),
1777                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1778         }
1779
1780         /* Don't disable pipe or pipe PLLs if needed */
1781         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1782             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1783                 return;
1784
1785         /* Make sure the pipe isn't still relying on us */
1786         assert_pipe_disabled(dev_priv, pipe);
1787
1788         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1789         POSTING_READ(DPLL(pipe));
1790 }
1791
1792 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1793 {
1794         u32 val;
1795
1796         /* Make sure the pipe isn't still relying on us */
1797         assert_pipe_disabled(dev_priv, pipe);
1798
1799         /*
1800          * Leave integrated clock source and reference clock enabled for pipe B.
1801          * The latter is needed for VGA hotplug / manual detection.
1802          */
1803         val = DPLL_VGA_MODE_DIS;
1804         if (pipe == PIPE_B)
1805                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1806         I915_WRITE(DPLL(pipe), val);
1807         POSTING_READ(DPLL(pipe));
1808
1809 }
1810
1811 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1812 {
1813         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1814         u32 val;
1815
1816         /* Make sure the pipe isn't still relying on us */
1817         assert_pipe_disabled(dev_priv, pipe);
1818
1819         /* Set PLL en = 0 */
1820         val = DPLL_SSC_REF_CLK_CHV |
1821                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1822         if (pipe != PIPE_A)
1823                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1824         I915_WRITE(DPLL(pipe), val);
1825         POSTING_READ(DPLL(pipe));
1826
1827         mutex_lock(&dev_priv->sb_lock);
1828
1829         /* Disable 10bit clock to display controller */
1830         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1831         val &= ~DPIO_DCLKP_EN;
1832         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1833
1834         mutex_unlock(&dev_priv->sb_lock);
1835 }
1836
1837 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1838                          struct intel_digital_port *dport,
1839                          unsigned int expected_mask)
1840 {
1841         u32 port_mask;
1842         i915_reg_t dpll_reg;
1843
1844         switch (dport->port) {
1845         case PORT_B:
1846                 port_mask = DPLL_PORTB_READY_MASK;
1847                 dpll_reg = DPLL(0);
1848                 break;
1849         case PORT_C:
1850                 port_mask = DPLL_PORTC_READY_MASK;
1851                 dpll_reg = DPLL(0);
1852                 expected_mask <<= 4;
1853                 break;
1854         case PORT_D:
1855                 port_mask = DPLL_PORTD_READY_MASK;
1856                 dpll_reg = DPIO_PHY_STATUS;
1857                 break;
1858         default:
1859                 BUG();
1860         }
1861
1862         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1863                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1864                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1865 }
1866
1867 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1868 {
1869         struct drm_device *dev = crtc->base.dev;
1870         struct drm_i915_private *dev_priv = dev->dev_private;
1871         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1872
1873         if (WARN_ON(pll == NULL))
1874                 return;
1875
1876         WARN_ON(!pll->config.crtc_mask);
1877         if (pll->active == 0) {
1878                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1879                 WARN_ON(pll->on);
1880                 assert_shared_dpll_disabled(dev_priv, pll);
1881
1882                 pll->mode_set(dev_priv, pll);
1883         }
1884 }
1885
1886 /**
1887  * intel_enable_shared_dpll - enable PCH PLL
1888  * @dev_priv: i915 private structure
1889  * @pipe: pipe PLL to enable
1890  *
1891  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1892  * drives the transcoder clock.
1893  */
1894 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1895 {
1896         struct drm_device *dev = crtc->base.dev;
1897         struct drm_i915_private *dev_priv = dev->dev_private;
1898         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1899
1900         if (WARN_ON(pll == NULL))
1901                 return;
1902
1903         if (WARN_ON(pll->config.crtc_mask == 0))
1904                 return;
1905
1906         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1907                       pll->name, pll->active, pll->on,
1908                       crtc->base.base.id);
1909
1910         if (pll->active++) {
1911                 WARN_ON(!pll->on);
1912                 assert_shared_dpll_enabled(dev_priv, pll);
1913                 return;
1914         }
1915         WARN_ON(pll->on);
1916
1917         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1918
1919         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1920         pll->enable(dev_priv, pll);
1921         pll->on = true;
1922 }
1923
1924 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1925 {
1926         struct drm_device *dev = crtc->base.dev;
1927         struct drm_i915_private *dev_priv = dev->dev_private;
1928         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1929
1930         /* PCH only available on ILK+ */
1931         if (INTEL_INFO(dev)->gen < 5)
1932                 return;
1933
1934         if (pll == NULL)
1935                 return;
1936
1937         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1938                 return;
1939
1940         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1941                       pll->name, pll->active, pll->on,
1942                       crtc->base.base.id);
1943
1944         if (WARN_ON(pll->active == 0)) {
1945                 assert_shared_dpll_disabled(dev_priv, pll);
1946                 return;
1947         }
1948
1949         assert_shared_dpll_enabled(dev_priv, pll);
1950         WARN_ON(!pll->on);
1951         if (--pll->active)
1952                 return;
1953
1954         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1955         pll->disable(dev_priv, pll);
1956         pll->on = false;
1957
1958         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1959 }
1960
1961 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1962                                            enum pipe pipe)
1963 {
1964         struct drm_device *dev = dev_priv->dev;
1965         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1966         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1967         i915_reg_t reg;
1968         uint32_t val, pipeconf_val;
1969
1970         /* PCH only available on ILK+ */
1971         BUG_ON(!HAS_PCH_SPLIT(dev));
1972
1973         /* Make sure PCH DPLL is enabled */
1974         assert_shared_dpll_enabled(dev_priv,
1975                                    intel_crtc_to_shared_dpll(intel_crtc));
1976
1977         /* FDI must be feeding us bits for PCH ports */
1978         assert_fdi_tx_enabled(dev_priv, pipe);
1979         assert_fdi_rx_enabled(dev_priv, pipe);
1980
1981         if (HAS_PCH_CPT(dev)) {
1982                 /* Workaround: Set the timing override bit before enabling the
1983                  * pch transcoder. */
1984                 reg = TRANS_CHICKEN2(pipe);
1985                 val = I915_READ(reg);
1986                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1987                 I915_WRITE(reg, val);
1988         }
1989
1990         reg = PCH_TRANSCONF(pipe);
1991         val = I915_READ(reg);
1992         pipeconf_val = I915_READ(PIPECONF(pipe));
1993
1994         if (HAS_PCH_IBX(dev_priv->dev)) {
1995                 /*
1996                  * Make the BPC in transcoder be consistent with
1997                  * that in pipeconf reg. For HDMI we must use 8bpc
1998                  * here for both 8bpc and 12bpc.
1999                  */
2000                 val &= ~PIPECONF_BPC_MASK;
2001                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2002                         val |= PIPECONF_8BPC;
2003                 else
2004                         val |= pipeconf_val & PIPECONF_BPC_MASK;
2005         }
2006
2007         val &= ~TRANS_INTERLACE_MASK;
2008         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2009                 if (HAS_PCH_IBX(dev_priv->dev) &&
2010                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2011                         val |= TRANS_LEGACY_INTERLACED_ILK;
2012                 else
2013                         val |= TRANS_INTERLACED;
2014         else
2015                 val |= TRANS_PROGRESSIVE;
2016
2017         I915_WRITE(reg, val | TRANS_ENABLE);
2018         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2019                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2020 }
2021
2022 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2023                                       enum transcoder cpu_transcoder)
2024 {
2025         u32 val, pipeconf_val;
2026
2027         /* PCH only available on ILK+ */
2028         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2029
2030         /* FDI must be feeding us bits for PCH ports */
2031         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2032         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2033
2034         /* Workaround: set timing override bit. */
2035         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2036         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2037         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2038
2039         val = TRANS_ENABLE;
2040         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2041
2042         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2043             PIPECONF_INTERLACED_ILK)
2044                 val |= TRANS_INTERLACED;
2045         else
2046                 val |= TRANS_PROGRESSIVE;
2047
2048         I915_WRITE(LPT_TRANSCONF, val);
2049         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2050                 DRM_ERROR("Failed to enable PCH transcoder\n");
2051 }
2052
2053 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2054                                             enum pipe pipe)
2055 {
2056         struct drm_device *dev = dev_priv->dev;
2057         i915_reg_t reg;
2058         uint32_t val;
2059
2060         /* FDI relies on the transcoder */
2061         assert_fdi_tx_disabled(dev_priv, pipe);
2062         assert_fdi_rx_disabled(dev_priv, pipe);
2063
2064         /* Ports must be off as well */
2065         assert_pch_ports_disabled(dev_priv, pipe);
2066
2067         reg = PCH_TRANSCONF(pipe);
2068         val = I915_READ(reg);
2069         val &= ~TRANS_ENABLE;
2070         I915_WRITE(reg, val);
2071         /* wait for PCH transcoder off, transcoder state */
2072         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2073                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2074
2075         if (HAS_PCH_CPT(dev)) {
2076                 /* Workaround: Clear the timing override chicken bit again. */
2077                 reg = TRANS_CHICKEN2(pipe);
2078                 val = I915_READ(reg);
2079                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2080                 I915_WRITE(reg, val);
2081         }
2082 }
2083
2084 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2085 {
2086         u32 val;
2087
2088         val = I915_READ(LPT_TRANSCONF);
2089         val &= ~TRANS_ENABLE;
2090         I915_WRITE(LPT_TRANSCONF, val);
2091         /* wait for PCH transcoder off, transcoder state */
2092         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2093                 DRM_ERROR("Failed to disable PCH transcoder\n");
2094
2095         /* Workaround: clear timing override bit. */
2096         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2097         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2098         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2099 }
2100
2101 /**
2102  * intel_enable_pipe - enable a pipe, asserting requirements
2103  * @crtc: crtc responsible for the pipe
2104  *
2105  * Enable @crtc's pipe, making sure that various hardware specific requirements
2106  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2107  */
2108 static void intel_enable_pipe(struct intel_crtc *crtc)
2109 {
2110         struct drm_device *dev = crtc->base.dev;
2111         struct drm_i915_private *dev_priv = dev->dev_private;
2112         enum pipe pipe = crtc->pipe;
2113         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2114         enum pipe pch_transcoder;
2115         i915_reg_t reg;
2116         u32 val;
2117
2118         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2119
2120         assert_planes_disabled(dev_priv, pipe);
2121         assert_cursor_disabled(dev_priv, pipe);
2122         assert_sprites_disabled(dev_priv, pipe);
2123
2124         if (HAS_PCH_LPT(dev_priv->dev))
2125                 pch_transcoder = TRANSCODER_A;
2126         else
2127                 pch_transcoder = pipe;
2128
2129         /*
2130          * A pipe without a PLL won't actually be able to drive bits from
2131          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2132          * need the check.
2133          */
2134         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2135                 if (crtc->config->has_dsi_encoder)
2136                         assert_dsi_pll_enabled(dev_priv);
2137                 else
2138                         assert_pll_enabled(dev_priv, pipe);
2139         else {
2140                 if (crtc->config->has_pch_encoder) {
2141                         /* if driving the PCH, we need FDI enabled */
2142                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2143                         assert_fdi_tx_pll_enabled(dev_priv,
2144                                                   (enum pipe) cpu_transcoder);
2145                 }
2146                 /* FIXME: assert CPU port conditions for SNB+ */
2147         }
2148
2149         reg = PIPECONF(cpu_transcoder);
2150         val = I915_READ(reg);
2151         if (val & PIPECONF_ENABLE) {
2152                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2153                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2154                 return;
2155         }
2156
2157         I915_WRITE(reg, val | PIPECONF_ENABLE);
2158         POSTING_READ(reg);
2159 }
2160
2161 /**
2162  * intel_disable_pipe - disable a pipe, asserting requirements
2163  * @crtc: crtc whose pipes is to be disabled
2164  *
2165  * Disable the pipe of @crtc, making sure that various hardware
2166  * specific requirements are met, if applicable, e.g. plane
2167  * disabled, panel fitter off, etc.
2168  *
2169  * Will wait until the pipe has shut down before returning.
2170  */
2171 static void intel_disable_pipe(struct intel_crtc *crtc)
2172 {
2173         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2174         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2175         enum pipe pipe = crtc->pipe;
2176         i915_reg_t reg;
2177         u32 val;
2178
2179         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2180
2181         /*
2182          * Make sure planes won't keep trying to pump pixels to us,
2183          * or we might hang the display.
2184          */
2185         assert_planes_disabled(dev_priv, pipe);
2186         assert_cursor_disabled(dev_priv, pipe);
2187         assert_sprites_disabled(dev_priv, pipe);
2188
2189         reg = PIPECONF(cpu_transcoder);
2190         val = I915_READ(reg);
2191         if ((val & PIPECONF_ENABLE) == 0)
2192                 return;
2193
2194         /*
2195          * Double wide has implications for planes
2196          * so best keep it disabled when not needed.
2197          */
2198         if (crtc->config->double_wide)
2199                 val &= ~PIPECONF_DOUBLE_WIDE;
2200
2201         /* Don't disable pipe or pipe PLLs if needed */
2202         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2203             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2204                 val &= ~PIPECONF_ENABLE;
2205
2206         I915_WRITE(reg, val);
2207         if ((val & PIPECONF_ENABLE) == 0)
2208                 intel_wait_for_pipe_off(crtc);
2209 }
2210
2211 static bool need_vtd_wa(struct drm_device *dev)
2212 {
2213 #ifdef CONFIG_INTEL_IOMMU
2214         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2215                 return true;
2216 #endif
2217         return false;
2218 }
2219
2220 unsigned int
2221 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2222                   uint64_t fb_format_modifier, unsigned int plane)
2223 {
2224         unsigned int tile_height;
2225         uint32_t pixel_bytes;
2226
2227         switch (fb_format_modifier) {
2228         case DRM_FORMAT_MOD_NONE:
2229                 tile_height = 1;
2230                 break;
2231         case I915_FORMAT_MOD_X_TILED:
2232                 tile_height = IS_GEN2(dev) ? 16 : 8;
2233                 break;
2234         case I915_FORMAT_MOD_Y_TILED:
2235                 tile_height = 32;
2236                 break;
2237         case I915_FORMAT_MOD_Yf_TILED:
2238                 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
2239                 switch (pixel_bytes) {
2240                 default:
2241                 case 1:
2242                         tile_height = 64;
2243                         break;
2244                 case 2:
2245                 case 4:
2246                         tile_height = 32;
2247                         break;
2248                 case 8:
2249                         tile_height = 16;
2250                         break;
2251                 case 16:
2252                         WARN_ONCE(1,
2253                                   "128-bit pixels are not supported for display!");
2254                         tile_height = 16;
2255                         break;
2256                 }
2257                 break;
2258         default:
2259                 MISSING_CASE(fb_format_modifier);
2260                 tile_height = 1;
2261                 break;
2262         }
2263
2264         return tile_height;
2265 }
2266
2267 unsigned int
2268 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2269                       uint32_t pixel_format, uint64_t fb_format_modifier)
2270 {
2271         return ALIGN(height, intel_tile_height(dev, pixel_format,
2272                                                fb_format_modifier, 0));
2273 }
2274
2275 static void
2276 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2277                         const struct drm_plane_state *plane_state)
2278 {
2279         struct intel_rotation_info *info = &view->params.rotation_info;
2280         unsigned int tile_height, tile_pitch;
2281
2282         *view = i915_ggtt_view_normal;
2283
2284         if (!plane_state)
2285                 return;
2286
2287         if (!intel_rotation_90_or_270(plane_state->rotation))
2288                 return;
2289
2290         *view = i915_ggtt_view_rotated;
2291
2292         info->height = fb->height;
2293         info->pixel_format = fb->pixel_format;
2294         info->pitch = fb->pitches[0];
2295         info->uv_offset = fb->offsets[1];
2296         info->fb_modifier = fb->modifier[0];
2297
2298         tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2299                                         fb->modifier[0], 0);
2300         tile_pitch = PAGE_SIZE / tile_height;
2301         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2302         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2303         info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2304
2305         if (info->pixel_format == DRM_FORMAT_NV12) {
2306                 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2307                                                 fb->modifier[0], 1);
2308                 tile_pitch = PAGE_SIZE / tile_height;
2309                 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2310                 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2311                                                      tile_height);
2312                 info->size_uv = info->width_pages_uv * info->height_pages_uv *
2313                                 PAGE_SIZE;
2314         }
2315 }
2316
2317 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2318 {
2319         if (INTEL_INFO(dev_priv)->gen >= 9)
2320                 return 256 * 1024;
2321         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2322                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2323                 return 128 * 1024;
2324         else if (INTEL_INFO(dev_priv)->gen >= 4)
2325                 return 4 * 1024;
2326         else
2327                 return 0;
2328 }
2329
2330 int
2331 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2332                            struct drm_framebuffer *fb,
2333                            const struct drm_plane_state *plane_state)
2334 {
2335         struct drm_device *dev = fb->dev;
2336         struct drm_i915_private *dev_priv = dev->dev_private;
2337         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2338         struct i915_ggtt_view view;
2339         u32 alignment;
2340         int ret;
2341
2342         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2343
2344         switch (fb->modifier[0]) {
2345         case DRM_FORMAT_MOD_NONE:
2346                 alignment = intel_linear_alignment(dev_priv);
2347                 break;
2348         case I915_FORMAT_MOD_X_TILED:
2349                 if (INTEL_INFO(dev)->gen >= 9)
2350                         alignment = 256 * 1024;
2351                 else {
2352                         /* pin() will align the object as required by fence */
2353                         alignment = 0;
2354                 }
2355                 break;
2356         case I915_FORMAT_MOD_Y_TILED:
2357         case I915_FORMAT_MOD_Yf_TILED:
2358                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2359                           "Y tiling bo slipped through, driver bug!\n"))
2360                         return -EINVAL;
2361                 alignment = 1 * 1024 * 1024;
2362                 break;
2363         default:
2364                 MISSING_CASE(fb->modifier[0]);
2365                 return -EINVAL;
2366         }
2367
2368         intel_fill_fb_ggtt_view(&view, fb, plane_state);
2369
2370         /* Note that the w/a also requires 64 PTE of padding following the
2371          * bo. We currently fill all unused PTE with the shadow page and so
2372          * we should always have valid PTE following the scanout preventing
2373          * the VT-d warning.
2374          */
2375         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2376                 alignment = 256 * 1024;
2377
2378         /*
2379          * Global gtt pte registers are special registers which actually forward
2380          * writes to a chunk of system memory. Which means that there is no risk
2381          * that the register values disappear as soon as we call
2382          * intel_runtime_pm_put(), so it is correct to wrap only the
2383          * pin/unpin/fence and not more.
2384          */
2385         intel_runtime_pm_get(dev_priv);
2386
2387         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2388                                                    &view);
2389         if (ret)
2390                 goto err_pm;
2391
2392         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2393          * fence, whereas 965+ only requires a fence if using
2394          * framebuffer compression.  For simplicity, we always install
2395          * a fence as the cost is not that onerous.
2396          */
2397         if (view.type == I915_GGTT_VIEW_NORMAL) {
2398                 ret = i915_gem_object_get_fence(obj);
2399                 if (ret == -EDEADLK) {
2400                         /*
2401                          * -EDEADLK means there are no free fences
2402                          * no pending flips.
2403                          *
2404                          * This is propagated to atomic, but it uses
2405                          * -EDEADLK to force a locking recovery, so
2406                          * change the returned error to -EBUSY.
2407                          */
2408                         ret = -EBUSY;
2409                         goto err_unpin;
2410                 } else if (ret)
2411                         goto err_unpin;
2412
2413                 i915_gem_object_pin_fence(obj);
2414         }
2415
2416         intel_runtime_pm_put(dev_priv);
2417         return 0;
2418
2419 err_unpin:
2420         i915_gem_object_unpin_from_display_plane(obj, &view);
2421 err_pm:
2422         intel_runtime_pm_put(dev_priv);
2423         return ret;
2424 }
2425
2426 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2427                                const struct drm_plane_state *plane_state)
2428 {
2429         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2430         struct i915_ggtt_view view;
2431
2432         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2433
2434         intel_fill_fb_ggtt_view(&view, fb, plane_state);
2435
2436         if (view.type == I915_GGTT_VIEW_NORMAL)
2437                 i915_gem_object_unpin_fence(obj);
2438
2439         i915_gem_object_unpin_from_display_plane(obj, &view);
2440 }
2441
2442 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2443  * is assumed to be a power-of-two. */
2444 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2445                                              int *x, int *y,
2446                                              unsigned int tiling_mode,
2447                                              unsigned int cpp,
2448                                              unsigned int pitch)
2449 {
2450         if (tiling_mode != I915_TILING_NONE) {
2451                 unsigned int tile_rows, tiles;
2452
2453                 tile_rows = *y / 8;
2454                 *y %= 8;
2455
2456                 tiles = *x / (512/cpp);
2457                 *x %= 512/cpp;
2458
2459                 return tile_rows * pitch * 8 + tiles * 4096;
2460         } else {
2461                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2462                 unsigned int offset;
2463
2464                 offset = *y * pitch + *x * cpp;
2465                 *y = (offset & alignment) / pitch;
2466                 *x = ((offset & alignment) - *y * pitch) / cpp;
2467                 return offset & ~alignment;
2468         }
2469 }
2470
2471 static int i9xx_format_to_fourcc(int format)
2472 {
2473         switch (format) {
2474         case DISPPLANE_8BPP:
2475                 return DRM_FORMAT_C8;
2476         case DISPPLANE_BGRX555:
2477                 return DRM_FORMAT_XRGB1555;
2478         case DISPPLANE_BGRX565:
2479                 return DRM_FORMAT_RGB565;
2480         default:
2481         case DISPPLANE_BGRX888:
2482                 return DRM_FORMAT_XRGB8888;
2483         case DISPPLANE_RGBX888:
2484                 return DRM_FORMAT_XBGR8888;
2485         case DISPPLANE_BGRX101010:
2486                 return DRM_FORMAT_XRGB2101010;
2487         case DISPPLANE_RGBX101010:
2488                 return DRM_FORMAT_XBGR2101010;
2489         }
2490 }
2491
2492 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2493 {
2494         switch (format) {
2495         case PLANE_CTL_FORMAT_RGB_565:
2496                 return DRM_FORMAT_RGB565;
2497         default:
2498         case PLANE_CTL_FORMAT_XRGB_8888:
2499                 if (rgb_order) {
2500                         if (alpha)
2501                                 return DRM_FORMAT_ABGR8888;
2502                         else
2503                                 return DRM_FORMAT_XBGR8888;
2504                 } else {
2505                         if (alpha)
2506                                 return DRM_FORMAT_ARGB8888;
2507                         else
2508                                 return DRM_FORMAT_XRGB8888;
2509                 }
2510         case PLANE_CTL_FORMAT_XRGB_2101010:
2511                 if (rgb_order)
2512                         return DRM_FORMAT_XBGR2101010;
2513                 else
2514                         return DRM_FORMAT_XRGB2101010;
2515         }
2516 }
2517
2518 static bool
2519 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2520                               struct intel_initial_plane_config *plane_config)
2521 {
2522         struct drm_device *dev = crtc->base.dev;
2523         struct drm_i915_private *dev_priv = to_i915(dev);
2524         struct drm_i915_gem_object *obj = NULL;
2525         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2526         struct drm_framebuffer *fb = &plane_config->fb->base;
2527         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2528         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2529                                     PAGE_SIZE);
2530
2531         size_aligned -= base_aligned;
2532
2533         if (plane_config->size == 0)
2534                 return false;
2535
2536         /* If the FB is too big, just don't use it since fbdev is not very
2537          * important and we should probably use that space with FBC or other
2538          * features. */
2539         if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2540                 return false;
2541
2542         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2543                                                              base_aligned,
2544                                                              base_aligned,
2545                                                              size_aligned);
2546         if (!obj)
2547                 return false;
2548
2549         obj->tiling_mode = plane_config->tiling;
2550         if (obj->tiling_mode == I915_TILING_X)
2551                 obj->stride = fb->pitches[0];
2552
2553         mode_cmd.pixel_format = fb->pixel_format;
2554         mode_cmd.width = fb->width;
2555         mode_cmd.height = fb->height;
2556         mode_cmd.pitches[0] = fb->pitches[0];
2557         mode_cmd.modifier[0] = fb->modifier[0];
2558         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2559
2560         mutex_lock(&dev->struct_mutex);
2561         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2562                                    &mode_cmd, obj)) {
2563                 DRM_DEBUG_KMS("intel fb init failed\n");
2564                 goto out_unref_obj;
2565         }
2566         mutex_unlock(&dev->struct_mutex);
2567
2568         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2569         return true;
2570
2571 out_unref_obj:
2572         drm_gem_object_unreference(&obj->base);
2573         mutex_unlock(&dev->struct_mutex);
2574         return false;
2575 }
2576
2577 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2578 static void
2579 update_state_fb(struct drm_plane *plane)
2580 {
2581         if (plane->fb == plane->state->fb)
2582                 return;
2583
2584         if (plane->state->fb)
2585                 drm_framebuffer_unreference(plane->state->fb);
2586         plane->state->fb = plane->fb;
2587         if (plane->state->fb)
2588                 drm_framebuffer_reference(plane->state->fb);
2589 }
2590
2591 static void
2592 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2593                              struct intel_initial_plane_config *plane_config)
2594 {
2595         struct drm_device *dev = intel_crtc->base.dev;
2596         struct drm_i915_private *dev_priv = dev->dev_private;
2597         struct drm_crtc *c;
2598         struct intel_crtc *i;
2599         struct drm_i915_gem_object *obj;
2600         struct drm_plane *primary = intel_crtc->base.primary;
2601         struct drm_plane_state *plane_state = primary->state;
2602         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2603         struct intel_plane *intel_plane = to_intel_plane(primary);
2604         struct drm_framebuffer *fb;
2605
2606         if (!plane_config->fb)
2607                 return;
2608
2609         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2610                 fb = &plane_config->fb->base;
2611                 goto valid_fb;
2612         }
2613
2614         kfree(plane_config->fb);
2615
2616         /*
2617          * Failed to alloc the obj, check to see if we should share
2618          * an fb with another CRTC instead
2619          */
2620         for_each_crtc(dev, c) {
2621                 i = to_intel_crtc(c);
2622
2623                 if (c == &intel_crtc->base)
2624                         continue;
2625
2626                 if (!i->active)
2627                         continue;
2628
2629                 fb = c->primary->fb;
2630                 if (!fb)
2631                         continue;
2632
2633                 obj = intel_fb_obj(fb);
2634                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2635                         drm_framebuffer_reference(fb);
2636                         goto valid_fb;
2637                 }
2638         }
2639
2640         /*
2641          * We've failed to reconstruct the BIOS FB.  Current display state
2642          * indicates that the primary plane is visible, but has a NULL FB,
2643          * which will lead to problems later if we don't fix it up.  The
2644          * simplest solution is to just disable the primary plane now and
2645          * pretend the BIOS never had it enabled.
2646          */
2647         to_intel_plane_state(plane_state)->visible = false;
2648         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2649         intel_pre_disable_primary(&intel_crtc->base);
2650         intel_plane->disable_plane(primary, &intel_crtc->base);
2651
2652         return;
2653
2654 valid_fb:
2655         plane_state->src_x = 0;
2656         plane_state->src_y = 0;
2657         plane_state->src_w = fb->width << 16;
2658         plane_state->src_h = fb->height << 16;
2659
2660         plane_state->crtc_x = 0;
2661         plane_state->crtc_y = 0;
2662         plane_state->crtc_w = fb->width;
2663         plane_state->crtc_h = fb->height;
2664
2665         obj = intel_fb_obj(fb);
2666         if (obj->tiling_mode != I915_TILING_NONE)
2667                 dev_priv->preserve_bios_swizzle = true;
2668
2669         drm_framebuffer_reference(fb);
2670         primary->fb = primary->state->fb = fb;
2671         primary->crtc = primary->state->crtc = &intel_crtc->base;
2672         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2673         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2674 }
2675
2676 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2677                                       struct drm_framebuffer *fb,
2678                                       int x, int y)
2679 {
2680         struct drm_device *dev = crtc->dev;
2681         struct drm_i915_private *dev_priv = dev->dev_private;
2682         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2683         struct drm_plane *primary = crtc->primary;
2684         bool visible = to_intel_plane_state(primary->state)->visible;
2685         struct drm_i915_gem_object *obj;
2686         int plane = intel_crtc->plane;
2687         unsigned long linear_offset;
2688         u32 dspcntr;
2689         i915_reg_t reg = DSPCNTR(plane);
2690         int pixel_size;
2691
2692         if (!visible || !fb) {
2693                 I915_WRITE(reg, 0);
2694                 if (INTEL_INFO(dev)->gen >= 4)
2695                         I915_WRITE(DSPSURF(plane), 0);
2696                 else
2697                         I915_WRITE(DSPADDR(plane), 0);
2698                 POSTING_READ(reg);
2699                 return;
2700         }
2701
2702         obj = intel_fb_obj(fb);
2703         if (WARN_ON(obj == NULL))
2704                 return;
2705
2706         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2707
2708         dspcntr = DISPPLANE_GAMMA_ENABLE;
2709
2710         dspcntr |= DISPLAY_PLANE_ENABLE;
2711
2712         if (INTEL_INFO(dev)->gen < 4) {
2713                 if (intel_crtc->pipe == PIPE_B)
2714                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2715
2716                 /* pipesrc and dspsize control the size that is scaled from,
2717                  * which should always be the user's requested size.
2718                  */
2719                 I915_WRITE(DSPSIZE(plane),
2720                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2721                            (intel_crtc->config->pipe_src_w - 1));
2722                 I915_WRITE(DSPPOS(plane), 0);
2723         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2724                 I915_WRITE(PRIMSIZE(plane),
2725                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2726                            (intel_crtc->config->pipe_src_w - 1));
2727                 I915_WRITE(PRIMPOS(plane), 0);
2728                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2729         }
2730
2731         switch (fb->pixel_format) {
2732         case DRM_FORMAT_C8:
2733                 dspcntr |= DISPPLANE_8BPP;
2734                 break;
2735         case DRM_FORMAT_XRGB1555:
2736                 dspcntr |= DISPPLANE_BGRX555;
2737                 break;
2738         case DRM_FORMAT_RGB565:
2739                 dspcntr |= DISPPLANE_BGRX565;
2740                 break;
2741         case DRM_FORMAT_XRGB8888:
2742                 dspcntr |= DISPPLANE_BGRX888;
2743                 break;
2744         case DRM_FORMAT_XBGR8888:
2745                 dspcntr |= DISPPLANE_RGBX888;
2746                 break;
2747         case DRM_FORMAT_XRGB2101010:
2748                 dspcntr |= DISPPLANE_BGRX101010;
2749                 break;
2750         case DRM_FORMAT_XBGR2101010:
2751                 dspcntr |= DISPPLANE_RGBX101010;
2752                 break;
2753         default:
2754                 BUG();
2755         }
2756
2757         if (INTEL_INFO(dev)->gen >= 4 &&
2758             obj->tiling_mode != I915_TILING_NONE)
2759                 dspcntr |= DISPPLANE_TILED;
2760
2761         if (IS_G4X(dev))
2762                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2763
2764         linear_offset = y * fb->pitches[0] + x * pixel_size;
2765
2766         if (INTEL_INFO(dev)->gen >= 4) {
2767                 intel_crtc->dspaddr_offset =
2768                         intel_gen4_compute_page_offset(dev_priv,
2769                                                        &x, &y, obj->tiling_mode,
2770                                                        pixel_size,
2771                                                        fb->pitches[0]);
2772                 linear_offset -= intel_crtc->dspaddr_offset;
2773         } else {
2774                 intel_crtc->dspaddr_offset = linear_offset;
2775         }
2776
2777         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2778                 dspcntr |= DISPPLANE_ROTATE_180;
2779
2780                 x += (intel_crtc->config->pipe_src_w - 1);
2781                 y += (intel_crtc->config->pipe_src_h - 1);
2782
2783                 /* Finding the last pixel of the last line of the display
2784                 data and adding to linear_offset*/
2785                 linear_offset +=
2786                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2787                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2788         }
2789
2790         intel_crtc->adjusted_x = x;
2791         intel_crtc->adjusted_y = y;
2792
2793         I915_WRITE(reg, dspcntr);
2794
2795         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2796         if (INTEL_INFO(dev)->gen >= 4) {
2797                 I915_WRITE(DSPSURF(plane),
2798                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2799                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2800                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2801         } else
2802                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2803         POSTING_READ(reg);
2804 }
2805
2806 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2807                                           struct drm_framebuffer *fb,
2808                                           int x, int y)
2809 {
2810         struct drm_device *dev = crtc->dev;
2811         struct drm_i915_private *dev_priv = dev->dev_private;
2812         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2813         struct drm_plane *primary = crtc->primary;
2814         bool visible = to_intel_plane_state(primary->state)->visible;
2815         struct drm_i915_gem_object *obj;
2816         int plane = intel_crtc->plane;
2817         unsigned long linear_offset;
2818         u32 dspcntr;
2819         i915_reg_t reg = DSPCNTR(plane);
2820         int pixel_size;
2821
2822         if (!visible || !fb) {
2823                 I915_WRITE(reg, 0);
2824                 I915_WRITE(DSPSURF(plane), 0);
2825                 POSTING_READ(reg);
2826                 return;
2827         }
2828
2829         obj = intel_fb_obj(fb);
2830         if (WARN_ON(obj == NULL))
2831                 return;
2832
2833         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2834
2835         dspcntr = DISPPLANE_GAMMA_ENABLE;
2836
2837         dspcntr |= DISPLAY_PLANE_ENABLE;
2838
2839         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2840                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2841
2842         switch (fb->pixel_format) {
2843         case DRM_FORMAT_C8:
2844                 dspcntr |= DISPPLANE_8BPP;
2845                 break;
2846         case DRM_FORMAT_RGB565:
2847                 dspcntr |= DISPPLANE_BGRX565;
2848                 break;
2849         case DRM_FORMAT_XRGB8888:
2850                 dspcntr |= DISPPLANE_BGRX888;
2851                 break;
2852         case DRM_FORMAT_XBGR8888:
2853                 dspcntr |= DISPPLANE_RGBX888;
2854                 break;
2855         case DRM_FORMAT_XRGB2101010:
2856                 dspcntr |= DISPPLANE_BGRX101010;
2857                 break;
2858         case DRM_FORMAT_XBGR2101010:
2859                 dspcntr |= DISPPLANE_RGBX101010;
2860                 break;
2861         default:
2862                 BUG();
2863         }
2864
2865         if (obj->tiling_mode != I915_TILING_NONE)
2866                 dspcntr |= DISPPLANE_TILED;
2867
2868         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2869                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2870
2871         linear_offset = y * fb->pitches[0] + x * pixel_size;
2872         intel_crtc->dspaddr_offset =
2873                 intel_gen4_compute_page_offset(dev_priv,
2874                                                &x, &y, obj->tiling_mode,
2875                                                pixel_size,
2876                                                fb->pitches[0]);
2877         linear_offset -= intel_crtc->dspaddr_offset;
2878         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2879                 dspcntr |= DISPPLANE_ROTATE_180;
2880
2881                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2882                         x += (intel_crtc->config->pipe_src_w - 1);
2883                         y += (intel_crtc->config->pipe_src_h - 1);
2884
2885                         /* Finding the last pixel of the last line of the display
2886                         data and adding to linear_offset*/
2887                         linear_offset +=
2888                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2889                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2890                 }
2891         }
2892
2893         intel_crtc->adjusted_x = x;
2894         intel_crtc->adjusted_y = y;
2895
2896         I915_WRITE(reg, dspcntr);
2897
2898         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2899         I915_WRITE(DSPSURF(plane),
2900                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2901         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2902                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2903         } else {
2904                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2905                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2906         }
2907         POSTING_READ(reg);
2908 }
2909
2910 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2911                               uint32_t pixel_format)
2912 {
2913         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2914
2915         /*
2916          * The stride is either expressed as a multiple of 64 bytes
2917          * chunks for linear buffers or in number of tiles for tiled
2918          * buffers.
2919          */
2920         switch (fb_modifier) {
2921         case DRM_FORMAT_MOD_NONE:
2922                 return 64;
2923         case I915_FORMAT_MOD_X_TILED:
2924                 if (INTEL_INFO(dev)->gen == 2)
2925                         return 128;
2926                 return 512;
2927         case I915_FORMAT_MOD_Y_TILED:
2928                 /* No need to check for old gens and Y tiling since this is
2929                  * about the display engine and those will be blocked before
2930                  * we get here.
2931                  */
2932                 return 128;
2933         case I915_FORMAT_MOD_Yf_TILED:
2934                 if (bits_per_pixel == 8)
2935                         return 64;
2936                 else
2937                         return 128;
2938         default:
2939                 MISSING_CASE(fb_modifier);
2940                 return 64;
2941         }
2942 }
2943
2944 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2945                            struct drm_i915_gem_object *obj,
2946                            unsigned int plane)
2947 {
2948         struct i915_ggtt_view view;
2949         struct i915_vma *vma;
2950         u64 offset;
2951
2952         intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2953                                 intel_plane->base.state);
2954
2955         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2956         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2957                 view.type))
2958                 return -1;
2959
2960         offset = vma->node.start;
2961
2962         if (plane == 1) {
2963                 offset += vma->ggtt_view.params.rotation_info.uv_start_page *
2964                           PAGE_SIZE;
2965         }
2966
2967         WARN_ON(upper_32_bits(offset));
2968
2969         return lower_32_bits(offset);
2970 }
2971
2972 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2973 {
2974         struct drm_device *dev = intel_crtc->base.dev;
2975         struct drm_i915_private *dev_priv = dev->dev_private;
2976
2977         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2978         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2979         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2980 }
2981
2982 /*
2983  * This function detaches (aka. unbinds) unused scalers in hardware
2984  */
2985 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2986 {
2987         struct intel_crtc_scaler_state *scaler_state;
2988         int i;
2989
2990         scaler_state = &intel_crtc->config->scaler_state;
2991
2992         /* loop through and disable scalers that aren't in use */
2993         for (i = 0; i < intel_crtc->num_scalers; i++) {
2994                 if (!scaler_state->scalers[i].in_use)
2995                         skl_detach_scaler(intel_crtc, i);
2996         }
2997 }
2998
2999 u32 skl_plane_ctl_format(uint32_t pixel_format)
3000 {
3001         switch (pixel_format) {
3002         case DRM_FORMAT_C8:
3003                 return PLANE_CTL_FORMAT_INDEXED;
3004         case DRM_FORMAT_RGB565:
3005                 return PLANE_CTL_FORMAT_RGB_565;
3006         case DRM_FORMAT_XBGR8888:
3007                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3008         case DRM_FORMAT_XRGB8888:
3009                 return PLANE_CTL_FORMAT_XRGB_8888;
3010         /*
3011          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3012          * to be already pre-multiplied. We need to add a knob (or a different
3013          * DRM_FORMAT) for user-space to configure that.
3014          */
3015         case DRM_FORMAT_ABGR8888:
3016                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3017                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3018         case DRM_FORMAT_ARGB8888:
3019                 return PLANE_CTL_FORMAT_XRGB_8888 |
3020                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3021         case DRM_FORMAT_XRGB2101010:
3022                 return PLANE_CTL_FORMAT_XRGB_2101010;
3023         case DRM_FORMAT_XBGR2101010:
3024                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3025         case DRM_FORMAT_YUYV:
3026                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3027         case DRM_FORMAT_YVYU:
3028                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3029         case DRM_FORMAT_UYVY:
3030                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3031         case DRM_FORMAT_VYUY:
3032                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3033         default:
3034                 MISSING_CASE(pixel_format);
3035         }
3036
3037         return 0;
3038 }
3039
3040 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3041 {
3042         switch (fb_modifier) {
3043         case DRM_FORMAT_MOD_NONE:
3044                 break;
3045         case I915_FORMAT_MOD_X_TILED:
3046                 return PLANE_CTL_TILED_X;
3047         case I915_FORMAT_MOD_Y_TILED:
3048                 return PLANE_CTL_TILED_Y;
3049         case I915_FORMAT_MOD_Yf_TILED:
3050                 return PLANE_CTL_TILED_YF;
3051         default:
3052                 MISSING_CASE(fb_modifier);
3053         }
3054
3055         return 0;
3056 }
3057
3058 u32 skl_plane_ctl_rotation(unsigned int rotation)
3059 {
3060         switch (rotation) {
3061         case BIT(DRM_ROTATE_0):
3062                 break;
3063         /*
3064          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3065          * while i915 HW rotation is clockwise, thats why this swapping.
3066          */
3067         case BIT(DRM_ROTATE_90):
3068                 return PLANE_CTL_ROTATE_270;
3069         case BIT(DRM_ROTATE_180):
3070                 return PLANE_CTL_ROTATE_180;
3071         case BIT(DRM_ROTATE_270):
3072                 return PLANE_CTL_ROTATE_90;
3073         default:
3074                 MISSING_CASE(rotation);
3075         }
3076
3077         return 0;
3078 }
3079
3080 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3081                                          struct drm_framebuffer *fb,
3082                                          int x, int y)
3083 {
3084         struct drm_device *dev = crtc->dev;
3085         struct drm_i915_private *dev_priv = dev->dev_private;
3086         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3087         struct drm_plane *plane = crtc->primary;
3088         bool visible = to_intel_plane_state(plane->state)->visible;
3089         struct drm_i915_gem_object *obj;
3090         int pipe = intel_crtc->pipe;
3091         u32 plane_ctl, stride_div, stride;
3092         u32 tile_height, plane_offset, plane_size;
3093         unsigned int rotation;
3094         int x_offset, y_offset;
3095         u32 surf_addr;
3096         struct intel_crtc_state *crtc_state = intel_crtc->config;
3097         struct intel_plane_state *plane_state;
3098         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3099         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3100         int scaler_id = -1;
3101
3102         plane_state = to_intel_plane_state(plane->state);
3103
3104         if (!visible || !fb) {
3105                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3106                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3107                 POSTING_READ(PLANE_CTL(pipe, 0));
3108                 return;
3109         }
3110
3111         plane_ctl = PLANE_CTL_ENABLE |
3112                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3113                     PLANE_CTL_PIPE_CSC_ENABLE;
3114
3115         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3116         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3117         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3118
3119         rotation = plane->state->rotation;
3120         plane_ctl |= skl_plane_ctl_rotation(rotation);
3121
3122         obj = intel_fb_obj(fb);
3123         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3124                                                fb->pixel_format);
3125         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3126
3127         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3128
3129         scaler_id = plane_state->scaler_id;
3130         src_x = plane_state->src.x1 >> 16;
3131         src_y = plane_state->src.y1 >> 16;
3132         src_w = drm_rect_width(&plane_state->src) >> 16;
3133         src_h = drm_rect_height(&plane_state->src) >> 16;
3134         dst_x = plane_state->dst.x1;
3135         dst_y = plane_state->dst.y1;
3136         dst_w = drm_rect_width(&plane_state->dst);
3137         dst_h = drm_rect_height(&plane_state->dst);
3138
3139         WARN_ON(x != src_x || y != src_y);
3140
3141         if (intel_rotation_90_or_270(rotation)) {
3142                 /* stride = Surface height in tiles */
3143                 tile_height = intel_tile_height(dev, fb->pixel_format,
3144                                                 fb->modifier[0], 0);
3145                 stride = DIV_ROUND_UP(fb->height, tile_height);
3146                 x_offset = stride * tile_height - y - src_h;
3147                 y_offset = x;
3148                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3149         } else {
3150                 stride = fb->pitches[0] / stride_div;
3151                 x_offset = x;
3152                 y_offset = y;
3153                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3154         }
3155         plane_offset = y_offset << 16 | x_offset;
3156
3157         intel_crtc->adjusted_x = x_offset;
3158         intel_crtc->adjusted_y = y_offset;
3159
3160         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3161         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3162         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3163         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3164
3165         if (scaler_id >= 0) {
3166                 uint32_t ps_ctrl = 0;
3167
3168                 WARN_ON(!dst_w || !dst_h);
3169                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3170                         crtc_state->scaler_state.scalers[scaler_id].mode;
3171                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3172                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3173                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3174                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3175                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3176         } else {
3177                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3178         }
3179
3180         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3181
3182         POSTING_READ(PLANE_SURF(pipe, 0));
3183 }
3184
3185 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3186 static int
3187 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3188                            int x, int y, enum mode_set_atomic state)
3189 {
3190         struct drm_device *dev = crtc->dev;
3191         struct drm_i915_private *dev_priv = dev->dev_private;
3192
3193         if (dev_priv->fbc.deactivate)
3194                 dev_priv->fbc.deactivate(dev_priv);
3195
3196         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3197
3198         return 0;
3199 }
3200
3201 static void intel_complete_page_flips(struct drm_device *dev)
3202 {
3203         struct drm_crtc *crtc;
3204
3205         for_each_crtc(dev, crtc) {
3206                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3207                 enum plane plane = intel_crtc->plane;
3208
3209                 intel_prepare_page_flip(dev, plane);
3210                 intel_finish_page_flip_plane(dev, plane);
3211         }
3212 }
3213
3214 static void intel_update_primary_planes(struct drm_device *dev)
3215 {
3216         struct drm_crtc *crtc;
3217
3218         for_each_crtc(dev, crtc) {
3219                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3220                 struct intel_plane_state *plane_state;
3221
3222                 drm_modeset_lock_crtc(crtc, &plane->base);
3223                 plane_state = to_intel_plane_state(plane->base.state);
3224
3225                 if (crtc->state->active && plane_state->base.fb)
3226                         plane->commit_plane(&plane->base, plane_state);
3227
3228                 drm_modeset_unlock_crtc(crtc);
3229         }
3230 }
3231
3232 void intel_prepare_reset(struct drm_device *dev)
3233 {
3234         /* no reset support for gen2 */
3235         if (IS_GEN2(dev))
3236                 return;
3237
3238         /* reset doesn't touch the display */
3239         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3240                 return;
3241
3242         drm_modeset_lock_all(dev);
3243         /*
3244          * Disabling the crtcs gracefully seems nicer. Also the
3245          * g33 docs say we should at least disable all the planes.
3246          */
3247         intel_display_suspend(dev);
3248 }
3249
3250 void intel_finish_reset(struct drm_device *dev)
3251 {
3252         struct drm_i915_private *dev_priv = to_i915(dev);
3253
3254         /*
3255          * Flips in the rings will be nuked by the reset,
3256          * so complete all pending flips so that user space
3257          * will get its events and not get stuck.
3258          */
3259         intel_complete_page_flips(dev);
3260
3261         /* no reset support for gen2 */
3262         if (IS_GEN2(dev))
3263                 return;
3264
3265         /* reset doesn't touch the display */
3266         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3267                 /*
3268                  * Flips in the rings have been nuked by the reset,
3269                  * so update the base address of all primary
3270                  * planes to the the last fb to make sure we're
3271                  * showing the correct fb after a reset.
3272                  *
3273                  * FIXME: Atomic will make this obsolete since we won't schedule
3274                  * CS-based flips (which might get lost in gpu resets) any more.
3275                  */
3276                 intel_update_primary_planes(dev);
3277                 return;
3278         }
3279
3280         /*
3281          * The display has been reset as well,
3282          * so need a full re-initialization.
3283          */
3284         intel_runtime_pm_disable_interrupts(dev_priv);
3285         intel_runtime_pm_enable_interrupts(dev_priv);
3286
3287         intel_modeset_init_hw(dev);
3288
3289         spin_lock_irq(&dev_priv->irq_lock);
3290         if (dev_priv->display.hpd_irq_setup)
3291                 dev_priv->display.hpd_irq_setup(dev);
3292         spin_unlock_irq(&dev_priv->irq_lock);
3293
3294         intel_display_resume(dev);
3295
3296         intel_hpd_init(dev_priv);
3297
3298         drm_modeset_unlock_all(dev);
3299 }
3300
3301 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3302 {
3303         struct drm_device *dev = crtc->dev;
3304         struct drm_i915_private *dev_priv = dev->dev_private;
3305         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3306         bool pending;
3307
3308         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3309             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3310                 return false;
3311
3312         spin_lock_irq(&dev->event_lock);
3313         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3314         spin_unlock_irq(&dev->event_lock);
3315
3316         return pending;
3317 }
3318
3319 static void intel_update_pipe_config(struct intel_crtc *crtc,
3320                                      struct intel_crtc_state *old_crtc_state)
3321 {
3322         struct drm_device *dev = crtc->base.dev;
3323         struct drm_i915_private *dev_priv = dev->dev_private;
3324         struct intel_crtc_state *pipe_config =
3325                 to_intel_crtc_state(crtc->base.state);
3326
3327         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3328         crtc->base.mode = crtc->base.state->mode;
3329
3330         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3331                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3332                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3333
3334         if (HAS_DDI(dev))
3335                 intel_set_pipe_csc(&crtc->base);
3336
3337         /*
3338          * Update pipe size and adjust fitter if needed: the reason for this is
3339          * that in compute_mode_changes we check the native mode (not the pfit
3340          * mode) to see if we can flip rather than do a full mode set. In the
3341          * fastboot case, we'll flip, but if we don't update the pipesrc and
3342          * pfit state, we'll end up with a big fb scanned out into the wrong
3343          * sized surface.
3344          */
3345
3346         I915_WRITE(PIPESRC(crtc->pipe),
3347                    ((pipe_config->pipe_src_w - 1) << 16) |
3348                    (pipe_config->pipe_src_h - 1));
3349
3350         /* on skylake this is done by detaching scalers */
3351         if (INTEL_INFO(dev)->gen >= 9) {
3352                 skl_detach_scalers(crtc);
3353
3354                 if (pipe_config->pch_pfit.enabled)
3355                         skylake_pfit_enable(crtc);
3356         } else if (HAS_PCH_SPLIT(dev)) {
3357                 if (pipe_config->pch_pfit.enabled)
3358                         ironlake_pfit_enable(crtc);
3359                 else if (old_crtc_state->pch_pfit.enabled)
3360                         ironlake_pfit_disable(crtc, true);
3361         }
3362 }
3363
3364 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3365 {
3366         struct drm_device *dev = crtc->dev;
3367         struct drm_i915_private *dev_priv = dev->dev_private;
3368         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3369         int pipe = intel_crtc->pipe;
3370         i915_reg_t reg;
3371         u32 temp;
3372
3373         /* enable normal train */
3374         reg = FDI_TX_CTL(pipe);
3375         temp = I915_READ(reg);
3376         if (IS_IVYBRIDGE(dev)) {
3377                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3378                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3379         } else {
3380                 temp &= ~FDI_LINK_TRAIN_NONE;
3381                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3382         }
3383         I915_WRITE(reg, temp);
3384
3385         reg = FDI_RX_CTL(pipe);
3386         temp = I915_READ(reg);
3387         if (HAS_PCH_CPT(dev)) {
3388                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3389                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3390         } else {
3391                 temp &= ~FDI_LINK_TRAIN_NONE;
3392                 temp |= FDI_LINK_TRAIN_NONE;
3393         }
3394         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3395
3396         /* wait one idle pattern time */
3397         POSTING_READ(reg);
3398         udelay(1000);
3399
3400         /* IVB wants error correction enabled */
3401         if (IS_IVYBRIDGE(dev))
3402                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3403                            FDI_FE_ERRC_ENABLE);
3404 }
3405
3406 /* The FDI link training functions for ILK/Ibexpeak. */
3407 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3408 {
3409         struct drm_device *dev = crtc->dev;
3410         struct drm_i915_private *dev_priv = dev->dev_private;
3411         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3412         int pipe = intel_crtc->pipe;
3413         i915_reg_t reg;
3414         u32 temp, tries;
3415
3416         /* FDI needs bits from pipe first */
3417         assert_pipe_enabled(dev_priv, pipe);
3418
3419         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3420            for train result */
3421         reg = FDI_RX_IMR(pipe);
3422         temp = I915_READ(reg);
3423         temp &= ~FDI_RX_SYMBOL_LOCK;
3424         temp &= ~FDI_RX_BIT_LOCK;
3425         I915_WRITE(reg, temp);
3426         I915_READ(reg);
3427         udelay(150);
3428
3429         /* enable CPU FDI TX and PCH FDI RX */
3430         reg = FDI_TX_CTL(pipe);
3431         temp = I915_READ(reg);
3432         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3433         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3434         temp &= ~FDI_LINK_TRAIN_NONE;
3435         temp |= FDI_LINK_TRAIN_PATTERN_1;
3436         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3437
3438         reg = FDI_RX_CTL(pipe);
3439         temp = I915_READ(reg);
3440         temp &= ~FDI_LINK_TRAIN_NONE;
3441         temp |= FDI_LINK_TRAIN_PATTERN_1;
3442         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3443
3444         POSTING_READ(reg);
3445         udelay(150);
3446
3447         /* Ironlake workaround, enable clock pointer after FDI enable*/
3448         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3449         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3450                    FDI_RX_PHASE_SYNC_POINTER_EN);
3451
3452         reg = FDI_RX_IIR(pipe);
3453         for (tries = 0; tries < 5; tries++) {
3454                 temp = I915_READ(reg);
3455                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3456
3457                 if ((temp & FDI_RX_BIT_LOCK)) {
3458                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3459                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3460                         break;
3461                 }
3462         }
3463         if (tries == 5)
3464                 DRM_ERROR("FDI train 1 fail!\n");
3465
3466         /* Train 2 */
3467         reg = FDI_TX_CTL(pipe);
3468         temp = I915_READ(reg);
3469         temp &= ~FDI_LINK_TRAIN_NONE;
3470         temp |= FDI_LINK_TRAIN_PATTERN_2;
3471         I915_WRITE(reg, temp);
3472
3473         reg = FDI_RX_CTL(pipe);
3474         temp = I915_READ(reg);
3475         temp &= ~FDI_LINK_TRAIN_NONE;
3476         temp |= FDI_LINK_TRAIN_PATTERN_2;
3477         I915_WRITE(reg, temp);
3478
3479         POSTING_READ(reg);
3480         udelay(150);
3481
3482         reg = FDI_RX_IIR(pipe);
3483         for (tries = 0; tries < 5; tries++) {
3484                 temp = I915_READ(reg);
3485                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3486
3487                 if (temp & FDI_RX_SYMBOL_LOCK) {
3488                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3489                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3490                         break;
3491                 }
3492         }
3493         if (tries == 5)
3494                 DRM_ERROR("FDI train 2 fail!\n");
3495
3496         DRM_DEBUG_KMS("FDI train done\n");
3497
3498 }
3499
3500 static const int snb_b_fdi_train_param[] = {
3501         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3502         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3503         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3504         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3505 };
3506
3507 /* The FDI link training functions for SNB/Cougarpoint. */
3508 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3509 {
3510         struct drm_device *dev = crtc->dev;
3511         struct drm_i915_private *dev_priv = dev->dev_private;
3512         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3513         int pipe = intel_crtc->pipe;
3514         i915_reg_t reg;
3515         u32 temp, i, retry;
3516
3517         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3518            for train result */
3519         reg = FDI_RX_IMR(pipe);
3520         temp = I915_READ(reg);
3521         temp &= ~FDI_RX_SYMBOL_LOCK;
3522         temp &= ~FDI_RX_BIT_LOCK;
3523         I915_WRITE(reg, temp);
3524
3525         POSTING_READ(reg);
3526         udelay(150);
3527
3528         /* enable CPU FDI TX and PCH FDI RX */
3529         reg = FDI_TX_CTL(pipe);
3530         temp = I915_READ(reg);
3531         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3532         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3533         temp &= ~FDI_LINK_TRAIN_NONE;
3534         temp |= FDI_LINK_TRAIN_PATTERN_1;
3535         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3536         /* SNB-B */
3537         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3538         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3539
3540         I915_WRITE(FDI_RX_MISC(pipe),
3541                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3542
3543         reg = FDI_RX_CTL(pipe);
3544         temp = I915_READ(reg);
3545         if (HAS_PCH_CPT(dev)) {
3546                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3547                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3548         } else {
3549                 temp &= ~FDI_LINK_TRAIN_NONE;
3550                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3551         }
3552         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3553
3554         POSTING_READ(reg);
3555         udelay(150);
3556
3557         for (i = 0; i < 4; i++) {
3558                 reg = FDI_TX_CTL(pipe);
3559                 temp = I915_READ(reg);
3560                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3561                 temp |= snb_b_fdi_train_param[i];
3562                 I915_WRITE(reg, temp);
3563
3564                 POSTING_READ(reg);
3565                 udelay(500);
3566
3567                 for (retry = 0; retry < 5; retry++) {
3568                         reg = FDI_RX_IIR(pipe);
3569                         temp = I915_READ(reg);
3570                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3571                         if (temp & FDI_RX_BIT_LOCK) {
3572                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3573                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3574                                 break;
3575                         }
3576                         udelay(50);
3577                 }
3578                 if (retry < 5)
3579                         break;
3580         }
3581         if (i == 4)
3582                 DRM_ERROR("FDI train 1 fail!\n");
3583
3584         /* Train 2 */
3585         reg = FDI_TX_CTL(pipe);
3586         temp = I915_READ(reg);
3587         temp &= ~FDI_LINK_TRAIN_NONE;
3588         temp |= FDI_LINK_TRAIN_PATTERN_2;
3589         if (IS_GEN6(dev)) {
3590                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3591                 /* SNB-B */
3592                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3593         }
3594         I915_WRITE(reg, temp);
3595
3596         reg = FDI_RX_CTL(pipe);
3597         temp = I915_READ(reg);
3598         if (HAS_PCH_CPT(dev)) {
3599                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3600                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3601         } else {
3602                 temp &= ~FDI_LINK_TRAIN_NONE;
3603                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3604         }
3605         I915_WRITE(reg, temp);
3606
3607         POSTING_READ(reg);
3608         udelay(150);
3609
3610         for (i = 0; i < 4; i++) {
3611                 reg = FDI_TX_CTL(pipe);
3612                 temp = I915_READ(reg);
3613                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3614                 temp |= snb_b_fdi_train_param[i];
3615                 I915_WRITE(reg, temp);
3616
3617                 POSTING_READ(reg);
3618                 udelay(500);
3619
3620                 for (retry = 0; retry < 5; retry++) {
3621                         reg = FDI_RX_IIR(pipe);
3622                         temp = I915_READ(reg);
3623                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3624                         if (temp & FDI_RX_SYMBOL_LOCK) {
3625                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3626                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3627                                 break;
3628                         }
3629                         udelay(50);
3630                 }
3631                 if (retry < 5)
3632                         break;
3633         }
3634         if (i == 4)
3635                 DRM_ERROR("FDI train 2 fail!\n");
3636
3637         DRM_DEBUG_KMS("FDI train done.\n");
3638 }
3639
3640 /* Manual link training for Ivy Bridge A0 parts */
3641 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3642 {
3643         struct drm_device *dev = crtc->dev;
3644         struct drm_i915_private *dev_priv = dev->dev_private;
3645         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3646         int pipe = intel_crtc->pipe;
3647         i915_reg_t reg;
3648         u32 temp, i, j;
3649
3650         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3651            for train result */
3652         reg = FDI_RX_IMR(pipe);
3653         temp = I915_READ(reg);
3654         temp &= ~FDI_RX_SYMBOL_LOCK;
3655         temp &= ~FDI_RX_BIT_LOCK;
3656         I915_WRITE(reg, temp);
3657
3658         POSTING_READ(reg);
3659         udelay(150);
3660
3661         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3662                       I915_READ(FDI_RX_IIR(pipe)));
3663
3664         /* Try each vswing and preemphasis setting twice before moving on */
3665         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3666                 /* disable first in case we need to retry */
3667                 reg = FDI_TX_CTL(pipe);
3668                 temp = I915_READ(reg);
3669                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3670                 temp &= ~FDI_TX_ENABLE;
3671                 I915_WRITE(reg, temp);
3672
3673                 reg = FDI_RX_CTL(pipe);
3674                 temp = I915_READ(reg);
3675                 temp &= ~FDI_LINK_TRAIN_AUTO;
3676                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3677                 temp &= ~FDI_RX_ENABLE;
3678                 I915_WRITE(reg, temp);
3679
3680                 /* enable CPU FDI TX and PCH FDI RX */
3681                 reg = FDI_TX_CTL(pipe);
3682                 temp = I915_READ(reg);
3683                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3684                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3685                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3686                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3687                 temp |= snb_b_fdi_train_param[j/2];
3688                 temp |= FDI_COMPOSITE_SYNC;
3689                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3690
3691                 I915_WRITE(FDI_RX_MISC(pipe),
3692                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3693
3694                 reg = FDI_RX_CTL(pipe);
3695                 temp = I915_READ(reg);
3696                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3697                 temp |= FDI_COMPOSITE_SYNC;
3698                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3699
3700                 POSTING_READ(reg);
3701                 udelay(1); /* should be 0.5us */
3702
3703                 for (i = 0; i < 4; i++) {
3704                         reg = FDI_RX_IIR(pipe);
3705                         temp = I915_READ(reg);
3706                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3707
3708                         if (temp & FDI_RX_BIT_LOCK ||
3709                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3710                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3711                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3712                                               i);
3713                                 break;
3714                         }
3715                         udelay(1); /* should be 0.5us */
3716                 }
3717                 if (i == 4) {
3718                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3719                         continue;
3720                 }
3721
3722                 /* Train 2 */
3723                 reg = FDI_TX_CTL(pipe);
3724                 temp = I915_READ(reg);
3725                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3726                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3727                 I915_WRITE(reg, temp);
3728
3729                 reg = FDI_RX_CTL(pipe);
3730                 temp = I915_READ(reg);
3731                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3732                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3733                 I915_WRITE(reg, temp);
3734
3735                 POSTING_READ(reg);
3736                 udelay(2); /* should be 1.5us */
3737
3738                 for (i = 0; i < 4; i++) {
3739                         reg = FDI_RX_IIR(pipe);
3740                         temp = I915_READ(reg);
3741                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3742
3743                         if (temp & FDI_RX_SYMBOL_LOCK ||
3744                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3745                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3746                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3747                                               i);
3748                                 goto train_done;
3749                         }
3750                         udelay(2); /* should be 1.5us */
3751                 }
3752                 if (i == 4)
3753                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3754         }
3755
3756 train_done:
3757         DRM_DEBUG_KMS("FDI train done.\n");
3758 }
3759
3760 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3761 {
3762         struct drm_device *dev = intel_crtc->base.dev;
3763         struct drm_i915_private *dev_priv = dev->dev_private;
3764         int pipe = intel_crtc->pipe;
3765         i915_reg_t reg;
3766         u32 temp;
3767
3768         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3769         reg = FDI_RX_CTL(pipe);
3770         temp = I915_READ(reg);
3771         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3772         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3773         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3774         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3775
3776         POSTING_READ(reg);
3777         udelay(200);
3778
3779         /* Switch from Rawclk to PCDclk */
3780         temp = I915_READ(reg);
3781         I915_WRITE(reg, temp | FDI_PCDCLK);
3782
3783         POSTING_READ(reg);
3784         udelay(200);
3785
3786         /* Enable CPU FDI TX PLL, always on for Ironlake */
3787         reg = FDI_TX_CTL(pipe);
3788         temp = I915_READ(reg);
3789         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3790                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3791
3792                 POSTING_READ(reg);
3793                 udelay(100);
3794         }
3795 }
3796
3797 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3798 {
3799         struct drm_device *dev = intel_crtc->base.dev;
3800         struct drm_i915_private *dev_priv = dev->dev_private;
3801         int pipe = intel_crtc->pipe;
3802         i915_reg_t reg;
3803         u32 temp;
3804
3805         /* Switch from PCDclk to Rawclk */
3806         reg = FDI_RX_CTL(pipe);
3807         temp = I915_READ(reg);
3808         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3809
3810         /* Disable CPU FDI TX PLL */
3811         reg = FDI_TX_CTL(pipe);
3812         temp = I915_READ(reg);
3813         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3814
3815         POSTING_READ(reg);
3816         udelay(100);
3817
3818         reg = FDI_RX_CTL(pipe);
3819         temp = I915_READ(reg);
3820         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3821
3822         /* Wait for the clocks to turn off. */
3823         POSTING_READ(reg);
3824         udelay(100);
3825 }
3826
3827 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3828 {
3829         struct drm_device *dev = crtc->dev;
3830         struct drm_i915_private *dev_priv = dev->dev_private;
3831         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3832         int pipe = intel_crtc->pipe;
3833         i915_reg_t reg;
3834         u32 temp;
3835
3836         /* disable CPU FDI tx and PCH FDI rx */
3837         reg = FDI_TX_CTL(pipe);
3838         temp = I915_READ(reg);
3839         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3840         POSTING_READ(reg);
3841
3842         reg = FDI_RX_CTL(pipe);
3843         temp = I915_READ(reg);
3844         temp &= ~(0x7 << 16);
3845         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3846         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3847
3848         POSTING_READ(reg);
3849         udelay(100);
3850
3851         /* Ironlake workaround, disable clock pointer after downing FDI */
3852         if (HAS_PCH_IBX(dev))
3853                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3854
3855         /* still set train pattern 1 */
3856         reg = FDI_TX_CTL(pipe);
3857         temp = I915_READ(reg);
3858         temp &= ~FDI_LINK_TRAIN_NONE;
3859         temp |= FDI_LINK_TRAIN_PATTERN_1;
3860         I915_WRITE(reg, temp);
3861
3862         reg = FDI_RX_CTL(pipe);
3863         temp = I915_READ(reg);
3864         if (HAS_PCH_CPT(dev)) {
3865                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3866                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3867         } else {
3868                 temp &= ~FDI_LINK_TRAIN_NONE;
3869                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3870         }
3871         /* BPC in FDI rx is consistent with that in PIPECONF */
3872         temp &= ~(0x07 << 16);
3873         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3874         I915_WRITE(reg, temp);
3875
3876         POSTING_READ(reg);
3877         udelay(100);
3878 }
3879
3880 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3881 {
3882         struct intel_crtc *crtc;
3883
3884         /* Note that we don't need to be called with mode_config.lock here
3885          * as our list of CRTC objects is static for the lifetime of the
3886          * device and so cannot disappear as we iterate. Similarly, we can
3887          * happily treat the predicates as racy, atomic checks as userspace
3888          * cannot claim and pin a new fb without at least acquring the
3889          * struct_mutex and so serialising with us.
3890          */
3891         for_each_intel_crtc(dev, crtc) {
3892                 if (atomic_read(&crtc->unpin_work_count) == 0)
3893                         continue;
3894
3895                 if (crtc->unpin_work)
3896                         intel_wait_for_vblank(dev, crtc->pipe);
3897
3898                 return true;
3899         }
3900
3901         return false;
3902 }
3903
3904 static void page_flip_completed(struct intel_crtc *intel_crtc)
3905 {
3906         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3907         struct intel_unpin_work *work = intel_crtc->unpin_work;
3908
3909         /* ensure that the unpin work is consistent wrt ->pending. */
3910         smp_rmb();
3911         intel_crtc->unpin_work = NULL;
3912
3913         if (work->event)
3914                 drm_send_vblank_event(intel_crtc->base.dev,
3915                                       intel_crtc->pipe,
3916                                       work->event);
3917
3918         drm_crtc_vblank_put(&intel_crtc->base);
3919
3920         wake_up_all(&dev_priv->pending_flip_queue);
3921         queue_work(dev_priv->wq, &work->work);
3922
3923         trace_i915_flip_complete(intel_crtc->plane,
3924                                  work->pending_flip_obj);
3925 }
3926
3927 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3928 {
3929         struct drm_device *dev = crtc->dev;
3930         struct drm_i915_private *dev_priv = dev->dev_private;
3931         long ret;
3932
3933         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3934
3935         ret = wait_event_interruptible_timeout(
3936                                         dev_priv->pending_flip_queue,
3937                                         !intel_crtc_has_pending_flip(crtc),
3938                                         60*HZ);
3939
3940         if (ret < 0)
3941                 return ret;
3942
3943         if (ret == 0) {
3944                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3945
3946                 spin_lock_irq(&dev->event_lock);
3947                 if (intel_crtc->unpin_work) {
3948                         WARN_ONCE(1, "Removing stuck page flip\n");
3949                         page_flip_completed(intel_crtc);
3950                 }
3951                 spin_unlock_irq(&dev->event_lock);
3952         }
3953
3954         return 0;
3955 }
3956
3957 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3958 {
3959         u32 temp;
3960
3961         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3962
3963         mutex_lock(&dev_priv->sb_lock);
3964
3965         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3966         temp |= SBI_SSCCTL_DISABLE;
3967         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3968
3969         mutex_unlock(&dev_priv->sb_lock);
3970 }
3971
3972 /* Program iCLKIP clock to the desired frequency */
3973 static void lpt_program_iclkip(struct drm_crtc *crtc)
3974 {
3975         struct drm_device *dev = crtc->dev;
3976         struct drm_i915_private *dev_priv = dev->dev_private;
3977         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3978         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3979         u32 temp;
3980
3981         lpt_disable_iclkip(dev_priv);
3982
3983         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3984         if (clock == 20000) {
3985                 auxdiv = 1;
3986                 divsel = 0x41;
3987                 phaseinc = 0x20;
3988         } else {
3989                 /* The iCLK virtual clock root frequency is in MHz,
3990                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3991                  * divisors, it is necessary to divide one by another, so we
3992                  * convert the virtual clock precision to KHz here for higher
3993                  * precision.
3994                  */
3995                 u32 iclk_virtual_root_freq = 172800 * 1000;
3996                 u32 iclk_pi_range = 64;
3997                 u32 desired_divisor, msb_divisor_value, pi_value;
3998
3999                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, clock);
4000                 msb_divisor_value = desired_divisor / iclk_pi_range;
4001                 pi_value = desired_divisor % iclk_pi_range;
4002
4003                 auxdiv = 0;
4004                 divsel = msb_divisor_value - 2;
4005                 phaseinc = pi_value;
4006         }
4007
4008         /* This should not happen with any sane values */
4009         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4010                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4011         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4012                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4013
4014         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4015                         clock,
4016                         auxdiv,
4017                         divsel,
4018                         phasedir,
4019                         phaseinc);
4020
4021         mutex_lock(&dev_priv->sb_lock);
4022
4023         /* Program SSCDIVINTPHASE6 */
4024         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4025         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4026         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4027         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4028         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4029         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4030         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4031         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4032
4033         /* Program SSCAUXDIV */
4034         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4035         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4036         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4037         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4038
4039         /* Enable modulator and associated divider */
4040         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4041         temp &= ~SBI_SSCCTL_DISABLE;
4042         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4043
4044         mutex_unlock(&dev_priv->sb_lock);
4045
4046         /* Wait for initialization time */
4047         udelay(24);
4048
4049         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4050 }
4051
4052 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4053                                                 enum pipe pch_transcoder)
4054 {
4055         struct drm_device *dev = crtc->base.dev;
4056         struct drm_i915_private *dev_priv = dev->dev_private;
4057         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4058
4059         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4060                    I915_READ(HTOTAL(cpu_transcoder)));
4061         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4062                    I915_READ(HBLANK(cpu_transcoder)));
4063         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4064                    I915_READ(HSYNC(cpu_transcoder)));
4065
4066         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4067                    I915_READ(VTOTAL(cpu_transcoder)));
4068         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4069                    I915_READ(VBLANK(cpu_transcoder)));
4070         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4071                    I915_READ(VSYNC(cpu_transcoder)));
4072         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4073                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4074 }
4075
4076 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4077 {
4078         struct drm_i915_private *dev_priv = dev->dev_private;
4079         uint32_t temp;
4080
4081         temp = I915_READ(SOUTH_CHICKEN1);
4082         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4083                 return;
4084
4085         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4086         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4087
4088         temp &= ~FDI_BC_BIFURCATION_SELECT;
4089         if (enable)
4090                 temp |= FDI_BC_BIFURCATION_SELECT;
4091
4092         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4093         I915_WRITE(SOUTH_CHICKEN1, temp);
4094         POSTING_READ(SOUTH_CHICKEN1);
4095 }
4096
4097 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4098 {
4099         struct drm_device *dev = intel_crtc->base.dev;
4100
4101         switch (intel_crtc->pipe) {
4102         case PIPE_A:
4103                 break;
4104         case PIPE_B:
4105                 if (intel_crtc->config->fdi_lanes > 2)
4106                         cpt_set_fdi_bc_bifurcation(dev, false);
4107                 else
4108                         cpt_set_fdi_bc_bifurcation(dev, true);
4109
4110                 break;
4111         case PIPE_C:
4112                 cpt_set_fdi_bc_bifurcation(dev, true);
4113
4114                 break;
4115         default:
4116                 BUG();
4117         }
4118 }
4119
4120 /* Return which DP Port should be selected for Transcoder DP control */
4121 static enum port
4122 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4123 {
4124         struct drm_device *dev = crtc->dev;
4125         struct intel_encoder *encoder;
4126
4127         for_each_encoder_on_crtc(dev, crtc, encoder) {
4128                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4129                     encoder->type == INTEL_OUTPUT_EDP)
4130                         return enc_to_dig_port(&encoder->base)->port;
4131         }
4132
4133         return -1;
4134 }
4135
4136 /*
4137  * Enable PCH resources required for PCH ports:
4138  *   - PCH PLLs
4139  *   - FDI training & RX/TX
4140  *   - update transcoder timings
4141  *   - DP transcoding bits
4142  *   - transcoder
4143  */
4144 static void ironlake_pch_enable(struct drm_crtc *crtc)
4145 {
4146         struct drm_device *dev = crtc->dev;
4147         struct drm_i915_private *dev_priv = dev->dev_private;
4148         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4149         int pipe = intel_crtc->pipe;
4150         u32 temp;
4151
4152         assert_pch_transcoder_disabled(dev_priv, pipe);
4153
4154         if (IS_IVYBRIDGE(dev))
4155                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4156
4157         /* Write the TU size bits before fdi link training, so that error
4158          * detection works. */
4159         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4160                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4161
4162         /*
4163          * Sometimes spurious CPU pipe underruns happen during FDI
4164          * training, at least with VGA+HDMI cloning. Suppress them.
4165          */
4166         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4167
4168         /* For PCH output, training FDI link */
4169         dev_priv->display.fdi_link_train(crtc);
4170
4171         /* We need to program the right clock selection before writing the pixel
4172          * mutliplier into the DPLL. */
4173         if (HAS_PCH_CPT(dev)) {
4174                 u32 sel;
4175
4176                 temp = I915_READ(PCH_DPLL_SEL);
4177                 temp |= TRANS_DPLL_ENABLE(pipe);
4178                 sel = TRANS_DPLLB_SEL(pipe);
4179                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4180                         temp |= sel;
4181                 else
4182                         temp &= ~sel;
4183                 I915_WRITE(PCH_DPLL_SEL, temp);
4184         }
4185
4186         /* XXX: pch pll's can be enabled any time before we enable the PCH
4187          * transcoder, and we actually should do this to not upset any PCH
4188          * transcoder that already use the clock when we share it.
4189          *
4190          * Note that enable_shared_dpll tries to do the right thing, but
4191          * get_shared_dpll unconditionally resets the pll - we need that to have
4192          * the right LVDS enable sequence. */
4193         intel_enable_shared_dpll(intel_crtc);
4194
4195         /* set transcoder timing, panel must allow it */
4196         assert_panel_unlocked(dev_priv, pipe);
4197         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4198
4199         intel_fdi_normal_train(crtc);
4200
4201         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4202
4203         /* For PCH DP, enable TRANS_DP_CTL */
4204         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4205                 const struct drm_display_mode *adjusted_mode =
4206                         &intel_crtc->config->base.adjusted_mode;
4207                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4208                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4209                 temp = I915_READ(reg);
4210                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4211                           TRANS_DP_SYNC_MASK |
4212                           TRANS_DP_BPC_MASK);
4213                 temp |= TRANS_DP_OUTPUT_ENABLE;
4214                 temp |= bpc << 9; /* same format but at 11:9 */
4215
4216                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4217                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4218                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4219                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4220
4221                 switch (intel_trans_dp_port_sel(crtc)) {
4222                 case PORT_B:
4223                         temp |= TRANS_DP_PORT_SEL_B;
4224                         break;
4225                 case PORT_C:
4226                         temp |= TRANS_DP_PORT_SEL_C;
4227                         break;
4228                 case PORT_D:
4229                         temp |= TRANS_DP_PORT_SEL_D;
4230                         break;
4231                 default:
4232                         BUG();
4233                 }
4234
4235                 I915_WRITE(reg, temp);
4236         }
4237
4238         ironlake_enable_pch_transcoder(dev_priv, pipe);
4239 }
4240
4241 static void lpt_pch_enable(struct drm_crtc *crtc)
4242 {
4243         struct drm_device *dev = crtc->dev;
4244         struct drm_i915_private *dev_priv = dev->dev_private;
4245         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4246         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4247
4248         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4249
4250         lpt_program_iclkip(crtc);
4251
4252         /* Set transcoder timing. */
4253         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4254
4255         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4256 }
4257
4258 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4259                                                 struct intel_crtc_state *crtc_state)
4260 {
4261         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4262         struct intel_shared_dpll *pll;
4263         struct intel_shared_dpll_config *shared_dpll;
4264         enum intel_dpll_id i;
4265         int max = dev_priv->num_shared_dpll;
4266
4267         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4268
4269         if (HAS_PCH_IBX(dev_priv->dev)) {
4270                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4271                 i = (enum intel_dpll_id) crtc->pipe;
4272                 pll = &dev_priv->shared_dplls[i];
4273
4274                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4275                               crtc->base.base.id, pll->name);
4276
4277                 WARN_ON(shared_dpll[i].crtc_mask);
4278
4279                 goto found;
4280         }
4281
4282         if (IS_BROXTON(dev_priv->dev)) {
4283                 /* PLL is attached to port in bxt */
4284                 struct intel_encoder *encoder;
4285                 struct intel_digital_port *intel_dig_port;
4286
4287                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4288                 if (WARN_ON(!encoder))
4289                         return NULL;
4290
4291                 intel_dig_port = enc_to_dig_port(&encoder->base);
4292                 /* 1:1 mapping between ports and PLLs */
4293                 i = (enum intel_dpll_id)intel_dig_port->port;
4294                 pll = &dev_priv->shared_dplls[i];
4295                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4296                         crtc->base.base.id, pll->name);
4297                 WARN_ON(shared_dpll[i].crtc_mask);
4298
4299                 goto found;
4300         } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4301                 /* Do not consider SPLL */
4302                 max = 2;
4303
4304         for (i = 0; i < max; i++) {
4305                 pll = &dev_priv->shared_dplls[i];
4306
4307                 /* Only want to check enabled timings first */
4308                 if (shared_dpll[i].crtc_mask == 0)
4309                         continue;
4310
4311                 if (memcmp(&crtc_state->dpll_hw_state,
4312                            &shared_dpll[i].hw_state,
4313                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4314                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4315                                       crtc->base.base.id, pll->name,
4316                                       shared_dpll[i].crtc_mask,
4317                                       pll->active);
4318                         goto found;
4319                 }
4320         }
4321
4322         /* Ok no matching timings, maybe there's a free one? */
4323         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4324                 pll = &dev_priv->shared_dplls[i];
4325                 if (shared_dpll[i].crtc_mask == 0) {
4326                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4327                                       crtc->base.base.id, pll->name);
4328                         goto found;
4329                 }
4330         }
4331
4332         return NULL;
4333
4334 found:
4335         if (shared_dpll[i].crtc_mask == 0)
4336                 shared_dpll[i].hw_state =
4337                         crtc_state->dpll_hw_state;
4338
4339         crtc_state->shared_dpll = i;
4340         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4341                          pipe_name(crtc->pipe));
4342
4343         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4344
4345         return pll;
4346 }
4347
4348 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4349 {
4350         struct drm_i915_private *dev_priv = to_i915(state->dev);
4351         struct intel_shared_dpll_config *shared_dpll;
4352         struct intel_shared_dpll *pll;
4353         enum intel_dpll_id i;
4354
4355         if (!to_intel_atomic_state(state)->dpll_set)
4356                 return;
4357
4358         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4359         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4360                 pll = &dev_priv->shared_dplls[i];
4361                 pll->config = shared_dpll[i];
4362         }
4363 }
4364
4365 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4366 {
4367         struct drm_i915_private *dev_priv = dev->dev_private;
4368         i915_reg_t dslreg = PIPEDSL(pipe);
4369         u32 temp;
4370
4371         temp = I915_READ(dslreg);
4372         udelay(500);
4373         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4374                 if (wait_for(I915_READ(dslreg) != temp, 5))
4375                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4376         }
4377 }
4378
4379 static int
4380 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4381                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4382                   int src_w, int src_h, int dst_w, int dst_h)
4383 {
4384         struct intel_crtc_scaler_state *scaler_state =
4385                 &crtc_state->scaler_state;
4386         struct intel_crtc *intel_crtc =
4387                 to_intel_crtc(crtc_state->base.crtc);
4388         int need_scaling;
4389
4390         need_scaling = intel_rotation_90_or_270(rotation) ?
4391                 (src_h != dst_w || src_w != dst_h):
4392                 (src_w != dst_w || src_h != dst_h);
4393
4394         /*
4395          * if plane is being disabled or scaler is no more required or force detach
4396          *  - free scaler binded to this plane/crtc
4397          *  - in order to do this, update crtc->scaler_usage
4398          *
4399          * Here scaler state in crtc_state is set free so that
4400          * scaler can be assigned to other user. Actual register
4401          * update to free the scaler is done in plane/panel-fit programming.
4402          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4403          */
4404         if (force_detach || !need_scaling) {
4405                 if (*scaler_id >= 0) {
4406                         scaler_state->scaler_users &= ~(1 << scaler_user);
4407                         scaler_state->scalers[*scaler_id].in_use = 0;
4408
4409                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4410                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4411                                 intel_crtc->pipe, scaler_user, *scaler_id,
4412                                 scaler_state->scaler_users);
4413                         *scaler_id = -1;
4414                 }
4415                 return 0;
4416         }
4417
4418         /* range checks */
4419         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4420                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4421
4422                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4423                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4424                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4425                         "size is out of scaler range\n",
4426                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4427                 return -EINVAL;
4428         }
4429
4430         /* mark this plane as a scaler user in crtc_state */
4431         scaler_state->scaler_users |= (1 << scaler_user);
4432         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4433                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4434                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4435                 scaler_state->scaler_users);
4436
4437         return 0;
4438 }
4439
4440 /**
4441  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4442  *
4443  * @state: crtc's scaler state
4444  *
4445  * Return
4446  *     0 - scaler_usage updated successfully
4447  *    error - requested scaling cannot be supported or other error condition
4448  */
4449 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4450 {
4451         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4452         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4453
4454         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4455                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4456
4457         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4458                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4459                 state->pipe_src_w, state->pipe_src_h,
4460                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4461 }
4462
4463 /**
4464  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4465  *
4466  * @state: crtc's scaler state
4467  * @plane_state: atomic plane state to update
4468  *
4469  * Return
4470  *     0 - scaler_usage updated successfully
4471  *    error - requested scaling cannot be supported or other error condition
4472  */
4473 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4474                                    struct intel_plane_state *plane_state)
4475 {
4476
4477         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4478         struct intel_plane *intel_plane =
4479                 to_intel_plane(plane_state->base.plane);
4480         struct drm_framebuffer *fb = plane_state->base.fb;
4481         int ret;
4482
4483         bool force_detach = !fb || !plane_state->visible;
4484
4485         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4486                       intel_plane->base.base.id, intel_crtc->pipe,
4487                       drm_plane_index(&intel_plane->base));
4488
4489         ret = skl_update_scaler(crtc_state, force_detach,
4490                                 drm_plane_index(&intel_plane->base),
4491                                 &plane_state->scaler_id,
4492                                 plane_state->base.rotation,
4493                                 drm_rect_width(&plane_state->src) >> 16,
4494                                 drm_rect_height(&plane_state->src) >> 16,
4495                                 drm_rect_width(&plane_state->dst),
4496                                 drm_rect_height(&plane_state->dst));
4497
4498         if (ret || plane_state->scaler_id < 0)
4499                 return ret;
4500
4501         /* check colorkey */
4502         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4503                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4504                               intel_plane->base.base.id);
4505                 return -EINVAL;
4506         }
4507
4508         /* Check src format */
4509         switch (fb->pixel_format) {
4510         case DRM_FORMAT_RGB565:
4511         case DRM_FORMAT_XBGR8888:
4512         case DRM_FORMAT_XRGB8888:
4513         case DRM_FORMAT_ABGR8888:
4514         case DRM_FORMAT_ARGB8888:
4515         case DRM_FORMAT_XRGB2101010:
4516         case DRM_FORMAT_XBGR2101010:
4517         case DRM_FORMAT_YUYV:
4518         case DRM_FORMAT_YVYU:
4519         case DRM_FORMAT_UYVY:
4520         case DRM_FORMAT_VYUY:
4521                 break;
4522         default:
4523                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4524                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4525                 return -EINVAL;
4526         }
4527
4528         return 0;
4529 }
4530
4531 static void skylake_scaler_disable(struct intel_crtc *crtc)
4532 {
4533         int i;
4534
4535         for (i = 0; i < crtc->num_scalers; i++)
4536                 skl_detach_scaler(crtc, i);
4537 }
4538
4539 static void skylake_pfit_enable(struct intel_crtc *crtc)
4540 {
4541         struct drm_device *dev = crtc->base.dev;
4542         struct drm_i915_private *dev_priv = dev->dev_private;
4543         int pipe = crtc->pipe;
4544         struct intel_crtc_scaler_state *scaler_state =
4545                 &crtc->config->scaler_state;
4546
4547         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4548
4549         if (crtc->config->pch_pfit.enabled) {
4550                 int id;
4551
4552                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4553                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4554                         return;
4555                 }
4556
4557                 id = scaler_state->scaler_id;
4558                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4559                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4560                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4561                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4562
4563                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4564         }
4565 }
4566
4567 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4568 {
4569         struct drm_device *dev = crtc->base.dev;
4570         struct drm_i915_private *dev_priv = dev->dev_private;
4571         int pipe = crtc->pipe;
4572
4573         if (crtc->config->pch_pfit.enabled) {
4574                 /* Force use of hard-coded filter coefficients
4575                  * as some pre-programmed values are broken,
4576                  * e.g. x201.
4577                  */
4578                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4579                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4580                                                  PF_PIPE_SEL_IVB(pipe));
4581                 else
4582                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4583                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4584                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4585         }
4586 }
4587
4588 void hsw_enable_ips(struct intel_crtc *crtc)
4589 {
4590         struct drm_device *dev = crtc->base.dev;
4591         struct drm_i915_private *dev_priv = dev->dev_private;
4592
4593         if (!crtc->config->ips_enabled)
4594                 return;
4595
4596         /* We can only enable IPS after we enable a plane and wait for a vblank */
4597         intel_wait_for_vblank(dev, crtc->pipe);
4598
4599         assert_plane_enabled(dev_priv, crtc->plane);
4600         if (IS_BROADWELL(dev)) {
4601                 mutex_lock(&dev_priv->rps.hw_lock);
4602                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4603                 mutex_unlock(&dev_priv->rps.hw_lock);
4604                 /* Quoting Art Runyan: "its not safe to expect any particular
4605                  * value in IPS_CTL bit 31 after enabling IPS through the
4606                  * mailbox." Moreover, the mailbox may return a bogus state,
4607                  * so we need to just enable it and continue on.
4608                  */
4609         } else {
4610                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4611                 /* The bit only becomes 1 in the next vblank, so this wait here
4612                  * is essentially intel_wait_for_vblank. If we don't have this
4613                  * and don't wait for vblanks until the end of crtc_enable, then
4614                  * the HW state readout code will complain that the expected
4615                  * IPS_CTL value is not the one we read. */
4616                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4617                         DRM_ERROR("Timed out waiting for IPS enable\n");
4618         }
4619 }
4620
4621 void hsw_disable_ips(struct intel_crtc *crtc)
4622 {
4623         struct drm_device *dev = crtc->base.dev;
4624         struct drm_i915_private *dev_priv = dev->dev_private;
4625
4626         if (!crtc->config->ips_enabled)
4627                 return;
4628
4629         assert_plane_enabled(dev_priv, crtc->plane);
4630         if (IS_BROADWELL(dev)) {
4631                 mutex_lock(&dev_priv->rps.hw_lock);
4632                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4633                 mutex_unlock(&dev_priv->rps.hw_lock);
4634                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4635                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4636                         DRM_ERROR("Timed out waiting for IPS disable\n");
4637         } else {
4638                 I915_WRITE(IPS_CTL, 0);
4639                 POSTING_READ(IPS_CTL);
4640         }
4641
4642         /* We need to wait for a vblank before we can disable the plane. */
4643         intel_wait_for_vblank(dev, crtc->pipe);
4644 }
4645
4646 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4647 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4648 {
4649         struct drm_device *dev = crtc->dev;
4650         struct drm_i915_private *dev_priv = dev->dev_private;
4651         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4652         enum pipe pipe = intel_crtc->pipe;
4653         int i;
4654         bool reenable_ips = false;
4655
4656         /* The clocks have to be on to load the palette. */
4657         if (!crtc->state->active)
4658                 return;
4659
4660         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4661                 if (intel_crtc->config->has_dsi_encoder)
4662                         assert_dsi_pll_enabled(dev_priv);
4663                 else
4664                         assert_pll_enabled(dev_priv, pipe);
4665         }
4666
4667         /* Workaround : Do not read or write the pipe palette/gamma data while
4668          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4669          */
4670         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4671             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4672              GAMMA_MODE_MODE_SPLIT)) {
4673                 hsw_disable_ips(intel_crtc);
4674                 reenable_ips = true;
4675         }
4676
4677         for (i = 0; i < 256; i++) {
4678                 i915_reg_t palreg;
4679
4680                 if (HAS_GMCH_DISPLAY(dev))
4681                         palreg = PALETTE(pipe, i);
4682                 else
4683                         palreg = LGC_PALETTE(pipe, i);
4684
4685                 I915_WRITE(palreg,
4686                            (intel_crtc->lut_r[i] << 16) |
4687                            (intel_crtc->lut_g[i] << 8) |
4688                            intel_crtc->lut_b[i]);
4689         }
4690
4691         if (reenable_ips)
4692                 hsw_enable_ips(intel_crtc);
4693 }
4694
4695 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4696 {
4697         if (intel_crtc->overlay) {
4698                 struct drm_device *dev = intel_crtc->base.dev;
4699                 struct drm_i915_private *dev_priv = dev->dev_private;
4700
4701                 mutex_lock(&dev->struct_mutex);
4702                 dev_priv->mm.interruptible = false;
4703                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4704                 dev_priv->mm.interruptible = true;
4705                 mutex_unlock(&dev->struct_mutex);
4706         }
4707
4708         /* Let userspace switch the overlay on again. In most cases userspace
4709          * has to recompute where to put it anyway.
4710          */
4711 }
4712
4713 /**
4714  * intel_post_enable_primary - Perform operations after enabling primary plane
4715  * @crtc: the CRTC whose primary plane was just enabled
4716  *
4717  * Performs potentially sleeping operations that must be done after the primary
4718  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4719  * called due to an explicit primary plane update, or due to an implicit
4720  * re-enable that is caused when a sprite plane is updated to no longer
4721  * completely hide the primary plane.
4722  */
4723 static void
4724 intel_post_enable_primary(struct drm_crtc *crtc)
4725 {
4726         struct drm_device *dev = crtc->dev;
4727         struct drm_i915_private *dev_priv = dev->dev_private;
4728         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4729         int pipe = intel_crtc->pipe;
4730
4731         /*
4732          * FIXME IPS should be fine as long as one plane is
4733          * enabled, but in practice it seems to have problems
4734          * when going from primary only to sprite only and vice
4735          * versa.
4736          */
4737         hsw_enable_ips(intel_crtc);
4738
4739         /*
4740          * Gen2 reports pipe underruns whenever all planes are disabled.
4741          * So don't enable underrun reporting before at least some planes
4742          * are enabled.
4743          * FIXME: Need to fix the logic to work when we turn off all planes
4744          * but leave the pipe running.
4745          */
4746         if (IS_GEN2(dev))
4747                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4748
4749         /* Underruns don't always raise interrupts, so check manually. */
4750         intel_check_cpu_fifo_underruns(dev_priv);
4751         intel_check_pch_fifo_underruns(dev_priv);
4752 }
4753
4754 /**
4755  * intel_pre_disable_primary - Perform operations before disabling primary plane
4756  * @crtc: the CRTC whose primary plane is to be disabled
4757  *
4758  * Performs potentially sleeping operations that must be done before the
4759  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4760  * be called due to an explicit primary plane update, or due to an implicit
4761  * disable that is caused when a sprite plane completely hides the primary
4762  * plane.
4763  */
4764 static void
4765 intel_pre_disable_primary(struct drm_crtc *crtc)
4766 {
4767         struct drm_device *dev = crtc->dev;
4768         struct drm_i915_private *dev_priv = dev->dev_private;
4769         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4770         int pipe = intel_crtc->pipe;
4771
4772         /*
4773          * Gen2 reports pipe underruns whenever all planes are disabled.
4774          * So diasble underrun reporting before all the planes get disabled.
4775          * FIXME: Need to fix the logic to work when we turn off all planes
4776          * but leave the pipe running.
4777          */
4778         if (IS_GEN2(dev))
4779                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4780
4781         /*
4782          * Vblank time updates from the shadow to live plane control register
4783          * are blocked if the memory self-refresh mode is active at that
4784          * moment. So to make sure the plane gets truly disabled, disable
4785          * first the self-refresh mode. The self-refresh enable bit in turn
4786          * will be checked/applied by the HW only at the next frame start
4787          * event which is after the vblank start event, so we need to have a
4788          * wait-for-vblank between disabling the plane and the pipe.
4789          */
4790         if (HAS_GMCH_DISPLAY(dev)) {
4791                 intel_set_memory_cxsr(dev_priv, false);
4792                 dev_priv->wm.vlv.cxsr = false;
4793                 intel_wait_for_vblank(dev, pipe);
4794         }
4795
4796         /*
4797          * FIXME IPS should be fine as long as one plane is
4798          * enabled, but in practice it seems to have problems
4799          * when going from primary only to sprite only and vice
4800          * versa.
4801          */
4802         hsw_disable_ips(intel_crtc);
4803 }
4804
4805 static void intel_post_plane_update(struct intel_crtc *crtc)
4806 {
4807         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4808         struct intel_crtc_state *pipe_config =
4809                 to_intel_crtc_state(crtc->base.state);
4810         struct drm_device *dev = crtc->base.dev;
4811
4812         if (atomic->wait_vblank)
4813                 intel_wait_for_vblank(dev, crtc->pipe);
4814
4815         intel_frontbuffer_flip(dev, atomic->fb_bits);
4816
4817         crtc->wm.cxsr_allowed = true;
4818
4819         if (pipe_config->wm_changed && pipe_config->base.active)
4820                 intel_update_watermarks(&crtc->base);
4821
4822         if (atomic->update_fbc)
4823                 intel_fbc_update(crtc);
4824
4825         if (atomic->post_enable_primary)
4826                 intel_post_enable_primary(&crtc->base);
4827
4828         memset(atomic, 0, sizeof(*atomic));
4829 }
4830
4831 static void intel_pre_plane_update(struct intel_crtc *crtc)
4832 {
4833         struct drm_device *dev = crtc->base.dev;
4834         struct drm_i915_private *dev_priv = dev->dev_private;
4835         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4836         struct intel_crtc_state *pipe_config =
4837                 to_intel_crtc_state(crtc->base.state);
4838
4839         if (atomic->disable_fbc)
4840                 intel_fbc_deactivate(crtc);
4841
4842         if (crtc->atomic.disable_ips)
4843                 hsw_disable_ips(crtc);
4844
4845         if (atomic->pre_disable_primary)
4846                 intel_pre_disable_primary(&crtc->base);
4847
4848         if (pipe_config->disable_cxsr) {
4849                 crtc->wm.cxsr_allowed = false;
4850                 intel_set_memory_cxsr(dev_priv, false);
4851         }
4852
4853         if (!needs_modeset(&pipe_config->base) && pipe_config->wm_changed)
4854                 intel_update_watermarks(&crtc->base);
4855 }
4856
4857 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4858 {
4859         struct drm_device *dev = crtc->dev;
4860         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4861         struct drm_plane *p;
4862         int pipe = intel_crtc->pipe;
4863
4864         intel_crtc_dpms_overlay_disable(intel_crtc);
4865
4866         drm_for_each_plane_mask(p, dev, plane_mask)
4867                 to_intel_plane(p)->disable_plane(p, crtc);
4868
4869         /*
4870          * FIXME: Once we grow proper nuclear flip support out of this we need
4871          * to compute the mask of flip planes precisely. For the time being
4872          * consider this a flip to a NULL plane.
4873          */
4874         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4875 }
4876
4877 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4878 {
4879         struct drm_device *dev = crtc->dev;
4880         struct drm_i915_private *dev_priv = dev->dev_private;
4881         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4882         struct intel_encoder *encoder;
4883         int pipe = intel_crtc->pipe;
4884
4885         if (WARN_ON(intel_crtc->active))
4886                 return;
4887
4888         if (intel_crtc->config->has_pch_encoder)
4889                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4890
4891         if (intel_crtc->config->has_pch_encoder)
4892                 intel_prepare_shared_dpll(intel_crtc);
4893
4894         if (intel_crtc->config->has_dp_encoder)
4895                 intel_dp_set_m_n(intel_crtc, M1_N1);
4896
4897         intel_set_pipe_timings(intel_crtc);
4898
4899         if (intel_crtc->config->has_pch_encoder) {
4900                 intel_cpu_transcoder_set_m_n(intel_crtc,
4901                                      &intel_crtc->config->fdi_m_n, NULL);
4902         }
4903
4904         ironlake_set_pipeconf(crtc);
4905
4906         intel_crtc->active = true;
4907
4908         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4909
4910         for_each_encoder_on_crtc(dev, crtc, encoder)
4911                 if (encoder->pre_enable)
4912                         encoder->pre_enable(encoder);
4913
4914         if (intel_crtc->config->has_pch_encoder) {
4915                 /* Note: FDI PLL enabling _must_ be done before we enable the
4916                  * cpu pipes, hence this is separate from all the other fdi/pch
4917                  * enabling. */
4918                 ironlake_fdi_pll_enable(intel_crtc);
4919         } else {
4920                 assert_fdi_tx_disabled(dev_priv, pipe);
4921                 assert_fdi_rx_disabled(dev_priv, pipe);
4922         }
4923
4924         ironlake_pfit_enable(intel_crtc);
4925
4926         /*
4927          * On ILK+ LUT must be loaded before the pipe is running but with
4928          * clocks enabled
4929          */
4930         intel_crtc_load_lut(crtc);
4931
4932         intel_update_watermarks(crtc);
4933         intel_enable_pipe(intel_crtc);
4934
4935         if (intel_crtc->config->has_pch_encoder)
4936                 ironlake_pch_enable(crtc);
4937
4938         assert_vblank_disabled(crtc);
4939         drm_crtc_vblank_on(crtc);
4940
4941         for_each_encoder_on_crtc(dev, crtc, encoder)
4942                 encoder->enable(encoder);
4943
4944         if (HAS_PCH_CPT(dev))
4945                 cpt_verify_modeset(dev, intel_crtc->pipe);
4946
4947         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4948         if (intel_crtc->config->has_pch_encoder)
4949                 intel_wait_for_vblank(dev, pipe);
4950         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4951
4952         intel_fbc_enable(intel_crtc);
4953 }
4954
4955 /* IPS only exists on ULT machines and is tied to pipe A. */
4956 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4957 {
4958         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4959 }
4960
4961 static void haswell_crtc_enable(struct drm_crtc *crtc)
4962 {
4963         struct drm_device *dev = crtc->dev;
4964         struct drm_i915_private *dev_priv = dev->dev_private;
4965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4966         struct intel_encoder *encoder;
4967         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4968         struct intel_crtc_state *pipe_config =
4969                 to_intel_crtc_state(crtc->state);
4970
4971         if (WARN_ON(intel_crtc->active))
4972                 return;
4973
4974         if (intel_crtc->config->has_pch_encoder)
4975                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4976                                                       false);
4977
4978         if (intel_crtc_to_shared_dpll(intel_crtc))
4979                 intel_enable_shared_dpll(intel_crtc);
4980
4981         if (intel_crtc->config->has_dp_encoder)
4982                 intel_dp_set_m_n(intel_crtc, M1_N1);
4983
4984         intel_set_pipe_timings(intel_crtc);
4985
4986         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4987                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4988                            intel_crtc->config->pixel_multiplier - 1);
4989         }
4990
4991         if (intel_crtc->config->has_pch_encoder) {
4992                 intel_cpu_transcoder_set_m_n(intel_crtc,
4993                                      &intel_crtc->config->fdi_m_n, NULL);
4994         }
4995
4996         haswell_set_pipeconf(crtc);
4997
4998         intel_set_pipe_csc(crtc);
4999
5000         intel_crtc->active = true;
5001
5002         if (intel_crtc->config->has_pch_encoder)
5003                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5004         else
5005                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5006
5007         for_each_encoder_on_crtc(dev, crtc, encoder) {
5008                 if (encoder->pre_enable)
5009                         encoder->pre_enable(encoder);
5010         }
5011
5012         if (intel_crtc->config->has_pch_encoder)
5013                 dev_priv->display.fdi_link_train(crtc);
5014
5015         if (!intel_crtc->config->has_dsi_encoder)
5016                 intel_ddi_enable_pipe_clock(intel_crtc);
5017
5018         if (INTEL_INFO(dev)->gen >= 9)
5019                 skylake_pfit_enable(intel_crtc);
5020         else
5021                 ironlake_pfit_enable(intel_crtc);
5022
5023         /*
5024          * On ILK+ LUT must be loaded before the pipe is running but with
5025          * clocks enabled
5026          */
5027         intel_crtc_load_lut(crtc);
5028
5029         intel_ddi_set_pipe_settings(crtc);
5030         if (!intel_crtc->config->has_dsi_encoder)
5031                 intel_ddi_enable_transcoder_func(crtc);
5032
5033         intel_update_watermarks(crtc);
5034         intel_enable_pipe(intel_crtc);
5035
5036         if (intel_crtc->config->has_pch_encoder)
5037                 lpt_pch_enable(crtc);
5038
5039         if (intel_crtc->config->dp_encoder_is_mst)
5040                 intel_ddi_set_vc_payload_alloc(crtc, true);
5041
5042         assert_vblank_disabled(crtc);
5043         drm_crtc_vblank_on(crtc);
5044
5045         for_each_encoder_on_crtc(dev, crtc, encoder) {
5046                 encoder->enable(encoder);
5047                 intel_opregion_notify_encoder(encoder, true);
5048         }
5049
5050         if (intel_crtc->config->has_pch_encoder) {
5051                 intel_wait_for_vblank(dev, pipe);
5052                 intel_wait_for_vblank(dev, pipe);
5053                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5054                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5055                                                       true);
5056         }
5057
5058         /* If we change the relative order between pipe/planes enabling, we need
5059          * to change the workaround. */
5060         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5061         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5062                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5063                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5064         }
5065
5066         intel_fbc_enable(intel_crtc);
5067 }
5068
5069 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5070 {
5071         struct drm_device *dev = crtc->base.dev;
5072         struct drm_i915_private *dev_priv = dev->dev_private;
5073         int pipe = crtc->pipe;
5074
5075         /* To avoid upsetting the power well on haswell only disable the pfit if
5076          * it's in use. The hw state code will make sure we get this right. */
5077         if (force || crtc->config->pch_pfit.enabled) {
5078                 I915_WRITE(PF_CTL(pipe), 0);
5079                 I915_WRITE(PF_WIN_POS(pipe), 0);
5080                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5081         }
5082 }
5083
5084 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5085 {
5086         struct drm_device *dev = crtc->dev;
5087         struct drm_i915_private *dev_priv = dev->dev_private;
5088         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5089         struct intel_encoder *encoder;
5090         int pipe = intel_crtc->pipe;
5091
5092         if (intel_crtc->config->has_pch_encoder)
5093                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5094
5095         for_each_encoder_on_crtc(dev, crtc, encoder)
5096                 encoder->disable(encoder);
5097
5098         drm_crtc_vblank_off(crtc);
5099         assert_vblank_disabled(crtc);
5100
5101         /*
5102          * Sometimes spurious CPU pipe underruns happen when the
5103          * pipe is already disabled, but FDI RX/TX is still enabled.
5104          * Happens at least with VGA+HDMI cloning. Suppress them.
5105          */
5106         if (intel_crtc->config->has_pch_encoder)
5107                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5108
5109         intel_disable_pipe(intel_crtc);
5110
5111         ironlake_pfit_disable(intel_crtc, false);
5112
5113         if (intel_crtc->config->has_pch_encoder) {
5114                 ironlake_fdi_disable(crtc);
5115                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5116         }
5117
5118         for_each_encoder_on_crtc(dev, crtc, encoder)
5119                 if (encoder->post_disable)
5120                         encoder->post_disable(encoder);
5121
5122         if (intel_crtc->config->has_pch_encoder) {
5123                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5124
5125                 if (HAS_PCH_CPT(dev)) {
5126                         i915_reg_t reg;
5127                         u32 temp;
5128
5129                         /* disable TRANS_DP_CTL */
5130                         reg = TRANS_DP_CTL(pipe);
5131                         temp = I915_READ(reg);
5132                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5133                                   TRANS_DP_PORT_SEL_MASK);
5134                         temp |= TRANS_DP_PORT_SEL_NONE;
5135                         I915_WRITE(reg, temp);
5136
5137                         /* disable DPLL_SEL */
5138                         temp = I915_READ(PCH_DPLL_SEL);
5139                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5140                         I915_WRITE(PCH_DPLL_SEL, temp);
5141                 }
5142
5143                 ironlake_fdi_pll_disable(intel_crtc);
5144         }
5145
5146         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5147
5148         intel_fbc_disable_crtc(intel_crtc);
5149 }
5150
5151 static void haswell_crtc_disable(struct drm_crtc *crtc)
5152 {
5153         struct drm_device *dev = crtc->dev;
5154         struct drm_i915_private *dev_priv = dev->dev_private;
5155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5156         struct intel_encoder *encoder;
5157         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5158
5159         if (intel_crtc->config->has_pch_encoder)
5160                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5161                                                       false);
5162
5163         for_each_encoder_on_crtc(dev, crtc, encoder) {
5164                 intel_opregion_notify_encoder(encoder, false);
5165                 encoder->disable(encoder);
5166         }
5167
5168         drm_crtc_vblank_off(crtc);
5169         assert_vblank_disabled(crtc);
5170
5171         intel_disable_pipe(intel_crtc);
5172
5173         if (intel_crtc->config->dp_encoder_is_mst)
5174                 intel_ddi_set_vc_payload_alloc(crtc, false);
5175
5176         if (!intel_crtc->config->has_dsi_encoder)
5177                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5178
5179         if (INTEL_INFO(dev)->gen >= 9)
5180                 skylake_scaler_disable(intel_crtc);
5181         else
5182                 ironlake_pfit_disable(intel_crtc, false);
5183
5184         if (!intel_crtc->config->has_dsi_encoder)
5185                 intel_ddi_disable_pipe_clock(intel_crtc);
5186
5187         for_each_encoder_on_crtc(dev, crtc, encoder)
5188                 if (encoder->post_disable)
5189                         encoder->post_disable(encoder);
5190
5191         if (intel_crtc->config->has_pch_encoder) {
5192                 lpt_disable_pch_transcoder(dev_priv);
5193                 lpt_disable_iclkip(dev_priv);
5194                 intel_ddi_fdi_disable(crtc);
5195
5196                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5197                                                       true);
5198         }
5199
5200         intel_fbc_disable_crtc(intel_crtc);
5201 }
5202
5203 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5204 {
5205         struct drm_device *dev = crtc->base.dev;
5206         struct drm_i915_private *dev_priv = dev->dev_private;
5207         struct intel_crtc_state *pipe_config = crtc->config;
5208
5209         if (!pipe_config->gmch_pfit.control)
5210                 return;
5211
5212         /*
5213          * The panel fitter should only be adjusted whilst the pipe is disabled,
5214          * according to register description and PRM.
5215          */
5216         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5217         assert_pipe_disabled(dev_priv, crtc->pipe);
5218
5219         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5220         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5221
5222         /* Border color in case we don't scale up to the full screen. Black by
5223          * default, change to something else for debugging. */
5224         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5225 }
5226
5227 static enum intel_display_power_domain port_to_power_domain(enum port port)
5228 {
5229         switch (port) {
5230         case PORT_A:
5231                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5232         case PORT_B:
5233                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5234         case PORT_C:
5235                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5236         case PORT_D:
5237                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5238         case PORT_E:
5239                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5240         default:
5241                 MISSING_CASE(port);
5242                 return POWER_DOMAIN_PORT_OTHER;
5243         }
5244 }
5245
5246 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5247 {
5248         switch (port) {
5249         case PORT_A:
5250                 return POWER_DOMAIN_AUX_A;
5251         case PORT_B:
5252                 return POWER_DOMAIN_AUX_B;
5253         case PORT_C:
5254                 return POWER_DOMAIN_AUX_C;
5255         case PORT_D:
5256                 return POWER_DOMAIN_AUX_D;
5257         case PORT_E:
5258                 /* FIXME: Check VBT for actual wiring of PORT E */
5259                 return POWER_DOMAIN_AUX_D;
5260         default:
5261                 MISSING_CASE(port);
5262                 return POWER_DOMAIN_AUX_A;
5263         }
5264 }
5265
5266 enum intel_display_power_domain
5267 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5268 {
5269         struct drm_device *dev = intel_encoder->base.dev;
5270         struct intel_digital_port *intel_dig_port;
5271
5272         switch (intel_encoder->type) {
5273         case INTEL_OUTPUT_UNKNOWN:
5274                 /* Only DDI platforms should ever use this output type */
5275                 WARN_ON_ONCE(!HAS_DDI(dev));
5276         case INTEL_OUTPUT_DISPLAYPORT:
5277         case INTEL_OUTPUT_HDMI:
5278         case INTEL_OUTPUT_EDP:
5279                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5280                 return port_to_power_domain(intel_dig_port->port);
5281         case INTEL_OUTPUT_DP_MST:
5282                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5283                 return port_to_power_domain(intel_dig_port->port);
5284         case INTEL_OUTPUT_ANALOG:
5285                 return POWER_DOMAIN_PORT_CRT;
5286         case INTEL_OUTPUT_DSI:
5287                 return POWER_DOMAIN_PORT_DSI;
5288         default:
5289                 return POWER_DOMAIN_PORT_OTHER;
5290         }
5291 }
5292
5293 enum intel_display_power_domain
5294 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5295 {
5296         struct drm_device *dev = intel_encoder->base.dev;
5297         struct intel_digital_port *intel_dig_port;
5298
5299         switch (intel_encoder->type) {
5300         case INTEL_OUTPUT_UNKNOWN:
5301         case INTEL_OUTPUT_HDMI:
5302                 /*
5303                  * Only DDI platforms should ever use these output types.
5304                  * We can get here after the HDMI detect code has already set
5305                  * the type of the shared encoder. Since we can't be sure
5306                  * what's the status of the given connectors, play safe and
5307                  * run the DP detection too.
5308                  */
5309                 WARN_ON_ONCE(!HAS_DDI(dev));
5310         case INTEL_OUTPUT_DISPLAYPORT:
5311         case INTEL_OUTPUT_EDP:
5312                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5313                 return port_to_aux_power_domain(intel_dig_port->port);
5314         case INTEL_OUTPUT_DP_MST:
5315                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5316                 return port_to_aux_power_domain(intel_dig_port->port);
5317         default:
5318                 MISSING_CASE(intel_encoder->type);
5319                 return POWER_DOMAIN_AUX_A;
5320         }
5321 }
5322
5323 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5324 {
5325         struct drm_device *dev = crtc->dev;
5326         struct intel_encoder *intel_encoder;
5327         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5328         enum pipe pipe = intel_crtc->pipe;
5329         unsigned long mask;
5330         enum transcoder transcoder = intel_crtc->config->cpu_transcoder;
5331
5332         if (!crtc->state->active)
5333                 return 0;
5334
5335         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5336         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5337         if (intel_crtc->config->pch_pfit.enabled ||
5338             intel_crtc->config->pch_pfit.force_thru)
5339                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5340
5341         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5342                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5343
5344         return mask;
5345 }
5346
5347 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5348 {
5349         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5350         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5351         enum intel_display_power_domain domain;
5352         unsigned long domains, new_domains, old_domains;
5353
5354         old_domains = intel_crtc->enabled_power_domains;
5355         intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5356
5357         domains = new_domains & ~old_domains;
5358
5359         for_each_power_domain(domain, domains)
5360                 intel_display_power_get(dev_priv, domain);
5361
5362         return old_domains & ~new_domains;
5363 }
5364
5365 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5366                                       unsigned long domains)
5367 {
5368         enum intel_display_power_domain domain;
5369
5370         for_each_power_domain(domain, domains)
5371                 intel_display_power_put(dev_priv, domain);
5372 }
5373
5374 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5375 {
5376         struct drm_device *dev = state->dev;
5377         struct drm_i915_private *dev_priv = dev->dev_private;
5378         unsigned long put_domains[I915_MAX_PIPES] = {};
5379         struct drm_crtc_state *crtc_state;
5380         struct drm_crtc *crtc;
5381         int i;
5382
5383         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5384                 if (needs_modeset(crtc->state))
5385                         put_domains[to_intel_crtc(crtc)->pipe] =
5386                                 modeset_get_crtc_power_domains(crtc);
5387         }
5388
5389         if (dev_priv->display.modeset_commit_cdclk) {
5390                 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5391
5392                 if (cdclk != dev_priv->cdclk_freq &&
5393                     !WARN_ON(!state->allow_modeset))
5394                         dev_priv->display.modeset_commit_cdclk(state);
5395         }
5396
5397         for (i = 0; i < I915_MAX_PIPES; i++)
5398                 if (put_domains[i])
5399                         modeset_put_power_domains(dev_priv, put_domains[i]);
5400 }
5401
5402 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5403 {
5404         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5405
5406         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5407             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5408                 return max_cdclk_freq;
5409         else if (IS_CHERRYVIEW(dev_priv))
5410                 return max_cdclk_freq*95/100;
5411         else if (INTEL_INFO(dev_priv)->gen < 4)
5412                 return 2*max_cdclk_freq*90/100;
5413         else
5414                 return max_cdclk_freq*90/100;
5415 }
5416
5417 static void intel_update_max_cdclk(struct drm_device *dev)
5418 {
5419         struct drm_i915_private *dev_priv = dev->dev_private;
5420
5421         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5422                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5423
5424                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5425                         dev_priv->max_cdclk_freq = 675000;
5426                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5427                         dev_priv->max_cdclk_freq = 540000;
5428                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5429                         dev_priv->max_cdclk_freq = 450000;
5430                 else
5431                         dev_priv->max_cdclk_freq = 337500;
5432         } else if (IS_BROADWELL(dev))  {
5433                 /*
5434                  * FIXME with extra cooling we can allow
5435                  * 540 MHz for ULX and 675 Mhz for ULT.
5436                  * How can we know if extra cooling is
5437                  * available? PCI ID, VTB, something else?
5438                  */
5439                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5440                         dev_priv->max_cdclk_freq = 450000;
5441                 else if (IS_BDW_ULX(dev))
5442                         dev_priv->max_cdclk_freq = 450000;
5443                 else if (IS_BDW_ULT(dev))
5444                         dev_priv->max_cdclk_freq = 540000;
5445                 else
5446                         dev_priv->max_cdclk_freq = 675000;
5447         } else if (IS_CHERRYVIEW(dev)) {
5448                 dev_priv->max_cdclk_freq = 320000;
5449         } else if (IS_VALLEYVIEW(dev)) {
5450                 dev_priv->max_cdclk_freq = 400000;
5451         } else {
5452                 /* otherwise assume cdclk is fixed */
5453                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5454         }
5455
5456         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5457
5458         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5459                          dev_priv->max_cdclk_freq);
5460
5461         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5462                          dev_priv->max_dotclk_freq);
5463 }
5464
5465 static void intel_update_cdclk(struct drm_device *dev)
5466 {
5467         struct drm_i915_private *dev_priv = dev->dev_private;
5468
5469         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5470         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5471                          dev_priv->cdclk_freq);
5472
5473         /*
5474          * Program the gmbus_freq based on the cdclk frequency.
5475          * BSpec erroneously claims we should aim for 4MHz, but
5476          * in fact 1MHz is the correct frequency.
5477          */
5478         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5479                 /*
5480                  * Program the gmbus_freq based on the cdclk frequency.
5481                  * BSpec erroneously claims we should aim for 4MHz, but
5482                  * in fact 1MHz is the correct frequency.
5483                  */
5484                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5485         }
5486
5487         if (dev_priv->max_cdclk_freq == 0)
5488                 intel_update_max_cdclk(dev);
5489 }
5490
5491 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5492 {
5493         struct drm_i915_private *dev_priv = dev->dev_private;
5494         uint32_t divider;
5495         uint32_t ratio;
5496         uint32_t current_freq;
5497         int ret;
5498
5499         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5500         switch (frequency) {
5501         case 144000:
5502                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5503                 ratio = BXT_DE_PLL_RATIO(60);
5504                 break;
5505         case 288000:
5506                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5507                 ratio = BXT_DE_PLL_RATIO(60);
5508                 break;
5509         case 384000:
5510                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5511                 ratio = BXT_DE_PLL_RATIO(60);
5512                 break;
5513         case 576000:
5514                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5515                 ratio = BXT_DE_PLL_RATIO(60);
5516                 break;
5517         case 624000:
5518                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5519                 ratio = BXT_DE_PLL_RATIO(65);
5520                 break;
5521         case 19200:
5522                 /*
5523                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5524                  * to suppress GCC warning.
5525                  */
5526                 ratio = 0;
5527                 divider = 0;
5528                 break;
5529         default:
5530                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5531
5532                 return;
5533         }
5534
5535         mutex_lock(&dev_priv->rps.hw_lock);
5536         /* Inform power controller of upcoming frequency change */
5537         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5538                                       0x80000000);
5539         mutex_unlock(&dev_priv->rps.hw_lock);
5540
5541         if (ret) {
5542                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5543                           ret, frequency);
5544                 return;
5545         }
5546
5547         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5548         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5549         current_freq = current_freq * 500 + 1000;
5550
5551         /*
5552          * DE PLL has to be disabled when
5553          * - setting to 19.2MHz (bypass, PLL isn't used)
5554          * - before setting to 624MHz (PLL needs toggling)
5555          * - before setting to any frequency from 624MHz (PLL needs toggling)
5556          */
5557         if (frequency == 19200 || frequency == 624000 ||
5558             current_freq == 624000) {
5559                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5560                 /* Timeout 200us */
5561                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5562                              1))
5563                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5564         }
5565
5566         if (frequency != 19200) {
5567                 uint32_t val;
5568
5569                 val = I915_READ(BXT_DE_PLL_CTL);
5570                 val &= ~BXT_DE_PLL_RATIO_MASK;
5571                 val |= ratio;
5572                 I915_WRITE(BXT_DE_PLL_CTL, val);
5573
5574                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5575                 /* Timeout 200us */
5576                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5577                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5578
5579                 val = I915_READ(CDCLK_CTL);
5580                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5581                 val |= divider;
5582                 /*
5583                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5584                  * enable otherwise.
5585                  */
5586                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5587                 if (frequency >= 500000)
5588                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5589
5590                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5591                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5592                 val |= (frequency - 1000) / 500;
5593                 I915_WRITE(CDCLK_CTL, val);
5594         }
5595
5596         mutex_lock(&dev_priv->rps.hw_lock);
5597         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5598                                       DIV_ROUND_UP(frequency, 25000));
5599         mutex_unlock(&dev_priv->rps.hw_lock);
5600
5601         if (ret) {
5602                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5603                           ret, frequency);
5604                 return;
5605         }
5606
5607         intel_update_cdclk(dev);
5608 }
5609
5610 void broxton_init_cdclk(struct drm_device *dev)
5611 {
5612         struct drm_i915_private *dev_priv = dev->dev_private;
5613         uint32_t val;
5614
5615         /*
5616          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5617          * or else the reset will hang because there is no PCH to respond.
5618          * Move the handshake programming to initialization sequence.
5619          * Previously was left up to BIOS.
5620          */
5621         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5622         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5623         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5624
5625         /* Enable PG1 for cdclk */
5626         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5627
5628         /* check if cd clock is enabled */
5629         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5630                 DRM_DEBUG_KMS("Display already initialized\n");
5631                 return;
5632         }
5633
5634         /*
5635          * FIXME:
5636          * - The initial CDCLK needs to be read from VBT.
5637          *   Need to make this change after VBT has changes for BXT.
5638          * - check if setting the max (or any) cdclk freq is really necessary
5639          *   here, it belongs to modeset time
5640          */
5641         broxton_set_cdclk(dev, 624000);
5642
5643         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5644         POSTING_READ(DBUF_CTL);
5645
5646         udelay(10);
5647
5648         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5649                 DRM_ERROR("DBuf power enable timeout!\n");
5650 }
5651
5652 void broxton_uninit_cdclk(struct drm_device *dev)
5653 {
5654         struct drm_i915_private *dev_priv = dev->dev_private;
5655
5656         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5657         POSTING_READ(DBUF_CTL);
5658
5659         udelay(10);
5660
5661         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5662                 DRM_ERROR("DBuf power disable timeout!\n");
5663
5664         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5665         broxton_set_cdclk(dev, 19200);
5666
5667         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5668 }
5669
5670 static const struct skl_cdclk_entry {
5671         unsigned int freq;
5672         unsigned int vco;
5673 } skl_cdclk_frequencies[] = {
5674         { .freq = 308570, .vco = 8640 },
5675         { .freq = 337500, .vco = 8100 },
5676         { .freq = 432000, .vco = 8640 },
5677         { .freq = 450000, .vco = 8100 },
5678         { .freq = 540000, .vco = 8100 },
5679         { .freq = 617140, .vco = 8640 },
5680         { .freq = 675000, .vco = 8100 },
5681 };
5682
5683 static unsigned int skl_cdclk_decimal(unsigned int freq)
5684 {
5685         return (freq - 1000) / 500;
5686 }
5687
5688 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5689 {
5690         unsigned int i;
5691
5692         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5693                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5694
5695                 if (e->freq == freq)
5696                         return e->vco;
5697         }
5698
5699         return 8100;
5700 }
5701
5702 static void
5703 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5704 {
5705         unsigned int min_freq;
5706         u32 val;
5707
5708         /* select the minimum CDCLK before enabling DPLL 0 */
5709         val = I915_READ(CDCLK_CTL);
5710         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5711         val |= CDCLK_FREQ_337_308;
5712
5713         if (required_vco == 8640)
5714                 min_freq = 308570;
5715         else
5716                 min_freq = 337500;
5717
5718         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5719
5720         I915_WRITE(CDCLK_CTL, val);
5721         POSTING_READ(CDCLK_CTL);
5722
5723         /*
5724          * We always enable DPLL0 with the lowest link rate possible, but still
5725          * taking into account the VCO required to operate the eDP panel at the
5726          * desired frequency. The usual DP link rates operate with a VCO of
5727          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5728          * The modeset code is responsible for the selection of the exact link
5729          * rate later on, with the constraint of choosing a frequency that
5730          * works with required_vco.
5731          */
5732         val = I915_READ(DPLL_CTRL1);
5733
5734         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5735                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5736         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5737         if (required_vco == 8640)
5738                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5739                                             SKL_DPLL0);
5740         else
5741                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5742                                             SKL_DPLL0);
5743
5744         I915_WRITE(DPLL_CTRL1, val);
5745         POSTING_READ(DPLL_CTRL1);
5746
5747         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5748
5749         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5750                 DRM_ERROR("DPLL0 not locked\n");
5751 }
5752
5753 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5754 {
5755         int ret;
5756         u32 val;
5757
5758         /* inform PCU we want to change CDCLK */
5759         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5760         mutex_lock(&dev_priv->rps.hw_lock);
5761         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5762         mutex_unlock(&dev_priv->rps.hw_lock);
5763
5764         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5765 }
5766
5767 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5768 {
5769         unsigned int i;
5770
5771         for (i = 0; i < 15; i++) {
5772                 if (skl_cdclk_pcu_ready(dev_priv))
5773                         return true;
5774                 udelay(10);
5775         }
5776
5777         return false;
5778 }
5779
5780 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5781 {
5782         struct drm_device *dev = dev_priv->dev;
5783         u32 freq_select, pcu_ack;
5784
5785         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5786
5787         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5788                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5789                 return;
5790         }
5791
5792         /* set CDCLK_CTL */
5793         switch(freq) {
5794         case 450000:
5795         case 432000:
5796                 freq_select = CDCLK_FREQ_450_432;
5797                 pcu_ack = 1;
5798                 break;
5799         case 540000:
5800                 freq_select = CDCLK_FREQ_540;
5801                 pcu_ack = 2;
5802                 break;
5803         case 308570:
5804         case 337500:
5805         default:
5806                 freq_select = CDCLK_FREQ_337_308;
5807                 pcu_ack = 0;
5808                 break;
5809         case 617140:
5810         case 675000:
5811                 freq_select = CDCLK_FREQ_675_617;
5812                 pcu_ack = 3;
5813                 break;
5814         }
5815
5816         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5817         POSTING_READ(CDCLK_CTL);
5818
5819         /* inform PCU of the change */
5820         mutex_lock(&dev_priv->rps.hw_lock);
5821         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5822         mutex_unlock(&dev_priv->rps.hw_lock);
5823
5824         intel_update_cdclk(dev);
5825 }
5826
5827 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5828 {
5829         /* disable DBUF power */
5830         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5831         POSTING_READ(DBUF_CTL);
5832
5833         udelay(10);
5834
5835         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5836                 DRM_ERROR("DBuf power disable timeout\n");
5837
5838         /* disable DPLL0 */
5839         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5840         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5841                 DRM_ERROR("Couldn't disable DPLL0\n");
5842 }
5843
5844 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5845 {
5846         unsigned int required_vco;
5847
5848         /* DPLL0 not enabled (happens on early BIOS versions) */
5849         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5850                 /* enable DPLL0 */
5851                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5852                 skl_dpll0_enable(dev_priv, required_vco);
5853         }
5854
5855         /* set CDCLK to the frequency the BIOS chose */
5856         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5857
5858         /* enable DBUF power */
5859         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5860         POSTING_READ(DBUF_CTL);
5861
5862         udelay(10);
5863
5864         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5865                 DRM_ERROR("DBuf power enable timeout\n");
5866 }
5867
5868 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5869 {
5870         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5871         uint32_t cdctl = I915_READ(CDCLK_CTL);
5872         int freq = dev_priv->skl_boot_cdclk;
5873
5874         /*
5875          * check if the pre-os intialized the display
5876          * There is SWF18 scratchpad register defined which is set by the
5877          * pre-os which can be used by the OS drivers to check the status
5878          */
5879         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5880                 goto sanitize;
5881
5882         /* Is PLL enabled and locked ? */
5883         if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5884                 goto sanitize;
5885
5886         /* DPLL okay; verify the cdclock
5887          *
5888          * Noticed in some instances that the freq selection is correct but
5889          * decimal part is programmed wrong from BIOS where pre-os does not
5890          * enable display. Verify the same as well.
5891          */
5892         if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5893                 /* All well; nothing to sanitize */
5894                 return false;
5895 sanitize:
5896         /*
5897          * As of now initialize with max cdclk till
5898          * we get dynamic cdclk support
5899          * */
5900         dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5901         skl_init_cdclk(dev_priv);
5902
5903         /* we did have to sanitize */
5904         return true;
5905 }
5906
5907 /* Adjust CDclk dividers to allow high res or save power if possible */
5908 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5909 {
5910         struct drm_i915_private *dev_priv = dev->dev_private;
5911         u32 val, cmd;
5912
5913         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5914                                         != dev_priv->cdclk_freq);
5915
5916         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5917                 cmd = 2;
5918         else if (cdclk == 266667)
5919                 cmd = 1;
5920         else
5921                 cmd = 0;
5922
5923         mutex_lock(&dev_priv->rps.hw_lock);
5924         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5925         val &= ~DSPFREQGUAR_MASK;
5926         val |= (cmd << DSPFREQGUAR_SHIFT);
5927         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5928         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5929                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5930                      50)) {
5931                 DRM_ERROR("timed out waiting for CDclk change\n");
5932         }
5933         mutex_unlock(&dev_priv->rps.hw_lock);
5934
5935         mutex_lock(&dev_priv->sb_lock);
5936
5937         if (cdclk == 400000) {
5938                 u32 divider;
5939
5940                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5941
5942                 /* adjust cdclk divider */
5943                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5944                 val &= ~CCK_FREQUENCY_VALUES;
5945                 val |= divider;
5946                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5947
5948                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5949                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5950                              50))
5951                         DRM_ERROR("timed out waiting for CDclk change\n");
5952         }
5953
5954         /* adjust self-refresh exit latency value */
5955         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5956         val &= ~0x7f;
5957
5958         /*
5959          * For high bandwidth configs, we set a higher latency in the bunit
5960          * so that the core display fetch happens in time to avoid underruns.
5961          */
5962         if (cdclk == 400000)
5963                 val |= 4500 / 250; /* 4.5 usec */
5964         else
5965                 val |= 3000 / 250; /* 3.0 usec */
5966         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5967
5968         mutex_unlock(&dev_priv->sb_lock);
5969
5970         intel_update_cdclk(dev);
5971 }
5972
5973 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5974 {
5975         struct drm_i915_private *dev_priv = dev->dev_private;
5976         u32 val, cmd;
5977
5978         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5979                                                 != dev_priv->cdclk_freq);
5980
5981         switch (cdclk) {
5982         case 333333:
5983         case 320000:
5984         case 266667:
5985         case 200000:
5986                 break;
5987         default:
5988                 MISSING_CASE(cdclk);
5989                 return;
5990         }
5991
5992         /*
5993          * Specs are full of misinformation, but testing on actual
5994          * hardware has shown that we just need to write the desired
5995          * CCK divider into the Punit register.
5996          */
5997         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5998
5999         mutex_lock(&dev_priv->rps.hw_lock);
6000         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6001         val &= ~DSPFREQGUAR_MASK_CHV;
6002         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6003         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6004         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6005                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6006                      50)) {
6007                 DRM_ERROR("timed out waiting for CDclk change\n");
6008         }
6009         mutex_unlock(&dev_priv->rps.hw_lock);
6010
6011         intel_update_cdclk(dev);
6012 }
6013
6014 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6015                                  int max_pixclk)
6016 {
6017         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
6018         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6019
6020         /*
6021          * Really only a few cases to deal with, as only 4 CDclks are supported:
6022          *   200MHz
6023          *   267MHz
6024          *   320/333MHz (depends on HPLL freq)
6025          *   400MHz (VLV only)
6026          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6027          * of the lower bin and adjust if needed.
6028          *
6029          * We seem to get an unstable or solid color picture at 200MHz.
6030          * Not sure what's wrong. For now use 200MHz only when all pipes
6031          * are off.
6032          */
6033         if (!IS_CHERRYVIEW(dev_priv) &&
6034             max_pixclk > freq_320*limit/100)
6035                 return 400000;
6036         else if (max_pixclk > 266667*limit/100)
6037                 return freq_320;
6038         else if (max_pixclk > 0)
6039                 return 266667;
6040         else
6041                 return 200000;
6042 }
6043
6044 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
6045                               int max_pixclk)
6046 {
6047         /*
6048          * FIXME:
6049          * - remove the guardband, it's not needed on BXT
6050          * - set 19.2MHz bypass frequency if there are no active pipes
6051          */
6052         if (max_pixclk > 576000*9/10)
6053                 return 624000;
6054         else if (max_pixclk > 384000*9/10)
6055                 return 576000;
6056         else if (max_pixclk > 288000*9/10)
6057                 return 384000;
6058         else if (max_pixclk > 144000*9/10)
6059                 return 288000;
6060         else
6061                 return 144000;
6062 }
6063
6064 /* Compute the max pixel clock for new configuration. Uses atomic state if
6065  * that's non-NULL, look at current state otherwise. */
6066 static int intel_mode_max_pixclk(struct drm_device *dev,
6067                                  struct drm_atomic_state *state)
6068 {
6069         struct intel_crtc *intel_crtc;
6070         struct intel_crtc_state *crtc_state;
6071         int max_pixclk = 0;
6072
6073         for_each_intel_crtc(dev, intel_crtc) {
6074                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6075                 if (IS_ERR(crtc_state))
6076                         return PTR_ERR(crtc_state);
6077
6078                 if (!crtc_state->base.enable)
6079                         continue;
6080
6081                 max_pixclk = max(max_pixclk,
6082                                  crtc_state->base.adjusted_mode.crtc_clock);
6083         }
6084
6085         return max_pixclk;
6086 }
6087
6088 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6089 {
6090         struct drm_device *dev = state->dev;
6091         struct drm_i915_private *dev_priv = dev->dev_private;
6092         int max_pixclk = intel_mode_max_pixclk(dev, state);
6093
6094         if (max_pixclk < 0)
6095                 return max_pixclk;
6096
6097         to_intel_atomic_state(state)->cdclk =
6098                 valleyview_calc_cdclk(dev_priv, max_pixclk);
6099
6100         return 0;
6101 }
6102
6103 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6104 {
6105         struct drm_device *dev = state->dev;
6106         struct drm_i915_private *dev_priv = dev->dev_private;
6107         int max_pixclk = intel_mode_max_pixclk(dev, state);
6108
6109         if (max_pixclk < 0)
6110                 return max_pixclk;
6111
6112         to_intel_atomic_state(state)->cdclk =
6113                 broxton_calc_cdclk(dev_priv, max_pixclk);
6114
6115         return 0;
6116 }
6117
6118 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6119 {
6120         unsigned int credits, default_credits;
6121
6122         if (IS_CHERRYVIEW(dev_priv))
6123                 default_credits = PFI_CREDIT(12);
6124         else
6125                 default_credits = PFI_CREDIT(8);
6126
6127         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6128                 /* CHV suggested value is 31 or 63 */
6129                 if (IS_CHERRYVIEW(dev_priv))
6130                         credits = PFI_CREDIT_63;
6131                 else
6132                         credits = PFI_CREDIT(15);
6133         } else {
6134                 credits = default_credits;
6135         }
6136
6137         /*
6138          * WA - write default credits before re-programming
6139          * FIXME: should we also set the resend bit here?
6140          */
6141         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6142                    default_credits);
6143
6144         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6145                    credits | PFI_CREDIT_RESEND);
6146
6147         /*
6148          * FIXME is this guaranteed to clear
6149          * immediately or should we poll for it?
6150          */
6151         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6152 }
6153
6154 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6155 {
6156         struct drm_device *dev = old_state->dev;
6157         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6158         struct drm_i915_private *dev_priv = dev->dev_private;
6159
6160         /*
6161          * FIXME: We can end up here with all power domains off, yet
6162          * with a CDCLK frequency other than the minimum. To account
6163          * for this take the PIPE-A power domain, which covers the HW
6164          * blocks needed for the following programming. This can be
6165          * removed once it's guaranteed that we get here either with
6166          * the minimum CDCLK set, or the required power domains
6167          * enabled.
6168          */
6169         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6170
6171         if (IS_CHERRYVIEW(dev))
6172                 cherryview_set_cdclk(dev, req_cdclk);
6173         else
6174                 valleyview_set_cdclk(dev, req_cdclk);
6175
6176         vlv_program_pfi_credits(dev_priv);
6177
6178         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6179 }
6180
6181 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6182 {
6183         struct drm_device *dev = crtc->dev;
6184         struct drm_i915_private *dev_priv = to_i915(dev);
6185         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6186         struct intel_encoder *encoder;
6187         int pipe = intel_crtc->pipe;
6188
6189         if (WARN_ON(intel_crtc->active))
6190                 return;
6191
6192         if (intel_crtc->config->has_dp_encoder)
6193                 intel_dp_set_m_n(intel_crtc, M1_N1);
6194
6195         intel_set_pipe_timings(intel_crtc);
6196
6197         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6198                 struct drm_i915_private *dev_priv = dev->dev_private;
6199
6200                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6201                 I915_WRITE(CHV_CANVAS(pipe), 0);
6202         }
6203
6204         i9xx_set_pipeconf(intel_crtc);
6205
6206         intel_crtc->active = true;
6207
6208         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6209
6210         for_each_encoder_on_crtc(dev, crtc, encoder)
6211                 if (encoder->pre_pll_enable)
6212                         encoder->pre_pll_enable(encoder);
6213
6214         if (!intel_crtc->config->has_dsi_encoder) {
6215                 if (IS_CHERRYVIEW(dev)) {
6216                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6217                         chv_enable_pll(intel_crtc, intel_crtc->config);
6218                 } else {
6219                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6220                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6221                 }
6222         }
6223
6224         for_each_encoder_on_crtc(dev, crtc, encoder)
6225                 if (encoder->pre_enable)
6226                         encoder->pre_enable(encoder);
6227
6228         i9xx_pfit_enable(intel_crtc);
6229
6230         intel_crtc_load_lut(crtc);
6231
6232         intel_enable_pipe(intel_crtc);
6233
6234         assert_vblank_disabled(crtc);
6235         drm_crtc_vblank_on(crtc);
6236
6237         for_each_encoder_on_crtc(dev, crtc, encoder)
6238                 encoder->enable(encoder);
6239 }
6240
6241 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6242 {
6243         struct drm_device *dev = crtc->base.dev;
6244         struct drm_i915_private *dev_priv = dev->dev_private;
6245
6246         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6247         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6248 }
6249
6250 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6251 {
6252         struct drm_device *dev = crtc->dev;
6253         struct drm_i915_private *dev_priv = to_i915(dev);
6254         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6255         struct intel_encoder *encoder;
6256         int pipe = intel_crtc->pipe;
6257
6258         if (WARN_ON(intel_crtc->active))
6259                 return;
6260
6261         i9xx_set_pll_dividers(intel_crtc);
6262
6263         if (intel_crtc->config->has_dp_encoder)
6264                 intel_dp_set_m_n(intel_crtc, M1_N1);
6265
6266         intel_set_pipe_timings(intel_crtc);
6267
6268         i9xx_set_pipeconf(intel_crtc);
6269
6270         intel_crtc->active = true;
6271
6272         if (!IS_GEN2(dev))
6273                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6274
6275         for_each_encoder_on_crtc(dev, crtc, encoder)
6276                 if (encoder->pre_enable)
6277                         encoder->pre_enable(encoder);
6278
6279         i9xx_enable_pll(intel_crtc);
6280
6281         i9xx_pfit_enable(intel_crtc);
6282
6283         intel_crtc_load_lut(crtc);
6284
6285         intel_update_watermarks(crtc);
6286         intel_enable_pipe(intel_crtc);
6287
6288         assert_vblank_disabled(crtc);
6289         drm_crtc_vblank_on(crtc);
6290
6291         for_each_encoder_on_crtc(dev, crtc, encoder)
6292                 encoder->enable(encoder);
6293
6294         intel_fbc_enable(intel_crtc);
6295 }
6296
6297 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6298 {
6299         struct drm_device *dev = crtc->base.dev;
6300         struct drm_i915_private *dev_priv = dev->dev_private;
6301
6302         if (!crtc->config->gmch_pfit.control)
6303                 return;
6304
6305         assert_pipe_disabled(dev_priv, crtc->pipe);
6306
6307         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6308                          I915_READ(PFIT_CONTROL));
6309         I915_WRITE(PFIT_CONTROL, 0);
6310 }
6311
6312 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6313 {
6314         struct drm_device *dev = crtc->dev;
6315         struct drm_i915_private *dev_priv = dev->dev_private;
6316         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6317         struct intel_encoder *encoder;
6318         int pipe = intel_crtc->pipe;
6319
6320         /*
6321          * On gen2 planes are double buffered but the pipe isn't, so we must
6322          * wait for planes to fully turn off before disabling the pipe.
6323          * We also need to wait on all gmch platforms because of the
6324          * self-refresh mode constraint explained above.
6325          */
6326         intel_wait_for_vblank(dev, pipe);
6327
6328         for_each_encoder_on_crtc(dev, crtc, encoder)
6329                 encoder->disable(encoder);
6330
6331         drm_crtc_vblank_off(crtc);
6332         assert_vblank_disabled(crtc);
6333
6334         intel_disable_pipe(intel_crtc);
6335
6336         i9xx_pfit_disable(intel_crtc);
6337
6338         for_each_encoder_on_crtc(dev, crtc, encoder)
6339                 if (encoder->post_disable)
6340                         encoder->post_disable(encoder);
6341
6342         if (!intel_crtc->config->has_dsi_encoder) {
6343                 if (IS_CHERRYVIEW(dev))
6344                         chv_disable_pll(dev_priv, pipe);
6345                 else if (IS_VALLEYVIEW(dev))
6346                         vlv_disable_pll(dev_priv, pipe);
6347                 else
6348                         i9xx_disable_pll(intel_crtc);
6349         }
6350
6351         for_each_encoder_on_crtc(dev, crtc, encoder)
6352                 if (encoder->post_pll_disable)
6353                         encoder->post_pll_disable(encoder);
6354
6355         if (!IS_GEN2(dev))
6356                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6357
6358         intel_fbc_disable_crtc(intel_crtc);
6359 }
6360
6361 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6362 {
6363         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6364         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6365         enum intel_display_power_domain domain;
6366         unsigned long domains;
6367
6368         if (!intel_crtc->active)
6369                 return;
6370
6371         if (to_intel_plane_state(crtc->primary->state)->visible) {
6372                 WARN_ON(intel_crtc->unpin_work);
6373
6374                 intel_pre_disable_primary(crtc);
6375
6376                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6377                 to_intel_plane_state(crtc->primary->state)->visible = false;
6378         }
6379
6380         dev_priv->display.crtc_disable(crtc);
6381         intel_crtc->active = false;
6382         intel_update_watermarks(crtc);
6383         intel_disable_shared_dpll(intel_crtc);
6384
6385         domains = intel_crtc->enabled_power_domains;
6386         for_each_power_domain(domain, domains)
6387                 intel_display_power_put(dev_priv, domain);
6388         intel_crtc->enabled_power_domains = 0;
6389 }
6390
6391 /*
6392  * turn all crtc's off, but do not adjust state
6393  * This has to be paired with a call to intel_modeset_setup_hw_state.
6394  */
6395 int intel_display_suspend(struct drm_device *dev)
6396 {
6397         struct drm_mode_config *config = &dev->mode_config;
6398         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6399         struct drm_atomic_state *state;
6400         struct drm_crtc *crtc;
6401         unsigned crtc_mask = 0;
6402         int ret = 0;
6403
6404         if (WARN_ON(!ctx))
6405                 return 0;
6406
6407         lockdep_assert_held(&ctx->ww_ctx);
6408         state = drm_atomic_state_alloc(dev);
6409         if (WARN_ON(!state))
6410                 return -ENOMEM;
6411
6412         state->acquire_ctx = ctx;
6413         state->allow_modeset = true;
6414
6415         for_each_crtc(dev, crtc) {
6416                 struct drm_crtc_state *crtc_state =
6417                         drm_atomic_get_crtc_state(state, crtc);
6418
6419                 ret = PTR_ERR_OR_ZERO(crtc_state);
6420                 if (ret)
6421                         goto free;
6422
6423                 if (!crtc_state->active)
6424                         continue;
6425
6426                 crtc_state->active = false;
6427                 crtc_mask |= 1 << drm_crtc_index(crtc);
6428         }
6429
6430         if (crtc_mask) {
6431                 ret = drm_atomic_commit(state);
6432
6433                 if (!ret) {
6434                         for_each_crtc(dev, crtc)
6435                                 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6436                                         crtc->state->active = true;
6437
6438                         return ret;
6439                 }
6440         }
6441
6442 free:
6443         if (ret)
6444                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6445         drm_atomic_state_free(state);
6446         return ret;
6447 }
6448
6449 void intel_encoder_destroy(struct drm_encoder *encoder)
6450 {
6451         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6452
6453         drm_encoder_cleanup(encoder);
6454         kfree(intel_encoder);
6455 }
6456
6457 /* Cross check the actual hw state with our own modeset state tracking (and it's
6458  * internal consistency). */
6459 static void intel_connector_check_state(struct intel_connector *connector)
6460 {
6461         struct drm_crtc *crtc = connector->base.state->crtc;
6462
6463         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6464                       connector->base.base.id,
6465                       connector->base.name);
6466
6467         if (connector->get_hw_state(connector)) {
6468                 struct intel_encoder *encoder = connector->encoder;
6469                 struct drm_connector_state *conn_state = connector->base.state;
6470
6471                 I915_STATE_WARN(!crtc,
6472                          "connector enabled without attached crtc\n");
6473
6474                 if (!crtc)
6475                         return;
6476
6477                 I915_STATE_WARN(!crtc->state->active,
6478                       "connector is active, but attached crtc isn't\n");
6479
6480                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6481                         return;
6482
6483                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6484                         "atomic encoder doesn't match attached encoder\n");
6485
6486                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6487                         "attached encoder crtc differs from connector crtc\n");
6488         } else {
6489                 I915_STATE_WARN(crtc && crtc->state->active,
6490                         "attached crtc is active, but connector isn't\n");
6491                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6492                         "best encoder set without crtc!\n");
6493         }
6494 }
6495
6496 int intel_connector_init(struct intel_connector *connector)
6497 {
6498         drm_atomic_helper_connector_reset(&connector->base);
6499
6500         if (!connector->base.state)
6501                 return -ENOMEM;
6502
6503         return 0;
6504 }
6505
6506 struct intel_connector *intel_connector_alloc(void)
6507 {
6508         struct intel_connector *connector;
6509
6510         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6511         if (!connector)
6512                 return NULL;
6513
6514         if (intel_connector_init(connector) < 0) {
6515                 kfree(connector);
6516                 return NULL;
6517         }
6518
6519         return connector;
6520 }
6521
6522 /* Simple connector->get_hw_state implementation for encoders that support only
6523  * one connector and no cloning and hence the encoder state determines the state
6524  * of the connector. */
6525 bool intel_connector_get_hw_state(struct intel_connector *connector)
6526 {
6527         enum pipe pipe = 0;
6528         struct intel_encoder *encoder = connector->encoder;
6529
6530         return encoder->get_hw_state(encoder, &pipe);
6531 }
6532
6533 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6534 {
6535         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6536                 return crtc_state->fdi_lanes;
6537
6538         return 0;
6539 }
6540
6541 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6542                                      struct intel_crtc_state *pipe_config)
6543 {
6544         struct drm_atomic_state *state = pipe_config->base.state;
6545         struct intel_crtc *other_crtc;
6546         struct intel_crtc_state *other_crtc_state;
6547
6548         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6549                       pipe_name(pipe), pipe_config->fdi_lanes);
6550         if (pipe_config->fdi_lanes > 4) {
6551                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6552                               pipe_name(pipe), pipe_config->fdi_lanes);
6553                 return -EINVAL;
6554         }
6555
6556         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6557                 if (pipe_config->fdi_lanes > 2) {
6558                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6559                                       pipe_config->fdi_lanes);
6560                         return -EINVAL;
6561                 } else {
6562                         return 0;
6563                 }
6564         }
6565
6566         if (INTEL_INFO(dev)->num_pipes == 2)
6567                 return 0;
6568
6569         /* Ivybridge 3 pipe is really complicated */
6570         switch (pipe) {
6571         case PIPE_A:
6572                 return 0;
6573         case PIPE_B:
6574                 if (pipe_config->fdi_lanes <= 2)
6575                         return 0;
6576
6577                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6578                 other_crtc_state =
6579                         intel_atomic_get_crtc_state(state, other_crtc);
6580                 if (IS_ERR(other_crtc_state))
6581                         return PTR_ERR(other_crtc_state);
6582
6583                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6584                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6585                                       pipe_name(pipe), pipe_config->fdi_lanes);
6586                         return -EINVAL;
6587                 }
6588                 return 0;
6589         case PIPE_C:
6590                 if (pipe_config->fdi_lanes > 2) {
6591                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6592                                       pipe_name(pipe), pipe_config->fdi_lanes);
6593                         return -EINVAL;
6594                 }
6595
6596                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6597                 other_crtc_state =
6598                         intel_atomic_get_crtc_state(state, other_crtc);
6599                 if (IS_ERR(other_crtc_state))
6600                         return PTR_ERR(other_crtc_state);
6601
6602                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6603                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6604                         return -EINVAL;
6605                 }
6606                 return 0;
6607         default:
6608                 BUG();
6609         }
6610 }
6611
6612 #define RETRY 1
6613 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6614                                        struct intel_crtc_state *pipe_config)
6615 {
6616         struct drm_device *dev = intel_crtc->base.dev;
6617         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6618         int lane, link_bw, fdi_dotclock, ret;
6619         bool needs_recompute = false;
6620
6621 retry:
6622         /* FDI is a binary signal running at ~2.7GHz, encoding
6623          * each output octet as 10 bits. The actual frequency
6624          * is stored as a divider into a 100MHz clock, and the
6625          * mode pixel clock is stored in units of 1KHz.
6626          * Hence the bw of each lane in terms of the mode signal
6627          * is:
6628          */
6629         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6630
6631         fdi_dotclock = adjusted_mode->crtc_clock;
6632
6633         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6634                                            pipe_config->pipe_bpp);
6635
6636         pipe_config->fdi_lanes = lane;
6637
6638         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6639                                link_bw, &pipe_config->fdi_m_n);
6640
6641         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6642                                        intel_crtc->pipe, pipe_config);
6643         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6644                 pipe_config->pipe_bpp -= 2*3;
6645                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6646                               pipe_config->pipe_bpp);
6647                 needs_recompute = true;
6648                 pipe_config->bw_constrained = true;
6649
6650                 goto retry;
6651         }
6652
6653         if (needs_recompute)
6654                 return RETRY;
6655
6656         return ret;
6657 }
6658
6659 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6660                                      struct intel_crtc_state *pipe_config)
6661 {
6662         if (pipe_config->pipe_bpp > 24)
6663                 return false;
6664
6665         /* HSW can handle pixel rate up to cdclk? */
6666         if (IS_HASWELL(dev_priv->dev))
6667                 return true;
6668
6669         /*
6670          * We compare against max which means we must take
6671          * the increased cdclk requirement into account when
6672          * calculating the new cdclk.
6673          *
6674          * Should measure whether using a lower cdclk w/o IPS
6675          */
6676         return ilk_pipe_pixel_rate(pipe_config) <=
6677                 dev_priv->max_cdclk_freq * 95 / 100;
6678 }
6679
6680 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6681                                    struct intel_crtc_state *pipe_config)
6682 {
6683         struct drm_device *dev = crtc->base.dev;
6684         struct drm_i915_private *dev_priv = dev->dev_private;
6685
6686         pipe_config->ips_enabled = i915.enable_ips &&
6687                 hsw_crtc_supports_ips(crtc) &&
6688                 pipe_config_supports_ips(dev_priv, pipe_config);
6689 }
6690
6691 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6692 {
6693         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6694
6695         /* GDG double wide on either pipe, otherwise pipe A only */
6696         return INTEL_INFO(dev_priv)->gen < 4 &&
6697                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6698 }
6699
6700 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6701                                      struct intel_crtc_state *pipe_config)
6702 {
6703         struct drm_device *dev = crtc->base.dev;
6704         struct drm_i915_private *dev_priv = dev->dev_private;
6705         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6706
6707         /* FIXME should check pixel clock limits on all platforms */
6708         if (INTEL_INFO(dev)->gen < 4) {
6709                 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6710
6711                 /*
6712                  * Enable double wide mode when the dot clock
6713                  * is > 90% of the (display) core speed.
6714                  */
6715                 if (intel_crtc_supports_double_wide(crtc) &&
6716                     adjusted_mode->crtc_clock > clock_limit) {
6717                         clock_limit *= 2;
6718                         pipe_config->double_wide = true;
6719                 }
6720
6721                 if (adjusted_mode->crtc_clock > clock_limit) {
6722                         DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6723                                       adjusted_mode->crtc_clock, clock_limit,
6724                                       yesno(pipe_config->double_wide));
6725                         return -EINVAL;
6726                 }
6727         }
6728
6729         /*
6730          * Pipe horizontal size must be even in:
6731          * - DVO ganged mode
6732          * - LVDS dual channel mode
6733          * - Double wide pipe
6734          */
6735         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6736              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6737                 pipe_config->pipe_src_w &= ~1;
6738
6739         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6740          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6741          */
6742         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6743                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6744                 return -EINVAL;
6745
6746         if (HAS_IPS(dev))
6747                 hsw_compute_ips_config(crtc, pipe_config);
6748
6749         if (pipe_config->has_pch_encoder)
6750                 return ironlake_fdi_compute_config(crtc, pipe_config);
6751
6752         return 0;
6753 }
6754
6755 static int skylake_get_display_clock_speed(struct drm_device *dev)
6756 {
6757         struct drm_i915_private *dev_priv = to_i915(dev);
6758         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6759         uint32_t cdctl = I915_READ(CDCLK_CTL);
6760         uint32_t linkrate;
6761
6762         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6763                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6764
6765         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6766                 return 540000;
6767
6768         linkrate = (I915_READ(DPLL_CTRL1) &
6769                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6770
6771         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6772             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6773                 /* vco 8640 */
6774                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6775                 case CDCLK_FREQ_450_432:
6776                         return 432000;
6777                 case CDCLK_FREQ_337_308:
6778                         return 308570;
6779                 case CDCLK_FREQ_675_617:
6780                         return 617140;
6781                 default:
6782                         WARN(1, "Unknown cd freq selection\n");
6783                 }
6784         } else {
6785                 /* vco 8100 */
6786                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6787                 case CDCLK_FREQ_450_432:
6788                         return 450000;
6789                 case CDCLK_FREQ_337_308:
6790                         return 337500;
6791                 case CDCLK_FREQ_675_617:
6792                         return 675000;
6793                 default:
6794                         WARN(1, "Unknown cd freq selection\n");
6795                 }
6796         }
6797
6798         /* error case, do as if DPLL0 isn't enabled */
6799         return 24000;
6800 }
6801
6802 static int broxton_get_display_clock_speed(struct drm_device *dev)
6803 {
6804         struct drm_i915_private *dev_priv = to_i915(dev);
6805         uint32_t cdctl = I915_READ(CDCLK_CTL);
6806         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6807         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6808         int cdclk;
6809
6810         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6811                 return 19200;
6812
6813         cdclk = 19200 * pll_ratio / 2;
6814
6815         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6816         case BXT_CDCLK_CD2X_DIV_SEL_1:
6817                 return cdclk;  /* 576MHz or 624MHz */
6818         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6819                 return cdclk * 2 / 3; /* 384MHz */
6820         case BXT_CDCLK_CD2X_DIV_SEL_2:
6821                 return cdclk / 2; /* 288MHz */
6822         case BXT_CDCLK_CD2X_DIV_SEL_4:
6823                 return cdclk / 4; /* 144MHz */
6824         }
6825
6826         /* error case, do as if DE PLL isn't enabled */
6827         return 19200;
6828 }
6829
6830 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6831 {
6832         struct drm_i915_private *dev_priv = dev->dev_private;
6833         uint32_t lcpll = I915_READ(LCPLL_CTL);
6834         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6835
6836         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6837                 return 800000;
6838         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6839                 return 450000;
6840         else if (freq == LCPLL_CLK_FREQ_450)
6841                 return 450000;
6842         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6843                 return 540000;
6844         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6845                 return 337500;
6846         else
6847                 return 675000;
6848 }
6849
6850 static int haswell_get_display_clock_speed(struct drm_device *dev)
6851 {
6852         struct drm_i915_private *dev_priv = dev->dev_private;
6853         uint32_t lcpll = I915_READ(LCPLL_CTL);
6854         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6855
6856         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6857                 return 800000;
6858         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6859                 return 450000;
6860         else if (freq == LCPLL_CLK_FREQ_450)
6861                 return 450000;
6862         else if (IS_HSW_ULT(dev))
6863                 return 337500;
6864         else
6865                 return 540000;
6866 }
6867
6868 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6869 {
6870         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6871                                       CCK_DISPLAY_CLOCK_CONTROL);
6872 }
6873
6874 static int ilk_get_display_clock_speed(struct drm_device *dev)
6875 {
6876         return 450000;
6877 }
6878
6879 static int i945_get_display_clock_speed(struct drm_device *dev)
6880 {
6881         return 400000;
6882 }
6883
6884 static int i915_get_display_clock_speed(struct drm_device *dev)
6885 {
6886         return 333333;
6887 }
6888
6889 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6890 {
6891         return 200000;
6892 }
6893
6894 static int pnv_get_display_clock_speed(struct drm_device *dev)
6895 {
6896         u16 gcfgc = 0;
6897
6898         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6899
6900         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6901         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6902                 return 266667;
6903         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6904                 return 333333;
6905         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6906                 return 444444;
6907         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6908                 return 200000;
6909         default:
6910                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6911         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6912                 return 133333;
6913         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6914                 return 166667;
6915         }
6916 }
6917
6918 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6919 {
6920         u16 gcfgc = 0;
6921
6922         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6923
6924         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6925                 return 133333;
6926         else {
6927                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6928                 case GC_DISPLAY_CLOCK_333_MHZ:
6929                         return 333333;
6930                 default:
6931                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6932                         return 190000;
6933                 }
6934         }
6935 }
6936
6937 static int i865_get_display_clock_speed(struct drm_device *dev)
6938 {
6939         return 266667;
6940 }
6941
6942 static int i85x_get_display_clock_speed(struct drm_device *dev)
6943 {
6944         u16 hpllcc = 0;
6945
6946         /*
6947          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6948          * encoding is different :(
6949          * FIXME is this the right way to detect 852GM/852GMV?
6950          */
6951         if (dev->pdev->revision == 0x1)
6952                 return 133333;
6953
6954         pci_bus_read_config_word(dev->pdev->bus,
6955                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6956
6957         /* Assume that the hardware is in the high speed state.  This
6958          * should be the default.
6959          */
6960         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6961         case GC_CLOCK_133_200:
6962         case GC_CLOCK_133_200_2:
6963         case GC_CLOCK_100_200:
6964                 return 200000;
6965         case GC_CLOCK_166_250:
6966                 return 250000;
6967         case GC_CLOCK_100_133:
6968                 return 133333;
6969         case GC_CLOCK_133_266:
6970         case GC_CLOCK_133_266_2:
6971         case GC_CLOCK_166_266:
6972                 return 266667;
6973         }
6974
6975         /* Shouldn't happen */
6976         return 0;
6977 }
6978
6979 static int i830_get_display_clock_speed(struct drm_device *dev)
6980 {
6981         return 133333;
6982 }
6983
6984 static unsigned int intel_hpll_vco(struct drm_device *dev)
6985 {
6986         struct drm_i915_private *dev_priv = dev->dev_private;
6987         static const unsigned int blb_vco[8] = {
6988                 [0] = 3200000,
6989                 [1] = 4000000,
6990                 [2] = 5333333,
6991                 [3] = 4800000,
6992                 [4] = 6400000,
6993         };
6994         static const unsigned int pnv_vco[8] = {
6995                 [0] = 3200000,
6996                 [1] = 4000000,
6997                 [2] = 5333333,
6998                 [3] = 4800000,
6999                 [4] = 2666667,
7000         };
7001         static const unsigned int cl_vco[8] = {
7002                 [0] = 3200000,
7003                 [1] = 4000000,
7004                 [2] = 5333333,
7005                 [3] = 6400000,
7006                 [4] = 3333333,
7007                 [5] = 3566667,
7008                 [6] = 4266667,
7009         };
7010         static const unsigned int elk_vco[8] = {
7011                 [0] = 3200000,
7012                 [1] = 4000000,
7013                 [2] = 5333333,
7014                 [3] = 4800000,
7015         };
7016         static const unsigned int ctg_vco[8] = {
7017                 [0] = 3200000,
7018                 [1] = 4000000,
7019                 [2] = 5333333,
7020                 [3] = 6400000,
7021                 [4] = 2666667,
7022                 [5] = 4266667,
7023         };
7024         const unsigned int *vco_table;
7025         unsigned int vco;
7026         uint8_t tmp = 0;
7027
7028         /* FIXME other chipsets? */
7029         if (IS_GM45(dev))
7030                 vco_table = ctg_vco;
7031         else if (IS_G4X(dev))
7032                 vco_table = elk_vco;
7033         else if (IS_CRESTLINE(dev))
7034                 vco_table = cl_vco;
7035         else if (IS_PINEVIEW(dev))
7036                 vco_table = pnv_vco;
7037         else if (IS_G33(dev))
7038                 vco_table = blb_vco;
7039         else
7040                 return 0;
7041
7042         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7043
7044         vco = vco_table[tmp & 0x7];
7045         if (vco == 0)
7046                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7047         else
7048                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7049
7050         return vco;
7051 }
7052
7053 static int gm45_get_display_clock_speed(struct drm_device *dev)
7054 {
7055         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7056         uint16_t tmp = 0;
7057
7058         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7059
7060         cdclk_sel = (tmp >> 12) & 0x1;
7061
7062         switch (vco) {
7063         case 2666667:
7064         case 4000000:
7065         case 5333333:
7066                 return cdclk_sel ? 333333 : 222222;
7067         case 3200000:
7068                 return cdclk_sel ? 320000 : 228571;
7069         default:
7070                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7071                 return 222222;
7072         }
7073 }
7074
7075 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7076 {
7077         static const uint8_t div_3200[] = { 16, 10,  8 };
7078         static const uint8_t div_4000[] = { 20, 12, 10 };
7079         static const uint8_t div_5333[] = { 24, 16, 14 };
7080         const uint8_t *div_table;
7081         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7082         uint16_t tmp = 0;
7083
7084         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7085
7086         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7087
7088         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7089                 goto fail;
7090
7091         switch (vco) {
7092         case 3200000:
7093                 div_table = div_3200;
7094                 break;
7095         case 4000000:
7096                 div_table = div_4000;
7097                 break;
7098         case 5333333:
7099                 div_table = div_5333;
7100                 break;
7101         default:
7102                 goto fail;
7103         }
7104
7105         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7106
7107 fail:
7108         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7109         return 200000;
7110 }
7111
7112 static int g33_get_display_clock_speed(struct drm_device *dev)
7113 {
7114         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7115         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7116         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7117         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7118         const uint8_t *div_table;
7119         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7120         uint16_t tmp = 0;
7121
7122         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7123
7124         cdclk_sel = (tmp >> 4) & 0x7;
7125
7126         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7127                 goto fail;
7128
7129         switch (vco) {
7130         case 3200000:
7131                 div_table = div_3200;
7132                 break;
7133         case 4000000:
7134                 div_table = div_4000;
7135                 break;
7136         case 4800000:
7137                 div_table = div_4800;
7138                 break;
7139         case 5333333:
7140                 div_table = div_5333;
7141                 break;
7142         default:
7143                 goto fail;
7144         }
7145
7146         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7147
7148 fail:
7149         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7150         return 190476;
7151 }
7152
7153 static void
7154 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7155 {
7156         while (*num > DATA_LINK_M_N_MASK ||
7157                *den > DATA_LINK_M_N_MASK) {
7158                 *num >>= 1;
7159                 *den >>= 1;
7160         }
7161 }
7162
7163 static void compute_m_n(unsigned int m, unsigned int n,
7164                         uint32_t *ret_m, uint32_t *ret_n)
7165 {
7166         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7167         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7168         intel_reduce_m_n_ratio(ret_m, ret_n);
7169 }
7170
7171 void
7172 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7173                        int pixel_clock, int link_clock,
7174                        struct intel_link_m_n *m_n)
7175 {
7176         m_n->tu = 64;
7177
7178         compute_m_n(bits_per_pixel * pixel_clock,
7179                     link_clock * nlanes * 8,
7180                     &m_n->gmch_m, &m_n->gmch_n);
7181
7182         compute_m_n(pixel_clock, link_clock,
7183                     &m_n->link_m, &m_n->link_n);
7184 }
7185
7186 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7187 {
7188         if (i915.panel_use_ssc >= 0)
7189                 return i915.panel_use_ssc != 0;
7190         return dev_priv->vbt.lvds_use_ssc
7191                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7192 }
7193
7194 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7195                            int num_connectors)
7196 {
7197         struct drm_device *dev = crtc_state->base.crtc->dev;
7198         struct drm_i915_private *dev_priv = dev->dev_private;
7199         int refclk;
7200
7201         WARN_ON(!crtc_state->base.state);
7202
7203         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) {
7204                 refclk = 100000;
7205         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7206             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7207                 refclk = dev_priv->vbt.lvds_ssc_freq;
7208                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7209         } else if (!IS_GEN2(dev)) {
7210                 refclk = 96000;
7211         } else {
7212                 refclk = 48000;
7213         }
7214
7215         return refclk;
7216 }
7217
7218 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7219 {
7220         return (1 << dpll->n) << 16 | dpll->m2;
7221 }
7222
7223 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7224 {
7225         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7226 }
7227
7228 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7229                                      struct intel_crtc_state *crtc_state,
7230                                      intel_clock_t *reduced_clock)
7231 {
7232         struct drm_device *dev = crtc->base.dev;
7233         u32 fp, fp2 = 0;
7234
7235         if (IS_PINEVIEW(dev)) {
7236                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7237                 if (reduced_clock)
7238                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7239         } else {
7240                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7241                 if (reduced_clock)
7242                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7243         }
7244
7245         crtc_state->dpll_hw_state.fp0 = fp;
7246
7247         crtc->lowfreq_avail = false;
7248         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7249             reduced_clock) {
7250                 crtc_state->dpll_hw_state.fp1 = fp2;
7251                 crtc->lowfreq_avail = true;
7252         } else {
7253                 crtc_state->dpll_hw_state.fp1 = fp;
7254         }
7255 }
7256
7257 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7258                 pipe)
7259 {
7260         u32 reg_val;
7261
7262         /*
7263          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7264          * and set it to a reasonable value instead.
7265          */
7266         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7267         reg_val &= 0xffffff00;
7268         reg_val |= 0x00000030;
7269         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7270
7271         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7272         reg_val &= 0x8cffffff;
7273         reg_val = 0x8c000000;
7274         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7275
7276         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7277         reg_val &= 0xffffff00;
7278         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7279
7280         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7281         reg_val &= 0x00ffffff;
7282         reg_val |= 0xb0000000;
7283         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7284 }
7285
7286 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7287                                          struct intel_link_m_n *m_n)
7288 {
7289         struct drm_device *dev = crtc->base.dev;
7290         struct drm_i915_private *dev_priv = dev->dev_private;
7291         int pipe = crtc->pipe;
7292
7293         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7294         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7295         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7296         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7297 }
7298
7299 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7300                                          struct intel_link_m_n *m_n,
7301                                          struct intel_link_m_n *m2_n2)
7302 {
7303         struct drm_device *dev = crtc->base.dev;
7304         struct drm_i915_private *dev_priv = dev->dev_private;
7305         int pipe = crtc->pipe;
7306         enum transcoder transcoder = crtc->config->cpu_transcoder;
7307
7308         if (INTEL_INFO(dev)->gen >= 5) {
7309                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7310                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7311                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7312                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7313                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7314                  * for gen < 8) and if DRRS is supported (to make sure the
7315                  * registers are not unnecessarily accessed).
7316                  */
7317                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7318                         crtc->config->has_drrs) {
7319                         I915_WRITE(PIPE_DATA_M2(transcoder),
7320                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7321                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7322                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7323                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7324                 }
7325         } else {
7326                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7327                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7328                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7329                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7330         }
7331 }
7332
7333 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7334 {
7335         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7336
7337         if (m_n == M1_N1) {
7338                 dp_m_n = &crtc->config->dp_m_n;
7339                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7340         } else if (m_n == M2_N2) {
7341
7342                 /*
7343                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7344                  * needs to be programmed into M1_N1.
7345                  */
7346                 dp_m_n = &crtc->config->dp_m2_n2;
7347         } else {
7348                 DRM_ERROR("Unsupported divider value\n");
7349                 return;
7350         }
7351
7352         if (crtc->config->has_pch_encoder)
7353                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7354         else
7355                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7356 }
7357
7358 static void vlv_compute_dpll(struct intel_crtc *crtc,
7359                              struct intel_crtc_state *pipe_config)
7360 {
7361         u32 dpll, dpll_md;
7362
7363         /*
7364          * Enable DPIO clock input. We should never disable the reference
7365          * clock for pipe B, since VGA hotplug / manual detection depends
7366          * on it.
7367          */
7368         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7369                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7370         /* We should never disable this, set it here for state tracking */
7371         if (crtc->pipe == PIPE_B)
7372                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7373         dpll |= DPLL_VCO_ENABLE;
7374         pipe_config->dpll_hw_state.dpll = dpll;
7375
7376         dpll_md = (pipe_config->pixel_multiplier - 1)
7377                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7378         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7379 }
7380
7381 static void vlv_prepare_pll(struct intel_crtc *crtc,
7382                             const struct intel_crtc_state *pipe_config)
7383 {
7384         struct drm_device *dev = crtc->base.dev;
7385         struct drm_i915_private *dev_priv = dev->dev_private;
7386         int pipe = crtc->pipe;
7387         u32 mdiv;
7388         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7389         u32 coreclk, reg_val;
7390
7391         mutex_lock(&dev_priv->sb_lock);
7392
7393         bestn = pipe_config->dpll.n;
7394         bestm1 = pipe_config->dpll.m1;
7395         bestm2 = pipe_config->dpll.m2;
7396         bestp1 = pipe_config->dpll.p1;
7397         bestp2 = pipe_config->dpll.p2;
7398
7399         /* See eDP HDMI DPIO driver vbios notes doc */
7400
7401         /* PLL B needs special handling */
7402         if (pipe == PIPE_B)
7403                 vlv_pllb_recal_opamp(dev_priv, pipe);
7404
7405         /* Set up Tx target for periodic Rcomp update */
7406         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7407
7408         /* Disable target IRef on PLL */
7409         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7410         reg_val &= 0x00ffffff;
7411         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7412
7413         /* Disable fast lock */
7414         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7415
7416         /* Set idtafcrecal before PLL is enabled */
7417         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7418         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7419         mdiv |= ((bestn << DPIO_N_SHIFT));
7420         mdiv |= (1 << DPIO_K_SHIFT);
7421
7422         /*
7423          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7424          * but we don't support that).
7425          * Note: don't use the DAC post divider as it seems unstable.
7426          */
7427         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7428         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7429
7430         mdiv |= DPIO_ENABLE_CALIBRATION;
7431         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7432
7433         /* Set HBR and RBR LPF coefficients */
7434         if (pipe_config->port_clock == 162000 ||
7435             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7436             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7437                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7438                                  0x009f0003);
7439         else
7440                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7441                                  0x00d0000f);
7442
7443         if (pipe_config->has_dp_encoder) {
7444                 /* Use SSC source */
7445                 if (pipe == PIPE_A)
7446                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7447                                          0x0df40000);
7448                 else
7449                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7450                                          0x0df70000);
7451         } else { /* HDMI or VGA */
7452                 /* Use bend source */
7453                 if (pipe == PIPE_A)
7454                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7455                                          0x0df70000);
7456                 else
7457                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7458                                          0x0df40000);
7459         }
7460
7461         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7462         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7463         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7464             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7465                 coreclk |= 0x01000000;
7466         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7467
7468         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7469         mutex_unlock(&dev_priv->sb_lock);
7470 }
7471
7472 static void chv_compute_dpll(struct intel_crtc *crtc,
7473                              struct intel_crtc_state *pipe_config)
7474 {
7475         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7476                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7477                 DPLL_VCO_ENABLE;
7478         if (crtc->pipe != PIPE_A)
7479                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7480
7481         pipe_config->dpll_hw_state.dpll_md =
7482                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7483 }
7484
7485 static void chv_prepare_pll(struct intel_crtc *crtc,
7486                             const struct intel_crtc_state *pipe_config)
7487 {
7488         struct drm_device *dev = crtc->base.dev;
7489         struct drm_i915_private *dev_priv = dev->dev_private;
7490         int pipe = crtc->pipe;
7491         i915_reg_t dpll_reg = DPLL(crtc->pipe);
7492         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7493         u32 loopfilter, tribuf_calcntr;
7494         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7495         u32 dpio_val;
7496         int vco;
7497
7498         bestn = pipe_config->dpll.n;
7499         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7500         bestm1 = pipe_config->dpll.m1;
7501         bestm2 = pipe_config->dpll.m2 >> 22;
7502         bestp1 = pipe_config->dpll.p1;
7503         bestp2 = pipe_config->dpll.p2;
7504         vco = pipe_config->dpll.vco;
7505         dpio_val = 0;
7506         loopfilter = 0;
7507
7508         /*
7509          * Enable Refclk and SSC
7510          */
7511         I915_WRITE(dpll_reg,
7512                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7513
7514         mutex_lock(&dev_priv->sb_lock);
7515
7516         /* p1 and p2 divider */
7517         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7518                         5 << DPIO_CHV_S1_DIV_SHIFT |
7519                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7520                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7521                         1 << DPIO_CHV_K_DIV_SHIFT);
7522
7523         /* Feedback post-divider - m2 */
7524         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7525
7526         /* Feedback refclk divider - n and m1 */
7527         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7528                         DPIO_CHV_M1_DIV_BY_2 |
7529                         1 << DPIO_CHV_N_DIV_SHIFT);
7530
7531         /* M2 fraction division */
7532         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7533
7534         /* M2 fraction division enable */
7535         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7536         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7537         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7538         if (bestm2_frac)
7539                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7540         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7541
7542         /* Program digital lock detect threshold */
7543         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7544         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7545                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7546         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7547         if (!bestm2_frac)
7548                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7549         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7550
7551         /* Loop filter */
7552         if (vco == 5400000) {
7553                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7554                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7555                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7556                 tribuf_calcntr = 0x9;
7557         } else if (vco <= 6200000) {
7558                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7559                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7560                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7561                 tribuf_calcntr = 0x9;
7562         } else if (vco <= 6480000) {
7563                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7564                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7565                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7566                 tribuf_calcntr = 0x8;
7567         } else {
7568                 /* Not supported. Apply the same limits as in the max case */
7569                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7570                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7571                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7572                 tribuf_calcntr = 0;
7573         }
7574         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7575
7576         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7577         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7578         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7579         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7580
7581         /* AFC Recal */
7582         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7583                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7584                         DPIO_AFC_RECAL);
7585
7586         mutex_unlock(&dev_priv->sb_lock);
7587 }
7588
7589 /**
7590  * vlv_force_pll_on - forcibly enable just the PLL
7591  * @dev_priv: i915 private structure
7592  * @pipe: pipe PLL to enable
7593  * @dpll: PLL configuration
7594  *
7595  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7596  * in cases where we need the PLL enabled even when @pipe is not going to
7597  * be enabled.
7598  */
7599 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7600                       const struct dpll *dpll)
7601 {
7602         struct intel_crtc *crtc =
7603                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7604         struct intel_crtc_state pipe_config = {
7605                 .base.crtc = &crtc->base,
7606                 .pixel_multiplier = 1,
7607                 .dpll = *dpll,
7608         };
7609
7610         if (IS_CHERRYVIEW(dev)) {
7611                 chv_compute_dpll(crtc, &pipe_config);
7612                 chv_prepare_pll(crtc, &pipe_config);
7613                 chv_enable_pll(crtc, &pipe_config);
7614         } else {
7615                 vlv_compute_dpll(crtc, &pipe_config);
7616                 vlv_prepare_pll(crtc, &pipe_config);
7617                 vlv_enable_pll(crtc, &pipe_config);
7618         }
7619 }
7620
7621 /**
7622  * vlv_force_pll_off - forcibly disable just the PLL
7623  * @dev_priv: i915 private structure
7624  * @pipe: pipe PLL to disable
7625  *
7626  * Disable the PLL for @pipe. To be used in cases where we need
7627  * the PLL enabled even when @pipe is not going to be enabled.
7628  */
7629 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7630 {
7631         if (IS_CHERRYVIEW(dev))
7632                 chv_disable_pll(to_i915(dev), pipe);
7633         else
7634                 vlv_disable_pll(to_i915(dev), pipe);
7635 }
7636
7637 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7638                               struct intel_crtc_state *crtc_state,
7639                               intel_clock_t *reduced_clock,
7640                               int num_connectors)
7641 {
7642         struct drm_device *dev = crtc->base.dev;
7643         struct drm_i915_private *dev_priv = dev->dev_private;
7644         u32 dpll;
7645         bool is_sdvo;
7646         struct dpll *clock = &crtc_state->dpll;
7647
7648         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7649
7650         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7651                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7652
7653         dpll = DPLL_VGA_MODE_DIS;
7654
7655         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7656                 dpll |= DPLLB_MODE_LVDS;
7657         else
7658                 dpll |= DPLLB_MODE_DAC_SERIAL;
7659
7660         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7661                 dpll |= (crtc_state->pixel_multiplier - 1)
7662                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7663         }
7664
7665         if (is_sdvo)
7666                 dpll |= DPLL_SDVO_HIGH_SPEED;
7667
7668         if (crtc_state->has_dp_encoder)
7669                 dpll |= DPLL_SDVO_HIGH_SPEED;
7670
7671         /* compute bitmask from p1 value */
7672         if (IS_PINEVIEW(dev))
7673                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7674         else {
7675                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7676                 if (IS_G4X(dev) && reduced_clock)
7677                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7678         }
7679         switch (clock->p2) {
7680         case 5:
7681                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7682                 break;
7683         case 7:
7684                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7685                 break;
7686         case 10:
7687                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7688                 break;
7689         case 14:
7690                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7691                 break;
7692         }
7693         if (INTEL_INFO(dev)->gen >= 4)
7694                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7695
7696         if (crtc_state->sdvo_tv_clock)
7697                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7698         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7699                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7700                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7701         else
7702                 dpll |= PLL_REF_INPUT_DREFCLK;
7703
7704         dpll |= DPLL_VCO_ENABLE;
7705         crtc_state->dpll_hw_state.dpll = dpll;
7706
7707         if (INTEL_INFO(dev)->gen >= 4) {
7708                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7709                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7710                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7711         }
7712 }
7713
7714 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7715                               struct intel_crtc_state *crtc_state,
7716                               intel_clock_t *reduced_clock,
7717                               int num_connectors)
7718 {
7719         struct drm_device *dev = crtc->base.dev;
7720         struct drm_i915_private *dev_priv = dev->dev_private;
7721         u32 dpll;
7722         struct dpll *clock = &crtc_state->dpll;
7723
7724         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7725
7726         dpll = DPLL_VGA_MODE_DIS;
7727
7728         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7729                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7730         } else {
7731                 if (clock->p1 == 2)
7732                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7733                 else
7734                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7735                 if (clock->p2 == 4)
7736                         dpll |= PLL_P2_DIVIDE_BY_4;
7737         }
7738
7739         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7740                 dpll |= DPLL_DVO_2X_MODE;
7741
7742         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7743                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7744                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7745         else
7746                 dpll |= PLL_REF_INPUT_DREFCLK;
7747
7748         dpll |= DPLL_VCO_ENABLE;
7749         crtc_state->dpll_hw_state.dpll = dpll;
7750 }
7751
7752 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7753 {
7754         struct drm_device *dev = intel_crtc->base.dev;
7755         struct drm_i915_private *dev_priv = dev->dev_private;
7756         enum pipe pipe = intel_crtc->pipe;
7757         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7758         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7759         uint32_t crtc_vtotal, crtc_vblank_end;
7760         int vsyncshift = 0;
7761
7762         /* We need to be careful not to changed the adjusted mode, for otherwise
7763          * the hw state checker will get angry at the mismatch. */
7764         crtc_vtotal = adjusted_mode->crtc_vtotal;
7765         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7766
7767         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7768                 /* the chip adds 2 halflines automatically */
7769                 crtc_vtotal -= 1;
7770                 crtc_vblank_end -= 1;
7771
7772                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7773                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7774                 else
7775                         vsyncshift = adjusted_mode->crtc_hsync_start -
7776                                 adjusted_mode->crtc_htotal / 2;
7777                 if (vsyncshift < 0)
7778                         vsyncshift += adjusted_mode->crtc_htotal;
7779         }
7780
7781         if (INTEL_INFO(dev)->gen > 3)
7782                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7783
7784         I915_WRITE(HTOTAL(cpu_transcoder),
7785                    (adjusted_mode->crtc_hdisplay - 1) |
7786                    ((adjusted_mode->crtc_htotal - 1) << 16));
7787         I915_WRITE(HBLANK(cpu_transcoder),
7788                    (adjusted_mode->crtc_hblank_start - 1) |
7789                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7790         I915_WRITE(HSYNC(cpu_transcoder),
7791                    (adjusted_mode->crtc_hsync_start - 1) |
7792                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7793
7794         I915_WRITE(VTOTAL(cpu_transcoder),
7795                    (adjusted_mode->crtc_vdisplay - 1) |
7796                    ((crtc_vtotal - 1) << 16));
7797         I915_WRITE(VBLANK(cpu_transcoder),
7798                    (adjusted_mode->crtc_vblank_start - 1) |
7799                    ((crtc_vblank_end - 1) << 16));
7800         I915_WRITE(VSYNC(cpu_transcoder),
7801                    (adjusted_mode->crtc_vsync_start - 1) |
7802                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7803
7804         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7805          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7806          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7807          * bits. */
7808         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7809             (pipe == PIPE_B || pipe == PIPE_C))
7810                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7811
7812         /* pipesrc controls the size that is scaled from, which should
7813          * always be the user's requested size.
7814          */
7815         I915_WRITE(PIPESRC(pipe),
7816                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7817                    (intel_crtc->config->pipe_src_h - 1));
7818 }
7819
7820 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7821                                    struct intel_crtc_state *pipe_config)
7822 {
7823         struct drm_device *dev = crtc->base.dev;
7824         struct drm_i915_private *dev_priv = dev->dev_private;
7825         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7826         uint32_t tmp;
7827
7828         tmp = I915_READ(HTOTAL(cpu_transcoder));
7829         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7830         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7831         tmp = I915_READ(HBLANK(cpu_transcoder));
7832         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7833         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7834         tmp = I915_READ(HSYNC(cpu_transcoder));
7835         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7836         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7837
7838         tmp = I915_READ(VTOTAL(cpu_transcoder));
7839         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7840         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7841         tmp = I915_READ(VBLANK(cpu_transcoder));
7842         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7843         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7844         tmp = I915_READ(VSYNC(cpu_transcoder));
7845         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7846         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7847
7848         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7849                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7850                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7851                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7852         }
7853
7854         tmp = I915_READ(PIPESRC(crtc->pipe));
7855         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7856         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7857
7858         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7859         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7860 }
7861
7862 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7863                                  struct intel_crtc_state *pipe_config)
7864 {
7865         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7866         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7867         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7868         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7869
7870         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7871         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7872         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7873         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7874
7875         mode->flags = pipe_config->base.adjusted_mode.flags;
7876         mode->type = DRM_MODE_TYPE_DRIVER;
7877
7878         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7879         mode->flags |= pipe_config->base.adjusted_mode.flags;
7880
7881         mode->hsync = drm_mode_hsync(mode);
7882         mode->vrefresh = drm_mode_vrefresh(mode);
7883         drm_mode_set_name(mode);
7884 }
7885
7886 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7887 {
7888         struct drm_device *dev = intel_crtc->base.dev;
7889         struct drm_i915_private *dev_priv = dev->dev_private;
7890         uint32_t pipeconf;
7891
7892         pipeconf = 0;
7893
7894         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7895             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7896                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7897
7898         if (intel_crtc->config->double_wide)
7899                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7900
7901         /* only g4x and later have fancy bpc/dither controls */
7902         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7903                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7904                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7905                         pipeconf |= PIPECONF_DITHER_EN |
7906                                     PIPECONF_DITHER_TYPE_SP;
7907
7908                 switch (intel_crtc->config->pipe_bpp) {
7909                 case 18:
7910                         pipeconf |= PIPECONF_6BPC;
7911                         break;
7912                 case 24:
7913                         pipeconf |= PIPECONF_8BPC;
7914                         break;
7915                 case 30:
7916                         pipeconf |= PIPECONF_10BPC;
7917                         break;
7918                 default:
7919                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7920                         BUG();
7921                 }
7922         }
7923
7924         if (HAS_PIPE_CXSR(dev)) {
7925                 if (intel_crtc->lowfreq_avail) {
7926                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7927                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7928                 } else {
7929                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7930                 }
7931         }
7932
7933         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7934                 if (INTEL_INFO(dev)->gen < 4 ||
7935                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7936                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7937                 else
7938                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7939         } else
7940                 pipeconf |= PIPECONF_PROGRESSIVE;
7941
7942         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7943              intel_crtc->config->limited_color_range)
7944                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7945
7946         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7947         POSTING_READ(PIPECONF(intel_crtc->pipe));
7948 }
7949
7950 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7951                                    struct intel_crtc_state *crtc_state)
7952 {
7953         struct drm_device *dev = crtc->base.dev;
7954         struct drm_i915_private *dev_priv = dev->dev_private;
7955         int refclk, num_connectors = 0;
7956         intel_clock_t clock;
7957         bool ok;
7958         const intel_limit_t *limit;
7959         struct drm_atomic_state *state = crtc_state->base.state;
7960         struct drm_connector *connector;
7961         struct drm_connector_state *connector_state;
7962         int i;
7963
7964         memset(&crtc_state->dpll_hw_state, 0,
7965                sizeof(crtc_state->dpll_hw_state));
7966
7967         if (crtc_state->has_dsi_encoder)
7968                 return 0;
7969
7970         for_each_connector_in_state(state, connector, connector_state, i) {
7971                 if (connector_state->crtc == &crtc->base)
7972                         num_connectors++;
7973         }
7974
7975         if (!crtc_state->clock_set) {
7976                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7977
7978                 /*
7979                  * Returns a set of divisors for the desired target clock with
7980                  * the given refclk, or FALSE.  The returned values represent
7981                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7982                  * 2) / p1 / p2.
7983                  */
7984                 limit = intel_limit(crtc_state, refclk);
7985                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7986                                                  crtc_state->port_clock,
7987                                                  refclk, NULL, &clock);
7988                 if (!ok) {
7989                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7990                         return -EINVAL;
7991                 }
7992
7993                 /* Compat-code for transition, will disappear. */
7994                 crtc_state->dpll.n = clock.n;
7995                 crtc_state->dpll.m1 = clock.m1;
7996                 crtc_state->dpll.m2 = clock.m2;
7997                 crtc_state->dpll.p1 = clock.p1;
7998                 crtc_state->dpll.p2 = clock.p2;
7999         }
8000
8001         if (IS_GEN2(dev)) {
8002                 i8xx_compute_dpll(crtc, crtc_state, NULL,
8003                                   num_connectors);
8004         } else if (IS_CHERRYVIEW(dev)) {
8005                 chv_compute_dpll(crtc, crtc_state);
8006         } else if (IS_VALLEYVIEW(dev)) {
8007                 vlv_compute_dpll(crtc, crtc_state);
8008         } else {
8009                 i9xx_compute_dpll(crtc, crtc_state, NULL,
8010                                   num_connectors);
8011         }
8012
8013         return 0;
8014 }
8015
8016 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8017                                  struct intel_crtc_state *pipe_config)
8018 {
8019         struct drm_device *dev = crtc->base.dev;
8020         struct drm_i915_private *dev_priv = dev->dev_private;
8021         uint32_t tmp;
8022
8023         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8024                 return;
8025
8026         tmp = I915_READ(PFIT_CONTROL);
8027         if (!(tmp & PFIT_ENABLE))
8028                 return;
8029
8030         /* Check whether the pfit is attached to our pipe. */
8031         if (INTEL_INFO(dev)->gen < 4) {
8032                 if (crtc->pipe != PIPE_B)
8033                         return;
8034         } else {
8035                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8036                         return;
8037         }
8038
8039         pipe_config->gmch_pfit.control = tmp;
8040         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8041         if (INTEL_INFO(dev)->gen < 5)
8042                 pipe_config->gmch_pfit.lvds_border_bits =
8043                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
8044 }
8045
8046 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8047                                struct intel_crtc_state *pipe_config)
8048 {
8049         struct drm_device *dev = crtc->base.dev;
8050         struct drm_i915_private *dev_priv = dev->dev_private;
8051         int pipe = pipe_config->cpu_transcoder;
8052         intel_clock_t clock;
8053         u32 mdiv;
8054         int refclk = 100000;
8055
8056         /* In case of MIPI DPLL will not even be used */
8057         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8058                 return;
8059
8060         mutex_lock(&dev_priv->sb_lock);
8061         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8062         mutex_unlock(&dev_priv->sb_lock);
8063
8064         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8065         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8066         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8067         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8068         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8069
8070         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8071 }
8072
8073 static void
8074 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8075                               struct intel_initial_plane_config *plane_config)
8076 {
8077         struct drm_device *dev = crtc->base.dev;
8078         struct drm_i915_private *dev_priv = dev->dev_private;
8079         u32 val, base, offset;
8080         int pipe = crtc->pipe, plane = crtc->plane;
8081         int fourcc, pixel_format;
8082         unsigned int aligned_height;
8083         struct drm_framebuffer *fb;
8084         struct intel_framebuffer *intel_fb;
8085
8086         val = I915_READ(DSPCNTR(plane));
8087         if (!(val & DISPLAY_PLANE_ENABLE))
8088                 return;
8089
8090         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8091         if (!intel_fb) {
8092                 DRM_DEBUG_KMS("failed to alloc fb\n");
8093                 return;
8094         }
8095
8096         fb = &intel_fb->base;
8097
8098         if (INTEL_INFO(dev)->gen >= 4) {
8099                 if (val & DISPPLANE_TILED) {
8100                         plane_config->tiling = I915_TILING_X;
8101                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8102                 }
8103         }
8104
8105         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8106         fourcc = i9xx_format_to_fourcc(pixel_format);
8107         fb->pixel_format = fourcc;
8108         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8109
8110         if (INTEL_INFO(dev)->gen >= 4) {
8111                 if (plane_config->tiling)
8112                         offset = I915_READ(DSPTILEOFF(plane));
8113                 else
8114                         offset = I915_READ(DSPLINOFF(plane));
8115                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8116         } else {
8117                 base = I915_READ(DSPADDR(plane));
8118         }
8119         plane_config->base = base;
8120
8121         val = I915_READ(PIPESRC(pipe));
8122         fb->width = ((val >> 16) & 0xfff) + 1;
8123         fb->height = ((val >> 0) & 0xfff) + 1;
8124
8125         val = I915_READ(DSPSTRIDE(pipe));
8126         fb->pitches[0] = val & 0xffffffc0;
8127
8128         aligned_height = intel_fb_align_height(dev, fb->height,
8129                                                fb->pixel_format,
8130                                                fb->modifier[0]);
8131
8132         plane_config->size = fb->pitches[0] * aligned_height;
8133
8134         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8135                       pipe_name(pipe), plane, fb->width, fb->height,
8136                       fb->bits_per_pixel, base, fb->pitches[0],
8137                       plane_config->size);
8138
8139         plane_config->fb = intel_fb;
8140 }
8141
8142 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8143                                struct intel_crtc_state *pipe_config)
8144 {
8145         struct drm_device *dev = crtc->base.dev;
8146         struct drm_i915_private *dev_priv = dev->dev_private;
8147         int pipe = pipe_config->cpu_transcoder;
8148         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8149         intel_clock_t clock;
8150         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8151         int refclk = 100000;
8152
8153         mutex_lock(&dev_priv->sb_lock);
8154         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8155         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8156         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8157         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8158         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8159         mutex_unlock(&dev_priv->sb_lock);
8160
8161         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8162         clock.m2 = (pll_dw0 & 0xff) << 22;
8163         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8164                 clock.m2 |= pll_dw2 & 0x3fffff;
8165         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8166         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8167         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8168
8169         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8170 }
8171
8172 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8173                                  struct intel_crtc_state *pipe_config)
8174 {
8175         struct drm_device *dev = crtc->base.dev;
8176         struct drm_i915_private *dev_priv = dev->dev_private;
8177         enum intel_display_power_domain power_domain;
8178         uint32_t tmp;
8179         bool ret;
8180
8181         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8182         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8183                 return false;
8184
8185         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8186         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8187
8188         ret = false;
8189
8190         tmp = I915_READ(PIPECONF(crtc->pipe));
8191         if (!(tmp & PIPECONF_ENABLE))
8192                 goto out;
8193
8194         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8195                 switch (tmp & PIPECONF_BPC_MASK) {
8196                 case PIPECONF_6BPC:
8197                         pipe_config->pipe_bpp = 18;
8198                         break;
8199                 case PIPECONF_8BPC:
8200                         pipe_config->pipe_bpp = 24;
8201                         break;
8202                 case PIPECONF_10BPC:
8203                         pipe_config->pipe_bpp = 30;
8204                         break;
8205                 default:
8206                         break;
8207                 }
8208         }
8209
8210         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8211             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8212                 pipe_config->limited_color_range = true;
8213
8214         if (INTEL_INFO(dev)->gen < 4)
8215                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8216
8217         intel_get_pipe_timings(crtc, pipe_config);
8218
8219         i9xx_get_pfit_config(crtc, pipe_config);
8220
8221         if (INTEL_INFO(dev)->gen >= 4) {
8222                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8223                 pipe_config->pixel_multiplier =
8224                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8225                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8226                 pipe_config->dpll_hw_state.dpll_md = tmp;
8227         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8228                 tmp = I915_READ(DPLL(crtc->pipe));
8229                 pipe_config->pixel_multiplier =
8230                         ((tmp & SDVO_MULTIPLIER_MASK)
8231                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8232         } else {
8233                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8234                  * port and will be fixed up in the encoder->get_config
8235                  * function. */
8236                 pipe_config->pixel_multiplier = 1;
8237         }
8238         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8239         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8240                 /*
8241                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8242                  * on 830. Filter it out here so that we don't
8243                  * report errors due to that.
8244                  */
8245                 if (IS_I830(dev))
8246                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8247
8248                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8249                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8250         } else {
8251                 /* Mask out read-only status bits. */
8252                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8253                                                      DPLL_PORTC_READY_MASK |
8254                                                      DPLL_PORTB_READY_MASK);
8255         }
8256
8257         if (IS_CHERRYVIEW(dev))
8258                 chv_crtc_clock_get(crtc, pipe_config);
8259         else if (IS_VALLEYVIEW(dev))
8260                 vlv_crtc_clock_get(crtc, pipe_config);
8261         else
8262                 i9xx_crtc_clock_get(crtc, pipe_config);
8263
8264         /*
8265          * Normally the dotclock is filled in by the encoder .get_config()
8266          * but in case the pipe is enabled w/o any ports we need a sane
8267          * default.
8268          */
8269         pipe_config->base.adjusted_mode.crtc_clock =
8270                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8271
8272         ret = true;
8273
8274 out:
8275         intel_display_power_put(dev_priv, power_domain);
8276
8277         return ret;
8278 }
8279
8280 static void ironlake_init_pch_refclk(struct drm_device *dev)
8281 {
8282         struct drm_i915_private *dev_priv = dev->dev_private;
8283         struct intel_encoder *encoder;
8284         u32 val, final;
8285         bool has_lvds = false;
8286         bool has_cpu_edp = false;
8287         bool has_panel = false;
8288         bool has_ck505 = false;
8289         bool can_ssc = false;
8290
8291         /* We need to take the global config into account */
8292         for_each_intel_encoder(dev, encoder) {
8293                 switch (encoder->type) {
8294                 case INTEL_OUTPUT_LVDS:
8295                         has_panel = true;
8296                         has_lvds = true;
8297                         break;
8298                 case INTEL_OUTPUT_EDP:
8299                         has_panel = true;
8300                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8301                                 has_cpu_edp = true;
8302                         break;
8303                 default:
8304                         break;
8305                 }
8306         }
8307
8308         if (HAS_PCH_IBX(dev)) {
8309                 has_ck505 = dev_priv->vbt.display_clock_mode;
8310                 can_ssc = has_ck505;
8311         } else {
8312                 has_ck505 = false;
8313                 can_ssc = true;
8314         }
8315
8316         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8317                       has_panel, has_lvds, has_ck505);
8318
8319         /* Ironlake: try to setup display ref clock before DPLL
8320          * enabling. This is only under driver's control after
8321          * PCH B stepping, previous chipset stepping should be
8322          * ignoring this setting.
8323          */
8324         val = I915_READ(PCH_DREF_CONTROL);
8325
8326         /* As we must carefully and slowly disable/enable each source in turn,
8327          * compute the final state we want first and check if we need to
8328          * make any changes at all.
8329          */
8330         final = val;
8331         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8332         if (has_ck505)
8333                 final |= DREF_NONSPREAD_CK505_ENABLE;
8334         else
8335                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8336
8337         final &= ~DREF_SSC_SOURCE_MASK;
8338         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8339         final &= ~DREF_SSC1_ENABLE;
8340
8341         if (has_panel) {
8342                 final |= DREF_SSC_SOURCE_ENABLE;
8343
8344                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8345                         final |= DREF_SSC1_ENABLE;
8346
8347                 if (has_cpu_edp) {
8348                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8349                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8350                         else
8351                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8352                 } else
8353                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8354         } else {
8355                 final |= DREF_SSC_SOURCE_DISABLE;
8356                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8357         }
8358
8359         if (final == val)
8360                 return;
8361
8362         /* Always enable nonspread source */
8363         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8364
8365         if (has_ck505)
8366                 val |= DREF_NONSPREAD_CK505_ENABLE;
8367         else
8368                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8369
8370         if (has_panel) {
8371                 val &= ~DREF_SSC_SOURCE_MASK;
8372                 val |= DREF_SSC_SOURCE_ENABLE;
8373
8374                 /* SSC must be turned on before enabling the CPU output  */
8375                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8376                         DRM_DEBUG_KMS("Using SSC on panel\n");
8377                         val |= DREF_SSC1_ENABLE;
8378                 } else
8379                         val &= ~DREF_SSC1_ENABLE;
8380
8381                 /* Get SSC going before enabling the outputs */
8382                 I915_WRITE(PCH_DREF_CONTROL, val);
8383                 POSTING_READ(PCH_DREF_CONTROL);
8384                 udelay(200);
8385
8386                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8387
8388                 /* Enable CPU source on CPU attached eDP */
8389                 if (has_cpu_edp) {
8390                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8391                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8392                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8393                         } else
8394                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8395                 } else
8396                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8397
8398                 I915_WRITE(PCH_DREF_CONTROL, val);
8399                 POSTING_READ(PCH_DREF_CONTROL);
8400                 udelay(200);
8401         } else {
8402                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8403
8404                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8405
8406                 /* Turn off CPU output */
8407                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8408
8409                 I915_WRITE(PCH_DREF_CONTROL, val);
8410                 POSTING_READ(PCH_DREF_CONTROL);
8411                 udelay(200);
8412
8413                 /* Turn off the SSC source */
8414                 val &= ~DREF_SSC_SOURCE_MASK;
8415                 val |= DREF_SSC_SOURCE_DISABLE;
8416
8417                 /* Turn off SSC1 */
8418                 val &= ~DREF_SSC1_ENABLE;
8419
8420                 I915_WRITE(PCH_DREF_CONTROL, val);
8421                 POSTING_READ(PCH_DREF_CONTROL);
8422                 udelay(200);
8423         }
8424
8425         BUG_ON(val != final);
8426 }
8427
8428 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8429 {
8430         uint32_t tmp;
8431
8432         tmp = I915_READ(SOUTH_CHICKEN2);
8433         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8434         I915_WRITE(SOUTH_CHICKEN2, tmp);
8435
8436         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8437                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8438                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8439
8440         tmp = I915_READ(SOUTH_CHICKEN2);
8441         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8442         I915_WRITE(SOUTH_CHICKEN2, tmp);
8443
8444         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8445                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8446                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8447 }
8448
8449 /* WaMPhyProgramming:hsw */
8450 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8451 {
8452         uint32_t tmp;
8453
8454         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8455         tmp &= ~(0xFF << 24);
8456         tmp |= (0x12 << 24);
8457         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8458
8459         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8460         tmp |= (1 << 11);
8461         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8462
8463         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8464         tmp |= (1 << 11);
8465         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8466
8467         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8468         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8469         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8470
8471         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8472         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8473         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8474
8475         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8476         tmp &= ~(7 << 13);
8477         tmp |= (5 << 13);
8478         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8479
8480         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8481         tmp &= ~(7 << 13);
8482         tmp |= (5 << 13);
8483         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8484
8485         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8486         tmp &= ~0xFF;
8487         tmp |= 0x1C;
8488         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8489
8490         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8491         tmp &= ~0xFF;
8492         tmp |= 0x1C;
8493         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8494
8495         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8496         tmp &= ~(0xFF << 16);
8497         tmp |= (0x1C << 16);
8498         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8499
8500         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8501         tmp &= ~(0xFF << 16);
8502         tmp |= (0x1C << 16);
8503         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8504
8505         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8506         tmp |= (1 << 27);
8507         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8508
8509         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8510         tmp |= (1 << 27);
8511         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8512
8513         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8514         tmp &= ~(0xF << 28);
8515         tmp |= (4 << 28);
8516         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8517
8518         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8519         tmp &= ~(0xF << 28);
8520         tmp |= (4 << 28);
8521         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8522 }
8523
8524 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8525  * Programming" based on the parameters passed:
8526  * - Sequence to enable CLKOUT_DP
8527  * - Sequence to enable CLKOUT_DP without spread
8528  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8529  */
8530 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8531                                  bool with_fdi)
8532 {
8533         struct drm_i915_private *dev_priv = dev->dev_private;
8534         uint32_t reg, tmp;
8535
8536         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8537                 with_spread = true;
8538         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8539                 with_fdi = false;
8540
8541         mutex_lock(&dev_priv->sb_lock);
8542
8543         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8544         tmp &= ~SBI_SSCCTL_DISABLE;
8545         tmp |= SBI_SSCCTL_PATHALT;
8546         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8547
8548         udelay(24);
8549
8550         if (with_spread) {
8551                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8552                 tmp &= ~SBI_SSCCTL_PATHALT;
8553                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8554
8555                 if (with_fdi) {
8556                         lpt_reset_fdi_mphy(dev_priv);
8557                         lpt_program_fdi_mphy(dev_priv);
8558                 }
8559         }
8560
8561         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8562         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8563         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8564         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8565
8566         mutex_unlock(&dev_priv->sb_lock);
8567 }
8568
8569 /* Sequence to disable CLKOUT_DP */
8570 static void lpt_disable_clkout_dp(struct drm_device *dev)
8571 {
8572         struct drm_i915_private *dev_priv = dev->dev_private;
8573         uint32_t reg, tmp;
8574
8575         mutex_lock(&dev_priv->sb_lock);
8576
8577         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8578         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8579         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8580         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8581
8582         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8583         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8584                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8585                         tmp |= SBI_SSCCTL_PATHALT;
8586                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8587                         udelay(32);
8588                 }
8589                 tmp |= SBI_SSCCTL_DISABLE;
8590                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8591         }
8592
8593         mutex_unlock(&dev_priv->sb_lock);
8594 }
8595
8596 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8597
8598 static const uint16_t sscdivintphase[] = {
8599         [BEND_IDX( 50)] = 0x3B23,
8600         [BEND_IDX( 45)] = 0x3B23,
8601         [BEND_IDX( 40)] = 0x3C23,
8602         [BEND_IDX( 35)] = 0x3C23,
8603         [BEND_IDX( 30)] = 0x3D23,
8604         [BEND_IDX( 25)] = 0x3D23,
8605         [BEND_IDX( 20)] = 0x3E23,
8606         [BEND_IDX( 15)] = 0x3E23,
8607         [BEND_IDX( 10)] = 0x3F23,
8608         [BEND_IDX(  5)] = 0x3F23,
8609         [BEND_IDX(  0)] = 0x0025,
8610         [BEND_IDX( -5)] = 0x0025,
8611         [BEND_IDX(-10)] = 0x0125,
8612         [BEND_IDX(-15)] = 0x0125,
8613         [BEND_IDX(-20)] = 0x0225,
8614         [BEND_IDX(-25)] = 0x0225,
8615         [BEND_IDX(-30)] = 0x0325,
8616         [BEND_IDX(-35)] = 0x0325,
8617         [BEND_IDX(-40)] = 0x0425,
8618         [BEND_IDX(-45)] = 0x0425,
8619         [BEND_IDX(-50)] = 0x0525,
8620 };
8621
8622 /*
8623  * Bend CLKOUT_DP
8624  * steps -50 to 50 inclusive, in steps of 5
8625  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8626  * change in clock period = -(steps / 10) * 5.787 ps
8627  */
8628 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8629 {
8630         uint32_t tmp;
8631         int idx = BEND_IDX(steps);
8632
8633         if (WARN_ON(steps % 5 != 0))
8634                 return;
8635
8636         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8637                 return;
8638
8639         mutex_lock(&dev_priv->sb_lock);
8640
8641         if (steps % 10 != 0)
8642                 tmp = 0xAAAAAAAB;
8643         else
8644                 tmp = 0x00000000;
8645         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8646
8647         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8648         tmp &= 0xffff0000;
8649         tmp |= sscdivintphase[idx];
8650         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8651
8652         mutex_unlock(&dev_priv->sb_lock);
8653 }
8654
8655 #undef BEND_IDX
8656
8657 static void lpt_init_pch_refclk(struct drm_device *dev)
8658 {
8659         struct intel_encoder *encoder;
8660         bool has_vga = false;
8661
8662         for_each_intel_encoder(dev, encoder) {
8663                 switch (encoder->type) {
8664                 case INTEL_OUTPUT_ANALOG:
8665                         has_vga = true;
8666                         break;
8667                 default:
8668                         break;
8669                 }
8670         }
8671
8672         if (has_vga) {
8673                 lpt_bend_clkout_dp(to_i915(dev), 0);
8674                 lpt_enable_clkout_dp(dev, true, true);
8675         } else {
8676                 lpt_disable_clkout_dp(dev);
8677         }
8678 }
8679
8680 /*
8681  * Initialize reference clocks when the driver loads
8682  */
8683 void intel_init_pch_refclk(struct drm_device *dev)
8684 {
8685         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8686                 ironlake_init_pch_refclk(dev);
8687         else if (HAS_PCH_LPT(dev))
8688                 lpt_init_pch_refclk(dev);
8689 }
8690
8691 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8692 {
8693         struct drm_device *dev = crtc_state->base.crtc->dev;
8694         struct drm_i915_private *dev_priv = dev->dev_private;
8695         struct drm_atomic_state *state = crtc_state->base.state;
8696         struct drm_connector *connector;
8697         struct drm_connector_state *connector_state;
8698         struct intel_encoder *encoder;
8699         int num_connectors = 0, i;
8700         bool is_lvds = false;
8701
8702         for_each_connector_in_state(state, connector, connector_state, i) {
8703                 if (connector_state->crtc != crtc_state->base.crtc)
8704                         continue;
8705
8706                 encoder = to_intel_encoder(connector_state->best_encoder);
8707
8708                 switch (encoder->type) {
8709                 case INTEL_OUTPUT_LVDS:
8710                         is_lvds = true;
8711                         break;
8712                 default:
8713                         break;
8714                 }
8715                 num_connectors++;
8716         }
8717
8718         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8719                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8720                               dev_priv->vbt.lvds_ssc_freq);
8721                 return dev_priv->vbt.lvds_ssc_freq;
8722         }
8723
8724         return 120000;
8725 }
8726
8727 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8728 {
8729         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8730         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8731         int pipe = intel_crtc->pipe;
8732         uint32_t val;
8733
8734         val = 0;
8735
8736         switch (intel_crtc->config->pipe_bpp) {
8737         case 18:
8738                 val |= PIPECONF_6BPC;
8739                 break;
8740         case 24:
8741                 val |= PIPECONF_8BPC;
8742                 break;
8743         case 30:
8744                 val |= PIPECONF_10BPC;
8745                 break;
8746         case 36:
8747                 val |= PIPECONF_12BPC;
8748                 break;
8749         default:
8750                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8751                 BUG();
8752         }
8753
8754         if (intel_crtc->config->dither)
8755                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8756
8757         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8758                 val |= PIPECONF_INTERLACED_ILK;
8759         else
8760                 val |= PIPECONF_PROGRESSIVE;
8761
8762         if (intel_crtc->config->limited_color_range)
8763                 val |= PIPECONF_COLOR_RANGE_SELECT;
8764
8765         I915_WRITE(PIPECONF(pipe), val);
8766         POSTING_READ(PIPECONF(pipe));
8767 }
8768
8769 /*
8770  * Set up the pipe CSC unit.
8771  *
8772  * Currently only full range RGB to limited range RGB conversion
8773  * is supported, but eventually this should handle various
8774  * RGB<->YCbCr scenarios as well.
8775  */
8776 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8777 {
8778         struct drm_device *dev = crtc->dev;
8779         struct drm_i915_private *dev_priv = dev->dev_private;
8780         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8781         int pipe = intel_crtc->pipe;
8782         uint16_t coeff = 0x7800; /* 1.0 */
8783
8784         /*
8785          * TODO: Check what kind of values actually come out of the pipe
8786          * with these coeff/postoff values and adjust to get the best
8787          * accuracy. Perhaps we even need to take the bpc value into
8788          * consideration.
8789          */
8790
8791         if (intel_crtc->config->limited_color_range)
8792                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8793
8794         /*
8795          * GY/GU and RY/RU should be the other way around according
8796          * to BSpec, but reality doesn't agree. Just set them up in
8797          * a way that results in the correct picture.
8798          */
8799         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8800         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8801
8802         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8803         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8804
8805         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8806         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8807
8808         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8809         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8810         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8811
8812         if (INTEL_INFO(dev)->gen > 6) {
8813                 uint16_t postoff = 0;
8814
8815                 if (intel_crtc->config->limited_color_range)
8816                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8817
8818                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8819                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8820                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8821
8822                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8823         } else {
8824                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8825
8826                 if (intel_crtc->config->limited_color_range)
8827                         mode |= CSC_BLACK_SCREEN_OFFSET;
8828
8829                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8830         }
8831 }
8832
8833 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8834 {
8835         struct drm_device *dev = crtc->dev;
8836         struct drm_i915_private *dev_priv = dev->dev_private;
8837         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8838         enum pipe pipe = intel_crtc->pipe;
8839         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8840         uint32_t val;
8841
8842         val = 0;
8843
8844         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8845                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8846
8847         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8848                 val |= PIPECONF_INTERLACED_ILK;
8849         else
8850                 val |= PIPECONF_PROGRESSIVE;
8851
8852         I915_WRITE(PIPECONF(cpu_transcoder), val);
8853         POSTING_READ(PIPECONF(cpu_transcoder));
8854
8855         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8856         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8857
8858         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8859                 val = 0;
8860
8861                 switch (intel_crtc->config->pipe_bpp) {
8862                 case 18:
8863                         val |= PIPEMISC_DITHER_6_BPC;
8864                         break;
8865                 case 24:
8866                         val |= PIPEMISC_DITHER_8_BPC;
8867                         break;
8868                 case 30:
8869                         val |= PIPEMISC_DITHER_10_BPC;
8870                         break;
8871                 case 36:
8872                         val |= PIPEMISC_DITHER_12_BPC;
8873                         break;
8874                 default:
8875                         /* Case prevented by pipe_config_set_bpp. */
8876                         BUG();
8877                 }
8878
8879                 if (intel_crtc->config->dither)
8880                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8881
8882                 I915_WRITE(PIPEMISC(pipe), val);
8883         }
8884 }
8885
8886 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8887                                     struct intel_crtc_state *crtc_state,
8888                                     intel_clock_t *clock,
8889                                     bool *has_reduced_clock,
8890                                     intel_clock_t *reduced_clock)
8891 {
8892         struct drm_device *dev = crtc->dev;
8893         struct drm_i915_private *dev_priv = dev->dev_private;
8894         int refclk;
8895         const intel_limit_t *limit;
8896         bool ret;
8897
8898         refclk = ironlake_get_refclk(crtc_state);
8899
8900         /*
8901          * Returns a set of divisors for the desired target clock with the given
8902          * refclk, or FALSE.  The returned values represent the clock equation:
8903          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8904          */
8905         limit = intel_limit(crtc_state, refclk);
8906         ret = dev_priv->display.find_dpll(limit, crtc_state,
8907                                           crtc_state->port_clock,
8908                                           refclk, NULL, clock);
8909         if (!ret)
8910                 return false;
8911
8912         return true;
8913 }
8914
8915 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8916 {
8917         /*
8918          * Account for spread spectrum to avoid
8919          * oversubscribing the link. Max center spread
8920          * is 2.5%; use 5% for safety's sake.
8921          */
8922         u32 bps = target_clock * bpp * 21 / 20;
8923         return DIV_ROUND_UP(bps, link_bw * 8);
8924 }
8925
8926 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8927 {
8928         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8929 }
8930
8931 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8932                                       struct intel_crtc_state *crtc_state,
8933                                       u32 *fp,
8934                                       intel_clock_t *reduced_clock, u32 *fp2)
8935 {
8936         struct drm_crtc *crtc = &intel_crtc->base;
8937         struct drm_device *dev = crtc->dev;
8938         struct drm_i915_private *dev_priv = dev->dev_private;
8939         struct drm_atomic_state *state = crtc_state->base.state;
8940         struct drm_connector *connector;
8941         struct drm_connector_state *connector_state;
8942         struct intel_encoder *encoder;
8943         uint32_t dpll;
8944         int factor, num_connectors = 0, i;
8945         bool is_lvds = false, is_sdvo = false;
8946
8947         for_each_connector_in_state(state, connector, connector_state, i) {
8948                 if (connector_state->crtc != crtc_state->base.crtc)
8949                         continue;
8950
8951                 encoder = to_intel_encoder(connector_state->best_encoder);
8952
8953                 switch (encoder->type) {
8954                 case INTEL_OUTPUT_LVDS:
8955                         is_lvds = true;
8956                         break;
8957                 case INTEL_OUTPUT_SDVO:
8958                 case INTEL_OUTPUT_HDMI:
8959                         is_sdvo = true;
8960                         break;
8961                 default:
8962                         break;
8963                 }
8964
8965                 num_connectors++;
8966         }
8967
8968         /* Enable autotuning of the PLL clock (if permissible) */
8969         factor = 21;
8970         if (is_lvds) {
8971                 if ((intel_panel_use_ssc(dev_priv) &&
8972                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8973                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8974                         factor = 25;
8975         } else if (crtc_state->sdvo_tv_clock)
8976                 factor = 20;
8977
8978         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8979                 *fp |= FP_CB_TUNE;
8980
8981         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8982                 *fp2 |= FP_CB_TUNE;
8983
8984         dpll = 0;
8985
8986         if (is_lvds)
8987                 dpll |= DPLLB_MODE_LVDS;
8988         else
8989                 dpll |= DPLLB_MODE_DAC_SERIAL;
8990
8991         dpll |= (crtc_state->pixel_multiplier - 1)
8992                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8993
8994         if (is_sdvo)
8995                 dpll |= DPLL_SDVO_HIGH_SPEED;
8996         if (crtc_state->has_dp_encoder)
8997                 dpll |= DPLL_SDVO_HIGH_SPEED;
8998
8999         /* compute bitmask from p1 value */
9000         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9001         /* also FPA1 */
9002         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9003
9004         switch (crtc_state->dpll.p2) {
9005         case 5:
9006                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9007                 break;
9008         case 7:
9009                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9010                 break;
9011         case 10:
9012                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9013                 break;
9014         case 14:
9015                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9016                 break;
9017         }
9018
9019         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
9020                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9021         else
9022                 dpll |= PLL_REF_INPUT_DREFCLK;
9023
9024         return dpll | DPLL_VCO_ENABLE;
9025 }
9026
9027 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9028                                        struct intel_crtc_state *crtc_state)
9029 {
9030         struct drm_device *dev = crtc->base.dev;
9031         intel_clock_t clock, reduced_clock;
9032         u32 dpll = 0, fp = 0, fp2 = 0;
9033         bool ok, has_reduced_clock = false;
9034         bool is_lvds = false;
9035         struct intel_shared_dpll *pll;
9036
9037         memset(&crtc_state->dpll_hw_state, 0,
9038                sizeof(crtc_state->dpll_hw_state));
9039
9040         is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
9041
9042         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
9043              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
9044
9045         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
9046                                      &has_reduced_clock, &reduced_clock);
9047         if (!ok && !crtc_state->clock_set) {
9048                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9049                 return -EINVAL;
9050         }
9051         /* Compat-code for transition, will disappear. */
9052         if (!crtc_state->clock_set) {
9053                 crtc_state->dpll.n = clock.n;
9054                 crtc_state->dpll.m1 = clock.m1;
9055                 crtc_state->dpll.m2 = clock.m2;
9056                 crtc_state->dpll.p1 = clock.p1;
9057                 crtc_state->dpll.p2 = clock.p2;
9058         }
9059
9060         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9061         if (crtc_state->has_pch_encoder) {
9062                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9063                 if (has_reduced_clock)
9064                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
9065
9066                 dpll = ironlake_compute_dpll(crtc, crtc_state,
9067                                              &fp, &reduced_clock,
9068                                              has_reduced_clock ? &fp2 : NULL);
9069
9070                 crtc_state->dpll_hw_state.dpll = dpll;
9071                 crtc_state->dpll_hw_state.fp0 = fp;
9072                 if (has_reduced_clock)
9073                         crtc_state->dpll_hw_state.fp1 = fp2;
9074                 else
9075                         crtc_state->dpll_hw_state.fp1 = fp;
9076
9077                 pll = intel_get_shared_dpll(crtc, crtc_state);
9078                 if (pll == NULL) {
9079                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9080                                          pipe_name(crtc->pipe));
9081                         return -EINVAL;
9082                 }
9083         }
9084
9085         if (is_lvds && has_reduced_clock)
9086                 crtc->lowfreq_avail = true;
9087         else
9088                 crtc->lowfreq_avail = false;
9089
9090         return 0;
9091 }
9092
9093 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9094                                          struct intel_link_m_n *m_n)
9095 {
9096         struct drm_device *dev = crtc->base.dev;
9097         struct drm_i915_private *dev_priv = dev->dev_private;
9098         enum pipe pipe = crtc->pipe;
9099
9100         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9101         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9102         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9103                 & ~TU_SIZE_MASK;
9104         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9105         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9106                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9107 }
9108
9109 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9110                                          enum transcoder transcoder,
9111                                          struct intel_link_m_n *m_n,
9112                                          struct intel_link_m_n *m2_n2)
9113 {
9114         struct drm_device *dev = crtc->base.dev;
9115         struct drm_i915_private *dev_priv = dev->dev_private;
9116         enum pipe pipe = crtc->pipe;
9117
9118         if (INTEL_INFO(dev)->gen >= 5) {
9119                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9120                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9121                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9122                         & ~TU_SIZE_MASK;
9123                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9124                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9125                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9126                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9127                  * gen < 8) and if DRRS is supported (to make sure the
9128                  * registers are not unnecessarily read).
9129                  */
9130                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9131                         crtc->config->has_drrs) {
9132                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9133                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9134                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9135                                         & ~TU_SIZE_MASK;
9136                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9137                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9138                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9139                 }
9140         } else {
9141                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9142                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9143                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9144                         & ~TU_SIZE_MASK;
9145                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9146                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9147                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9148         }
9149 }
9150
9151 void intel_dp_get_m_n(struct intel_crtc *crtc,
9152                       struct intel_crtc_state *pipe_config)
9153 {
9154         if (pipe_config->has_pch_encoder)
9155                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9156         else
9157                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9158                                              &pipe_config->dp_m_n,
9159                                              &pipe_config->dp_m2_n2);
9160 }
9161
9162 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9163                                         struct intel_crtc_state *pipe_config)
9164 {
9165         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9166                                      &pipe_config->fdi_m_n, NULL);
9167 }
9168
9169 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9170                                     struct intel_crtc_state *pipe_config)
9171 {
9172         struct drm_device *dev = crtc->base.dev;
9173         struct drm_i915_private *dev_priv = dev->dev_private;
9174         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9175         uint32_t ps_ctrl = 0;
9176         int id = -1;
9177         int i;
9178
9179         /* find scaler attached to this pipe */
9180         for (i = 0; i < crtc->num_scalers; i++) {
9181                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9182                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9183                         id = i;
9184                         pipe_config->pch_pfit.enabled = true;
9185                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9186                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9187                         break;
9188                 }
9189         }
9190
9191         scaler_state->scaler_id = id;
9192         if (id >= 0) {
9193                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9194         } else {
9195                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9196         }
9197 }
9198
9199 static void
9200 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9201                                  struct intel_initial_plane_config *plane_config)
9202 {
9203         struct drm_device *dev = crtc->base.dev;
9204         struct drm_i915_private *dev_priv = dev->dev_private;
9205         u32 val, base, offset, stride_mult, tiling;
9206         int pipe = crtc->pipe;
9207         int fourcc, pixel_format;
9208         unsigned int aligned_height;
9209         struct drm_framebuffer *fb;
9210         struct intel_framebuffer *intel_fb;
9211
9212         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9213         if (!intel_fb) {
9214                 DRM_DEBUG_KMS("failed to alloc fb\n");
9215                 return;
9216         }
9217
9218         fb = &intel_fb->base;
9219
9220         val = I915_READ(PLANE_CTL(pipe, 0));
9221         if (!(val & PLANE_CTL_ENABLE))
9222                 goto error;
9223
9224         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9225         fourcc = skl_format_to_fourcc(pixel_format,
9226                                       val & PLANE_CTL_ORDER_RGBX,
9227                                       val & PLANE_CTL_ALPHA_MASK);
9228         fb->pixel_format = fourcc;
9229         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9230
9231         tiling = val & PLANE_CTL_TILED_MASK;
9232         switch (tiling) {
9233         case PLANE_CTL_TILED_LINEAR:
9234                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9235                 break;
9236         case PLANE_CTL_TILED_X:
9237                 plane_config->tiling = I915_TILING_X;
9238                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9239                 break;
9240         case PLANE_CTL_TILED_Y:
9241                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9242                 break;
9243         case PLANE_CTL_TILED_YF:
9244                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9245                 break;
9246         default:
9247                 MISSING_CASE(tiling);
9248                 goto error;
9249         }
9250
9251         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9252         plane_config->base = base;
9253
9254         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9255
9256         val = I915_READ(PLANE_SIZE(pipe, 0));
9257         fb->height = ((val >> 16) & 0xfff) + 1;
9258         fb->width = ((val >> 0) & 0x1fff) + 1;
9259
9260         val = I915_READ(PLANE_STRIDE(pipe, 0));
9261         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9262                                                 fb->pixel_format);
9263         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9264
9265         aligned_height = intel_fb_align_height(dev, fb->height,
9266                                                fb->pixel_format,
9267                                                fb->modifier[0]);
9268
9269         plane_config->size = fb->pitches[0] * aligned_height;
9270
9271         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9272                       pipe_name(pipe), fb->width, fb->height,
9273                       fb->bits_per_pixel, base, fb->pitches[0],
9274                       plane_config->size);
9275
9276         plane_config->fb = intel_fb;
9277         return;
9278
9279 error:
9280         kfree(fb);
9281 }
9282
9283 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9284                                      struct intel_crtc_state *pipe_config)
9285 {
9286         struct drm_device *dev = crtc->base.dev;
9287         struct drm_i915_private *dev_priv = dev->dev_private;
9288         uint32_t tmp;
9289
9290         tmp = I915_READ(PF_CTL(crtc->pipe));
9291
9292         if (tmp & PF_ENABLE) {
9293                 pipe_config->pch_pfit.enabled = true;
9294                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9295                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9296
9297                 /* We currently do not free assignements of panel fitters on
9298                  * ivb/hsw (since we don't use the higher upscaling modes which
9299                  * differentiates them) so just WARN about this case for now. */
9300                 if (IS_GEN7(dev)) {
9301                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9302                                 PF_PIPE_SEL_IVB(crtc->pipe));
9303                 }
9304         }
9305 }
9306
9307 static void
9308 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9309                                   struct intel_initial_plane_config *plane_config)
9310 {
9311         struct drm_device *dev = crtc->base.dev;
9312         struct drm_i915_private *dev_priv = dev->dev_private;
9313         u32 val, base, offset;
9314         int pipe = crtc->pipe;
9315         int fourcc, pixel_format;
9316         unsigned int aligned_height;
9317         struct drm_framebuffer *fb;
9318         struct intel_framebuffer *intel_fb;
9319
9320         val = I915_READ(DSPCNTR(pipe));
9321         if (!(val & DISPLAY_PLANE_ENABLE))
9322                 return;
9323
9324         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9325         if (!intel_fb) {
9326                 DRM_DEBUG_KMS("failed to alloc fb\n");
9327                 return;
9328         }
9329
9330         fb = &intel_fb->base;
9331
9332         if (INTEL_INFO(dev)->gen >= 4) {
9333                 if (val & DISPPLANE_TILED) {
9334                         plane_config->tiling = I915_TILING_X;
9335                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9336                 }
9337         }
9338
9339         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9340         fourcc = i9xx_format_to_fourcc(pixel_format);
9341         fb->pixel_format = fourcc;
9342         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9343
9344         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9345         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9346                 offset = I915_READ(DSPOFFSET(pipe));
9347         } else {
9348                 if (plane_config->tiling)
9349                         offset = I915_READ(DSPTILEOFF(pipe));
9350                 else
9351                         offset = I915_READ(DSPLINOFF(pipe));
9352         }
9353         plane_config->base = base;
9354
9355         val = I915_READ(PIPESRC(pipe));
9356         fb->width = ((val >> 16) & 0xfff) + 1;
9357         fb->height = ((val >> 0) & 0xfff) + 1;
9358
9359         val = I915_READ(DSPSTRIDE(pipe));
9360         fb->pitches[0] = val & 0xffffffc0;
9361
9362         aligned_height = intel_fb_align_height(dev, fb->height,
9363                                                fb->pixel_format,
9364                                                fb->modifier[0]);
9365
9366         plane_config->size = fb->pitches[0] * aligned_height;
9367
9368         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9369                       pipe_name(pipe), fb->width, fb->height,
9370                       fb->bits_per_pixel, base, fb->pitches[0],
9371                       plane_config->size);
9372
9373         plane_config->fb = intel_fb;
9374 }
9375
9376 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9377                                      struct intel_crtc_state *pipe_config)
9378 {
9379         struct drm_device *dev = crtc->base.dev;
9380         struct drm_i915_private *dev_priv = dev->dev_private;
9381         enum intel_display_power_domain power_domain;
9382         uint32_t tmp;
9383         bool ret;
9384
9385         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9386         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9387                 return false;
9388
9389         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9390         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9391
9392         ret = false;
9393         tmp = I915_READ(PIPECONF(crtc->pipe));
9394         if (!(tmp & PIPECONF_ENABLE))
9395                 goto out;
9396
9397         switch (tmp & PIPECONF_BPC_MASK) {
9398         case PIPECONF_6BPC:
9399                 pipe_config->pipe_bpp = 18;
9400                 break;
9401         case PIPECONF_8BPC:
9402                 pipe_config->pipe_bpp = 24;
9403                 break;
9404         case PIPECONF_10BPC:
9405                 pipe_config->pipe_bpp = 30;
9406                 break;
9407         case PIPECONF_12BPC:
9408                 pipe_config->pipe_bpp = 36;
9409                 break;
9410         default:
9411                 break;
9412         }
9413
9414         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9415                 pipe_config->limited_color_range = true;
9416
9417         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9418                 struct intel_shared_dpll *pll;
9419
9420                 pipe_config->has_pch_encoder = true;
9421
9422                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9423                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9424                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9425
9426                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9427
9428                 if (HAS_PCH_IBX(dev_priv->dev)) {
9429                         pipe_config->shared_dpll =
9430                                 (enum intel_dpll_id) crtc->pipe;
9431                 } else {
9432                         tmp = I915_READ(PCH_DPLL_SEL);
9433                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9434                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9435                         else
9436                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9437                 }
9438
9439                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9440
9441                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9442                                            &pipe_config->dpll_hw_state));
9443
9444                 tmp = pipe_config->dpll_hw_state.dpll;
9445                 pipe_config->pixel_multiplier =
9446                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9447                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9448
9449                 ironlake_pch_clock_get(crtc, pipe_config);
9450         } else {
9451                 pipe_config->pixel_multiplier = 1;
9452         }
9453
9454         intel_get_pipe_timings(crtc, pipe_config);
9455
9456         ironlake_get_pfit_config(crtc, pipe_config);
9457
9458         ret = true;
9459
9460 out:
9461         intel_display_power_put(dev_priv, power_domain);
9462
9463         return ret;
9464 }
9465
9466 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9467 {
9468         struct drm_device *dev = dev_priv->dev;
9469         struct intel_crtc *crtc;
9470
9471         for_each_intel_crtc(dev, crtc)
9472                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9473                      pipe_name(crtc->pipe));
9474
9475         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9476         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9477         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9478         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9479         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9480         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9481              "CPU PWM1 enabled\n");
9482         if (IS_HASWELL(dev))
9483                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9484                      "CPU PWM2 enabled\n");
9485         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9486              "PCH PWM1 enabled\n");
9487         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9488              "Utility pin enabled\n");
9489         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9490
9491         /*
9492          * In theory we can still leave IRQs enabled, as long as only the HPD
9493          * interrupts remain enabled. We used to check for that, but since it's
9494          * gen-specific and since we only disable LCPLL after we fully disable
9495          * the interrupts, the check below should be enough.
9496          */
9497         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9498 }
9499
9500 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9501 {
9502         struct drm_device *dev = dev_priv->dev;
9503
9504         if (IS_HASWELL(dev))
9505                 return I915_READ(D_COMP_HSW);
9506         else
9507                 return I915_READ(D_COMP_BDW);
9508 }
9509
9510 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9511 {
9512         struct drm_device *dev = dev_priv->dev;
9513
9514         if (IS_HASWELL(dev)) {
9515                 mutex_lock(&dev_priv->rps.hw_lock);
9516                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9517                                             val))
9518                         DRM_ERROR("Failed to write to D_COMP\n");
9519                 mutex_unlock(&dev_priv->rps.hw_lock);
9520         } else {
9521                 I915_WRITE(D_COMP_BDW, val);
9522                 POSTING_READ(D_COMP_BDW);
9523         }
9524 }
9525
9526 /*
9527  * This function implements pieces of two sequences from BSpec:
9528  * - Sequence for display software to disable LCPLL
9529  * - Sequence for display software to allow package C8+
9530  * The steps implemented here are just the steps that actually touch the LCPLL
9531  * register. Callers should take care of disabling all the display engine
9532  * functions, doing the mode unset, fixing interrupts, etc.
9533  */
9534 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9535                               bool switch_to_fclk, bool allow_power_down)
9536 {
9537         uint32_t val;
9538
9539         assert_can_disable_lcpll(dev_priv);
9540
9541         val = I915_READ(LCPLL_CTL);
9542
9543         if (switch_to_fclk) {
9544                 val |= LCPLL_CD_SOURCE_FCLK;
9545                 I915_WRITE(LCPLL_CTL, val);
9546
9547                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9548                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9549                         DRM_ERROR("Switching to FCLK failed\n");
9550
9551                 val = I915_READ(LCPLL_CTL);
9552         }
9553
9554         val |= LCPLL_PLL_DISABLE;
9555         I915_WRITE(LCPLL_CTL, val);
9556         POSTING_READ(LCPLL_CTL);
9557
9558         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9559                 DRM_ERROR("LCPLL still locked\n");
9560
9561         val = hsw_read_dcomp(dev_priv);
9562         val |= D_COMP_COMP_DISABLE;
9563         hsw_write_dcomp(dev_priv, val);
9564         ndelay(100);
9565
9566         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9567                      1))
9568                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9569
9570         if (allow_power_down) {
9571                 val = I915_READ(LCPLL_CTL);
9572                 val |= LCPLL_POWER_DOWN_ALLOW;
9573                 I915_WRITE(LCPLL_CTL, val);
9574                 POSTING_READ(LCPLL_CTL);
9575         }
9576 }
9577
9578 /*
9579  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9580  * source.
9581  */
9582 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9583 {
9584         uint32_t val;
9585
9586         val = I915_READ(LCPLL_CTL);
9587
9588         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9589                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9590                 return;
9591
9592         /*
9593          * Make sure we're not on PC8 state before disabling PC8, otherwise
9594          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9595          */
9596         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9597
9598         if (val & LCPLL_POWER_DOWN_ALLOW) {
9599                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9600                 I915_WRITE(LCPLL_CTL, val);
9601                 POSTING_READ(LCPLL_CTL);
9602         }
9603
9604         val = hsw_read_dcomp(dev_priv);
9605         val |= D_COMP_COMP_FORCE;
9606         val &= ~D_COMP_COMP_DISABLE;
9607         hsw_write_dcomp(dev_priv, val);
9608
9609         val = I915_READ(LCPLL_CTL);
9610         val &= ~LCPLL_PLL_DISABLE;
9611         I915_WRITE(LCPLL_CTL, val);
9612
9613         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9614                 DRM_ERROR("LCPLL not locked yet\n");
9615
9616         if (val & LCPLL_CD_SOURCE_FCLK) {
9617                 val = I915_READ(LCPLL_CTL);
9618                 val &= ~LCPLL_CD_SOURCE_FCLK;
9619                 I915_WRITE(LCPLL_CTL, val);
9620
9621                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9622                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9623                         DRM_ERROR("Switching back to LCPLL failed\n");
9624         }
9625
9626         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9627         intel_update_cdclk(dev_priv->dev);
9628 }
9629
9630 /*
9631  * Package states C8 and deeper are really deep PC states that can only be
9632  * reached when all the devices on the system allow it, so even if the graphics
9633  * device allows PC8+, it doesn't mean the system will actually get to these
9634  * states. Our driver only allows PC8+ when going into runtime PM.
9635  *
9636  * The requirements for PC8+ are that all the outputs are disabled, the power
9637  * well is disabled and most interrupts are disabled, and these are also
9638  * requirements for runtime PM. When these conditions are met, we manually do
9639  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9640  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9641  * hang the machine.
9642  *
9643  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9644  * the state of some registers, so when we come back from PC8+ we need to
9645  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9646  * need to take care of the registers kept by RC6. Notice that this happens even
9647  * if we don't put the device in PCI D3 state (which is what currently happens
9648  * because of the runtime PM support).
9649  *
9650  * For more, read "Display Sequences for Package C8" on the hardware
9651  * documentation.
9652  */
9653 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9654 {
9655         struct drm_device *dev = dev_priv->dev;
9656         uint32_t val;
9657
9658         DRM_DEBUG_KMS("Enabling package C8+\n");
9659
9660         if (HAS_PCH_LPT_LP(dev)) {
9661                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9662                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9663                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9664         }
9665
9666         lpt_disable_clkout_dp(dev);
9667         hsw_disable_lcpll(dev_priv, true, true);
9668 }
9669
9670 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9671 {
9672         struct drm_device *dev = dev_priv->dev;
9673         uint32_t val;
9674
9675         DRM_DEBUG_KMS("Disabling package C8+\n");
9676
9677         hsw_restore_lcpll(dev_priv);
9678         lpt_init_pch_refclk(dev);
9679
9680         if (HAS_PCH_LPT_LP(dev)) {
9681                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9682                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9683                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9684         }
9685
9686         intel_prepare_ddi(dev);
9687 }
9688
9689 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9690 {
9691         struct drm_device *dev = old_state->dev;
9692         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9693
9694         broxton_set_cdclk(dev, req_cdclk);
9695 }
9696
9697 /* compute the max rate for new configuration */
9698 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9699 {
9700         struct intel_crtc *intel_crtc;
9701         struct intel_crtc_state *crtc_state;
9702         int max_pixel_rate = 0;
9703
9704         for_each_intel_crtc(state->dev, intel_crtc) {
9705                 int pixel_rate;
9706
9707                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9708                 if (IS_ERR(crtc_state))
9709                         return PTR_ERR(crtc_state);
9710
9711                 if (!crtc_state->base.enable)
9712                         continue;
9713
9714                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9715
9716                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9717                 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9718                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9719
9720                 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9721         }
9722
9723         return max_pixel_rate;
9724 }
9725
9726 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9727 {
9728         struct drm_i915_private *dev_priv = dev->dev_private;
9729         uint32_t val, data;
9730         int ret;
9731
9732         if (WARN((I915_READ(LCPLL_CTL) &
9733                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9734                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9735                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9736                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9737                  "trying to change cdclk frequency with cdclk not enabled\n"))
9738                 return;
9739
9740         mutex_lock(&dev_priv->rps.hw_lock);
9741         ret = sandybridge_pcode_write(dev_priv,
9742                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9743         mutex_unlock(&dev_priv->rps.hw_lock);
9744         if (ret) {
9745                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9746                 return;
9747         }
9748
9749         val = I915_READ(LCPLL_CTL);
9750         val |= LCPLL_CD_SOURCE_FCLK;
9751         I915_WRITE(LCPLL_CTL, val);
9752
9753         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9754                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9755                 DRM_ERROR("Switching to FCLK failed\n");
9756
9757         val = I915_READ(LCPLL_CTL);
9758         val &= ~LCPLL_CLK_FREQ_MASK;
9759
9760         switch (cdclk) {
9761         case 450000:
9762                 val |= LCPLL_CLK_FREQ_450;
9763                 data = 0;
9764                 break;
9765         case 540000:
9766                 val |= LCPLL_CLK_FREQ_54O_BDW;
9767                 data = 1;
9768                 break;
9769         case 337500:
9770                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9771                 data = 2;
9772                 break;
9773         case 675000:
9774                 val |= LCPLL_CLK_FREQ_675_BDW;
9775                 data = 3;
9776                 break;
9777         default:
9778                 WARN(1, "invalid cdclk frequency\n");
9779                 return;
9780         }
9781
9782         I915_WRITE(LCPLL_CTL, val);
9783
9784         val = I915_READ(LCPLL_CTL);
9785         val &= ~LCPLL_CD_SOURCE_FCLK;
9786         I915_WRITE(LCPLL_CTL, val);
9787
9788         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9789                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9790                 DRM_ERROR("Switching back to LCPLL failed\n");
9791
9792         mutex_lock(&dev_priv->rps.hw_lock);
9793         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9794         mutex_unlock(&dev_priv->rps.hw_lock);
9795
9796         intel_update_cdclk(dev);
9797
9798         WARN(cdclk != dev_priv->cdclk_freq,
9799              "cdclk requested %d kHz but got %d kHz\n",
9800              cdclk, dev_priv->cdclk_freq);
9801 }
9802
9803 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9804 {
9805         struct drm_i915_private *dev_priv = to_i915(state->dev);
9806         int max_pixclk = ilk_max_pixel_rate(state);
9807         int cdclk;
9808
9809         /*
9810          * FIXME should also account for plane ratio
9811          * once 64bpp pixel formats are supported.
9812          */
9813         if (max_pixclk > 540000)
9814                 cdclk = 675000;
9815         else if (max_pixclk > 450000)
9816                 cdclk = 540000;
9817         else if (max_pixclk > 337500)
9818                 cdclk = 450000;
9819         else
9820                 cdclk = 337500;
9821
9822         if (cdclk > dev_priv->max_cdclk_freq) {
9823                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9824                               cdclk, dev_priv->max_cdclk_freq);
9825                 return -EINVAL;
9826         }
9827
9828         to_intel_atomic_state(state)->cdclk = cdclk;
9829
9830         return 0;
9831 }
9832
9833 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9834 {
9835         struct drm_device *dev = old_state->dev;
9836         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9837
9838         broadwell_set_cdclk(dev, req_cdclk);
9839 }
9840
9841 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9842                                       struct intel_crtc_state *crtc_state)
9843 {
9844         if (!intel_ddi_pll_select(crtc, crtc_state))
9845                 return -EINVAL;
9846
9847         crtc->lowfreq_avail = false;
9848
9849         return 0;
9850 }
9851
9852 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9853                                 enum port port,
9854                                 struct intel_crtc_state *pipe_config)
9855 {
9856         switch (port) {
9857         case PORT_A:
9858                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9859                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9860                 break;
9861         case PORT_B:
9862                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9863                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9864                 break;
9865         case PORT_C:
9866                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9867                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9868                 break;
9869         default:
9870                 DRM_ERROR("Incorrect port type\n");
9871         }
9872 }
9873
9874 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9875                                 enum port port,
9876                                 struct intel_crtc_state *pipe_config)
9877 {
9878         u32 temp, dpll_ctl1;
9879
9880         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9881         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9882
9883         switch (pipe_config->ddi_pll_sel) {
9884         case SKL_DPLL0:
9885                 /*
9886                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9887                  * of the shared DPLL framework and thus needs to be read out
9888                  * separately
9889                  */
9890                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9891                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9892                 break;
9893         case SKL_DPLL1:
9894                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9895                 break;
9896         case SKL_DPLL2:
9897                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9898                 break;
9899         case SKL_DPLL3:
9900                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9901                 break;
9902         }
9903 }
9904
9905 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9906                                 enum port port,
9907                                 struct intel_crtc_state *pipe_config)
9908 {
9909         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9910
9911         switch (pipe_config->ddi_pll_sel) {
9912         case PORT_CLK_SEL_WRPLL1:
9913                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9914                 break;
9915         case PORT_CLK_SEL_WRPLL2:
9916                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9917                 break;
9918         case PORT_CLK_SEL_SPLL:
9919                 pipe_config->shared_dpll = DPLL_ID_SPLL;
9920                 break;
9921         }
9922 }
9923
9924 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9925                                        struct intel_crtc_state *pipe_config)
9926 {
9927         struct drm_device *dev = crtc->base.dev;
9928         struct drm_i915_private *dev_priv = dev->dev_private;
9929         struct intel_shared_dpll *pll;
9930         enum port port;
9931         uint32_t tmp;
9932
9933         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9934
9935         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9936
9937         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9938                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9939         else if (IS_BROXTON(dev))
9940                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9941         else
9942                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9943
9944         if (pipe_config->shared_dpll >= 0) {
9945                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9946
9947                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9948                                            &pipe_config->dpll_hw_state));
9949         }
9950
9951         /*
9952          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9953          * DDI E. So just check whether this pipe is wired to DDI E and whether
9954          * the PCH transcoder is on.
9955          */
9956         if (INTEL_INFO(dev)->gen < 9 &&
9957             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9958                 pipe_config->has_pch_encoder = true;
9959
9960                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9961                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9962                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9963
9964                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9965         }
9966 }
9967
9968 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9969                                     struct intel_crtc_state *pipe_config)
9970 {
9971         struct drm_device *dev = crtc->base.dev;
9972         struct drm_i915_private *dev_priv = dev->dev_private;
9973         enum intel_display_power_domain power_domain;
9974         unsigned long power_domain_mask;
9975         uint32_t tmp;
9976         bool ret;
9977
9978         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9979         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9980                 return false;
9981         power_domain_mask = BIT(power_domain);
9982
9983         ret = false;
9984
9985         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9986         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9987
9988         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9989         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9990                 enum pipe trans_edp_pipe;
9991                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9992                 default:
9993                         WARN(1, "unknown pipe linked to edp transcoder\n");
9994                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9995                 case TRANS_DDI_EDP_INPUT_A_ON:
9996                         trans_edp_pipe = PIPE_A;
9997                         break;
9998                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9999                         trans_edp_pipe = PIPE_B;
10000                         break;
10001                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10002                         trans_edp_pipe = PIPE_C;
10003                         break;
10004                 }
10005
10006                 if (trans_edp_pipe == crtc->pipe)
10007                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
10008         }
10009
10010         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10011         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10012                 goto out;
10013         power_domain_mask |= BIT(power_domain);
10014
10015         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10016         if (!(tmp & PIPECONF_ENABLE))
10017                 goto out;
10018
10019         haswell_get_ddi_port_state(crtc, pipe_config);
10020
10021         intel_get_pipe_timings(crtc, pipe_config);
10022
10023         if (INTEL_INFO(dev)->gen >= 9) {
10024                 skl_init_scalers(dev, crtc, pipe_config);
10025         }
10026
10027         if (INTEL_INFO(dev)->gen >= 9) {
10028                 pipe_config->scaler_state.scaler_id = -1;
10029                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10030         }
10031
10032         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10033         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10034                 power_domain_mask |= BIT(power_domain);
10035                 if (INTEL_INFO(dev)->gen >= 9)
10036                         skylake_get_pfit_config(crtc, pipe_config);
10037                 else
10038                         ironlake_get_pfit_config(crtc, pipe_config);
10039         }
10040
10041         if (IS_HASWELL(dev))
10042                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10043                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10044
10045         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
10046                 pipe_config->pixel_multiplier =
10047                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10048         } else {
10049                 pipe_config->pixel_multiplier = 1;
10050         }
10051
10052         ret = true;
10053
10054 out:
10055         for_each_power_domain(power_domain, power_domain_mask)
10056                 intel_display_power_put(dev_priv, power_domain);
10057
10058         return ret;
10059 }
10060
10061 static void i845_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
10062 {
10063         struct drm_device *dev = crtc->dev;
10064         struct drm_i915_private *dev_priv = dev->dev_private;
10065         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10066         uint32_t cntl = 0, size = 0;
10067
10068         if (on) {
10069                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
10070                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
10071                 unsigned int stride = roundup_pow_of_two(width) * 4;
10072
10073                 switch (stride) {
10074                 default:
10075                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10076                                   width, stride);
10077                         stride = 256;
10078                         /* fallthrough */
10079                 case 256:
10080                 case 512:
10081                 case 1024:
10082                 case 2048:
10083                         break;
10084                 }
10085
10086                 cntl |= CURSOR_ENABLE |
10087                         CURSOR_GAMMA_ENABLE |
10088                         CURSOR_FORMAT_ARGB |
10089                         CURSOR_STRIDE(stride);
10090
10091                 size = (height << 12) | width;
10092         }
10093
10094         if (intel_crtc->cursor_cntl != 0 &&
10095             (intel_crtc->cursor_base != base ||
10096              intel_crtc->cursor_size != size ||
10097              intel_crtc->cursor_cntl != cntl)) {
10098                 /* On these chipsets we can only modify the base/size/stride
10099                  * whilst the cursor is disabled.
10100                  */
10101                 I915_WRITE(CURCNTR(PIPE_A), 0);
10102                 POSTING_READ(CURCNTR(PIPE_A));
10103                 intel_crtc->cursor_cntl = 0;
10104         }
10105
10106         if (intel_crtc->cursor_base != base) {
10107                 I915_WRITE(CURBASE(PIPE_A), base);
10108                 intel_crtc->cursor_base = base;
10109         }
10110
10111         if (intel_crtc->cursor_size != size) {
10112                 I915_WRITE(CURSIZE, size);
10113                 intel_crtc->cursor_size = size;
10114         }
10115
10116         if (intel_crtc->cursor_cntl != cntl) {
10117                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10118                 POSTING_READ(CURCNTR(PIPE_A));
10119                 intel_crtc->cursor_cntl = cntl;
10120         }
10121 }
10122
10123 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
10124 {
10125         struct drm_device *dev = crtc->dev;
10126         struct drm_i915_private *dev_priv = dev->dev_private;
10127         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10128         int pipe = intel_crtc->pipe;
10129         uint32_t cntl = 0;
10130
10131         if (on) {
10132                 cntl = MCURSOR_GAMMA_ENABLE;
10133                 switch (intel_crtc->base.cursor->state->crtc_w) {
10134                         case 64:
10135                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10136                                 break;
10137                         case 128:
10138                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10139                                 break;
10140                         case 256:
10141                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10142                                 break;
10143                         default:
10144                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
10145                                 return;
10146                 }
10147                 cntl |= pipe << 28; /* Connect to correct pipe */
10148
10149                 if (HAS_DDI(dev))
10150                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10151         }
10152
10153         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10154                 cntl |= CURSOR_ROTATE_180;
10155
10156         if (intel_crtc->cursor_cntl != cntl) {
10157                 I915_WRITE(CURCNTR(pipe), cntl);
10158                 POSTING_READ(CURCNTR(pipe));
10159                 intel_crtc->cursor_cntl = cntl;
10160         }
10161
10162         /* and commit changes on next vblank */
10163         I915_WRITE(CURBASE(pipe), base);
10164         POSTING_READ(CURBASE(pipe));
10165
10166         intel_crtc->cursor_base = base;
10167 }
10168
10169 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10170 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10171                                      bool on)
10172 {
10173         struct drm_device *dev = crtc->dev;
10174         struct drm_i915_private *dev_priv = dev->dev_private;
10175         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10176         int pipe = intel_crtc->pipe;
10177         struct drm_plane_state *cursor_state = crtc->cursor->state;
10178         int x = cursor_state->crtc_x;
10179         int y = cursor_state->crtc_y;
10180         u32 base = 0, pos = 0;
10181
10182         base = intel_crtc->cursor_addr;
10183
10184         if (x >= intel_crtc->config->pipe_src_w)
10185                 on = false;
10186
10187         if (y >= intel_crtc->config->pipe_src_h)
10188                 on = false;
10189
10190         if (x < 0) {
10191                 if (x + cursor_state->crtc_w <= 0)
10192                         on = false;
10193
10194                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10195                 x = -x;
10196         }
10197         pos |= x << CURSOR_X_SHIFT;
10198
10199         if (y < 0) {
10200                 if (y + cursor_state->crtc_h <= 0)
10201                         on = false;
10202
10203                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10204                 y = -y;
10205         }
10206         pos |= y << CURSOR_Y_SHIFT;
10207
10208         I915_WRITE(CURPOS(pipe), pos);
10209
10210         /* ILK+ do this automagically */
10211         if (HAS_GMCH_DISPLAY(dev) &&
10212             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10213                 base += (cursor_state->crtc_h *
10214                          cursor_state->crtc_w - 1) * 4;
10215         }
10216
10217         if (IS_845G(dev) || IS_I865G(dev))
10218                 i845_update_cursor(crtc, base, on);
10219         else
10220                 i9xx_update_cursor(crtc, base, on);
10221 }
10222
10223 static bool cursor_size_ok(struct drm_device *dev,
10224                            uint32_t width, uint32_t height)
10225 {
10226         if (width == 0 || height == 0)
10227                 return false;
10228
10229         /*
10230          * 845g/865g are special in that they are only limited by
10231          * the width of their cursors, the height is arbitrary up to
10232          * the precision of the register. Everything else requires
10233          * square cursors, limited to a few power-of-two sizes.
10234          */
10235         if (IS_845G(dev) || IS_I865G(dev)) {
10236                 if ((width & 63) != 0)
10237                         return false;
10238
10239                 if (width > (IS_845G(dev) ? 64 : 512))
10240                         return false;
10241
10242                 if (height > 1023)
10243                         return false;
10244         } else {
10245                 switch (width | height) {
10246                 case 256:
10247                 case 128:
10248                         if (IS_GEN2(dev))
10249                                 return false;
10250                 case 64:
10251                         break;
10252                 default:
10253                         return false;
10254                 }
10255         }
10256
10257         return true;
10258 }
10259
10260 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10261                                  u16 *blue, uint32_t start, uint32_t size)
10262 {
10263         int end = (start + size > 256) ? 256 : start + size, i;
10264         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10265
10266         for (i = start; i < end; i++) {
10267                 intel_crtc->lut_r[i] = red[i] >> 8;
10268                 intel_crtc->lut_g[i] = green[i] >> 8;
10269                 intel_crtc->lut_b[i] = blue[i] >> 8;
10270         }
10271
10272         intel_crtc_load_lut(crtc);
10273 }
10274
10275 /* VESA 640x480x72Hz mode to set on the pipe */
10276 static struct drm_display_mode load_detect_mode = {
10277         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10278                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10279 };
10280
10281 struct drm_framebuffer *
10282 __intel_framebuffer_create(struct drm_device *dev,
10283                            struct drm_mode_fb_cmd2 *mode_cmd,
10284                            struct drm_i915_gem_object *obj)
10285 {
10286         struct intel_framebuffer *intel_fb;
10287         int ret;
10288
10289         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10290         if (!intel_fb)
10291                 return ERR_PTR(-ENOMEM);
10292
10293         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10294         if (ret)
10295                 goto err;
10296
10297         return &intel_fb->base;
10298
10299 err:
10300         kfree(intel_fb);
10301         return ERR_PTR(ret);
10302 }
10303
10304 static struct drm_framebuffer *
10305 intel_framebuffer_create(struct drm_device *dev,
10306                          struct drm_mode_fb_cmd2 *mode_cmd,
10307                          struct drm_i915_gem_object *obj)
10308 {
10309         struct drm_framebuffer *fb;
10310         int ret;
10311
10312         ret = i915_mutex_lock_interruptible(dev);
10313         if (ret)
10314                 return ERR_PTR(ret);
10315         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10316         mutex_unlock(&dev->struct_mutex);
10317
10318         return fb;
10319 }
10320
10321 static u32
10322 intel_framebuffer_pitch_for_width(int width, int bpp)
10323 {
10324         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10325         return ALIGN(pitch, 64);
10326 }
10327
10328 static u32
10329 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10330 {
10331         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10332         return PAGE_ALIGN(pitch * mode->vdisplay);
10333 }
10334
10335 static struct drm_framebuffer *
10336 intel_framebuffer_create_for_mode(struct drm_device *dev,
10337                                   struct drm_display_mode *mode,
10338                                   int depth, int bpp)
10339 {
10340         struct drm_framebuffer *fb;
10341         struct drm_i915_gem_object *obj;
10342         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10343
10344         obj = i915_gem_alloc_object(dev,
10345                                     intel_framebuffer_size_for_mode(mode, bpp));
10346         if (obj == NULL)
10347                 return ERR_PTR(-ENOMEM);
10348
10349         mode_cmd.width = mode->hdisplay;
10350         mode_cmd.height = mode->vdisplay;
10351         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10352                                                                 bpp);
10353         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10354
10355         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10356         if (IS_ERR(fb))
10357                 drm_gem_object_unreference_unlocked(&obj->base);
10358
10359         return fb;
10360 }
10361
10362 static struct drm_framebuffer *
10363 mode_fits_in_fbdev(struct drm_device *dev,
10364                    struct drm_display_mode *mode)
10365 {
10366 #ifdef CONFIG_DRM_FBDEV_EMULATION
10367         struct drm_i915_private *dev_priv = dev->dev_private;
10368         struct drm_i915_gem_object *obj;
10369         struct drm_framebuffer *fb;
10370
10371         if (!dev_priv->fbdev)
10372                 return NULL;
10373
10374         if (!dev_priv->fbdev->fb)
10375                 return NULL;
10376
10377         obj = dev_priv->fbdev->fb->obj;
10378         BUG_ON(!obj);
10379
10380         fb = &dev_priv->fbdev->fb->base;
10381         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10382                                                                fb->bits_per_pixel))
10383                 return NULL;
10384
10385         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10386                 return NULL;
10387
10388         return fb;
10389 #else
10390         return NULL;
10391 #endif
10392 }
10393
10394 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10395                                            struct drm_crtc *crtc,
10396                                            struct drm_display_mode *mode,
10397                                            struct drm_framebuffer *fb,
10398                                            int x, int y)
10399 {
10400         struct drm_plane_state *plane_state;
10401         int hdisplay, vdisplay;
10402         int ret;
10403
10404         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10405         if (IS_ERR(plane_state))
10406                 return PTR_ERR(plane_state);
10407
10408         if (mode)
10409                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10410         else
10411                 hdisplay = vdisplay = 0;
10412
10413         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10414         if (ret)
10415                 return ret;
10416         drm_atomic_set_fb_for_plane(plane_state, fb);
10417         plane_state->crtc_x = 0;
10418         plane_state->crtc_y = 0;
10419         plane_state->crtc_w = hdisplay;
10420         plane_state->crtc_h = vdisplay;
10421         plane_state->src_x = x << 16;
10422         plane_state->src_y = y << 16;
10423         plane_state->src_w = hdisplay << 16;
10424         plane_state->src_h = vdisplay << 16;
10425
10426         return 0;
10427 }
10428
10429 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10430                                 struct drm_display_mode *mode,
10431                                 struct intel_load_detect_pipe *old,
10432                                 struct drm_modeset_acquire_ctx *ctx)
10433 {
10434         struct intel_crtc *intel_crtc;
10435         struct intel_encoder *intel_encoder =
10436                 intel_attached_encoder(connector);
10437         struct drm_crtc *possible_crtc;
10438         struct drm_encoder *encoder = &intel_encoder->base;
10439         struct drm_crtc *crtc = NULL;
10440         struct drm_device *dev = encoder->dev;
10441         struct drm_framebuffer *fb;
10442         struct drm_mode_config *config = &dev->mode_config;
10443         struct drm_atomic_state *state = NULL;
10444         struct drm_connector_state *connector_state;
10445         struct intel_crtc_state *crtc_state;
10446         int ret, i = -1;
10447
10448         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10449                       connector->base.id, connector->name,
10450                       encoder->base.id, encoder->name);
10451
10452 retry:
10453         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10454         if (ret)
10455                 goto fail;
10456
10457         /*
10458          * Algorithm gets a little messy:
10459          *
10460          *   - if the connector already has an assigned crtc, use it (but make
10461          *     sure it's on first)
10462          *
10463          *   - try to find the first unused crtc that can drive this connector,
10464          *     and use that if we find one
10465          */
10466
10467         /* See if we already have a CRTC for this connector */
10468         if (encoder->crtc) {
10469                 crtc = encoder->crtc;
10470
10471                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10472                 if (ret)
10473                         goto fail;
10474                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10475                 if (ret)
10476                         goto fail;
10477
10478                 old->dpms_mode = connector->dpms;
10479                 old->load_detect_temp = false;
10480
10481                 /* Make sure the crtc and connector are running */
10482                 if (connector->dpms != DRM_MODE_DPMS_ON)
10483                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10484
10485                 return true;
10486         }
10487
10488         /* Find an unused one (if possible) */
10489         for_each_crtc(dev, possible_crtc) {
10490                 i++;
10491                 if (!(encoder->possible_crtcs & (1 << i)))
10492                         continue;
10493                 if (possible_crtc->state->enable)
10494                         continue;
10495
10496                 crtc = possible_crtc;
10497                 break;
10498         }
10499
10500         /*
10501          * If we didn't find an unused CRTC, don't use any.
10502          */
10503         if (!crtc) {
10504                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10505                 goto fail;
10506         }
10507
10508         ret = drm_modeset_lock(&crtc->mutex, ctx);
10509         if (ret)
10510                 goto fail;
10511         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10512         if (ret)
10513                 goto fail;
10514
10515         intel_crtc = to_intel_crtc(crtc);
10516         old->dpms_mode = connector->dpms;
10517         old->load_detect_temp = true;
10518         old->release_fb = NULL;
10519
10520         state = drm_atomic_state_alloc(dev);
10521         if (!state)
10522                 return false;
10523
10524         state->acquire_ctx = ctx;
10525
10526         connector_state = drm_atomic_get_connector_state(state, connector);
10527         if (IS_ERR(connector_state)) {
10528                 ret = PTR_ERR(connector_state);
10529                 goto fail;
10530         }
10531
10532         connector_state->crtc = crtc;
10533         connector_state->best_encoder = &intel_encoder->base;
10534
10535         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10536         if (IS_ERR(crtc_state)) {
10537                 ret = PTR_ERR(crtc_state);
10538                 goto fail;
10539         }
10540
10541         crtc_state->base.active = crtc_state->base.enable = true;
10542
10543         if (!mode)
10544                 mode = &load_detect_mode;
10545
10546         /* We need a framebuffer large enough to accommodate all accesses
10547          * that the plane may generate whilst we perform load detection.
10548          * We can not rely on the fbcon either being present (we get called
10549          * during its initialisation to detect all boot displays, or it may
10550          * not even exist) or that it is large enough to satisfy the
10551          * requested mode.
10552          */
10553         fb = mode_fits_in_fbdev(dev, mode);
10554         if (fb == NULL) {
10555                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10556                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10557                 old->release_fb = fb;
10558         } else
10559                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10560         if (IS_ERR(fb)) {
10561                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10562                 goto fail;
10563         }
10564
10565         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10566         if (ret)
10567                 goto fail;
10568
10569         drm_mode_copy(&crtc_state->base.mode, mode);
10570
10571         if (drm_atomic_commit(state)) {
10572                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10573                 if (old->release_fb)
10574                         old->release_fb->funcs->destroy(old->release_fb);
10575                 goto fail;
10576         }
10577         crtc->primary->crtc = crtc;
10578
10579         /* let the connector get through one full cycle before testing */
10580         intel_wait_for_vblank(dev, intel_crtc->pipe);
10581         return true;
10582
10583 fail:
10584         drm_atomic_state_free(state);
10585         state = NULL;
10586
10587         if (ret == -EDEADLK) {
10588                 drm_modeset_backoff(ctx);
10589                 goto retry;
10590         }
10591
10592         return false;
10593 }
10594
10595 void intel_release_load_detect_pipe(struct drm_connector *connector,
10596                                     struct intel_load_detect_pipe *old,
10597                                     struct drm_modeset_acquire_ctx *ctx)
10598 {
10599         struct drm_device *dev = connector->dev;
10600         struct intel_encoder *intel_encoder =
10601                 intel_attached_encoder(connector);
10602         struct drm_encoder *encoder = &intel_encoder->base;
10603         struct drm_crtc *crtc = encoder->crtc;
10604         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10605         struct drm_atomic_state *state;
10606         struct drm_connector_state *connector_state;
10607         struct intel_crtc_state *crtc_state;
10608         int ret;
10609
10610         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10611                       connector->base.id, connector->name,
10612                       encoder->base.id, encoder->name);
10613
10614         if (old->load_detect_temp) {
10615                 state = drm_atomic_state_alloc(dev);
10616                 if (!state)
10617                         goto fail;
10618
10619                 state->acquire_ctx = ctx;
10620
10621                 connector_state = drm_atomic_get_connector_state(state, connector);
10622                 if (IS_ERR(connector_state))
10623                         goto fail;
10624
10625                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10626                 if (IS_ERR(crtc_state))
10627                         goto fail;
10628
10629                 connector_state->best_encoder = NULL;
10630                 connector_state->crtc = NULL;
10631
10632                 crtc_state->base.enable = crtc_state->base.active = false;
10633
10634                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10635                                                       0, 0);
10636                 if (ret)
10637                         goto fail;
10638
10639                 ret = drm_atomic_commit(state);
10640                 if (ret)
10641                         goto fail;
10642
10643                 if (old->release_fb) {
10644                         drm_framebuffer_unregister_private(old->release_fb);
10645                         drm_framebuffer_unreference(old->release_fb);
10646                 }
10647
10648                 return;
10649         }
10650
10651         /* Switch crtc and encoder back off if necessary */
10652         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10653                 connector->funcs->dpms(connector, old->dpms_mode);
10654
10655         return;
10656 fail:
10657         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10658         drm_atomic_state_free(state);
10659 }
10660
10661 static int i9xx_pll_refclk(struct drm_device *dev,
10662                            const struct intel_crtc_state *pipe_config)
10663 {
10664         struct drm_i915_private *dev_priv = dev->dev_private;
10665         u32 dpll = pipe_config->dpll_hw_state.dpll;
10666
10667         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10668                 return dev_priv->vbt.lvds_ssc_freq;
10669         else if (HAS_PCH_SPLIT(dev))
10670                 return 120000;
10671         else if (!IS_GEN2(dev))
10672                 return 96000;
10673         else
10674                 return 48000;
10675 }
10676
10677 /* Returns the clock of the currently programmed mode of the given pipe. */
10678 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10679                                 struct intel_crtc_state *pipe_config)
10680 {
10681         struct drm_device *dev = crtc->base.dev;
10682         struct drm_i915_private *dev_priv = dev->dev_private;
10683         int pipe = pipe_config->cpu_transcoder;
10684         u32 dpll = pipe_config->dpll_hw_state.dpll;
10685         u32 fp;
10686         intel_clock_t clock;
10687         int port_clock;
10688         int refclk = i9xx_pll_refclk(dev, pipe_config);
10689
10690         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10691                 fp = pipe_config->dpll_hw_state.fp0;
10692         else
10693                 fp = pipe_config->dpll_hw_state.fp1;
10694
10695         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10696         if (IS_PINEVIEW(dev)) {
10697                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10698                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10699         } else {
10700                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10701                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10702         }
10703
10704         if (!IS_GEN2(dev)) {
10705                 if (IS_PINEVIEW(dev))
10706                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10707                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10708                 else
10709                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10710                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10711
10712                 switch (dpll & DPLL_MODE_MASK) {
10713                 case DPLLB_MODE_DAC_SERIAL:
10714                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10715                                 5 : 10;
10716                         break;
10717                 case DPLLB_MODE_LVDS:
10718                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10719                                 7 : 14;
10720                         break;
10721                 default:
10722                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10723                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10724                         return;
10725                 }
10726
10727                 if (IS_PINEVIEW(dev))
10728                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10729                 else
10730                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10731         } else {
10732                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10733                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10734
10735                 if (is_lvds) {
10736                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10737                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10738
10739                         if (lvds & LVDS_CLKB_POWER_UP)
10740                                 clock.p2 = 7;
10741                         else
10742                                 clock.p2 = 14;
10743                 } else {
10744                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10745                                 clock.p1 = 2;
10746                         else {
10747                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10748                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10749                         }
10750                         if (dpll & PLL_P2_DIVIDE_BY_4)
10751                                 clock.p2 = 4;
10752                         else
10753                                 clock.p2 = 2;
10754                 }
10755
10756                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10757         }
10758
10759         /*
10760          * This value includes pixel_multiplier. We will use
10761          * port_clock to compute adjusted_mode.crtc_clock in the
10762          * encoder's get_config() function.
10763          */
10764         pipe_config->port_clock = port_clock;
10765 }
10766
10767 int intel_dotclock_calculate(int link_freq,
10768                              const struct intel_link_m_n *m_n)
10769 {
10770         /*
10771          * The calculation for the data clock is:
10772          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10773          * But we want to avoid losing precison if possible, so:
10774          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10775          *
10776          * and the link clock is simpler:
10777          * link_clock = (m * link_clock) / n
10778          */
10779
10780         if (!m_n->link_n)
10781                 return 0;
10782
10783         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10784 }
10785
10786 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10787                                    struct intel_crtc_state *pipe_config)
10788 {
10789         struct drm_device *dev = crtc->base.dev;
10790
10791         /* read out port_clock from the DPLL */
10792         i9xx_crtc_clock_get(crtc, pipe_config);
10793
10794         /*
10795          * This value does not include pixel_multiplier.
10796          * We will check that port_clock and adjusted_mode.crtc_clock
10797          * agree once we know their relationship in the encoder's
10798          * get_config() function.
10799          */
10800         pipe_config->base.adjusted_mode.crtc_clock =
10801                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10802                                          &pipe_config->fdi_m_n);
10803 }
10804
10805 /** Returns the currently programmed mode of the given pipe. */
10806 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10807                                              struct drm_crtc *crtc)
10808 {
10809         struct drm_i915_private *dev_priv = dev->dev_private;
10810         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10811         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10812         struct drm_display_mode *mode;
10813         struct intel_crtc_state pipe_config;
10814         int htot = I915_READ(HTOTAL(cpu_transcoder));
10815         int hsync = I915_READ(HSYNC(cpu_transcoder));
10816         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10817         int vsync = I915_READ(VSYNC(cpu_transcoder));
10818         enum pipe pipe = intel_crtc->pipe;
10819
10820         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10821         if (!mode)
10822                 return NULL;
10823
10824         /*
10825          * Construct a pipe_config sufficient for getting the clock info
10826          * back out of crtc_clock_get.
10827          *
10828          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10829          * to use a real value here instead.
10830          */
10831         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10832         pipe_config.pixel_multiplier = 1;
10833         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10834         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10835         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10836         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10837
10838         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10839         mode->hdisplay = (htot & 0xffff) + 1;
10840         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10841         mode->hsync_start = (hsync & 0xffff) + 1;
10842         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10843         mode->vdisplay = (vtot & 0xffff) + 1;
10844         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10845         mode->vsync_start = (vsync & 0xffff) + 1;
10846         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10847
10848         drm_mode_set_name(mode);
10849
10850         return mode;
10851 }
10852
10853 void intel_mark_busy(struct drm_device *dev)
10854 {
10855         struct drm_i915_private *dev_priv = dev->dev_private;
10856
10857         if (dev_priv->mm.busy)
10858                 return;
10859
10860         intel_runtime_pm_get(dev_priv);
10861         i915_update_gfx_val(dev_priv);
10862         if (INTEL_INFO(dev)->gen >= 6)
10863                 gen6_rps_busy(dev_priv);
10864         dev_priv->mm.busy = true;
10865 }
10866
10867 void intel_mark_idle(struct drm_device *dev)
10868 {
10869         struct drm_i915_private *dev_priv = dev->dev_private;
10870
10871         if (!dev_priv->mm.busy)
10872                 return;
10873
10874         dev_priv->mm.busy = false;
10875
10876         if (INTEL_INFO(dev)->gen >= 6)
10877                 gen6_rps_idle(dev->dev_private);
10878
10879         intel_runtime_pm_put(dev_priv);
10880 }
10881
10882 static void intel_crtc_destroy(struct drm_crtc *crtc)
10883 {
10884         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10885         struct drm_device *dev = crtc->dev;
10886         struct intel_unpin_work *work;
10887
10888         spin_lock_irq(&dev->event_lock);
10889         work = intel_crtc->unpin_work;
10890         intel_crtc->unpin_work = NULL;
10891         spin_unlock_irq(&dev->event_lock);
10892
10893         if (work) {
10894                 cancel_work_sync(&work->work);
10895                 kfree(work);
10896         }
10897
10898         drm_crtc_cleanup(crtc);
10899
10900         kfree(intel_crtc);
10901 }
10902
10903 static void intel_unpin_work_fn(struct work_struct *__work)
10904 {
10905         struct intel_unpin_work *work =
10906                 container_of(__work, struct intel_unpin_work, work);
10907         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10908         struct drm_device *dev = crtc->base.dev;
10909         struct drm_plane *primary = crtc->base.primary;
10910
10911         mutex_lock(&dev->struct_mutex);
10912         intel_unpin_fb_obj(work->old_fb, primary->state);
10913         drm_gem_object_unreference(&work->pending_flip_obj->base);
10914
10915         if (work->flip_queued_req)
10916                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10917         mutex_unlock(&dev->struct_mutex);
10918
10919         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10920         drm_framebuffer_unreference(work->old_fb);
10921
10922         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10923         atomic_dec(&crtc->unpin_work_count);
10924
10925         kfree(work);
10926 }
10927
10928 static void do_intel_finish_page_flip(struct drm_device *dev,
10929                                       struct drm_crtc *crtc)
10930 {
10931         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10932         struct intel_unpin_work *work;
10933         unsigned long flags;
10934
10935         /* Ignore early vblank irqs */
10936         if (intel_crtc == NULL)
10937                 return;
10938
10939         /*
10940          * This is called both by irq handlers and the reset code (to complete
10941          * lost pageflips) so needs the full irqsave spinlocks.
10942          */
10943         spin_lock_irqsave(&dev->event_lock, flags);
10944         work = intel_crtc->unpin_work;
10945
10946         /* Ensure we don't miss a work->pending update ... */
10947         smp_rmb();
10948
10949         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10950                 spin_unlock_irqrestore(&dev->event_lock, flags);
10951                 return;
10952         }
10953
10954         page_flip_completed(intel_crtc);
10955
10956         spin_unlock_irqrestore(&dev->event_lock, flags);
10957 }
10958
10959 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10960 {
10961         struct drm_i915_private *dev_priv = dev->dev_private;
10962         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10963
10964         do_intel_finish_page_flip(dev, crtc);
10965 }
10966
10967 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10968 {
10969         struct drm_i915_private *dev_priv = dev->dev_private;
10970         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10971
10972         do_intel_finish_page_flip(dev, crtc);
10973 }
10974
10975 /* Is 'a' after or equal to 'b'? */
10976 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10977 {
10978         return !((a - b) & 0x80000000);
10979 }
10980
10981 static bool page_flip_finished(struct intel_crtc *crtc)
10982 {
10983         struct drm_device *dev = crtc->base.dev;
10984         struct drm_i915_private *dev_priv = dev->dev_private;
10985
10986         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10987             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10988                 return true;
10989
10990         /*
10991          * The relevant registers doen't exist on pre-ctg.
10992          * As the flip done interrupt doesn't trigger for mmio
10993          * flips on gmch platforms, a flip count check isn't
10994          * really needed there. But since ctg has the registers,
10995          * include it in the check anyway.
10996          */
10997         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10998                 return true;
10999
11000         /*
11001          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11002          * used the same base address. In that case the mmio flip might
11003          * have completed, but the CS hasn't even executed the flip yet.
11004          *
11005          * A flip count check isn't enough as the CS might have updated
11006          * the base address just after start of vblank, but before we
11007          * managed to process the interrupt. This means we'd complete the
11008          * CS flip too soon.
11009          *
11010          * Combining both checks should get us a good enough result. It may
11011          * still happen that the CS flip has been executed, but has not
11012          * yet actually completed. But in case the base address is the same
11013          * anyway, we don't really care.
11014          */
11015         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11016                 crtc->unpin_work->gtt_offset &&
11017                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11018                                     crtc->unpin_work->flip_count);
11019 }
11020
11021 void intel_prepare_page_flip(struct drm_device *dev, int plane)
11022 {
11023         struct drm_i915_private *dev_priv = dev->dev_private;
11024         struct intel_crtc *intel_crtc =
11025                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
11026         unsigned long flags;
11027
11028
11029         /*
11030          * This is called both by irq handlers and the reset code (to complete
11031          * lost pageflips) so needs the full irqsave spinlocks.
11032          *
11033          * NB: An MMIO update of the plane base pointer will also
11034          * generate a page-flip completion irq, i.e. every modeset
11035          * is also accompanied by a spurious intel_prepare_page_flip().
11036          */
11037         spin_lock_irqsave(&dev->event_lock, flags);
11038         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
11039                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
11040         spin_unlock_irqrestore(&dev->event_lock, flags);
11041 }
11042
11043 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
11044 {
11045         /* Ensure that the work item is consistent when activating it ... */
11046         smp_wmb();
11047         atomic_set(&work->pending, INTEL_FLIP_PENDING);
11048         /* and that it is marked active as soon as the irq could fire. */
11049         smp_wmb();
11050 }
11051
11052 static int intel_gen2_queue_flip(struct drm_device *dev,
11053                                  struct drm_crtc *crtc,
11054                                  struct drm_framebuffer *fb,
11055                                  struct drm_i915_gem_object *obj,
11056                                  struct drm_i915_gem_request *req,
11057                                  uint32_t flags)
11058 {
11059         struct intel_engine_cs *ring = req->ring;
11060         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11061         u32 flip_mask;
11062         int ret;
11063
11064         ret = intel_ring_begin(req, 6);
11065         if (ret)
11066                 return ret;
11067
11068         /* Can't queue multiple flips, so wait for the previous
11069          * one to finish before executing the next.
11070          */
11071         if (intel_crtc->plane)
11072                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11073         else
11074                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11075         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11076         intel_ring_emit(ring, MI_NOOP);
11077         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11078                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11079         intel_ring_emit(ring, fb->pitches[0]);
11080         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11081         intel_ring_emit(ring, 0); /* aux display base address, unused */
11082
11083         intel_mark_page_flip_active(intel_crtc->unpin_work);
11084         return 0;
11085 }
11086
11087 static int intel_gen3_queue_flip(struct drm_device *dev,
11088                                  struct drm_crtc *crtc,
11089                                  struct drm_framebuffer *fb,
11090                                  struct drm_i915_gem_object *obj,
11091                                  struct drm_i915_gem_request *req,
11092                                  uint32_t flags)
11093 {
11094         struct intel_engine_cs *ring = req->ring;
11095         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11096         u32 flip_mask;
11097         int ret;
11098
11099         ret = intel_ring_begin(req, 6);
11100         if (ret)
11101                 return ret;
11102
11103         if (intel_crtc->plane)
11104                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11105         else
11106                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11107         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11108         intel_ring_emit(ring, MI_NOOP);
11109         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11110                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11111         intel_ring_emit(ring, fb->pitches[0]);
11112         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11113         intel_ring_emit(ring, MI_NOOP);
11114
11115         intel_mark_page_flip_active(intel_crtc->unpin_work);
11116         return 0;
11117 }
11118
11119 static int intel_gen4_queue_flip(struct drm_device *dev,
11120                                  struct drm_crtc *crtc,
11121                                  struct drm_framebuffer *fb,
11122                                  struct drm_i915_gem_object *obj,
11123                                  struct drm_i915_gem_request *req,
11124                                  uint32_t flags)
11125 {
11126         struct intel_engine_cs *ring = req->ring;
11127         struct drm_i915_private *dev_priv = dev->dev_private;
11128         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11129         uint32_t pf, pipesrc;
11130         int ret;
11131
11132         ret = intel_ring_begin(req, 4);
11133         if (ret)
11134                 return ret;
11135
11136         /* i965+ uses the linear or tiled offsets from the
11137          * Display Registers (which do not change across a page-flip)
11138          * so we need only reprogram the base address.
11139          */
11140         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11141                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11142         intel_ring_emit(ring, fb->pitches[0]);
11143         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11144                         obj->tiling_mode);
11145
11146         /* XXX Enabling the panel-fitter across page-flip is so far
11147          * untested on non-native modes, so ignore it for now.
11148          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11149          */
11150         pf = 0;
11151         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11152         intel_ring_emit(ring, pf | pipesrc);
11153
11154         intel_mark_page_flip_active(intel_crtc->unpin_work);
11155         return 0;
11156 }
11157
11158 static int intel_gen6_queue_flip(struct drm_device *dev,
11159                                  struct drm_crtc *crtc,
11160                                  struct drm_framebuffer *fb,
11161                                  struct drm_i915_gem_object *obj,
11162                                  struct drm_i915_gem_request *req,
11163                                  uint32_t flags)
11164 {
11165         struct intel_engine_cs *ring = req->ring;
11166         struct drm_i915_private *dev_priv = dev->dev_private;
11167         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11168         uint32_t pf, pipesrc;
11169         int ret;
11170
11171         ret = intel_ring_begin(req, 4);
11172         if (ret)
11173                 return ret;
11174
11175         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11176                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11177         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11178         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11179
11180         /* Contrary to the suggestions in the documentation,
11181          * "Enable Panel Fitter" does not seem to be required when page
11182          * flipping with a non-native mode, and worse causes a normal
11183          * modeset to fail.
11184          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11185          */
11186         pf = 0;
11187         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11188         intel_ring_emit(ring, pf | pipesrc);
11189
11190         intel_mark_page_flip_active(intel_crtc->unpin_work);
11191         return 0;
11192 }
11193
11194 static int intel_gen7_queue_flip(struct drm_device *dev,
11195                                  struct drm_crtc *crtc,
11196                                  struct drm_framebuffer *fb,
11197                                  struct drm_i915_gem_object *obj,
11198                                  struct drm_i915_gem_request *req,
11199                                  uint32_t flags)
11200 {
11201         struct intel_engine_cs *ring = req->ring;
11202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11203         uint32_t plane_bit = 0;
11204         int len, ret;
11205
11206         switch (intel_crtc->plane) {
11207         case PLANE_A:
11208                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11209                 break;
11210         case PLANE_B:
11211                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11212                 break;
11213         case PLANE_C:
11214                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11215                 break;
11216         default:
11217                 WARN_ONCE(1, "unknown plane in flip command\n");
11218                 return -ENODEV;
11219         }
11220
11221         len = 4;
11222         if (ring->id == RCS) {
11223                 len += 6;
11224                 /*
11225                  * On Gen 8, SRM is now taking an extra dword to accommodate
11226                  * 48bits addresses, and we need a NOOP for the batch size to
11227                  * stay even.
11228                  */
11229                 if (IS_GEN8(dev))
11230                         len += 2;
11231         }
11232
11233         /*
11234          * BSpec MI_DISPLAY_FLIP for IVB:
11235          * "The full packet must be contained within the same cache line."
11236          *
11237          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11238          * cacheline, if we ever start emitting more commands before
11239          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11240          * then do the cacheline alignment, and finally emit the
11241          * MI_DISPLAY_FLIP.
11242          */
11243         ret = intel_ring_cacheline_align(req);
11244         if (ret)
11245                 return ret;
11246
11247         ret = intel_ring_begin(req, len);
11248         if (ret)
11249                 return ret;
11250
11251         /* Unmask the flip-done completion message. Note that the bspec says that
11252          * we should do this for both the BCS and RCS, and that we must not unmask
11253          * more than one flip event at any time (or ensure that one flip message
11254          * can be sent by waiting for flip-done prior to queueing new flips).
11255          * Experimentation says that BCS works despite DERRMR masking all
11256          * flip-done completion events and that unmasking all planes at once
11257          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11258          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11259          */
11260         if (ring->id == RCS) {
11261                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11262                 intel_ring_emit_reg(ring, DERRMR);
11263                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11264                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11265                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11266                 if (IS_GEN8(dev))
11267                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11268                                               MI_SRM_LRM_GLOBAL_GTT);
11269                 else
11270                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11271                                               MI_SRM_LRM_GLOBAL_GTT);
11272                 intel_ring_emit_reg(ring, DERRMR);
11273                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11274                 if (IS_GEN8(dev)) {
11275                         intel_ring_emit(ring, 0);
11276                         intel_ring_emit(ring, MI_NOOP);
11277                 }
11278         }
11279
11280         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11281         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11282         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11283         intel_ring_emit(ring, (MI_NOOP));
11284
11285         intel_mark_page_flip_active(intel_crtc->unpin_work);
11286         return 0;
11287 }
11288
11289 static bool use_mmio_flip(struct intel_engine_cs *ring,
11290                           struct drm_i915_gem_object *obj)
11291 {
11292         /*
11293          * This is not being used for older platforms, because
11294          * non-availability of flip done interrupt forces us to use
11295          * CS flips. Older platforms derive flip done using some clever
11296          * tricks involving the flip_pending status bits and vblank irqs.
11297          * So using MMIO flips there would disrupt this mechanism.
11298          */
11299
11300         if (ring == NULL)
11301                 return true;
11302
11303         if (INTEL_INFO(ring->dev)->gen < 5)
11304                 return false;
11305
11306         if (i915.use_mmio_flip < 0)
11307                 return false;
11308         else if (i915.use_mmio_flip > 0)
11309                 return true;
11310         else if (i915.enable_execlists)
11311                 return true;
11312         else if (obj->base.dma_buf &&
11313                  !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11314                                                        false))
11315                 return true;
11316         else
11317                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11318 }
11319
11320 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11321                              unsigned int rotation,
11322                              struct intel_unpin_work *work)
11323 {
11324         struct drm_device *dev = intel_crtc->base.dev;
11325         struct drm_i915_private *dev_priv = dev->dev_private;
11326         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11327         const enum pipe pipe = intel_crtc->pipe;
11328         u32 ctl, stride, tile_height;
11329
11330         ctl = I915_READ(PLANE_CTL(pipe, 0));
11331         ctl &= ~PLANE_CTL_TILED_MASK;
11332         switch (fb->modifier[0]) {
11333         case DRM_FORMAT_MOD_NONE:
11334                 break;
11335         case I915_FORMAT_MOD_X_TILED:
11336                 ctl |= PLANE_CTL_TILED_X;
11337                 break;
11338         case I915_FORMAT_MOD_Y_TILED:
11339                 ctl |= PLANE_CTL_TILED_Y;
11340                 break;
11341         case I915_FORMAT_MOD_Yf_TILED:
11342                 ctl |= PLANE_CTL_TILED_YF;
11343                 break;
11344         default:
11345                 MISSING_CASE(fb->modifier[0]);
11346         }
11347
11348         /*
11349          * The stride is either expressed as a multiple of 64 bytes chunks for
11350          * linear buffers or in number of tiles for tiled buffers.
11351          */
11352         if (intel_rotation_90_or_270(rotation)) {
11353                 /* stride = Surface height in tiles */
11354                 tile_height = intel_tile_height(dev, fb->pixel_format,
11355                                                 fb->modifier[0], 0);
11356                 stride = DIV_ROUND_UP(fb->height, tile_height);
11357         } else {
11358                 stride = fb->pitches[0] /
11359                                 intel_fb_stride_alignment(dev, fb->modifier[0],
11360                                                           fb->pixel_format);
11361         }
11362
11363         /*
11364          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11365          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11366          */
11367         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11368         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11369
11370         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11371         POSTING_READ(PLANE_SURF(pipe, 0));
11372 }
11373
11374 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11375                              struct intel_unpin_work *work)
11376 {
11377         struct drm_device *dev = intel_crtc->base.dev;
11378         struct drm_i915_private *dev_priv = dev->dev_private;
11379         struct intel_framebuffer *intel_fb =
11380                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11381         struct drm_i915_gem_object *obj = intel_fb->obj;
11382         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11383         u32 dspcntr;
11384
11385         dspcntr = I915_READ(reg);
11386
11387         if (obj->tiling_mode != I915_TILING_NONE)
11388                 dspcntr |= DISPPLANE_TILED;
11389         else
11390                 dspcntr &= ~DISPPLANE_TILED;
11391
11392         I915_WRITE(reg, dspcntr);
11393
11394         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11395         POSTING_READ(DSPSURF(intel_crtc->plane));
11396 }
11397
11398 /*
11399  * XXX: This is the temporary way to update the plane registers until we get
11400  * around to using the usual plane update functions for MMIO flips
11401  */
11402 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11403 {
11404         struct intel_crtc *crtc = mmio_flip->crtc;
11405         struct intel_unpin_work *work;
11406
11407         spin_lock_irq(&crtc->base.dev->event_lock);
11408         work = crtc->unpin_work;
11409         spin_unlock_irq(&crtc->base.dev->event_lock);
11410         if (work == NULL)
11411                 return;
11412
11413         intel_mark_page_flip_active(work);
11414
11415         intel_pipe_update_start(crtc);
11416
11417         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11418                 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11419         else
11420                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11421                 ilk_do_mmio_flip(crtc, work);
11422
11423         intel_pipe_update_end(crtc);
11424 }
11425
11426 static void intel_mmio_flip_work_func(struct work_struct *work)
11427 {
11428         struct intel_mmio_flip *mmio_flip =
11429                 container_of(work, struct intel_mmio_flip, work);
11430         struct intel_framebuffer *intel_fb =
11431                 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11432         struct drm_i915_gem_object *obj = intel_fb->obj;
11433
11434         if (mmio_flip->req) {
11435                 WARN_ON(__i915_wait_request(mmio_flip->req,
11436                                             mmio_flip->crtc->reset_counter,
11437                                             false, NULL,
11438                                             &mmio_flip->i915->rps.mmioflips));
11439                 i915_gem_request_unreference__unlocked(mmio_flip->req);
11440         }
11441
11442         /* For framebuffer backed by dmabuf, wait for fence */
11443         if (obj->base.dma_buf)
11444                 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11445                                                             false, false,
11446                                                             MAX_SCHEDULE_TIMEOUT) < 0);
11447
11448         intel_do_mmio_flip(mmio_flip);
11449         kfree(mmio_flip);
11450 }
11451
11452 static int intel_queue_mmio_flip(struct drm_device *dev,
11453                                  struct drm_crtc *crtc,
11454                                  struct drm_i915_gem_object *obj)
11455 {
11456         struct intel_mmio_flip *mmio_flip;
11457
11458         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11459         if (mmio_flip == NULL)
11460                 return -ENOMEM;
11461
11462         mmio_flip->i915 = to_i915(dev);
11463         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11464         mmio_flip->crtc = to_intel_crtc(crtc);
11465         mmio_flip->rotation = crtc->primary->state->rotation;
11466
11467         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11468         schedule_work(&mmio_flip->work);
11469
11470         return 0;
11471 }
11472
11473 static int intel_default_queue_flip(struct drm_device *dev,
11474                                     struct drm_crtc *crtc,
11475                                     struct drm_framebuffer *fb,
11476                                     struct drm_i915_gem_object *obj,
11477                                     struct drm_i915_gem_request *req,
11478                                     uint32_t flags)
11479 {
11480         return -ENODEV;
11481 }
11482
11483 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11484                                          struct drm_crtc *crtc)
11485 {
11486         struct drm_i915_private *dev_priv = dev->dev_private;
11487         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11488         struct intel_unpin_work *work = intel_crtc->unpin_work;
11489         u32 addr;
11490
11491         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11492                 return true;
11493
11494         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11495                 return false;
11496
11497         if (!work->enable_stall_check)
11498                 return false;
11499
11500         if (work->flip_ready_vblank == 0) {
11501                 if (work->flip_queued_req &&
11502                     !i915_gem_request_completed(work->flip_queued_req, true))
11503                         return false;
11504
11505                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11506         }
11507
11508         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11509                 return false;
11510
11511         /* Potential stall - if we see that the flip has happened,
11512          * assume a missed interrupt. */
11513         if (INTEL_INFO(dev)->gen >= 4)
11514                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11515         else
11516                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11517
11518         /* There is a potential issue here with a false positive after a flip
11519          * to the same address. We could address this by checking for a
11520          * non-incrementing frame counter.
11521          */
11522         return addr == work->gtt_offset;
11523 }
11524
11525 void intel_check_page_flip(struct drm_device *dev, int pipe)
11526 {
11527         struct drm_i915_private *dev_priv = dev->dev_private;
11528         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11529         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11530         struct intel_unpin_work *work;
11531
11532         WARN_ON(!in_interrupt());
11533
11534         if (crtc == NULL)
11535                 return;
11536
11537         spin_lock(&dev->event_lock);
11538         work = intel_crtc->unpin_work;
11539         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11540                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11541                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11542                 page_flip_completed(intel_crtc);
11543                 work = NULL;
11544         }
11545         if (work != NULL &&
11546             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11547                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11548         spin_unlock(&dev->event_lock);
11549 }
11550
11551 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11552                                 struct drm_framebuffer *fb,
11553                                 struct drm_pending_vblank_event *event,
11554                                 uint32_t page_flip_flags)
11555 {
11556         struct drm_device *dev = crtc->dev;
11557         struct drm_i915_private *dev_priv = dev->dev_private;
11558         struct drm_framebuffer *old_fb = crtc->primary->fb;
11559         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11560         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11561         struct drm_plane *primary = crtc->primary;
11562         enum pipe pipe = intel_crtc->pipe;
11563         struct intel_unpin_work *work;
11564         struct intel_engine_cs *ring;
11565         bool mmio_flip;
11566         struct drm_i915_gem_request *request = NULL;
11567         int ret;
11568
11569         /*
11570          * drm_mode_page_flip_ioctl() should already catch this, but double
11571          * check to be safe.  In the future we may enable pageflipping from
11572          * a disabled primary plane.
11573          */
11574         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11575                 return -EBUSY;
11576
11577         /* Can't change pixel format via MI display flips. */
11578         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11579                 return -EINVAL;
11580
11581         /*
11582          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11583          * Note that pitch changes could also affect these register.
11584          */
11585         if (INTEL_INFO(dev)->gen > 3 &&
11586             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11587              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11588                 return -EINVAL;
11589
11590         if (i915_terminally_wedged(&dev_priv->gpu_error))
11591                 goto out_hang;
11592
11593         work = kzalloc(sizeof(*work), GFP_KERNEL);
11594         if (work == NULL)
11595                 return -ENOMEM;
11596
11597         work->event = event;
11598         work->crtc = crtc;
11599         work->old_fb = old_fb;
11600         INIT_WORK(&work->work, intel_unpin_work_fn);
11601
11602         ret = drm_crtc_vblank_get(crtc);
11603         if (ret)
11604                 goto free_work;
11605
11606         /* We borrow the event spin lock for protecting unpin_work */
11607         spin_lock_irq(&dev->event_lock);
11608         if (intel_crtc->unpin_work) {
11609                 /* Before declaring the flip queue wedged, check if
11610                  * the hardware completed the operation behind our backs.
11611                  */
11612                 if (__intel_pageflip_stall_check(dev, crtc)) {
11613                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11614                         page_flip_completed(intel_crtc);
11615                 } else {
11616                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11617                         spin_unlock_irq(&dev->event_lock);
11618
11619                         drm_crtc_vblank_put(crtc);
11620                         kfree(work);
11621                         return -EBUSY;
11622                 }
11623         }
11624         intel_crtc->unpin_work = work;
11625         spin_unlock_irq(&dev->event_lock);
11626
11627         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11628                 flush_workqueue(dev_priv->wq);
11629
11630         /* Reference the objects for the scheduled work. */
11631         drm_framebuffer_reference(work->old_fb);
11632         drm_gem_object_reference(&obj->base);
11633
11634         crtc->primary->fb = fb;
11635         update_state_fb(crtc->primary);
11636
11637         work->pending_flip_obj = obj;
11638
11639         ret = i915_mutex_lock_interruptible(dev);
11640         if (ret)
11641                 goto cleanup;
11642
11643         atomic_inc(&intel_crtc->unpin_work_count);
11644         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11645
11646         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11647                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11648
11649         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11650                 ring = &dev_priv->ring[BCS];
11651                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11652                         /* vlv: DISPLAY_FLIP fails to change tiling */
11653                         ring = NULL;
11654         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11655                 ring = &dev_priv->ring[BCS];
11656         } else if (INTEL_INFO(dev)->gen >= 7) {
11657                 ring = i915_gem_request_get_ring(obj->last_write_req);
11658                 if (ring == NULL || ring->id != RCS)
11659                         ring = &dev_priv->ring[BCS];
11660         } else {
11661                 ring = &dev_priv->ring[RCS];
11662         }
11663
11664         mmio_flip = use_mmio_flip(ring, obj);
11665
11666         /* When using CS flips, we want to emit semaphores between rings.
11667          * However, when using mmio flips we will create a task to do the
11668          * synchronisation, so all we want here is to pin the framebuffer
11669          * into the display plane and skip any waits.
11670          */
11671         if (!mmio_flip) {
11672                 ret = i915_gem_object_sync(obj, ring, &request);
11673                 if (ret)
11674                         goto cleanup_pending;
11675         }
11676
11677         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11678                                          crtc->primary->state);
11679         if (ret)
11680                 goto cleanup_pending;
11681
11682         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11683                                                   obj, 0);
11684         work->gtt_offset += intel_crtc->dspaddr_offset;
11685
11686         if (mmio_flip) {
11687                 ret = intel_queue_mmio_flip(dev, crtc, obj);
11688                 if (ret)
11689                         goto cleanup_unpin;
11690
11691                 i915_gem_request_assign(&work->flip_queued_req,
11692                                         obj->last_write_req);
11693         } else {
11694                 if (!request) {
11695                         ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11696                         if (ret)
11697                                 goto cleanup_unpin;
11698                 }
11699
11700                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11701                                                    page_flip_flags);
11702                 if (ret)
11703                         goto cleanup_unpin;
11704
11705                 i915_gem_request_assign(&work->flip_queued_req, request);
11706         }
11707
11708         if (request)
11709                 i915_add_request_no_flush(request);
11710
11711         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11712         work->enable_stall_check = true;
11713
11714         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11715                           to_intel_plane(primary)->frontbuffer_bit);
11716         mutex_unlock(&dev->struct_mutex);
11717
11718         intel_fbc_deactivate(intel_crtc);
11719         intel_frontbuffer_flip_prepare(dev,
11720                                        to_intel_plane(primary)->frontbuffer_bit);
11721
11722         trace_i915_flip_request(intel_crtc->plane, obj);
11723
11724         return 0;
11725
11726 cleanup_unpin:
11727         intel_unpin_fb_obj(fb, crtc->primary->state);
11728 cleanup_pending:
11729         if (request)
11730                 i915_gem_request_cancel(request);
11731         atomic_dec(&intel_crtc->unpin_work_count);
11732         mutex_unlock(&dev->struct_mutex);
11733 cleanup:
11734         crtc->primary->fb = old_fb;
11735         update_state_fb(crtc->primary);
11736
11737         drm_gem_object_unreference_unlocked(&obj->base);
11738         drm_framebuffer_unreference(work->old_fb);
11739
11740         spin_lock_irq(&dev->event_lock);
11741         intel_crtc->unpin_work = NULL;
11742         spin_unlock_irq(&dev->event_lock);
11743
11744         drm_crtc_vblank_put(crtc);
11745 free_work:
11746         kfree(work);
11747
11748         if (ret == -EIO) {
11749                 struct drm_atomic_state *state;
11750                 struct drm_plane_state *plane_state;
11751
11752 out_hang:
11753                 state = drm_atomic_state_alloc(dev);
11754                 if (!state)
11755                         return -ENOMEM;
11756                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11757
11758 retry:
11759                 plane_state = drm_atomic_get_plane_state(state, primary);
11760                 ret = PTR_ERR_OR_ZERO(plane_state);
11761                 if (!ret) {
11762                         drm_atomic_set_fb_for_plane(plane_state, fb);
11763
11764                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11765                         if (!ret)
11766                                 ret = drm_atomic_commit(state);
11767                 }
11768
11769                 if (ret == -EDEADLK) {
11770                         drm_modeset_backoff(state->acquire_ctx);
11771                         drm_atomic_state_clear(state);
11772                         goto retry;
11773                 }
11774
11775                 if (ret)
11776                         drm_atomic_state_free(state);
11777
11778                 if (ret == 0 && event) {
11779                         spin_lock_irq(&dev->event_lock);
11780                         drm_send_vblank_event(dev, pipe, event);
11781                         spin_unlock_irq(&dev->event_lock);
11782                 }
11783         }
11784         return ret;
11785 }
11786
11787
11788 /**
11789  * intel_wm_need_update - Check whether watermarks need updating
11790  * @plane: drm plane
11791  * @state: new plane state
11792  *
11793  * Check current plane state versus the new one to determine whether
11794  * watermarks need to be recalculated.
11795  *
11796  * Returns true or false.
11797  */
11798 static bool intel_wm_need_update(struct drm_plane *plane,
11799                                  struct drm_plane_state *state)
11800 {
11801         struct intel_plane_state *new = to_intel_plane_state(state);
11802         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11803
11804         /* Update watermarks on tiling or size changes. */
11805         if (new->visible != cur->visible)
11806                 return true;
11807
11808         if (!cur->base.fb || !new->base.fb)
11809                 return false;
11810
11811         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11812             cur->base.rotation != new->base.rotation ||
11813             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11814             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11815             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11816             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11817                 return true;
11818
11819         return false;
11820 }
11821
11822 static bool needs_scaling(struct intel_plane_state *state)
11823 {
11824         int src_w = drm_rect_width(&state->src) >> 16;
11825         int src_h = drm_rect_height(&state->src) >> 16;
11826         int dst_w = drm_rect_width(&state->dst);
11827         int dst_h = drm_rect_height(&state->dst);
11828
11829         return (src_w != dst_w || src_h != dst_h);
11830 }
11831
11832 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11833                                     struct drm_plane_state *plane_state)
11834 {
11835         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11836         struct drm_crtc *crtc = crtc_state->crtc;
11837         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11838         struct drm_plane *plane = plane_state->plane;
11839         struct drm_device *dev = crtc->dev;
11840         struct drm_i915_private *dev_priv = dev->dev_private;
11841         struct intel_plane_state *old_plane_state =
11842                 to_intel_plane_state(plane->state);
11843         int idx = intel_crtc->base.base.id, ret;
11844         int i = drm_plane_index(plane);
11845         bool mode_changed = needs_modeset(crtc_state);
11846         bool was_crtc_enabled = crtc->state->active;
11847         bool is_crtc_enabled = crtc_state->active;
11848         bool turn_off, turn_on, visible, was_visible;
11849         struct drm_framebuffer *fb = plane_state->fb;
11850
11851         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11852             plane->type != DRM_PLANE_TYPE_CURSOR) {
11853                 ret = skl_update_scaler_plane(
11854                         to_intel_crtc_state(crtc_state),
11855                         to_intel_plane_state(plane_state));
11856                 if (ret)
11857                         return ret;
11858         }
11859
11860         was_visible = old_plane_state->visible;
11861         visible = to_intel_plane_state(plane_state)->visible;
11862
11863         if (!was_crtc_enabled && WARN_ON(was_visible))
11864                 was_visible = false;
11865
11866         if (!is_crtc_enabled && WARN_ON(visible))
11867                 visible = false;
11868
11869         if (!was_visible && !visible)
11870                 return 0;
11871
11872         turn_off = was_visible && (!visible || mode_changed);
11873         turn_on = visible && (!was_visible || mode_changed);
11874
11875         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11876                          plane->base.id, fb ? fb->base.id : -1);
11877
11878         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11879                          plane->base.id, was_visible, visible,
11880                          turn_off, turn_on, mode_changed);
11881
11882         if (turn_on || turn_off) {
11883                 pipe_config->wm_changed = true;
11884
11885                 /* must disable cxsr around plane enable/disable */
11886                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11887                         if (is_crtc_enabled)
11888                                 intel_crtc->atomic.wait_vblank = true;
11889                         pipe_config->disable_cxsr = true;
11890                 }
11891         } else if (intel_wm_need_update(plane, plane_state)) {
11892                 pipe_config->wm_changed = true;
11893         }
11894
11895         if (visible || was_visible)
11896                 intel_crtc->atomic.fb_bits |=
11897                         to_intel_plane(plane)->frontbuffer_bit;
11898
11899         switch (plane->type) {
11900         case DRM_PLANE_TYPE_PRIMARY:
11901                 intel_crtc->atomic.pre_disable_primary = turn_off;
11902                 intel_crtc->atomic.post_enable_primary = turn_on;
11903
11904                 if (turn_off) {
11905                         /*
11906                          * FIXME: Actually if we will still have any other
11907                          * plane enabled on the pipe we could let IPS enabled
11908                          * still, but for now lets consider that when we make
11909                          * primary invisible by setting DSPCNTR to 0 on
11910                          * update_primary_plane function IPS needs to be
11911                          * disable.
11912                          */
11913                         intel_crtc->atomic.disable_ips = true;
11914
11915                         intel_crtc->atomic.disable_fbc = true;
11916                 }
11917
11918                 /*
11919                  * FBC does not work on some platforms for rotated
11920                  * planes, so disable it when rotation is not 0 and
11921                  * update it when rotation is set back to 0.
11922                  *
11923                  * FIXME: This is redundant with the fbc update done in
11924                  * the primary plane enable function except that that
11925                  * one is done too late. We eventually need to unify
11926                  * this.
11927                  */
11928
11929                 if (visible &&
11930                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11931                     dev_priv->fbc.crtc == intel_crtc &&
11932                     plane_state->rotation != BIT(DRM_ROTATE_0))
11933                         intel_crtc->atomic.disable_fbc = true;
11934
11935                 /*
11936                  * BDW signals flip done immediately if the plane
11937                  * is disabled, even if the plane enable is already
11938                  * armed to occur at the next vblank :(
11939                  */
11940                 if (turn_on && IS_BROADWELL(dev))
11941                         intel_crtc->atomic.wait_vblank = true;
11942
11943                 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11944                 break;
11945         case DRM_PLANE_TYPE_CURSOR:
11946                 break;
11947         case DRM_PLANE_TYPE_OVERLAY:
11948                 /*
11949                  * WaCxSRDisabledForSpriteScaling:ivb
11950                  *
11951                  * cstate->update_wm was already set above, so this flag will
11952                  * take effect when we commit and program watermarks.
11953                  */
11954                 if (IS_IVYBRIDGE(dev) &&
11955                     needs_scaling(to_intel_plane_state(plane_state)) &&
11956                     !needs_scaling(old_plane_state)) {
11957                         to_intel_crtc_state(crtc_state)->disable_lp_wm = true;
11958                 } else if (turn_off && !mode_changed) {
11959                         intel_crtc->atomic.wait_vblank = true;
11960                         intel_crtc->atomic.update_sprite_watermarks |=
11961                                 1 << i;
11962                 }
11963
11964                 break;
11965         }
11966         return 0;
11967 }
11968
11969 static bool encoders_cloneable(const struct intel_encoder *a,
11970                                const struct intel_encoder *b)
11971 {
11972         /* masks could be asymmetric, so check both ways */
11973         return a == b || (a->cloneable & (1 << b->type) &&
11974                           b->cloneable & (1 << a->type));
11975 }
11976
11977 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11978                                          struct intel_crtc *crtc,
11979                                          struct intel_encoder *encoder)
11980 {
11981         struct intel_encoder *source_encoder;
11982         struct drm_connector *connector;
11983         struct drm_connector_state *connector_state;
11984         int i;
11985
11986         for_each_connector_in_state(state, connector, connector_state, i) {
11987                 if (connector_state->crtc != &crtc->base)
11988                         continue;
11989
11990                 source_encoder =
11991                         to_intel_encoder(connector_state->best_encoder);
11992                 if (!encoders_cloneable(encoder, source_encoder))
11993                         return false;
11994         }
11995
11996         return true;
11997 }
11998
11999 static bool check_encoder_cloning(struct drm_atomic_state *state,
12000                                   struct intel_crtc *crtc)
12001 {
12002         struct intel_encoder *encoder;
12003         struct drm_connector *connector;
12004         struct drm_connector_state *connector_state;
12005         int i;
12006
12007         for_each_connector_in_state(state, connector, connector_state, i) {
12008                 if (connector_state->crtc != &crtc->base)
12009                         continue;
12010
12011                 encoder = to_intel_encoder(connector_state->best_encoder);
12012                 if (!check_single_encoder_cloning(state, crtc, encoder))
12013                         return false;
12014         }
12015
12016         return true;
12017 }
12018
12019 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12020                                    struct drm_crtc_state *crtc_state)
12021 {
12022         struct drm_device *dev = crtc->dev;
12023         struct drm_i915_private *dev_priv = dev->dev_private;
12024         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12025         struct intel_crtc_state *pipe_config =
12026                 to_intel_crtc_state(crtc_state);
12027         struct drm_atomic_state *state = crtc_state->state;
12028         int ret;
12029         bool mode_changed = needs_modeset(crtc_state);
12030
12031         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
12032                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12033                 return -EINVAL;
12034         }
12035
12036         if (mode_changed && !crtc_state->active)
12037                 pipe_config->wm_changed = true;
12038
12039         if (mode_changed && crtc_state->enable &&
12040             dev_priv->display.crtc_compute_clock &&
12041             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
12042                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12043                                                            pipe_config);
12044                 if (ret)
12045                         return ret;
12046         }
12047
12048         ret = 0;
12049         if (dev_priv->display.compute_pipe_wm) {
12050                 ret = dev_priv->display.compute_pipe_wm(intel_crtc, state);
12051                 if (ret)
12052                         return ret;
12053         }
12054
12055         if (INTEL_INFO(dev)->gen >= 9) {
12056                 if (mode_changed)
12057                         ret = skl_update_scaler_crtc(pipe_config);
12058
12059                 if (!ret)
12060                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
12061                                                          pipe_config);
12062         }
12063
12064         return ret;
12065 }
12066
12067 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12068         .mode_set_base_atomic = intel_pipe_set_base_atomic,
12069         .load_lut = intel_crtc_load_lut,
12070         .atomic_begin = intel_begin_crtc_commit,
12071         .atomic_flush = intel_finish_crtc_commit,
12072         .atomic_check = intel_crtc_atomic_check,
12073 };
12074
12075 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12076 {
12077         struct intel_connector *connector;
12078
12079         for_each_intel_connector(dev, connector) {
12080                 if (connector->base.encoder) {
12081                         connector->base.state->best_encoder =
12082                                 connector->base.encoder;
12083                         connector->base.state->crtc =
12084                                 connector->base.encoder->crtc;
12085                 } else {
12086                         connector->base.state->best_encoder = NULL;
12087                         connector->base.state->crtc = NULL;
12088                 }
12089         }
12090 }
12091
12092 static void
12093 connected_sink_compute_bpp(struct intel_connector *connector,
12094                            struct intel_crtc_state *pipe_config)
12095 {
12096         int bpp = pipe_config->pipe_bpp;
12097
12098         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12099                 connector->base.base.id,
12100                 connector->base.name);
12101
12102         /* Don't use an invalid EDID bpc value */
12103         if (connector->base.display_info.bpc &&
12104             connector->base.display_info.bpc * 3 < bpp) {
12105                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12106                               bpp, connector->base.display_info.bpc*3);
12107                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12108         }
12109
12110         /* Clamp bpp to default limit on screens without EDID 1.4 */
12111         if (connector->base.display_info.bpc == 0) {
12112                 int type = connector->base.connector_type;
12113                 int clamp_bpp = 24;
12114
12115                 /* Fall back to 18 bpp when DP sink capability is unknown. */
12116                 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12117                     type == DRM_MODE_CONNECTOR_eDP)
12118                         clamp_bpp = 18;
12119
12120                 if (bpp > clamp_bpp) {
12121                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12122                                       bpp, clamp_bpp);
12123                         pipe_config->pipe_bpp = clamp_bpp;
12124                 }
12125         }
12126 }
12127
12128 static int
12129 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12130                           struct intel_crtc_state *pipe_config)
12131 {
12132         struct drm_device *dev = crtc->base.dev;
12133         struct drm_atomic_state *state;
12134         struct drm_connector *connector;
12135         struct drm_connector_state *connector_state;
12136         int bpp, i;
12137
12138         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12139                 bpp = 10*3;
12140         else if (INTEL_INFO(dev)->gen >= 5)
12141                 bpp = 12*3;
12142         else
12143                 bpp = 8*3;
12144
12145
12146         pipe_config->pipe_bpp = bpp;
12147
12148         state = pipe_config->base.state;
12149
12150         /* Clamp display bpp to EDID value */
12151         for_each_connector_in_state(state, connector, connector_state, i) {
12152                 if (connector_state->crtc != &crtc->base)
12153                         continue;
12154
12155                 connected_sink_compute_bpp(to_intel_connector(connector),
12156                                            pipe_config);
12157         }
12158
12159         return bpp;
12160 }
12161
12162 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12163 {
12164         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12165                         "type: 0x%x flags: 0x%x\n",
12166                 mode->crtc_clock,
12167                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12168                 mode->crtc_hsync_end, mode->crtc_htotal,
12169                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12170                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12171 }
12172
12173 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12174                                    struct intel_crtc_state *pipe_config,
12175                                    const char *context)
12176 {
12177         struct drm_device *dev = crtc->base.dev;
12178         struct drm_plane *plane;
12179         struct intel_plane *intel_plane;
12180         struct intel_plane_state *state;
12181         struct drm_framebuffer *fb;
12182
12183         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12184                       context, pipe_config, pipe_name(crtc->pipe));
12185
12186         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12187         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12188                       pipe_config->pipe_bpp, pipe_config->dither);
12189         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12190                       pipe_config->has_pch_encoder,
12191                       pipe_config->fdi_lanes,
12192                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12193                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12194                       pipe_config->fdi_m_n.tu);
12195         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12196                       pipe_config->has_dp_encoder,
12197                       pipe_config->lane_count,
12198                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12199                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12200                       pipe_config->dp_m_n.tu);
12201
12202         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12203                       pipe_config->has_dp_encoder,
12204                       pipe_config->lane_count,
12205                       pipe_config->dp_m2_n2.gmch_m,
12206                       pipe_config->dp_m2_n2.gmch_n,
12207                       pipe_config->dp_m2_n2.link_m,
12208                       pipe_config->dp_m2_n2.link_n,
12209                       pipe_config->dp_m2_n2.tu);
12210
12211         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12212                       pipe_config->has_audio,
12213                       pipe_config->has_infoframe);
12214
12215         DRM_DEBUG_KMS("requested mode:\n");
12216         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12217         DRM_DEBUG_KMS("adjusted mode:\n");
12218         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12219         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12220         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12221         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12222                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12223         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12224                       crtc->num_scalers,
12225                       pipe_config->scaler_state.scaler_users,
12226                       pipe_config->scaler_state.scaler_id);
12227         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12228                       pipe_config->gmch_pfit.control,
12229                       pipe_config->gmch_pfit.pgm_ratios,
12230                       pipe_config->gmch_pfit.lvds_border_bits);
12231         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12232                       pipe_config->pch_pfit.pos,
12233                       pipe_config->pch_pfit.size,
12234                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12235         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12236         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12237
12238         if (IS_BROXTON(dev)) {
12239                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12240                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12241                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12242                               pipe_config->ddi_pll_sel,
12243                               pipe_config->dpll_hw_state.ebb0,
12244                               pipe_config->dpll_hw_state.ebb4,
12245                               pipe_config->dpll_hw_state.pll0,
12246                               pipe_config->dpll_hw_state.pll1,
12247                               pipe_config->dpll_hw_state.pll2,
12248                               pipe_config->dpll_hw_state.pll3,
12249                               pipe_config->dpll_hw_state.pll6,
12250                               pipe_config->dpll_hw_state.pll8,
12251                               pipe_config->dpll_hw_state.pll9,
12252                               pipe_config->dpll_hw_state.pll10,
12253                               pipe_config->dpll_hw_state.pcsdw12);
12254         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12255                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12256                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12257                               pipe_config->ddi_pll_sel,
12258                               pipe_config->dpll_hw_state.ctrl1,
12259                               pipe_config->dpll_hw_state.cfgcr1,
12260                               pipe_config->dpll_hw_state.cfgcr2);
12261         } else if (HAS_DDI(dev)) {
12262                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12263                               pipe_config->ddi_pll_sel,
12264                               pipe_config->dpll_hw_state.wrpll,
12265                               pipe_config->dpll_hw_state.spll);
12266         } else {
12267                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12268                               "fp0: 0x%x, fp1: 0x%x\n",
12269                               pipe_config->dpll_hw_state.dpll,
12270                               pipe_config->dpll_hw_state.dpll_md,
12271                               pipe_config->dpll_hw_state.fp0,
12272                               pipe_config->dpll_hw_state.fp1);
12273         }
12274
12275         DRM_DEBUG_KMS("planes on this crtc\n");
12276         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12277                 intel_plane = to_intel_plane(plane);
12278                 if (intel_plane->pipe != crtc->pipe)
12279                         continue;
12280
12281                 state = to_intel_plane_state(plane->state);
12282                 fb = state->base.fb;
12283                 if (!fb) {
12284                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12285                                 "disabled, scaler_id = %d\n",
12286                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12287                                 plane->base.id, intel_plane->pipe,
12288                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12289                                 drm_plane_index(plane), state->scaler_id);
12290                         continue;
12291                 }
12292
12293                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12294                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12295                         plane->base.id, intel_plane->pipe,
12296                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12297                         drm_plane_index(plane));
12298                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12299                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12300                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12301                         state->scaler_id,
12302                         state->src.x1 >> 16, state->src.y1 >> 16,
12303                         drm_rect_width(&state->src) >> 16,
12304                         drm_rect_height(&state->src) >> 16,
12305                         state->dst.x1, state->dst.y1,
12306                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12307         }
12308 }
12309
12310 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12311 {
12312         struct drm_device *dev = state->dev;
12313         struct drm_connector *connector;
12314         unsigned int used_ports = 0;
12315
12316         /*
12317          * Walk the connector list instead of the encoder
12318          * list to detect the problem on ddi platforms
12319          * where there's just one encoder per digital port.
12320          */
12321         drm_for_each_connector(connector, dev) {
12322                 struct drm_connector_state *connector_state;
12323                 struct intel_encoder *encoder;
12324
12325                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12326                 if (!connector_state)
12327                         connector_state = connector->state;
12328
12329                 if (!connector_state->best_encoder)
12330                         continue;
12331
12332                 encoder = to_intel_encoder(connector_state->best_encoder);
12333
12334                 WARN_ON(!connector_state->crtc);
12335
12336                 switch (encoder->type) {
12337                         unsigned int port_mask;
12338                 case INTEL_OUTPUT_UNKNOWN:
12339                         if (WARN_ON(!HAS_DDI(dev)))
12340                                 break;
12341                 case INTEL_OUTPUT_DISPLAYPORT:
12342                 case INTEL_OUTPUT_HDMI:
12343                 case INTEL_OUTPUT_EDP:
12344                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12345
12346                         /* the same port mustn't appear more than once */
12347                         if (used_ports & port_mask)
12348                                 return false;
12349
12350                         used_ports |= port_mask;
12351                 default:
12352                         break;
12353                 }
12354         }
12355
12356         return true;
12357 }
12358
12359 static void
12360 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12361 {
12362         struct drm_crtc_state tmp_state;
12363         struct intel_crtc_scaler_state scaler_state;
12364         struct intel_dpll_hw_state dpll_hw_state;
12365         enum intel_dpll_id shared_dpll;
12366         uint32_t ddi_pll_sel;
12367         bool force_thru;
12368
12369         /* FIXME: before the switch to atomic started, a new pipe_config was
12370          * kzalloc'd. Code that depends on any field being zero should be
12371          * fixed, so that the crtc_state can be safely duplicated. For now,
12372          * only fields that are know to not cause problems are preserved. */
12373
12374         tmp_state = crtc_state->base;
12375         scaler_state = crtc_state->scaler_state;
12376         shared_dpll = crtc_state->shared_dpll;
12377         dpll_hw_state = crtc_state->dpll_hw_state;
12378         ddi_pll_sel = crtc_state->ddi_pll_sel;
12379         force_thru = crtc_state->pch_pfit.force_thru;
12380
12381         memset(crtc_state, 0, sizeof *crtc_state);
12382
12383         crtc_state->base = tmp_state;
12384         crtc_state->scaler_state = scaler_state;
12385         crtc_state->shared_dpll = shared_dpll;
12386         crtc_state->dpll_hw_state = dpll_hw_state;
12387         crtc_state->ddi_pll_sel = ddi_pll_sel;
12388         crtc_state->pch_pfit.force_thru = force_thru;
12389 }
12390
12391 static int
12392 intel_modeset_pipe_config(struct drm_crtc *crtc,
12393                           struct intel_crtc_state *pipe_config)
12394 {
12395         struct drm_atomic_state *state = pipe_config->base.state;
12396         struct intel_encoder *encoder;
12397         struct drm_connector *connector;
12398         struct drm_connector_state *connector_state;
12399         int base_bpp, ret = -EINVAL;
12400         int i;
12401         bool retry = true;
12402
12403         clear_intel_crtc_state(pipe_config);
12404
12405         pipe_config->cpu_transcoder =
12406                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12407
12408         /*
12409          * Sanitize sync polarity flags based on requested ones. If neither
12410          * positive or negative polarity is requested, treat this as meaning
12411          * negative polarity.
12412          */
12413         if (!(pipe_config->base.adjusted_mode.flags &
12414               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12415                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12416
12417         if (!(pipe_config->base.adjusted_mode.flags &
12418               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12419                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12420
12421         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12422                                              pipe_config);
12423         if (base_bpp < 0)
12424                 goto fail;
12425
12426         /*
12427          * Determine the real pipe dimensions. Note that stereo modes can
12428          * increase the actual pipe size due to the frame doubling and
12429          * insertion of additional space for blanks between the frame. This
12430          * is stored in the crtc timings. We use the requested mode to do this
12431          * computation to clearly distinguish it from the adjusted mode, which
12432          * can be changed by the connectors in the below retry loop.
12433          */
12434         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12435                                &pipe_config->pipe_src_w,
12436                                &pipe_config->pipe_src_h);
12437
12438 encoder_retry:
12439         /* Ensure the port clock defaults are reset when retrying. */
12440         pipe_config->port_clock = 0;
12441         pipe_config->pixel_multiplier = 1;
12442
12443         /* Fill in default crtc timings, allow encoders to overwrite them. */
12444         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12445                               CRTC_STEREO_DOUBLE);
12446
12447         /* Pass our mode to the connectors and the CRTC to give them a chance to
12448          * adjust it according to limitations or connector properties, and also
12449          * a chance to reject the mode entirely.
12450          */
12451         for_each_connector_in_state(state, connector, connector_state, i) {
12452                 if (connector_state->crtc != crtc)
12453                         continue;
12454
12455                 encoder = to_intel_encoder(connector_state->best_encoder);
12456
12457                 if (!(encoder->compute_config(encoder, pipe_config))) {
12458                         DRM_DEBUG_KMS("Encoder config failure\n");
12459                         goto fail;
12460                 }
12461         }
12462
12463         /* Set default port clock if not overwritten by the encoder. Needs to be
12464          * done afterwards in case the encoder adjusts the mode. */
12465         if (!pipe_config->port_clock)
12466                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12467                         * pipe_config->pixel_multiplier;
12468
12469         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12470         if (ret < 0) {
12471                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12472                 goto fail;
12473         }
12474
12475         if (ret == RETRY) {
12476                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12477                         ret = -EINVAL;
12478                         goto fail;
12479                 }
12480
12481                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12482                 retry = false;
12483                 goto encoder_retry;
12484         }
12485
12486         /* Dithering seems to not pass-through bits correctly when it should, so
12487          * only enable it on 6bpc panels. */
12488         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12489         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12490                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12491
12492 fail:
12493         return ret;
12494 }
12495
12496 static void
12497 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12498 {
12499         struct drm_crtc *crtc;
12500         struct drm_crtc_state *crtc_state;
12501         int i;
12502
12503         /* Double check state. */
12504         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12505                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12506
12507                 /* Update hwmode for vblank functions */
12508                 if (crtc->state->active)
12509                         crtc->hwmode = crtc->state->adjusted_mode;
12510                 else
12511                         crtc->hwmode.crtc_clock = 0;
12512
12513                 /*
12514                  * Update legacy state to satisfy fbc code. This can
12515                  * be removed when fbc uses the atomic state.
12516                  */
12517                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12518                         struct drm_plane_state *plane_state = crtc->primary->state;
12519
12520                         crtc->primary->fb = plane_state->fb;
12521                         crtc->x = plane_state->src_x >> 16;
12522                         crtc->y = plane_state->src_y >> 16;
12523                 }
12524         }
12525 }
12526
12527 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12528 {
12529         int diff;
12530
12531         if (clock1 == clock2)
12532                 return true;
12533
12534         if (!clock1 || !clock2)
12535                 return false;
12536
12537         diff = abs(clock1 - clock2);
12538
12539         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12540                 return true;
12541
12542         return false;
12543 }
12544
12545 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12546         list_for_each_entry((intel_crtc), \
12547                             &(dev)->mode_config.crtc_list, \
12548                             base.head) \
12549                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12550
12551 static bool
12552 intel_compare_m_n(unsigned int m, unsigned int n,
12553                   unsigned int m2, unsigned int n2,
12554                   bool exact)
12555 {
12556         if (m == m2 && n == n2)
12557                 return true;
12558
12559         if (exact || !m || !n || !m2 || !n2)
12560                 return false;
12561
12562         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12563
12564         if (m > m2) {
12565                 while (m > m2) {
12566                         m2 <<= 1;
12567                         n2 <<= 1;
12568                 }
12569         } else if (m < m2) {
12570                 while (m < m2) {
12571                         m <<= 1;
12572                         n <<= 1;
12573                 }
12574         }
12575
12576         return m == m2 && n == n2;
12577 }
12578
12579 static bool
12580 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12581                        struct intel_link_m_n *m2_n2,
12582                        bool adjust)
12583 {
12584         if (m_n->tu == m2_n2->tu &&
12585             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12586                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12587             intel_compare_m_n(m_n->link_m, m_n->link_n,
12588                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12589                 if (adjust)
12590                         *m2_n2 = *m_n;
12591
12592                 return true;
12593         }
12594
12595         return false;
12596 }
12597
12598 static bool
12599 intel_pipe_config_compare(struct drm_device *dev,
12600                           struct intel_crtc_state *current_config,
12601                           struct intel_crtc_state *pipe_config,
12602                           bool adjust)
12603 {
12604         bool ret = true;
12605
12606 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12607         do { \
12608                 if (!adjust) \
12609                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12610                 else \
12611                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12612         } while (0)
12613
12614 #define PIPE_CONF_CHECK_X(name) \
12615         if (current_config->name != pipe_config->name) { \
12616                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12617                           "(expected 0x%08x, found 0x%08x)\n", \
12618                           current_config->name, \
12619                           pipe_config->name); \
12620                 ret = false; \
12621         }
12622
12623 #define PIPE_CONF_CHECK_I(name) \
12624         if (current_config->name != pipe_config->name) { \
12625                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12626                           "(expected %i, found %i)\n", \
12627                           current_config->name, \
12628                           pipe_config->name); \
12629                 ret = false; \
12630         }
12631
12632 #define PIPE_CONF_CHECK_M_N(name) \
12633         if (!intel_compare_link_m_n(&current_config->name, \
12634                                     &pipe_config->name,\
12635                                     adjust)) { \
12636                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12637                           "(expected tu %i gmch %i/%i link %i/%i, " \
12638                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12639                           current_config->name.tu, \
12640                           current_config->name.gmch_m, \
12641                           current_config->name.gmch_n, \
12642                           current_config->name.link_m, \
12643                           current_config->name.link_n, \
12644                           pipe_config->name.tu, \
12645                           pipe_config->name.gmch_m, \
12646                           pipe_config->name.gmch_n, \
12647                           pipe_config->name.link_m, \
12648                           pipe_config->name.link_n); \
12649                 ret = false; \
12650         }
12651
12652 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12653         if (!intel_compare_link_m_n(&current_config->name, \
12654                                     &pipe_config->name, adjust) && \
12655             !intel_compare_link_m_n(&current_config->alt_name, \
12656                                     &pipe_config->name, adjust)) { \
12657                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12658                           "(expected tu %i gmch %i/%i link %i/%i, " \
12659                           "or tu %i gmch %i/%i link %i/%i, " \
12660                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12661                           current_config->name.tu, \
12662                           current_config->name.gmch_m, \
12663                           current_config->name.gmch_n, \
12664                           current_config->name.link_m, \
12665                           current_config->name.link_n, \
12666                           current_config->alt_name.tu, \
12667                           current_config->alt_name.gmch_m, \
12668                           current_config->alt_name.gmch_n, \
12669                           current_config->alt_name.link_m, \
12670                           current_config->alt_name.link_n, \
12671                           pipe_config->name.tu, \
12672                           pipe_config->name.gmch_m, \
12673                           pipe_config->name.gmch_n, \
12674                           pipe_config->name.link_m, \
12675                           pipe_config->name.link_n); \
12676                 ret = false; \
12677         }
12678
12679 /* This is required for BDW+ where there is only one set of registers for
12680  * switching between high and low RR.
12681  * This macro can be used whenever a comparison has to be made between one
12682  * hw state and multiple sw state variables.
12683  */
12684 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12685         if ((current_config->name != pipe_config->name) && \
12686                 (current_config->alt_name != pipe_config->name)) { \
12687                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12688                                   "(expected %i or %i, found %i)\n", \
12689                                   current_config->name, \
12690                                   current_config->alt_name, \
12691                                   pipe_config->name); \
12692                         ret = false; \
12693         }
12694
12695 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12696         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12697                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12698                           "(expected %i, found %i)\n", \
12699                           current_config->name & (mask), \
12700                           pipe_config->name & (mask)); \
12701                 ret = false; \
12702         }
12703
12704 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12705         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12706                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12707                           "(expected %i, found %i)\n", \
12708                           current_config->name, \
12709                           pipe_config->name); \
12710                 ret = false; \
12711         }
12712
12713 #define PIPE_CONF_QUIRK(quirk)  \
12714         ((current_config->quirks | pipe_config->quirks) & (quirk))
12715
12716         PIPE_CONF_CHECK_I(cpu_transcoder);
12717
12718         PIPE_CONF_CHECK_I(has_pch_encoder);
12719         PIPE_CONF_CHECK_I(fdi_lanes);
12720         PIPE_CONF_CHECK_M_N(fdi_m_n);
12721
12722         PIPE_CONF_CHECK_I(has_dp_encoder);
12723         PIPE_CONF_CHECK_I(lane_count);
12724
12725         if (INTEL_INFO(dev)->gen < 8) {
12726                 PIPE_CONF_CHECK_M_N(dp_m_n);
12727
12728                 if (current_config->has_drrs)
12729                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12730         } else
12731                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12732
12733         PIPE_CONF_CHECK_I(has_dsi_encoder);
12734
12735         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12736         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12737         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12738         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12739         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12740         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12741
12742         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12743         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12744         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12745         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12746         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12747         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12748
12749         PIPE_CONF_CHECK_I(pixel_multiplier);
12750         PIPE_CONF_CHECK_I(has_hdmi_sink);
12751         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12752             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12753                 PIPE_CONF_CHECK_I(limited_color_range);
12754         PIPE_CONF_CHECK_I(has_infoframe);
12755
12756         PIPE_CONF_CHECK_I(has_audio);
12757
12758         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12759                               DRM_MODE_FLAG_INTERLACE);
12760
12761         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12762                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12763                                       DRM_MODE_FLAG_PHSYNC);
12764                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12765                                       DRM_MODE_FLAG_NHSYNC);
12766                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12767                                       DRM_MODE_FLAG_PVSYNC);
12768                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12769                                       DRM_MODE_FLAG_NVSYNC);
12770         }
12771
12772         PIPE_CONF_CHECK_X(gmch_pfit.control);
12773         /* pfit ratios are autocomputed by the hw on gen4+ */
12774         if (INTEL_INFO(dev)->gen < 4)
12775                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12776         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12777
12778         if (!adjust) {
12779                 PIPE_CONF_CHECK_I(pipe_src_w);
12780                 PIPE_CONF_CHECK_I(pipe_src_h);
12781
12782                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12783                 if (current_config->pch_pfit.enabled) {
12784                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12785                         PIPE_CONF_CHECK_X(pch_pfit.size);
12786                 }
12787
12788                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12789         }
12790
12791         /* BDW+ don't expose a synchronous way to read the state */
12792         if (IS_HASWELL(dev))
12793                 PIPE_CONF_CHECK_I(ips_enabled);
12794
12795         PIPE_CONF_CHECK_I(double_wide);
12796
12797         PIPE_CONF_CHECK_X(ddi_pll_sel);
12798
12799         PIPE_CONF_CHECK_I(shared_dpll);
12800         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12801         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12802         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12803         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12804         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12805         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12806         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12807         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12808         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12809
12810         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12811                 PIPE_CONF_CHECK_I(pipe_bpp);
12812
12813         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12814         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12815
12816 #undef PIPE_CONF_CHECK_X
12817 #undef PIPE_CONF_CHECK_I
12818 #undef PIPE_CONF_CHECK_I_ALT
12819 #undef PIPE_CONF_CHECK_FLAGS
12820 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12821 #undef PIPE_CONF_QUIRK
12822 #undef INTEL_ERR_OR_DBG_KMS
12823
12824         return ret;
12825 }
12826
12827 static void check_wm_state(struct drm_device *dev)
12828 {
12829         struct drm_i915_private *dev_priv = dev->dev_private;
12830         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12831         struct intel_crtc *intel_crtc;
12832         int plane;
12833
12834         if (INTEL_INFO(dev)->gen < 9)
12835                 return;
12836
12837         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12838         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12839
12840         for_each_intel_crtc(dev, intel_crtc) {
12841                 struct skl_ddb_entry *hw_entry, *sw_entry;
12842                 const enum pipe pipe = intel_crtc->pipe;
12843
12844                 if (!intel_crtc->active)
12845                         continue;
12846
12847                 /* planes */
12848                 for_each_plane(dev_priv, pipe, plane) {
12849                         hw_entry = &hw_ddb.plane[pipe][plane];
12850                         sw_entry = &sw_ddb->plane[pipe][plane];
12851
12852                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12853                                 continue;
12854
12855                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12856                                   "(expected (%u,%u), found (%u,%u))\n",
12857                                   pipe_name(pipe), plane + 1,
12858                                   sw_entry->start, sw_entry->end,
12859                                   hw_entry->start, hw_entry->end);
12860                 }
12861
12862                 /* cursor */
12863                 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12864                 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12865
12866                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12867                         continue;
12868
12869                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12870                           "(expected (%u,%u), found (%u,%u))\n",
12871                           pipe_name(pipe),
12872                           sw_entry->start, sw_entry->end,
12873                           hw_entry->start, hw_entry->end);
12874         }
12875 }
12876
12877 static void
12878 check_connector_state(struct drm_device *dev,
12879                       struct drm_atomic_state *old_state)
12880 {
12881         struct drm_connector_state *old_conn_state;
12882         struct drm_connector *connector;
12883         int i;
12884
12885         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12886                 struct drm_encoder *encoder = connector->encoder;
12887                 struct drm_connector_state *state = connector->state;
12888
12889                 /* This also checks the encoder/connector hw state with the
12890                  * ->get_hw_state callbacks. */
12891                 intel_connector_check_state(to_intel_connector(connector));
12892
12893                 I915_STATE_WARN(state->best_encoder != encoder,
12894                      "connector's atomic encoder doesn't match legacy encoder\n");
12895         }
12896 }
12897
12898 static void
12899 check_encoder_state(struct drm_device *dev)
12900 {
12901         struct intel_encoder *encoder;
12902         struct intel_connector *connector;
12903
12904         for_each_intel_encoder(dev, encoder) {
12905                 bool enabled = false;
12906                 enum pipe pipe;
12907
12908                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12909                               encoder->base.base.id,
12910                               encoder->base.name);
12911
12912                 for_each_intel_connector(dev, connector) {
12913                         if (connector->base.state->best_encoder != &encoder->base)
12914                                 continue;
12915                         enabled = true;
12916
12917                         I915_STATE_WARN(connector->base.state->crtc !=
12918                                         encoder->base.crtc,
12919                              "connector's crtc doesn't match encoder crtc\n");
12920                 }
12921
12922                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12923                      "encoder's enabled state mismatch "
12924                      "(expected %i, found %i)\n",
12925                      !!encoder->base.crtc, enabled);
12926
12927                 if (!encoder->base.crtc) {
12928                         bool active;
12929
12930                         active = encoder->get_hw_state(encoder, &pipe);
12931                         I915_STATE_WARN(active,
12932                              "encoder detached but still enabled on pipe %c.\n",
12933                              pipe_name(pipe));
12934                 }
12935         }
12936 }
12937
12938 static void
12939 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12940 {
12941         struct drm_i915_private *dev_priv = dev->dev_private;
12942         struct intel_encoder *encoder;
12943         struct drm_crtc_state *old_crtc_state;
12944         struct drm_crtc *crtc;
12945         int i;
12946
12947         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12948                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12949                 struct intel_crtc_state *pipe_config, *sw_config;
12950                 bool active;
12951
12952                 if (!needs_modeset(crtc->state) &&
12953                     !to_intel_crtc_state(crtc->state)->update_pipe)
12954                         continue;
12955
12956                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12957                 pipe_config = to_intel_crtc_state(old_crtc_state);
12958                 memset(pipe_config, 0, sizeof(*pipe_config));
12959                 pipe_config->base.crtc = crtc;
12960                 pipe_config->base.state = old_state;
12961
12962                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12963                               crtc->base.id);
12964
12965                 active = dev_priv->display.get_pipe_config(intel_crtc,
12966                                                            pipe_config);
12967
12968                 /* hw state is inconsistent with the pipe quirk */
12969                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12970                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12971                         active = crtc->state->active;
12972
12973                 I915_STATE_WARN(crtc->state->active != active,
12974                      "crtc active state doesn't match with hw state "
12975                      "(expected %i, found %i)\n", crtc->state->active, active);
12976
12977                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12978                      "transitional active state does not match atomic hw state "
12979                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12980
12981                 for_each_encoder_on_crtc(dev, crtc, encoder) {
12982                         enum pipe pipe;
12983
12984                         active = encoder->get_hw_state(encoder, &pipe);
12985                         I915_STATE_WARN(active != crtc->state->active,
12986                                 "[ENCODER:%i] active %i with crtc active %i\n",
12987                                 encoder->base.base.id, active, crtc->state->active);
12988
12989                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12990                                         "Encoder connected to wrong pipe %c\n",
12991                                         pipe_name(pipe));
12992
12993                         if (active)
12994                                 encoder->get_config(encoder, pipe_config);
12995                 }
12996
12997                 if (!crtc->state->active)
12998                         continue;
12999
13000                 sw_config = to_intel_crtc_state(crtc->state);
13001                 if (!intel_pipe_config_compare(dev, sw_config,
13002                                                pipe_config, false)) {
13003                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
13004                         intel_dump_pipe_config(intel_crtc, pipe_config,
13005                                                "[hw state]");
13006                         intel_dump_pipe_config(intel_crtc, sw_config,
13007                                                "[sw state]");
13008                 }
13009         }
13010 }
13011
13012 static void
13013 check_shared_dpll_state(struct drm_device *dev)
13014 {
13015         struct drm_i915_private *dev_priv = dev->dev_private;
13016         struct intel_crtc *crtc;
13017         struct intel_dpll_hw_state dpll_hw_state;
13018         int i;
13019
13020         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13021                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13022                 int enabled_crtcs = 0, active_crtcs = 0;
13023                 bool active;
13024
13025                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13026
13027                 DRM_DEBUG_KMS("%s\n", pll->name);
13028
13029                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
13030
13031                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
13032                      "more active pll users than references: %i vs %i\n",
13033                      pll->active, hweight32(pll->config.crtc_mask));
13034                 I915_STATE_WARN(pll->active && !pll->on,
13035                      "pll in active use but not on in sw tracking\n");
13036                 I915_STATE_WARN(pll->on && !pll->active,
13037                      "pll in on but not on in use in sw tracking\n");
13038                 I915_STATE_WARN(pll->on != active,
13039                      "pll on state mismatch (expected %i, found %i)\n",
13040                      pll->on, active);
13041
13042                 for_each_intel_crtc(dev, crtc) {
13043                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
13044                                 enabled_crtcs++;
13045                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13046                                 active_crtcs++;
13047                 }
13048                 I915_STATE_WARN(pll->active != active_crtcs,
13049                      "pll active crtcs mismatch (expected %i, found %i)\n",
13050                      pll->active, active_crtcs);
13051                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
13052                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
13053                      hweight32(pll->config.crtc_mask), enabled_crtcs);
13054
13055                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
13056                                        sizeof(dpll_hw_state)),
13057                      "pll hw state mismatch\n");
13058         }
13059 }
13060
13061 static void
13062 intel_modeset_check_state(struct drm_device *dev,
13063                           struct drm_atomic_state *old_state)
13064 {
13065         check_wm_state(dev);
13066         check_connector_state(dev, old_state);
13067         check_encoder_state(dev);
13068         check_crtc_state(dev, old_state);
13069         check_shared_dpll_state(dev);
13070 }
13071
13072 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
13073                                      int dotclock)
13074 {
13075         /*
13076          * FDI already provided one idea for the dotclock.
13077          * Yell if the encoder disagrees.
13078          */
13079         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
13080              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13081              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
13082 }
13083
13084 static void update_scanline_offset(struct intel_crtc *crtc)
13085 {
13086         struct drm_device *dev = crtc->base.dev;
13087
13088         /*
13089          * The scanline counter increments at the leading edge of hsync.
13090          *
13091          * On most platforms it starts counting from vtotal-1 on the
13092          * first active line. That means the scanline counter value is
13093          * always one less than what we would expect. Ie. just after
13094          * start of vblank, which also occurs at start of hsync (on the
13095          * last active line), the scanline counter will read vblank_start-1.
13096          *
13097          * On gen2 the scanline counter starts counting from 1 instead
13098          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13099          * to keep the value positive), instead of adding one.
13100          *
13101          * On HSW+ the behaviour of the scanline counter depends on the output
13102          * type. For DP ports it behaves like most other platforms, but on HDMI
13103          * there's an extra 1 line difference. So we need to add two instead of
13104          * one to the value.
13105          */
13106         if (IS_GEN2(dev)) {
13107                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13108                 int vtotal;
13109
13110                 vtotal = adjusted_mode->crtc_vtotal;
13111                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13112                         vtotal /= 2;
13113
13114                 crtc->scanline_offset = vtotal - 1;
13115         } else if (HAS_DDI(dev) &&
13116                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13117                 crtc->scanline_offset = 2;
13118         } else
13119                 crtc->scanline_offset = 1;
13120 }
13121
13122 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13123 {
13124         struct drm_device *dev = state->dev;
13125         struct drm_i915_private *dev_priv = to_i915(dev);
13126         struct intel_shared_dpll_config *shared_dpll = NULL;
13127         struct intel_crtc *intel_crtc;
13128         struct intel_crtc_state *intel_crtc_state;
13129         struct drm_crtc *crtc;
13130         struct drm_crtc_state *crtc_state;
13131         int i;
13132
13133         if (!dev_priv->display.crtc_compute_clock)
13134                 return;
13135
13136         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13137                 int dpll;
13138
13139                 intel_crtc = to_intel_crtc(crtc);
13140                 intel_crtc_state = to_intel_crtc_state(crtc_state);
13141                 dpll = intel_crtc_state->shared_dpll;
13142
13143                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
13144                         continue;
13145
13146                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
13147
13148                 if (!shared_dpll)
13149                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13150
13151                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
13152         }
13153 }
13154
13155 /*
13156  * This implements the workaround described in the "notes" section of the mode
13157  * set sequence documentation. When going from no pipes or single pipe to
13158  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13159  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13160  */
13161 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13162 {
13163         struct drm_crtc_state *crtc_state;
13164         struct intel_crtc *intel_crtc;
13165         struct drm_crtc *crtc;
13166         struct intel_crtc_state *first_crtc_state = NULL;
13167         struct intel_crtc_state *other_crtc_state = NULL;
13168         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13169         int i;
13170
13171         /* look at all crtc's that are going to be enabled in during modeset */
13172         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13173                 intel_crtc = to_intel_crtc(crtc);
13174
13175                 if (!crtc_state->active || !needs_modeset(crtc_state))
13176                         continue;
13177
13178                 if (first_crtc_state) {
13179                         other_crtc_state = to_intel_crtc_state(crtc_state);
13180                         break;
13181                 } else {
13182                         first_crtc_state = to_intel_crtc_state(crtc_state);
13183                         first_pipe = intel_crtc->pipe;
13184                 }
13185         }
13186
13187         /* No workaround needed? */
13188         if (!first_crtc_state)
13189                 return 0;
13190
13191         /* w/a possibly needed, check how many crtc's are already enabled. */
13192         for_each_intel_crtc(state->dev, intel_crtc) {
13193                 struct intel_crtc_state *pipe_config;
13194
13195                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13196                 if (IS_ERR(pipe_config))
13197                         return PTR_ERR(pipe_config);
13198
13199                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13200
13201                 if (!pipe_config->base.active ||
13202                     needs_modeset(&pipe_config->base))
13203                         continue;
13204
13205                 /* 2 or more enabled crtcs means no need for w/a */
13206                 if (enabled_pipe != INVALID_PIPE)
13207                         return 0;
13208
13209                 enabled_pipe = intel_crtc->pipe;
13210         }
13211
13212         if (enabled_pipe != INVALID_PIPE)
13213                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13214         else if (other_crtc_state)
13215                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13216
13217         return 0;
13218 }
13219
13220 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13221 {
13222         struct drm_crtc *crtc;
13223         struct drm_crtc_state *crtc_state;
13224         int ret = 0;
13225
13226         /* add all active pipes to the state */
13227         for_each_crtc(state->dev, crtc) {
13228                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13229                 if (IS_ERR(crtc_state))
13230                         return PTR_ERR(crtc_state);
13231
13232                 if (!crtc_state->active || needs_modeset(crtc_state))
13233                         continue;
13234
13235                 crtc_state->mode_changed = true;
13236
13237                 ret = drm_atomic_add_affected_connectors(state, crtc);
13238                 if (ret)
13239                         break;
13240
13241                 ret = drm_atomic_add_affected_planes(state, crtc);
13242                 if (ret)
13243                         break;
13244         }
13245
13246         return ret;
13247 }
13248
13249 static int intel_modeset_checks(struct drm_atomic_state *state)
13250 {
13251         struct drm_device *dev = state->dev;
13252         struct drm_i915_private *dev_priv = dev->dev_private;
13253         int ret;
13254
13255         if (!check_digital_port_conflicts(state)) {
13256                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13257                 return -EINVAL;
13258         }
13259
13260         /*
13261          * See if the config requires any additional preparation, e.g.
13262          * to adjust global state with pipes off.  We need to do this
13263          * here so we can get the modeset_pipe updated config for the new
13264          * mode set on this crtc.  For other crtcs we need to use the
13265          * adjusted_mode bits in the crtc directly.
13266          */
13267         if (dev_priv->display.modeset_calc_cdclk) {
13268                 unsigned int cdclk;
13269
13270                 ret = dev_priv->display.modeset_calc_cdclk(state);
13271
13272                 cdclk = to_intel_atomic_state(state)->cdclk;
13273                 if (!ret && cdclk != dev_priv->cdclk_freq)
13274                         ret = intel_modeset_all_pipes(state);
13275
13276                 if (ret < 0)
13277                         return ret;
13278         } else
13279                 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13280
13281         intel_modeset_clear_plls(state);
13282
13283         if (IS_HASWELL(dev))
13284                 return haswell_mode_set_planes_workaround(state);
13285
13286         return 0;
13287 }
13288
13289 /*
13290  * Handle calculation of various watermark data at the end of the atomic check
13291  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13292  * handlers to ensure that all derived state has been updated.
13293  */
13294 static void calc_watermark_data(struct drm_atomic_state *state)
13295 {
13296         struct drm_device *dev = state->dev;
13297         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13298         struct drm_crtc *crtc;
13299         struct drm_crtc_state *cstate;
13300         struct drm_plane *plane;
13301         struct drm_plane_state *pstate;
13302
13303         /*
13304          * Calculate watermark configuration details now that derived
13305          * plane/crtc state is all properly updated.
13306          */
13307         drm_for_each_crtc(crtc, dev) {
13308                 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13309                         crtc->state;
13310
13311                 if (cstate->active)
13312                         intel_state->wm_config.num_pipes_active++;
13313         }
13314         drm_for_each_legacy_plane(plane, dev) {
13315                 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13316                         plane->state;
13317
13318                 if (!to_intel_plane_state(pstate)->visible)
13319                         continue;
13320
13321                 intel_state->wm_config.sprites_enabled = true;
13322                 if (pstate->crtc_w != pstate->src_w >> 16 ||
13323                     pstate->crtc_h != pstate->src_h >> 16)
13324                         intel_state->wm_config.sprites_scaled = true;
13325         }
13326 }
13327
13328 /**
13329  * intel_atomic_check - validate state object
13330  * @dev: drm device
13331  * @state: state to validate
13332  */
13333 static int intel_atomic_check(struct drm_device *dev,
13334                               struct drm_atomic_state *state)
13335 {
13336         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13337         struct drm_crtc *crtc;
13338         struct drm_crtc_state *crtc_state;
13339         int ret, i;
13340         bool any_ms = false;
13341
13342         ret = drm_atomic_helper_check_modeset(dev, state);
13343         if (ret)
13344                 return ret;
13345
13346         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13347                 struct intel_crtc_state *pipe_config =
13348                         to_intel_crtc_state(crtc_state);
13349
13350                 memset(&to_intel_crtc(crtc)->atomic, 0,
13351                        sizeof(struct intel_crtc_atomic_commit));
13352
13353                 /* Catch I915_MODE_FLAG_INHERITED */
13354                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13355                         crtc_state->mode_changed = true;
13356
13357                 if (!crtc_state->enable) {
13358                         if (needs_modeset(crtc_state))
13359                                 any_ms = true;
13360                         continue;
13361                 }
13362
13363                 if (!needs_modeset(crtc_state))
13364                         continue;
13365
13366                 /* FIXME: For only active_changed we shouldn't need to do any
13367                  * state recomputation at all. */
13368
13369                 ret = drm_atomic_add_affected_connectors(state, crtc);
13370                 if (ret)
13371                         return ret;
13372
13373                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13374                 if (ret)
13375                         return ret;
13376
13377                 if (i915.fastboot &&
13378                     intel_pipe_config_compare(state->dev,
13379                                         to_intel_crtc_state(crtc->state),
13380                                         pipe_config, true)) {
13381                         crtc_state->mode_changed = false;
13382                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13383                 }
13384
13385                 if (needs_modeset(crtc_state)) {
13386                         any_ms = true;
13387
13388                         ret = drm_atomic_add_affected_planes(state, crtc);
13389                         if (ret)
13390                                 return ret;
13391                 }
13392
13393                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13394                                        needs_modeset(crtc_state) ?
13395                                        "[modeset]" : "[fastset]");
13396         }
13397
13398         if (any_ms) {
13399                 ret = intel_modeset_checks(state);
13400
13401                 if (ret)
13402                         return ret;
13403         } else
13404                 intel_state->cdclk = to_i915(state->dev)->cdclk_freq;
13405
13406         ret = drm_atomic_helper_check_planes(state->dev, state);
13407         if (ret)
13408                 return ret;
13409
13410         calc_watermark_data(state);
13411
13412         return 0;
13413 }
13414
13415 static int intel_atomic_prepare_commit(struct drm_device *dev,
13416                                        struct drm_atomic_state *state,
13417                                        bool async)
13418 {
13419         struct drm_i915_private *dev_priv = dev->dev_private;
13420         struct drm_plane_state *plane_state;
13421         struct drm_crtc_state *crtc_state;
13422         struct drm_plane *plane;
13423         struct drm_crtc *crtc;
13424         int i, ret;
13425
13426         if (async) {
13427                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13428                 return -EINVAL;
13429         }
13430
13431         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13432                 ret = intel_crtc_wait_for_pending_flips(crtc);
13433                 if (ret)
13434                         return ret;
13435
13436                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13437                         flush_workqueue(dev_priv->wq);
13438         }
13439
13440         ret = mutex_lock_interruptible(&dev->struct_mutex);
13441         if (ret)
13442                 return ret;
13443
13444         ret = drm_atomic_helper_prepare_planes(dev, state);
13445         if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13446                 u32 reset_counter;
13447
13448                 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13449                 mutex_unlock(&dev->struct_mutex);
13450
13451                 for_each_plane_in_state(state, plane, plane_state, i) {
13452                         struct intel_plane_state *intel_plane_state =
13453                                 to_intel_plane_state(plane_state);
13454
13455                         if (!intel_plane_state->wait_req)
13456                                 continue;
13457
13458                         ret = __i915_wait_request(intel_plane_state->wait_req,
13459                                                   reset_counter, true,
13460                                                   NULL, NULL);
13461
13462                         /* Swallow -EIO errors to allow updates during hw lockup. */
13463                         if (ret == -EIO)
13464                                 ret = 0;
13465
13466                         if (ret)
13467                                 break;
13468                 }
13469
13470                 if (!ret)
13471                         return 0;
13472
13473                 mutex_lock(&dev->struct_mutex);
13474                 drm_atomic_helper_cleanup_planes(dev, state);
13475         }
13476
13477         mutex_unlock(&dev->struct_mutex);
13478         return ret;
13479 }
13480
13481 /**
13482  * intel_atomic_commit - commit validated state object
13483  * @dev: DRM device
13484  * @state: the top-level driver state object
13485  * @async: asynchronous commit
13486  *
13487  * This function commits a top-level state object that has been validated
13488  * with drm_atomic_helper_check().
13489  *
13490  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13491  * we can only handle plane-related operations and do not yet support
13492  * asynchronous commit.
13493  *
13494  * RETURNS
13495  * Zero for success or -errno.
13496  */
13497 static int intel_atomic_commit(struct drm_device *dev,
13498                                struct drm_atomic_state *state,
13499                                bool async)
13500 {
13501         struct drm_i915_private *dev_priv = dev->dev_private;
13502         struct drm_crtc_state *crtc_state;
13503         struct drm_crtc *crtc;
13504         int ret = 0;
13505         int i;
13506         bool any_ms = false;
13507
13508         ret = intel_atomic_prepare_commit(dev, state, async);
13509         if (ret) {
13510                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13511                 return ret;
13512         }
13513
13514         drm_atomic_helper_swap_state(dev, state);
13515         dev_priv->wm.config = to_intel_atomic_state(state)->wm_config;
13516
13517         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13518                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13519
13520                 if (!needs_modeset(crtc->state))
13521                         continue;
13522
13523                 any_ms = true;
13524                 intel_pre_plane_update(intel_crtc);
13525
13526                 if (crtc_state->active) {
13527                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13528                         dev_priv->display.crtc_disable(crtc);
13529                         intel_crtc->active = false;
13530                         intel_disable_shared_dpll(intel_crtc);
13531
13532                         /*
13533                          * Underruns don't always raise
13534                          * interrupts, so check manually.
13535                          */
13536                         intel_check_cpu_fifo_underruns(dev_priv);
13537                         intel_check_pch_fifo_underruns(dev_priv);
13538
13539                         if (!crtc->state->active)
13540                                 intel_update_watermarks(crtc);
13541                 }
13542         }
13543
13544         /* Only after disabling all output pipelines that will be changed can we
13545          * update the the output configuration. */
13546         intel_modeset_update_crtc_state(state);
13547
13548         if (any_ms) {
13549                 intel_shared_dpll_commit(state);
13550
13551                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13552                 modeset_update_crtc_power_domains(state);
13553         }
13554
13555         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13556         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13557                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13558                 bool modeset = needs_modeset(crtc->state);
13559                 bool update_pipe = !modeset &&
13560                         to_intel_crtc_state(crtc->state)->update_pipe;
13561                 unsigned long put_domains = 0;
13562
13563                 if (modeset)
13564                         intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13565
13566                 if (modeset && crtc->state->active) {
13567                         update_scanline_offset(to_intel_crtc(crtc));
13568                         dev_priv->display.crtc_enable(crtc);
13569                 }
13570
13571                 if (update_pipe) {
13572                         put_domains = modeset_get_crtc_power_domains(crtc);
13573
13574                         /* make sure intel_modeset_check_state runs */
13575                         any_ms = true;
13576                 }
13577
13578                 if (!modeset)
13579                         intel_pre_plane_update(intel_crtc);
13580
13581                 if (crtc->state->active &&
13582                     (crtc->state->planes_changed || update_pipe))
13583                         drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13584
13585                 if (put_domains)
13586                         modeset_put_power_domains(dev_priv, put_domains);
13587
13588                 intel_post_plane_update(intel_crtc);
13589
13590                 if (modeset)
13591                         intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13592         }
13593
13594         /* FIXME: add subpixel order */
13595
13596         drm_atomic_helper_wait_for_vblanks(dev, state);
13597
13598         mutex_lock(&dev->struct_mutex);
13599         drm_atomic_helper_cleanup_planes(dev, state);
13600         mutex_unlock(&dev->struct_mutex);
13601
13602         if (any_ms)
13603                 intel_modeset_check_state(dev, state);
13604
13605         drm_atomic_state_free(state);
13606
13607         return 0;
13608 }
13609
13610 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13611 {
13612         struct drm_device *dev = crtc->dev;
13613         struct drm_atomic_state *state;
13614         struct drm_crtc_state *crtc_state;
13615         int ret;
13616
13617         state = drm_atomic_state_alloc(dev);
13618         if (!state) {
13619                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13620                               crtc->base.id);
13621                 return;
13622         }
13623
13624         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13625
13626 retry:
13627         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13628         ret = PTR_ERR_OR_ZERO(crtc_state);
13629         if (!ret) {
13630                 if (!crtc_state->active)
13631                         goto out;
13632
13633                 crtc_state->mode_changed = true;
13634                 ret = drm_atomic_commit(state);
13635         }
13636
13637         if (ret == -EDEADLK) {
13638                 drm_atomic_state_clear(state);
13639                 drm_modeset_backoff(state->acquire_ctx);
13640                 goto retry;
13641         }
13642
13643         if (ret)
13644 out:
13645                 drm_atomic_state_free(state);
13646 }
13647
13648 #undef for_each_intel_crtc_masked
13649
13650 static const struct drm_crtc_funcs intel_crtc_funcs = {
13651         .gamma_set = intel_crtc_gamma_set,
13652         .set_config = drm_atomic_helper_set_config,
13653         .destroy = intel_crtc_destroy,
13654         .page_flip = intel_crtc_page_flip,
13655         .atomic_duplicate_state = intel_crtc_duplicate_state,
13656         .atomic_destroy_state = intel_crtc_destroy_state,
13657 };
13658
13659 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13660                                       struct intel_shared_dpll *pll,
13661                                       struct intel_dpll_hw_state *hw_state)
13662 {
13663         uint32_t val;
13664
13665         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
13666                 return false;
13667
13668         val = I915_READ(PCH_DPLL(pll->id));
13669         hw_state->dpll = val;
13670         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13671         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13672
13673         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
13674
13675         return val & DPLL_VCO_ENABLE;
13676 }
13677
13678 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13679                                   struct intel_shared_dpll *pll)
13680 {
13681         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13682         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13683 }
13684
13685 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13686                                 struct intel_shared_dpll *pll)
13687 {
13688         /* PCH refclock must be enabled first */
13689         ibx_assert_pch_refclk_enabled(dev_priv);
13690
13691         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13692
13693         /* Wait for the clocks to stabilize. */
13694         POSTING_READ(PCH_DPLL(pll->id));
13695         udelay(150);
13696
13697         /* The pixel multiplier can only be updated once the
13698          * DPLL is enabled and the clocks are stable.
13699          *
13700          * So write it again.
13701          */
13702         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13703         POSTING_READ(PCH_DPLL(pll->id));
13704         udelay(200);
13705 }
13706
13707 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13708                                  struct intel_shared_dpll *pll)
13709 {
13710         struct drm_device *dev = dev_priv->dev;
13711         struct intel_crtc *crtc;
13712
13713         /* Make sure no transcoder isn't still depending on us. */
13714         for_each_intel_crtc(dev, crtc) {
13715                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13716                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13717         }
13718
13719         I915_WRITE(PCH_DPLL(pll->id), 0);
13720         POSTING_READ(PCH_DPLL(pll->id));
13721         udelay(200);
13722 }
13723
13724 static char *ibx_pch_dpll_names[] = {
13725         "PCH DPLL A",
13726         "PCH DPLL B",
13727 };
13728
13729 static void ibx_pch_dpll_init(struct drm_device *dev)
13730 {
13731         struct drm_i915_private *dev_priv = dev->dev_private;
13732         int i;
13733
13734         dev_priv->num_shared_dpll = 2;
13735
13736         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13737                 dev_priv->shared_dplls[i].id = i;
13738                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13739                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13740                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13741                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13742                 dev_priv->shared_dplls[i].get_hw_state =
13743                         ibx_pch_dpll_get_hw_state;
13744         }
13745 }
13746
13747 static void intel_shared_dpll_init(struct drm_device *dev)
13748 {
13749         struct drm_i915_private *dev_priv = dev->dev_private;
13750
13751         if (HAS_DDI(dev))
13752                 intel_ddi_pll_init(dev);
13753         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13754                 ibx_pch_dpll_init(dev);
13755         else
13756                 dev_priv->num_shared_dpll = 0;
13757
13758         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13759 }
13760
13761 /**
13762  * intel_prepare_plane_fb - Prepare fb for usage on plane
13763  * @plane: drm plane to prepare for
13764  * @fb: framebuffer to prepare for presentation
13765  *
13766  * Prepares a framebuffer for usage on a display plane.  Generally this
13767  * involves pinning the underlying object and updating the frontbuffer tracking
13768  * bits.  Some older platforms need special physical address handling for
13769  * cursor planes.
13770  *
13771  * Must be called with struct_mutex held.
13772  *
13773  * Returns 0 on success, negative error code on failure.
13774  */
13775 int
13776 intel_prepare_plane_fb(struct drm_plane *plane,
13777                        const struct drm_plane_state *new_state)
13778 {
13779         struct drm_device *dev = plane->dev;
13780         struct drm_framebuffer *fb = new_state->fb;
13781         struct intel_plane *intel_plane = to_intel_plane(plane);
13782         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13783         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13784         int ret = 0;
13785
13786         if (!obj && !old_obj)
13787                 return 0;
13788
13789         if (old_obj) {
13790                 struct drm_crtc_state *crtc_state =
13791                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13792
13793                 /* Big Hammer, we also need to ensure that any pending
13794                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13795                  * current scanout is retired before unpinning the old
13796                  * framebuffer. Note that we rely on userspace rendering
13797                  * into the buffer attached to the pipe they are waiting
13798                  * on. If not, userspace generates a GPU hang with IPEHR
13799                  * point to the MI_WAIT_FOR_EVENT.
13800                  *
13801                  * This should only fail upon a hung GPU, in which case we
13802                  * can safely continue.
13803                  */
13804                 if (needs_modeset(crtc_state))
13805                         ret = i915_gem_object_wait_rendering(old_obj, true);
13806
13807                 /* Swallow -EIO errors to allow updates during hw lockup. */
13808                 if (ret && ret != -EIO)
13809                         return ret;
13810         }
13811
13812         /* For framebuffer backed by dmabuf, wait for fence */
13813         if (obj && obj->base.dma_buf) {
13814                 long lret;
13815
13816                 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13817                                                            false, true,
13818                                                            MAX_SCHEDULE_TIMEOUT);
13819                 if (lret == -ERESTARTSYS)
13820                         return lret;
13821
13822                 WARN(lret < 0, "waiting returns %li\n", lret);
13823         }
13824
13825         if (!obj) {
13826                 ret = 0;
13827         } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13828             INTEL_INFO(dev)->cursor_needs_physical) {
13829                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13830                 ret = i915_gem_object_attach_phys(obj, align);
13831                 if (ret)
13832                         DRM_DEBUG_KMS("failed to attach phys object\n");
13833         } else {
13834                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state);
13835         }
13836
13837         if (ret == 0) {
13838                 if (obj) {
13839                         struct intel_plane_state *plane_state =
13840                                 to_intel_plane_state(new_state);
13841
13842                         i915_gem_request_assign(&plane_state->wait_req,
13843                                                 obj->last_write_req);
13844                 }
13845
13846                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13847         }
13848
13849         return ret;
13850 }
13851
13852 /**
13853  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13854  * @plane: drm plane to clean up for
13855  * @fb: old framebuffer that was on plane
13856  *
13857  * Cleans up a framebuffer that has just been removed from a plane.
13858  *
13859  * Must be called with struct_mutex held.
13860  */
13861 void
13862 intel_cleanup_plane_fb(struct drm_plane *plane,
13863                        const struct drm_plane_state *old_state)
13864 {
13865         struct drm_device *dev = plane->dev;
13866         struct intel_plane *intel_plane = to_intel_plane(plane);
13867         struct intel_plane_state *old_intel_state;
13868         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13869         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13870
13871         old_intel_state = to_intel_plane_state(old_state);
13872
13873         if (!obj && !old_obj)
13874                 return;
13875
13876         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13877             !INTEL_INFO(dev)->cursor_needs_physical))
13878                 intel_unpin_fb_obj(old_state->fb, old_state);
13879
13880         /* prepare_fb aborted? */
13881         if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13882             (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13883                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13884
13885         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13886
13887 }
13888
13889 int
13890 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13891 {
13892         int max_scale;
13893         struct drm_device *dev;
13894         struct drm_i915_private *dev_priv;
13895         int crtc_clock, cdclk;
13896
13897         if (!intel_crtc || !crtc_state)
13898                 return DRM_PLANE_HELPER_NO_SCALING;
13899
13900         dev = intel_crtc->base.dev;
13901         dev_priv = dev->dev_private;
13902         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13903         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13904
13905         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13906                 return DRM_PLANE_HELPER_NO_SCALING;
13907
13908         /*
13909          * skl max scale is lower of:
13910          *    close to 3 but not 3, -1 is for that purpose
13911          *            or
13912          *    cdclk/crtc_clock
13913          */
13914         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13915
13916         return max_scale;
13917 }
13918
13919 static int
13920 intel_check_primary_plane(struct drm_plane *plane,
13921                           struct intel_crtc_state *crtc_state,
13922                           struct intel_plane_state *state)
13923 {
13924         struct drm_crtc *crtc = state->base.crtc;
13925         struct drm_framebuffer *fb = state->base.fb;
13926         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13927         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13928         bool can_position = false;
13929
13930         if (INTEL_INFO(plane->dev)->gen >= 9) {
13931                 /* use scaler when colorkey is not required */
13932                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13933                         min_scale = 1;
13934                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13935                 }
13936                 can_position = true;
13937         }
13938
13939         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13940                                              &state->dst, &state->clip,
13941                                              min_scale, max_scale,
13942                                              can_position, true,
13943                                              &state->visible);
13944 }
13945
13946 static void
13947 intel_commit_primary_plane(struct drm_plane *plane,
13948                            struct intel_plane_state *state)
13949 {
13950         struct drm_crtc *crtc = state->base.crtc;
13951         struct drm_framebuffer *fb = state->base.fb;
13952         struct drm_device *dev = plane->dev;
13953         struct drm_i915_private *dev_priv = dev->dev_private;
13954
13955         crtc = crtc ? crtc : plane->crtc;
13956
13957         dev_priv->display.update_primary_plane(crtc, fb,
13958                                                state->src.x1 >> 16,
13959                                                state->src.y1 >> 16);
13960 }
13961
13962 static void
13963 intel_disable_primary_plane(struct drm_plane *plane,
13964                             struct drm_crtc *crtc)
13965 {
13966         struct drm_device *dev = plane->dev;
13967         struct drm_i915_private *dev_priv = dev->dev_private;
13968
13969         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13970 }
13971
13972 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13973                                     struct drm_crtc_state *old_crtc_state)
13974 {
13975         struct drm_device *dev = crtc->dev;
13976         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13977         struct intel_crtc_state *old_intel_state =
13978                 to_intel_crtc_state(old_crtc_state);
13979         bool modeset = needs_modeset(crtc->state);
13980
13981         /* Perform vblank evasion around commit operation */
13982         intel_pipe_update_start(intel_crtc);
13983
13984         if (modeset)
13985                 return;
13986
13987         if (to_intel_crtc_state(crtc->state)->update_pipe)
13988                 intel_update_pipe_config(intel_crtc, old_intel_state);
13989         else if (INTEL_INFO(dev)->gen >= 9)
13990                 skl_detach_scalers(intel_crtc);
13991 }
13992
13993 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13994                                      struct drm_crtc_state *old_crtc_state)
13995 {
13996         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13997
13998         intel_pipe_update_end(intel_crtc);
13999 }
14000
14001 /**
14002  * intel_plane_destroy - destroy a plane
14003  * @plane: plane to destroy
14004  *
14005  * Common destruction function for all types of planes (primary, cursor,
14006  * sprite).
14007  */
14008 void intel_plane_destroy(struct drm_plane *plane)
14009 {
14010         struct intel_plane *intel_plane = to_intel_plane(plane);
14011         drm_plane_cleanup(plane);
14012         kfree(intel_plane);
14013 }
14014
14015 const struct drm_plane_funcs intel_plane_funcs = {
14016         .update_plane = drm_atomic_helper_update_plane,
14017         .disable_plane = drm_atomic_helper_disable_plane,
14018         .destroy = intel_plane_destroy,
14019         .set_property = drm_atomic_helper_plane_set_property,
14020         .atomic_get_property = intel_plane_atomic_get_property,
14021         .atomic_set_property = intel_plane_atomic_set_property,
14022         .atomic_duplicate_state = intel_plane_duplicate_state,
14023         .atomic_destroy_state = intel_plane_destroy_state,
14024
14025 };
14026
14027 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14028                                                     int pipe)
14029 {
14030         struct intel_plane *primary;
14031         struct intel_plane_state *state;
14032         const uint32_t *intel_primary_formats;
14033         unsigned int num_formats;
14034
14035         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14036         if (primary == NULL)
14037                 return NULL;
14038
14039         state = intel_create_plane_state(&primary->base);
14040         if (!state) {
14041                 kfree(primary);
14042                 return NULL;
14043         }
14044         primary->base.state = &state->base;
14045
14046         primary->can_scale = false;
14047         primary->max_downscale = 1;
14048         if (INTEL_INFO(dev)->gen >= 9) {
14049                 primary->can_scale = true;
14050                 state->scaler_id = -1;
14051         }
14052         primary->pipe = pipe;
14053         primary->plane = pipe;
14054         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14055         primary->check_plane = intel_check_primary_plane;
14056         primary->commit_plane = intel_commit_primary_plane;
14057         primary->disable_plane = intel_disable_primary_plane;
14058         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14059                 primary->plane = !pipe;
14060
14061         if (INTEL_INFO(dev)->gen >= 9) {
14062                 intel_primary_formats = skl_primary_formats;
14063                 num_formats = ARRAY_SIZE(skl_primary_formats);
14064         } else if (INTEL_INFO(dev)->gen >= 4) {
14065                 intel_primary_formats = i965_primary_formats;
14066                 num_formats = ARRAY_SIZE(i965_primary_formats);
14067         } else {
14068                 intel_primary_formats = i8xx_primary_formats;
14069                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14070         }
14071
14072         drm_universal_plane_init(dev, &primary->base, 0,
14073                                  &intel_plane_funcs,
14074                                  intel_primary_formats, num_formats,
14075                                  DRM_PLANE_TYPE_PRIMARY, NULL);
14076
14077         if (INTEL_INFO(dev)->gen >= 4)
14078                 intel_create_rotation_property(dev, primary);
14079
14080         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14081
14082         return &primary->base;
14083 }
14084
14085 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14086 {
14087         if (!dev->mode_config.rotation_property) {
14088                 unsigned long flags = BIT(DRM_ROTATE_0) |
14089                         BIT(DRM_ROTATE_180);
14090
14091                 if (INTEL_INFO(dev)->gen >= 9)
14092                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14093
14094                 dev->mode_config.rotation_property =
14095                         drm_mode_create_rotation_property(dev, flags);
14096         }
14097         if (dev->mode_config.rotation_property)
14098                 drm_object_attach_property(&plane->base.base,
14099                                 dev->mode_config.rotation_property,
14100                                 plane->base.state->rotation);
14101 }
14102
14103 static int
14104 intel_check_cursor_plane(struct drm_plane *plane,
14105                          struct intel_crtc_state *crtc_state,
14106                          struct intel_plane_state *state)
14107 {
14108         struct drm_crtc *crtc = crtc_state->base.crtc;
14109         struct drm_framebuffer *fb = state->base.fb;
14110         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14111         enum pipe pipe = to_intel_plane(plane)->pipe;
14112         unsigned stride;
14113         int ret;
14114
14115         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14116                                             &state->dst, &state->clip,
14117                                             DRM_PLANE_HELPER_NO_SCALING,
14118                                             DRM_PLANE_HELPER_NO_SCALING,
14119                                             true, true, &state->visible);
14120         if (ret)
14121                 return ret;
14122
14123         /* if we want to turn off the cursor ignore width and height */
14124         if (!obj)
14125                 return 0;
14126
14127         /* Check for which cursor types we support */
14128         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14129                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14130                           state->base.crtc_w, state->base.crtc_h);
14131                 return -EINVAL;
14132         }
14133
14134         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14135         if (obj->base.size < stride * state->base.crtc_h) {
14136                 DRM_DEBUG_KMS("buffer is too small\n");
14137                 return -ENOMEM;
14138         }
14139
14140         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14141                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14142                 return -EINVAL;
14143         }
14144
14145         /*
14146          * There's something wrong with the cursor on CHV pipe C.
14147          * If it straddles the left edge of the screen then
14148          * moving it away from the edge or disabling it often
14149          * results in a pipe underrun, and often that can lead to
14150          * dead pipe (constant underrun reported, and it scans
14151          * out just a solid color). To recover from that, the
14152          * display power well must be turned off and on again.
14153          * Refuse the put the cursor into that compromised position.
14154          */
14155         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14156             state->visible && state->base.crtc_x < 0) {
14157                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14158                 return -EINVAL;
14159         }
14160
14161         return 0;
14162 }
14163
14164 static void
14165 intel_disable_cursor_plane(struct drm_plane *plane,
14166                            struct drm_crtc *crtc)
14167 {
14168         intel_crtc_update_cursor(crtc, false);
14169 }
14170
14171 static void
14172 intel_commit_cursor_plane(struct drm_plane *plane,
14173                           struct intel_plane_state *state)
14174 {
14175         struct drm_crtc *crtc = state->base.crtc;
14176         struct drm_device *dev = plane->dev;
14177         struct intel_crtc *intel_crtc;
14178         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14179         uint32_t addr;
14180
14181         crtc = crtc ? crtc : plane->crtc;
14182         intel_crtc = to_intel_crtc(crtc);
14183
14184         if (!obj)
14185                 addr = 0;
14186         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14187                 addr = i915_gem_obj_ggtt_offset(obj);
14188         else
14189                 addr = obj->phys_handle->busaddr;
14190
14191         intel_crtc->cursor_addr = addr;
14192
14193         if (crtc->state->active)
14194                 intel_crtc_update_cursor(crtc, state->visible);
14195 }
14196
14197 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14198                                                    int pipe)
14199 {
14200         struct intel_plane *cursor;
14201         struct intel_plane_state *state;
14202
14203         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14204         if (cursor == NULL)
14205                 return NULL;
14206
14207         state = intel_create_plane_state(&cursor->base);
14208         if (!state) {
14209                 kfree(cursor);
14210                 return NULL;
14211         }
14212         cursor->base.state = &state->base;
14213
14214         cursor->can_scale = false;
14215         cursor->max_downscale = 1;
14216         cursor->pipe = pipe;
14217         cursor->plane = pipe;
14218         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14219         cursor->check_plane = intel_check_cursor_plane;
14220         cursor->commit_plane = intel_commit_cursor_plane;
14221         cursor->disable_plane = intel_disable_cursor_plane;
14222
14223         drm_universal_plane_init(dev, &cursor->base, 0,
14224                                  &intel_plane_funcs,
14225                                  intel_cursor_formats,
14226                                  ARRAY_SIZE(intel_cursor_formats),
14227                                  DRM_PLANE_TYPE_CURSOR, NULL);
14228
14229         if (INTEL_INFO(dev)->gen >= 4) {
14230                 if (!dev->mode_config.rotation_property)
14231                         dev->mode_config.rotation_property =
14232                                 drm_mode_create_rotation_property(dev,
14233                                                         BIT(DRM_ROTATE_0) |
14234                                                         BIT(DRM_ROTATE_180));
14235                 if (dev->mode_config.rotation_property)
14236                         drm_object_attach_property(&cursor->base.base,
14237                                 dev->mode_config.rotation_property,
14238                                 state->base.rotation);
14239         }
14240
14241         if (INTEL_INFO(dev)->gen >=9)
14242                 state->scaler_id = -1;
14243
14244         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14245
14246         return &cursor->base;
14247 }
14248
14249 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14250         struct intel_crtc_state *crtc_state)
14251 {
14252         int i;
14253         struct intel_scaler *intel_scaler;
14254         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14255
14256         for (i = 0; i < intel_crtc->num_scalers; i++) {
14257                 intel_scaler = &scaler_state->scalers[i];
14258                 intel_scaler->in_use = 0;
14259                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14260         }
14261
14262         scaler_state->scaler_id = -1;
14263 }
14264
14265 static void intel_crtc_init(struct drm_device *dev, int pipe)
14266 {
14267         struct drm_i915_private *dev_priv = dev->dev_private;
14268         struct intel_crtc *intel_crtc;
14269         struct intel_crtc_state *crtc_state = NULL;
14270         struct drm_plane *primary = NULL;
14271         struct drm_plane *cursor = NULL;
14272         int i, ret;
14273
14274         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14275         if (intel_crtc == NULL)
14276                 return;
14277
14278         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14279         if (!crtc_state)
14280                 goto fail;
14281         intel_crtc->config = crtc_state;
14282         intel_crtc->base.state = &crtc_state->base;
14283         crtc_state->base.crtc = &intel_crtc->base;
14284
14285         /* initialize shared scalers */
14286         if (INTEL_INFO(dev)->gen >= 9) {
14287                 if (pipe == PIPE_C)
14288                         intel_crtc->num_scalers = 1;
14289                 else
14290                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14291
14292                 skl_init_scalers(dev, intel_crtc, crtc_state);
14293         }
14294
14295         primary = intel_primary_plane_create(dev, pipe);
14296         if (!primary)
14297                 goto fail;
14298
14299         cursor = intel_cursor_plane_create(dev, pipe);
14300         if (!cursor)
14301                 goto fail;
14302
14303         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14304                                         cursor, &intel_crtc_funcs, NULL);
14305         if (ret)
14306                 goto fail;
14307
14308         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
14309         for (i = 0; i < 256; i++) {
14310                 intel_crtc->lut_r[i] = i;
14311                 intel_crtc->lut_g[i] = i;
14312                 intel_crtc->lut_b[i] = i;
14313         }
14314
14315         /*
14316          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14317          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14318          */
14319         intel_crtc->pipe = pipe;
14320         intel_crtc->plane = pipe;
14321         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14322                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14323                 intel_crtc->plane = !pipe;
14324         }
14325
14326         intel_crtc->cursor_base = ~0;
14327         intel_crtc->cursor_cntl = ~0;
14328         intel_crtc->cursor_size = ~0;
14329
14330         intel_crtc->wm.cxsr_allowed = true;
14331
14332         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14333                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14334         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14335         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14336
14337         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14338
14339         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14340         return;
14341
14342 fail:
14343         if (primary)
14344                 drm_plane_cleanup(primary);
14345         if (cursor)
14346                 drm_plane_cleanup(cursor);
14347         kfree(crtc_state);
14348         kfree(intel_crtc);
14349 }
14350
14351 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14352 {
14353         struct drm_encoder *encoder = connector->base.encoder;
14354         struct drm_device *dev = connector->base.dev;
14355
14356         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14357
14358         if (!encoder || WARN_ON(!encoder->crtc))
14359                 return INVALID_PIPE;
14360
14361         return to_intel_crtc(encoder->crtc)->pipe;
14362 }
14363
14364 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14365                                 struct drm_file *file)
14366 {
14367         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14368         struct drm_crtc *drmmode_crtc;
14369         struct intel_crtc *crtc;
14370
14371         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14372
14373         if (!drmmode_crtc) {
14374                 DRM_ERROR("no such CRTC id\n");
14375                 return -ENOENT;
14376         }
14377
14378         crtc = to_intel_crtc(drmmode_crtc);
14379         pipe_from_crtc_id->pipe = crtc->pipe;
14380
14381         return 0;
14382 }
14383
14384 static int intel_encoder_clones(struct intel_encoder *encoder)
14385 {
14386         struct drm_device *dev = encoder->base.dev;
14387         struct intel_encoder *source_encoder;
14388         int index_mask = 0;
14389         int entry = 0;
14390
14391         for_each_intel_encoder(dev, source_encoder) {
14392                 if (encoders_cloneable(encoder, source_encoder))
14393                         index_mask |= (1 << entry);
14394
14395                 entry++;
14396         }
14397
14398         return index_mask;
14399 }
14400
14401 static bool has_edp_a(struct drm_device *dev)
14402 {
14403         struct drm_i915_private *dev_priv = dev->dev_private;
14404
14405         if (!IS_MOBILE(dev))
14406                 return false;
14407
14408         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14409                 return false;
14410
14411         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14412                 return false;
14413
14414         return true;
14415 }
14416
14417 static bool intel_crt_present(struct drm_device *dev)
14418 {
14419         struct drm_i915_private *dev_priv = dev->dev_private;
14420
14421         if (INTEL_INFO(dev)->gen >= 9)
14422                 return false;
14423
14424         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14425                 return false;
14426
14427         if (IS_CHERRYVIEW(dev))
14428                 return false;
14429
14430         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14431                 return false;
14432
14433         /* DDI E can't be used if DDI A requires 4 lanes */
14434         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14435                 return false;
14436
14437         if (!dev_priv->vbt.int_crt_support)
14438                 return false;
14439
14440         return true;
14441 }
14442
14443 static void intel_setup_outputs(struct drm_device *dev)
14444 {
14445         struct drm_i915_private *dev_priv = dev->dev_private;
14446         struct intel_encoder *encoder;
14447         bool dpd_is_edp = false;
14448
14449         intel_lvds_init(dev);
14450
14451         if (intel_crt_present(dev))
14452                 intel_crt_init(dev);
14453
14454         if (IS_BROXTON(dev)) {
14455                 /*
14456                  * FIXME: Broxton doesn't support port detection via the
14457                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14458                  * detect the ports.
14459                  */
14460                 intel_ddi_init(dev, PORT_A);
14461                 intel_ddi_init(dev, PORT_B);
14462                 intel_ddi_init(dev, PORT_C);
14463         } else if (HAS_DDI(dev)) {
14464                 int found;
14465
14466                 /*
14467                  * Haswell uses DDI functions to detect digital outputs.
14468                  * On SKL pre-D0 the strap isn't connected, so we assume
14469                  * it's there.
14470                  */
14471                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14472                 /* WaIgnoreDDIAStrap: skl */
14473                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14474                         intel_ddi_init(dev, PORT_A);
14475
14476                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14477                  * register */
14478                 found = I915_READ(SFUSE_STRAP);
14479
14480                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14481                         intel_ddi_init(dev, PORT_B);
14482                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14483                         intel_ddi_init(dev, PORT_C);
14484                 if (found & SFUSE_STRAP_DDID_DETECTED)
14485                         intel_ddi_init(dev, PORT_D);
14486                 /*
14487                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14488                  */
14489                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14490                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14491                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14492                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14493                         intel_ddi_init(dev, PORT_E);
14494
14495         } else if (HAS_PCH_SPLIT(dev)) {
14496                 int found;
14497                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14498
14499                 if (has_edp_a(dev))
14500                         intel_dp_init(dev, DP_A, PORT_A);
14501
14502                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14503                         /* PCH SDVOB multiplex with HDMIB */
14504                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14505                         if (!found)
14506                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14507                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14508                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14509                 }
14510
14511                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14512                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14513
14514                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14515                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14516
14517                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14518                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14519
14520                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14521                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14522         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14523                 /*
14524                  * The DP_DETECTED bit is the latched state of the DDC
14525                  * SDA pin at boot. However since eDP doesn't require DDC
14526                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14527                  * eDP ports may have been muxed to an alternate function.
14528                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14529                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14530                  * detect eDP ports.
14531                  */
14532                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14533                     !intel_dp_is_edp(dev, PORT_B))
14534                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14535                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14536                     intel_dp_is_edp(dev, PORT_B))
14537                         intel_dp_init(dev, VLV_DP_B, PORT_B);
14538
14539                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14540                     !intel_dp_is_edp(dev, PORT_C))
14541                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14542                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14543                     intel_dp_is_edp(dev, PORT_C))
14544                         intel_dp_init(dev, VLV_DP_C, PORT_C);
14545
14546                 if (IS_CHERRYVIEW(dev)) {
14547                         /* eDP not supported on port D, so don't check VBT */
14548                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14549                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14550                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
14551                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14552                 }
14553
14554                 intel_dsi_init(dev);
14555         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14556                 bool found = false;
14557
14558                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14559                         DRM_DEBUG_KMS("probing SDVOB\n");
14560                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14561                         if (!found && IS_G4X(dev)) {
14562                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14563                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14564                         }
14565
14566                         if (!found && IS_G4X(dev))
14567                                 intel_dp_init(dev, DP_B, PORT_B);
14568                 }
14569
14570                 /* Before G4X SDVOC doesn't have its own detect register */
14571
14572                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14573                         DRM_DEBUG_KMS("probing SDVOC\n");
14574                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14575                 }
14576
14577                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14578
14579                         if (IS_G4X(dev)) {
14580                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14581                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14582                         }
14583                         if (IS_G4X(dev))
14584                                 intel_dp_init(dev, DP_C, PORT_C);
14585                 }
14586
14587                 if (IS_G4X(dev) &&
14588                     (I915_READ(DP_D) & DP_DETECTED))
14589                         intel_dp_init(dev, DP_D, PORT_D);
14590         } else if (IS_GEN2(dev))
14591                 intel_dvo_init(dev);
14592
14593         if (SUPPORTS_TV(dev))
14594                 intel_tv_init(dev);
14595
14596         intel_psr_init(dev);
14597
14598         for_each_intel_encoder(dev, encoder) {
14599                 encoder->base.possible_crtcs = encoder->crtc_mask;
14600                 encoder->base.possible_clones =
14601                         intel_encoder_clones(encoder);
14602         }
14603
14604         intel_init_pch_refclk(dev);
14605
14606         drm_helper_move_panel_connectors_to_head(dev);
14607 }
14608
14609 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14610 {
14611         struct drm_device *dev = fb->dev;
14612         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14613
14614         drm_framebuffer_cleanup(fb);
14615         mutex_lock(&dev->struct_mutex);
14616         WARN_ON(!intel_fb->obj->framebuffer_references--);
14617         drm_gem_object_unreference(&intel_fb->obj->base);
14618         mutex_unlock(&dev->struct_mutex);
14619         kfree(intel_fb);
14620 }
14621
14622 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14623                                                 struct drm_file *file,
14624                                                 unsigned int *handle)
14625 {
14626         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14627         struct drm_i915_gem_object *obj = intel_fb->obj;
14628
14629         if (obj->userptr.mm) {
14630                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14631                 return -EINVAL;
14632         }
14633
14634         return drm_gem_handle_create(file, &obj->base, handle);
14635 }
14636
14637 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14638                                         struct drm_file *file,
14639                                         unsigned flags, unsigned color,
14640                                         struct drm_clip_rect *clips,
14641                                         unsigned num_clips)
14642 {
14643         struct drm_device *dev = fb->dev;
14644         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14645         struct drm_i915_gem_object *obj = intel_fb->obj;
14646
14647         mutex_lock(&dev->struct_mutex);
14648         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14649         mutex_unlock(&dev->struct_mutex);
14650
14651         return 0;
14652 }
14653
14654 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14655         .destroy = intel_user_framebuffer_destroy,
14656         .create_handle = intel_user_framebuffer_create_handle,
14657         .dirty = intel_user_framebuffer_dirty,
14658 };
14659
14660 static
14661 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14662                          uint32_t pixel_format)
14663 {
14664         u32 gen = INTEL_INFO(dev)->gen;
14665
14666         if (gen >= 9) {
14667                 /* "The stride in bytes must not exceed the of the size of 8K
14668                  *  pixels and 32K bytes."
14669                  */
14670                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14671         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14672                 return 32*1024;
14673         } else if (gen >= 4) {
14674                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14675                         return 16*1024;
14676                 else
14677                         return 32*1024;
14678         } else if (gen >= 3) {
14679                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14680                         return 8*1024;
14681                 else
14682                         return 16*1024;
14683         } else {
14684                 /* XXX DSPC is limited to 4k tiled */
14685                 return 8*1024;
14686         }
14687 }
14688
14689 static int intel_framebuffer_init(struct drm_device *dev,
14690                                   struct intel_framebuffer *intel_fb,
14691                                   struct drm_mode_fb_cmd2 *mode_cmd,
14692                                   struct drm_i915_gem_object *obj)
14693 {
14694         unsigned int aligned_height;
14695         int ret;
14696         u32 pitch_limit, stride_alignment;
14697
14698         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14699
14700         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14701                 /* Enforce that fb modifier and tiling mode match, but only for
14702                  * X-tiled. This is needed for FBC. */
14703                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14704                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14705                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14706                         return -EINVAL;
14707                 }
14708         } else {
14709                 if (obj->tiling_mode == I915_TILING_X)
14710                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14711                 else if (obj->tiling_mode == I915_TILING_Y) {
14712                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14713                         return -EINVAL;
14714                 }
14715         }
14716
14717         /* Passed in modifier sanity checking. */
14718         switch (mode_cmd->modifier[0]) {
14719         case I915_FORMAT_MOD_Y_TILED:
14720         case I915_FORMAT_MOD_Yf_TILED:
14721                 if (INTEL_INFO(dev)->gen < 9) {
14722                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14723                                   mode_cmd->modifier[0]);
14724                         return -EINVAL;
14725                 }
14726         case DRM_FORMAT_MOD_NONE:
14727         case I915_FORMAT_MOD_X_TILED:
14728                 break;
14729         default:
14730                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14731                           mode_cmd->modifier[0]);
14732                 return -EINVAL;
14733         }
14734
14735         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14736                                                      mode_cmd->pixel_format);
14737         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14738                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14739                           mode_cmd->pitches[0], stride_alignment);
14740                 return -EINVAL;
14741         }
14742
14743         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14744                                            mode_cmd->pixel_format);
14745         if (mode_cmd->pitches[0] > pitch_limit) {
14746                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14747                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14748                           "tiled" : "linear",
14749                           mode_cmd->pitches[0], pitch_limit);
14750                 return -EINVAL;
14751         }
14752
14753         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14754             mode_cmd->pitches[0] != obj->stride) {
14755                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14756                           mode_cmd->pitches[0], obj->stride);
14757                 return -EINVAL;
14758         }
14759
14760         /* Reject formats not supported by any plane early. */
14761         switch (mode_cmd->pixel_format) {
14762         case DRM_FORMAT_C8:
14763         case DRM_FORMAT_RGB565:
14764         case DRM_FORMAT_XRGB8888:
14765         case DRM_FORMAT_ARGB8888:
14766                 break;
14767         case DRM_FORMAT_XRGB1555:
14768                 if (INTEL_INFO(dev)->gen > 3) {
14769                         DRM_DEBUG("unsupported pixel format: %s\n",
14770                                   drm_get_format_name(mode_cmd->pixel_format));
14771                         return -EINVAL;
14772                 }
14773                 break;
14774         case DRM_FORMAT_ABGR8888:
14775                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14776                     INTEL_INFO(dev)->gen < 9) {
14777                         DRM_DEBUG("unsupported pixel format: %s\n",
14778                                   drm_get_format_name(mode_cmd->pixel_format));
14779                         return -EINVAL;
14780                 }
14781                 break;
14782         case DRM_FORMAT_XBGR8888:
14783         case DRM_FORMAT_XRGB2101010:
14784         case DRM_FORMAT_XBGR2101010:
14785                 if (INTEL_INFO(dev)->gen < 4) {
14786                         DRM_DEBUG("unsupported pixel format: %s\n",
14787                                   drm_get_format_name(mode_cmd->pixel_format));
14788                         return -EINVAL;
14789                 }
14790                 break;
14791         case DRM_FORMAT_ABGR2101010:
14792                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14793                         DRM_DEBUG("unsupported pixel format: %s\n",
14794                                   drm_get_format_name(mode_cmd->pixel_format));
14795                         return -EINVAL;
14796                 }
14797                 break;
14798         case DRM_FORMAT_YUYV:
14799         case DRM_FORMAT_UYVY:
14800         case DRM_FORMAT_YVYU:
14801         case DRM_FORMAT_VYUY:
14802                 if (INTEL_INFO(dev)->gen < 5) {
14803                         DRM_DEBUG("unsupported pixel format: %s\n",
14804                                   drm_get_format_name(mode_cmd->pixel_format));
14805                         return -EINVAL;
14806                 }
14807                 break;
14808         default:
14809                 DRM_DEBUG("unsupported pixel format: %s\n",
14810                           drm_get_format_name(mode_cmd->pixel_format));
14811                 return -EINVAL;
14812         }
14813
14814         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14815         if (mode_cmd->offsets[0] != 0)
14816                 return -EINVAL;
14817
14818         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14819                                                mode_cmd->pixel_format,
14820                                                mode_cmd->modifier[0]);
14821         /* FIXME drm helper for size checks (especially planar formats)? */
14822         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14823                 return -EINVAL;
14824
14825         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14826         intel_fb->obj = obj;
14827         intel_fb->obj->framebuffer_references++;
14828
14829         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14830         if (ret) {
14831                 DRM_ERROR("framebuffer init failed %d\n", ret);
14832                 return ret;
14833         }
14834
14835         return 0;
14836 }
14837
14838 static struct drm_framebuffer *
14839 intel_user_framebuffer_create(struct drm_device *dev,
14840                               struct drm_file *filp,
14841                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14842 {
14843         struct drm_framebuffer *fb;
14844         struct drm_i915_gem_object *obj;
14845         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14846
14847         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14848                                                 mode_cmd.handles[0]));
14849         if (&obj->base == NULL)
14850                 return ERR_PTR(-ENOENT);
14851
14852         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14853         if (IS_ERR(fb))
14854                 drm_gem_object_unreference_unlocked(&obj->base);
14855
14856         return fb;
14857 }
14858
14859 #ifndef CONFIG_DRM_FBDEV_EMULATION
14860 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14861 {
14862 }
14863 #endif
14864
14865 static const struct drm_mode_config_funcs intel_mode_funcs = {
14866         .fb_create = intel_user_framebuffer_create,
14867         .output_poll_changed = intel_fbdev_output_poll_changed,
14868         .atomic_check = intel_atomic_check,
14869         .atomic_commit = intel_atomic_commit,
14870         .atomic_state_alloc = intel_atomic_state_alloc,
14871         .atomic_state_clear = intel_atomic_state_clear,
14872 };
14873
14874 /* Set up chip specific display functions */
14875 static void intel_init_display(struct drm_device *dev)
14876 {
14877         struct drm_i915_private *dev_priv = dev->dev_private;
14878
14879         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14880                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14881         else if (IS_CHERRYVIEW(dev))
14882                 dev_priv->display.find_dpll = chv_find_best_dpll;
14883         else if (IS_VALLEYVIEW(dev))
14884                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14885         else if (IS_PINEVIEW(dev))
14886                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14887         else
14888                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14889
14890         if (INTEL_INFO(dev)->gen >= 9) {
14891                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14892                 dev_priv->display.get_initial_plane_config =
14893                         skylake_get_initial_plane_config;
14894                 dev_priv->display.crtc_compute_clock =
14895                         haswell_crtc_compute_clock;
14896                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14897                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14898                 dev_priv->display.update_primary_plane =
14899                         skylake_update_primary_plane;
14900         } else if (HAS_DDI(dev)) {
14901                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14902                 dev_priv->display.get_initial_plane_config =
14903                         ironlake_get_initial_plane_config;
14904                 dev_priv->display.crtc_compute_clock =
14905                         haswell_crtc_compute_clock;
14906                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14907                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14908                 dev_priv->display.update_primary_plane =
14909                         ironlake_update_primary_plane;
14910         } else if (HAS_PCH_SPLIT(dev)) {
14911                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14912                 dev_priv->display.get_initial_plane_config =
14913                         ironlake_get_initial_plane_config;
14914                 dev_priv->display.crtc_compute_clock =
14915                         ironlake_crtc_compute_clock;
14916                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14917                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14918                 dev_priv->display.update_primary_plane =
14919                         ironlake_update_primary_plane;
14920         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14921                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14922                 dev_priv->display.get_initial_plane_config =
14923                         i9xx_get_initial_plane_config;
14924                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14925                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14926                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14927                 dev_priv->display.update_primary_plane =
14928                         i9xx_update_primary_plane;
14929         } else {
14930                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14931                 dev_priv->display.get_initial_plane_config =
14932                         i9xx_get_initial_plane_config;
14933                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14934                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14935                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14936                 dev_priv->display.update_primary_plane =
14937                         i9xx_update_primary_plane;
14938         }
14939
14940         /* Returns the core display clock speed */
14941         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14942                 dev_priv->display.get_display_clock_speed =
14943                         skylake_get_display_clock_speed;
14944         else if (IS_BROXTON(dev))
14945                 dev_priv->display.get_display_clock_speed =
14946                         broxton_get_display_clock_speed;
14947         else if (IS_BROADWELL(dev))
14948                 dev_priv->display.get_display_clock_speed =
14949                         broadwell_get_display_clock_speed;
14950         else if (IS_HASWELL(dev))
14951                 dev_priv->display.get_display_clock_speed =
14952                         haswell_get_display_clock_speed;
14953         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
14954                 dev_priv->display.get_display_clock_speed =
14955                         valleyview_get_display_clock_speed;
14956         else if (IS_GEN5(dev))
14957                 dev_priv->display.get_display_clock_speed =
14958                         ilk_get_display_clock_speed;
14959         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14960                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14961                 dev_priv->display.get_display_clock_speed =
14962                         i945_get_display_clock_speed;
14963         else if (IS_GM45(dev))
14964                 dev_priv->display.get_display_clock_speed =
14965                         gm45_get_display_clock_speed;
14966         else if (IS_CRESTLINE(dev))
14967                 dev_priv->display.get_display_clock_speed =
14968                         i965gm_get_display_clock_speed;
14969         else if (IS_PINEVIEW(dev))
14970                 dev_priv->display.get_display_clock_speed =
14971                         pnv_get_display_clock_speed;
14972         else if (IS_G33(dev) || IS_G4X(dev))
14973                 dev_priv->display.get_display_clock_speed =
14974                         g33_get_display_clock_speed;
14975         else if (IS_I915G(dev))
14976                 dev_priv->display.get_display_clock_speed =
14977                         i915_get_display_clock_speed;
14978         else if (IS_I945GM(dev) || IS_845G(dev))
14979                 dev_priv->display.get_display_clock_speed =
14980                         i9xx_misc_get_display_clock_speed;
14981         else if (IS_I915GM(dev))
14982                 dev_priv->display.get_display_clock_speed =
14983                         i915gm_get_display_clock_speed;
14984         else if (IS_I865G(dev))
14985                 dev_priv->display.get_display_clock_speed =
14986                         i865_get_display_clock_speed;
14987         else if (IS_I85X(dev))
14988                 dev_priv->display.get_display_clock_speed =
14989                         i85x_get_display_clock_speed;
14990         else { /* 830 */
14991                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14992                 dev_priv->display.get_display_clock_speed =
14993                         i830_get_display_clock_speed;
14994         }
14995
14996         if (IS_GEN5(dev)) {
14997                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14998         } else if (IS_GEN6(dev)) {
14999                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15000         } else if (IS_IVYBRIDGE(dev)) {
15001                 /* FIXME: detect B0+ stepping and use auto training */
15002                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15003         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
15004                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15005                 if (IS_BROADWELL(dev)) {
15006                         dev_priv->display.modeset_commit_cdclk =
15007                                 broadwell_modeset_commit_cdclk;
15008                         dev_priv->display.modeset_calc_cdclk =
15009                                 broadwell_modeset_calc_cdclk;
15010                 }
15011         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
15012                 dev_priv->display.modeset_commit_cdclk =
15013                         valleyview_modeset_commit_cdclk;
15014                 dev_priv->display.modeset_calc_cdclk =
15015                         valleyview_modeset_calc_cdclk;
15016         } else if (IS_BROXTON(dev)) {
15017                 dev_priv->display.modeset_commit_cdclk =
15018                         broxton_modeset_commit_cdclk;
15019                 dev_priv->display.modeset_calc_cdclk =
15020                         broxton_modeset_calc_cdclk;
15021         }
15022
15023         switch (INTEL_INFO(dev)->gen) {
15024         case 2:
15025                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15026                 break;
15027
15028         case 3:
15029                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15030                 break;
15031
15032         case 4:
15033         case 5:
15034                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15035                 break;
15036
15037         case 6:
15038                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15039                 break;
15040         case 7:
15041         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15042                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15043                 break;
15044         case 9:
15045                 /* Drop through - unsupported since execlist only. */
15046         default:
15047                 /* Default just returns -ENODEV to indicate unsupported */
15048                 dev_priv->display.queue_flip = intel_default_queue_flip;
15049         }
15050
15051         mutex_init(&dev_priv->pps_mutex);
15052 }
15053
15054 /*
15055  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15056  * resume, or other times.  This quirk makes sure that's the case for
15057  * affected systems.
15058  */
15059 static void quirk_pipea_force(struct drm_device *dev)
15060 {
15061         struct drm_i915_private *dev_priv = dev->dev_private;
15062
15063         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15064         DRM_INFO("applying pipe a force quirk\n");
15065 }
15066
15067 static void quirk_pipeb_force(struct drm_device *dev)
15068 {
15069         struct drm_i915_private *dev_priv = dev->dev_private;
15070
15071         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15072         DRM_INFO("applying pipe b force quirk\n");
15073 }
15074
15075 /*
15076  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15077  */
15078 static void quirk_ssc_force_disable(struct drm_device *dev)
15079 {
15080         struct drm_i915_private *dev_priv = dev->dev_private;
15081         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15082         DRM_INFO("applying lvds SSC disable quirk\n");
15083 }
15084
15085 /*
15086  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15087  * brightness value
15088  */
15089 static void quirk_invert_brightness(struct drm_device *dev)
15090 {
15091         struct drm_i915_private *dev_priv = dev->dev_private;
15092         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15093         DRM_INFO("applying inverted panel brightness quirk\n");
15094 }
15095
15096 /* Some VBT's incorrectly indicate no backlight is present */
15097 static void quirk_backlight_present(struct drm_device *dev)
15098 {
15099         struct drm_i915_private *dev_priv = dev->dev_private;
15100         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15101         DRM_INFO("applying backlight present quirk\n");
15102 }
15103
15104 struct intel_quirk {
15105         int device;
15106         int subsystem_vendor;
15107         int subsystem_device;
15108         void (*hook)(struct drm_device *dev);
15109 };
15110
15111 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15112 struct intel_dmi_quirk {
15113         void (*hook)(struct drm_device *dev);
15114         const struct dmi_system_id (*dmi_id_list)[];
15115 };
15116
15117 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15118 {
15119         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15120         return 1;
15121 }
15122
15123 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15124         {
15125                 .dmi_id_list = &(const struct dmi_system_id[]) {
15126                         {
15127                                 .callback = intel_dmi_reverse_brightness,
15128                                 .ident = "NCR Corporation",
15129                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15130                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
15131                                 },
15132                         },
15133                         { }  /* terminating entry */
15134                 },
15135                 .hook = quirk_invert_brightness,
15136         },
15137 };
15138
15139 static struct intel_quirk intel_quirks[] = {
15140         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15141         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15142
15143         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15144         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15145
15146         /* 830 needs to leave pipe A & dpll A up */
15147         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15148
15149         /* 830 needs to leave pipe B & dpll B up */
15150         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15151
15152         /* Lenovo U160 cannot use SSC on LVDS */
15153         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15154
15155         /* Sony Vaio Y cannot use SSC on LVDS */
15156         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15157
15158         /* Acer Aspire 5734Z must invert backlight brightness */
15159         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15160
15161         /* Acer/eMachines G725 */
15162         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15163
15164         /* Acer/eMachines e725 */
15165         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15166
15167         /* Acer/Packard Bell NCL20 */
15168         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15169
15170         /* Acer Aspire 4736Z */
15171         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15172
15173         /* Acer Aspire 5336 */
15174         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15175
15176         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15177         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15178
15179         /* Acer C720 Chromebook (Core i3 4005U) */
15180         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15181
15182         /* Apple Macbook 2,1 (Core 2 T7400) */
15183         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15184
15185         /* Apple Macbook 4,1 */
15186         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15187
15188         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15189         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15190
15191         /* HP Chromebook 14 (Celeron 2955U) */
15192         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15193
15194         /* Dell Chromebook 11 */
15195         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15196
15197         /* Dell Chromebook 11 (2015 version) */
15198         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15199 };
15200
15201 static void intel_init_quirks(struct drm_device *dev)
15202 {
15203         struct pci_dev *d = dev->pdev;
15204         int i;
15205
15206         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15207                 struct intel_quirk *q = &intel_quirks[i];
15208
15209                 if (d->device == q->device &&
15210                     (d->subsystem_vendor == q->subsystem_vendor ||
15211                      q->subsystem_vendor == PCI_ANY_ID) &&
15212                     (d->subsystem_device == q->subsystem_device ||
15213                      q->subsystem_device == PCI_ANY_ID))
15214                         q->hook(dev);
15215         }
15216         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15217                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15218                         intel_dmi_quirks[i].hook(dev);
15219         }
15220 }
15221
15222 /* Disable the VGA plane that we never use */
15223 static void i915_disable_vga(struct drm_device *dev)
15224 {
15225         struct drm_i915_private *dev_priv = dev->dev_private;
15226         u8 sr1;
15227         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15228
15229         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15230         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15231         outb(SR01, VGA_SR_INDEX);
15232         sr1 = inb(VGA_SR_DATA);
15233         outb(sr1 | 1<<5, VGA_SR_DATA);
15234         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15235         udelay(300);
15236
15237         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15238         POSTING_READ(vga_reg);
15239 }
15240
15241 void intel_modeset_init_hw(struct drm_device *dev)
15242 {
15243         intel_update_cdclk(dev);
15244         intel_prepare_ddi(dev);
15245         intel_init_clock_gating(dev);
15246         intel_enable_gt_powersave(dev);
15247 }
15248
15249 void intel_modeset_init(struct drm_device *dev)
15250 {
15251         struct drm_i915_private *dev_priv = dev->dev_private;
15252         int sprite, ret;
15253         enum pipe pipe;
15254         struct intel_crtc *crtc;
15255
15256         drm_mode_config_init(dev);
15257
15258         dev->mode_config.min_width = 0;
15259         dev->mode_config.min_height = 0;
15260
15261         dev->mode_config.preferred_depth = 24;
15262         dev->mode_config.prefer_shadow = 1;
15263
15264         dev->mode_config.allow_fb_modifiers = true;
15265
15266         dev->mode_config.funcs = &intel_mode_funcs;
15267
15268         intel_init_quirks(dev);
15269
15270         intel_init_pm(dev);
15271
15272         if (INTEL_INFO(dev)->num_pipes == 0)
15273                 return;
15274
15275         /*
15276          * There may be no VBT; and if the BIOS enabled SSC we can
15277          * just keep using it to avoid unnecessary flicker.  Whereas if the
15278          * BIOS isn't using it, don't assume it will work even if the VBT
15279          * indicates as much.
15280          */
15281         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15282                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15283                                             DREF_SSC1_ENABLE);
15284
15285                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15286                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15287                                      bios_lvds_use_ssc ? "en" : "dis",
15288                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15289                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15290                 }
15291         }
15292
15293         intel_init_display(dev);
15294         intel_init_audio(dev);
15295
15296         if (IS_GEN2(dev)) {
15297                 dev->mode_config.max_width = 2048;
15298                 dev->mode_config.max_height = 2048;
15299         } else if (IS_GEN3(dev)) {
15300                 dev->mode_config.max_width = 4096;
15301                 dev->mode_config.max_height = 4096;
15302         } else {
15303                 dev->mode_config.max_width = 8192;
15304                 dev->mode_config.max_height = 8192;
15305         }
15306
15307         if (IS_845G(dev) || IS_I865G(dev)) {
15308                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15309                 dev->mode_config.cursor_height = 1023;
15310         } else if (IS_GEN2(dev)) {
15311                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15312                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15313         } else {
15314                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15315                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15316         }
15317
15318         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
15319
15320         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15321                       INTEL_INFO(dev)->num_pipes,
15322                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15323
15324         for_each_pipe(dev_priv, pipe) {
15325                 intel_crtc_init(dev, pipe);
15326                 for_each_sprite(dev_priv, pipe, sprite) {
15327                         ret = intel_plane_init(dev, pipe, sprite);
15328                         if (ret)
15329                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15330                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15331                 }
15332         }
15333
15334         intel_update_czclk(dev_priv);
15335         intel_update_cdclk(dev);
15336
15337         intel_shared_dpll_init(dev);
15338
15339         /* Just disable it once at startup */
15340         i915_disable_vga(dev);
15341         intel_setup_outputs(dev);
15342
15343         drm_modeset_lock_all(dev);
15344         intel_modeset_setup_hw_state(dev);
15345         drm_modeset_unlock_all(dev);
15346
15347         for_each_intel_crtc(dev, crtc) {
15348                 struct intel_initial_plane_config plane_config = {};
15349
15350                 if (!crtc->active)
15351                         continue;
15352
15353                 /*
15354                  * Note that reserving the BIOS fb up front prevents us
15355                  * from stuffing other stolen allocations like the ring
15356                  * on top.  This prevents some ugliness at boot time, and
15357                  * can even allow for smooth boot transitions if the BIOS
15358                  * fb is large enough for the active pipe configuration.
15359                  */
15360                 dev_priv->display.get_initial_plane_config(crtc,
15361                                                            &plane_config);
15362
15363                 /*
15364                  * If the fb is shared between multiple heads, we'll
15365                  * just get the first one.
15366                  */
15367                 intel_find_initial_plane_obj(crtc, &plane_config);
15368         }
15369 }
15370
15371 static void intel_enable_pipe_a(struct drm_device *dev)
15372 {
15373         struct intel_connector *connector;
15374         struct drm_connector *crt = NULL;
15375         struct intel_load_detect_pipe load_detect_temp;
15376         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15377
15378         /* We can't just switch on the pipe A, we need to set things up with a
15379          * proper mode and output configuration. As a gross hack, enable pipe A
15380          * by enabling the load detect pipe once. */
15381         for_each_intel_connector(dev, connector) {
15382                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15383                         crt = &connector->base;
15384                         break;
15385                 }
15386         }
15387
15388         if (!crt)
15389                 return;
15390
15391         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15392                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15393 }
15394
15395 static bool
15396 intel_check_plane_mapping(struct intel_crtc *crtc)
15397 {
15398         struct drm_device *dev = crtc->base.dev;
15399         struct drm_i915_private *dev_priv = dev->dev_private;
15400         u32 val;
15401
15402         if (INTEL_INFO(dev)->num_pipes == 1)
15403                 return true;
15404
15405         val = I915_READ(DSPCNTR(!crtc->plane));
15406
15407         if ((val & DISPLAY_PLANE_ENABLE) &&
15408             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15409                 return false;
15410
15411         return true;
15412 }
15413
15414 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15415 {
15416         struct drm_device *dev = crtc->base.dev;
15417         struct intel_encoder *encoder;
15418
15419         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15420                 return true;
15421
15422         return false;
15423 }
15424
15425 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15426 {
15427         struct drm_device *dev = crtc->base.dev;
15428         struct drm_i915_private *dev_priv = dev->dev_private;
15429         i915_reg_t reg = PIPECONF(crtc->config->cpu_transcoder);
15430
15431         /* Clear any frame start delays used for debugging left by the BIOS */
15432         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15433
15434         /* restore vblank interrupts to correct state */
15435         drm_crtc_vblank_reset(&crtc->base);
15436         if (crtc->active) {
15437                 struct intel_plane *plane;
15438
15439                 drm_crtc_vblank_on(&crtc->base);
15440
15441                 /* Disable everything but the primary plane */
15442                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15443                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15444                                 continue;
15445
15446                         plane->disable_plane(&plane->base, &crtc->base);
15447                 }
15448         }
15449
15450         /* We need to sanitize the plane -> pipe mapping first because this will
15451          * disable the crtc (and hence change the state) if it is wrong. Note
15452          * that gen4+ has a fixed plane -> pipe mapping.  */
15453         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15454                 bool plane;
15455
15456                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15457                               crtc->base.base.id);
15458
15459                 /* Pipe has the wrong plane attached and the plane is active.
15460                  * Temporarily change the plane mapping and disable everything
15461                  * ...  */
15462                 plane = crtc->plane;
15463                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15464                 crtc->plane = !plane;
15465                 intel_crtc_disable_noatomic(&crtc->base);
15466                 crtc->plane = plane;
15467         }
15468
15469         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15470             crtc->pipe == PIPE_A && !crtc->active) {
15471                 /* BIOS forgot to enable pipe A, this mostly happens after
15472                  * resume. Force-enable the pipe to fix this, the update_dpms
15473                  * call below we restore the pipe to the right state, but leave
15474                  * the required bits on. */
15475                 intel_enable_pipe_a(dev);
15476         }
15477
15478         /* Adjust the state of the output pipe according to whether we
15479          * have active connectors/encoders. */
15480         if (!intel_crtc_has_encoders(crtc))
15481                 intel_crtc_disable_noatomic(&crtc->base);
15482
15483         if (crtc->active != crtc->base.state->active) {
15484                 struct intel_encoder *encoder;
15485
15486                 /* This can happen either due to bugs in the get_hw_state
15487                  * functions or because of calls to intel_crtc_disable_noatomic,
15488                  * or because the pipe is force-enabled due to the
15489                  * pipe A quirk. */
15490                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15491                               crtc->base.base.id,
15492                               crtc->base.state->enable ? "enabled" : "disabled",
15493                               crtc->active ? "enabled" : "disabled");
15494
15495                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15496                 crtc->base.state->active = crtc->active;
15497                 crtc->base.enabled = crtc->active;
15498                 crtc->base.state->connector_mask = 0;
15499
15500                 /* Because we only establish the connector -> encoder ->
15501                  * crtc links if something is active, this means the
15502                  * crtc is now deactivated. Break the links. connector
15503                  * -> encoder links are only establish when things are
15504                  *  actually up, hence no need to break them. */
15505                 WARN_ON(crtc->active);
15506
15507                 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15508                         encoder->base.crtc = NULL;
15509         }
15510
15511         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15512                 /*
15513                  * We start out with underrun reporting disabled to avoid races.
15514                  * For correct bookkeeping mark this on active crtcs.
15515                  *
15516                  * Also on gmch platforms we dont have any hardware bits to
15517                  * disable the underrun reporting. Which means we need to start
15518                  * out with underrun reporting disabled also on inactive pipes,
15519                  * since otherwise we'll complain about the garbage we read when
15520                  * e.g. coming up after runtime pm.
15521                  *
15522                  * No protection against concurrent access is required - at
15523                  * worst a fifo underrun happens which also sets this to false.
15524                  */
15525                 crtc->cpu_fifo_underrun_disabled = true;
15526                 crtc->pch_fifo_underrun_disabled = true;
15527         }
15528 }
15529
15530 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15531 {
15532         struct intel_connector *connector;
15533         struct drm_device *dev = encoder->base.dev;
15534         bool active = false;
15535
15536         /* We need to check both for a crtc link (meaning that the
15537          * encoder is active and trying to read from a pipe) and the
15538          * pipe itself being active. */
15539         bool has_active_crtc = encoder->base.crtc &&
15540                 to_intel_crtc(encoder->base.crtc)->active;
15541
15542         for_each_intel_connector(dev, connector) {
15543                 if (connector->base.encoder != &encoder->base)
15544                         continue;
15545
15546                 active = true;
15547                 break;
15548         }
15549
15550         if (active && !has_active_crtc) {
15551                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15552                               encoder->base.base.id,
15553                               encoder->base.name);
15554
15555                 /* Connector is active, but has no active pipe. This is
15556                  * fallout from our resume register restoring. Disable
15557                  * the encoder manually again. */
15558                 if (encoder->base.crtc) {
15559                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15560                                       encoder->base.base.id,
15561                                       encoder->base.name);
15562                         encoder->disable(encoder);
15563                         if (encoder->post_disable)
15564                                 encoder->post_disable(encoder);
15565                 }
15566                 encoder->base.crtc = NULL;
15567
15568                 /* Inconsistent output/port/pipe state happens presumably due to
15569                  * a bug in one of the get_hw_state functions. Or someplace else
15570                  * in our code, like the register restore mess on resume. Clamp
15571                  * things to off as a safer default. */
15572                 for_each_intel_connector(dev, connector) {
15573                         if (connector->encoder != encoder)
15574                                 continue;
15575                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15576                         connector->base.encoder = NULL;
15577                 }
15578         }
15579         /* Enabled encoders without active connectors will be fixed in
15580          * the crtc fixup. */
15581 }
15582
15583 void i915_redisable_vga_power_on(struct drm_device *dev)
15584 {
15585         struct drm_i915_private *dev_priv = dev->dev_private;
15586         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15587
15588         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15589                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15590                 i915_disable_vga(dev);
15591         }
15592 }
15593
15594 void i915_redisable_vga(struct drm_device *dev)
15595 {
15596         struct drm_i915_private *dev_priv = dev->dev_private;
15597
15598         /* This function can be called both from intel_modeset_setup_hw_state or
15599          * at a very early point in our resume sequence, where the power well
15600          * structures are not yet restored. Since this function is at a very
15601          * paranoid "someone might have enabled VGA while we were not looking"
15602          * level, just check if the power well is enabled instead of trying to
15603          * follow the "don't touch the power well if we don't need it" policy
15604          * the rest of the driver uses. */
15605         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15606                 return;
15607
15608         i915_redisable_vga_power_on(dev);
15609
15610         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15611 }
15612
15613 static bool primary_get_hw_state(struct intel_plane *plane)
15614 {
15615         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15616
15617         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15618 }
15619
15620 /* FIXME read out full plane state for all planes */
15621 static void readout_plane_state(struct intel_crtc *crtc)
15622 {
15623         struct drm_plane *primary = crtc->base.primary;
15624         struct intel_plane_state *plane_state =
15625                 to_intel_plane_state(primary->state);
15626
15627         plane_state->visible = crtc->active &&
15628                 primary_get_hw_state(to_intel_plane(primary));
15629
15630         if (plane_state->visible)
15631                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15632 }
15633
15634 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15635 {
15636         struct drm_i915_private *dev_priv = dev->dev_private;
15637         enum pipe pipe;
15638         struct intel_crtc *crtc;
15639         struct intel_encoder *encoder;
15640         struct intel_connector *connector;
15641         int i;
15642
15643         for_each_intel_crtc(dev, crtc) {
15644                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15645                 memset(crtc->config, 0, sizeof(*crtc->config));
15646                 crtc->config->base.crtc = &crtc->base;
15647
15648                 crtc->active = dev_priv->display.get_pipe_config(crtc,
15649                                                                  crtc->config);
15650
15651                 crtc->base.state->active = crtc->active;
15652                 crtc->base.enabled = crtc->active;
15653
15654                 readout_plane_state(crtc);
15655
15656                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15657                               crtc->base.base.id,
15658                               crtc->active ? "enabled" : "disabled");
15659         }
15660
15661         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15662                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15663
15664                 pll->on = pll->get_hw_state(dev_priv, pll,
15665                                             &pll->config.hw_state);
15666                 pll->active = 0;
15667                 pll->config.crtc_mask = 0;
15668                 for_each_intel_crtc(dev, crtc) {
15669                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15670                                 pll->active++;
15671                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15672                         }
15673                 }
15674
15675                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15676                               pll->name, pll->config.crtc_mask, pll->on);
15677
15678                 if (pll->config.crtc_mask)
15679                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15680         }
15681
15682         for_each_intel_encoder(dev, encoder) {
15683                 pipe = 0;
15684
15685                 if (encoder->get_hw_state(encoder, &pipe)) {
15686                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15687                         encoder->base.crtc = &crtc->base;
15688                         encoder->get_config(encoder, crtc->config);
15689                 } else {
15690                         encoder->base.crtc = NULL;
15691                 }
15692
15693                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15694                               encoder->base.base.id,
15695                               encoder->base.name,
15696                               encoder->base.crtc ? "enabled" : "disabled",
15697                               pipe_name(pipe));
15698         }
15699
15700         for_each_intel_connector(dev, connector) {
15701                 if (connector->get_hw_state(connector)) {
15702                         connector->base.dpms = DRM_MODE_DPMS_ON;
15703
15704                         encoder = connector->encoder;
15705                         connector->base.encoder = &encoder->base;
15706
15707                         if (encoder->base.crtc &&
15708                             encoder->base.crtc->state->active) {
15709                                 /*
15710                                  * This has to be done during hardware readout
15711                                  * because anything calling .crtc_disable may
15712                                  * rely on the connector_mask being accurate.
15713                                  */
15714                                 encoder->base.crtc->state->connector_mask |=
15715                                         1 << drm_connector_index(&connector->base);
15716                         }
15717
15718                 } else {
15719                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15720                         connector->base.encoder = NULL;
15721                 }
15722                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15723                               connector->base.base.id,
15724                               connector->base.name,
15725                               connector->base.encoder ? "enabled" : "disabled");
15726         }
15727
15728         for_each_intel_crtc(dev, crtc) {
15729                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15730
15731                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15732                 if (crtc->base.state->active) {
15733                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15734                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15735                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15736
15737                         /*
15738                          * The initial mode needs to be set in order to keep
15739                          * the atomic core happy. It wants a valid mode if the
15740                          * crtc's enabled, so we do the above call.
15741                          *
15742                          * At this point some state updated by the connectors
15743                          * in their ->detect() callback has not run yet, so
15744                          * no recalculation can be done yet.
15745                          *
15746                          * Even if we could do a recalculation and modeset
15747                          * right now it would cause a double modeset if
15748                          * fbdev or userspace chooses a different initial mode.
15749                          *
15750                          * If that happens, someone indicated they wanted a
15751                          * mode change, which means it's safe to do a full
15752                          * recalculation.
15753                          */
15754                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15755
15756                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15757                         update_scanline_offset(crtc);
15758                 }
15759         }
15760 }
15761
15762 /* Scan out the current hw modeset state,
15763  * and sanitizes it to the current state
15764  */
15765 static void
15766 intel_modeset_setup_hw_state(struct drm_device *dev)
15767 {
15768         struct drm_i915_private *dev_priv = dev->dev_private;
15769         enum pipe pipe;
15770         struct intel_crtc *crtc;
15771         struct intel_encoder *encoder;
15772         int i;
15773
15774         intel_modeset_readout_hw_state(dev);
15775
15776         /* HW state is read out, now we need to sanitize this mess. */
15777         for_each_intel_encoder(dev, encoder) {
15778                 intel_sanitize_encoder(encoder);
15779         }
15780
15781         for_each_pipe(dev_priv, pipe) {
15782                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15783                 intel_sanitize_crtc(crtc);
15784                 intel_dump_pipe_config(crtc, crtc->config,
15785                                        "[setup_hw_state]");
15786         }
15787
15788         intel_modeset_update_connector_atomic_state(dev);
15789
15790         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15791                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15792
15793                 if (!pll->on || pll->active)
15794                         continue;
15795
15796                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15797
15798                 pll->disable(dev_priv, pll);
15799                 pll->on = false;
15800         }
15801
15802         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15803                 vlv_wm_get_hw_state(dev);
15804         else if (IS_GEN9(dev))
15805                 skl_wm_get_hw_state(dev);
15806         else if (HAS_PCH_SPLIT(dev))
15807                 ilk_wm_get_hw_state(dev);
15808
15809         for_each_intel_crtc(dev, crtc) {
15810                 unsigned long put_domains;
15811
15812                 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15813                 if (WARN_ON(put_domains))
15814                         modeset_put_power_domains(dev_priv, put_domains);
15815         }
15816         intel_display_set_init_power(dev_priv, false);
15817 }
15818
15819 void intel_display_resume(struct drm_device *dev)
15820 {
15821         struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15822         struct intel_connector *conn;
15823         struct intel_plane *plane;
15824         struct drm_crtc *crtc;
15825         int ret;
15826
15827         if (!state)
15828                 return;
15829
15830         state->acquire_ctx = dev->mode_config.acquire_ctx;
15831
15832         /* preserve complete old state, including dpll */
15833         intel_atomic_get_shared_dpll_state(state);
15834
15835         for_each_crtc(dev, crtc) {
15836                 struct drm_crtc_state *crtc_state =
15837                         drm_atomic_get_crtc_state(state, crtc);
15838
15839                 ret = PTR_ERR_OR_ZERO(crtc_state);
15840                 if (ret)
15841                         goto err;
15842
15843                 /* force a restore */
15844                 crtc_state->mode_changed = true;
15845         }
15846
15847         for_each_intel_plane(dev, plane) {
15848                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15849                 if (ret)
15850                         goto err;
15851         }
15852
15853         for_each_intel_connector(dev, conn) {
15854                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15855                 if (ret)
15856                         goto err;
15857         }
15858
15859         intel_modeset_setup_hw_state(dev);
15860
15861         i915_redisable_vga(dev);
15862         ret = drm_atomic_commit(state);
15863         if (!ret)
15864                 return;
15865
15866 err:
15867         DRM_ERROR("Restoring old state failed with %i\n", ret);
15868         drm_atomic_state_free(state);
15869 }
15870
15871 void intel_modeset_gem_init(struct drm_device *dev)
15872 {
15873         struct drm_crtc *c;
15874         struct drm_i915_gem_object *obj;
15875         int ret;
15876
15877         mutex_lock(&dev->struct_mutex);
15878         intel_init_gt_powersave(dev);
15879         mutex_unlock(&dev->struct_mutex);
15880
15881         intel_modeset_init_hw(dev);
15882
15883         intel_setup_overlay(dev);
15884
15885         /*
15886          * Make sure any fbs we allocated at startup are properly
15887          * pinned & fenced.  When we do the allocation it's too early
15888          * for this.
15889          */
15890         for_each_crtc(dev, c) {
15891                 obj = intel_fb_obj(c->primary->fb);
15892                 if (obj == NULL)
15893                         continue;
15894
15895                 mutex_lock(&dev->struct_mutex);
15896                 ret = intel_pin_and_fence_fb_obj(c->primary,
15897                                                  c->primary->fb,
15898                                                  c->primary->state);
15899                 mutex_unlock(&dev->struct_mutex);
15900                 if (ret) {
15901                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15902                                   to_intel_crtc(c)->pipe);
15903                         drm_framebuffer_unreference(c->primary->fb);
15904                         c->primary->fb = NULL;
15905                         c->primary->crtc = c->primary->state->crtc = NULL;
15906                         update_state_fb(c->primary);
15907                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15908                 }
15909         }
15910
15911         intel_backlight_register(dev);
15912 }
15913
15914 void intel_connector_unregister(struct intel_connector *intel_connector)
15915 {
15916         struct drm_connector *connector = &intel_connector->base;
15917
15918         intel_panel_destroy_backlight(connector);
15919         drm_connector_unregister(connector);
15920 }
15921
15922 void intel_modeset_cleanup(struct drm_device *dev)
15923 {
15924         struct drm_i915_private *dev_priv = dev->dev_private;
15925         struct intel_connector *connector;
15926
15927         intel_disable_gt_powersave(dev);
15928
15929         intel_backlight_unregister(dev);
15930
15931         /*
15932          * Interrupts and polling as the first thing to avoid creating havoc.
15933          * Too much stuff here (turning of connectors, ...) would
15934          * experience fancy races otherwise.
15935          */
15936         intel_irq_uninstall(dev_priv);
15937
15938         /*
15939          * Due to the hpd irq storm handling the hotplug work can re-arm the
15940          * poll handlers. Hence disable polling after hpd handling is shut down.
15941          */
15942         drm_kms_helper_poll_fini(dev);
15943
15944         intel_unregister_dsm_handler();
15945
15946         intel_fbc_disable(dev_priv);
15947
15948         /* flush any delayed tasks or pending work */
15949         flush_scheduled_work();
15950
15951         /* destroy the backlight and sysfs files before encoders/connectors */
15952         for_each_intel_connector(dev, connector)
15953                 connector->unregister(connector);
15954
15955         drm_mode_config_cleanup(dev);
15956
15957         intel_cleanup_overlay(dev);
15958
15959         mutex_lock(&dev->struct_mutex);
15960         intel_cleanup_gt_powersave(dev);
15961         mutex_unlock(&dev->struct_mutex);
15962
15963         intel_teardown_gmbus(dev);
15964 }
15965
15966 /*
15967  * Return which encoder is currently attached for connector.
15968  */
15969 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15970 {
15971         return &intel_attached_encoder(connector)->base;
15972 }
15973
15974 void intel_connector_attach_encoder(struct intel_connector *connector,
15975                                     struct intel_encoder *encoder)
15976 {
15977         connector->encoder = encoder;
15978         drm_mode_connector_attach_encoder(&connector->base,
15979                                           &encoder->base);
15980 }
15981
15982 /*
15983  * set vga decode state - true == enable VGA decode
15984  */
15985 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15986 {
15987         struct drm_i915_private *dev_priv = dev->dev_private;
15988         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15989         u16 gmch_ctrl;
15990
15991         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15992                 DRM_ERROR("failed to read control word\n");
15993                 return -EIO;
15994         }
15995
15996         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15997                 return 0;
15998
15999         if (state)
16000                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16001         else
16002                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16003
16004         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16005                 DRM_ERROR("failed to write control word\n");
16006                 return -EIO;
16007         }
16008
16009         return 0;
16010 }
16011
16012 struct intel_display_error_state {
16013
16014         u32 power_well_driver;
16015
16016         int num_transcoders;
16017
16018         struct intel_cursor_error_state {
16019                 u32 control;
16020                 u32 position;
16021                 u32 base;
16022                 u32 size;
16023         } cursor[I915_MAX_PIPES];
16024
16025         struct intel_pipe_error_state {
16026                 bool power_domain_on;
16027                 u32 source;
16028                 u32 stat;
16029         } pipe[I915_MAX_PIPES];
16030
16031         struct intel_plane_error_state {
16032                 u32 control;
16033                 u32 stride;
16034                 u32 size;
16035                 u32 pos;
16036                 u32 addr;
16037                 u32 surface;
16038                 u32 tile_offset;
16039         } plane[I915_MAX_PIPES];
16040
16041         struct intel_transcoder_error_state {
16042                 bool power_domain_on;
16043                 enum transcoder cpu_transcoder;
16044
16045                 u32 conf;
16046
16047                 u32 htotal;
16048                 u32 hblank;
16049                 u32 hsync;
16050                 u32 vtotal;
16051                 u32 vblank;
16052                 u32 vsync;
16053         } transcoder[4];
16054 };
16055
16056 struct intel_display_error_state *
16057 intel_display_capture_error_state(struct drm_device *dev)
16058 {
16059         struct drm_i915_private *dev_priv = dev->dev_private;
16060         struct intel_display_error_state *error;
16061         int transcoders[] = {
16062                 TRANSCODER_A,
16063                 TRANSCODER_B,
16064                 TRANSCODER_C,
16065                 TRANSCODER_EDP,
16066         };
16067         int i;
16068
16069         if (INTEL_INFO(dev)->num_pipes == 0)
16070                 return NULL;
16071
16072         error = kzalloc(sizeof(*error), GFP_ATOMIC);
16073         if (error == NULL)
16074                 return NULL;
16075
16076         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16077                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16078
16079         for_each_pipe(dev_priv, i) {
16080                 error->pipe[i].power_domain_on =
16081                         __intel_display_power_is_enabled(dev_priv,
16082                                                          POWER_DOMAIN_PIPE(i));
16083                 if (!error->pipe[i].power_domain_on)
16084                         continue;
16085
16086                 error->cursor[i].control = I915_READ(CURCNTR(i));
16087                 error->cursor[i].position = I915_READ(CURPOS(i));
16088                 error->cursor[i].base = I915_READ(CURBASE(i));
16089
16090                 error->plane[i].control = I915_READ(DSPCNTR(i));
16091                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16092                 if (INTEL_INFO(dev)->gen <= 3) {
16093                         error->plane[i].size = I915_READ(DSPSIZE(i));
16094                         error->plane[i].pos = I915_READ(DSPPOS(i));
16095                 }
16096                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16097                         error->plane[i].addr = I915_READ(DSPADDR(i));
16098                 if (INTEL_INFO(dev)->gen >= 4) {
16099                         error->plane[i].surface = I915_READ(DSPSURF(i));
16100                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16101                 }
16102
16103                 error->pipe[i].source = I915_READ(PIPESRC(i));
16104
16105                 if (HAS_GMCH_DISPLAY(dev))
16106                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
16107         }
16108
16109         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16110         if (HAS_DDI(dev_priv->dev))
16111                 error->num_transcoders++; /* Account for eDP. */
16112
16113         for (i = 0; i < error->num_transcoders; i++) {
16114                 enum transcoder cpu_transcoder = transcoders[i];
16115
16116                 error->transcoder[i].power_domain_on =
16117                         __intel_display_power_is_enabled(dev_priv,
16118                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16119                 if (!error->transcoder[i].power_domain_on)
16120                         continue;
16121
16122                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16123
16124                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16125                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16126                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16127                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16128                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16129                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16130                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16131         }
16132
16133         return error;
16134 }
16135
16136 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16137
16138 void
16139 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16140                                 struct drm_device *dev,
16141                                 struct intel_display_error_state *error)
16142 {
16143         struct drm_i915_private *dev_priv = dev->dev_private;
16144         int i;
16145
16146         if (!error)
16147                 return;
16148
16149         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16150         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16151                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16152                            error->power_well_driver);
16153         for_each_pipe(dev_priv, i) {
16154                 err_printf(m, "Pipe [%d]:\n", i);
16155                 err_printf(m, "  Power: %s\n",
16156                            error->pipe[i].power_domain_on ? "on" : "off");
16157                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16158                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16159
16160                 err_printf(m, "Plane [%d]:\n", i);
16161                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16162                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16163                 if (INTEL_INFO(dev)->gen <= 3) {
16164                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16165                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16166                 }
16167                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16168                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16169                 if (INTEL_INFO(dev)->gen >= 4) {
16170                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16171                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16172                 }
16173
16174                 err_printf(m, "Cursor [%d]:\n", i);
16175                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16176                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16177                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16178         }
16179
16180         for (i = 0; i < error->num_transcoders; i++) {
16181                 err_printf(m, "CPU transcoder: %c\n",
16182                            transcoder_name(error->transcoder[i].cpu_transcoder));
16183                 err_printf(m, "  Power: %s\n",
16184                            error->transcoder[i].power_domain_on ? "on" : "off");
16185                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16186                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16187                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16188                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16189                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16190                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16191                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16192         }
16193 }
16194
16195 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
16196 {
16197         struct intel_crtc *crtc;
16198
16199         for_each_intel_crtc(dev, crtc) {
16200                 struct intel_unpin_work *work;
16201
16202                 spin_lock_irq(&dev->event_lock);
16203
16204                 work = crtc->unpin_work;
16205
16206                 if (work && work->event &&
16207                     work->event->base.file_priv == file) {
16208                         kfree(work->event);
16209                         work->event = NULL;
16210                 }
16211
16212                 spin_unlock_irq(&dev->event_lock);
16213         }
16214 }