Merge tag 'topic/drm-misc-2016-02-12' into drm-intel-next-queued
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47 #include <linux/reservation.h>
48 #include <linux/dma-buf.h>
49
50 /* Primary plane formats for gen <= 3 */
51 static const uint32_t i8xx_primary_formats[] = {
52         DRM_FORMAT_C8,
53         DRM_FORMAT_RGB565,
54         DRM_FORMAT_XRGB1555,
55         DRM_FORMAT_XRGB8888,
56 };
57
58 /* Primary plane formats for gen >= 4 */
59 static const uint32_t i965_primary_formats[] = {
60         DRM_FORMAT_C8,
61         DRM_FORMAT_RGB565,
62         DRM_FORMAT_XRGB8888,
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_XRGB2101010,
65         DRM_FORMAT_XBGR2101010,
66 };
67
68 static const uint32_t skl_primary_formats[] = {
69         DRM_FORMAT_C8,
70         DRM_FORMAT_RGB565,
71         DRM_FORMAT_XRGB8888,
72         DRM_FORMAT_XBGR8888,
73         DRM_FORMAT_ARGB8888,
74         DRM_FORMAT_ABGR8888,
75         DRM_FORMAT_XRGB2101010,
76         DRM_FORMAT_XBGR2101010,
77         DRM_FORMAT_YUYV,
78         DRM_FORMAT_YVYU,
79         DRM_FORMAT_UYVY,
80         DRM_FORMAT_VYUY,
81 };
82
83 /* Cursor formats */
84 static const uint32_t intel_cursor_formats[] = {
85         DRM_FORMAT_ARGB8888,
86 };
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89                                 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91                                    struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94                                   struct intel_framebuffer *ifb,
95                                   struct drm_mode_fb_cmd2 *mode_cmd,
96                                   struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100                                          struct intel_link_m_n *m_n,
101                                          struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106                             const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112         struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114                            int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119 static void intel_pre_disable_primary(struct drm_crtc *crtc);
120
121 typedef struct {
122         int     min, max;
123 } intel_range_t;
124
125 typedef struct {
126         int     dot_limit;
127         int     p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
133         intel_p2_t          p2;
134 };
135
136 /* returns HPLL frequency in kHz */
137 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138 {
139         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
141         /* Obtain SKU information */
142         mutex_lock(&dev_priv->sb_lock);
143         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144                 CCK_FUSE_HPLL_FREQ_MASK;
145         mutex_unlock(&dev_priv->sb_lock);
146
147         return vco_freq[hpll_freq] * 1000;
148 }
149
150 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
151                                   const char *name, u32 reg)
152 {
153         u32 val;
154         int divider;
155
156         if (dev_priv->hpll_freq == 0)
157                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
158
159         mutex_lock(&dev_priv->sb_lock);
160         val = vlv_cck_read(dev_priv, reg);
161         mutex_unlock(&dev_priv->sb_lock);
162
163         divider = val & CCK_FREQUENCY_VALUES;
164
165         WARN((val & CCK_FREQUENCY_STATUS) !=
166              (divider << CCK_FREQUENCY_STATUS_SHIFT),
167              "%s change in progress\n", name);
168
169         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
170 }
171
172 int
173 intel_pch_rawclk(struct drm_device *dev)
174 {
175         struct drm_i915_private *dev_priv = dev->dev_private;
176
177         WARN_ON(!HAS_PCH_SPLIT(dev));
178
179         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
180 }
181
182 /* hrawclock is 1/4 the FSB frequency */
183 int intel_hrawclk(struct drm_device *dev)
184 {
185         struct drm_i915_private *dev_priv = dev->dev_private;
186         uint32_t clkcfg;
187
188         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
189         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
190                 return 200;
191
192         clkcfg = I915_READ(CLKCFG);
193         switch (clkcfg & CLKCFG_FSB_MASK) {
194         case CLKCFG_FSB_400:
195                 return 100;
196         case CLKCFG_FSB_533:
197                 return 133;
198         case CLKCFG_FSB_667:
199                 return 166;
200         case CLKCFG_FSB_800:
201                 return 200;
202         case CLKCFG_FSB_1067:
203                 return 266;
204         case CLKCFG_FSB_1333:
205                 return 333;
206         /* these two are just a guess; one of them might be right */
207         case CLKCFG_FSB_1600:
208         case CLKCFG_FSB_1600_ALT:
209                 return 400;
210         default:
211                 return 133;
212         }
213 }
214
215 static void intel_update_czclk(struct drm_i915_private *dev_priv)
216 {
217         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
218                 return;
219
220         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
221                                                       CCK_CZ_CLOCK_CONTROL);
222
223         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
224 }
225
226 static inline u32 /* units of 100MHz */
227 intel_fdi_link_freq(struct drm_device *dev)
228 {
229         if (IS_GEN5(dev)) {
230                 struct drm_i915_private *dev_priv = dev->dev_private;
231                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
232         } else
233                 return 27;
234 }
235
236 static const intel_limit_t intel_limits_i8xx_dac = {
237         .dot = { .min = 25000, .max = 350000 },
238         .vco = { .min = 908000, .max = 1512000 },
239         .n = { .min = 2, .max = 16 },
240         .m = { .min = 96, .max = 140 },
241         .m1 = { .min = 18, .max = 26 },
242         .m2 = { .min = 6, .max = 16 },
243         .p = { .min = 4, .max = 128 },
244         .p1 = { .min = 2, .max = 33 },
245         .p2 = { .dot_limit = 165000,
246                 .p2_slow = 4, .p2_fast = 2 },
247 };
248
249 static const intel_limit_t intel_limits_i8xx_dvo = {
250         .dot = { .min = 25000, .max = 350000 },
251         .vco = { .min = 908000, .max = 1512000 },
252         .n = { .min = 2, .max = 16 },
253         .m = { .min = 96, .max = 140 },
254         .m1 = { .min = 18, .max = 26 },
255         .m2 = { .min = 6, .max = 16 },
256         .p = { .min = 4, .max = 128 },
257         .p1 = { .min = 2, .max = 33 },
258         .p2 = { .dot_limit = 165000,
259                 .p2_slow = 4, .p2_fast = 4 },
260 };
261
262 static const intel_limit_t intel_limits_i8xx_lvds = {
263         .dot = { .min = 25000, .max = 350000 },
264         .vco = { .min = 908000, .max = 1512000 },
265         .n = { .min = 2, .max = 16 },
266         .m = { .min = 96, .max = 140 },
267         .m1 = { .min = 18, .max = 26 },
268         .m2 = { .min = 6, .max = 16 },
269         .p = { .min = 4, .max = 128 },
270         .p1 = { .min = 1, .max = 6 },
271         .p2 = { .dot_limit = 165000,
272                 .p2_slow = 14, .p2_fast = 7 },
273 };
274
275 static const intel_limit_t intel_limits_i9xx_sdvo = {
276         .dot = { .min = 20000, .max = 400000 },
277         .vco = { .min = 1400000, .max = 2800000 },
278         .n = { .min = 1, .max = 6 },
279         .m = { .min = 70, .max = 120 },
280         .m1 = { .min = 8, .max = 18 },
281         .m2 = { .min = 3, .max = 7 },
282         .p = { .min = 5, .max = 80 },
283         .p1 = { .min = 1, .max = 8 },
284         .p2 = { .dot_limit = 200000,
285                 .p2_slow = 10, .p2_fast = 5 },
286 };
287
288 static const intel_limit_t intel_limits_i9xx_lvds = {
289         .dot = { .min = 20000, .max = 400000 },
290         .vco = { .min = 1400000, .max = 2800000 },
291         .n = { .min = 1, .max = 6 },
292         .m = { .min = 70, .max = 120 },
293         .m1 = { .min = 8, .max = 18 },
294         .m2 = { .min = 3, .max = 7 },
295         .p = { .min = 7, .max = 98 },
296         .p1 = { .min = 1, .max = 8 },
297         .p2 = { .dot_limit = 112000,
298                 .p2_slow = 14, .p2_fast = 7 },
299 };
300
301
302 static const intel_limit_t intel_limits_g4x_sdvo = {
303         .dot = { .min = 25000, .max = 270000 },
304         .vco = { .min = 1750000, .max = 3500000},
305         .n = { .min = 1, .max = 4 },
306         .m = { .min = 104, .max = 138 },
307         .m1 = { .min = 17, .max = 23 },
308         .m2 = { .min = 5, .max = 11 },
309         .p = { .min = 10, .max = 30 },
310         .p1 = { .min = 1, .max = 3},
311         .p2 = { .dot_limit = 270000,
312                 .p2_slow = 10,
313                 .p2_fast = 10
314         },
315 };
316
317 static const intel_limit_t intel_limits_g4x_hdmi = {
318         .dot = { .min = 22000, .max = 400000 },
319         .vco = { .min = 1750000, .max = 3500000},
320         .n = { .min = 1, .max = 4 },
321         .m = { .min = 104, .max = 138 },
322         .m1 = { .min = 16, .max = 23 },
323         .m2 = { .min = 5, .max = 11 },
324         .p = { .min = 5, .max = 80 },
325         .p1 = { .min = 1, .max = 8},
326         .p2 = { .dot_limit = 165000,
327                 .p2_slow = 10, .p2_fast = 5 },
328 };
329
330 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
331         .dot = { .min = 20000, .max = 115000 },
332         .vco = { .min = 1750000, .max = 3500000 },
333         .n = { .min = 1, .max = 3 },
334         .m = { .min = 104, .max = 138 },
335         .m1 = { .min = 17, .max = 23 },
336         .m2 = { .min = 5, .max = 11 },
337         .p = { .min = 28, .max = 112 },
338         .p1 = { .min = 2, .max = 8 },
339         .p2 = { .dot_limit = 0,
340                 .p2_slow = 14, .p2_fast = 14
341         },
342 };
343
344 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
345         .dot = { .min = 80000, .max = 224000 },
346         .vco = { .min = 1750000, .max = 3500000 },
347         .n = { .min = 1, .max = 3 },
348         .m = { .min = 104, .max = 138 },
349         .m1 = { .min = 17, .max = 23 },
350         .m2 = { .min = 5, .max = 11 },
351         .p = { .min = 14, .max = 42 },
352         .p1 = { .min = 2, .max = 6 },
353         .p2 = { .dot_limit = 0,
354                 .p2_slow = 7, .p2_fast = 7
355         },
356 };
357
358 static const intel_limit_t intel_limits_pineview_sdvo = {
359         .dot = { .min = 20000, .max = 400000},
360         .vco = { .min = 1700000, .max = 3500000 },
361         /* Pineview's Ncounter is a ring counter */
362         .n = { .min = 3, .max = 6 },
363         .m = { .min = 2, .max = 256 },
364         /* Pineview only has one combined m divider, which we treat as m2. */
365         .m1 = { .min = 0, .max = 0 },
366         .m2 = { .min = 0, .max = 254 },
367         .p = { .min = 5, .max = 80 },
368         .p1 = { .min = 1, .max = 8 },
369         .p2 = { .dot_limit = 200000,
370                 .p2_slow = 10, .p2_fast = 5 },
371 };
372
373 static const intel_limit_t intel_limits_pineview_lvds = {
374         .dot = { .min = 20000, .max = 400000 },
375         .vco = { .min = 1700000, .max = 3500000 },
376         .n = { .min = 3, .max = 6 },
377         .m = { .min = 2, .max = 256 },
378         .m1 = { .min = 0, .max = 0 },
379         .m2 = { .min = 0, .max = 254 },
380         .p = { .min = 7, .max = 112 },
381         .p1 = { .min = 1, .max = 8 },
382         .p2 = { .dot_limit = 112000,
383                 .p2_slow = 14, .p2_fast = 14 },
384 };
385
386 /* Ironlake / Sandybridge
387  *
388  * We calculate clock using (register_value + 2) for N/M1/M2, so here
389  * the range value for them is (actual_value - 2).
390  */
391 static const intel_limit_t intel_limits_ironlake_dac = {
392         .dot = { .min = 25000, .max = 350000 },
393         .vco = { .min = 1760000, .max = 3510000 },
394         .n = { .min = 1, .max = 5 },
395         .m = { .min = 79, .max = 127 },
396         .m1 = { .min = 12, .max = 22 },
397         .m2 = { .min = 5, .max = 9 },
398         .p = { .min = 5, .max = 80 },
399         .p1 = { .min = 1, .max = 8 },
400         .p2 = { .dot_limit = 225000,
401                 .p2_slow = 10, .p2_fast = 5 },
402 };
403
404 static const intel_limit_t intel_limits_ironlake_single_lvds = {
405         .dot = { .min = 25000, .max = 350000 },
406         .vco = { .min = 1760000, .max = 3510000 },
407         .n = { .min = 1, .max = 3 },
408         .m = { .min = 79, .max = 118 },
409         .m1 = { .min = 12, .max = 22 },
410         .m2 = { .min = 5, .max = 9 },
411         .p = { .min = 28, .max = 112 },
412         .p1 = { .min = 2, .max = 8 },
413         .p2 = { .dot_limit = 225000,
414                 .p2_slow = 14, .p2_fast = 14 },
415 };
416
417 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
418         .dot = { .min = 25000, .max = 350000 },
419         .vco = { .min = 1760000, .max = 3510000 },
420         .n = { .min = 1, .max = 3 },
421         .m = { .min = 79, .max = 127 },
422         .m1 = { .min = 12, .max = 22 },
423         .m2 = { .min = 5, .max = 9 },
424         .p = { .min = 14, .max = 56 },
425         .p1 = { .min = 2, .max = 8 },
426         .p2 = { .dot_limit = 225000,
427                 .p2_slow = 7, .p2_fast = 7 },
428 };
429
430 /* LVDS 100mhz refclk limits. */
431 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
432         .dot = { .min = 25000, .max = 350000 },
433         .vco = { .min = 1760000, .max = 3510000 },
434         .n = { .min = 1, .max = 2 },
435         .m = { .min = 79, .max = 126 },
436         .m1 = { .min = 12, .max = 22 },
437         .m2 = { .min = 5, .max = 9 },
438         .p = { .min = 28, .max = 112 },
439         .p1 = { .min = 2, .max = 8 },
440         .p2 = { .dot_limit = 225000,
441                 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
445         .dot = { .min = 25000, .max = 350000 },
446         .vco = { .min = 1760000, .max = 3510000 },
447         .n = { .min = 1, .max = 3 },
448         .m = { .min = 79, .max = 126 },
449         .m1 = { .min = 12, .max = 22 },
450         .m2 = { .min = 5, .max = 9 },
451         .p = { .min = 14, .max = 42 },
452         .p1 = { .min = 2, .max = 6 },
453         .p2 = { .dot_limit = 225000,
454                 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 static const intel_limit_t intel_limits_vlv = {
458          /*
459           * These are the data rate limits (measured in fast clocks)
460           * since those are the strictest limits we have. The fast
461           * clock and actual rate limits are more relaxed, so checking
462           * them would make no difference.
463           */
464         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
465         .vco = { .min = 4000000, .max = 6000000 },
466         .n = { .min = 1, .max = 7 },
467         .m1 = { .min = 2, .max = 3 },
468         .m2 = { .min = 11, .max = 156 },
469         .p1 = { .min = 2, .max = 3 },
470         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
471 };
472
473 static const intel_limit_t intel_limits_chv = {
474         /*
475          * These are the data rate limits (measured in fast clocks)
476          * since those are the strictest limits we have.  The fast
477          * clock and actual rate limits are more relaxed, so checking
478          * them would make no difference.
479          */
480         .dot = { .min = 25000 * 5, .max = 540000 * 5},
481         .vco = { .min = 4800000, .max = 6480000 },
482         .n = { .min = 1, .max = 1 },
483         .m1 = { .min = 2, .max = 2 },
484         .m2 = { .min = 24 << 22, .max = 175 << 22 },
485         .p1 = { .min = 2, .max = 4 },
486         .p2 = { .p2_slow = 1, .p2_fast = 14 },
487 };
488
489 static const intel_limit_t intel_limits_bxt = {
490         /* FIXME: find real dot limits */
491         .dot = { .min = 0, .max = INT_MAX },
492         .vco = { .min = 4800000, .max = 6700000 },
493         .n = { .min = 1, .max = 1 },
494         .m1 = { .min = 2, .max = 2 },
495         /* FIXME: find real m2 limits */
496         .m2 = { .min = 2 << 22, .max = 255 << 22 },
497         .p1 = { .min = 2, .max = 4 },
498         .p2 = { .p2_slow = 1, .p2_fast = 20 },
499 };
500
501 static bool
502 needs_modeset(struct drm_crtc_state *state)
503 {
504         return drm_atomic_crtc_needs_modeset(state);
505 }
506
507 /**
508  * Returns whether any output on the specified pipe is of the specified type
509  */
510 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
511 {
512         struct drm_device *dev = crtc->base.dev;
513         struct intel_encoder *encoder;
514
515         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
516                 if (encoder->type == type)
517                         return true;
518
519         return false;
520 }
521
522 /**
523  * Returns whether any output on the specified pipe will have the specified
524  * type after a staged modeset is complete, i.e., the same as
525  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
526  * encoder->crtc.
527  */
528 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
529                                       int type)
530 {
531         struct drm_atomic_state *state = crtc_state->base.state;
532         struct drm_connector *connector;
533         struct drm_connector_state *connector_state;
534         struct intel_encoder *encoder;
535         int i, num_connectors = 0;
536
537         for_each_connector_in_state(state, connector, connector_state, i) {
538                 if (connector_state->crtc != crtc_state->base.crtc)
539                         continue;
540
541                 num_connectors++;
542
543                 encoder = to_intel_encoder(connector_state->best_encoder);
544                 if (encoder->type == type)
545                         return true;
546         }
547
548         WARN_ON(num_connectors == 0);
549
550         return false;
551 }
552
553 static const intel_limit_t *
554 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
555 {
556         struct drm_device *dev = crtc_state->base.crtc->dev;
557         const intel_limit_t *limit;
558
559         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
560                 if (intel_is_dual_link_lvds(dev)) {
561                         if (refclk == 100000)
562                                 limit = &intel_limits_ironlake_dual_lvds_100m;
563                         else
564                                 limit = &intel_limits_ironlake_dual_lvds;
565                 } else {
566                         if (refclk == 100000)
567                                 limit = &intel_limits_ironlake_single_lvds_100m;
568                         else
569                                 limit = &intel_limits_ironlake_single_lvds;
570                 }
571         } else
572                 limit = &intel_limits_ironlake_dac;
573
574         return limit;
575 }
576
577 static const intel_limit_t *
578 intel_g4x_limit(struct intel_crtc_state *crtc_state)
579 {
580         struct drm_device *dev = crtc_state->base.crtc->dev;
581         const intel_limit_t *limit;
582
583         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
584                 if (intel_is_dual_link_lvds(dev))
585                         limit = &intel_limits_g4x_dual_channel_lvds;
586                 else
587                         limit = &intel_limits_g4x_single_channel_lvds;
588         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
589                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
590                 limit = &intel_limits_g4x_hdmi;
591         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
592                 limit = &intel_limits_g4x_sdvo;
593         } else /* The option is for other outputs */
594                 limit = &intel_limits_i9xx_sdvo;
595
596         return limit;
597 }
598
599 static const intel_limit_t *
600 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
601 {
602         struct drm_device *dev = crtc_state->base.crtc->dev;
603         const intel_limit_t *limit;
604
605         if (IS_BROXTON(dev))
606                 limit = &intel_limits_bxt;
607         else if (HAS_PCH_SPLIT(dev))
608                 limit = intel_ironlake_limit(crtc_state, refclk);
609         else if (IS_G4X(dev)) {
610                 limit = intel_g4x_limit(crtc_state);
611         } else if (IS_PINEVIEW(dev)) {
612                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
613                         limit = &intel_limits_pineview_lvds;
614                 else
615                         limit = &intel_limits_pineview_sdvo;
616         } else if (IS_CHERRYVIEW(dev)) {
617                 limit = &intel_limits_chv;
618         } else if (IS_VALLEYVIEW(dev)) {
619                 limit = &intel_limits_vlv;
620         } else if (!IS_GEN2(dev)) {
621                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
622                         limit = &intel_limits_i9xx_lvds;
623                 else
624                         limit = &intel_limits_i9xx_sdvo;
625         } else {
626                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
627                         limit = &intel_limits_i8xx_lvds;
628                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
629                         limit = &intel_limits_i8xx_dvo;
630                 else
631                         limit = &intel_limits_i8xx_dac;
632         }
633         return limit;
634 }
635
636 /*
637  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
638  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
639  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
640  * The helpers' return value is the rate of the clock that is fed to the
641  * display engine's pipe which can be the above fast dot clock rate or a
642  * divided-down version of it.
643  */
644 /* m1 is reserved as 0 in Pineview, n is a ring counter */
645 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
646 {
647         clock->m = clock->m2 + 2;
648         clock->p = clock->p1 * clock->p2;
649         if (WARN_ON(clock->n == 0 || clock->p == 0))
650                 return 0;
651         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
652         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
653
654         return clock->dot;
655 }
656
657 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
658 {
659         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
660 }
661
662 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
663 {
664         clock->m = i9xx_dpll_compute_m(clock);
665         clock->p = clock->p1 * clock->p2;
666         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
667                 return 0;
668         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
669         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
670
671         return clock->dot;
672 }
673
674 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
675 {
676         clock->m = clock->m1 * clock->m2;
677         clock->p = clock->p1 * clock->p2;
678         if (WARN_ON(clock->n == 0 || clock->p == 0))
679                 return 0;
680         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
681         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
682
683         return clock->dot / 5;
684 }
685
686 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
687 {
688         clock->m = clock->m1 * clock->m2;
689         clock->p = clock->p1 * clock->p2;
690         if (WARN_ON(clock->n == 0 || clock->p == 0))
691                 return 0;
692         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
693                         clock->n << 22);
694         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
695
696         return clock->dot / 5;
697 }
698
699 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
700 /**
701  * Returns whether the given set of divisors are valid for a given refclk with
702  * the given connectors.
703  */
704
705 static bool intel_PLL_is_valid(struct drm_device *dev,
706                                const intel_limit_t *limit,
707                                const intel_clock_t *clock)
708 {
709         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
710                 INTELPllInvalid("n out of range\n");
711         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
712                 INTELPllInvalid("p1 out of range\n");
713         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
714                 INTELPllInvalid("m2 out of range\n");
715         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
716                 INTELPllInvalid("m1 out of range\n");
717
718         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
719             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
720                 if (clock->m1 <= clock->m2)
721                         INTELPllInvalid("m1 <= m2\n");
722
723         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
724                 if (clock->p < limit->p.min || limit->p.max < clock->p)
725                         INTELPllInvalid("p out of range\n");
726                 if (clock->m < limit->m.min || limit->m.max < clock->m)
727                         INTELPllInvalid("m out of range\n");
728         }
729
730         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
731                 INTELPllInvalid("vco out of range\n");
732         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
733          * connector, etc., rather than just a single range.
734          */
735         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
736                 INTELPllInvalid("dot out of range\n");
737
738         return true;
739 }
740
741 static int
742 i9xx_select_p2_div(const intel_limit_t *limit,
743                    const struct intel_crtc_state *crtc_state,
744                    int target)
745 {
746         struct drm_device *dev = crtc_state->base.crtc->dev;
747
748         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
749                 /*
750                  * For LVDS just rely on its current settings for dual-channel.
751                  * We haven't figured out how to reliably set up different
752                  * single/dual channel state, if we even can.
753                  */
754                 if (intel_is_dual_link_lvds(dev))
755                         return limit->p2.p2_fast;
756                 else
757                         return limit->p2.p2_slow;
758         } else {
759                 if (target < limit->p2.dot_limit)
760                         return limit->p2.p2_slow;
761                 else
762                         return limit->p2.p2_fast;
763         }
764 }
765
766 static bool
767 i9xx_find_best_dpll(const intel_limit_t *limit,
768                     struct intel_crtc_state *crtc_state,
769                     int target, int refclk, intel_clock_t *match_clock,
770                     intel_clock_t *best_clock)
771 {
772         struct drm_device *dev = crtc_state->base.crtc->dev;
773         intel_clock_t clock;
774         int err = target;
775
776         memset(best_clock, 0, sizeof(*best_clock));
777
778         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779
780         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
781              clock.m1++) {
782                 for (clock.m2 = limit->m2.min;
783                      clock.m2 <= limit->m2.max; clock.m2++) {
784                         if (clock.m2 >= clock.m1)
785                                 break;
786                         for (clock.n = limit->n.min;
787                              clock.n <= limit->n.max; clock.n++) {
788                                 for (clock.p1 = limit->p1.min;
789                                         clock.p1 <= limit->p1.max; clock.p1++) {
790                                         int this_err;
791
792                                         i9xx_calc_dpll_params(refclk, &clock);
793                                         if (!intel_PLL_is_valid(dev, limit,
794                                                                 &clock))
795                                                 continue;
796                                         if (match_clock &&
797                                             clock.p != match_clock->p)
798                                                 continue;
799
800                                         this_err = abs(clock.dot - target);
801                                         if (this_err < err) {
802                                                 *best_clock = clock;
803                                                 err = this_err;
804                                         }
805                                 }
806                         }
807                 }
808         }
809
810         return (err != target);
811 }
812
813 static bool
814 pnv_find_best_dpll(const intel_limit_t *limit,
815                    struct intel_crtc_state *crtc_state,
816                    int target, int refclk, intel_clock_t *match_clock,
817                    intel_clock_t *best_clock)
818 {
819         struct drm_device *dev = crtc_state->base.crtc->dev;
820         intel_clock_t clock;
821         int err = target;
822
823         memset(best_clock, 0, sizeof(*best_clock));
824
825         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
826
827         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
828              clock.m1++) {
829                 for (clock.m2 = limit->m2.min;
830                      clock.m2 <= limit->m2.max; clock.m2++) {
831                         for (clock.n = limit->n.min;
832                              clock.n <= limit->n.max; clock.n++) {
833                                 for (clock.p1 = limit->p1.min;
834                                         clock.p1 <= limit->p1.max; clock.p1++) {
835                                         int this_err;
836
837                                         pnv_calc_dpll_params(refclk, &clock);
838                                         if (!intel_PLL_is_valid(dev, limit,
839                                                                 &clock))
840                                                 continue;
841                                         if (match_clock &&
842                                             clock.p != match_clock->p)
843                                                 continue;
844
845                                         this_err = abs(clock.dot - target);
846                                         if (this_err < err) {
847                                                 *best_clock = clock;
848                                                 err = this_err;
849                                         }
850                                 }
851                         }
852                 }
853         }
854
855         return (err != target);
856 }
857
858 static bool
859 g4x_find_best_dpll(const intel_limit_t *limit,
860                    struct intel_crtc_state *crtc_state,
861                    int target, int refclk, intel_clock_t *match_clock,
862                    intel_clock_t *best_clock)
863 {
864         struct drm_device *dev = crtc_state->base.crtc->dev;
865         intel_clock_t clock;
866         int max_n;
867         bool found = false;
868         /* approximately equals target * 0.00585 */
869         int err_most = (target >> 8) + (target >> 9);
870
871         memset(best_clock, 0, sizeof(*best_clock));
872
873         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
874
875         max_n = limit->n.max;
876         /* based on hardware requirement, prefer smaller n to precision */
877         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
878                 /* based on hardware requirement, prefere larger m1,m2 */
879                 for (clock.m1 = limit->m1.max;
880                      clock.m1 >= limit->m1.min; clock.m1--) {
881                         for (clock.m2 = limit->m2.max;
882                              clock.m2 >= limit->m2.min; clock.m2--) {
883                                 for (clock.p1 = limit->p1.max;
884                                      clock.p1 >= limit->p1.min; clock.p1--) {
885                                         int this_err;
886
887                                         i9xx_calc_dpll_params(refclk, &clock);
888                                         if (!intel_PLL_is_valid(dev, limit,
889                                                                 &clock))
890                                                 continue;
891
892                                         this_err = abs(clock.dot - target);
893                                         if (this_err < err_most) {
894                                                 *best_clock = clock;
895                                                 err_most = this_err;
896                                                 max_n = clock.n;
897                                                 found = true;
898                                         }
899                                 }
900                         }
901                 }
902         }
903         return found;
904 }
905
906 /*
907  * Check if the calculated PLL configuration is more optimal compared to the
908  * best configuration and error found so far. Return the calculated error.
909  */
910 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
911                                const intel_clock_t *calculated_clock,
912                                const intel_clock_t *best_clock,
913                                unsigned int best_error_ppm,
914                                unsigned int *error_ppm)
915 {
916         /*
917          * For CHV ignore the error and consider only the P value.
918          * Prefer a bigger P value based on HW requirements.
919          */
920         if (IS_CHERRYVIEW(dev)) {
921                 *error_ppm = 0;
922
923                 return calculated_clock->p > best_clock->p;
924         }
925
926         if (WARN_ON_ONCE(!target_freq))
927                 return false;
928
929         *error_ppm = div_u64(1000000ULL *
930                                 abs(target_freq - calculated_clock->dot),
931                              target_freq);
932         /*
933          * Prefer a better P value over a better (smaller) error if the error
934          * is small. Ensure this preference for future configurations too by
935          * setting the error to 0.
936          */
937         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
938                 *error_ppm = 0;
939
940                 return true;
941         }
942
943         return *error_ppm + 10 < best_error_ppm;
944 }
945
946 static bool
947 vlv_find_best_dpll(const intel_limit_t *limit,
948                    struct intel_crtc_state *crtc_state,
949                    int target, int refclk, intel_clock_t *match_clock,
950                    intel_clock_t *best_clock)
951 {
952         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
953         struct drm_device *dev = crtc->base.dev;
954         intel_clock_t clock;
955         unsigned int bestppm = 1000000;
956         /* min update 19.2 MHz */
957         int max_n = min(limit->n.max, refclk / 19200);
958         bool found = false;
959
960         target *= 5; /* fast clock */
961
962         memset(best_clock, 0, sizeof(*best_clock));
963
964         /* based on hardware requirement, prefer smaller n to precision */
965         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
966                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
967                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
968                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
969                                 clock.p = clock.p1 * clock.p2;
970                                 /* based on hardware requirement, prefer bigger m1,m2 values */
971                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
972                                         unsigned int ppm;
973
974                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
975                                                                      refclk * clock.m1);
976
977                                         vlv_calc_dpll_params(refclk, &clock);
978
979                                         if (!intel_PLL_is_valid(dev, limit,
980                                                                 &clock))
981                                                 continue;
982
983                                         if (!vlv_PLL_is_optimal(dev, target,
984                                                                 &clock,
985                                                                 best_clock,
986                                                                 bestppm, &ppm))
987                                                 continue;
988
989                                         *best_clock = clock;
990                                         bestppm = ppm;
991                                         found = true;
992                                 }
993                         }
994                 }
995         }
996
997         return found;
998 }
999
1000 static bool
1001 chv_find_best_dpll(const intel_limit_t *limit,
1002                    struct intel_crtc_state *crtc_state,
1003                    int target, int refclk, intel_clock_t *match_clock,
1004                    intel_clock_t *best_clock)
1005 {
1006         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1007         struct drm_device *dev = crtc->base.dev;
1008         unsigned int best_error_ppm;
1009         intel_clock_t clock;
1010         uint64_t m2;
1011         int found = false;
1012
1013         memset(best_clock, 0, sizeof(*best_clock));
1014         best_error_ppm = 1000000;
1015
1016         /*
1017          * Based on hardware doc, the n always set to 1, and m1 always
1018          * set to 2.  If requires to support 200Mhz refclk, we need to
1019          * revisit this because n may not 1 anymore.
1020          */
1021         clock.n = 1, clock.m1 = 2;
1022         target *= 5;    /* fast clock */
1023
1024         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1025                 for (clock.p2 = limit->p2.p2_fast;
1026                                 clock.p2 >= limit->p2.p2_slow;
1027                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1028                         unsigned int error_ppm;
1029
1030                         clock.p = clock.p1 * clock.p2;
1031
1032                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1033                                         clock.n) << 22, refclk * clock.m1);
1034
1035                         if (m2 > INT_MAX/clock.m1)
1036                                 continue;
1037
1038                         clock.m2 = m2;
1039
1040                         chv_calc_dpll_params(refclk, &clock);
1041
1042                         if (!intel_PLL_is_valid(dev, limit, &clock))
1043                                 continue;
1044
1045                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1046                                                 best_error_ppm, &error_ppm))
1047                                 continue;
1048
1049                         *best_clock = clock;
1050                         best_error_ppm = error_ppm;
1051                         found = true;
1052                 }
1053         }
1054
1055         return found;
1056 }
1057
1058 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1059                         intel_clock_t *best_clock)
1060 {
1061         int refclk = i9xx_get_refclk(crtc_state, 0);
1062
1063         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1064                                   target_clock, refclk, NULL, best_clock);
1065 }
1066
1067 bool intel_crtc_active(struct drm_crtc *crtc)
1068 {
1069         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1070
1071         /* Be paranoid as we can arrive here with only partial
1072          * state retrieved from the hardware during setup.
1073          *
1074          * We can ditch the adjusted_mode.crtc_clock check as soon
1075          * as Haswell has gained clock readout/fastboot support.
1076          *
1077          * We can ditch the crtc->primary->fb check as soon as we can
1078          * properly reconstruct framebuffers.
1079          *
1080          * FIXME: The intel_crtc->active here should be switched to
1081          * crtc->state->active once we have proper CRTC states wired up
1082          * for atomic.
1083          */
1084         return intel_crtc->active && crtc->primary->state->fb &&
1085                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1086 }
1087
1088 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1089                                              enum pipe pipe)
1090 {
1091         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1092         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1093
1094         return intel_crtc->config->cpu_transcoder;
1095 }
1096
1097 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1098 {
1099         struct drm_i915_private *dev_priv = dev->dev_private;
1100         i915_reg_t reg = PIPEDSL(pipe);
1101         u32 line1, line2;
1102         u32 line_mask;
1103
1104         if (IS_GEN2(dev))
1105                 line_mask = DSL_LINEMASK_GEN2;
1106         else
1107                 line_mask = DSL_LINEMASK_GEN3;
1108
1109         line1 = I915_READ(reg) & line_mask;
1110         msleep(5);
1111         line2 = I915_READ(reg) & line_mask;
1112
1113         return line1 == line2;
1114 }
1115
1116 /*
1117  * intel_wait_for_pipe_off - wait for pipe to turn off
1118  * @crtc: crtc whose pipe to wait for
1119  *
1120  * After disabling a pipe, we can't wait for vblank in the usual way,
1121  * spinning on the vblank interrupt status bit, since we won't actually
1122  * see an interrupt when the pipe is disabled.
1123  *
1124  * On Gen4 and above:
1125  *   wait for the pipe register state bit to turn off
1126  *
1127  * Otherwise:
1128  *   wait for the display line value to settle (it usually
1129  *   ends up stopping at the start of the next frame).
1130  *
1131  */
1132 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1133 {
1134         struct drm_device *dev = crtc->base.dev;
1135         struct drm_i915_private *dev_priv = dev->dev_private;
1136         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1137         enum pipe pipe = crtc->pipe;
1138
1139         if (INTEL_INFO(dev)->gen >= 4) {
1140                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1141
1142                 /* Wait for the Pipe State to go off */
1143                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1144                              100))
1145                         WARN(1, "pipe_off wait timed out\n");
1146         } else {
1147                 /* Wait for the display line to settle */
1148                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1149                         WARN(1, "pipe_off wait timed out\n");
1150         }
1151 }
1152
1153 /* Only for pre-ILK configs */
1154 void assert_pll(struct drm_i915_private *dev_priv,
1155                 enum pipe pipe, bool state)
1156 {
1157         u32 val;
1158         bool cur_state;
1159
1160         val = I915_READ(DPLL(pipe));
1161         cur_state = !!(val & DPLL_VCO_ENABLE);
1162         I915_STATE_WARN(cur_state != state,
1163              "PLL state assertion failure (expected %s, current %s)\n",
1164                         onoff(state), onoff(cur_state));
1165 }
1166
1167 /* XXX: the dsi pll is shared between MIPI DSI ports */
1168 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1169 {
1170         u32 val;
1171         bool cur_state;
1172
1173         mutex_lock(&dev_priv->sb_lock);
1174         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1175         mutex_unlock(&dev_priv->sb_lock);
1176
1177         cur_state = val & DSI_PLL_VCO_EN;
1178         I915_STATE_WARN(cur_state != state,
1179              "DSI PLL state assertion failure (expected %s, current %s)\n",
1180                         onoff(state), onoff(cur_state));
1181 }
1182 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1183 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1184
1185 struct intel_shared_dpll *
1186 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1187 {
1188         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1189
1190         if (crtc->config->shared_dpll < 0)
1191                 return NULL;
1192
1193         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1194 }
1195
1196 /* For ILK+ */
1197 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1198                         struct intel_shared_dpll *pll,
1199                         bool state)
1200 {
1201         bool cur_state;
1202         struct intel_dpll_hw_state hw_state;
1203
1204         if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
1205                 return;
1206
1207         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1208         I915_STATE_WARN(cur_state != state,
1209              "%s assertion failure (expected %s, current %s)\n",
1210                         pll->name, onoff(state), onoff(cur_state));
1211 }
1212
1213 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1214                           enum pipe pipe, bool state)
1215 {
1216         bool cur_state;
1217         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1218                                                                       pipe);
1219
1220         if (HAS_DDI(dev_priv->dev)) {
1221                 /* DDI does not have a specific FDI_TX register */
1222                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1223                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1224         } else {
1225                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1226                 cur_state = !!(val & FDI_TX_ENABLE);
1227         }
1228         I915_STATE_WARN(cur_state != state,
1229              "FDI TX state assertion failure (expected %s, current %s)\n",
1230                         onoff(state), onoff(cur_state));
1231 }
1232 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1233 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1234
1235 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1236                           enum pipe pipe, bool state)
1237 {
1238         u32 val;
1239         bool cur_state;
1240
1241         val = I915_READ(FDI_RX_CTL(pipe));
1242         cur_state = !!(val & FDI_RX_ENABLE);
1243         I915_STATE_WARN(cur_state != state,
1244              "FDI RX state assertion failure (expected %s, current %s)\n",
1245                         onoff(state), onoff(cur_state));
1246 }
1247 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1248 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1249
1250 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1251                                       enum pipe pipe)
1252 {
1253         u32 val;
1254
1255         /* ILK FDI PLL is always enabled */
1256         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1257                 return;
1258
1259         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1260         if (HAS_DDI(dev_priv->dev))
1261                 return;
1262
1263         val = I915_READ(FDI_TX_CTL(pipe));
1264         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1265 }
1266
1267 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1268                        enum pipe pipe, bool state)
1269 {
1270         u32 val;
1271         bool cur_state;
1272
1273         val = I915_READ(FDI_RX_CTL(pipe));
1274         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1275         I915_STATE_WARN(cur_state != state,
1276              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1277                         onoff(state), onoff(cur_state));
1278 }
1279
1280 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1281                            enum pipe pipe)
1282 {
1283         struct drm_device *dev = dev_priv->dev;
1284         i915_reg_t pp_reg;
1285         u32 val;
1286         enum pipe panel_pipe = PIPE_A;
1287         bool locked = true;
1288
1289         if (WARN_ON(HAS_DDI(dev)))
1290                 return;
1291
1292         if (HAS_PCH_SPLIT(dev)) {
1293                 u32 port_sel;
1294
1295                 pp_reg = PCH_PP_CONTROL;
1296                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1297
1298                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1299                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1300                         panel_pipe = PIPE_B;
1301                 /* XXX: else fix for eDP */
1302         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1303                 /* presumably write lock depends on pipe, not port select */
1304                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1305                 panel_pipe = pipe;
1306         } else {
1307                 pp_reg = PP_CONTROL;
1308                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1309                         panel_pipe = PIPE_B;
1310         }
1311
1312         val = I915_READ(pp_reg);
1313         if (!(val & PANEL_POWER_ON) ||
1314             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1315                 locked = false;
1316
1317         I915_STATE_WARN(panel_pipe == pipe && locked,
1318              "panel assertion failure, pipe %c regs locked\n",
1319              pipe_name(pipe));
1320 }
1321
1322 static void assert_cursor(struct drm_i915_private *dev_priv,
1323                           enum pipe pipe, bool state)
1324 {
1325         struct drm_device *dev = dev_priv->dev;
1326         bool cur_state;
1327
1328         if (IS_845G(dev) || IS_I865G(dev))
1329                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1330         else
1331                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1332
1333         I915_STATE_WARN(cur_state != state,
1334              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1335                         pipe_name(pipe), onoff(state), onoff(cur_state));
1336 }
1337 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1338 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1339
1340 void assert_pipe(struct drm_i915_private *dev_priv,
1341                  enum pipe pipe, bool state)
1342 {
1343         bool cur_state;
1344         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1345                                                                       pipe);
1346
1347         /* if we need the pipe quirk it must be always on */
1348         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1349             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1350                 state = true;
1351
1352         if (!intel_display_power_is_enabled(dev_priv,
1353                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1354                 cur_state = false;
1355         } else {
1356                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1357                 cur_state = !!(val & PIPECONF_ENABLE);
1358         }
1359
1360         I915_STATE_WARN(cur_state != state,
1361              "pipe %c assertion failure (expected %s, current %s)\n",
1362                         pipe_name(pipe), onoff(state), onoff(cur_state));
1363 }
1364
1365 static void assert_plane(struct drm_i915_private *dev_priv,
1366                          enum plane plane, bool state)
1367 {
1368         u32 val;
1369         bool cur_state;
1370
1371         val = I915_READ(DSPCNTR(plane));
1372         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1373         I915_STATE_WARN(cur_state != state,
1374              "plane %c assertion failure (expected %s, current %s)\n",
1375                         plane_name(plane), onoff(state), onoff(cur_state));
1376 }
1377
1378 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1379 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1380
1381 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1382                                    enum pipe pipe)
1383 {
1384         struct drm_device *dev = dev_priv->dev;
1385         int i;
1386
1387         /* Primary planes are fixed to pipes on gen4+ */
1388         if (INTEL_INFO(dev)->gen >= 4) {
1389                 u32 val = I915_READ(DSPCNTR(pipe));
1390                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1391                      "plane %c assertion failure, should be disabled but not\n",
1392                      plane_name(pipe));
1393                 return;
1394         }
1395
1396         /* Need to check both planes against the pipe */
1397         for_each_pipe(dev_priv, i) {
1398                 u32 val = I915_READ(DSPCNTR(i));
1399                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1400                         DISPPLANE_SEL_PIPE_SHIFT;
1401                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1402                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1403                      plane_name(i), pipe_name(pipe));
1404         }
1405 }
1406
1407 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1408                                     enum pipe pipe)
1409 {
1410         struct drm_device *dev = dev_priv->dev;
1411         int sprite;
1412
1413         if (INTEL_INFO(dev)->gen >= 9) {
1414                 for_each_sprite(dev_priv, pipe, sprite) {
1415                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1416                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1417                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1418                              sprite, pipe_name(pipe));
1419                 }
1420         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1421                 for_each_sprite(dev_priv, pipe, sprite) {
1422                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1423                         I915_STATE_WARN(val & SP_ENABLE,
1424                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1425                              sprite_name(pipe, sprite), pipe_name(pipe));
1426                 }
1427         } else if (INTEL_INFO(dev)->gen >= 7) {
1428                 u32 val = I915_READ(SPRCTL(pipe));
1429                 I915_STATE_WARN(val & SPRITE_ENABLE,
1430                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1431                      plane_name(pipe), pipe_name(pipe));
1432         } else if (INTEL_INFO(dev)->gen >= 5) {
1433                 u32 val = I915_READ(DVSCNTR(pipe));
1434                 I915_STATE_WARN(val & DVS_ENABLE,
1435                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1436                      plane_name(pipe), pipe_name(pipe));
1437         }
1438 }
1439
1440 static void assert_vblank_disabled(struct drm_crtc *crtc)
1441 {
1442         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1443                 drm_crtc_vblank_put(crtc);
1444 }
1445
1446 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1447 {
1448         u32 val;
1449         bool enabled;
1450
1451         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1452
1453         val = I915_READ(PCH_DREF_CONTROL);
1454         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1455                             DREF_SUPERSPREAD_SOURCE_MASK));
1456         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1457 }
1458
1459 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1460                                            enum pipe pipe)
1461 {
1462         u32 val;
1463         bool enabled;
1464
1465         val = I915_READ(PCH_TRANSCONF(pipe));
1466         enabled = !!(val & TRANS_ENABLE);
1467         I915_STATE_WARN(enabled,
1468              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1469              pipe_name(pipe));
1470 }
1471
1472 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1473                             enum pipe pipe, u32 port_sel, u32 val)
1474 {
1475         if ((val & DP_PORT_EN) == 0)
1476                 return false;
1477
1478         if (HAS_PCH_CPT(dev_priv->dev)) {
1479                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1480                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1481                         return false;
1482         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1483                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1484                         return false;
1485         } else {
1486                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1487                         return false;
1488         }
1489         return true;
1490 }
1491
1492 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1493                               enum pipe pipe, u32 val)
1494 {
1495         if ((val & SDVO_ENABLE) == 0)
1496                 return false;
1497
1498         if (HAS_PCH_CPT(dev_priv->dev)) {
1499                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1500                         return false;
1501         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1502                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1503                         return false;
1504         } else {
1505                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1506                         return false;
1507         }
1508         return true;
1509 }
1510
1511 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1512                               enum pipe pipe, u32 val)
1513 {
1514         if ((val & LVDS_PORT_EN) == 0)
1515                 return false;
1516
1517         if (HAS_PCH_CPT(dev_priv->dev)) {
1518                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1519                         return false;
1520         } else {
1521                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1522                         return false;
1523         }
1524         return true;
1525 }
1526
1527 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1528                               enum pipe pipe, u32 val)
1529 {
1530         if ((val & ADPA_DAC_ENABLE) == 0)
1531                 return false;
1532         if (HAS_PCH_CPT(dev_priv->dev)) {
1533                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1534                         return false;
1535         } else {
1536                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1537                         return false;
1538         }
1539         return true;
1540 }
1541
1542 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1543                                    enum pipe pipe, i915_reg_t reg,
1544                                    u32 port_sel)
1545 {
1546         u32 val = I915_READ(reg);
1547         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1548              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1549              i915_mmio_reg_offset(reg), pipe_name(pipe));
1550
1551         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1552              && (val & DP_PIPEB_SELECT),
1553              "IBX PCH dp port still using transcoder B\n");
1554 }
1555
1556 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1557                                      enum pipe pipe, i915_reg_t reg)
1558 {
1559         u32 val = I915_READ(reg);
1560         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1561              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1562              i915_mmio_reg_offset(reg), pipe_name(pipe));
1563
1564         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1565              && (val & SDVO_PIPE_B_SELECT),
1566              "IBX PCH hdmi port still using transcoder B\n");
1567 }
1568
1569 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1570                                       enum pipe pipe)
1571 {
1572         u32 val;
1573
1574         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1575         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1576         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1577
1578         val = I915_READ(PCH_ADPA);
1579         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1580              "PCH VGA enabled on transcoder %c, should be disabled\n",
1581              pipe_name(pipe));
1582
1583         val = I915_READ(PCH_LVDS);
1584         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1585              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1586              pipe_name(pipe));
1587
1588         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1589         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1590         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1591 }
1592
1593 static void vlv_enable_pll(struct intel_crtc *crtc,
1594                            const struct intel_crtc_state *pipe_config)
1595 {
1596         struct drm_device *dev = crtc->base.dev;
1597         struct drm_i915_private *dev_priv = dev->dev_private;
1598         i915_reg_t reg = DPLL(crtc->pipe);
1599         u32 dpll = pipe_config->dpll_hw_state.dpll;
1600
1601         assert_pipe_disabled(dev_priv, crtc->pipe);
1602
1603         /* PLL is protected by panel, make sure we can write it */
1604         if (IS_MOBILE(dev_priv->dev))
1605                 assert_panel_unlocked(dev_priv, crtc->pipe);
1606
1607         I915_WRITE(reg, dpll);
1608         POSTING_READ(reg);
1609         udelay(150);
1610
1611         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1612                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1613
1614         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1615         POSTING_READ(DPLL_MD(crtc->pipe));
1616
1617         /* We do this three times for luck */
1618         I915_WRITE(reg, dpll);
1619         POSTING_READ(reg);
1620         udelay(150); /* wait for warmup */
1621         I915_WRITE(reg, dpll);
1622         POSTING_READ(reg);
1623         udelay(150); /* wait for warmup */
1624         I915_WRITE(reg, dpll);
1625         POSTING_READ(reg);
1626         udelay(150); /* wait for warmup */
1627 }
1628
1629 static void chv_enable_pll(struct intel_crtc *crtc,
1630                            const struct intel_crtc_state *pipe_config)
1631 {
1632         struct drm_device *dev = crtc->base.dev;
1633         struct drm_i915_private *dev_priv = dev->dev_private;
1634         int pipe = crtc->pipe;
1635         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1636         u32 tmp;
1637
1638         assert_pipe_disabled(dev_priv, crtc->pipe);
1639
1640         mutex_lock(&dev_priv->sb_lock);
1641
1642         /* Enable back the 10bit clock to display controller */
1643         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1644         tmp |= DPIO_DCLKP_EN;
1645         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1646
1647         mutex_unlock(&dev_priv->sb_lock);
1648
1649         /*
1650          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1651          */
1652         udelay(1);
1653
1654         /* Enable PLL */
1655         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1656
1657         /* Check PLL is locked */
1658         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1659                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1660
1661         /* not sure when this should be written */
1662         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1663         POSTING_READ(DPLL_MD(pipe));
1664 }
1665
1666 static int intel_num_dvo_pipes(struct drm_device *dev)
1667 {
1668         struct intel_crtc *crtc;
1669         int count = 0;
1670
1671         for_each_intel_crtc(dev, crtc)
1672                 count += crtc->base.state->active &&
1673                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1674
1675         return count;
1676 }
1677
1678 static void i9xx_enable_pll(struct intel_crtc *crtc)
1679 {
1680         struct drm_device *dev = crtc->base.dev;
1681         struct drm_i915_private *dev_priv = dev->dev_private;
1682         i915_reg_t reg = DPLL(crtc->pipe);
1683         u32 dpll = crtc->config->dpll_hw_state.dpll;
1684
1685         assert_pipe_disabled(dev_priv, crtc->pipe);
1686
1687         /* No really, not for ILK+ */
1688         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1689
1690         /* PLL is protected by panel, make sure we can write it */
1691         if (IS_MOBILE(dev) && !IS_I830(dev))
1692                 assert_panel_unlocked(dev_priv, crtc->pipe);
1693
1694         /* Enable DVO 2x clock on both PLLs if necessary */
1695         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1696                 /*
1697                  * It appears to be important that we don't enable this
1698                  * for the current pipe before otherwise configuring the
1699                  * PLL. No idea how this should be handled if multiple
1700                  * DVO outputs are enabled simultaneosly.
1701                  */
1702                 dpll |= DPLL_DVO_2X_MODE;
1703                 I915_WRITE(DPLL(!crtc->pipe),
1704                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1705         }
1706
1707         /*
1708          * Apparently we need to have VGA mode enabled prior to changing
1709          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1710          * dividers, even though the register value does change.
1711          */
1712         I915_WRITE(reg, 0);
1713
1714         I915_WRITE(reg, dpll);
1715
1716         /* Wait for the clocks to stabilize. */
1717         POSTING_READ(reg);
1718         udelay(150);
1719
1720         if (INTEL_INFO(dev)->gen >= 4) {
1721                 I915_WRITE(DPLL_MD(crtc->pipe),
1722                            crtc->config->dpll_hw_state.dpll_md);
1723         } else {
1724                 /* The pixel multiplier can only be updated once the
1725                  * DPLL is enabled and the clocks are stable.
1726                  *
1727                  * So write it again.
1728                  */
1729                 I915_WRITE(reg, dpll);
1730         }
1731
1732         /* We do this three times for luck */
1733         I915_WRITE(reg, dpll);
1734         POSTING_READ(reg);
1735         udelay(150); /* wait for warmup */
1736         I915_WRITE(reg, dpll);
1737         POSTING_READ(reg);
1738         udelay(150); /* wait for warmup */
1739         I915_WRITE(reg, dpll);
1740         POSTING_READ(reg);
1741         udelay(150); /* wait for warmup */
1742 }
1743
1744 /**
1745  * i9xx_disable_pll - disable a PLL
1746  * @dev_priv: i915 private structure
1747  * @pipe: pipe PLL to disable
1748  *
1749  * Disable the PLL for @pipe, making sure the pipe is off first.
1750  *
1751  * Note!  This is for pre-ILK only.
1752  */
1753 static void i9xx_disable_pll(struct intel_crtc *crtc)
1754 {
1755         struct drm_device *dev = crtc->base.dev;
1756         struct drm_i915_private *dev_priv = dev->dev_private;
1757         enum pipe pipe = crtc->pipe;
1758
1759         /* Disable DVO 2x clock on both PLLs if necessary */
1760         if (IS_I830(dev) &&
1761             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1762             !intel_num_dvo_pipes(dev)) {
1763                 I915_WRITE(DPLL(PIPE_B),
1764                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1765                 I915_WRITE(DPLL(PIPE_A),
1766                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1767         }
1768
1769         /* Don't disable pipe or pipe PLLs if needed */
1770         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1771             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1772                 return;
1773
1774         /* Make sure the pipe isn't still relying on us */
1775         assert_pipe_disabled(dev_priv, pipe);
1776
1777         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1778         POSTING_READ(DPLL(pipe));
1779 }
1780
1781 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1782 {
1783         u32 val;
1784
1785         /* Make sure the pipe isn't still relying on us */
1786         assert_pipe_disabled(dev_priv, pipe);
1787
1788         /*
1789          * Leave integrated clock source and reference clock enabled for pipe B.
1790          * The latter is needed for VGA hotplug / manual detection.
1791          */
1792         val = DPLL_VGA_MODE_DIS;
1793         if (pipe == PIPE_B)
1794                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1795         I915_WRITE(DPLL(pipe), val);
1796         POSTING_READ(DPLL(pipe));
1797
1798 }
1799
1800 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1801 {
1802         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1803         u32 val;
1804
1805         /* Make sure the pipe isn't still relying on us */
1806         assert_pipe_disabled(dev_priv, pipe);
1807
1808         /* Set PLL en = 0 */
1809         val = DPLL_SSC_REF_CLK_CHV |
1810                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1811         if (pipe != PIPE_A)
1812                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1813         I915_WRITE(DPLL(pipe), val);
1814         POSTING_READ(DPLL(pipe));
1815
1816         mutex_lock(&dev_priv->sb_lock);
1817
1818         /* Disable 10bit clock to display controller */
1819         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1820         val &= ~DPIO_DCLKP_EN;
1821         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1822
1823         mutex_unlock(&dev_priv->sb_lock);
1824 }
1825
1826 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1827                          struct intel_digital_port *dport,
1828                          unsigned int expected_mask)
1829 {
1830         u32 port_mask;
1831         i915_reg_t dpll_reg;
1832
1833         switch (dport->port) {
1834         case PORT_B:
1835                 port_mask = DPLL_PORTB_READY_MASK;
1836                 dpll_reg = DPLL(0);
1837                 break;
1838         case PORT_C:
1839                 port_mask = DPLL_PORTC_READY_MASK;
1840                 dpll_reg = DPLL(0);
1841                 expected_mask <<= 4;
1842                 break;
1843         case PORT_D:
1844                 port_mask = DPLL_PORTD_READY_MASK;
1845                 dpll_reg = DPIO_PHY_STATUS;
1846                 break;
1847         default:
1848                 BUG();
1849         }
1850
1851         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1852                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1853                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1854 }
1855
1856 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1857 {
1858         struct drm_device *dev = crtc->base.dev;
1859         struct drm_i915_private *dev_priv = dev->dev_private;
1860         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1861
1862         if (WARN_ON(pll == NULL))
1863                 return;
1864
1865         WARN_ON(!pll->config.crtc_mask);
1866         if (pll->active == 0) {
1867                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1868                 WARN_ON(pll->on);
1869                 assert_shared_dpll_disabled(dev_priv, pll);
1870
1871                 pll->mode_set(dev_priv, pll);
1872         }
1873 }
1874
1875 /**
1876  * intel_enable_shared_dpll - enable PCH PLL
1877  * @dev_priv: i915 private structure
1878  * @pipe: pipe PLL to enable
1879  *
1880  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1881  * drives the transcoder clock.
1882  */
1883 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1884 {
1885         struct drm_device *dev = crtc->base.dev;
1886         struct drm_i915_private *dev_priv = dev->dev_private;
1887         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1888
1889         if (WARN_ON(pll == NULL))
1890                 return;
1891
1892         if (WARN_ON(pll->config.crtc_mask == 0))
1893                 return;
1894
1895         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1896                       pll->name, pll->active, pll->on,
1897                       crtc->base.base.id);
1898
1899         if (pll->active++) {
1900                 WARN_ON(!pll->on);
1901                 assert_shared_dpll_enabled(dev_priv, pll);
1902                 return;
1903         }
1904         WARN_ON(pll->on);
1905
1906         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1907
1908         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1909         pll->enable(dev_priv, pll);
1910         pll->on = true;
1911 }
1912
1913 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1914 {
1915         struct drm_device *dev = crtc->base.dev;
1916         struct drm_i915_private *dev_priv = dev->dev_private;
1917         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1918
1919         /* PCH only available on ILK+ */
1920         if (INTEL_INFO(dev)->gen < 5)
1921                 return;
1922
1923         if (pll == NULL)
1924                 return;
1925
1926         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1927                 return;
1928
1929         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1930                       pll->name, pll->active, pll->on,
1931                       crtc->base.base.id);
1932
1933         if (WARN_ON(pll->active == 0)) {
1934                 assert_shared_dpll_disabled(dev_priv, pll);
1935                 return;
1936         }
1937
1938         assert_shared_dpll_enabled(dev_priv, pll);
1939         WARN_ON(!pll->on);
1940         if (--pll->active)
1941                 return;
1942
1943         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1944         pll->disable(dev_priv, pll);
1945         pll->on = false;
1946
1947         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1948 }
1949
1950 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1951                                            enum pipe pipe)
1952 {
1953         struct drm_device *dev = dev_priv->dev;
1954         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1955         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1956         i915_reg_t reg;
1957         uint32_t val, pipeconf_val;
1958
1959         /* PCH only available on ILK+ */
1960         BUG_ON(!HAS_PCH_SPLIT(dev));
1961
1962         /* Make sure PCH DPLL is enabled */
1963         assert_shared_dpll_enabled(dev_priv,
1964                                    intel_crtc_to_shared_dpll(intel_crtc));
1965
1966         /* FDI must be feeding us bits for PCH ports */
1967         assert_fdi_tx_enabled(dev_priv, pipe);
1968         assert_fdi_rx_enabled(dev_priv, pipe);
1969
1970         if (HAS_PCH_CPT(dev)) {
1971                 /* Workaround: Set the timing override bit before enabling the
1972                  * pch transcoder. */
1973                 reg = TRANS_CHICKEN2(pipe);
1974                 val = I915_READ(reg);
1975                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1976                 I915_WRITE(reg, val);
1977         }
1978
1979         reg = PCH_TRANSCONF(pipe);
1980         val = I915_READ(reg);
1981         pipeconf_val = I915_READ(PIPECONF(pipe));
1982
1983         if (HAS_PCH_IBX(dev_priv->dev)) {
1984                 /*
1985                  * Make the BPC in transcoder be consistent with
1986                  * that in pipeconf reg. For HDMI we must use 8bpc
1987                  * here for both 8bpc and 12bpc.
1988                  */
1989                 val &= ~PIPECONF_BPC_MASK;
1990                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1991                         val |= PIPECONF_8BPC;
1992                 else
1993                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1994         }
1995
1996         val &= ~TRANS_INTERLACE_MASK;
1997         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1998                 if (HAS_PCH_IBX(dev_priv->dev) &&
1999                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2000                         val |= TRANS_LEGACY_INTERLACED_ILK;
2001                 else
2002                         val |= TRANS_INTERLACED;
2003         else
2004                 val |= TRANS_PROGRESSIVE;
2005
2006         I915_WRITE(reg, val | TRANS_ENABLE);
2007         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2008                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2009 }
2010
2011 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2012                                       enum transcoder cpu_transcoder)
2013 {
2014         u32 val, pipeconf_val;
2015
2016         /* PCH only available on ILK+ */
2017         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2018
2019         /* FDI must be feeding us bits for PCH ports */
2020         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2021         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2022
2023         /* Workaround: set timing override bit. */
2024         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2025         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2026         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2027
2028         val = TRANS_ENABLE;
2029         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2030
2031         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2032             PIPECONF_INTERLACED_ILK)
2033                 val |= TRANS_INTERLACED;
2034         else
2035                 val |= TRANS_PROGRESSIVE;
2036
2037         I915_WRITE(LPT_TRANSCONF, val);
2038         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2039                 DRM_ERROR("Failed to enable PCH transcoder\n");
2040 }
2041
2042 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2043                                             enum pipe pipe)
2044 {
2045         struct drm_device *dev = dev_priv->dev;
2046         i915_reg_t reg;
2047         uint32_t val;
2048
2049         /* FDI relies on the transcoder */
2050         assert_fdi_tx_disabled(dev_priv, pipe);
2051         assert_fdi_rx_disabled(dev_priv, pipe);
2052
2053         /* Ports must be off as well */
2054         assert_pch_ports_disabled(dev_priv, pipe);
2055
2056         reg = PCH_TRANSCONF(pipe);
2057         val = I915_READ(reg);
2058         val &= ~TRANS_ENABLE;
2059         I915_WRITE(reg, val);
2060         /* wait for PCH transcoder off, transcoder state */
2061         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2062                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2063
2064         if (HAS_PCH_CPT(dev)) {
2065                 /* Workaround: Clear the timing override chicken bit again. */
2066                 reg = TRANS_CHICKEN2(pipe);
2067                 val = I915_READ(reg);
2068                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2069                 I915_WRITE(reg, val);
2070         }
2071 }
2072
2073 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2074 {
2075         u32 val;
2076
2077         val = I915_READ(LPT_TRANSCONF);
2078         val &= ~TRANS_ENABLE;
2079         I915_WRITE(LPT_TRANSCONF, val);
2080         /* wait for PCH transcoder off, transcoder state */
2081         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2082                 DRM_ERROR("Failed to disable PCH transcoder\n");
2083
2084         /* Workaround: clear timing override bit. */
2085         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2086         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2087         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2088 }
2089
2090 /**
2091  * intel_enable_pipe - enable a pipe, asserting requirements
2092  * @crtc: crtc responsible for the pipe
2093  *
2094  * Enable @crtc's pipe, making sure that various hardware specific requirements
2095  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2096  */
2097 static void intel_enable_pipe(struct intel_crtc *crtc)
2098 {
2099         struct drm_device *dev = crtc->base.dev;
2100         struct drm_i915_private *dev_priv = dev->dev_private;
2101         enum pipe pipe = crtc->pipe;
2102         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2103         enum pipe pch_transcoder;
2104         i915_reg_t reg;
2105         u32 val;
2106
2107         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2108
2109         assert_planes_disabled(dev_priv, pipe);
2110         assert_cursor_disabled(dev_priv, pipe);
2111         assert_sprites_disabled(dev_priv, pipe);
2112
2113         if (HAS_PCH_LPT(dev_priv->dev))
2114                 pch_transcoder = TRANSCODER_A;
2115         else
2116                 pch_transcoder = pipe;
2117
2118         /*
2119          * A pipe without a PLL won't actually be able to drive bits from
2120          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2121          * need the check.
2122          */
2123         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2124                 if (crtc->config->has_dsi_encoder)
2125                         assert_dsi_pll_enabled(dev_priv);
2126                 else
2127                         assert_pll_enabled(dev_priv, pipe);
2128         else {
2129                 if (crtc->config->has_pch_encoder) {
2130                         /* if driving the PCH, we need FDI enabled */
2131                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2132                         assert_fdi_tx_pll_enabled(dev_priv,
2133                                                   (enum pipe) cpu_transcoder);
2134                 }
2135                 /* FIXME: assert CPU port conditions for SNB+ */
2136         }
2137
2138         reg = PIPECONF(cpu_transcoder);
2139         val = I915_READ(reg);
2140         if (val & PIPECONF_ENABLE) {
2141                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2142                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2143                 return;
2144         }
2145
2146         I915_WRITE(reg, val | PIPECONF_ENABLE);
2147         POSTING_READ(reg);
2148
2149         /*
2150          * Until the pipe starts DSL will read as 0, which would cause
2151          * an apparent vblank timestamp jump, which messes up also the
2152          * frame count when it's derived from the timestamps. So let's
2153          * wait for the pipe to start properly before we call
2154          * drm_crtc_vblank_on()
2155          */
2156         if (dev->max_vblank_count == 0 &&
2157             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2158                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2159 }
2160
2161 /**
2162  * intel_disable_pipe - disable a pipe, asserting requirements
2163  * @crtc: crtc whose pipes is to be disabled
2164  *
2165  * Disable the pipe of @crtc, making sure that various hardware
2166  * specific requirements are met, if applicable, e.g. plane
2167  * disabled, panel fitter off, etc.
2168  *
2169  * Will wait until the pipe has shut down before returning.
2170  */
2171 static void intel_disable_pipe(struct intel_crtc *crtc)
2172 {
2173         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2174         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2175         enum pipe pipe = crtc->pipe;
2176         i915_reg_t reg;
2177         u32 val;
2178
2179         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2180
2181         /*
2182          * Make sure planes won't keep trying to pump pixels to us,
2183          * or we might hang the display.
2184          */
2185         assert_planes_disabled(dev_priv, pipe);
2186         assert_cursor_disabled(dev_priv, pipe);
2187         assert_sprites_disabled(dev_priv, pipe);
2188
2189         reg = PIPECONF(cpu_transcoder);
2190         val = I915_READ(reg);
2191         if ((val & PIPECONF_ENABLE) == 0)
2192                 return;
2193
2194         /*
2195          * Double wide has implications for planes
2196          * so best keep it disabled when not needed.
2197          */
2198         if (crtc->config->double_wide)
2199                 val &= ~PIPECONF_DOUBLE_WIDE;
2200
2201         /* Don't disable pipe or pipe PLLs if needed */
2202         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2203             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2204                 val &= ~PIPECONF_ENABLE;
2205
2206         I915_WRITE(reg, val);
2207         if ((val & PIPECONF_ENABLE) == 0)
2208                 intel_wait_for_pipe_off(crtc);
2209 }
2210
2211 static bool need_vtd_wa(struct drm_device *dev)
2212 {
2213 #ifdef CONFIG_INTEL_IOMMU
2214         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2215                 return true;
2216 #endif
2217         return false;
2218 }
2219
2220 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2221 {
2222         return IS_GEN2(dev_priv) ? 2048 : 4096;
2223 }
2224
2225 static unsigned int intel_tile_width(const struct drm_i915_private *dev_priv,
2226                                      uint64_t fb_modifier, unsigned int cpp)
2227 {
2228         switch (fb_modifier) {
2229         case DRM_FORMAT_MOD_NONE:
2230                 return cpp;
2231         case I915_FORMAT_MOD_X_TILED:
2232                 if (IS_GEN2(dev_priv))
2233                         return 128;
2234                 else
2235                         return 512;
2236         case I915_FORMAT_MOD_Y_TILED:
2237                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2238                         return 128;
2239                 else
2240                         return 512;
2241         case I915_FORMAT_MOD_Yf_TILED:
2242                 switch (cpp) {
2243                 case 1:
2244                         return 64;
2245                 case 2:
2246                 case 4:
2247                         return 128;
2248                 case 8:
2249                 case 16:
2250                         return 256;
2251                 default:
2252                         MISSING_CASE(cpp);
2253                         return cpp;
2254                 }
2255                 break;
2256         default:
2257                 MISSING_CASE(fb_modifier);
2258                 return cpp;
2259         }
2260 }
2261
2262 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2263                                uint64_t fb_modifier, unsigned int cpp)
2264 {
2265         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2266                 return 1;
2267         else
2268                 return intel_tile_size(dev_priv) /
2269                         intel_tile_width(dev_priv, fb_modifier, cpp);
2270 }
2271
2272 unsigned int
2273 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2274                       uint32_t pixel_format, uint64_t fb_modifier)
2275 {
2276         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2277         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2278
2279         return ALIGN(height, tile_height);
2280 }
2281
2282 static void
2283 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2284                         const struct drm_plane_state *plane_state)
2285 {
2286         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2287         struct intel_rotation_info *info = &view->params.rotated;
2288         unsigned int tile_size, tile_width, tile_height, cpp;
2289
2290         *view = i915_ggtt_view_normal;
2291
2292         if (!plane_state)
2293                 return;
2294
2295         if (!intel_rotation_90_or_270(plane_state->rotation))
2296                 return;
2297
2298         *view = i915_ggtt_view_rotated;
2299
2300         info->height = fb->height;
2301         info->pixel_format = fb->pixel_format;
2302         info->pitch = fb->pitches[0];
2303         info->uv_offset = fb->offsets[1];
2304         info->fb_modifier = fb->modifier[0];
2305
2306         tile_size = intel_tile_size(dev_priv);
2307
2308         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2309         tile_width = intel_tile_width(dev_priv, fb->modifier[0], cpp);
2310         tile_height = tile_size / tile_width;
2311
2312         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_width);
2313         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2314         info->size = info->width_pages * info->height_pages * tile_size;
2315
2316         if (info->pixel_format == DRM_FORMAT_NV12) {
2317                 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2318                 tile_width = intel_tile_width(dev_priv, fb->modifier[1], cpp);
2319                 tile_height = tile_size / tile_width;
2320
2321                 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[1], tile_width);
2322                 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2, tile_height);
2323                 info->size_uv = info->width_pages_uv * info->height_pages_uv * tile_size;
2324         }
2325 }
2326
2327 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2328 {
2329         if (INTEL_INFO(dev_priv)->gen >= 9)
2330                 return 256 * 1024;
2331         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2332                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2333                 return 128 * 1024;
2334         else if (INTEL_INFO(dev_priv)->gen >= 4)
2335                 return 4 * 1024;
2336         else
2337                 return 0;
2338 }
2339
2340 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2341                                          uint64_t fb_modifier)
2342 {
2343         switch (fb_modifier) {
2344         case DRM_FORMAT_MOD_NONE:
2345                 return intel_linear_alignment(dev_priv);
2346         case I915_FORMAT_MOD_X_TILED:
2347                 if (INTEL_INFO(dev_priv)->gen >= 9)
2348                         return 256 * 1024;
2349                 return 0;
2350         case I915_FORMAT_MOD_Y_TILED:
2351         case I915_FORMAT_MOD_Yf_TILED:
2352                 return 1 * 1024 * 1024;
2353         default:
2354                 MISSING_CASE(fb_modifier);
2355                 return 0;
2356         }
2357 }
2358
2359 int
2360 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2361                            struct drm_framebuffer *fb,
2362                            const struct drm_plane_state *plane_state)
2363 {
2364         struct drm_device *dev = fb->dev;
2365         struct drm_i915_private *dev_priv = dev->dev_private;
2366         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2367         struct i915_ggtt_view view;
2368         u32 alignment;
2369         int ret;
2370
2371         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2372
2373         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2374
2375         intel_fill_fb_ggtt_view(&view, fb, plane_state);
2376
2377         /* Note that the w/a also requires 64 PTE of padding following the
2378          * bo. We currently fill all unused PTE with the shadow page and so
2379          * we should always have valid PTE following the scanout preventing
2380          * the VT-d warning.
2381          */
2382         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2383                 alignment = 256 * 1024;
2384
2385         /*
2386          * Global gtt pte registers are special registers which actually forward
2387          * writes to a chunk of system memory. Which means that there is no risk
2388          * that the register values disappear as soon as we call
2389          * intel_runtime_pm_put(), so it is correct to wrap only the
2390          * pin/unpin/fence and not more.
2391          */
2392         intel_runtime_pm_get(dev_priv);
2393
2394         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2395                                                    &view);
2396         if (ret)
2397                 goto err_pm;
2398
2399         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2400          * fence, whereas 965+ only requires a fence if using
2401          * framebuffer compression.  For simplicity, we always install
2402          * a fence as the cost is not that onerous.
2403          */
2404         if (view.type == I915_GGTT_VIEW_NORMAL) {
2405                 ret = i915_gem_object_get_fence(obj);
2406                 if (ret == -EDEADLK) {
2407                         /*
2408                          * -EDEADLK means there are no free fences
2409                          * no pending flips.
2410                          *
2411                          * This is propagated to atomic, but it uses
2412                          * -EDEADLK to force a locking recovery, so
2413                          * change the returned error to -EBUSY.
2414                          */
2415                         ret = -EBUSY;
2416                         goto err_unpin;
2417                 } else if (ret)
2418                         goto err_unpin;
2419
2420                 i915_gem_object_pin_fence(obj);
2421         }
2422
2423         intel_runtime_pm_put(dev_priv);
2424         return 0;
2425
2426 err_unpin:
2427         i915_gem_object_unpin_from_display_plane(obj, &view);
2428 err_pm:
2429         intel_runtime_pm_put(dev_priv);
2430         return ret;
2431 }
2432
2433 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2434                                const struct drm_plane_state *plane_state)
2435 {
2436         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2437         struct i915_ggtt_view view;
2438
2439         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2440
2441         intel_fill_fb_ggtt_view(&view, fb, plane_state);
2442
2443         if (view.type == I915_GGTT_VIEW_NORMAL)
2444                 i915_gem_object_unpin_fence(obj);
2445
2446         i915_gem_object_unpin_from_display_plane(obj, &view);
2447 }
2448
2449 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2450  * is assumed to be a power-of-two. */
2451 u32 intel_compute_tile_offset(struct drm_i915_private *dev_priv,
2452                               int *x, int *y,
2453                               uint64_t fb_modifier,
2454                               unsigned int cpp,
2455                               unsigned int pitch)
2456 {
2457         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2458                 unsigned int tile_size, tile_width, tile_height;
2459                 unsigned int tile_rows, tiles;
2460
2461                 tile_size = intel_tile_size(dev_priv);
2462                 tile_width = intel_tile_width(dev_priv, fb_modifier, cpp);
2463                 tile_height = tile_size / tile_width;
2464
2465                 tile_rows = *y / tile_height;
2466                 *y %= tile_height;
2467
2468                 tiles = *x / (tile_width/cpp);
2469                 *x %= tile_width/cpp;
2470
2471                 return tile_rows * pitch * tile_height + tiles * tile_size;
2472         } else {
2473                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2474                 unsigned int offset;
2475
2476                 offset = *y * pitch + *x * cpp;
2477                 *y = (offset & alignment) / pitch;
2478                 *x = ((offset & alignment) - *y * pitch) / cpp;
2479                 return offset & ~alignment;
2480         }
2481 }
2482
2483 static int i9xx_format_to_fourcc(int format)
2484 {
2485         switch (format) {
2486         case DISPPLANE_8BPP:
2487                 return DRM_FORMAT_C8;
2488         case DISPPLANE_BGRX555:
2489                 return DRM_FORMAT_XRGB1555;
2490         case DISPPLANE_BGRX565:
2491                 return DRM_FORMAT_RGB565;
2492         default:
2493         case DISPPLANE_BGRX888:
2494                 return DRM_FORMAT_XRGB8888;
2495         case DISPPLANE_RGBX888:
2496                 return DRM_FORMAT_XBGR8888;
2497         case DISPPLANE_BGRX101010:
2498                 return DRM_FORMAT_XRGB2101010;
2499         case DISPPLANE_RGBX101010:
2500                 return DRM_FORMAT_XBGR2101010;
2501         }
2502 }
2503
2504 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2505 {
2506         switch (format) {
2507         case PLANE_CTL_FORMAT_RGB_565:
2508                 return DRM_FORMAT_RGB565;
2509         default:
2510         case PLANE_CTL_FORMAT_XRGB_8888:
2511                 if (rgb_order) {
2512                         if (alpha)
2513                                 return DRM_FORMAT_ABGR8888;
2514                         else
2515                                 return DRM_FORMAT_XBGR8888;
2516                 } else {
2517                         if (alpha)
2518                                 return DRM_FORMAT_ARGB8888;
2519                         else
2520                                 return DRM_FORMAT_XRGB8888;
2521                 }
2522         case PLANE_CTL_FORMAT_XRGB_2101010:
2523                 if (rgb_order)
2524                         return DRM_FORMAT_XBGR2101010;
2525                 else
2526                         return DRM_FORMAT_XRGB2101010;
2527         }
2528 }
2529
2530 static bool
2531 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2532                               struct intel_initial_plane_config *plane_config)
2533 {
2534         struct drm_device *dev = crtc->base.dev;
2535         struct drm_i915_private *dev_priv = to_i915(dev);
2536         struct drm_i915_gem_object *obj = NULL;
2537         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2538         struct drm_framebuffer *fb = &plane_config->fb->base;
2539         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2540         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2541                                     PAGE_SIZE);
2542
2543         size_aligned -= base_aligned;
2544
2545         if (plane_config->size == 0)
2546                 return false;
2547
2548         /* If the FB is too big, just don't use it since fbdev is not very
2549          * important and we should probably use that space with FBC or other
2550          * features. */
2551         if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2552                 return false;
2553
2554         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2555                                                              base_aligned,
2556                                                              base_aligned,
2557                                                              size_aligned);
2558         if (!obj)
2559                 return false;
2560
2561         obj->tiling_mode = plane_config->tiling;
2562         if (obj->tiling_mode == I915_TILING_X)
2563                 obj->stride = fb->pitches[0];
2564
2565         mode_cmd.pixel_format = fb->pixel_format;
2566         mode_cmd.width = fb->width;
2567         mode_cmd.height = fb->height;
2568         mode_cmd.pitches[0] = fb->pitches[0];
2569         mode_cmd.modifier[0] = fb->modifier[0];
2570         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2571
2572         mutex_lock(&dev->struct_mutex);
2573         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2574                                    &mode_cmd, obj)) {
2575                 DRM_DEBUG_KMS("intel fb init failed\n");
2576                 goto out_unref_obj;
2577         }
2578         mutex_unlock(&dev->struct_mutex);
2579
2580         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2581         return true;
2582
2583 out_unref_obj:
2584         drm_gem_object_unreference(&obj->base);
2585         mutex_unlock(&dev->struct_mutex);
2586         return false;
2587 }
2588
2589 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2590 static void
2591 update_state_fb(struct drm_plane *plane)
2592 {
2593         if (plane->fb == plane->state->fb)
2594                 return;
2595
2596         if (plane->state->fb)
2597                 drm_framebuffer_unreference(plane->state->fb);
2598         plane->state->fb = plane->fb;
2599         if (plane->state->fb)
2600                 drm_framebuffer_reference(plane->state->fb);
2601 }
2602
2603 static void
2604 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2605                              struct intel_initial_plane_config *plane_config)
2606 {
2607         struct drm_device *dev = intel_crtc->base.dev;
2608         struct drm_i915_private *dev_priv = dev->dev_private;
2609         struct drm_crtc *c;
2610         struct intel_crtc *i;
2611         struct drm_i915_gem_object *obj;
2612         struct drm_plane *primary = intel_crtc->base.primary;
2613         struct drm_plane_state *plane_state = primary->state;
2614         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2615         struct intel_plane *intel_plane = to_intel_plane(primary);
2616         struct intel_plane_state *intel_state =
2617                 to_intel_plane_state(plane_state);
2618         struct drm_framebuffer *fb;
2619
2620         if (!plane_config->fb)
2621                 return;
2622
2623         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2624                 fb = &plane_config->fb->base;
2625                 goto valid_fb;
2626         }
2627
2628         kfree(plane_config->fb);
2629
2630         /*
2631          * Failed to alloc the obj, check to see if we should share
2632          * an fb with another CRTC instead
2633          */
2634         for_each_crtc(dev, c) {
2635                 i = to_intel_crtc(c);
2636
2637                 if (c == &intel_crtc->base)
2638                         continue;
2639
2640                 if (!i->active)
2641                         continue;
2642
2643                 fb = c->primary->fb;
2644                 if (!fb)
2645                         continue;
2646
2647                 obj = intel_fb_obj(fb);
2648                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2649                         drm_framebuffer_reference(fb);
2650                         goto valid_fb;
2651                 }
2652         }
2653
2654         /*
2655          * We've failed to reconstruct the BIOS FB.  Current display state
2656          * indicates that the primary plane is visible, but has a NULL FB,
2657          * which will lead to problems later if we don't fix it up.  The
2658          * simplest solution is to just disable the primary plane now and
2659          * pretend the BIOS never had it enabled.
2660          */
2661         to_intel_plane_state(plane_state)->visible = false;
2662         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2663         intel_pre_disable_primary(&intel_crtc->base);
2664         intel_plane->disable_plane(primary, &intel_crtc->base);
2665
2666         return;
2667
2668 valid_fb:
2669         plane_state->src_x = 0;
2670         plane_state->src_y = 0;
2671         plane_state->src_w = fb->width << 16;
2672         plane_state->src_h = fb->height << 16;
2673
2674         plane_state->crtc_x = 0;
2675         plane_state->crtc_y = 0;
2676         plane_state->crtc_w = fb->width;
2677         plane_state->crtc_h = fb->height;
2678
2679         intel_state->src.x1 = plane_state->src_x;
2680         intel_state->src.y1 = plane_state->src_y;
2681         intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2682         intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2683         intel_state->dst.x1 = plane_state->crtc_x;
2684         intel_state->dst.y1 = plane_state->crtc_y;
2685         intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2686         intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2687
2688         obj = intel_fb_obj(fb);
2689         if (obj->tiling_mode != I915_TILING_NONE)
2690                 dev_priv->preserve_bios_swizzle = true;
2691
2692         drm_framebuffer_reference(fb);
2693         primary->fb = primary->state->fb = fb;
2694         primary->crtc = primary->state->crtc = &intel_crtc->base;
2695         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2696         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2697 }
2698
2699 static void i9xx_update_primary_plane(struct drm_plane *primary,
2700                                       const struct intel_crtc_state *crtc_state,
2701                                       const struct intel_plane_state *plane_state)
2702 {
2703         struct drm_device *dev = primary->dev;
2704         struct drm_i915_private *dev_priv = dev->dev_private;
2705         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2706         struct drm_framebuffer *fb = plane_state->base.fb;
2707         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2708         int plane = intel_crtc->plane;
2709         u32 linear_offset;
2710         u32 dspcntr;
2711         i915_reg_t reg = DSPCNTR(plane);
2712         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2713         int x = plane_state->src.x1 >> 16;
2714         int y = plane_state->src.y1 >> 16;
2715
2716         dspcntr = DISPPLANE_GAMMA_ENABLE;
2717
2718         dspcntr |= DISPLAY_PLANE_ENABLE;
2719
2720         if (INTEL_INFO(dev)->gen < 4) {
2721                 if (intel_crtc->pipe == PIPE_B)
2722                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2723
2724                 /* pipesrc and dspsize control the size that is scaled from,
2725                  * which should always be the user's requested size.
2726                  */
2727                 I915_WRITE(DSPSIZE(plane),
2728                            ((crtc_state->pipe_src_h - 1) << 16) |
2729                            (crtc_state->pipe_src_w - 1));
2730                 I915_WRITE(DSPPOS(plane), 0);
2731         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2732                 I915_WRITE(PRIMSIZE(plane),
2733                            ((crtc_state->pipe_src_h - 1) << 16) |
2734                            (crtc_state->pipe_src_w - 1));
2735                 I915_WRITE(PRIMPOS(plane), 0);
2736                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2737         }
2738
2739         switch (fb->pixel_format) {
2740         case DRM_FORMAT_C8:
2741                 dspcntr |= DISPPLANE_8BPP;
2742                 break;
2743         case DRM_FORMAT_XRGB1555:
2744                 dspcntr |= DISPPLANE_BGRX555;
2745                 break;
2746         case DRM_FORMAT_RGB565:
2747                 dspcntr |= DISPPLANE_BGRX565;
2748                 break;
2749         case DRM_FORMAT_XRGB8888:
2750                 dspcntr |= DISPPLANE_BGRX888;
2751                 break;
2752         case DRM_FORMAT_XBGR8888:
2753                 dspcntr |= DISPPLANE_RGBX888;
2754                 break;
2755         case DRM_FORMAT_XRGB2101010:
2756                 dspcntr |= DISPPLANE_BGRX101010;
2757                 break;
2758         case DRM_FORMAT_XBGR2101010:
2759                 dspcntr |= DISPPLANE_RGBX101010;
2760                 break;
2761         default:
2762                 BUG();
2763         }
2764
2765         if (INTEL_INFO(dev)->gen >= 4 &&
2766             obj->tiling_mode != I915_TILING_NONE)
2767                 dspcntr |= DISPPLANE_TILED;
2768
2769         if (IS_G4X(dev))
2770                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2771
2772         linear_offset = y * fb->pitches[0] + x * cpp;
2773
2774         if (INTEL_INFO(dev)->gen >= 4) {
2775                 intel_crtc->dspaddr_offset =
2776                         intel_compute_tile_offset(dev_priv, &x, &y,
2777                                                   fb->modifier[0], cpp,
2778                                                   fb->pitches[0]);
2779                 linear_offset -= intel_crtc->dspaddr_offset;
2780         } else {
2781                 intel_crtc->dspaddr_offset = linear_offset;
2782         }
2783
2784         if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
2785                 dspcntr |= DISPPLANE_ROTATE_180;
2786
2787                 x += (crtc_state->pipe_src_w - 1);
2788                 y += (crtc_state->pipe_src_h - 1);
2789
2790                 /* Finding the last pixel of the last line of the display
2791                 data and adding to linear_offset*/
2792                 linear_offset +=
2793                         (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2794                         (crtc_state->pipe_src_w - 1) * cpp;
2795         }
2796
2797         intel_crtc->adjusted_x = x;
2798         intel_crtc->adjusted_y = y;
2799
2800         I915_WRITE(reg, dspcntr);
2801
2802         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2803         if (INTEL_INFO(dev)->gen >= 4) {
2804                 I915_WRITE(DSPSURF(plane),
2805                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2806                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2807                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2808         } else
2809                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2810         POSTING_READ(reg);
2811 }
2812
2813 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2814                                        struct drm_crtc *crtc)
2815 {
2816         struct drm_device *dev = crtc->dev;
2817         struct drm_i915_private *dev_priv = dev->dev_private;
2818         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2819         int plane = intel_crtc->plane;
2820
2821         I915_WRITE(DSPCNTR(plane), 0);
2822         if (INTEL_INFO(dev_priv)->gen >= 4)
2823                 I915_WRITE(DSPSURF(plane), 0);
2824         else
2825                 I915_WRITE(DSPADDR(plane), 0);
2826         POSTING_READ(DSPCNTR(plane));
2827 }
2828
2829 static void ironlake_update_primary_plane(struct drm_plane *primary,
2830                                           const struct intel_crtc_state *crtc_state,
2831                                           const struct intel_plane_state *plane_state)
2832 {
2833         struct drm_device *dev = primary->dev;
2834         struct drm_i915_private *dev_priv = dev->dev_private;
2835         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2836         struct drm_framebuffer *fb = plane_state->base.fb;
2837         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2838         int plane = intel_crtc->plane;
2839         u32 linear_offset;
2840         u32 dspcntr;
2841         i915_reg_t reg = DSPCNTR(plane);
2842         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2843         int x = plane_state->src.x1 >> 16;
2844         int y = plane_state->src.y1 >> 16;
2845
2846         dspcntr = DISPPLANE_GAMMA_ENABLE;
2847         dspcntr |= DISPLAY_PLANE_ENABLE;
2848
2849         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2850                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2851
2852         switch (fb->pixel_format) {
2853         case DRM_FORMAT_C8:
2854                 dspcntr |= DISPPLANE_8BPP;
2855                 break;
2856         case DRM_FORMAT_RGB565:
2857                 dspcntr |= DISPPLANE_BGRX565;
2858                 break;
2859         case DRM_FORMAT_XRGB8888:
2860                 dspcntr |= DISPPLANE_BGRX888;
2861                 break;
2862         case DRM_FORMAT_XBGR8888:
2863                 dspcntr |= DISPPLANE_RGBX888;
2864                 break;
2865         case DRM_FORMAT_XRGB2101010:
2866                 dspcntr |= DISPPLANE_BGRX101010;
2867                 break;
2868         case DRM_FORMAT_XBGR2101010:
2869                 dspcntr |= DISPPLANE_RGBX101010;
2870                 break;
2871         default:
2872                 BUG();
2873         }
2874
2875         if (obj->tiling_mode != I915_TILING_NONE)
2876                 dspcntr |= DISPPLANE_TILED;
2877
2878         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2879                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2880
2881         linear_offset = y * fb->pitches[0] + x * cpp;
2882         intel_crtc->dspaddr_offset =
2883                 intel_compute_tile_offset(dev_priv, &x, &y,
2884                                           fb->modifier[0], cpp,
2885                                           fb->pitches[0]);
2886         linear_offset -= intel_crtc->dspaddr_offset;
2887         if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
2888                 dspcntr |= DISPPLANE_ROTATE_180;
2889
2890                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2891                         x += (crtc_state->pipe_src_w - 1);
2892                         y += (crtc_state->pipe_src_h - 1);
2893
2894                         /* Finding the last pixel of the last line of the display
2895                         data and adding to linear_offset*/
2896                         linear_offset +=
2897                                 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2898                                 (crtc_state->pipe_src_w - 1) * cpp;
2899                 }
2900         }
2901
2902         intel_crtc->adjusted_x = x;
2903         intel_crtc->adjusted_y = y;
2904
2905         I915_WRITE(reg, dspcntr);
2906
2907         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2908         I915_WRITE(DSPSURF(plane),
2909                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2910         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2911                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2912         } else {
2913                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2914                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2915         }
2916         POSTING_READ(reg);
2917 }
2918
2919 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2920                               uint64_t fb_modifier, uint32_t pixel_format)
2921 {
2922         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2923                 return 64;
2924         } else {
2925                 int cpp = drm_format_plane_cpp(pixel_format, 0);
2926
2927                 return intel_tile_width(dev_priv, fb_modifier, cpp);
2928         }
2929 }
2930
2931 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2932                            struct drm_i915_gem_object *obj,
2933                            unsigned int plane)
2934 {
2935         struct i915_ggtt_view view;
2936         struct i915_vma *vma;
2937         u64 offset;
2938
2939         intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2940                                 intel_plane->base.state);
2941
2942         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2943         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2944                 view.type))
2945                 return -1;
2946
2947         offset = vma->node.start;
2948
2949         if (plane == 1) {
2950                 offset += vma->ggtt_view.params.rotated.uv_start_page *
2951                           PAGE_SIZE;
2952         }
2953
2954         WARN_ON(upper_32_bits(offset));
2955
2956         return lower_32_bits(offset);
2957 }
2958
2959 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2960 {
2961         struct drm_device *dev = intel_crtc->base.dev;
2962         struct drm_i915_private *dev_priv = dev->dev_private;
2963
2964         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2965         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2966         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2967 }
2968
2969 /*
2970  * This function detaches (aka. unbinds) unused scalers in hardware
2971  */
2972 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2973 {
2974         struct intel_crtc_scaler_state *scaler_state;
2975         int i;
2976
2977         scaler_state = &intel_crtc->config->scaler_state;
2978
2979         /* loop through and disable scalers that aren't in use */
2980         for (i = 0; i < intel_crtc->num_scalers; i++) {
2981                 if (!scaler_state->scalers[i].in_use)
2982                         skl_detach_scaler(intel_crtc, i);
2983         }
2984 }
2985
2986 u32 skl_plane_ctl_format(uint32_t pixel_format)
2987 {
2988         switch (pixel_format) {
2989         case DRM_FORMAT_C8:
2990                 return PLANE_CTL_FORMAT_INDEXED;
2991         case DRM_FORMAT_RGB565:
2992                 return PLANE_CTL_FORMAT_RGB_565;
2993         case DRM_FORMAT_XBGR8888:
2994                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2995         case DRM_FORMAT_XRGB8888:
2996                 return PLANE_CTL_FORMAT_XRGB_8888;
2997         /*
2998          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2999          * to be already pre-multiplied. We need to add a knob (or a different
3000          * DRM_FORMAT) for user-space to configure that.
3001          */
3002         case DRM_FORMAT_ABGR8888:
3003                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3004                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3005         case DRM_FORMAT_ARGB8888:
3006                 return PLANE_CTL_FORMAT_XRGB_8888 |
3007                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3008         case DRM_FORMAT_XRGB2101010:
3009                 return PLANE_CTL_FORMAT_XRGB_2101010;
3010         case DRM_FORMAT_XBGR2101010:
3011                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3012         case DRM_FORMAT_YUYV:
3013                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3014         case DRM_FORMAT_YVYU:
3015                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3016         case DRM_FORMAT_UYVY:
3017                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3018         case DRM_FORMAT_VYUY:
3019                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3020         default:
3021                 MISSING_CASE(pixel_format);
3022         }
3023
3024         return 0;
3025 }
3026
3027 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3028 {
3029         switch (fb_modifier) {
3030         case DRM_FORMAT_MOD_NONE:
3031                 break;
3032         case I915_FORMAT_MOD_X_TILED:
3033                 return PLANE_CTL_TILED_X;
3034         case I915_FORMAT_MOD_Y_TILED:
3035                 return PLANE_CTL_TILED_Y;
3036         case I915_FORMAT_MOD_Yf_TILED:
3037                 return PLANE_CTL_TILED_YF;
3038         default:
3039                 MISSING_CASE(fb_modifier);
3040         }
3041
3042         return 0;
3043 }
3044
3045 u32 skl_plane_ctl_rotation(unsigned int rotation)
3046 {
3047         switch (rotation) {
3048         case BIT(DRM_ROTATE_0):
3049                 break;
3050         /*
3051          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3052          * while i915 HW rotation is clockwise, thats why this swapping.
3053          */
3054         case BIT(DRM_ROTATE_90):
3055                 return PLANE_CTL_ROTATE_270;
3056         case BIT(DRM_ROTATE_180):
3057                 return PLANE_CTL_ROTATE_180;
3058         case BIT(DRM_ROTATE_270):
3059                 return PLANE_CTL_ROTATE_90;
3060         default:
3061                 MISSING_CASE(rotation);
3062         }
3063
3064         return 0;
3065 }
3066
3067 static void skylake_update_primary_plane(struct drm_plane *plane,
3068                                          const struct intel_crtc_state *crtc_state,
3069                                          const struct intel_plane_state *plane_state)
3070 {
3071         struct drm_device *dev = plane->dev;
3072         struct drm_i915_private *dev_priv = dev->dev_private;
3073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3074         struct drm_framebuffer *fb = plane_state->base.fb;
3075         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3076         int pipe = intel_crtc->pipe;
3077         u32 plane_ctl, stride_div, stride;
3078         u32 tile_height, plane_offset, plane_size;
3079         unsigned int rotation = plane_state->base.rotation;
3080         int x_offset, y_offset;
3081         u32 surf_addr;
3082         int scaler_id = plane_state->scaler_id;
3083         int src_x = plane_state->src.x1 >> 16;
3084         int src_y = plane_state->src.y1 >> 16;
3085         int src_w = drm_rect_width(&plane_state->src) >> 16;
3086         int src_h = drm_rect_height(&plane_state->src) >> 16;
3087         int dst_x = plane_state->dst.x1;
3088         int dst_y = plane_state->dst.y1;
3089         int dst_w = drm_rect_width(&plane_state->dst);
3090         int dst_h = drm_rect_height(&plane_state->dst);
3091
3092         plane_ctl = PLANE_CTL_ENABLE |
3093                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3094                     PLANE_CTL_PIPE_CSC_ENABLE;
3095
3096         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3097         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3098         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3099         plane_ctl |= skl_plane_ctl_rotation(rotation);
3100
3101         stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3102                                                fb->pixel_format);
3103         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3104
3105         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3106
3107         if (intel_rotation_90_or_270(rotation)) {
3108                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3109
3110                 /* stride = Surface height in tiles */
3111                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3112                 stride = DIV_ROUND_UP(fb->height, tile_height);
3113                 x_offset = stride * tile_height - src_y - src_h;
3114                 y_offset = src_x;
3115                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3116         } else {
3117                 stride = fb->pitches[0] / stride_div;
3118                 x_offset = src_x;
3119                 y_offset = src_y;
3120                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3121         }
3122         plane_offset = y_offset << 16 | x_offset;
3123
3124         intel_crtc->adjusted_x = x_offset;
3125         intel_crtc->adjusted_y = y_offset;
3126
3127         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3128         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3129         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3130         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3131
3132         if (scaler_id >= 0) {
3133                 uint32_t ps_ctrl = 0;
3134
3135                 WARN_ON(!dst_w || !dst_h);
3136                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3137                         crtc_state->scaler_state.scalers[scaler_id].mode;
3138                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3139                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3140                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3141                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3142                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3143         } else {
3144                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3145         }
3146
3147         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3148
3149         POSTING_READ(PLANE_SURF(pipe, 0));
3150 }
3151
3152 static void skylake_disable_primary_plane(struct drm_plane *primary,
3153                                           struct drm_crtc *crtc)
3154 {
3155         struct drm_device *dev = crtc->dev;
3156         struct drm_i915_private *dev_priv = dev->dev_private;
3157         int pipe = to_intel_crtc(crtc)->pipe;
3158
3159         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3160         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3161         POSTING_READ(PLANE_SURF(pipe, 0));
3162 }
3163
3164 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3165 static int
3166 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3167                            int x, int y, enum mode_set_atomic state)
3168 {
3169         /* Support for kgdboc is disabled, this needs a major rework. */
3170         DRM_ERROR("legacy panic handler not supported any more.\n");
3171
3172         return -ENODEV;
3173 }
3174
3175 static void intel_complete_page_flips(struct drm_device *dev)
3176 {
3177         struct drm_crtc *crtc;
3178
3179         for_each_crtc(dev, crtc) {
3180                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3181                 enum plane plane = intel_crtc->plane;
3182
3183                 intel_prepare_page_flip(dev, plane);
3184                 intel_finish_page_flip_plane(dev, plane);
3185         }
3186 }
3187
3188 static void intel_update_primary_planes(struct drm_device *dev)
3189 {
3190         struct drm_crtc *crtc;
3191
3192         for_each_crtc(dev, crtc) {
3193                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3194                 struct intel_plane_state *plane_state;
3195
3196                 drm_modeset_lock_crtc(crtc, &plane->base);
3197                 plane_state = to_intel_plane_state(plane->base.state);
3198
3199                 if (plane_state->visible)
3200                         plane->update_plane(&plane->base,
3201                                             to_intel_crtc_state(crtc->state),
3202                                             plane_state);
3203
3204                 drm_modeset_unlock_crtc(crtc);
3205         }
3206 }
3207
3208 void intel_prepare_reset(struct drm_device *dev)
3209 {
3210         /* no reset support for gen2 */
3211         if (IS_GEN2(dev))
3212                 return;
3213
3214         /* reset doesn't touch the display */
3215         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3216                 return;
3217
3218         drm_modeset_lock_all(dev);
3219         /*
3220          * Disabling the crtcs gracefully seems nicer. Also the
3221          * g33 docs say we should at least disable all the planes.
3222          */
3223         intel_display_suspend(dev);
3224 }
3225
3226 void intel_finish_reset(struct drm_device *dev)
3227 {
3228         struct drm_i915_private *dev_priv = to_i915(dev);
3229
3230         /*
3231          * Flips in the rings will be nuked by the reset,
3232          * so complete all pending flips so that user space
3233          * will get its events and not get stuck.
3234          */
3235         intel_complete_page_flips(dev);
3236
3237         /* no reset support for gen2 */
3238         if (IS_GEN2(dev))
3239                 return;
3240
3241         /* reset doesn't touch the display */
3242         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3243                 /*
3244                  * Flips in the rings have been nuked by the reset,
3245                  * so update the base address of all primary
3246                  * planes to the the last fb to make sure we're
3247                  * showing the correct fb after a reset.
3248                  *
3249                  * FIXME: Atomic will make this obsolete since we won't schedule
3250                  * CS-based flips (which might get lost in gpu resets) any more.
3251                  */
3252                 intel_update_primary_planes(dev);
3253                 return;
3254         }
3255
3256         /*
3257          * The display has been reset as well,
3258          * so need a full re-initialization.
3259          */
3260         intel_runtime_pm_disable_interrupts(dev_priv);
3261         intel_runtime_pm_enable_interrupts(dev_priv);
3262
3263         intel_modeset_init_hw(dev);
3264
3265         spin_lock_irq(&dev_priv->irq_lock);
3266         if (dev_priv->display.hpd_irq_setup)
3267                 dev_priv->display.hpd_irq_setup(dev);
3268         spin_unlock_irq(&dev_priv->irq_lock);
3269
3270         intel_display_resume(dev);
3271
3272         intel_hpd_init(dev_priv);
3273
3274         drm_modeset_unlock_all(dev);
3275 }
3276
3277 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3278 {
3279         struct drm_device *dev = crtc->dev;
3280         struct drm_i915_private *dev_priv = dev->dev_private;
3281         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3282         bool pending;
3283
3284         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3285             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3286                 return false;
3287
3288         spin_lock_irq(&dev->event_lock);
3289         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3290         spin_unlock_irq(&dev->event_lock);
3291
3292         return pending;
3293 }
3294
3295 static void intel_update_pipe_config(struct intel_crtc *crtc,
3296                                      struct intel_crtc_state *old_crtc_state)
3297 {
3298         struct drm_device *dev = crtc->base.dev;
3299         struct drm_i915_private *dev_priv = dev->dev_private;
3300         struct intel_crtc_state *pipe_config =
3301                 to_intel_crtc_state(crtc->base.state);
3302
3303         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3304         crtc->base.mode = crtc->base.state->mode;
3305
3306         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3307                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3308                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3309
3310         if (HAS_DDI(dev))
3311                 intel_set_pipe_csc(&crtc->base);
3312
3313         /*
3314          * Update pipe size and adjust fitter if needed: the reason for this is
3315          * that in compute_mode_changes we check the native mode (not the pfit
3316          * mode) to see if we can flip rather than do a full mode set. In the
3317          * fastboot case, we'll flip, but if we don't update the pipesrc and
3318          * pfit state, we'll end up with a big fb scanned out into the wrong
3319          * sized surface.
3320          */
3321
3322         I915_WRITE(PIPESRC(crtc->pipe),
3323                    ((pipe_config->pipe_src_w - 1) << 16) |
3324                    (pipe_config->pipe_src_h - 1));
3325
3326         /* on skylake this is done by detaching scalers */
3327         if (INTEL_INFO(dev)->gen >= 9) {
3328                 skl_detach_scalers(crtc);
3329
3330                 if (pipe_config->pch_pfit.enabled)
3331                         skylake_pfit_enable(crtc);
3332         } else if (HAS_PCH_SPLIT(dev)) {
3333                 if (pipe_config->pch_pfit.enabled)
3334                         ironlake_pfit_enable(crtc);
3335                 else if (old_crtc_state->pch_pfit.enabled)
3336                         ironlake_pfit_disable(crtc, true);
3337         }
3338 }
3339
3340 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3341 {
3342         struct drm_device *dev = crtc->dev;
3343         struct drm_i915_private *dev_priv = dev->dev_private;
3344         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3345         int pipe = intel_crtc->pipe;
3346         i915_reg_t reg;
3347         u32 temp;
3348
3349         /* enable normal train */
3350         reg = FDI_TX_CTL(pipe);
3351         temp = I915_READ(reg);
3352         if (IS_IVYBRIDGE(dev)) {
3353                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3354                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3355         } else {
3356                 temp &= ~FDI_LINK_TRAIN_NONE;
3357                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3358         }
3359         I915_WRITE(reg, temp);
3360
3361         reg = FDI_RX_CTL(pipe);
3362         temp = I915_READ(reg);
3363         if (HAS_PCH_CPT(dev)) {
3364                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3365                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3366         } else {
3367                 temp &= ~FDI_LINK_TRAIN_NONE;
3368                 temp |= FDI_LINK_TRAIN_NONE;
3369         }
3370         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3371
3372         /* wait one idle pattern time */
3373         POSTING_READ(reg);
3374         udelay(1000);
3375
3376         /* IVB wants error correction enabled */
3377         if (IS_IVYBRIDGE(dev))
3378                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3379                            FDI_FE_ERRC_ENABLE);
3380 }
3381
3382 /* The FDI link training functions for ILK/Ibexpeak. */
3383 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3384 {
3385         struct drm_device *dev = crtc->dev;
3386         struct drm_i915_private *dev_priv = dev->dev_private;
3387         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3388         int pipe = intel_crtc->pipe;
3389         i915_reg_t reg;
3390         u32 temp, tries;
3391
3392         /* FDI needs bits from pipe first */
3393         assert_pipe_enabled(dev_priv, pipe);
3394
3395         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3396            for train result */
3397         reg = FDI_RX_IMR(pipe);
3398         temp = I915_READ(reg);
3399         temp &= ~FDI_RX_SYMBOL_LOCK;
3400         temp &= ~FDI_RX_BIT_LOCK;
3401         I915_WRITE(reg, temp);
3402         I915_READ(reg);
3403         udelay(150);
3404
3405         /* enable CPU FDI TX and PCH FDI RX */
3406         reg = FDI_TX_CTL(pipe);
3407         temp = I915_READ(reg);
3408         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3409         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3410         temp &= ~FDI_LINK_TRAIN_NONE;
3411         temp |= FDI_LINK_TRAIN_PATTERN_1;
3412         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3413
3414         reg = FDI_RX_CTL(pipe);
3415         temp = I915_READ(reg);
3416         temp &= ~FDI_LINK_TRAIN_NONE;
3417         temp |= FDI_LINK_TRAIN_PATTERN_1;
3418         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3419
3420         POSTING_READ(reg);
3421         udelay(150);
3422
3423         /* Ironlake workaround, enable clock pointer after FDI enable*/
3424         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3425         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3426                    FDI_RX_PHASE_SYNC_POINTER_EN);
3427
3428         reg = FDI_RX_IIR(pipe);
3429         for (tries = 0; tries < 5; tries++) {
3430                 temp = I915_READ(reg);
3431                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3432
3433                 if ((temp & FDI_RX_BIT_LOCK)) {
3434                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3435                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3436                         break;
3437                 }
3438         }
3439         if (tries == 5)
3440                 DRM_ERROR("FDI train 1 fail!\n");
3441
3442         /* Train 2 */
3443         reg = FDI_TX_CTL(pipe);
3444         temp = I915_READ(reg);
3445         temp &= ~FDI_LINK_TRAIN_NONE;
3446         temp |= FDI_LINK_TRAIN_PATTERN_2;
3447         I915_WRITE(reg, temp);
3448
3449         reg = FDI_RX_CTL(pipe);
3450         temp = I915_READ(reg);
3451         temp &= ~FDI_LINK_TRAIN_NONE;
3452         temp |= FDI_LINK_TRAIN_PATTERN_2;
3453         I915_WRITE(reg, temp);
3454
3455         POSTING_READ(reg);
3456         udelay(150);
3457
3458         reg = FDI_RX_IIR(pipe);
3459         for (tries = 0; tries < 5; tries++) {
3460                 temp = I915_READ(reg);
3461                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3462
3463                 if (temp & FDI_RX_SYMBOL_LOCK) {
3464                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3465                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3466                         break;
3467                 }
3468         }
3469         if (tries == 5)
3470                 DRM_ERROR("FDI train 2 fail!\n");
3471
3472         DRM_DEBUG_KMS("FDI train done\n");
3473
3474 }
3475
3476 static const int snb_b_fdi_train_param[] = {
3477         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3478         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3479         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3480         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3481 };
3482
3483 /* The FDI link training functions for SNB/Cougarpoint. */
3484 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3485 {
3486         struct drm_device *dev = crtc->dev;
3487         struct drm_i915_private *dev_priv = dev->dev_private;
3488         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3489         int pipe = intel_crtc->pipe;
3490         i915_reg_t reg;
3491         u32 temp, i, retry;
3492
3493         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3494            for train result */
3495         reg = FDI_RX_IMR(pipe);
3496         temp = I915_READ(reg);
3497         temp &= ~FDI_RX_SYMBOL_LOCK;
3498         temp &= ~FDI_RX_BIT_LOCK;
3499         I915_WRITE(reg, temp);
3500
3501         POSTING_READ(reg);
3502         udelay(150);
3503
3504         /* enable CPU FDI TX and PCH FDI RX */
3505         reg = FDI_TX_CTL(pipe);
3506         temp = I915_READ(reg);
3507         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3508         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3509         temp &= ~FDI_LINK_TRAIN_NONE;
3510         temp |= FDI_LINK_TRAIN_PATTERN_1;
3511         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3512         /* SNB-B */
3513         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3514         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3515
3516         I915_WRITE(FDI_RX_MISC(pipe),
3517                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3518
3519         reg = FDI_RX_CTL(pipe);
3520         temp = I915_READ(reg);
3521         if (HAS_PCH_CPT(dev)) {
3522                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3523                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3524         } else {
3525                 temp &= ~FDI_LINK_TRAIN_NONE;
3526                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3527         }
3528         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3529
3530         POSTING_READ(reg);
3531         udelay(150);
3532
3533         for (i = 0; i < 4; i++) {
3534                 reg = FDI_TX_CTL(pipe);
3535                 temp = I915_READ(reg);
3536                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3537                 temp |= snb_b_fdi_train_param[i];
3538                 I915_WRITE(reg, temp);
3539
3540                 POSTING_READ(reg);
3541                 udelay(500);
3542
3543                 for (retry = 0; retry < 5; retry++) {
3544                         reg = FDI_RX_IIR(pipe);
3545                         temp = I915_READ(reg);
3546                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3547                         if (temp & FDI_RX_BIT_LOCK) {
3548                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3549                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3550                                 break;
3551                         }
3552                         udelay(50);
3553                 }
3554                 if (retry < 5)
3555                         break;
3556         }
3557         if (i == 4)
3558                 DRM_ERROR("FDI train 1 fail!\n");
3559
3560         /* Train 2 */
3561         reg = FDI_TX_CTL(pipe);
3562         temp = I915_READ(reg);
3563         temp &= ~FDI_LINK_TRAIN_NONE;
3564         temp |= FDI_LINK_TRAIN_PATTERN_2;
3565         if (IS_GEN6(dev)) {
3566                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3567                 /* SNB-B */
3568                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3569         }
3570         I915_WRITE(reg, temp);
3571
3572         reg = FDI_RX_CTL(pipe);
3573         temp = I915_READ(reg);
3574         if (HAS_PCH_CPT(dev)) {
3575                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3576                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3577         } else {
3578                 temp &= ~FDI_LINK_TRAIN_NONE;
3579                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3580         }
3581         I915_WRITE(reg, temp);
3582
3583         POSTING_READ(reg);
3584         udelay(150);
3585
3586         for (i = 0; i < 4; i++) {
3587                 reg = FDI_TX_CTL(pipe);
3588                 temp = I915_READ(reg);
3589                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3590                 temp |= snb_b_fdi_train_param[i];
3591                 I915_WRITE(reg, temp);
3592
3593                 POSTING_READ(reg);
3594                 udelay(500);
3595
3596                 for (retry = 0; retry < 5; retry++) {
3597                         reg = FDI_RX_IIR(pipe);
3598                         temp = I915_READ(reg);
3599                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3600                         if (temp & FDI_RX_SYMBOL_LOCK) {
3601                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3602                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3603                                 break;
3604                         }
3605                         udelay(50);
3606                 }
3607                 if (retry < 5)
3608                         break;
3609         }
3610         if (i == 4)
3611                 DRM_ERROR("FDI train 2 fail!\n");
3612
3613         DRM_DEBUG_KMS("FDI train done.\n");
3614 }
3615
3616 /* Manual link training for Ivy Bridge A0 parts */
3617 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3618 {
3619         struct drm_device *dev = crtc->dev;
3620         struct drm_i915_private *dev_priv = dev->dev_private;
3621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3622         int pipe = intel_crtc->pipe;
3623         i915_reg_t reg;
3624         u32 temp, i, j;
3625
3626         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3627            for train result */
3628         reg = FDI_RX_IMR(pipe);
3629         temp = I915_READ(reg);
3630         temp &= ~FDI_RX_SYMBOL_LOCK;
3631         temp &= ~FDI_RX_BIT_LOCK;
3632         I915_WRITE(reg, temp);
3633
3634         POSTING_READ(reg);
3635         udelay(150);
3636
3637         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3638                       I915_READ(FDI_RX_IIR(pipe)));
3639
3640         /* Try each vswing and preemphasis setting twice before moving on */
3641         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3642                 /* disable first in case we need to retry */
3643                 reg = FDI_TX_CTL(pipe);
3644                 temp = I915_READ(reg);
3645                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3646                 temp &= ~FDI_TX_ENABLE;
3647                 I915_WRITE(reg, temp);
3648
3649                 reg = FDI_RX_CTL(pipe);
3650                 temp = I915_READ(reg);
3651                 temp &= ~FDI_LINK_TRAIN_AUTO;
3652                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3653                 temp &= ~FDI_RX_ENABLE;
3654                 I915_WRITE(reg, temp);
3655
3656                 /* enable CPU FDI TX and PCH FDI RX */
3657                 reg = FDI_TX_CTL(pipe);
3658                 temp = I915_READ(reg);
3659                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3660                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3661                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3662                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3663                 temp |= snb_b_fdi_train_param[j/2];
3664                 temp |= FDI_COMPOSITE_SYNC;
3665                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3666
3667                 I915_WRITE(FDI_RX_MISC(pipe),
3668                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3669
3670                 reg = FDI_RX_CTL(pipe);
3671                 temp = I915_READ(reg);
3672                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3673                 temp |= FDI_COMPOSITE_SYNC;
3674                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3675
3676                 POSTING_READ(reg);
3677                 udelay(1); /* should be 0.5us */
3678
3679                 for (i = 0; i < 4; i++) {
3680                         reg = FDI_RX_IIR(pipe);
3681                         temp = I915_READ(reg);
3682                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3683
3684                         if (temp & FDI_RX_BIT_LOCK ||
3685                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3686                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3687                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3688                                               i);
3689                                 break;
3690                         }
3691                         udelay(1); /* should be 0.5us */
3692                 }
3693                 if (i == 4) {
3694                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3695                         continue;
3696                 }
3697
3698                 /* Train 2 */
3699                 reg = FDI_TX_CTL(pipe);
3700                 temp = I915_READ(reg);
3701                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3702                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3703                 I915_WRITE(reg, temp);
3704
3705                 reg = FDI_RX_CTL(pipe);
3706                 temp = I915_READ(reg);
3707                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3708                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3709                 I915_WRITE(reg, temp);
3710
3711                 POSTING_READ(reg);
3712                 udelay(2); /* should be 1.5us */
3713
3714                 for (i = 0; i < 4; i++) {
3715                         reg = FDI_RX_IIR(pipe);
3716                         temp = I915_READ(reg);
3717                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3718
3719                         if (temp & FDI_RX_SYMBOL_LOCK ||
3720                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3721                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3722                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3723                                               i);
3724                                 goto train_done;
3725                         }
3726                         udelay(2); /* should be 1.5us */
3727                 }
3728                 if (i == 4)
3729                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3730         }
3731
3732 train_done:
3733         DRM_DEBUG_KMS("FDI train done.\n");
3734 }
3735
3736 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3737 {
3738         struct drm_device *dev = intel_crtc->base.dev;
3739         struct drm_i915_private *dev_priv = dev->dev_private;
3740         int pipe = intel_crtc->pipe;
3741         i915_reg_t reg;
3742         u32 temp;
3743
3744         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3745         reg = FDI_RX_CTL(pipe);
3746         temp = I915_READ(reg);
3747         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3748         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3749         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3750         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3751
3752         POSTING_READ(reg);
3753         udelay(200);
3754
3755         /* Switch from Rawclk to PCDclk */
3756         temp = I915_READ(reg);
3757         I915_WRITE(reg, temp | FDI_PCDCLK);
3758
3759         POSTING_READ(reg);
3760         udelay(200);
3761
3762         /* Enable CPU FDI TX PLL, always on for Ironlake */
3763         reg = FDI_TX_CTL(pipe);
3764         temp = I915_READ(reg);
3765         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3766                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3767
3768                 POSTING_READ(reg);
3769                 udelay(100);
3770         }
3771 }
3772
3773 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3774 {
3775         struct drm_device *dev = intel_crtc->base.dev;
3776         struct drm_i915_private *dev_priv = dev->dev_private;
3777         int pipe = intel_crtc->pipe;
3778         i915_reg_t reg;
3779         u32 temp;
3780
3781         /* Switch from PCDclk to Rawclk */
3782         reg = FDI_RX_CTL(pipe);
3783         temp = I915_READ(reg);
3784         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3785
3786         /* Disable CPU FDI TX PLL */
3787         reg = FDI_TX_CTL(pipe);
3788         temp = I915_READ(reg);
3789         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3790
3791         POSTING_READ(reg);
3792         udelay(100);
3793
3794         reg = FDI_RX_CTL(pipe);
3795         temp = I915_READ(reg);
3796         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3797
3798         /* Wait for the clocks to turn off. */
3799         POSTING_READ(reg);
3800         udelay(100);
3801 }
3802
3803 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3804 {
3805         struct drm_device *dev = crtc->dev;
3806         struct drm_i915_private *dev_priv = dev->dev_private;
3807         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3808         int pipe = intel_crtc->pipe;
3809         i915_reg_t reg;
3810         u32 temp;
3811
3812         /* disable CPU FDI tx and PCH FDI rx */
3813         reg = FDI_TX_CTL(pipe);
3814         temp = I915_READ(reg);
3815         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3816         POSTING_READ(reg);
3817
3818         reg = FDI_RX_CTL(pipe);
3819         temp = I915_READ(reg);
3820         temp &= ~(0x7 << 16);
3821         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3822         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3823
3824         POSTING_READ(reg);
3825         udelay(100);
3826
3827         /* Ironlake workaround, disable clock pointer after downing FDI */
3828         if (HAS_PCH_IBX(dev))
3829                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3830
3831         /* still set train pattern 1 */
3832         reg = FDI_TX_CTL(pipe);
3833         temp = I915_READ(reg);
3834         temp &= ~FDI_LINK_TRAIN_NONE;
3835         temp |= FDI_LINK_TRAIN_PATTERN_1;
3836         I915_WRITE(reg, temp);
3837
3838         reg = FDI_RX_CTL(pipe);
3839         temp = I915_READ(reg);
3840         if (HAS_PCH_CPT(dev)) {
3841                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3842                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3843         } else {
3844                 temp &= ~FDI_LINK_TRAIN_NONE;
3845                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3846         }
3847         /* BPC in FDI rx is consistent with that in PIPECONF */
3848         temp &= ~(0x07 << 16);
3849         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3850         I915_WRITE(reg, temp);
3851
3852         POSTING_READ(reg);
3853         udelay(100);
3854 }
3855
3856 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3857 {
3858         struct intel_crtc *crtc;
3859
3860         /* Note that we don't need to be called with mode_config.lock here
3861          * as our list of CRTC objects is static for the lifetime of the
3862          * device and so cannot disappear as we iterate. Similarly, we can
3863          * happily treat the predicates as racy, atomic checks as userspace
3864          * cannot claim and pin a new fb without at least acquring the
3865          * struct_mutex and so serialising with us.
3866          */
3867         for_each_intel_crtc(dev, crtc) {
3868                 if (atomic_read(&crtc->unpin_work_count) == 0)
3869                         continue;
3870
3871                 if (crtc->unpin_work)
3872                         intel_wait_for_vblank(dev, crtc->pipe);
3873
3874                 return true;
3875         }
3876
3877         return false;
3878 }
3879
3880 static void page_flip_completed(struct intel_crtc *intel_crtc)
3881 {
3882         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3883         struct intel_unpin_work *work = intel_crtc->unpin_work;
3884
3885         /* ensure that the unpin work is consistent wrt ->pending. */
3886         smp_rmb();
3887         intel_crtc->unpin_work = NULL;
3888
3889         if (work->event)
3890                 drm_send_vblank_event(intel_crtc->base.dev,
3891                                       intel_crtc->pipe,
3892                                       work->event);
3893
3894         drm_crtc_vblank_put(&intel_crtc->base);
3895
3896         wake_up_all(&dev_priv->pending_flip_queue);
3897         queue_work(dev_priv->wq, &work->work);
3898
3899         trace_i915_flip_complete(intel_crtc->plane,
3900                                  work->pending_flip_obj);
3901 }
3902
3903 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3904 {
3905         struct drm_device *dev = crtc->dev;
3906         struct drm_i915_private *dev_priv = dev->dev_private;
3907         long ret;
3908
3909         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3910
3911         ret = wait_event_interruptible_timeout(
3912                                         dev_priv->pending_flip_queue,
3913                                         !intel_crtc_has_pending_flip(crtc),
3914                                         60*HZ);
3915
3916         if (ret < 0)
3917                 return ret;
3918
3919         if (ret == 0) {
3920                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3921
3922                 spin_lock_irq(&dev->event_lock);
3923                 if (intel_crtc->unpin_work) {
3924                         WARN_ONCE(1, "Removing stuck page flip\n");
3925                         page_flip_completed(intel_crtc);
3926                 }
3927                 spin_unlock_irq(&dev->event_lock);
3928         }
3929
3930         return 0;
3931 }
3932
3933 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3934 {
3935         u32 temp;
3936
3937         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3938
3939         mutex_lock(&dev_priv->sb_lock);
3940
3941         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3942         temp |= SBI_SSCCTL_DISABLE;
3943         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3944
3945         mutex_unlock(&dev_priv->sb_lock);
3946 }
3947
3948 /* Program iCLKIP clock to the desired frequency */
3949 static void lpt_program_iclkip(struct drm_crtc *crtc)
3950 {
3951         struct drm_device *dev = crtc->dev;
3952         struct drm_i915_private *dev_priv = dev->dev_private;
3953         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3954         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3955         u32 temp;
3956
3957         lpt_disable_iclkip(dev_priv);
3958
3959         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3960         if (clock == 20000) {
3961                 auxdiv = 1;
3962                 divsel = 0x41;
3963                 phaseinc = 0x20;
3964         } else {
3965                 /* The iCLK virtual clock root frequency is in MHz,
3966                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3967                  * divisors, it is necessary to divide one by another, so we
3968                  * convert the virtual clock precision to KHz here for higher
3969                  * precision.
3970                  */
3971                 u32 iclk_virtual_root_freq = 172800 * 1000;
3972                 u32 iclk_pi_range = 64;
3973                 u32 desired_divisor, msb_divisor_value, pi_value;
3974
3975                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, clock);
3976                 msb_divisor_value = desired_divisor / iclk_pi_range;
3977                 pi_value = desired_divisor % iclk_pi_range;
3978
3979                 auxdiv = 0;
3980                 divsel = msb_divisor_value - 2;
3981                 phaseinc = pi_value;
3982         }
3983
3984         /* This should not happen with any sane values */
3985         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3986                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3987         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3988                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3989
3990         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3991                         clock,
3992                         auxdiv,
3993                         divsel,
3994                         phasedir,
3995                         phaseinc);
3996
3997         mutex_lock(&dev_priv->sb_lock);
3998
3999         /* Program SSCDIVINTPHASE6 */
4000         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4001         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4002         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4003         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4004         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4005         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4006         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4007         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4008
4009         /* Program SSCAUXDIV */
4010         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4011         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4012         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4013         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4014
4015         /* Enable modulator and associated divider */
4016         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4017         temp &= ~SBI_SSCCTL_DISABLE;
4018         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4019
4020         mutex_unlock(&dev_priv->sb_lock);
4021
4022         /* Wait for initialization time */
4023         udelay(24);
4024
4025         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4026 }
4027
4028 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4029                                                 enum pipe pch_transcoder)
4030 {
4031         struct drm_device *dev = crtc->base.dev;
4032         struct drm_i915_private *dev_priv = dev->dev_private;
4033         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4034
4035         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4036                    I915_READ(HTOTAL(cpu_transcoder)));
4037         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4038                    I915_READ(HBLANK(cpu_transcoder)));
4039         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4040                    I915_READ(HSYNC(cpu_transcoder)));
4041
4042         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4043                    I915_READ(VTOTAL(cpu_transcoder)));
4044         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4045                    I915_READ(VBLANK(cpu_transcoder)));
4046         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4047                    I915_READ(VSYNC(cpu_transcoder)));
4048         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4049                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4050 }
4051
4052 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4053 {
4054         struct drm_i915_private *dev_priv = dev->dev_private;
4055         uint32_t temp;
4056
4057         temp = I915_READ(SOUTH_CHICKEN1);
4058         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4059                 return;
4060
4061         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4062         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4063
4064         temp &= ~FDI_BC_BIFURCATION_SELECT;
4065         if (enable)
4066                 temp |= FDI_BC_BIFURCATION_SELECT;
4067
4068         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4069         I915_WRITE(SOUTH_CHICKEN1, temp);
4070         POSTING_READ(SOUTH_CHICKEN1);
4071 }
4072
4073 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4074 {
4075         struct drm_device *dev = intel_crtc->base.dev;
4076
4077         switch (intel_crtc->pipe) {
4078         case PIPE_A:
4079                 break;
4080         case PIPE_B:
4081                 if (intel_crtc->config->fdi_lanes > 2)
4082                         cpt_set_fdi_bc_bifurcation(dev, false);
4083                 else
4084                         cpt_set_fdi_bc_bifurcation(dev, true);
4085
4086                 break;
4087         case PIPE_C:
4088                 cpt_set_fdi_bc_bifurcation(dev, true);
4089
4090                 break;
4091         default:
4092                 BUG();
4093         }
4094 }
4095
4096 /* Return which DP Port should be selected for Transcoder DP control */
4097 static enum port
4098 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4099 {
4100         struct drm_device *dev = crtc->dev;
4101         struct intel_encoder *encoder;
4102
4103         for_each_encoder_on_crtc(dev, crtc, encoder) {
4104                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4105                     encoder->type == INTEL_OUTPUT_EDP)
4106                         return enc_to_dig_port(&encoder->base)->port;
4107         }
4108
4109         return -1;
4110 }
4111
4112 /*
4113  * Enable PCH resources required for PCH ports:
4114  *   - PCH PLLs
4115  *   - FDI training & RX/TX
4116  *   - update transcoder timings
4117  *   - DP transcoding bits
4118  *   - transcoder
4119  */
4120 static void ironlake_pch_enable(struct drm_crtc *crtc)
4121 {
4122         struct drm_device *dev = crtc->dev;
4123         struct drm_i915_private *dev_priv = dev->dev_private;
4124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4125         int pipe = intel_crtc->pipe;
4126         u32 temp;
4127
4128         assert_pch_transcoder_disabled(dev_priv, pipe);
4129
4130         if (IS_IVYBRIDGE(dev))
4131                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4132
4133         /* Write the TU size bits before fdi link training, so that error
4134          * detection works. */
4135         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4136                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4137
4138         /*
4139          * Sometimes spurious CPU pipe underruns happen during FDI
4140          * training, at least with VGA+HDMI cloning. Suppress them.
4141          */
4142         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4143
4144         /* For PCH output, training FDI link */
4145         dev_priv->display.fdi_link_train(crtc);
4146
4147         /* We need to program the right clock selection before writing the pixel
4148          * mutliplier into the DPLL. */
4149         if (HAS_PCH_CPT(dev)) {
4150                 u32 sel;
4151
4152                 temp = I915_READ(PCH_DPLL_SEL);
4153                 temp |= TRANS_DPLL_ENABLE(pipe);
4154                 sel = TRANS_DPLLB_SEL(pipe);
4155                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4156                         temp |= sel;
4157                 else
4158                         temp &= ~sel;
4159                 I915_WRITE(PCH_DPLL_SEL, temp);
4160         }
4161
4162         /* XXX: pch pll's can be enabled any time before we enable the PCH
4163          * transcoder, and we actually should do this to not upset any PCH
4164          * transcoder that already use the clock when we share it.
4165          *
4166          * Note that enable_shared_dpll tries to do the right thing, but
4167          * get_shared_dpll unconditionally resets the pll - we need that to have
4168          * the right LVDS enable sequence. */
4169         intel_enable_shared_dpll(intel_crtc);
4170
4171         /* set transcoder timing, panel must allow it */
4172         assert_panel_unlocked(dev_priv, pipe);
4173         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4174
4175         intel_fdi_normal_train(crtc);
4176
4177         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4178
4179         /* For PCH DP, enable TRANS_DP_CTL */
4180         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4181                 const struct drm_display_mode *adjusted_mode =
4182                         &intel_crtc->config->base.adjusted_mode;
4183                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4184                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4185                 temp = I915_READ(reg);
4186                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4187                           TRANS_DP_SYNC_MASK |
4188                           TRANS_DP_BPC_MASK);
4189                 temp |= TRANS_DP_OUTPUT_ENABLE;
4190                 temp |= bpc << 9; /* same format but at 11:9 */
4191
4192                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4193                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4194                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4195                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4196
4197                 switch (intel_trans_dp_port_sel(crtc)) {
4198                 case PORT_B:
4199                         temp |= TRANS_DP_PORT_SEL_B;
4200                         break;
4201                 case PORT_C:
4202                         temp |= TRANS_DP_PORT_SEL_C;
4203                         break;
4204                 case PORT_D:
4205                         temp |= TRANS_DP_PORT_SEL_D;
4206                         break;
4207                 default:
4208                         BUG();
4209                 }
4210
4211                 I915_WRITE(reg, temp);
4212         }
4213
4214         ironlake_enable_pch_transcoder(dev_priv, pipe);
4215 }
4216
4217 static void lpt_pch_enable(struct drm_crtc *crtc)
4218 {
4219         struct drm_device *dev = crtc->dev;
4220         struct drm_i915_private *dev_priv = dev->dev_private;
4221         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4222         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4223
4224         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4225
4226         lpt_program_iclkip(crtc);
4227
4228         /* Set transcoder timing. */
4229         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4230
4231         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4232 }
4233
4234 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4235                                                 struct intel_crtc_state *crtc_state)
4236 {
4237         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4238         struct intel_shared_dpll *pll;
4239         struct intel_shared_dpll_config *shared_dpll;
4240         enum intel_dpll_id i;
4241         int max = dev_priv->num_shared_dpll;
4242
4243         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4244
4245         if (HAS_PCH_IBX(dev_priv->dev)) {
4246                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4247                 i = (enum intel_dpll_id) crtc->pipe;
4248                 pll = &dev_priv->shared_dplls[i];
4249
4250                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4251                               crtc->base.base.id, pll->name);
4252
4253                 WARN_ON(shared_dpll[i].crtc_mask);
4254
4255                 goto found;
4256         }
4257
4258         if (IS_BROXTON(dev_priv->dev)) {
4259                 /* PLL is attached to port in bxt */
4260                 struct intel_encoder *encoder;
4261                 struct intel_digital_port *intel_dig_port;
4262
4263                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4264                 if (WARN_ON(!encoder))
4265                         return NULL;
4266
4267                 intel_dig_port = enc_to_dig_port(&encoder->base);
4268                 /* 1:1 mapping between ports and PLLs */
4269                 i = (enum intel_dpll_id)intel_dig_port->port;
4270                 pll = &dev_priv->shared_dplls[i];
4271                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4272                         crtc->base.base.id, pll->name);
4273                 WARN_ON(shared_dpll[i].crtc_mask);
4274
4275                 goto found;
4276         } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4277                 /* Do not consider SPLL */
4278                 max = 2;
4279
4280         for (i = 0; i < max; i++) {
4281                 pll = &dev_priv->shared_dplls[i];
4282
4283                 /* Only want to check enabled timings first */
4284                 if (shared_dpll[i].crtc_mask == 0)
4285                         continue;
4286
4287                 if (memcmp(&crtc_state->dpll_hw_state,
4288                            &shared_dpll[i].hw_state,
4289                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4290                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4291                                       crtc->base.base.id, pll->name,
4292                                       shared_dpll[i].crtc_mask,
4293                                       pll->active);
4294                         goto found;
4295                 }
4296         }
4297
4298         /* Ok no matching timings, maybe there's a free one? */
4299         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4300                 pll = &dev_priv->shared_dplls[i];
4301                 if (shared_dpll[i].crtc_mask == 0) {
4302                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4303                                       crtc->base.base.id, pll->name);
4304                         goto found;
4305                 }
4306         }
4307
4308         return NULL;
4309
4310 found:
4311         if (shared_dpll[i].crtc_mask == 0)
4312                 shared_dpll[i].hw_state =
4313                         crtc_state->dpll_hw_state;
4314
4315         crtc_state->shared_dpll = i;
4316         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4317                          pipe_name(crtc->pipe));
4318
4319         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4320
4321         return pll;
4322 }
4323
4324 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4325 {
4326         struct drm_i915_private *dev_priv = to_i915(state->dev);
4327         struct intel_shared_dpll_config *shared_dpll;
4328         struct intel_shared_dpll *pll;
4329         enum intel_dpll_id i;
4330
4331         if (!to_intel_atomic_state(state)->dpll_set)
4332                 return;
4333
4334         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4335         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4336                 pll = &dev_priv->shared_dplls[i];
4337                 pll->config = shared_dpll[i];
4338         }
4339 }
4340
4341 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4342 {
4343         struct drm_i915_private *dev_priv = dev->dev_private;
4344         i915_reg_t dslreg = PIPEDSL(pipe);
4345         u32 temp;
4346
4347         temp = I915_READ(dslreg);
4348         udelay(500);
4349         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4350                 if (wait_for(I915_READ(dslreg) != temp, 5))
4351                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4352         }
4353 }
4354
4355 static int
4356 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4357                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4358                   int src_w, int src_h, int dst_w, int dst_h)
4359 {
4360         struct intel_crtc_scaler_state *scaler_state =
4361                 &crtc_state->scaler_state;
4362         struct intel_crtc *intel_crtc =
4363                 to_intel_crtc(crtc_state->base.crtc);
4364         int need_scaling;
4365
4366         need_scaling = intel_rotation_90_or_270(rotation) ?
4367                 (src_h != dst_w || src_w != dst_h):
4368                 (src_w != dst_w || src_h != dst_h);
4369
4370         /*
4371          * if plane is being disabled or scaler is no more required or force detach
4372          *  - free scaler binded to this plane/crtc
4373          *  - in order to do this, update crtc->scaler_usage
4374          *
4375          * Here scaler state in crtc_state is set free so that
4376          * scaler can be assigned to other user. Actual register
4377          * update to free the scaler is done in plane/panel-fit programming.
4378          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4379          */
4380         if (force_detach || !need_scaling) {
4381                 if (*scaler_id >= 0) {
4382                         scaler_state->scaler_users &= ~(1 << scaler_user);
4383                         scaler_state->scalers[*scaler_id].in_use = 0;
4384
4385                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4386                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4387                                 intel_crtc->pipe, scaler_user, *scaler_id,
4388                                 scaler_state->scaler_users);
4389                         *scaler_id = -1;
4390                 }
4391                 return 0;
4392         }
4393
4394         /* range checks */
4395         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4396                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4397
4398                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4399                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4400                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4401                         "size is out of scaler range\n",
4402                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4403                 return -EINVAL;
4404         }
4405
4406         /* mark this plane as a scaler user in crtc_state */
4407         scaler_state->scaler_users |= (1 << scaler_user);
4408         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4409                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4410                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4411                 scaler_state->scaler_users);
4412
4413         return 0;
4414 }
4415
4416 /**
4417  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4418  *
4419  * @state: crtc's scaler state
4420  *
4421  * Return
4422  *     0 - scaler_usage updated successfully
4423  *    error - requested scaling cannot be supported or other error condition
4424  */
4425 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4426 {
4427         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4428         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4429
4430         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4431                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4432
4433         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4434                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4435                 state->pipe_src_w, state->pipe_src_h,
4436                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4437 }
4438
4439 /**
4440  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4441  *
4442  * @state: crtc's scaler state
4443  * @plane_state: atomic plane state to update
4444  *
4445  * Return
4446  *     0 - scaler_usage updated successfully
4447  *    error - requested scaling cannot be supported or other error condition
4448  */
4449 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4450                                    struct intel_plane_state *plane_state)
4451 {
4452
4453         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4454         struct intel_plane *intel_plane =
4455                 to_intel_plane(plane_state->base.plane);
4456         struct drm_framebuffer *fb = plane_state->base.fb;
4457         int ret;
4458
4459         bool force_detach = !fb || !plane_state->visible;
4460
4461         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4462                       intel_plane->base.base.id, intel_crtc->pipe,
4463                       drm_plane_index(&intel_plane->base));
4464
4465         ret = skl_update_scaler(crtc_state, force_detach,
4466                                 drm_plane_index(&intel_plane->base),
4467                                 &plane_state->scaler_id,
4468                                 plane_state->base.rotation,
4469                                 drm_rect_width(&plane_state->src) >> 16,
4470                                 drm_rect_height(&plane_state->src) >> 16,
4471                                 drm_rect_width(&plane_state->dst),
4472                                 drm_rect_height(&plane_state->dst));
4473
4474         if (ret || plane_state->scaler_id < 0)
4475                 return ret;
4476
4477         /* check colorkey */
4478         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4479                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4480                               intel_plane->base.base.id);
4481                 return -EINVAL;
4482         }
4483
4484         /* Check src format */
4485         switch (fb->pixel_format) {
4486         case DRM_FORMAT_RGB565:
4487         case DRM_FORMAT_XBGR8888:
4488         case DRM_FORMAT_XRGB8888:
4489         case DRM_FORMAT_ABGR8888:
4490         case DRM_FORMAT_ARGB8888:
4491         case DRM_FORMAT_XRGB2101010:
4492         case DRM_FORMAT_XBGR2101010:
4493         case DRM_FORMAT_YUYV:
4494         case DRM_FORMAT_YVYU:
4495         case DRM_FORMAT_UYVY:
4496         case DRM_FORMAT_VYUY:
4497                 break;
4498         default:
4499                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4500                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4501                 return -EINVAL;
4502         }
4503
4504         return 0;
4505 }
4506
4507 static void skylake_scaler_disable(struct intel_crtc *crtc)
4508 {
4509         int i;
4510
4511         for (i = 0; i < crtc->num_scalers; i++)
4512                 skl_detach_scaler(crtc, i);
4513 }
4514
4515 static void skylake_pfit_enable(struct intel_crtc *crtc)
4516 {
4517         struct drm_device *dev = crtc->base.dev;
4518         struct drm_i915_private *dev_priv = dev->dev_private;
4519         int pipe = crtc->pipe;
4520         struct intel_crtc_scaler_state *scaler_state =
4521                 &crtc->config->scaler_state;
4522
4523         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4524
4525         if (crtc->config->pch_pfit.enabled) {
4526                 int id;
4527
4528                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4529                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4530                         return;
4531                 }
4532
4533                 id = scaler_state->scaler_id;
4534                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4535                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4536                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4537                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4538
4539                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4540         }
4541 }
4542
4543 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4544 {
4545         struct drm_device *dev = crtc->base.dev;
4546         struct drm_i915_private *dev_priv = dev->dev_private;
4547         int pipe = crtc->pipe;
4548
4549         if (crtc->config->pch_pfit.enabled) {
4550                 /* Force use of hard-coded filter coefficients
4551                  * as some pre-programmed values are broken,
4552                  * e.g. x201.
4553                  */
4554                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4555                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4556                                                  PF_PIPE_SEL_IVB(pipe));
4557                 else
4558                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4559                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4560                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4561         }
4562 }
4563
4564 void hsw_enable_ips(struct intel_crtc *crtc)
4565 {
4566         struct drm_device *dev = crtc->base.dev;
4567         struct drm_i915_private *dev_priv = dev->dev_private;
4568
4569         if (!crtc->config->ips_enabled)
4570                 return;
4571
4572         /* We can only enable IPS after we enable a plane and wait for a vblank */
4573         intel_wait_for_vblank(dev, crtc->pipe);
4574
4575         assert_plane_enabled(dev_priv, crtc->plane);
4576         if (IS_BROADWELL(dev)) {
4577                 mutex_lock(&dev_priv->rps.hw_lock);
4578                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4579                 mutex_unlock(&dev_priv->rps.hw_lock);
4580                 /* Quoting Art Runyan: "its not safe to expect any particular
4581                  * value in IPS_CTL bit 31 after enabling IPS through the
4582                  * mailbox." Moreover, the mailbox may return a bogus state,
4583                  * so we need to just enable it and continue on.
4584                  */
4585         } else {
4586                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4587                 /* The bit only becomes 1 in the next vblank, so this wait here
4588                  * is essentially intel_wait_for_vblank. If we don't have this
4589                  * and don't wait for vblanks until the end of crtc_enable, then
4590                  * the HW state readout code will complain that the expected
4591                  * IPS_CTL value is not the one we read. */
4592                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4593                         DRM_ERROR("Timed out waiting for IPS enable\n");
4594         }
4595 }
4596
4597 void hsw_disable_ips(struct intel_crtc *crtc)
4598 {
4599         struct drm_device *dev = crtc->base.dev;
4600         struct drm_i915_private *dev_priv = dev->dev_private;
4601
4602         if (!crtc->config->ips_enabled)
4603                 return;
4604
4605         assert_plane_enabled(dev_priv, crtc->plane);
4606         if (IS_BROADWELL(dev)) {
4607                 mutex_lock(&dev_priv->rps.hw_lock);
4608                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4609                 mutex_unlock(&dev_priv->rps.hw_lock);
4610                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4611                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4612                         DRM_ERROR("Timed out waiting for IPS disable\n");
4613         } else {
4614                 I915_WRITE(IPS_CTL, 0);
4615                 POSTING_READ(IPS_CTL);
4616         }
4617
4618         /* We need to wait for a vblank before we can disable the plane. */
4619         intel_wait_for_vblank(dev, crtc->pipe);
4620 }
4621
4622 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4623 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4624 {
4625         struct drm_device *dev = crtc->dev;
4626         struct drm_i915_private *dev_priv = dev->dev_private;
4627         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4628         enum pipe pipe = intel_crtc->pipe;
4629         int i;
4630         bool reenable_ips = false;
4631
4632         /* The clocks have to be on to load the palette. */
4633         if (!crtc->state->active)
4634                 return;
4635
4636         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4637                 if (intel_crtc->config->has_dsi_encoder)
4638                         assert_dsi_pll_enabled(dev_priv);
4639                 else
4640                         assert_pll_enabled(dev_priv, pipe);
4641         }
4642
4643         /* Workaround : Do not read or write the pipe palette/gamma data while
4644          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4645          */
4646         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4647             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4648              GAMMA_MODE_MODE_SPLIT)) {
4649                 hsw_disable_ips(intel_crtc);
4650                 reenable_ips = true;
4651         }
4652
4653         for (i = 0; i < 256; i++) {
4654                 i915_reg_t palreg;
4655
4656                 if (HAS_GMCH_DISPLAY(dev))
4657                         palreg = PALETTE(pipe, i);
4658                 else
4659                         palreg = LGC_PALETTE(pipe, i);
4660
4661                 I915_WRITE(palreg,
4662                            (intel_crtc->lut_r[i] << 16) |
4663                            (intel_crtc->lut_g[i] << 8) |
4664                            intel_crtc->lut_b[i]);
4665         }
4666
4667         if (reenable_ips)
4668                 hsw_enable_ips(intel_crtc);
4669 }
4670
4671 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4672 {
4673         if (intel_crtc->overlay) {
4674                 struct drm_device *dev = intel_crtc->base.dev;
4675                 struct drm_i915_private *dev_priv = dev->dev_private;
4676
4677                 mutex_lock(&dev->struct_mutex);
4678                 dev_priv->mm.interruptible = false;
4679                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4680                 dev_priv->mm.interruptible = true;
4681                 mutex_unlock(&dev->struct_mutex);
4682         }
4683
4684         /* Let userspace switch the overlay on again. In most cases userspace
4685          * has to recompute where to put it anyway.
4686          */
4687 }
4688
4689 /**
4690  * intel_post_enable_primary - Perform operations after enabling primary plane
4691  * @crtc: the CRTC whose primary plane was just enabled
4692  *
4693  * Performs potentially sleeping operations that must be done after the primary
4694  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4695  * called due to an explicit primary plane update, or due to an implicit
4696  * re-enable that is caused when a sprite plane is updated to no longer
4697  * completely hide the primary plane.
4698  */
4699 static void
4700 intel_post_enable_primary(struct drm_crtc *crtc)
4701 {
4702         struct drm_device *dev = crtc->dev;
4703         struct drm_i915_private *dev_priv = dev->dev_private;
4704         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4705         int pipe = intel_crtc->pipe;
4706
4707         /*
4708          * FIXME IPS should be fine as long as one plane is
4709          * enabled, but in practice it seems to have problems
4710          * when going from primary only to sprite only and vice
4711          * versa.
4712          */
4713         hsw_enable_ips(intel_crtc);
4714
4715         /*
4716          * Gen2 reports pipe underruns whenever all planes are disabled.
4717          * So don't enable underrun reporting before at least some planes
4718          * are enabled.
4719          * FIXME: Need to fix the logic to work when we turn off all planes
4720          * but leave the pipe running.
4721          */
4722         if (IS_GEN2(dev))
4723                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4724
4725         /* Underruns don't always raise interrupts, so check manually. */
4726         intel_check_cpu_fifo_underruns(dev_priv);
4727         intel_check_pch_fifo_underruns(dev_priv);
4728 }
4729
4730 /**
4731  * intel_pre_disable_primary - Perform operations before disabling primary plane
4732  * @crtc: the CRTC whose primary plane is to be disabled
4733  *
4734  * Performs potentially sleeping operations that must be done before the
4735  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4736  * be called due to an explicit primary plane update, or due to an implicit
4737  * disable that is caused when a sprite plane completely hides the primary
4738  * plane.
4739  */
4740 static void
4741 intel_pre_disable_primary(struct drm_crtc *crtc)
4742 {
4743         struct drm_device *dev = crtc->dev;
4744         struct drm_i915_private *dev_priv = dev->dev_private;
4745         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4746         int pipe = intel_crtc->pipe;
4747
4748         /*
4749          * Gen2 reports pipe underruns whenever all planes are disabled.
4750          * So diasble underrun reporting before all the planes get disabled.
4751          * FIXME: Need to fix the logic to work when we turn off all planes
4752          * but leave the pipe running.
4753          */
4754         if (IS_GEN2(dev))
4755                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4756
4757         /*
4758          * Vblank time updates from the shadow to live plane control register
4759          * are blocked if the memory self-refresh mode is active at that
4760          * moment. So to make sure the plane gets truly disabled, disable
4761          * first the self-refresh mode. The self-refresh enable bit in turn
4762          * will be checked/applied by the HW only at the next frame start
4763          * event which is after the vblank start event, so we need to have a
4764          * wait-for-vblank between disabling the plane and the pipe.
4765          */
4766         if (HAS_GMCH_DISPLAY(dev)) {
4767                 intel_set_memory_cxsr(dev_priv, false);
4768                 dev_priv->wm.vlv.cxsr = false;
4769                 intel_wait_for_vblank(dev, pipe);
4770         }
4771
4772         /*
4773          * FIXME IPS should be fine as long as one plane is
4774          * enabled, but in practice it seems to have problems
4775          * when going from primary only to sprite only and vice
4776          * versa.
4777          */
4778         hsw_disable_ips(intel_crtc);
4779 }
4780
4781 static void intel_post_plane_update(struct intel_crtc *crtc)
4782 {
4783         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4784         struct intel_crtc_state *pipe_config =
4785                 to_intel_crtc_state(crtc->base.state);
4786         struct drm_device *dev = crtc->base.dev;
4787
4788         if (atomic->wait_vblank)
4789                 intel_wait_for_vblank(dev, crtc->pipe);
4790
4791         intel_frontbuffer_flip(dev, atomic->fb_bits);
4792
4793         crtc->wm.cxsr_allowed = true;
4794
4795         if (pipe_config->wm_changed && pipe_config->base.active)
4796                 intel_update_watermarks(&crtc->base);
4797
4798         if (atomic->update_fbc)
4799                 intel_fbc_post_update(crtc);
4800
4801         if (atomic->post_enable_primary)
4802                 intel_post_enable_primary(&crtc->base);
4803
4804         memset(atomic, 0, sizeof(*atomic));
4805 }
4806
4807 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4808 {
4809         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4810         struct drm_device *dev = crtc->base.dev;
4811         struct drm_i915_private *dev_priv = dev->dev_private;
4812         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4813         struct intel_crtc_state *pipe_config =
4814                 to_intel_crtc_state(crtc->base.state);
4815         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4816         struct drm_plane *primary = crtc->base.primary;
4817         struct drm_plane_state *old_pri_state =
4818                 drm_atomic_get_existing_plane_state(old_state, primary);
4819         bool modeset = needs_modeset(&pipe_config->base);
4820
4821         if (atomic->update_fbc)
4822                 intel_fbc_pre_update(crtc);
4823
4824         if (old_pri_state) {
4825                 struct intel_plane_state *primary_state =
4826                         to_intel_plane_state(primary->state);
4827                 struct intel_plane_state *old_primary_state =
4828                         to_intel_plane_state(old_pri_state);
4829
4830                 if (old_primary_state->visible &&
4831                     (modeset || !primary_state->visible))
4832                         intel_pre_disable_primary(&crtc->base);
4833         }
4834
4835         if (pipe_config->disable_cxsr) {
4836                 crtc->wm.cxsr_allowed = false;
4837
4838                 if (old_crtc_state->base.active)
4839                         intel_set_memory_cxsr(dev_priv, false);
4840         }
4841
4842         if (!needs_modeset(&pipe_config->base) && pipe_config->wm_changed)
4843                 intel_update_watermarks(&crtc->base);
4844 }
4845
4846 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4847 {
4848         struct drm_device *dev = crtc->dev;
4849         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4850         struct drm_plane *p;
4851         int pipe = intel_crtc->pipe;
4852
4853         intel_crtc_dpms_overlay_disable(intel_crtc);
4854
4855         drm_for_each_plane_mask(p, dev, plane_mask)
4856                 to_intel_plane(p)->disable_plane(p, crtc);
4857
4858         /*
4859          * FIXME: Once we grow proper nuclear flip support out of this we need
4860          * to compute the mask of flip planes precisely. For the time being
4861          * consider this a flip to a NULL plane.
4862          */
4863         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4864 }
4865
4866 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4867 {
4868         struct drm_device *dev = crtc->dev;
4869         struct drm_i915_private *dev_priv = dev->dev_private;
4870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4871         struct intel_encoder *encoder;
4872         int pipe = intel_crtc->pipe;
4873
4874         if (WARN_ON(intel_crtc->active))
4875                 return;
4876
4877         if (intel_crtc->config->has_pch_encoder)
4878                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4879
4880         if (intel_crtc->config->has_pch_encoder)
4881                 intel_prepare_shared_dpll(intel_crtc);
4882
4883         if (intel_crtc->config->has_dp_encoder)
4884                 intel_dp_set_m_n(intel_crtc, M1_N1);
4885
4886         intel_set_pipe_timings(intel_crtc);
4887
4888         if (intel_crtc->config->has_pch_encoder) {
4889                 intel_cpu_transcoder_set_m_n(intel_crtc,
4890                                      &intel_crtc->config->fdi_m_n, NULL);
4891         }
4892
4893         ironlake_set_pipeconf(crtc);
4894
4895         intel_crtc->active = true;
4896
4897         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4898
4899         for_each_encoder_on_crtc(dev, crtc, encoder)
4900                 if (encoder->pre_enable)
4901                         encoder->pre_enable(encoder);
4902
4903         if (intel_crtc->config->has_pch_encoder) {
4904                 /* Note: FDI PLL enabling _must_ be done before we enable the
4905                  * cpu pipes, hence this is separate from all the other fdi/pch
4906                  * enabling. */
4907                 ironlake_fdi_pll_enable(intel_crtc);
4908         } else {
4909                 assert_fdi_tx_disabled(dev_priv, pipe);
4910                 assert_fdi_rx_disabled(dev_priv, pipe);
4911         }
4912
4913         ironlake_pfit_enable(intel_crtc);
4914
4915         /*
4916          * On ILK+ LUT must be loaded before the pipe is running but with
4917          * clocks enabled
4918          */
4919         intel_crtc_load_lut(crtc);
4920
4921         intel_update_watermarks(crtc);
4922         intel_enable_pipe(intel_crtc);
4923
4924         if (intel_crtc->config->has_pch_encoder)
4925                 ironlake_pch_enable(crtc);
4926
4927         assert_vblank_disabled(crtc);
4928         drm_crtc_vblank_on(crtc);
4929
4930         for_each_encoder_on_crtc(dev, crtc, encoder)
4931                 encoder->enable(encoder);
4932
4933         if (HAS_PCH_CPT(dev))
4934                 cpt_verify_modeset(dev, intel_crtc->pipe);
4935
4936         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4937         if (intel_crtc->config->has_pch_encoder)
4938                 intel_wait_for_vblank(dev, pipe);
4939         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4940 }
4941
4942 /* IPS only exists on ULT machines and is tied to pipe A. */
4943 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4944 {
4945         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4946 }
4947
4948 static void haswell_crtc_enable(struct drm_crtc *crtc)
4949 {
4950         struct drm_device *dev = crtc->dev;
4951         struct drm_i915_private *dev_priv = dev->dev_private;
4952         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4953         struct intel_encoder *encoder;
4954         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4955         struct intel_crtc_state *pipe_config =
4956                 to_intel_crtc_state(crtc->state);
4957
4958         if (WARN_ON(intel_crtc->active))
4959                 return;
4960
4961         if (intel_crtc->config->has_pch_encoder)
4962                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4963                                                       false);
4964
4965         if (intel_crtc_to_shared_dpll(intel_crtc))
4966                 intel_enable_shared_dpll(intel_crtc);
4967
4968         if (intel_crtc->config->has_dp_encoder)
4969                 intel_dp_set_m_n(intel_crtc, M1_N1);
4970
4971         intel_set_pipe_timings(intel_crtc);
4972
4973         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4974                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4975                            intel_crtc->config->pixel_multiplier - 1);
4976         }
4977
4978         if (intel_crtc->config->has_pch_encoder) {
4979                 intel_cpu_transcoder_set_m_n(intel_crtc,
4980                                      &intel_crtc->config->fdi_m_n, NULL);
4981         }
4982
4983         haswell_set_pipeconf(crtc);
4984
4985         intel_set_pipe_csc(crtc);
4986
4987         intel_crtc->active = true;
4988
4989         if (intel_crtc->config->has_pch_encoder)
4990                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4991         else
4992                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4993
4994         for_each_encoder_on_crtc(dev, crtc, encoder) {
4995                 if (encoder->pre_enable)
4996                         encoder->pre_enable(encoder);
4997         }
4998
4999         if (intel_crtc->config->has_pch_encoder)
5000                 dev_priv->display.fdi_link_train(crtc);
5001
5002         if (!intel_crtc->config->has_dsi_encoder)
5003                 intel_ddi_enable_pipe_clock(intel_crtc);
5004
5005         if (INTEL_INFO(dev)->gen >= 9)
5006                 skylake_pfit_enable(intel_crtc);
5007         else
5008                 ironlake_pfit_enable(intel_crtc);
5009
5010         /*
5011          * On ILK+ LUT must be loaded before the pipe is running but with
5012          * clocks enabled
5013          */
5014         intel_crtc_load_lut(crtc);
5015
5016         intel_ddi_set_pipe_settings(crtc);
5017         if (!intel_crtc->config->has_dsi_encoder)
5018                 intel_ddi_enable_transcoder_func(crtc);
5019
5020         intel_update_watermarks(crtc);
5021         intel_enable_pipe(intel_crtc);
5022
5023         if (intel_crtc->config->has_pch_encoder)
5024                 lpt_pch_enable(crtc);
5025
5026         if (intel_crtc->config->dp_encoder_is_mst)
5027                 intel_ddi_set_vc_payload_alloc(crtc, true);
5028
5029         assert_vblank_disabled(crtc);
5030         drm_crtc_vblank_on(crtc);
5031
5032         for_each_encoder_on_crtc(dev, crtc, encoder) {
5033                 encoder->enable(encoder);
5034                 intel_opregion_notify_encoder(encoder, true);
5035         }
5036
5037         if (intel_crtc->config->has_pch_encoder) {
5038                 intel_wait_for_vblank(dev, pipe);
5039                 intel_wait_for_vblank(dev, pipe);
5040                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5041                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5042                                                       true);
5043         }
5044
5045         /* If we change the relative order between pipe/planes enabling, we need
5046          * to change the workaround. */
5047         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5048         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5049                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5050                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5051         }
5052 }
5053
5054 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5055 {
5056         struct drm_device *dev = crtc->base.dev;
5057         struct drm_i915_private *dev_priv = dev->dev_private;
5058         int pipe = crtc->pipe;
5059
5060         /* To avoid upsetting the power well on haswell only disable the pfit if
5061          * it's in use. The hw state code will make sure we get this right. */
5062         if (force || crtc->config->pch_pfit.enabled) {
5063                 I915_WRITE(PF_CTL(pipe), 0);
5064                 I915_WRITE(PF_WIN_POS(pipe), 0);
5065                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5066         }
5067 }
5068
5069 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5070 {
5071         struct drm_device *dev = crtc->dev;
5072         struct drm_i915_private *dev_priv = dev->dev_private;
5073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5074         struct intel_encoder *encoder;
5075         int pipe = intel_crtc->pipe;
5076
5077         if (intel_crtc->config->has_pch_encoder)
5078                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5079
5080         for_each_encoder_on_crtc(dev, crtc, encoder)
5081                 encoder->disable(encoder);
5082
5083         drm_crtc_vblank_off(crtc);
5084         assert_vblank_disabled(crtc);
5085
5086         /*
5087          * Sometimes spurious CPU pipe underruns happen when the
5088          * pipe is already disabled, but FDI RX/TX is still enabled.
5089          * Happens at least with VGA+HDMI cloning. Suppress them.
5090          */
5091         if (intel_crtc->config->has_pch_encoder)
5092                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5093
5094         intel_disable_pipe(intel_crtc);
5095
5096         ironlake_pfit_disable(intel_crtc, false);
5097
5098         if (intel_crtc->config->has_pch_encoder) {
5099                 ironlake_fdi_disable(crtc);
5100                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5101         }
5102
5103         for_each_encoder_on_crtc(dev, crtc, encoder)
5104                 if (encoder->post_disable)
5105                         encoder->post_disable(encoder);
5106
5107         if (intel_crtc->config->has_pch_encoder) {
5108                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5109
5110                 if (HAS_PCH_CPT(dev)) {
5111                         i915_reg_t reg;
5112                         u32 temp;
5113
5114                         /* disable TRANS_DP_CTL */
5115                         reg = TRANS_DP_CTL(pipe);
5116                         temp = I915_READ(reg);
5117                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5118                                   TRANS_DP_PORT_SEL_MASK);
5119                         temp |= TRANS_DP_PORT_SEL_NONE;
5120                         I915_WRITE(reg, temp);
5121
5122                         /* disable DPLL_SEL */
5123                         temp = I915_READ(PCH_DPLL_SEL);
5124                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5125                         I915_WRITE(PCH_DPLL_SEL, temp);
5126                 }
5127
5128                 ironlake_fdi_pll_disable(intel_crtc);
5129         }
5130
5131         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5132 }
5133
5134 static void haswell_crtc_disable(struct drm_crtc *crtc)
5135 {
5136         struct drm_device *dev = crtc->dev;
5137         struct drm_i915_private *dev_priv = dev->dev_private;
5138         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5139         struct intel_encoder *encoder;
5140         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5141
5142         if (intel_crtc->config->has_pch_encoder)
5143                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5144                                                       false);
5145
5146         for_each_encoder_on_crtc(dev, crtc, encoder) {
5147                 intel_opregion_notify_encoder(encoder, false);
5148                 encoder->disable(encoder);
5149         }
5150
5151         drm_crtc_vblank_off(crtc);
5152         assert_vblank_disabled(crtc);
5153
5154         intel_disable_pipe(intel_crtc);
5155
5156         if (intel_crtc->config->dp_encoder_is_mst)
5157                 intel_ddi_set_vc_payload_alloc(crtc, false);
5158
5159         if (!intel_crtc->config->has_dsi_encoder)
5160                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5161
5162         if (INTEL_INFO(dev)->gen >= 9)
5163                 skylake_scaler_disable(intel_crtc);
5164         else
5165                 ironlake_pfit_disable(intel_crtc, false);
5166
5167         if (!intel_crtc->config->has_dsi_encoder)
5168                 intel_ddi_disable_pipe_clock(intel_crtc);
5169
5170         for_each_encoder_on_crtc(dev, crtc, encoder)
5171                 if (encoder->post_disable)
5172                         encoder->post_disable(encoder);
5173
5174         if (intel_crtc->config->has_pch_encoder) {
5175                 lpt_disable_pch_transcoder(dev_priv);
5176                 lpt_disable_iclkip(dev_priv);
5177                 intel_ddi_fdi_disable(crtc);
5178
5179                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5180                                                       true);
5181         }
5182 }
5183
5184 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5185 {
5186         struct drm_device *dev = crtc->base.dev;
5187         struct drm_i915_private *dev_priv = dev->dev_private;
5188         struct intel_crtc_state *pipe_config = crtc->config;
5189
5190         if (!pipe_config->gmch_pfit.control)
5191                 return;
5192
5193         /*
5194          * The panel fitter should only be adjusted whilst the pipe is disabled,
5195          * according to register description and PRM.
5196          */
5197         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5198         assert_pipe_disabled(dev_priv, crtc->pipe);
5199
5200         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5201         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5202
5203         /* Border color in case we don't scale up to the full screen. Black by
5204          * default, change to something else for debugging. */
5205         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5206 }
5207
5208 static enum intel_display_power_domain port_to_power_domain(enum port port)
5209 {
5210         switch (port) {
5211         case PORT_A:
5212                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5213         case PORT_B:
5214                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5215         case PORT_C:
5216                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5217         case PORT_D:
5218                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5219         case PORT_E:
5220                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5221         default:
5222                 MISSING_CASE(port);
5223                 return POWER_DOMAIN_PORT_OTHER;
5224         }
5225 }
5226
5227 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5228 {
5229         switch (port) {
5230         case PORT_A:
5231                 return POWER_DOMAIN_AUX_A;
5232         case PORT_B:
5233                 return POWER_DOMAIN_AUX_B;
5234         case PORT_C:
5235                 return POWER_DOMAIN_AUX_C;
5236         case PORT_D:
5237                 return POWER_DOMAIN_AUX_D;
5238         case PORT_E:
5239                 /* FIXME: Check VBT for actual wiring of PORT E */
5240                 return POWER_DOMAIN_AUX_D;
5241         default:
5242                 MISSING_CASE(port);
5243                 return POWER_DOMAIN_AUX_A;
5244         }
5245 }
5246
5247 enum intel_display_power_domain
5248 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5249 {
5250         struct drm_device *dev = intel_encoder->base.dev;
5251         struct intel_digital_port *intel_dig_port;
5252
5253         switch (intel_encoder->type) {
5254         case INTEL_OUTPUT_UNKNOWN:
5255                 /* Only DDI platforms should ever use this output type */
5256                 WARN_ON_ONCE(!HAS_DDI(dev));
5257         case INTEL_OUTPUT_DISPLAYPORT:
5258         case INTEL_OUTPUT_HDMI:
5259         case INTEL_OUTPUT_EDP:
5260                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5261                 return port_to_power_domain(intel_dig_port->port);
5262         case INTEL_OUTPUT_DP_MST:
5263                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5264                 return port_to_power_domain(intel_dig_port->port);
5265         case INTEL_OUTPUT_ANALOG:
5266                 return POWER_DOMAIN_PORT_CRT;
5267         case INTEL_OUTPUT_DSI:
5268                 return POWER_DOMAIN_PORT_DSI;
5269         default:
5270                 return POWER_DOMAIN_PORT_OTHER;
5271         }
5272 }
5273
5274 enum intel_display_power_domain
5275 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5276 {
5277         struct drm_device *dev = intel_encoder->base.dev;
5278         struct intel_digital_port *intel_dig_port;
5279
5280         switch (intel_encoder->type) {
5281         case INTEL_OUTPUT_UNKNOWN:
5282         case INTEL_OUTPUT_HDMI:
5283                 /*
5284                  * Only DDI platforms should ever use these output types.
5285                  * We can get here after the HDMI detect code has already set
5286                  * the type of the shared encoder. Since we can't be sure
5287                  * what's the status of the given connectors, play safe and
5288                  * run the DP detection too.
5289                  */
5290                 WARN_ON_ONCE(!HAS_DDI(dev));
5291         case INTEL_OUTPUT_DISPLAYPORT:
5292         case INTEL_OUTPUT_EDP:
5293                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5294                 return port_to_aux_power_domain(intel_dig_port->port);
5295         case INTEL_OUTPUT_DP_MST:
5296                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5297                 return port_to_aux_power_domain(intel_dig_port->port);
5298         default:
5299                 MISSING_CASE(intel_encoder->type);
5300                 return POWER_DOMAIN_AUX_A;
5301         }
5302 }
5303
5304 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5305 {
5306         struct drm_device *dev = crtc->dev;
5307         struct intel_encoder *intel_encoder;
5308         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5309         enum pipe pipe = intel_crtc->pipe;
5310         unsigned long mask;
5311         enum transcoder transcoder = intel_crtc->config->cpu_transcoder;
5312
5313         if (!crtc->state->active)
5314                 return 0;
5315
5316         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5317         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5318         if (intel_crtc->config->pch_pfit.enabled ||
5319             intel_crtc->config->pch_pfit.force_thru)
5320                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5321
5322         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5323                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5324
5325         return mask;
5326 }
5327
5328 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5329 {
5330         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5331         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5332         enum intel_display_power_domain domain;
5333         unsigned long domains, new_domains, old_domains;
5334
5335         old_domains = intel_crtc->enabled_power_domains;
5336         intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5337
5338         domains = new_domains & ~old_domains;
5339
5340         for_each_power_domain(domain, domains)
5341                 intel_display_power_get(dev_priv, domain);
5342
5343         return old_domains & ~new_domains;
5344 }
5345
5346 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5347                                       unsigned long domains)
5348 {
5349         enum intel_display_power_domain domain;
5350
5351         for_each_power_domain(domain, domains)
5352                 intel_display_power_put(dev_priv, domain);
5353 }
5354
5355 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5356 {
5357         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5358         struct drm_device *dev = state->dev;
5359         struct drm_i915_private *dev_priv = dev->dev_private;
5360         unsigned long put_domains[I915_MAX_PIPES] = {};
5361         struct drm_crtc_state *crtc_state;
5362         struct drm_crtc *crtc;
5363         int i;
5364
5365         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5366                 if (needs_modeset(crtc->state))
5367                         put_domains[to_intel_crtc(crtc)->pipe] =
5368                                 modeset_get_crtc_power_domains(crtc);
5369         }
5370
5371         if (dev_priv->display.modeset_commit_cdclk &&
5372             intel_state->dev_cdclk != dev_priv->cdclk_freq)
5373                 dev_priv->display.modeset_commit_cdclk(state);
5374
5375         for (i = 0; i < I915_MAX_PIPES; i++)
5376                 if (put_domains[i])
5377                         modeset_put_power_domains(dev_priv, put_domains[i]);
5378 }
5379
5380 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5381 {
5382         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5383
5384         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5385             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5386                 return max_cdclk_freq;
5387         else if (IS_CHERRYVIEW(dev_priv))
5388                 return max_cdclk_freq*95/100;
5389         else if (INTEL_INFO(dev_priv)->gen < 4)
5390                 return 2*max_cdclk_freq*90/100;
5391         else
5392                 return max_cdclk_freq*90/100;
5393 }
5394
5395 static void intel_update_max_cdclk(struct drm_device *dev)
5396 {
5397         struct drm_i915_private *dev_priv = dev->dev_private;
5398
5399         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5400                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5401
5402                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5403                         dev_priv->max_cdclk_freq = 675000;
5404                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5405                         dev_priv->max_cdclk_freq = 540000;
5406                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5407                         dev_priv->max_cdclk_freq = 450000;
5408                 else
5409                         dev_priv->max_cdclk_freq = 337500;
5410         } else if (IS_BROADWELL(dev))  {
5411                 /*
5412                  * FIXME with extra cooling we can allow
5413                  * 540 MHz for ULX and 675 Mhz for ULT.
5414                  * How can we know if extra cooling is
5415                  * available? PCI ID, VTB, something else?
5416                  */
5417                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5418                         dev_priv->max_cdclk_freq = 450000;
5419                 else if (IS_BDW_ULX(dev))
5420                         dev_priv->max_cdclk_freq = 450000;
5421                 else if (IS_BDW_ULT(dev))
5422                         dev_priv->max_cdclk_freq = 540000;
5423                 else
5424                         dev_priv->max_cdclk_freq = 675000;
5425         } else if (IS_CHERRYVIEW(dev)) {
5426                 dev_priv->max_cdclk_freq = 320000;
5427         } else if (IS_VALLEYVIEW(dev)) {
5428                 dev_priv->max_cdclk_freq = 400000;
5429         } else {
5430                 /* otherwise assume cdclk is fixed */
5431                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5432         }
5433
5434         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5435
5436         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5437                          dev_priv->max_cdclk_freq);
5438
5439         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5440                          dev_priv->max_dotclk_freq);
5441 }
5442
5443 static void intel_update_cdclk(struct drm_device *dev)
5444 {
5445         struct drm_i915_private *dev_priv = dev->dev_private;
5446
5447         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5448         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5449                          dev_priv->cdclk_freq);
5450
5451         /*
5452          * Program the gmbus_freq based on the cdclk frequency.
5453          * BSpec erroneously claims we should aim for 4MHz, but
5454          * in fact 1MHz is the correct frequency.
5455          */
5456         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5457                 /*
5458                  * Program the gmbus_freq based on the cdclk frequency.
5459                  * BSpec erroneously claims we should aim for 4MHz, but
5460                  * in fact 1MHz is the correct frequency.
5461                  */
5462                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5463         }
5464
5465         if (dev_priv->max_cdclk_freq == 0)
5466                 intel_update_max_cdclk(dev);
5467 }
5468
5469 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5470 {
5471         struct drm_i915_private *dev_priv = dev->dev_private;
5472         uint32_t divider;
5473         uint32_t ratio;
5474         uint32_t current_freq;
5475         int ret;
5476
5477         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5478         switch (frequency) {
5479         case 144000:
5480                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5481                 ratio = BXT_DE_PLL_RATIO(60);
5482                 break;
5483         case 288000:
5484                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5485                 ratio = BXT_DE_PLL_RATIO(60);
5486                 break;
5487         case 384000:
5488                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5489                 ratio = BXT_DE_PLL_RATIO(60);
5490                 break;
5491         case 576000:
5492                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5493                 ratio = BXT_DE_PLL_RATIO(60);
5494                 break;
5495         case 624000:
5496                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5497                 ratio = BXT_DE_PLL_RATIO(65);
5498                 break;
5499         case 19200:
5500                 /*
5501                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5502                  * to suppress GCC warning.
5503                  */
5504                 ratio = 0;
5505                 divider = 0;
5506                 break;
5507         default:
5508                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5509
5510                 return;
5511         }
5512
5513         mutex_lock(&dev_priv->rps.hw_lock);
5514         /* Inform power controller of upcoming frequency change */
5515         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5516                                       0x80000000);
5517         mutex_unlock(&dev_priv->rps.hw_lock);
5518
5519         if (ret) {
5520                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5521                           ret, frequency);
5522                 return;
5523         }
5524
5525         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5526         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5527         current_freq = current_freq * 500 + 1000;
5528
5529         /*
5530          * DE PLL has to be disabled when
5531          * - setting to 19.2MHz (bypass, PLL isn't used)
5532          * - before setting to 624MHz (PLL needs toggling)
5533          * - before setting to any frequency from 624MHz (PLL needs toggling)
5534          */
5535         if (frequency == 19200 || frequency == 624000 ||
5536             current_freq == 624000) {
5537                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5538                 /* Timeout 200us */
5539                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5540                              1))
5541                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5542         }
5543
5544         if (frequency != 19200) {
5545                 uint32_t val;
5546
5547                 val = I915_READ(BXT_DE_PLL_CTL);
5548                 val &= ~BXT_DE_PLL_RATIO_MASK;
5549                 val |= ratio;
5550                 I915_WRITE(BXT_DE_PLL_CTL, val);
5551
5552                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5553                 /* Timeout 200us */
5554                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5555                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5556
5557                 val = I915_READ(CDCLK_CTL);
5558                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5559                 val |= divider;
5560                 /*
5561                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5562                  * enable otherwise.
5563                  */
5564                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5565                 if (frequency >= 500000)
5566                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5567
5568                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5569                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5570                 val |= (frequency - 1000) / 500;
5571                 I915_WRITE(CDCLK_CTL, val);
5572         }
5573
5574         mutex_lock(&dev_priv->rps.hw_lock);
5575         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5576                                       DIV_ROUND_UP(frequency, 25000));
5577         mutex_unlock(&dev_priv->rps.hw_lock);
5578
5579         if (ret) {
5580                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5581                           ret, frequency);
5582                 return;
5583         }
5584
5585         intel_update_cdclk(dev);
5586 }
5587
5588 void broxton_init_cdclk(struct drm_device *dev)
5589 {
5590         struct drm_i915_private *dev_priv = dev->dev_private;
5591         uint32_t val;
5592
5593         /*
5594          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5595          * or else the reset will hang because there is no PCH to respond.
5596          * Move the handshake programming to initialization sequence.
5597          * Previously was left up to BIOS.
5598          */
5599         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5600         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5601         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5602
5603         /* Enable PG1 for cdclk */
5604         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5605
5606         /* check if cd clock is enabled */
5607         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5608                 DRM_DEBUG_KMS("Display already initialized\n");
5609                 return;
5610         }
5611
5612         /*
5613          * FIXME:
5614          * - The initial CDCLK needs to be read from VBT.
5615          *   Need to make this change after VBT has changes for BXT.
5616          * - check if setting the max (or any) cdclk freq is really necessary
5617          *   here, it belongs to modeset time
5618          */
5619         broxton_set_cdclk(dev, 624000);
5620
5621         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5622         POSTING_READ(DBUF_CTL);
5623
5624         udelay(10);
5625
5626         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5627                 DRM_ERROR("DBuf power enable timeout!\n");
5628 }
5629
5630 void broxton_uninit_cdclk(struct drm_device *dev)
5631 {
5632         struct drm_i915_private *dev_priv = dev->dev_private;
5633
5634         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5635         POSTING_READ(DBUF_CTL);
5636
5637         udelay(10);
5638
5639         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5640                 DRM_ERROR("DBuf power disable timeout!\n");
5641
5642         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5643         broxton_set_cdclk(dev, 19200);
5644
5645         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5646 }
5647
5648 static const struct skl_cdclk_entry {
5649         unsigned int freq;
5650         unsigned int vco;
5651 } skl_cdclk_frequencies[] = {
5652         { .freq = 308570, .vco = 8640 },
5653         { .freq = 337500, .vco = 8100 },
5654         { .freq = 432000, .vco = 8640 },
5655         { .freq = 450000, .vco = 8100 },
5656         { .freq = 540000, .vco = 8100 },
5657         { .freq = 617140, .vco = 8640 },
5658         { .freq = 675000, .vco = 8100 },
5659 };
5660
5661 static unsigned int skl_cdclk_decimal(unsigned int freq)
5662 {
5663         return (freq - 1000) / 500;
5664 }
5665
5666 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5667 {
5668         unsigned int i;
5669
5670         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5671                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5672
5673                 if (e->freq == freq)
5674                         return e->vco;
5675         }
5676
5677         return 8100;
5678 }
5679
5680 static void
5681 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5682 {
5683         unsigned int min_freq;
5684         u32 val;
5685
5686         /* select the minimum CDCLK before enabling DPLL 0 */
5687         val = I915_READ(CDCLK_CTL);
5688         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5689         val |= CDCLK_FREQ_337_308;
5690
5691         if (required_vco == 8640)
5692                 min_freq = 308570;
5693         else
5694                 min_freq = 337500;
5695
5696         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5697
5698         I915_WRITE(CDCLK_CTL, val);
5699         POSTING_READ(CDCLK_CTL);
5700
5701         /*
5702          * We always enable DPLL0 with the lowest link rate possible, but still
5703          * taking into account the VCO required to operate the eDP panel at the
5704          * desired frequency. The usual DP link rates operate with a VCO of
5705          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5706          * The modeset code is responsible for the selection of the exact link
5707          * rate later on, with the constraint of choosing a frequency that
5708          * works with required_vco.
5709          */
5710         val = I915_READ(DPLL_CTRL1);
5711
5712         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5713                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5714         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5715         if (required_vco == 8640)
5716                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5717                                             SKL_DPLL0);
5718         else
5719                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5720                                             SKL_DPLL0);
5721
5722         I915_WRITE(DPLL_CTRL1, val);
5723         POSTING_READ(DPLL_CTRL1);
5724
5725         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5726
5727         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5728                 DRM_ERROR("DPLL0 not locked\n");
5729 }
5730
5731 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5732 {
5733         int ret;
5734         u32 val;
5735
5736         /* inform PCU we want to change CDCLK */
5737         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5738         mutex_lock(&dev_priv->rps.hw_lock);
5739         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5740         mutex_unlock(&dev_priv->rps.hw_lock);
5741
5742         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5743 }
5744
5745 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5746 {
5747         unsigned int i;
5748
5749         for (i = 0; i < 15; i++) {
5750                 if (skl_cdclk_pcu_ready(dev_priv))
5751                         return true;
5752                 udelay(10);
5753         }
5754
5755         return false;
5756 }
5757
5758 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5759 {
5760         struct drm_device *dev = dev_priv->dev;
5761         u32 freq_select, pcu_ack;
5762
5763         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5764
5765         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5766                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5767                 return;
5768         }
5769
5770         /* set CDCLK_CTL */
5771         switch(freq) {
5772         case 450000:
5773         case 432000:
5774                 freq_select = CDCLK_FREQ_450_432;
5775                 pcu_ack = 1;
5776                 break;
5777         case 540000:
5778                 freq_select = CDCLK_FREQ_540;
5779                 pcu_ack = 2;
5780                 break;
5781         case 308570:
5782         case 337500:
5783         default:
5784                 freq_select = CDCLK_FREQ_337_308;
5785                 pcu_ack = 0;
5786                 break;
5787         case 617140:
5788         case 675000:
5789                 freq_select = CDCLK_FREQ_675_617;
5790                 pcu_ack = 3;
5791                 break;
5792         }
5793
5794         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5795         POSTING_READ(CDCLK_CTL);
5796
5797         /* inform PCU of the change */
5798         mutex_lock(&dev_priv->rps.hw_lock);
5799         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5800         mutex_unlock(&dev_priv->rps.hw_lock);
5801
5802         intel_update_cdclk(dev);
5803 }
5804
5805 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5806 {
5807         /* disable DBUF power */
5808         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5809         POSTING_READ(DBUF_CTL);
5810
5811         udelay(10);
5812
5813         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5814                 DRM_ERROR("DBuf power disable timeout\n");
5815
5816         /* disable DPLL0 */
5817         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5818         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5819                 DRM_ERROR("Couldn't disable DPLL0\n");
5820 }
5821
5822 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5823 {
5824         unsigned int required_vco;
5825
5826         /* DPLL0 not enabled (happens on early BIOS versions) */
5827         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5828                 /* enable DPLL0 */
5829                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5830                 skl_dpll0_enable(dev_priv, required_vco);
5831         }
5832
5833         /* set CDCLK to the frequency the BIOS chose */
5834         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5835
5836         /* enable DBUF power */
5837         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5838         POSTING_READ(DBUF_CTL);
5839
5840         udelay(10);
5841
5842         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5843                 DRM_ERROR("DBuf power enable timeout\n");
5844 }
5845
5846 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5847 {
5848         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5849         uint32_t cdctl = I915_READ(CDCLK_CTL);
5850         int freq = dev_priv->skl_boot_cdclk;
5851
5852         /*
5853          * check if the pre-os intialized the display
5854          * There is SWF18 scratchpad register defined which is set by the
5855          * pre-os which can be used by the OS drivers to check the status
5856          */
5857         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5858                 goto sanitize;
5859
5860         /* Is PLL enabled and locked ? */
5861         if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5862                 goto sanitize;
5863
5864         /* DPLL okay; verify the cdclock
5865          *
5866          * Noticed in some instances that the freq selection is correct but
5867          * decimal part is programmed wrong from BIOS where pre-os does not
5868          * enable display. Verify the same as well.
5869          */
5870         if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5871                 /* All well; nothing to sanitize */
5872                 return false;
5873 sanitize:
5874         /*
5875          * As of now initialize with max cdclk till
5876          * we get dynamic cdclk support
5877          * */
5878         dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5879         skl_init_cdclk(dev_priv);
5880
5881         /* we did have to sanitize */
5882         return true;
5883 }
5884
5885 /* Adjust CDclk dividers to allow high res or save power if possible */
5886 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5887 {
5888         struct drm_i915_private *dev_priv = dev->dev_private;
5889         u32 val, cmd;
5890
5891         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5892                                         != dev_priv->cdclk_freq);
5893
5894         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5895                 cmd = 2;
5896         else if (cdclk == 266667)
5897                 cmd = 1;
5898         else
5899                 cmd = 0;
5900
5901         mutex_lock(&dev_priv->rps.hw_lock);
5902         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5903         val &= ~DSPFREQGUAR_MASK;
5904         val |= (cmd << DSPFREQGUAR_SHIFT);
5905         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5906         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5907                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5908                      50)) {
5909                 DRM_ERROR("timed out waiting for CDclk change\n");
5910         }
5911         mutex_unlock(&dev_priv->rps.hw_lock);
5912
5913         mutex_lock(&dev_priv->sb_lock);
5914
5915         if (cdclk == 400000) {
5916                 u32 divider;
5917
5918                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5919
5920                 /* adjust cdclk divider */
5921                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5922                 val &= ~CCK_FREQUENCY_VALUES;
5923                 val |= divider;
5924                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5925
5926                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5927                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5928                              50))
5929                         DRM_ERROR("timed out waiting for CDclk change\n");
5930         }
5931
5932         /* adjust self-refresh exit latency value */
5933         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5934         val &= ~0x7f;
5935
5936         /*
5937          * For high bandwidth configs, we set a higher latency in the bunit
5938          * so that the core display fetch happens in time to avoid underruns.
5939          */
5940         if (cdclk == 400000)
5941                 val |= 4500 / 250; /* 4.5 usec */
5942         else
5943                 val |= 3000 / 250; /* 3.0 usec */
5944         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5945
5946         mutex_unlock(&dev_priv->sb_lock);
5947
5948         intel_update_cdclk(dev);
5949 }
5950
5951 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5952 {
5953         struct drm_i915_private *dev_priv = dev->dev_private;
5954         u32 val, cmd;
5955
5956         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5957                                                 != dev_priv->cdclk_freq);
5958
5959         switch (cdclk) {
5960         case 333333:
5961         case 320000:
5962         case 266667:
5963         case 200000:
5964                 break;
5965         default:
5966                 MISSING_CASE(cdclk);
5967                 return;
5968         }
5969
5970         /*
5971          * Specs are full of misinformation, but testing on actual
5972          * hardware has shown that we just need to write the desired
5973          * CCK divider into the Punit register.
5974          */
5975         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5976
5977         mutex_lock(&dev_priv->rps.hw_lock);
5978         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5979         val &= ~DSPFREQGUAR_MASK_CHV;
5980         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5981         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5982         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5983                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5984                      50)) {
5985                 DRM_ERROR("timed out waiting for CDclk change\n");
5986         }
5987         mutex_unlock(&dev_priv->rps.hw_lock);
5988
5989         intel_update_cdclk(dev);
5990 }
5991
5992 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5993                                  int max_pixclk)
5994 {
5995         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5996         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5997
5998         /*
5999          * Really only a few cases to deal with, as only 4 CDclks are supported:
6000          *   200MHz
6001          *   267MHz
6002          *   320/333MHz (depends on HPLL freq)
6003          *   400MHz (VLV only)
6004          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6005          * of the lower bin and adjust if needed.
6006          *
6007          * We seem to get an unstable or solid color picture at 200MHz.
6008          * Not sure what's wrong. For now use 200MHz only when all pipes
6009          * are off.
6010          */
6011         if (!IS_CHERRYVIEW(dev_priv) &&
6012             max_pixclk > freq_320*limit/100)
6013                 return 400000;
6014         else if (max_pixclk > 266667*limit/100)
6015                 return freq_320;
6016         else if (max_pixclk > 0)
6017                 return 266667;
6018         else
6019                 return 200000;
6020 }
6021
6022 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
6023                               int max_pixclk)
6024 {
6025         /*
6026          * FIXME:
6027          * - remove the guardband, it's not needed on BXT
6028          * - set 19.2MHz bypass frequency if there are no active pipes
6029          */
6030         if (max_pixclk > 576000*9/10)
6031                 return 624000;
6032         else if (max_pixclk > 384000*9/10)
6033                 return 576000;
6034         else if (max_pixclk > 288000*9/10)
6035                 return 384000;
6036         else if (max_pixclk > 144000*9/10)
6037                 return 288000;
6038         else
6039                 return 144000;
6040 }
6041
6042 /* Compute the max pixel clock for new configuration. Uses atomic state if
6043  * that's non-NULL, look at current state otherwise. */
6044 static int intel_mode_max_pixclk(struct drm_device *dev,
6045                                  struct drm_atomic_state *state)
6046 {
6047         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6048         struct drm_i915_private *dev_priv = dev->dev_private;
6049         struct drm_crtc *crtc;
6050         struct drm_crtc_state *crtc_state;
6051         unsigned max_pixclk = 0, i;
6052         enum pipe pipe;
6053
6054         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6055                sizeof(intel_state->min_pixclk));
6056
6057         for_each_crtc_in_state(state, crtc, crtc_state, i) {
6058                 int pixclk = 0;
6059
6060                 if (crtc_state->enable)
6061                         pixclk = crtc_state->adjusted_mode.crtc_clock;
6062
6063                 intel_state->min_pixclk[i] = pixclk;
6064         }
6065
6066         if (!intel_state->active_crtcs)
6067                 return 0;
6068
6069         for_each_pipe(dev_priv, pipe)
6070                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6071
6072         return max_pixclk;
6073 }
6074
6075 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6076 {
6077         struct drm_device *dev = state->dev;
6078         struct drm_i915_private *dev_priv = dev->dev_private;
6079         int max_pixclk = intel_mode_max_pixclk(dev, state);
6080         struct intel_atomic_state *intel_state =
6081                 to_intel_atomic_state(state);
6082
6083         if (max_pixclk < 0)
6084                 return max_pixclk;
6085
6086         intel_state->cdclk = intel_state->dev_cdclk =
6087                 valleyview_calc_cdclk(dev_priv, max_pixclk);
6088
6089         if (!intel_state->active_crtcs)
6090                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6091
6092         return 0;
6093 }
6094
6095 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6096 {
6097         struct drm_device *dev = state->dev;
6098         struct drm_i915_private *dev_priv = dev->dev_private;
6099         int max_pixclk = intel_mode_max_pixclk(dev, state);
6100         struct intel_atomic_state *intel_state =
6101                 to_intel_atomic_state(state);
6102
6103         if (max_pixclk < 0)
6104                 return max_pixclk;
6105
6106         intel_state->cdclk = intel_state->dev_cdclk =
6107                 broxton_calc_cdclk(dev_priv, max_pixclk);
6108
6109         if (!intel_state->active_crtcs)
6110                 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
6111
6112         return 0;
6113 }
6114
6115 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6116 {
6117         unsigned int credits, default_credits;
6118
6119         if (IS_CHERRYVIEW(dev_priv))
6120                 default_credits = PFI_CREDIT(12);
6121         else
6122                 default_credits = PFI_CREDIT(8);
6123
6124         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6125                 /* CHV suggested value is 31 or 63 */
6126                 if (IS_CHERRYVIEW(dev_priv))
6127                         credits = PFI_CREDIT_63;
6128                 else
6129                         credits = PFI_CREDIT(15);
6130         } else {
6131                 credits = default_credits;
6132         }
6133
6134         /*
6135          * WA - write default credits before re-programming
6136          * FIXME: should we also set the resend bit here?
6137          */
6138         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6139                    default_credits);
6140
6141         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6142                    credits | PFI_CREDIT_RESEND);
6143
6144         /*
6145          * FIXME is this guaranteed to clear
6146          * immediately or should we poll for it?
6147          */
6148         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6149 }
6150
6151 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6152 {
6153         struct drm_device *dev = old_state->dev;
6154         struct drm_i915_private *dev_priv = dev->dev_private;
6155         struct intel_atomic_state *old_intel_state =
6156                 to_intel_atomic_state(old_state);
6157         unsigned req_cdclk = old_intel_state->dev_cdclk;
6158
6159         /*
6160          * FIXME: We can end up here with all power domains off, yet
6161          * with a CDCLK frequency other than the minimum. To account
6162          * for this take the PIPE-A power domain, which covers the HW
6163          * blocks needed for the following programming. This can be
6164          * removed once it's guaranteed that we get here either with
6165          * the minimum CDCLK set, or the required power domains
6166          * enabled.
6167          */
6168         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6169
6170         if (IS_CHERRYVIEW(dev))
6171                 cherryview_set_cdclk(dev, req_cdclk);
6172         else
6173                 valleyview_set_cdclk(dev, req_cdclk);
6174
6175         vlv_program_pfi_credits(dev_priv);
6176
6177         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6178 }
6179
6180 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6181 {
6182         struct drm_device *dev = crtc->dev;
6183         struct drm_i915_private *dev_priv = to_i915(dev);
6184         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6185         struct intel_encoder *encoder;
6186         int pipe = intel_crtc->pipe;
6187
6188         if (WARN_ON(intel_crtc->active))
6189                 return;
6190
6191         if (intel_crtc->config->has_dp_encoder)
6192                 intel_dp_set_m_n(intel_crtc, M1_N1);
6193
6194         intel_set_pipe_timings(intel_crtc);
6195
6196         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6197                 struct drm_i915_private *dev_priv = dev->dev_private;
6198
6199                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6200                 I915_WRITE(CHV_CANVAS(pipe), 0);
6201         }
6202
6203         i9xx_set_pipeconf(intel_crtc);
6204
6205         intel_crtc->active = true;
6206
6207         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6208
6209         for_each_encoder_on_crtc(dev, crtc, encoder)
6210                 if (encoder->pre_pll_enable)
6211                         encoder->pre_pll_enable(encoder);
6212
6213         if (!intel_crtc->config->has_dsi_encoder) {
6214                 if (IS_CHERRYVIEW(dev)) {
6215                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6216                         chv_enable_pll(intel_crtc, intel_crtc->config);
6217                 } else {
6218                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6219                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6220                 }
6221         }
6222
6223         for_each_encoder_on_crtc(dev, crtc, encoder)
6224                 if (encoder->pre_enable)
6225                         encoder->pre_enable(encoder);
6226
6227         i9xx_pfit_enable(intel_crtc);
6228
6229         intel_crtc_load_lut(crtc);
6230
6231         intel_enable_pipe(intel_crtc);
6232
6233         assert_vblank_disabled(crtc);
6234         drm_crtc_vblank_on(crtc);
6235
6236         for_each_encoder_on_crtc(dev, crtc, encoder)
6237                 encoder->enable(encoder);
6238 }
6239
6240 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6241 {
6242         struct drm_device *dev = crtc->base.dev;
6243         struct drm_i915_private *dev_priv = dev->dev_private;
6244
6245         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6246         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6247 }
6248
6249 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6250 {
6251         struct drm_device *dev = crtc->dev;
6252         struct drm_i915_private *dev_priv = to_i915(dev);
6253         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6254         struct intel_encoder *encoder;
6255         int pipe = intel_crtc->pipe;
6256
6257         if (WARN_ON(intel_crtc->active))
6258                 return;
6259
6260         i9xx_set_pll_dividers(intel_crtc);
6261
6262         if (intel_crtc->config->has_dp_encoder)
6263                 intel_dp_set_m_n(intel_crtc, M1_N1);
6264
6265         intel_set_pipe_timings(intel_crtc);
6266
6267         i9xx_set_pipeconf(intel_crtc);
6268
6269         intel_crtc->active = true;
6270
6271         if (!IS_GEN2(dev))
6272                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6273
6274         for_each_encoder_on_crtc(dev, crtc, encoder)
6275                 if (encoder->pre_enable)
6276                         encoder->pre_enable(encoder);
6277
6278         i9xx_enable_pll(intel_crtc);
6279
6280         i9xx_pfit_enable(intel_crtc);
6281
6282         intel_crtc_load_lut(crtc);
6283
6284         intel_update_watermarks(crtc);
6285         intel_enable_pipe(intel_crtc);
6286
6287         assert_vblank_disabled(crtc);
6288         drm_crtc_vblank_on(crtc);
6289
6290         for_each_encoder_on_crtc(dev, crtc, encoder)
6291                 encoder->enable(encoder);
6292 }
6293
6294 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6295 {
6296         struct drm_device *dev = crtc->base.dev;
6297         struct drm_i915_private *dev_priv = dev->dev_private;
6298
6299         if (!crtc->config->gmch_pfit.control)
6300                 return;
6301
6302         assert_pipe_disabled(dev_priv, crtc->pipe);
6303
6304         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6305                          I915_READ(PFIT_CONTROL));
6306         I915_WRITE(PFIT_CONTROL, 0);
6307 }
6308
6309 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6310 {
6311         struct drm_device *dev = crtc->dev;
6312         struct drm_i915_private *dev_priv = dev->dev_private;
6313         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6314         struct intel_encoder *encoder;
6315         int pipe = intel_crtc->pipe;
6316
6317         /*
6318          * On gen2 planes are double buffered but the pipe isn't, so we must
6319          * wait for planes to fully turn off before disabling the pipe.
6320          * We also need to wait on all gmch platforms because of the
6321          * self-refresh mode constraint explained above.
6322          */
6323         intel_wait_for_vblank(dev, pipe);
6324
6325         for_each_encoder_on_crtc(dev, crtc, encoder)
6326                 encoder->disable(encoder);
6327
6328         drm_crtc_vblank_off(crtc);
6329         assert_vblank_disabled(crtc);
6330
6331         intel_disable_pipe(intel_crtc);
6332
6333         i9xx_pfit_disable(intel_crtc);
6334
6335         for_each_encoder_on_crtc(dev, crtc, encoder)
6336                 if (encoder->post_disable)
6337                         encoder->post_disable(encoder);
6338
6339         if (!intel_crtc->config->has_dsi_encoder) {
6340                 if (IS_CHERRYVIEW(dev))
6341                         chv_disable_pll(dev_priv, pipe);
6342                 else if (IS_VALLEYVIEW(dev))
6343                         vlv_disable_pll(dev_priv, pipe);
6344                 else
6345                         i9xx_disable_pll(intel_crtc);
6346         }
6347
6348         for_each_encoder_on_crtc(dev, crtc, encoder)
6349                 if (encoder->post_pll_disable)
6350                         encoder->post_pll_disable(encoder);
6351
6352         if (!IS_GEN2(dev))
6353                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6354 }
6355
6356 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6357 {
6358         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6359         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6360         enum intel_display_power_domain domain;
6361         unsigned long domains;
6362
6363         if (!intel_crtc->active)
6364                 return;
6365
6366         if (to_intel_plane_state(crtc->primary->state)->visible) {
6367                 WARN_ON(intel_crtc->unpin_work);
6368
6369                 intel_pre_disable_primary(crtc);
6370
6371                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6372                 to_intel_plane_state(crtc->primary->state)->visible = false;
6373         }
6374
6375         dev_priv->display.crtc_disable(crtc);
6376         intel_crtc->active = false;
6377         intel_fbc_disable(intel_crtc);
6378         intel_update_watermarks(crtc);
6379         intel_disable_shared_dpll(intel_crtc);
6380
6381         domains = intel_crtc->enabled_power_domains;
6382         for_each_power_domain(domain, domains)
6383                 intel_display_power_put(dev_priv, domain);
6384         intel_crtc->enabled_power_domains = 0;
6385
6386         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6387         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6388 }
6389
6390 /*
6391  * turn all crtc's off, but do not adjust state
6392  * This has to be paired with a call to intel_modeset_setup_hw_state.
6393  */
6394 int intel_display_suspend(struct drm_device *dev)
6395 {
6396         struct drm_mode_config *config = &dev->mode_config;
6397         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6398         struct drm_atomic_state *state;
6399         struct drm_crtc *crtc;
6400         unsigned crtc_mask = 0;
6401         int ret = 0;
6402
6403         if (WARN_ON(!ctx))
6404                 return 0;
6405
6406         lockdep_assert_held(&ctx->ww_ctx);
6407         state = drm_atomic_state_alloc(dev);
6408         if (WARN_ON(!state))
6409                 return -ENOMEM;
6410
6411         state->acquire_ctx = ctx;
6412         state->allow_modeset = true;
6413
6414         for_each_crtc(dev, crtc) {
6415                 struct drm_crtc_state *crtc_state =
6416                         drm_atomic_get_crtc_state(state, crtc);
6417
6418                 ret = PTR_ERR_OR_ZERO(crtc_state);
6419                 if (ret)
6420                         goto free;
6421
6422                 if (!crtc_state->active)
6423                         continue;
6424
6425                 crtc_state->active = false;
6426                 crtc_mask |= 1 << drm_crtc_index(crtc);
6427         }
6428
6429         if (crtc_mask) {
6430                 ret = drm_atomic_commit(state);
6431
6432                 if (!ret) {
6433                         for_each_crtc(dev, crtc)
6434                                 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6435                                         crtc->state->active = true;
6436
6437                         return ret;
6438                 }
6439         }
6440
6441 free:
6442         if (ret)
6443                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6444         drm_atomic_state_free(state);
6445         return ret;
6446 }
6447
6448 void intel_encoder_destroy(struct drm_encoder *encoder)
6449 {
6450         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6451
6452         drm_encoder_cleanup(encoder);
6453         kfree(intel_encoder);
6454 }
6455
6456 /* Cross check the actual hw state with our own modeset state tracking (and it's
6457  * internal consistency). */
6458 static void intel_connector_check_state(struct intel_connector *connector)
6459 {
6460         struct drm_crtc *crtc = connector->base.state->crtc;
6461
6462         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6463                       connector->base.base.id,
6464                       connector->base.name);
6465
6466         if (connector->get_hw_state(connector)) {
6467                 struct intel_encoder *encoder = connector->encoder;
6468                 struct drm_connector_state *conn_state = connector->base.state;
6469
6470                 I915_STATE_WARN(!crtc,
6471                          "connector enabled without attached crtc\n");
6472
6473                 if (!crtc)
6474                         return;
6475
6476                 I915_STATE_WARN(!crtc->state->active,
6477                       "connector is active, but attached crtc isn't\n");
6478
6479                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6480                         return;
6481
6482                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6483                         "atomic encoder doesn't match attached encoder\n");
6484
6485                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6486                         "attached encoder crtc differs from connector crtc\n");
6487         } else {
6488                 I915_STATE_WARN(crtc && crtc->state->active,
6489                         "attached crtc is active, but connector isn't\n");
6490                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6491                         "best encoder set without crtc!\n");
6492         }
6493 }
6494
6495 int intel_connector_init(struct intel_connector *connector)
6496 {
6497         drm_atomic_helper_connector_reset(&connector->base);
6498
6499         if (!connector->base.state)
6500                 return -ENOMEM;
6501
6502         return 0;
6503 }
6504
6505 struct intel_connector *intel_connector_alloc(void)
6506 {
6507         struct intel_connector *connector;
6508
6509         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6510         if (!connector)
6511                 return NULL;
6512
6513         if (intel_connector_init(connector) < 0) {
6514                 kfree(connector);
6515                 return NULL;
6516         }
6517
6518         return connector;
6519 }
6520
6521 /* Simple connector->get_hw_state implementation for encoders that support only
6522  * one connector and no cloning and hence the encoder state determines the state
6523  * of the connector. */
6524 bool intel_connector_get_hw_state(struct intel_connector *connector)
6525 {
6526         enum pipe pipe = 0;
6527         struct intel_encoder *encoder = connector->encoder;
6528
6529         return encoder->get_hw_state(encoder, &pipe);
6530 }
6531
6532 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6533 {
6534         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6535                 return crtc_state->fdi_lanes;
6536
6537         return 0;
6538 }
6539
6540 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6541                                      struct intel_crtc_state *pipe_config)
6542 {
6543         struct drm_atomic_state *state = pipe_config->base.state;
6544         struct intel_crtc *other_crtc;
6545         struct intel_crtc_state *other_crtc_state;
6546
6547         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6548                       pipe_name(pipe), pipe_config->fdi_lanes);
6549         if (pipe_config->fdi_lanes > 4) {
6550                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6551                               pipe_name(pipe), pipe_config->fdi_lanes);
6552                 return -EINVAL;
6553         }
6554
6555         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6556                 if (pipe_config->fdi_lanes > 2) {
6557                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6558                                       pipe_config->fdi_lanes);
6559                         return -EINVAL;
6560                 } else {
6561                         return 0;
6562                 }
6563         }
6564
6565         if (INTEL_INFO(dev)->num_pipes == 2)
6566                 return 0;
6567
6568         /* Ivybridge 3 pipe is really complicated */
6569         switch (pipe) {
6570         case PIPE_A:
6571                 return 0;
6572         case PIPE_B:
6573                 if (pipe_config->fdi_lanes <= 2)
6574                         return 0;
6575
6576                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6577                 other_crtc_state =
6578                         intel_atomic_get_crtc_state(state, other_crtc);
6579                 if (IS_ERR(other_crtc_state))
6580                         return PTR_ERR(other_crtc_state);
6581
6582                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6583                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6584                                       pipe_name(pipe), pipe_config->fdi_lanes);
6585                         return -EINVAL;
6586                 }
6587                 return 0;
6588         case PIPE_C:
6589                 if (pipe_config->fdi_lanes > 2) {
6590                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6591                                       pipe_name(pipe), pipe_config->fdi_lanes);
6592                         return -EINVAL;
6593                 }
6594
6595                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6596                 other_crtc_state =
6597                         intel_atomic_get_crtc_state(state, other_crtc);
6598                 if (IS_ERR(other_crtc_state))
6599                         return PTR_ERR(other_crtc_state);
6600
6601                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6602                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6603                         return -EINVAL;
6604                 }
6605                 return 0;
6606         default:
6607                 BUG();
6608         }
6609 }
6610
6611 #define RETRY 1
6612 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6613                                        struct intel_crtc_state *pipe_config)
6614 {
6615         struct drm_device *dev = intel_crtc->base.dev;
6616         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6617         int lane, link_bw, fdi_dotclock, ret;
6618         bool needs_recompute = false;
6619
6620 retry:
6621         /* FDI is a binary signal running at ~2.7GHz, encoding
6622          * each output octet as 10 bits. The actual frequency
6623          * is stored as a divider into a 100MHz clock, and the
6624          * mode pixel clock is stored in units of 1KHz.
6625          * Hence the bw of each lane in terms of the mode signal
6626          * is:
6627          */
6628         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6629
6630         fdi_dotclock = adjusted_mode->crtc_clock;
6631
6632         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6633                                            pipe_config->pipe_bpp);
6634
6635         pipe_config->fdi_lanes = lane;
6636
6637         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6638                                link_bw, &pipe_config->fdi_m_n);
6639
6640         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6641                                        intel_crtc->pipe, pipe_config);
6642         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6643                 pipe_config->pipe_bpp -= 2*3;
6644                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6645                               pipe_config->pipe_bpp);
6646                 needs_recompute = true;
6647                 pipe_config->bw_constrained = true;
6648
6649                 goto retry;
6650         }
6651
6652         if (needs_recompute)
6653                 return RETRY;
6654
6655         return ret;
6656 }
6657
6658 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6659                                      struct intel_crtc_state *pipe_config)
6660 {
6661         if (pipe_config->pipe_bpp > 24)
6662                 return false;
6663
6664         /* HSW can handle pixel rate up to cdclk? */
6665         if (IS_HASWELL(dev_priv->dev))
6666                 return true;
6667
6668         /*
6669          * We compare against max which means we must take
6670          * the increased cdclk requirement into account when
6671          * calculating the new cdclk.
6672          *
6673          * Should measure whether using a lower cdclk w/o IPS
6674          */
6675         return ilk_pipe_pixel_rate(pipe_config) <=
6676                 dev_priv->max_cdclk_freq * 95 / 100;
6677 }
6678
6679 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6680                                    struct intel_crtc_state *pipe_config)
6681 {
6682         struct drm_device *dev = crtc->base.dev;
6683         struct drm_i915_private *dev_priv = dev->dev_private;
6684
6685         pipe_config->ips_enabled = i915.enable_ips &&
6686                 hsw_crtc_supports_ips(crtc) &&
6687                 pipe_config_supports_ips(dev_priv, pipe_config);
6688 }
6689
6690 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6691 {
6692         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6693
6694         /* GDG double wide on either pipe, otherwise pipe A only */
6695         return INTEL_INFO(dev_priv)->gen < 4 &&
6696                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6697 }
6698
6699 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6700                                      struct intel_crtc_state *pipe_config)
6701 {
6702         struct drm_device *dev = crtc->base.dev;
6703         struct drm_i915_private *dev_priv = dev->dev_private;
6704         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6705
6706         /* FIXME should check pixel clock limits on all platforms */
6707         if (INTEL_INFO(dev)->gen < 4) {
6708                 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6709
6710                 /*
6711                  * Enable double wide mode when the dot clock
6712                  * is > 90% of the (display) core speed.
6713                  */
6714                 if (intel_crtc_supports_double_wide(crtc) &&
6715                     adjusted_mode->crtc_clock > clock_limit) {
6716                         clock_limit *= 2;
6717                         pipe_config->double_wide = true;
6718                 }
6719
6720                 if (adjusted_mode->crtc_clock > clock_limit) {
6721                         DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6722                                       adjusted_mode->crtc_clock, clock_limit,
6723                                       yesno(pipe_config->double_wide));
6724                         return -EINVAL;
6725                 }
6726         }
6727
6728         /*
6729          * Pipe horizontal size must be even in:
6730          * - DVO ganged mode
6731          * - LVDS dual channel mode
6732          * - Double wide pipe
6733          */
6734         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6735              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6736                 pipe_config->pipe_src_w &= ~1;
6737
6738         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6739          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6740          */
6741         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6742                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6743                 return -EINVAL;
6744
6745         if (HAS_IPS(dev))
6746                 hsw_compute_ips_config(crtc, pipe_config);
6747
6748         if (pipe_config->has_pch_encoder)
6749                 return ironlake_fdi_compute_config(crtc, pipe_config);
6750
6751         return 0;
6752 }
6753
6754 static int skylake_get_display_clock_speed(struct drm_device *dev)
6755 {
6756         struct drm_i915_private *dev_priv = to_i915(dev);
6757         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6758         uint32_t cdctl = I915_READ(CDCLK_CTL);
6759         uint32_t linkrate;
6760
6761         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6762                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6763
6764         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6765                 return 540000;
6766
6767         linkrate = (I915_READ(DPLL_CTRL1) &
6768                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6769
6770         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6771             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6772                 /* vco 8640 */
6773                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6774                 case CDCLK_FREQ_450_432:
6775                         return 432000;
6776                 case CDCLK_FREQ_337_308:
6777                         return 308570;
6778                 case CDCLK_FREQ_675_617:
6779                         return 617140;
6780                 default:
6781                         WARN(1, "Unknown cd freq selection\n");
6782                 }
6783         } else {
6784                 /* vco 8100 */
6785                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6786                 case CDCLK_FREQ_450_432:
6787                         return 450000;
6788                 case CDCLK_FREQ_337_308:
6789                         return 337500;
6790                 case CDCLK_FREQ_675_617:
6791                         return 675000;
6792                 default:
6793                         WARN(1, "Unknown cd freq selection\n");
6794                 }
6795         }
6796
6797         /* error case, do as if DPLL0 isn't enabled */
6798         return 24000;
6799 }
6800
6801 static int broxton_get_display_clock_speed(struct drm_device *dev)
6802 {
6803         struct drm_i915_private *dev_priv = to_i915(dev);
6804         uint32_t cdctl = I915_READ(CDCLK_CTL);
6805         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6806         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6807         int cdclk;
6808
6809         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6810                 return 19200;
6811
6812         cdclk = 19200 * pll_ratio / 2;
6813
6814         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6815         case BXT_CDCLK_CD2X_DIV_SEL_1:
6816                 return cdclk;  /* 576MHz or 624MHz */
6817         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6818                 return cdclk * 2 / 3; /* 384MHz */
6819         case BXT_CDCLK_CD2X_DIV_SEL_2:
6820                 return cdclk / 2; /* 288MHz */
6821         case BXT_CDCLK_CD2X_DIV_SEL_4:
6822                 return cdclk / 4; /* 144MHz */
6823         }
6824
6825         /* error case, do as if DE PLL isn't enabled */
6826         return 19200;
6827 }
6828
6829 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6830 {
6831         struct drm_i915_private *dev_priv = dev->dev_private;
6832         uint32_t lcpll = I915_READ(LCPLL_CTL);
6833         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6834
6835         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6836                 return 800000;
6837         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6838                 return 450000;
6839         else if (freq == LCPLL_CLK_FREQ_450)
6840                 return 450000;
6841         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6842                 return 540000;
6843         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6844                 return 337500;
6845         else
6846                 return 675000;
6847 }
6848
6849 static int haswell_get_display_clock_speed(struct drm_device *dev)
6850 {
6851         struct drm_i915_private *dev_priv = dev->dev_private;
6852         uint32_t lcpll = I915_READ(LCPLL_CTL);
6853         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6854
6855         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6856                 return 800000;
6857         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6858                 return 450000;
6859         else if (freq == LCPLL_CLK_FREQ_450)
6860                 return 450000;
6861         else if (IS_HSW_ULT(dev))
6862                 return 337500;
6863         else
6864                 return 540000;
6865 }
6866
6867 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6868 {
6869         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6870                                       CCK_DISPLAY_CLOCK_CONTROL);
6871 }
6872
6873 static int ilk_get_display_clock_speed(struct drm_device *dev)
6874 {
6875         return 450000;
6876 }
6877
6878 static int i945_get_display_clock_speed(struct drm_device *dev)
6879 {
6880         return 400000;
6881 }
6882
6883 static int i915_get_display_clock_speed(struct drm_device *dev)
6884 {
6885         return 333333;
6886 }
6887
6888 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6889 {
6890         return 200000;
6891 }
6892
6893 static int pnv_get_display_clock_speed(struct drm_device *dev)
6894 {
6895         u16 gcfgc = 0;
6896
6897         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6898
6899         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6900         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6901                 return 266667;
6902         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6903                 return 333333;
6904         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6905                 return 444444;
6906         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6907                 return 200000;
6908         default:
6909                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6910         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6911                 return 133333;
6912         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6913                 return 166667;
6914         }
6915 }
6916
6917 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6918 {
6919         u16 gcfgc = 0;
6920
6921         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6922
6923         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6924                 return 133333;
6925         else {
6926                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6927                 case GC_DISPLAY_CLOCK_333_MHZ:
6928                         return 333333;
6929                 default:
6930                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6931                         return 190000;
6932                 }
6933         }
6934 }
6935
6936 static int i865_get_display_clock_speed(struct drm_device *dev)
6937 {
6938         return 266667;
6939 }
6940
6941 static int i85x_get_display_clock_speed(struct drm_device *dev)
6942 {
6943         u16 hpllcc = 0;
6944
6945         /*
6946          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6947          * encoding is different :(
6948          * FIXME is this the right way to detect 852GM/852GMV?
6949          */
6950         if (dev->pdev->revision == 0x1)
6951                 return 133333;
6952
6953         pci_bus_read_config_word(dev->pdev->bus,
6954                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6955
6956         /* Assume that the hardware is in the high speed state.  This
6957          * should be the default.
6958          */
6959         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6960         case GC_CLOCK_133_200:
6961         case GC_CLOCK_133_200_2:
6962         case GC_CLOCK_100_200:
6963                 return 200000;
6964         case GC_CLOCK_166_250:
6965                 return 250000;
6966         case GC_CLOCK_100_133:
6967                 return 133333;
6968         case GC_CLOCK_133_266:
6969         case GC_CLOCK_133_266_2:
6970         case GC_CLOCK_166_266:
6971                 return 266667;
6972         }
6973
6974         /* Shouldn't happen */
6975         return 0;
6976 }
6977
6978 static int i830_get_display_clock_speed(struct drm_device *dev)
6979 {
6980         return 133333;
6981 }
6982
6983 static unsigned int intel_hpll_vco(struct drm_device *dev)
6984 {
6985         struct drm_i915_private *dev_priv = dev->dev_private;
6986         static const unsigned int blb_vco[8] = {
6987                 [0] = 3200000,
6988                 [1] = 4000000,
6989                 [2] = 5333333,
6990                 [3] = 4800000,
6991                 [4] = 6400000,
6992         };
6993         static const unsigned int pnv_vco[8] = {
6994                 [0] = 3200000,
6995                 [1] = 4000000,
6996                 [2] = 5333333,
6997                 [3] = 4800000,
6998                 [4] = 2666667,
6999         };
7000         static const unsigned int cl_vco[8] = {
7001                 [0] = 3200000,
7002                 [1] = 4000000,
7003                 [2] = 5333333,
7004                 [3] = 6400000,
7005                 [4] = 3333333,
7006                 [5] = 3566667,
7007                 [6] = 4266667,
7008         };
7009         static const unsigned int elk_vco[8] = {
7010                 [0] = 3200000,
7011                 [1] = 4000000,
7012                 [2] = 5333333,
7013                 [3] = 4800000,
7014         };
7015         static const unsigned int ctg_vco[8] = {
7016                 [0] = 3200000,
7017                 [1] = 4000000,
7018                 [2] = 5333333,
7019                 [3] = 6400000,
7020                 [4] = 2666667,
7021                 [5] = 4266667,
7022         };
7023         const unsigned int *vco_table;
7024         unsigned int vco;
7025         uint8_t tmp = 0;
7026
7027         /* FIXME other chipsets? */
7028         if (IS_GM45(dev))
7029                 vco_table = ctg_vco;
7030         else if (IS_G4X(dev))
7031                 vco_table = elk_vco;
7032         else if (IS_CRESTLINE(dev))
7033                 vco_table = cl_vco;
7034         else if (IS_PINEVIEW(dev))
7035                 vco_table = pnv_vco;
7036         else if (IS_G33(dev))
7037                 vco_table = blb_vco;
7038         else
7039                 return 0;
7040
7041         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7042
7043         vco = vco_table[tmp & 0x7];
7044         if (vco == 0)
7045                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7046         else
7047                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7048
7049         return vco;
7050 }
7051
7052 static int gm45_get_display_clock_speed(struct drm_device *dev)
7053 {
7054         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7055         uint16_t tmp = 0;
7056
7057         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7058
7059         cdclk_sel = (tmp >> 12) & 0x1;
7060
7061         switch (vco) {
7062         case 2666667:
7063         case 4000000:
7064         case 5333333:
7065                 return cdclk_sel ? 333333 : 222222;
7066         case 3200000:
7067                 return cdclk_sel ? 320000 : 228571;
7068         default:
7069                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7070                 return 222222;
7071         }
7072 }
7073
7074 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7075 {
7076         static const uint8_t div_3200[] = { 16, 10,  8 };
7077         static const uint8_t div_4000[] = { 20, 12, 10 };
7078         static const uint8_t div_5333[] = { 24, 16, 14 };
7079         const uint8_t *div_table;
7080         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7081         uint16_t tmp = 0;
7082
7083         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7084
7085         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7086
7087         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7088                 goto fail;
7089
7090         switch (vco) {
7091         case 3200000:
7092                 div_table = div_3200;
7093                 break;
7094         case 4000000:
7095                 div_table = div_4000;
7096                 break;
7097         case 5333333:
7098                 div_table = div_5333;
7099                 break;
7100         default:
7101                 goto fail;
7102         }
7103
7104         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7105
7106 fail:
7107         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7108         return 200000;
7109 }
7110
7111 static int g33_get_display_clock_speed(struct drm_device *dev)
7112 {
7113         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7114         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7115         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7116         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7117         const uint8_t *div_table;
7118         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7119         uint16_t tmp = 0;
7120
7121         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7122
7123         cdclk_sel = (tmp >> 4) & 0x7;
7124
7125         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7126                 goto fail;
7127
7128         switch (vco) {
7129         case 3200000:
7130                 div_table = div_3200;
7131                 break;
7132         case 4000000:
7133                 div_table = div_4000;
7134                 break;
7135         case 4800000:
7136                 div_table = div_4800;
7137                 break;
7138         case 5333333:
7139                 div_table = div_5333;
7140                 break;
7141         default:
7142                 goto fail;
7143         }
7144
7145         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7146
7147 fail:
7148         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7149         return 190476;
7150 }
7151
7152 static void
7153 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7154 {
7155         while (*num > DATA_LINK_M_N_MASK ||
7156                *den > DATA_LINK_M_N_MASK) {
7157                 *num >>= 1;
7158                 *den >>= 1;
7159         }
7160 }
7161
7162 static void compute_m_n(unsigned int m, unsigned int n,
7163                         uint32_t *ret_m, uint32_t *ret_n)
7164 {
7165         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7166         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7167         intel_reduce_m_n_ratio(ret_m, ret_n);
7168 }
7169
7170 void
7171 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7172                        int pixel_clock, int link_clock,
7173                        struct intel_link_m_n *m_n)
7174 {
7175         m_n->tu = 64;
7176
7177         compute_m_n(bits_per_pixel * pixel_clock,
7178                     link_clock * nlanes * 8,
7179                     &m_n->gmch_m, &m_n->gmch_n);
7180
7181         compute_m_n(pixel_clock, link_clock,
7182                     &m_n->link_m, &m_n->link_n);
7183 }
7184
7185 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7186 {
7187         if (i915.panel_use_ssc >= 0)
7188                 return i915.panel_use_ssc != 0;
7189         return dev_priv->vbt.lvds_use_ssc
7190                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7191 }
7192
7193 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7194                            int num_connectors)
7195 {
7196         struct drm_device *dev = crtc_state->base.crtc->dev;
7197         struct drm_i915_private *dev_priv = dev->dev_private;
7198         int refclk;
7199
7200         WARN_ON(!crtc_state->base.state);
7201
7202         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) {
7203                 refclk = 100000;
7204         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7205             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7206                 refclk = dev_priv->vbt.lvds_ssc_freq;
7207                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7208         } else if (!IS_GEN2(dev)) {
7209                 refclk = 96000;
7210         } else {
7211                 refclk = 48000;
7212         }
7213
7214         return refclk;
7215 }
7216
7217 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7218 {
7219         return (1 << dpll->n) << 16 | dpll->m2;
7220 }
7221
7222 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7223 {
7224         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7225 }
7226
7227 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7228                                      struct intel_crtc_state *crtc_state,
7229                                      intel_clock_t *reduced_clock)
7230 {
7231         struct drm_device *dev = crtc->base.dev;
7232         u32 fp, fp2 = 0;
7233
7234         if (IS_PINEVIEW(dev)) {
7235                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7236                 if (reduced_clock)
7237                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7238         } else {
7239                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7240                 if (reduced_clock)
7241                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7242         }
7243
7244         crtc_state->dpll_hw_state.fp0 = fp;
7245
7246         crtc->lowfreq_avail = false;
7247         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7248             reduced_clock) {
7249                 crtc_state->dpll_hw_state.fp1 = fp2;
7250                 crtc->lowfreq_avail = true;
7251         } else {
7252                 crtc_state->dpll_hw_state.fp1 = fp;
7253         }
7254 }
7255
7256 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7257                 pipe)
7258 {
7259         u32 reg_val;
7260
7261         /*
7262          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7263          * and set it to a reasonable value instead.
7264          */
7265         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7266         reg_val &= 0xffffff00;
7267         reg_val |= 0x00000030;
7268         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7269
7270         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7271         reg_val &= 0x8cffffff;
7272         reg_val = 0x8c000000;
7273         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7274
7275         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7276         reg_val &= 0xffffff00;
7277         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7278
7279         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7280         reg_val &= 0x00ffffff;
7281         reg_val |= 0xb0000000;
7282         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7283 }
7284
7285 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7286                                          struct intel_link_m_n *m_n)
7287 {
7288         struct drm_device *dev = crtc->base.dev;
7289         struct drm_i915_private *dev_priv = dev->dev_private;
7290         int pipe = crtc->pipe;
7291
7292         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7293         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7294         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7295         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7296 }
7297
7298 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7299                                          struct intel_link_m_n *m_n,
7300                                          struct intel_link_m_n *m2_n2)
7301 {
7302         struct drm_device *dev = crtc->base.dev;
7303         struct drm_i915_private *dev_priv = dev->dev_private;
7304         int pipe = crtc->pipe;
7305         enum transcoder transcoder = crtc->config->cpu_transcoder;
7306
7307         if (INTEL_INFO(dev)->gen >= 5) {
7308                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7309                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7310                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7311                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7312                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7313                  * for gen < 8) and if DRRS is supported (to make sure the
7314                  * registers are not unnecessarily accessed).
7315                  */
7316                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7317                         crtc->config->has_drrs) {
7318                         I915_WRITE(PIPE_DATA_M2(transcoder),
7319                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7320                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7321                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7322                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7323                 }
7324         } else {
7325                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7326                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7327                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7328                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7329         }
7330 }
7331
7332 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7333 {
7334         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7335
7336         if (m_n == M1_N1) {
7337                 dp_m_n = &crtc->config->dp_m_n;
7338                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7339         } else if (m_n == M2_N2) {
7340
7341                 /*
7342                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7343                  * needs to be programmed into M1_N1.
7344                  */
7345                 dp_m_n = &crtc->config->dp_m2_n2;
7346         } else {
7347                 DRM_ERROR("Unsupported divider value\n");
7348                 return;
7349         }
7350
7351         if (crtc->config->has_pch_encoder)
7352                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7353         else
7354                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7355 }
7356
7357 static void vlv_compute_dpll(struct intel_crtc *crtc,
7358                              struct intel_crtc_state *pipe_config)
7359 {
7360         u32 dpll, dpll_md;
7361
7362         /*
7363          * Enable DPIO clock input. We should never disable the reference
7364          * clock for pipe B, since VGA hotplug / manual detection depends
7365          * on it.
7366          */
7367         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7368                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7369         /* We should never disable this, set it here for state tracking */
7370         if (crtc->pipe == PIPE_B)
7371                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7372         dpll |= DPLL_VCO_ENABLE;
7373         pipe_config->dpll_hw_state.dpll = dpll;
7374
7375         dpll_md = (pipe_config->pixel_multiplier - 1)
7376                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7377         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7378 }
7379
7380 static void vlv_prepare_pll(struct intel_crtc *crtc,
7381                             const struct intel_crtc_state *pipe_config)
7382 {
7383         struct drm_device *dev = crtc->base.dev;
7384         struct drm_i915_private *dev_priv = dev->dev_private;
7385         int pipe = crtc->pipe;
7386         u32 mdiv;
7387         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7388         u32 coreclk, reg_val;
7389
7390         mutex_lock(&dev_priv->sb_lock);
7391
7392         bestn = pipe_config->dpll.n;
7393         bestm1 = pipe_config->dpll.m1;
7394         bestm2 = pipe_config->dpll.m2;
7395         bestp1 = pipe_config->dpll.p1;
7396         bestp2 = pipe_config->dpll.p2;
7397
7398         /* See eDP HDMI DPIO driver vbios notes doc */
7399
7400         /* PLL B needs special handling */
7401         if (pipe == PIPE_B)
7402                 vlv_pllb_recal_opamp(dev_priv, pipe);
7403
7404         /* Set up Tx target for periodic Rcomp update */
7405         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7406
7407         /* Disable target IRef on PLL */
7408         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7409         reg_val &= 0x00ffffff;
7410         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7411
7412         /* Disable fast lock */
7413         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7414
7415         /* Set idtafcrecal before PLL is enabled */
7416         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7417         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7418         mdiv |= ((bestn << DPIO_N_SHIFT));
7419         mdiv |= (1 << DPIO_K_SHIFT);
7420
7421         /*
7422          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7423          * but we don't support that).
7424          * Note: don't use the DAC post divider as it seems unstable.
7425          */
7426         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7427         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7428
7429         mdiv |= DPIO_ENABLE_CALIBRATION;
7430         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7431
7432         /* Set HBR and RBR LPF coefficients */
7433         if (pipe_config->port_clock == 162000 ||
7434             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7435             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7436                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7437                                  0x009f0003);
7438         else
7439                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7440                                  0x00d0000f);
7441
7442         if (pipe_config->has_dp_encoder) {
7443                 /* Use SSC source */
7444                 if (pipe == PIPE_A)
7445                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7446                                          0x0df40000);
7447                 else
7448                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7449                                          0x0df70000);
7450         } else { /* HDMI or VGA */
7451                 /* Use bend source */
7452                 if (pipe == PIPE_A)
7453                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7454                                          0x0df70000);
7455                 else
7456                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7457                                          0x0df40000);
7458         }
7459
7460         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7461         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7462         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7463             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7464                 coreclk |= 0x01000000;
7465         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7466
7467         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7468         mutex_unlock(&dev_priv->sb_lock);
7469 }
7470
7471 static void chv_compute_dpll(struct intel_crtc *crtc,
7472                              struct intel_crtc_state *pipe_config)
7473 {
7474         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7475                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7476                 DPLL_VCO_ENABLE;
7477         if (crtc->pipe != PIPE_A)
7478                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7479
7480         pipe_config->dpll_hw_state.dpll_md =
7481                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7482 }
7483
7484 static void chv_prepare_pll(struct intel_crtc *crtc,
7485                             const struct intel_crtc_state *pipe_config)
7486 {
7487         struct drm_device *dev = crtc->base.dev;
7488         struct drm_i915_private *dev_priv = dev->dev_private;
7489         int pipe = crtc->pipe;
7490         i915_reg_t dpll_reg = DPLL(crtc->pipe);
7491         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7492         u32 loopfilter, tribuf_calcntr;
7493         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7494         u32 dpio_val;
7495         int vco;
7496
7497         bestn = pipe_config->dpll.n;
7498         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7499         bestm1 = pipe_config->dpll.m1;
7500         bestm2 = pipe_config->dpll.m2 >> 22;
7501         bestp1 = pipe_config->dpll.p1;
7502         bestp2 = pipe_config->dpll.p2;
7503         vco = pipe_config->dpll.vco;
7504         dpio_val = 0;
7505         loopfilter = 0;
7506
7507         /*
7508          * Enable Refclk and SSC
7509          */
7510         I915_WRITE(dpll_reg,
7511                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7512
7513         mutex_lock(&dev_priv->sb_lock);
7514
7515         /* p1 and p2 divider */
7516         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7517                         5 << DPIO_CHV_S1_DIV_SHIFT |
7518                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7519                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7520                         1 << DPIO_CHV_K_DIV_SHIFT);
7521
7522         /* Feedback post-divider - m2 */
7523         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7524
7525         /* Feedback refclk divider - n and m1 */
7526         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7527                         DPIO_CHV_M1_DIV_BY_2 |
7528                         1 << DPIO_CHV_N_DIV_SHIFT);
7529
7530         /* M2 fraction division */
7531         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7532
7533         /* M2 fraction division enable */
7534         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7535         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7536         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7537         if (bestm2_frac)
7538                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7539         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7540
7541         /* Program digital lock detect threshold */
7542         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7543         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7544                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7545         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7546         if (!bestm2_frac)
7547                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7548         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7549
7550         /* Loop filter */
7551         if (vco == 5400000) {
7552                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7553                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7554                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7555                 tribuf_calcntr = 0x9;
7556         } else if (vco <= 6200000) {
7557                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7558                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7559                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7560                 tribuf_calcntr = 0x9;
7561         } else if (vco <= 6480000) {
7562                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7563                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7564                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7565                 tribuf_calcntr = 0x8;
7566         } else {
7567                 /* Not supported. Apply the same limits as in the max case */
7568                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7569                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7570                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7571                 tribuf_calcntr = 0;
7572         }
7573         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7574
7575         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7576         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7577         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7578         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7579
7580         /* AFC Recal */
7581         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7582                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7583                         DPIO_AFC_RECAL);
7584
7585         mutex_unlock(&dev_priv->sb_lock);
7586 }
7587
7588 /**
7589  * vlv_force_pll_on - forcibly enable just the PLL
7590  * @dev_priv: i915 private structure
7591  * @pipe: pipe PLL to enable
7592  * @dpll: PLL configuration
7593  *
7594  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7595  * in cases where we need the PLL enabled even when @pipe is not going to
7596  * be enabled.
7597  */
7598 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7599                      const struct dpll *dpll)
7600 {
7601         struct intel_crtc *crtc =
7602                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7603         struct intel_crtc_state *pipe_config;
7604
7605         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7606         if (!pipe_config)
7607                 return -ENOMEM;
7608
7609         pipe_config->base.crtc = &crtc->base;
7610         pipe_config->pixel_multiplier = 1;
7611         pipe_config->dpll = *dpll;
7612
7613         if (IS_CHERRYVIEW(dev)) {
7614                 chv_compute_dpll(crtc, pipe_config);
7615                 chv_prepare_pll(crtc, pipe_config);
7616                 chv_enable_pll(crtc, pipe_config);
7617         } else {
7618                 vlv_compute_dpll(crtc, pipe_config);
7619                 vlv_prepare_pll(crtc, pipe_config);
7620                 vlv_enable_pll(crtc, pipe_config);
7621         }
7622
7623         kfree(pipe_config);
7624
7625         return 0;
7626 }
7627
7628 /**
7629  * vlv_force_pll_off - forcibly disable just the PLL
7630  * @dev_priv: i915 private structure
7631  * @pipe: pipe PLL to disable
7632  *
7633  * Disable the PLL for @pipe. To be used in cases where we need
7634  * the PLL enabled even when @pipe is not going to be enabled.
7635  */
7636 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7637 {
7638         if (IS_CHERRYVIEW(dev))
7639                 chv_disable_pll(to_i915(dev), pipe);
7640         else
7641                 vlv_disable_pll(to_i915(dev), pipe);
7642 }
7643
7644 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7645                               struct intel_crtc_state *crtc_state,
7646                               intel_clock_t *reduced_clock,
7647                               int num_connectors)
7648 {
7649         struct drm_device *dev = crtc->base.dev;
7650         struct drm_i915_private *dev_priv = dev->dev_private;
7651         u32 dpll;
7652         bool is_sdvo;
7653         struct dpll *clock = &crtc_state->dpll;
7654
7655         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7656
7657         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7658                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7659
7660         dpll = DPLL_VGA_MODE_DIS;
7661
7662         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7663                 dpll |= DPLLB_MODE_LVDS;
7664         else
7665                 dpll |= DPLLB_MODE_DAC_SERIAL;
7666
7667         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7668                 dpll |= (crtc_state->pixel_multiplier - 1)
7669                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7670         }
7671
7672         if (is_sdvo)
7673                 dpll |= DPLL_SDVO_HIGH_SPEED;
7674
7675         if (crtc_state->has_dp_encoder)
7676                 dpll |= DPLL_SDVO_HIGH_SPEED;
7677
7678         /* compute bitmask from p1 value */
7679         if (IS_PINEVIEW(dev))
7680                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7681         else {
7682                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7683                 if (IS_G4X(dev) && reduced_clock)
7684                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7685         }
7686         switch (clock->p2) {
7687         case 5:
7688                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7689                 break;
7690         case 7:
7691                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7692                 break;
7693         case 10:
7694                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7695                 break;
7696         case 14:
7697                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7698                 break;
7699         }
7700         if (INTEL_INFO(dev)->gen >= 4)
7701                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7702
7703         if (crtc_state->sdvo_tv_clock)
7704                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7705         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7706                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7707                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7708         else
7709                 dpll |= PLL_REF_INPUT_DREFCLK;
7710
7711         dpll |= DPLL_VCO_ENABLE;
7712         crtc_state->dpll_hw_state.dpll = dpll;
7713
7714         if (INTEL_INFO(dev)->gen >= 4) {
7715                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7716                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7717                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7718         }
7719 }
7720
7721 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7722                               struct intel_crtc_state *crtc_state,
7723                               intel_clock_t *reduced_clock,
7724                               int num_connectors)
7725 {
7726         struct drm_device *dev = crtc->base.dev;
7727         struct drm_i915_private *dev_priv = dev->dev_private;
7728         u32 dpll;
7729         struct dpll *clock = &crtc_state->dpll;
7730
7731         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7732
7733         dpll = DPLL_VGA_MODE_DIS;
7734
7735         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7736                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7737         } else {
7738                 if (clock->p1 == 2)
7739                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7740                 else
7741                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7742                 if (clock->p2 == 4)
7743                         dpll |= PLL_P2_DIVIDE_BY_4;
7744         }
7745
7746         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7747                 dpll |= DPLL_DVO_2X_MODE;
7748
7749         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7750                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7751                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7752         else
7753                 dpll |= PLL_REF_INPUT_DREFCLK;
7754
7755         dpll |= DPLL_VCO_ENABLE;
7756         crtc_state->dpll_hw_state.dpll = dpll;
7757 }
7758
7759 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7760 {
7761         struct drm_device *dev = intel_crtc->base.dev;
7762         struct drm_i915_private *dev_priv = dev->dev_private;
7763         enum pipe pipe = intel_crtc->pipe;
7764         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7765         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7766         uint32_t crtc_vtotal, crtc_vblank_end;
7767         int vsyncshift = 0;
7768
7769         /* We need to be careful not to changed the adjusted mode, for otherwise
7770          * the hw state checker will get angry at the mismatch. */
7771         crtc_vtotal = adjusted_mode->crtc_vtotal;
7772         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7773
7774         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7775                 /* the chip adds 2 halflines automatically */
7776                 crtc_vtotal -= 1;
7777                 crtc_vblank_end -= 1;
7778
7779                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7780                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7781                 else
7782                         vsyncshift = adjusted_mode->crtc_hsync_start -
7783                                 adjusted_mode->crtc_htotal / 2;
7784                 if (vsyncshift < 0)
7785                         vsyncshift += adjusted_mode->crtc_htotal;
7786         }
7787
7788         if (INTEL_INFO(dev)->gen > 3)
7789                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7790
7791         I915_WRITE(HTOTAL(cpu_transcoder),
7792                    (adjusted_mode->crtc_hdisplay - 1) |
7793                    ((adjusted_mode->crtc_htotal - 1) << 16));
7794         I915_WRITE(HBLANK(cpu_transcoder),
7795                    (adjusted_mode->crtc_hblank_start - 1) |
7796                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7797         I915_WRITE(HSYNC(cpu_transcoder),
7798                    (adjusted_mode->crtc_hsync_start - 1) |
7799                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7800
7801         I915_WRITE(VTOTAL(cpu_transcoder),
7802                    (adjusted_mode->crtc_vdisplay - 1) |
7803                    ((crtc_vtotal - 1) << 16));
7804         I915_WRITE(VBLANK(cpu_transcoder),
7805                    (adjusted_mode->crtc_vblank_start - 1) |
7806                    ((crtc_vblank_end - 1) << 16));
7807         I915_WRITE(VSYNC(cpu_transcoder),
7808                    (adjusted_mode->crtc_vsync_start - 1) |
7809                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7810
7811         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7812          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7813          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7814          * bits. */
7815         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7816             (pipe == PIPE_B || pipe == PIPE_C))
7817                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7818
7819         /* pipesrc controls the size that is scaled from, which should
7820          * always be the user's requested size.
7821          */
7822         I915_WRITE(PIPESRC(pipe),
7823                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7824                    (intel_crtc->config->pipe_src_h - 1));
7825 }
7826
7827 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7828                                    struct intel_crtc_state *pipe_config)
7829 {
7830         struct drm_device *dev = crtc->base.dev;
7831         struct drm_i915_private *dev_priv = dev->dev_private;
7832         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7833         uint32_t tmp;
7834
7835         tmp = I915_READ(HTOTAL(cpu_transcoder));
7836         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7837         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7838         tmp = I915_READ(HBLANK(cpu_transcoder));
7839         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7840         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7841         tmp = I915_READ(HSYNC(cpu_transcoder));
7842         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7843         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7844
7845         tmp = I915_READ(VTOTAL(cpu_transcoder));
7846         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7847         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7848         tmp = I915_READ(VBLANK(cpu_transcoder));
7849         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7850         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7851         tmp = I915_READ(VSYNC(cpu_transcoder));
7852         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7853         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7854
7855         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7856                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7857                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7858                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7859         }
7860
7861         tmp = I915_READ(PIPESRC(crtc->pipe));
7862         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7863         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7864
7865         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7866         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7867 }
7868
7869 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7870                                  struct intel_crtc_state *pipe_config)
7871 {
7872         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7873         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7874         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7875         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7876
7877         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7878         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7879         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7880         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7881
7882         mode->flags = pipe_config->base.adjusted_mode.flags;
7883         mode->type = DRM_MODE_TYPE_DRIVER;
7884
7885         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7886         mode->flags |= pipe_config->base.adjusted_mode.flags;
7887
7888         mode->hsync = drm_mode_hsync(mode);
7889         mode->vrefresh = drm_mode_vrefresh(mode);
7890         drm_mode_set_name(mode);
7891 }
7892
7893 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7894 {
7895         struct drm_device *dev = intel_crtc->base.dev;
7896         struct drm_i915_private *dev_priv = dev->dev_private;
7897         uint32_t pipeconf;
7898
7899         pipeconf = 0;
7900
7901         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7902             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7903                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7904
7905         if (intel_crtc->config->double_wide)
7906                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7907
7908         /* only g4x and later have fancy bpc/dither controls */
7909         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7910                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7911                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7912                         pipeconf |= PIPECONF_DITHER_EN |
7913                                     PIPECONF_DITHER_TYPE_SP;
7914
7915                 switch (intel_crtc->config->pipe_bpp) {
7916                 case 18:
7917                         pipeconf |= PIPECONF_6BPC;
7918                         break;
7919                 case 24:
7920                         pipeconf |= PIPECONF_8BPC;
7921                         break;
7922                 case 30:
7923                         pipeconf |= PIPECONF_10BPC;
7924                         break;
7925                 default:
7926                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7927                         BUG();
7928                 }
7929         }
7930
7931         if (HAS_PIPE_CXSR(dev)) {
7932                 if (intel_crtc->lowfreq_avail) {
7933                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7934                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7935                 } else {
7936                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7937                 }
7938         }
7939
7940         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7941                 if (INTEL_INFO(dev)->gen < 4 ||
7942                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7943                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7944                 else
7945                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7946         } else
7947                 pipeconf |= PIPECONF_PROGRESSIVE;
7948
7949         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7950              intel_crtc->config->limited_color_range)
7951                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7952
7953         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7954         POSTING_READ(PIPECONF(intel_crtc->pipe));
7955 }
7956
7957 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7958                                    struct intel_crtc_state *crtc_state)
7959 {
7960         struct drm_device *dev = crtc->base.dev;
7961         struct drm_i915_private *dev_priv = dev->dev_private;
7962         int refclk, num_connectors = 0;
7963         intel_clock_t clock;
7964         bool ok;
7965         const intel_limit_t *limit;
7966         struct drm_atomic_state *state = crtc_state->base.state;
7967         struct drm_connector *connector;
7968         struct drm_connector_state *connector_state;
7969         int i;
7970
7971         memset(&crtc_state->dpll_hw_state, 0,
7972                sizeof(crtc_state->dpll_hw_state));
7973
7974         if (crtc_state->has_dsi_encoder)
7975                 return 0;
7976
7977         for_each_connector_in_state(state, connector, connector_state, i) {
7978                 if (connector_state->crtc == &crtc->base)
7979                         num_connectors++;
7980         }
7981
7982         if (!crtc_state->clock_set) {
7983                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7984
7985                 /*
7986                  * Returns a set of divisors for the desired target clock with
7987                  * the given refclk, or FALSE.  The returned values represent
7988                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7989                  * 2) / p1 / p2.
7990                  */
7991                 limit = intel_limit(crtc_state, refclk);
7992                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7993                                                  crtc_state->port_clock,
7994                                                  refclk, NULL, &clock);
7995                 if (!ok) {
7996                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7997                         return -EINVAL;
7998                 }
7999
8000                 /* Compat-code for transition, will disappear. */
8001                 crtc_state->dpll.n = clock.n;
8002                 crtc_state->dpll.m1 = clock.m1;
8003                 crtc_state->dpll.m2 = clock.m2;
8004                 crtc_state->dpll.p1 = clock.p1;
8005                 crtc_state->dpll.p2 = clock.p2;
8006         }
8007
8008         if (IS_GEN2(dev)) {
8009                 i8xx_compute_dpll(crtc, crtc_state, NULL,
8010                                   num_connectors);
8011         } else if (IS_CHERRYVIEW(dev)) {
8012                 chv_compute_dpll(crtc, crtc_state);
8013         } else if (IS_VALLEYVIEW(dev)) {
8014                 vlv_compute_dpll(crtc, crtc_state);
8015         } else {
8016                 i9xx_compute_dpll(crtc, crtc_state, NULL,
8017                                   num_connectors);
8018         }
8019
8020         return 0;
8021 }
8022
8023 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8024                                  struct intel_crtc_state *pipe_config)
8025 {
8026         struct drm_device *dev = crtc->base.dev;
8027         struct drm_i915_private *dev_priv = dev->dev_private;
8028         uint32_t tmp;
8029
8030         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8031                 return;
8032
8033         tmp = I915_READ(PFIT_CONTROL);
8034         if (!(tmp & PFIT_ENABLE))
8035                 return;
8036
8037         /* Check whether the pfit is attached to our pipe. */
8038         if (INTEL_INFO(dev)->gen < 4) {
8039                 if (crtc->pipe != PIPE_B)
8040                         return;
8041         } else {
8042                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8043                         return;
8044         }
8045
8046         pipe_config->gmch_pfit.control = tmp;
8047         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8048         if (INTEL_INFO(dev)->gen < 5)
8049                 pipe_config->gmch_pfit.lvds_border_bits =
8050                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
8051 }
8052
8053 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8054                                struct intel_crtc_state *pipe_config)
8055 {
8056         struct drm_device *dev = crtc->base.dev;
8057         struct drm_i915_private *dev_priv = dev->dev_private;
8058         int pipe = pipe_config->cpu_transcoder;
8059         intel_clock_t clock;
8060         u32 mdiv;
8061         int refclk = 100000;
8062
8063         /* In case of MIPI DPLL will not even be used */
8064         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8065                 return;
8066
8067         mutex_lock(&dev_priv->sb_lock);
8068         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8069         mutex_unlock(&dev_priv->sb_lock);
8070
8071         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8072         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8073         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8074         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8075         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8076
8077         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8078 }
8079
8080 static void
8081 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8082                               struct intel_initial_plane_config *plane_config)
8083 {
8084         struct drm_device *dev = crtc->base.dev;
8085         struct drm_i915_private *dev_priv = dev->dev_private;
8086         u32 val, base, offset;
8087         int pipe = crtc->pipe, plane = crtc->plane;
8088         int fourcc, pixel_format;
8089         unsigned int aligned_height;
8090         struct drm_framebuffer *fb;
8091         struct intel_framebuffer *intel_fb;
8092
8093         val = I915_READ(DSPCNTR(plane));
8094         if (!(val & DISPLAY_PLANE_ENABLE))
8095                 return;
8096
8097         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8098         if (!intel_fb) {
8099                 DRM_DEBUG_KMS("failed to alloc fb\n");
8100                 return;
8101         }
8102
8103         fb = &intel_fb->base;
8104
8105         if (INTEL_INFO(dev)->gen >= 4) {
8106                 if (val & DISPPLANE_TILED) {
8107                         plane_config->tiling = I915_TILING_X;
8108                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8109                 }
8110         }
8111
8112         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8113         fourcc = i9xx_format_to_fourcc(pixel_format);
8114         fb->pixel_format = fourcc;
8115         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8116
8117         if (INTEL_INFO(dev)->gen >= 4) {
8118                 if (plane_config->tiling)
8119                         offset = I915_READ(DSPTILEOFF(plane));
8120                 else
8121                         offset = I915_READ(DSPLINOFF(plane));
8122                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8123         } else {
8124                 base = I915_READ(DSPADDR(plane));
8125         }
8126         plane_config->base = base;
8127
8128         val = I915_READ(PIPESRC(pipe));
8129         fb->width = ((val >> 16) & 0xfff) + 1;
8130         fb->height = ((val >> 0) & 0xfff) + 1;
8131
8132         val = I915_READ(DSPSTRIDE(pipe));
8133         fb->pitches[0] = val & 0xffffffc0;
8134
8135         aligned_height = intel_fb_align_height(dev, fb->height,
8136                                                fb->pixel_format,
8137                                                fb->modifier[0]);
8138
8139         plane_config->size = fb->pitches[0] * aligned_height;
8140
8141         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8142                       pipe_name(pipe), plane, fb->width, fb->height,
8143                       fb->bits_per_pixel, base, fb->pitches[0],
8144                       plane_config->size);
8145
8146         plane_config->fb = intel_fb;
8147 }
8148
8149 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8150                                struct intel_crtc_state *pipe_config)
8151 {
8152         struct drm_device *dev = crtc->base.dev;
8153         struct drm_i915_private *dev_priv = dev->dev_private;
8154         int pipe = pipe_config->cpu_transcoder;
8155         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8156         intel_clock_t clock;
8157         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8158         int refclk = 100000;
8159
8160         mutex_lock(&dev_priv->sb_lock);
8161         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8162         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8163         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8164         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8165         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8166         mutex_unlock(&dev_priv->sb_lock);
8167
8168         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8169         clock.m2 = (pll_dw0 & 0xff) << 22;
8170         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8171                 clock.m2 |= pll_dw2 & 0x3fffff;
8172         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8173         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8174         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8175
8176         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8177 }
8178
8179 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8180                                  struct intel_crtc_state *pipe_config)
8181 {
8182         struct drm_device *dev = crtc->base.dev;
8183         struct drm_i915_private *dev_priv = dev->dev_private;
8184         uint32_t tmp;
8185
8186         if (!intel_display_power_is_enabled(dev_priv,
8187                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8188                 return false;
8189
8190         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8191         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8192
8193         tmp = I915_READ(PIPECONF(crtc->pipe));
8194         if (!(tmp & PIPECONF_ENABLE))
8195                 return false;
8196
8197         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8198                 switch (tmp & PIPECONF_BPC_MASK) {
8199                 case PIPECONF_6BPC:
8200                         pipe_config->pipe_bpp = 18;
8201                         break;
8202                 case PIPECONF_8BPC:
8203                         pipe_config->pipe_bpp = 24;
8204                         break;
8205                 case PIPECONF_10BPC:
8206                         pipe_config->pipe_bpp = 30;
8207                         break;
8208                 default:
8209                         break;
8210                 }
8211         }
8212
8213         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8214             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8215                 pipe_config->limited_color_range = true;
8216
8217         if (INTEL_INFO(dev)->gen < 4)
8218                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8219
8220         intel_get_pipe_timings(crtc, pipe_config);
8221
8222         i9xx_get_pfit_config(crtc, pipe_config);
8223
8224         if (INTEL_INFO(dev)->gen >= 4) {
8225                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8226                 pipe_config->pixel_multiplier =
8227                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8228                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8229                 pipe_config->dpll_hw_state.dpll_md = tmp;
8230         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8231                 tmp = I915_READ(DPLL(crtc->pipe));
8232                 pipe_config->pixel_multiplier =
8233                         ((tmp & SDVO_MULTIPLIER_MASK)
8234                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8235         } else {
8236                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8237                  * port and will be fixed up in the encoder->get_config
8238                  * function. */
8239                 pipe_config->pixel_multiplier = 1;
8240         }
8241         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8242         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8243                 /*
8244                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8245                  * on 830. Filter it out here so that we don't
8246                  * report errors due to that.
8247                  */
8248                 if (IS_I830(dev))
8249                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8250
8251                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8252                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8253         } else {
8254                 /* Mask out read-only status bits. */
8255                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8256                                                      DPLL_PORTC_READY_MASK |
8257                                                      DPLL_PORTB_READY_MASK);
8258         }
8259
8260         if (IS_CHERRYVIEW(dev))
8261                 chv_crtc_clock_get(crtc, pipe_config);
8262         else if (IS_VALLEYVIEW(dev))
8263                 vlv_crtc_clock_get(crtc, pipe_config);
8264         else
8265                 i9xx_crtc_clock_get(crtc, pipe_config);
8266
8267         /*
8268          * Normally the dotclock is filled in by the encoder .get_config()
8269          * but in case the pipe is enabled w/o any ports we need a sane
8270          * default.
8271          */
8272         pipe_config->base.adjusted_mode.crtc_clock =
8273                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8274
8275         return true;
8276 }
8277
8278 static void ironlake_init_pch_refclk(struct drm_device *dev)
8279 {
8280         struct drm_i915_private *dev_priv = dev->dev_private;
8281         struct intel_encoder *encoder;
8282         u32 val, final;
8283         bool has_lvds = false;
8284         bool has_cpu_edp = false;
8285         bool has_panel = false;
8286         bool has_ck505 = false;
8287         bool can_ssc = false;
8288
8289         /* We need to take the global config into account */
8290         for_each_intel_encoder(dev, encoder) {
8291                 switch (encoder->type) {
8292                 case INTEL_OUTPUT_LVDS:
8293                         has_panel = true;
8294                         has_lvds = true;
8295                         break;
8296                 case INTEL_OUTPUT_EDP:
8297                         has_panel = true;
8298                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8299                                 has_cpu_edp = true;
8300                         break;
8301                 default:
8302                         break;
8303                 }
8304         }
8305
8306         if (HAS_PCH_IBX(dev)) {
8307                 has_ck505 = dev_priv->vbt.display_clock_mode;
8308                 can_ssc = has_ck505;
8309         } else {
8310                 has_ck505 = false;
8311                 can_ssc = true;
8312         }
8313
8314         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8315                       has_panel, has_lvds, has_ck505);
8316
8317         /* Ironlake: try to setup display ref clock before DPLL
8318          * enabling. This is only under driver's control after
8319          * PCH B stepping, previous chipset stepping should be
8320          * ignoring this setting.
8321          */
8322         val = I915_READ(PCH_DREF_CONTROL);
8323
8324         /* As we must carefully and slowly disable/enable each source in turn,
8325          * compute the final state we want first and check if we need to
8326          * make any changes at all.
8327          */
8328         final = val;
8329         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8330         if (has_ck505)
8331                 final |= DREF_NONSPREAD_CK505_ENABLE;
8332         else
8333                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8334
8335         final &= ~DREF_SSC_SOURCE_MASK;
8336         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8337         final &= ~DREF_SSC1_ENABLE;
8338
8339         if (has_panel) {
8340                 final |= DREF_SSC_SOURCE_ENABLE;
8341
8342                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8343                         final |= DREF_SSC1_ENABLE;
8344
8345                 if (has_cpu_edp) {
8346                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8347                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8348                         else
8349                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8350                 } else
8351                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8352         } else {
8353                 final |= DREF_SSC_SOURCE_DISABLE;
8354                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8355         }
8356
8357         if (final == val)
8358                 return;
8359
8360         /* Always enable nonspread source */
8361         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8362
8363         if (has_ck505)
8364                 val |= DREF_NONSPREAD_CK505_ENABLE;
8365         else
8366                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8367
8368         if (has_panel) {
8369                 val &= ~DREF_SSC_SOURCE_MASK;
8370                 val |= DREF_SSC_SOURCE_ENABLE;
8371
8372                 /* SSC must be turned on before enabling the CPU output  */
8373                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8374                         DRM_DEBUG_KMS("Using SSC on panel\n");
8375                         val |= DREF_SSC1_ENABLE;
8376                 } else
8377                         val &= ~DREF_SSC1_ENABLE;
8378
8379                 /* Get SSC going before enabling the outputs */
8380                 I915_WRITE(PCH_DREF_CONTROL, val);
8381                 POSTING_READ(PCH_DREF_CONTROL);
8382                 udelay(200);
8383
8384                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8385
8386                 /* Enable CPU source on CPU attached eDP */
8387                 if (has_cpu_edp) {
8388                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8389                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8390                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8391                         } else
8392                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8393                 } else
8394                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8395
8396                 I915_WRITE(PCH_DREF_CONTROL, val);
8397                 POSTING_READ(PCH_DREF_CONTROL);
8398                 udelay(200);
8399         } else {
8400                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8401
8402                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8403
8404                 /* Turn off CPU output */
8405                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8406
8407                 I915_WRITE(PCH_DREF_CONTROL, val);
8408                 POSTING_READ(PCH_DREF_CONTROL);
8409                 udelay(200);
8410
8411                 /* Turn off the SSC source */
8412                 val &= ~DREF_SSC_SOURCE_MASK;
8413                 val |= DREF_SSC_SOURCE_DISABLE;
8414
8415                 /* Turn off SSC1 */
8416                 val &= ~DREF_SSC1_ENABLE;
8417
8418                 I915_WRITE(PCH_DREF_CONTROL, val);
8419                 POSTING_READ(PCH_DREF_CONTROL);
8420                 udelay(200);
8421         }
8422
8423         BUG_ON(val != final);
8424 }
8425
8426 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8427 {
8428         uint32_t tmp;
8429
8430         tmp = I915_READ(SOUTH_CHICKEN2);
8431         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8432         I915_WRITE(SOUTH_CHICKEN2, tmp);
8433
8434         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8435                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8436                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8437
8438         tmp = I915_READ(SOUTH_CHICKEN2);
8439         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8440         I915_WRITE(SOUTH_CHICKEN2, tmp);
8441
8442         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8443                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8444                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8445 }
8446
8447 /* WaMPhyProgramming:hsw */
8448 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8449 {
8450         uint32_t tmp;
8451
8452         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8453         tmp &= ~(0xFF << 24);
8454         tmp |= (0x12 << 24);
8455         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8456
8457         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8458         tmp |= (1 << 11);
8459         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8460
8461         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8462         tmp |= (1 << 11);
8463         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8464
8465         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8466         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8467         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8468
8469         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8470         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8471         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8472
8473         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8474         tmp &= ~(7 << 13);
8475         tmp |= (5 << 13);
8476         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8477
8478         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8479         tmp &= ~(7 << 13);
8480         tmp |= (5 << 13);
8481         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8482
8483         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8484         tmp &= ~0xFF;
8485         tmp |= 0x1C;
8486         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8487
8488         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8489         tmp &= ~0xFF;
8490         tmp |= 0x1C;
8491         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8492
8493         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8494         tmp &= ~(0xFF << 16);
8495         tmp |= (0x1C << 16);
8496         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8497
8498         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8499         tmp &= ~(0xFF << 16);
8500         tmp |= (0x1C << 16);
8501         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8502
8503         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8504         tmp |= (1 << 27);
8505         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8506
8507         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8508         tmp |= (1 << 27);
8509         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8510
8511         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8512         tmp &= ~(0xF << 28);
8513         tmp |= (4 << 28);
8514         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8515
8516         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8517         tmp &= ~(0xF << 28);
8518         tmp |= (4 << 28);
8519         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8520 }
8521
8522 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8523  * Programming" based on the parameters passed:
8524  * - Sequence to enable CLKOUT_DP
8525  * - Sequence to enable CLKOUT_DP without spread
8526  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8527  */
8528 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8529                                  bool with_fdi)
8530 {
8531         struct drm_i915_private *dev_priv = dev->dev_private;
8532         uint32_t reg, tmp;
8533
8534         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8535                 with_spread = true;
8536         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8537                 with_fdi = false;
8538
8539         mutex_lock(&dev_priv->sb_lock);
8540
8541         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8542         tmp &= ~SBI_SSCCTL_DISABLE;
8543         tmp |= SBI_SSCCTL_PATHALT;
8544         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8545
8546         udelay(24);
8547
8548         if (with_spread) {
8549                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8550                 tmp &= ~SBI_SSCCTL_PATHALT;
8551                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8552
8553                 if (with_fdi) {
8554                         lpt_reset_fdi_mphy(dev_priv);
8555                         lpt_program_fdi_mphy(dev_priv);
8556                 }
8557         }
8558
8559         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8560         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8561         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8562         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8563
8564         mutex_unlock(&dev_priv->sb_lock);
8565 }
8566
8567 /* Sequence to disable CLKOUT_DP */
8568 static void lpt_disable_clkout_dp(struct drm_device *dev)
8569 {
8570         struct drm_i915_private *dev_priv = dev->dev_private;
8571         uint32_t reg, tmp;
8572
8573         mutex_lock(&dev_priv->sb_lock);
8574
8575         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8576         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8577         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8578         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8579
8580         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8581         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8582                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8583                         tmp |= SBI_SSCCTL_PATHALT;
8584                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8585                         udelay(32);
8586                 }
8587                 tmp |= SBI_SSCCTL_DISABLE;
8588                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8589         }
8590
8591         mutex_unlock(&dev_priv->sb_lock);
8592 }
8593
8594 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8595
8596 static const uint16_t sscdivintphase[] = {
8597         [BEND_IDX( 50)] = 0x3B23,
8598         [BEND_IDX( 45)] = 0x3B23,
8599         [BEND_IDX( 40)] = 0x3C23,
8600         [BEND_IDX( 35)] = 0x3C23,
8601         [BEND_IDX( 30)] = 0x3D23,
8602         [BEND_IDX( 25)] = 0x3D23,
8603         [BEND_IDX( 20)] = 0x3E23,
8604         [BEND_IDX( 15)] = 0x3E23,
8605         [BEND_IDX( 10)] = 0x3F23,
8606         [BEND_IDX(  5)] = 0x3F23,
8607         [BEND_IDX(  0)] = 0x0025,
8608         [BEND_IDX( -5)] = 0x0025,
8609         [BEND_IDX(-10)] = 0x0125,
8610         [BEND_IDX(-15)] = 0x0125,
8611         [BEND_IDX(-20)] = 0x0225,
8612         [BEND_IDX(-25)] = 0x0225,
8613         [BEND_IDX(-30)] = 0x0325,
8614         [BEND_IDX(-35)] = 0x0325,
8615         [BEND_IDX(-40)] = 0x0425,
8616         [BEND_IDX(-45)] = 0x0425,
8617         [BEND_IDX(-50)] = 0x0525,
8618 };
8619
8620 /*
8621  * Bend CLKOUT_DP
8622  * steps -50 to 50 inclusive, in steps of 5
8623  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8624  * change in clock period = -(steps / 10) * 5.787 ps
8625  */
8626 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8627 {
8628         uint32_t tmp;
8629         int idx = BEND_IDX(steps);
8630
8631         if (WARN_ON(steps % 5 != 0))
8632                 return;
8633
8634         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8635                 return;
8636
8637         mutex_lock(&dev_priv->sb_lock);
8638
8639         if (steps % 10 != 0)
8640                 tmp = 0xAAAAAAAB;
8641         else
8642                 tmp = 0x00000000;
8643         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8644
8645         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8646         tmp &= 0xffff0000;
8647         tmp |= sscdivintphase[idx];
8648         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8649
8650         mutex_unlock(&dev_priv->sb_lock);
8651 }
8652
8653 #undef BEND_IDX
8654
8655 static void lpt_init_pch_refclk(struct drm_device *dev)
8656 {
8657         struct intel_encoder *encoder;
8658         bool has_vga = false;
8659
8660         for_each_intel_encoder(dev, encoder) {
8661                 switch (encoder->type) {
8662                 case INTEL_OUTPUT_ANALOG:
8663                         has_vga = true;
8664                         break;
8665                 default:
8666                         break;
8667                 }
8668         }
8669
8670         if (has_vga) {
8671                 lpt_bend_clkout_dp(to_i915(dev), 0);
8672                 lpt_enable_clkout_dp(dev, true, true);
8673         } else {
8674                 lpt_disable_clkout_dp(dev);
8675         }
8676 }
8677
8678 /*
8679  * Initialize reference clocks when the driver loads
8680  */
8681 void intel_init_pch_refclk(struct drm_device *dev)
8682 {
8683         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8684                 ironlake_init_pch_refclk(dev);
8685         else if (HAS_PCH_LPT(dev))
8686                 lpt_init_pch_refclk(dev);
8687 }
8688
8689 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8690 {
8691         struct drm_device *dev = crtc_state->base.crtc->dev;
8692         struct drm_i915_private *dev_priv = dev->dev_private;
8693         struct drm_atomic_state *state = crtc_state->base.state;
8694         struct drm_connector *connector;
8695         struct drm_connector_state *connector_state;
8696         struct intel_encoder *encoder;
8697         int num_connectors = 0, i;
8698         bool is_lvds = false;
8699
8700         for_each_connector_in_state(state, connector, connector_state, i) {
8701                 if (connector_state->crtc != crtc_state->base.crtc)
8702                         continue;
8703
8704                 encoder = to_intel_encoder(connector_state->best_encoder);
8705
8706                 switch (encoder->type) {
8707                 case INTEL_OUTPUT_LVDS:
8708                         is_lvds = true;
8709                         break;
8710                 default:
8711                         break;
8712                 }
8713                 num_connectors++;
8714         }
8715
8716         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8717                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8718                               dev_priv->vbt.lvds_ssc_freq);
8719                 return dev_priv->vbt.lvds_ssc_freq;
8720         }
8721
8722         return 120000;
8723 }
8724
8725 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8726 {
8727         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8728         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8729         int pipe = intel_crtc->pipe;
8730         uint32_t val;
8731
8732         val = 0;
8733
8734         switch (intel_crtc->config->pipe_bpp) {
8735         case 18:
8736                 val |= PIPECONF_6BPC;
8737                 break;
8738         case 24:
8739                 val |= PIPECONF_8BPC;
8740                 break;
8741         case 30:
8742                 val |= PIPECONF_10BPC;
8743                 break;
8744         case 36:
8745                 val |= PIPECONF_12BPC;
8746                 break;
8747         default:
8748                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8749                 BUG();
8750         }
8751
8752         if (intel_crtc->config->dither)
8753                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8754
8755         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8756                 val |= PIPECONF_INTERLACED_ILK;
8757         else
8758                 val |= PIPECONF_PROGRESSIVE;
8759
8760         if (intel_crtc->config->limited_color_range)
8761                 val |= PIPECONF_COLOR_RANGE_SELECT;
8762
8763         I915_WRITE(PIPECONF(pipe), val);
8764         POSTING_READ(PIPECONF(pipe));
8765 }
8766
8767 /*
8768  * Set up the pipe CSC unit.
8769  *
8770  * Currently only full range RGB to limited range RGB conversion
8771  * is supported, but eventually this should handle various
8772  * RGB<->YCbCr scenarios as well.
8773  */
8774 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8775 {
8776         struct drm_device *dev = crtc->dev;
8777         struct drm_i915_private *dev_priv = dev->dev_private;
8778         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8779         int pipe = intel_crtc->pipe;
8780         uint16_t coeff = 0x7800; /* 1.0 */
8781
8782         /*
8783          * TODO: Check what kind of values actually come out of the pipe
8784          * with these coeff/postoff values and adjust to get the best
8785          * accuracy. Perhaps we even need to take the bpc value into
8786          * consideration.
8787          */
8788
8789         if (intel_crtc->config->limited_color_range)
8790                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8791
8792         /*
8793          * GY/GU and RY/RU should be the other way around according
8794          * to BSpec, but reality doesn't agree. Just set them up in
8795          * a way that results in the correct picture.
8796          */
8797         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8798         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8799
8800         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8801         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8802
8803         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8804         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8805
8806         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8807         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8808         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8809
8810         if (INTEL_INFO(dev)->gen > 6) {
8811                 uint16_t postoff = 0;
8812
8813                 if (intel_crtc->config->limited_color_range)
8814                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8815
8816                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8817                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8818                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8819
8820                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8821         } else {
8822                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8823
8824                 if (intel_crtc->config->limited_color_range)
8825                         mode |= CSC_BLACK_SCREEN_OFFSET;
8826
8827                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8828         }
8829 }
8830
8831 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8832 {
8833         struct drm_device *dev = crtc->dev;
8834         struct drm_i915_private *dev_priv = dev->dev_private;
8835         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8836         enum pipe pipe = intel_crtc->pipe;
8837         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8838         uint32_t val;
8839
8840         val = 0;
8841
8842         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8843                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8844
8845         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8846                 val |= PIPECONF_INTERLACED_ILK;
8847         else
8848                 val |= PIPECONF_PROGRESSIVE;
8849
8850         I915_WRITE(PIPECONF(cpu_transcoder), val);
8851         POSTING_READ(PIPECONF(cpu_transcoder));
8852
8853         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8854         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8855
8856         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8857                 val = 0;
8858
8859                 switch (intel_crtc->config->pipe_bpp) {
8860                 case 18:
8861                         val |= PIPEMISC_DITHER_6_BPC;
8862                         break;
8863                 case 24:
8864                         val |= PIPEMISC_DITHER_8_BPC;
8865                         break;
8866                 case 30:
8867                         val |= PIPEMISC_DITHER_10_BPC;
8868                         break;
8869                 case 36:
8870                         val |= PIPEMISC_DITHER_12_BPC;
8871                         break;
8872                 default:
8873                         /* Case prevented by pipe_config_set_bpp. */
8874                         BUG();
8875                 }
8876
8877                 if (intel_crtc->config->dither)
8878                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8879
8880                 I915_WRITE(PIPEMISC(pipe), val);
8881         }
8882 }
8883
8884 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8885                                     struct intel_crtc_state *crtc_state,
8886                                     intel_clock_t *clock,
8887                                     bool *has_reduced_clock,
8888                                     intel_clock_t *reduced_clock)
8889 {
8890         struct drm_device *dev = crtc->dev;
8891         struct drm_i915_private *dev_priv = dev->dev_private;
8892         int refclk;
8893         const intel_limit_t *limit;
8894         bool ret;
8895
8896         refclk = ironlake_get_refclk(crtc_state);
8897
8898         /*
8899          * Returns a set of divisors for the desired target clock with the given
8900          * refclk, or FALSE.  The returned values represent the clock equation:
8901          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8902          */
8903         limit = intel_limit(crtc_state, refclk);
8904         ret = dev_priv->display.find_dpll(limit, crtc_state,
8905                                           crtc_state->port_clock,
8906                                           refclk, NULL, clock);
8907         if (!ret)
8908                 return false;
8909
8910         return true;
8911 }
8912
8913 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8914 {
8915         /*
8916          * Account for spread spectrum to avoid
8917          * oversubscribing the link. Max center spread
8918          * is 2.5%; use 5% for safety's sake.
8919          */
8920         u32 bps = target_clock * bpp * 21 / 20;
8921         return DIV_ROUND_UP(bps, link_bw * 8);
8922 }
8923
8924 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8925 {
8926         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8927 }
8928
8929 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8930                                       struct intel_crtc_state *crtc_state,
8931                                       u32 *fp,
8932                                       intel_clock_t *reduced_clock, u32 *fp2)
8933 {
8934         struct drm_crtc *crtc = &intel_crtc->base;
8935         struct drm_device *dev = crtc->dev;
8936         struct drm_i915_private *dev_priv = dev->dev_private;
8937         struct drm_atomic_state *state = crtc_state->base.state;
8938         struct drm_connector *connector;
8939         struct drm_connector_state *connector_state;
8940         struct intel_encoder *encoder;
8941         uint32_t dpll;
8942         int factor, num_connectors = 0, i;
8943         bool is_lvds = false, is_sdvo = false;
8944
8945         for_each_connector_in_state(state, connector, connector_state, i) {
8946                 if (connector_state->crtc != crtc_state->base.crtc)
8947                         continue;
8948
8949                 encoder = to_intel_encoder(connector_state->best_encoder);
8950
8951                 switch (encoder->type) {
8952                 case INTEL_OUTPUT_LVDS:
8953                         is_lvds = true;
8954                         break;
8955                 case INTEL_OUTPUT_SDVO:
8956                 case INTEL_OUTPUT_HDMI:
8957                         is_sdvo = true;
8958                         break;
8959                 default:
8960                         break;
8961                 }
8962
8963                 num_connectors++;
8964         }
8965
8966         /* Enable autotuning of the PLL clock (if permissible) */
8967         factor = 21;
8968         if (is_lvds) {
8969                 if ((intel_panel_use_ssc(dev_priv) &&
8970                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8971                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8972                         factor = 25;
8973         } else if (crtc_state->sdvo_tv_clock)
8974                 factor = 20;
8975
8976         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8977                 *fp |= FP_CB_TUNE;
8978
8979         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8980                 *fp2 |= FP_CB_TUNE;
8981
8982         dpll = 0;
8983
8984         if (is_lvds)
8985                 dpll |= DPLLB_MODE_LVDS;
8986         else
8987                 dpll |= DPLLB_MODE_DAC_SERIAL;
8988
8989         dpll |= (crtc_state->pixel_multiplier - 1)
8990                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8991
8992         if (is_sdvo)
8993                 dpll |= DPLL_SDVO_HIGH_SPEED;
8994         if (crtc_state->has_dp_encoder)
8995                 dpll |= DPLL_SDVO_HIGH_SPEED;
8996
8997         /* compute bitmask from p1 value */
8998         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8999         /* also FPA1 */
9000         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9001
9002         switch (crtc_state->dpll.p2) {
9003         case 5:
9004                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9005                 break;
9006         case 7:
9007                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9008                 break;
9009         case 10:
9010                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9011                 break;
9012         case 14:
9013                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9014                 break;
9015         }
9016
9017         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
9018                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9019         else
9020                 dpll |= PLL_REF_INPUT_DREFCLK;
9021
9022         return dpll | DPLL_VCO_ENABLE;
9023 }
9024
9025 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9026                                        struct intel_crtc_state *crtc_state)
9027 {
9028         struct drm_device *dev = crtc->base.dev;
9029         intel_clock_t clock, reduced_clock;
9030         u32 dpll = 0, fp = 0, fp2 = 0;
9031         bool ok, has_reduced_clock = false;
9032         bool is_lvds = false;
9033         struct intel_shared_dpll *pll;
9034
9035         memset(&crtc_state->dpll_hw_state, 0,
9036                sizeof(crtc_state->dpll_hw_state));
9037
9038         is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
9039
9040         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
9041              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
9042
9043         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
9044                                      &has_reduced_clock, &reduced_clock);
9045         if (!ok && !crtc_state->clock_set) {
9046                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9047                 return -EINVAL;
9048         }
9049         /* Compat-code for transition, will disappear. */
9050         if (!crtc_state->clock_set) {
9051                 crtc_state->dpll.n = clock.n;
9052                 crtc_state->dpll.m1 = clock.m1;
9053                 crtc_state->dpll.m2 = clock.m2;
9054                 crtc_state->dpll.p1 = clock.p1;
9055                 crtc_state->dpll.p2 = clock.p2;
9056         }
9057
9058         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9059         if (crtc_state->has_pch_encoder) {
9060                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9061                 if (has_reduced_clock)
9062                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
9063
9064                 dpll = ironlake_compute_dpll(crtc, crtc_state,
9065                                              &fp, &reduced_clock,
9066                                              has_reduced_clock ? &fp2 : NULL);
9067
9068                 crtc_state->dpll_hw_state.dpll = dpll;
9069                 crtc_state->dpll_hw_state.fp0 = fp;
9070                 if (has_reduced_clock)
9071                         crtc_state->dpll_hw_state.fp1 = fp2;
9072                 else
9073                         crtc_state->dpll_hw_state.fp1 = fp;
9074
9075                 pll = intel_get_shared_dpll(crtc, crtc_state);
9076                 if (pll == NULL) {
9077                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9078                                          pipe_name(crtc->pipe));
9079                         return -EINVAL;
9080                 }
9081         }
9082
9083         if (is_lvds && has_reduced_clock)
9084                 crtc->lowfreq_avail = true;
9085         else
9086                 crtc->lowfreq_avail = false;
9087
9088         return 0;
9089 }
9090
9091 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9092                                          struct intel_link_m_n *m_n)
9093 {
9094         struct drm_device *dev = crtc->base.dev;
9095         struct drm_i915_private *dev_priv = dev->dev_private;
9096         enum pipe pipe = crtc->pipe;
9097
9098         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9099         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9100         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9101                 & ~TU_SIZE_MASK;
9102         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9103         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9104                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9105 }
9106
9107 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9108                                          enum transcoder transcoder,
9109                                          struct intel_link_m_n *m_n,
9110                                          struct intel_link_m_n *m2_n2)
9111 {
9112         struct drm_device *dev = crtc->base.dev;
9113         struct drm_i915_private *dev_priv = dev->dev_private;
9114         enum pipe pipe = crtc->pipe;
9115
9116         if (INTEL_INFO(dev)->gen >= 5) {
9117                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9118                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9119                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9120                         & ~TU_SIZE_MASK;
9121                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9122                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9123                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9124                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9125                  * gen < 8) and if DRRS is supported (to make sure the
9126                  * registers are not unnecessarily read).
9127                  */
9128                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9129                         crtc->config->has_drrs) {
9130                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9131                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9132                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9133                                         & ~TU_SIZE_MASK;
9134                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9135                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9136                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9137                 }
9138         } else {
9139                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9140                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9141                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9142                         & ~TU_SIZE_MASK;
9143                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9144                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9145                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9146         }
9147 }
9148
9149 void intel_dp_get_m_n(struct intel_crtc *crtc,
9150                       struct intel_crtc_state *pipe_config)
9151 {
9152         if (pipe_config->has_pch_encoder)
9153                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9154         else
9155                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9156                                              &pipe_config->dp_m_n,
9157                                              &pipe_config->dp_m2_n2);
9158 }
9159
9160 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9161                                         struct intel_crtc_state *pipe_config)
9162 {
9163         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9164                                      &pipe_config->fdi_m_n, NULL);
9165 }
9166
9167 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9168                                     struct intel_crtc_state *pipe_config)
9169 {
9170         struct drm_device *dev = crtc->base.dev;
9171         struct drm_i915_private *dev_priv = dev->dev_private;
9172         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9173         uint32_t ps_ctrl = 0;
9174         int id = -1;
9175         int i;
9176
9177         /* find scaler attached to this pipe */
9178         for (i = 0; i < crtc->num_scalers; i++) {
9179                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9180                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9181                         id = i;
9182                         pipe_config->pch_pfit.enabled = true;
9183                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9184                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9185                         break;
9186                 }
9187         }
9188
9189         scaler_state->scaler_id = id;
9190         if (id >= 0) {
9191                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9192         } else {
9193                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9194         }
9195 }
9196
9197 static void
9198 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9199                                  struct intel_initial_plane_config *plane_config)
9200 {
9201         struct drm_device *dev = crtc->base.dev;
9202         struct drm_i915_private *dev_priv = dev->dev_private;
9203         u32 val, base, offset, stride_mult, tiling;
9204         int pipe = crtc->pipe;
9205         int fourcc, pixel_format;
9206         unsigned int aligned_height;
9207         struct drm_framebuffer *fb;
9208         struct intel_framebuffer *intel_fb;
9209
9210         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9211         if (!intel_fb) {
9212                 DRM_DEBUG_KMS("failed to alloc fb\n");
9213                 return;
9214         }
9215
9216         fb = &intel_fb->base;
9217
9218         val = I915_READ(PLANE_CTL(pipe, 0));
9219         if (!(val & PLANE_CTL_ENABLE))
9220                 goto error;
9221
9222         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9223         fourcc = skl_format_to_fourcc(pixel_format,
9224                                       val & PLANE_CTL_ORDER_RGBX,
9225                                       val & PLANE_CTL_ALPHA_MASK);
9226         fb->pixel_format = fourcc;
9227         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9228
9229         tiling = val & PLANE_CTL_TILED_MASK;
9230         switch (tiling) {
9231         case PLANE_CTL_TILED_LINEAR:
9232                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9233                 break;
9234         case PLANE_CTL_TILED_X:
9235                 plane_config->tiling = I915_TILING_X;
9236                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9237                 break;
9238         case PLANE_CTL_TILED_Y:
9239                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9240                 break;
9241         case PLANE_CTL_TILED_YF:
9242                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9243                 break;
9244         default:
9245                 MISSING_CASE(tiling);
9246                 goto error;
9247         }
9248
9249         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9250         plane_config->base = base;
9251
9252         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9253
9254         val = I915_READ(PLANE_SIZE(pipe, 0));
9255         fb->height = ((val >> 16) & 0xfff) + 1;
9256         fb->width = ((val >> 0) & 0x1fff) + 1;
9257
9258         val = I915_READ(PLANE_STRIDE(pipe, 0));
9259         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9260                                                 fb->pixel_format);
9261         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9262
9263         aligned_height = intel_fb_align_height(dev, fb->height,
9264                                                fb->pixel_format,
9265                                                fb->modifier[0]);
9266
9267         plane_config->size = fb->pitches[0] * aligned_height;
9268
9269         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9270                       pipe_name(pipe), fb->width, fb->height,
9271                       fb->bits_per_pixel, base, fb->pitches[0],
9272                       plane_config->size);
9273
9274         plane_config->fb = intel_fb;
9275         return;
9276
9277 error:
9278         kfree(fb);
9279 }
9280
9281 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9282                                      struct intel_crtc_state *pipe_config)
9283 {
9284         struct drm_device *dev = crtc->base.dev;
9285         struct drm_i915_private *dev_priv = dev->dev_private;
9286         uint32_t tmp;
9287
9288         tmp = I915_READ(PF_CTL(crtc->pipe));
9289
9290         if (tmp & PF_ENABLE) {
9291                 pipe_config->pch_pfit.enabled = true;
9292                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9293                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9294
9295                 /* We currently do not free assignements of panel fitters on
9296                  * ivb/hsw (since we don't use the higher upscaling modes which
9297                  * differentiates them) so just WARN about this case for now. */
9298                 if (IS_GEN7(dev)) {
9299                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9300                                 PF_PIPE_SEL_IVB(crtc->pipe));
9301                 }
9302         }
9303 }
9304
9305 static void
9306 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9307                                   struct intel_initial_plane_config *plane_config)
9308 {
9309         struct drm_device *dev = crtc->base.dev;
9310         struct drm_i915_private *dev_priv = dev->dev_private;
9311         u32 val, base, offset;
9312         int pipe = crtc->pipe;
9313         int fourcc, pixel_format;
9314         unsigned int aligned_height;
9315         struct drm_framebuffer *fb;
9316         struct intel_framebuffer *intel_fb;
9317
9318         val = I915_READ(DSPCNTR(pipe));
9319         if (!(val & DISPLAY_PLANE_ENABLE))
9320                 return;
9321
9322         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9323         if (!intel_fb) {
9324                 DRM_DEBUG_KMS("failed to alloc fb\n");
9325                 return;
9326         }
9327
9328         fb = &intel_fb->base;
9329
9330         if (INTEL_INFO(dev)->gen >= 4) {
9331                 if (val & DISPPLANE_TILED) {
9332                         plane_config->tiling = I915_TILING_X;
9333                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9334                 }
9335         }
9336
9337         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9338         fourcc = i9xx_format_to_fourcc(pixel_format);
9339         fb->pixel_format = fourcc;
9340         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9341
9342         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9343         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9344                 offset = I915_READ(DSPOFFSET(pipe));
9345         } else {
9346                 if (plane_config->tiling)
9347                         offset = I915_READ(DSPTILEOFF(pipe));
9348                 else
9349                         offset = I915_READ(DSPLINOFF(pipe));
9350         }
9351         plane_config->base = base;
9352
9353         val = I915_READ(PIPESRC(pipe));
9354         fb->width = ((val >> 16) & 0xfff) + 1;
9355         fb->height = ((val >> 0) & 0xfff) + 1;
9356
9357         val = I915_READ(DSPSTRIDE(pipe));
9358         fb->pitches[0] = val & 0xffffffc0;
9359
9360         aligned_height = intel_fb_align_height(dev, fb->height,
9361                                                fb->pixel_format,
9362                                                fb->modifier[0]);
9363
9364         plane_config->size = fb->pitches[0] * aligned_height;
9365
9366         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9367                       pipe_name(pipe), fb->width, fb->height,
9368                       fb->bits_per_pixel, base, fb->pitches[0],
9369                       plane_config->size);
9370
9371         plane_config->fb = intel_fb;
9372 }
9373
9374 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9375                                      struct intel_crtc_state *pipe_config)
9376 {
9377         struct drm_device *dev = crtc->base.dev;
9378         struct drm_i915_private *dev_priv = dev->dev_private;
9379         uint32_t tmp;
9380
9381         if (!intel_display_power_is_enabled(dev_priv,
9382                                             POWER_DOMAIN_PIPE(crtc->pipe)))
9383                 return false;
9384
9385         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9386         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9387
9388         tmp = I915_READ(PIPECONF(crtc->pipe));
9389         if (!(tmp & PIPECONF_ENABLE))
9390                 return false;
9391
9392         switch (tmp & PIPECONF_BPC_MASK) {
9393         case PIPECONF_6BPC:
9394                 pipe_config->pipe_bpp = 18;
9395                 break;
9396         case PIPECONF_8BPC:
9397                 pipe_config->pipe_bpp = 24;
9398                 break;
9399         case PIPECONF_10BPC:
9400                 pipe_config->pipe_bpp = 30;
9401                 break;
9402         case PIPECONF_12BPC:
9403                 pipe_config->pipe_bpp = 36;
9404                 break;
9405         default:
9406                 break;
9407         }
9408
9409         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9410                 pipe_config->limited_color_range = true;
9411
9412         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9413                 struct intel_shared_dpll *pll;
9414
9415                 pipe_config->has_pch_encoder = true;
9416
9417                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9418                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9419                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9420
9421                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9422
9423                 if (HAS_PCH_IBX(dev_priv->dev)) {
9424                         pipe_config->shared_dpll =
9425                                 (enum intel_dpll_id) crtc->pipe;
9426                 } else {
9427                         tmp = I915_READ(PCH_DPLL_SEL);
9428                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9429                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9430                         else
9431                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9432                 }
9433
9434                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9435
9436                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9437                                            &pipe_config->dpll_hw_state));
9438
9439                 tmp = pipe_config->dpll_hw_state.dpll;
9440                 pipe_config->pixel_multiplier =
9441                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9442                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9443
9444                 ironlake_pch_clock_get(crtc, pipe_config);
9445         } else {
9446                 pipe_config->pixel_multiplier = 1;
9447         }
9448
9449         intel_get_pipe_timings(crtc, pipe_config);
9450
9451         ironlake_get_pfit_config(crtc, pipe_config);
9452
9453         return true;
9454 }
9455
9456 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9457 {
9458         struct drm_device *dev = dev_priv->dev;
9459         struct intel_crtc *crtc;
9460
9461         for_each_intel_crtc(dev, crtc)
9462                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9463                      pipe_name(crtc->pipe));
9464
9465         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9466         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9467         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9468         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9469         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9470         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9471              "CPU PWM1 enabled\n");
9472         if (IS_HASWELL(dev))
9473                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9474                      "CPU PWM2 enabled\n");
9475         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9476              "PCH PWM1 enabled\n");
9477         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9478              "Utility pin enabled\n");
9479         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9480
9481         /*
9482          * In theory we can still leave IRQs enabled, as long as only the HPD
9483          * interrupts remain enabled. We used to check for that, but since it's
9484          * gen-specific and since we only disable LCPLL after we fully disable
9485          * the interrupts, the check below should be enough.
9486          */
9487         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9488 }
9489
9490 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9491 {
9492         struct drm_device *dev = dev_priv->dev;
9493
9494         if (IS_HASWELL(dev))
9495                 return I915_READ(D_COMP_HSW);
9496         else
9497                 return I915_READ(D_COMP_BDW);
9498 }
9499
9500 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9501 {
9502         struct drm_device *dev = dev_priv->dev;
9503
9504         if (IS_HASWELL(dev)) {
9505                 mutex_lock(&dev_priv->rps.hw_lock);
9506                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9507                                             val))
9508                         DRM_ERROR("Failed to write to D_COMP\n");
9509                 mutex_unlock(&dev_priv->rps.hw_lock);
9510         } else {
9511                 I915_WRITE(D_COMP_BDW, val);
9512                 POSTING_READ(D_COMP_BDW);
9513         }
9514 }
9515
9516 /*
9517  * This function implements pieces of two sequences from BSpec:
9518  * - Sequence for display software to disable LCPLL
9519  * - Sequence for display software to allow package C8+
9520  * The steps implemented here are just the steps that actually touch the LCPLL
9521  * register. Callers should take care of disabling all the display engine
9522  * functions, doing the mode unset, fixing interrupts, etc.
9523  */
9524 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9525                               bool switch_to_fclk, bool allow_power_down)
9526 {
9527         uint32_t val;
9528
9529         assert_can_disable_lcpll(dev_priv);
9530
9531         val = I915_READ(LCPLL_CTL);
9532
9533         if (switch_to_fclk) {
9534                 val |= LCPLL_CD_SOURCE_FCLK;
9535                 I915_WRITE(LCPLL_CTL, val);
9536
9537                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9538                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9539                         DRM_ERROR("Switching to FCLK failed\n");
9540
9541                 val = I915_READ(LCPLL_CTL);
9542         }
9543
9544         val |= LCPLL_PLL_DISABLE;
9545         I915_WRITE(LCPLL_CTL, val);
9546         POSTING_READ(LCPLL_CTL);
9547
9548         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9549                 DRM_ERROR("LCPLL still locked\n");
9550
9551         val = hsw_read_dcomp(dev_priv);
9552         val |= D_COMP_COMP_DISABLE;
9553         hsw_write_dcomp(dev_priv, val);
9554         ndelay(100);
9555
9556         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9557                      1))
9558                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9559
9560         if (allow_power_down) {
9561                 val = I915_READ(LCPLL_CTL);
9562                 val |= LCPLL_POWER_DOWN_ALLOW;
9563                 I915_WRITE(LCPLL_CTL, val);
9564                 POSTING_READ(LCPLL_CTL);
9565         }
9566 }
9567
9568 /*
9569  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9570  * source.
9571  */
9572 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9573 {
9574         uint32_t val;
9575
9576         val = I915_READ(LCPLL_CTL);
9577
9578         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9579                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9580                 return;
9581
9582         /*
9583          * Make sure we're not on PC8 state before disabling PC8, otherwise
9584          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9585          */
9586         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9587
9588         if (val & LCPLL_POWER_DOWN_ALLOW) {
9589                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9590                 I915_WRITE(LCPLL_CTL, val);
9591                 POSTING_READ(LCPLL_CTL);
9592         }
9593
9594         val = hsw_read_dcomp(dev_priv);
9595         val |= D_COMP_COMP_FORCE;
9596         val &= ~D_COMP_COMP_DISABLE;
9597         hsw_write_dcomp(dev_priv, val);
9598
9599         val = I915_READ(LCPLL_CTL);
9600         val &= ~LCPLL_PLL_DISABLE;
9601         I915_WRITE(LCPLL_CTL, val);
9602
9603         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9604                 DRM_ERROR("LCPLL not locked yet\n");
9605
9606         if (val & LCPLL_CD_SOURCE_FCLK) {
9607                 val = I915_READ(LCPLL_CTL);
9608                 val &= ~LCPLL_CD_SOURCE_FCLK;
9609                 I915_WRITE(LCPLL_CTL, val);
9610
9611                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9612                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9613                         DRM_ERROR("Switching back to LCPLL failed\n");
9614         }
9615
9616         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9617         intel_update_cdclk(dev_priv->dev);
9618 }
9619
9620 /*
9621  * Package states C8 and deeper are really deep PC states that can only be
9622  * reached when all the devices on the system allow it, so even if the graphics
9623  * device allows PC8+, it doesn't mean the system will actually get to these
9624  * states. Our driver only allows PC8+ when going into runtime PM.
9625  *
9626  * The requirements for PC8+ are that all the outputs are disabled, the power
9627  * well is disabled and most interrupts are disabled, and these are also
9628  * requirements for runtime PM. When these conditions are met, we manually do
9629  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9630  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9631  * hang the machine.
9632  *
9633  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9634  * the state of some registers, so when we come back from PC8+ we need to
9635  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9636  * need to take care of the registers kept by RC6. Notice that this happens even
9637  * if we don't put the device in PCI D3 state (which is what currently happens
9638  * because of the runtime PM support).
9639  *
9640  * For more, read "Display Sequences for Package C8" on the hardware
9641  * documentation.
9642  */
9643 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9644 {
9645         struct drm_device *dev = dev_priv->dev;
9646         uint32_t val;
9647
9648         DRM_DEBUG_KMS("Enabling package C8+\n");
9649
9650         if (HAS_PCH_LPT_LP(dev)) {
9651                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9652                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9653                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9654         }
9655
9656         lpt_disable_clkout_dp(dev);
9657         hsw_disable_lcpll(dev_priv, true, true);
9658 }
9659
9660 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9661 {
9662         struct drm_device *dev = dev_priv->dev;
9663         uint32_t val;
9664
9665         DRM_DEBUG_KMS("Disabling package C8+\n");
9666
9667         hsw_restore_lcpll(dev_priv);
9668         lpt_init_pch_refclk(dev);
9669
9670         if (HAS_PCH_LPT_LP(dev)) {
9671                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9672                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9673                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9674         }
9675 }
9676
9677 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9678 {
9679         struct drm_device *dev = old_state->dev;
9680         struct intel_atomic_state *old_intel_state =
9681                 to_intel_atomic_state(old_state);
9682         unsigned int req_cdclk = old_intel_state->dev_cdclk;
9683
9684         broxton_set_cdclk(dev, req_cdclk);
9685 }
9686
9687 /* compute the max rate for new configuration */
9688 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9689 {
9690         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9691         struct drm_i915_private *dev_priv = state->dev->dev_private;
9692         struct drm_crtc *crtc;
9693         struct drm_crtc_state *cstate;
9694         struct intel_crtc_state *crtc_state;
9695         unsigned max_pixel_rate = 0, i;
9696         enum pipe pipe;
9697
9698         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9699                sizeof(intel_state->min_pixclk));
9700
9701         for_each_crtc_in_state(state, crtc, cstate, i) {
9702                 int pixel_rate;
9703
9704                 crtc_state = to_intel_crtc_state(cstate);
9705                 if (!crtc_state->base.enable) {
9706                         intel_state->min_pixclk[i] = 0;
9707                         continue;
9708                 }
9709
9710                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9711
9712                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9713                 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9714                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9715
9716                 intel_state->min_pixclk[i] = pixel_rate;
9717         }
9718
9719         if (!intel_state->active_crtcs)
9720                 return 0;
9721
9722         for_each_pipe(dev_priv, pipe)
9723                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9724
9725         return max_pixel_rate;
9726 }
9727
9728 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9729 {
9730         struct drm_i915_private *dev_priv = dev->dev_private;
9731         uint32_t val, data;
9732         int ret;
9733
9734         if (WARN((I915_READ(LCPLL_CTL) &
9735                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9736                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9737                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9738                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9739                  "trying to change cdclk frequency with cdclk not enabled\n"))
9740                 return;
9741
9742         mutex_lock(&dev_priv->rps.hw_lock);
9743         ret = sandybridge_pcode_write(dev_priv,
9744                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9745         mutex_unlock(&dev_priv->rps.hw_lock);
9746         if (ret) {
9747                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9748                 return;
9749         }
9750
9751         val = I915_READ(LCPLL_CTL);
9752         val |= LCPLL_CD_SOURCE_FCLK;
9753         I915_WRITE(LCPLL_CTL, val);
9754
9755         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9756                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9757                 DRM_ERROR("Switching to FCLK failed\n");
9758
9759         val = I915_READ(LCPLL_CTL);
9760         val &= ~LCPLL_CLK_FREQ_MASK;
9761
9762         switch (cdclk) {
9763         case 450000:
9764                 val |= LCPLL_CLK_FREQ_450;
9765                 data = 0;
9766                 break;
9767         case 540000:
9768                 val |= LCPLL_CLK_FREQ_54O_BDW;
9769                 data = 1;
9770                 break;
9771         case 337500:
9772                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9773                 data = 2;
9774                 break;
9775         case 675000:
9776                 val |= LCPLL_CLK_FREQ_675_BDW;
9777                 data = 3;
9778                 break;
9779         default:
9780                 WARN(1, "invalid cdclk frequency\n");
9781                 return;
9782         }
9783
9784         I915_WRITE(LCPLL_CTL, val);
9785
9786         val = I915_READ(LCPLL_CTL);
9787         val &= ~LCPLL_CD_SOURCE_FCLK;
9788         I915_WRITE(LCPLL_CTL, val);
9789
9790         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9791                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9792                 DRM_ERROR("Switching back to LCPLL failed\n");
9793
9794         mutex_lock(&dev_priv->rps.hw_lock);
9795         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9796         mutex_unlock(&dev_priv->rps.hw_lock);
9797
9798         intel_update_cdclk(dev);
9799
9800         WARN(cdclk != dev_priv->cdclk_freq,
9801              "cdclk requested %d kHz but got %d kHz\n",
9802              cdclk, dev_priv->cdclk_freq);
9803 }
9804
9805 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9806 {
9807         struct drm_i915_private *dev_priv = to_i915(state->dev);
9808         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9809         int max_pixclk = ilk_max_pixel_rate(state);
9810         int cdclk;
9811
9812         /*
9813          * FIXME should also account for plane ratio
9814          * once 64bpp pixel formats are supported.
9815          */
9816         if (max_pixclk > 540000)
9817                 cdclk = 675000;
9818         else if (max_pixclk > 450000)
9819                 cdclk = 540000;
9820         else if (max_pixclk > 337500)
9821                 cdclk = 450000;
9822         else
9823                 cdclk = 337500;
9824
9825         if (cdclk > dev_priv->max_cdclk_freq) {
9826                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9827                               cdclk, dev_priv->max_cdclk_freq);
9828                 return -EINVAL;
9829         }
9830
9831         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9832         if (!intel_state->active_crtcs)
9833                 intel_state->dev_cdclk = 337500;
9834
9835         return 0;
9836 }
9837
9838 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9839 {
9840         struct drm_device *dev = old_state->dev;
9841         struct intel_atomic_state *old_intel_state =
9842                 to_intel_atomic_state(old_state);
9843         unsigned req_cdclk = old_intel_state->dev_cdclk;
9844
9845         broadwell_set_cdclk(dev, req_cdclk);
9846 }
9847
9848 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9849                                       struct intel_crtc_state *crtc_state)
9850 {
9851         struct intel_encoder *intel_encoder =
9852                 intel_ddi_get_crtc_new_encoder(crtc_state);
9853
9854         if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9855                 if (!intel_ddi_pll_select(crtc, crtc_state))
9856                         return -EINVAL;
9857         }
9858
9859         crtc->lowfreq_avail = false;
9860
9861         return 0;
9862 }
9863
9864 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9865                                 enum port port,
9866                                 struct intel_crtc_state *pipe_config)
9867 {
9868         switch (port) {
9869         case PORT_A:
9870                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9871                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9872                 break;
9873         case PORT_B:
9874                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9875                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9876                 break;
9877         case PORT_C:
9878                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9879                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9880                 break;
9881         default:
9882                 DRM_ERROR("Incorrect port type\n");
9883         }
9884 }
9885
9886 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9887                                 enum port port,
9888                                 struct intel_crtc_state *pipe_config)
9889 {
9890         u32 temp, dpll_ctl1;
9891
9892         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9893         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9894
9895         switch (pipe_config->ddi_pll_sel) {
9896         case SKL_DPLL0:
9897                 /*
9898                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9899                  * of the shared DPLL framework and thus needs to be read out
9900                  * separately
9901                  */
9902                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9903                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9904                 break;
9905         case SKL_DPLL1:
9906                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9907                 break;
9908         case SKL_DPLL2:
9909                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9910                 break;
9911         case SKL_DPLL3:
9912                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9913                 break;
9914         }
9915 }
9916
9917 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9918                                 enum port port,
9919                                 struct intel_crtc_state *pipe_config)
9920 {
9921         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9922
9923         switch (pipe_config->ddi_pll_sel) {
9924         case PORT_CLK_SEL_WRPLL1:
9925                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9926                 break;
9927         case PORT_CLK_SEL_WRPLL2:
9928                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9929                 break;
9930         case PORT_CLK_SEL_SPLL:
9931                 pipe_config->shared_dpll = DPLL_ID_SPLL;
9932                 break;
9933         }
9934 }
9935
9936 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9937                                        struct intel_crtc_state *pipe_config)
9938 {
9939         struct drm_device *dev = crtc->base.dev;
9940         struct drm_i915_private *dev_priv = dev->dev_private;
9941         struct intel_shared_dpll *pll;
9942         enum port port;
9943         uint32_t tmp;
9944
9945         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9946
9947         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9948
9949         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9950                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9951         else if (IS_BROXTON(dev))
9952                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9953         else
9954                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9955
9956         if (pipe_config->shared_dpll >= 0) {
9957                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9958
9959                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9960                                            &pipe_config->dpll_hw_state));
9961         }
9962
9963         /*
9964          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9965          * DDI E. So just check whether this pipe is wired to DDI E and whether
9966          * the PCH transcoder is on.
9967          */
9968         if (INTEL_INFO(dev)->gen < 9 &&
9969             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9970                 pipe_config->has_pch_encoder = true;
9971
9972                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9973                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9974                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9975
9976                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9977         }
9978 }
9979
9980 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9981                                     struct intel_crtc_state *pipe_config)
9982 {
9983         struct drm_device *dev = crtc->base.dev;
9984         struct drm_i915_private *dev_priv = dev->dev_private;
9985         enum intel_display_power_domain pfit_domain;
9986         uint32_t tmp;
9987
9988         if (!intel_display_power_is_enabled(dev_priv,
9989                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9990                 return false;
9991
9992         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9993         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9994
9995         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9996         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9997                 enum pipe trans_edp_pipe;
9998                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9999                 default:
10000                         WARN(1, "unknown pipe linked to edp transcoder\n");
10001                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10002                 case TRANS_DDI_EDP_INPUT_A_ON:
10003                         trans_edp_pipe = PIPE_A;
10004                         break;
10005                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10006                         trans_edp_pipe = PIPE_B;
10007                         break;
10008                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10009                         trans_edp_pipe = PIPE_C;
10010                         break;
10011                 }
10012
10013                 if (trans_edp_pipe == crtc->pipe)
10014                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
10015         }
10016
10017         if (!intel_display_power_is_enabled(dev_priv,
10018                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
10019                 return false;
10020
10021         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10022         if (!(tmp & PIPECONF_ENABLE))
10023                 return false;
10024
10025         haswell_get_ddi_port_state(crtc, pipe_config);
10026
10027         intel_get_pipe_timings(crtc, pipe_config);
10028
10029         if (INTEL_INFO(dev)->gen >= 9) {
10030                 skl_init_scalers(dev, crtc, pipe_config);
10031         }
10032
10033         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10034
10035         if (INTEL_INFO(dev)->gen >= 9) {
10036                 pipe_config->scaler_state.scaler_id = -1;
10037                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10038         }
10039
10040         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
10041                 if (INTEL_INFO(dev)->gen >= 9)
10042                         skylake_get_pfit_config(crtc, pipe_config);
10043                 else
10044                         ironlake_get_pfit_config(crtc, pipe_config);
10045         }
10046
10047         if (IS_HASWELL(dev))
10048                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10049                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10050
10051         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
10052                 pipe_config->pixel_multiplier =
10053                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10054         } else {
10055                 pipe_config->pixel_multiplier = 1;
10056         }
10057
10058         return true;
10059 }
10060
10061 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10062                                const struct intel_plane_state *plane_state)
10063 {
10064         struct drm_device *dev = crtc->dev;
10065         struct drm_i915_private *dev_priv = dev->dev_private;
10066         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10067         uint32_t cntl = 0, size = 0;
10068
10069         if (plane_state && plane_state->visible) {
10070                 unsigned int width = plane_state->base.crtc_w;
10071                 unsigned int height = plane_state->base.crtc_h;
10072                 unsigned int stride = roundup_pow_of_two(width) * 4;
10073
10074                 switch (stride) {
10075                 default:
10076                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10077                                   width, stride);
10078                         stride = 256;
10079                         /* fallthrough */
10080                 case 256:
10081                 case 512:
10082                 case 1024:
10083                 case 2048:
10084                         break;
10085                 }
10086
10087                 cntl |= CURSOR_ENABLE |
10088                         CURSOR_GAMMA_ENABLE |
10089                         CURSOR_FORMAT_ARGB |
10090                         CURSOR_STRIDE(stride);
10091
10092                 size = (height << 12) | width;
10093         }
10094
10095         if (intel_crtc->cursor_cntl != 0 &&
10096             (intel_crtc->cursor_base != base ||
10097              intel_crtc->cursor_size != size ||
10098              intel_crtc->cursor_cntl != cntl)) {
10099                 /* On these chipsets we can only modify the base/size/stride
10100                  * whilst the cursor is disabled.
10101                  */
10102                 I915_WRITE(CURCNTR(PIPE_A), 0);
10103                 POSTING_READ(CURCNTR(PIPE_A));
10104                 intel_crtc->cursor_cntl = 0;
10105         }
10106
10107         if (intel_crtc->cursor_base != base) {
10108                 I915_WRITE(CURBASE(PIPE_A), base);
10109                 intel_crtc->cursor_base = base;
10110         }
10111
10112         if (intel_crtc->cursor_size != size) {
10113                 I915_WRITE(CURSIZE, size);
10114                 intel_crtc->cursor_size = size;
10115         }
10116
10117         if (intel_crtc->cursor_cntl != cntl) {
10118                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10119                 POSTING_READ(CURCNTR(PIPE_A));
10120                 intel_crtc->cursor_cntl = cntl;
10121         }
10122 }
10123
10124 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10125                                const struct intel_plane_state *plane_state)
10126 {
10127         struct drm_device *dev = crtc->dev;
10128         struct drm_i915_private *dev_priv = dev->dev_private;
10129         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10130         int pipe = intel_crtc->pipe;
10131         uint32_t cntl = 0;
10132
10133         if (plane_state && plane_state->visible) {
10134                 cntl = MCURSOR_GAMMA_ENABLE;
10135                 switch (plane_state->base.crtc_w) {
10136                         case 64:
10137                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10138                                 break;
10139                         case 128:
10140                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10141                                 break;
10142                         case 256:
10143                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10144                                 break;
10145                         default:
10146                                 MISSING_CASE(plane_state->base.crtc_w);
10147                                 return;
10148                 }
10149                 cntl |= pipe << 28; /* Connect to correct pipe */
10150
10151                 if (HAS_DDI(dev))
10152                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10153
10154                 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10155                         cntl |= CURSOR_ROTATE_180;
10156         }
10157
10158         if (intel_crtc->cursor_cntl != cntl) {
10159                 I915_WRITE(CURCNTR(pipe), cntl);
10160                 POSTING_READ(CURCNTR(pipe));
10161                 intel_crtc->cursor_cntl = cntl;
10162         }
10163
10164         /* and commit changes on next vblank */
10165         I915_WRITE(CURBASE(pipe), base);
10166         POSTING_READ(CURBASE(pipe));
10167
10168         intel_crtc->cursor_base = base;
10169 }
10170
10171 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10172 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10173                                      const struct intel_plane_state *plane_state)
10174 {
10175         struct drm_device *dev = crtc->dev;
10176         struct drm_i915_private *dev_priv = dev->dev_private;
10177         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10178         int pipe = intel_crtc->pipe;
10179         u32 base = intel_crtc->cursor_addr;
10180         u32 pos = 0;
10181
10182         if (plane_state) {
10183                 int x = plane_state->base.crtc_x;
10184                 int y = plane_state->base.crtc_y;
10185
10186                 if (x < 0) {
10187                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10188                         x = -x;
10189                 }
10190                 pos |= x << CURSOR_X_SHIFT;
10191
10192                 if (y < 0) {
10193                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10194                         y = -y;
10195                 }
10196                 pos |= y << CURSOR_Y_SHIFT;
10197
10198                 /* ILK+ do this automagically */
10199                 if (HAS_GMCH_DISPLAY(dev) &&
10200                     plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10201                         base += (plane_state->base.crtc_h *
10202                                  plane_state->base.crtc_w - 1) * 4;
10203                 }
10204         }
10205
10206         I915_WRITE(CURPOS(pipe), pos);
10207
10208         if (IS_845G(dev) || IS_I865G(dev))
10209                 i845_update_cursor(crtc, base, plane_state);
10210         else
10211                 i9xx_update_cursor(crtc, base, plane_state);
10212 }
10213
10214 static bool cursor_size_ok(struct drm_device *dev,
10215                            uint32_t width, uint32_t height)
10216 {
10217         if (width == 0 || height == 0)
10218                 return false;
10219
10220         /*
10221          * 845g/865g are special in that they are only limited by
10222          * the width of their cursors, the height is arbitrary up to
10223          * the precision of the register. Everything else requires
10224          * square cursors, limited to a few power-of-two sizes.
10225          */
10226         if (IS_845G(dev) || IS_I865G(dev)) {
10227                 if ((width & 63) != 0)
10228                         return false;
10229
10230                 if (width > (IS_845G(dev) ? 64 : 512))
10231                         return false;
10232
10233                 if (height > 1023)
10234                         return false;
10235         } else {
10236                 switch (width | height) {
10237                 case 256:
10238                 case 128:
10239                         if (IS_GEN2(dev))
10240                                 return false;
10241                 case 64:
10242                         break;
10243                 default:
10244                         return false;
10245                 }
10246         }
10247
10248         return true;
10249 }
10250
10251 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10252                                  u16 *blue, uint32_t start, uint32_t size)
10253 {
10254         int end = (start + size > 256) ? 256 : start + size, i;
10255         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10256
10257         for (i = start; i < end; i++) {
10258                 intel_crtc->lut_r[i] = red[i] >> 8;
10259                 intel_crtc->lut_g[i] = green[i] >> 8;
10260                 intel_crtc->lut_b[i] = blue[i] >> 8;
10261         }
10262
10263         intel_crtc_load_lut(crtc);
10264 }
10265
10266 /* VESA 640x480x72Hz mode to set on the pipe */
10267 static struct drm_display_mode load_detect_mode = {
10268         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10269                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10270 };
10271
10272 struct drm_framebuffer *
10273 __intel_framebuffer_create(struct drm_device *dev,
10274                            struct drm_mode_fb_cmd2 *mode_cmd,
10275                            struct drm_i915_gem_object *obj)
10276 {
10277         struct intel_framebuffer *intel_fb;
10278         int ret;
10279
10280         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10281         if (!intel_fb)
10282                 return ERR_PTR(-ENOMEM);
10283
10284         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10285         if (ret)
10286                 goto err;
10287
10288         return &intel_fb->base;
10289
10290 err:
10291         kfree(intel_fb);
10292         return ERR_PTR(ret);
10293 }
10294
10295 static struct drm_framebuffer *
10296 intel_framebuffer_create(struct drm_device *dev,
10297                          struct drm_mode_fb_cmd2 *mode_cmd,
10298                          struct drm_i915_gem_object *obj)
10299 {
10300         struct drm_framebuffer *fb;
10301         int ret;
10302
10303         ret = i915_mutex_lock_interruptible(dev);
10304         if (ret)
10305                 return ERR_PTR(ret);
10306         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10307         mutex_unlock(&dev->struct_mutex);
10308
10309         return fb;
10310 }
10311
10312 static u32
10313 intel_framebuffer_pitch_for_width(int width, int bpp)
10314 {
10315         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10316         return ALIGN(pitch, 64);
10317 }
10318
10319 static u32
10320 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10321 {
10322         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10323         return PAGE_ALIGN(pitch * mode->vdisplay);
10324 }
10325
10326 static struct drm_framebuffer *
10327 intel_framebuffer_create_for_mode(struct drm_device *dev,
10328                                   struct drm_display_mode *mode,
10329                                   int depth, int bpp)
10330 {
10331         struct drm_framebuffer *fb;
10332         struct drm_i915_gem_object *obj;
10333         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10334
10335         obj = i915_gem_alloc_object(dev,
10336                                     intel_framebuffer_size_for_mode(mode, bpp));
10337         if (obj == NULL)
10338                 return ERR_PTR(-ENOMEM);
10339
10340         mode_cmd.width = mode->hdisplay;
10341         mode_cmd.height = mode->vdisplay;
10342         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10343                                                                 bpp);
10344         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10345
10346         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10347         if (IS_ERR(fb))
10348                 drm_gem_object_unreference_unlocked(&obj->base);
10349
10350         return fb;
10351 }
10352
10353 static struct drm_framebuffer *
10354 mode_fits_in_fbdev(struct drm_device *dev,
10355                    struct drm_display_mode *mode)
10356 {
10357 #ifdef CONFIG_DRM_FBDEV_EMULATION
10358         struct drm_i915_private *dev_priv = dev->dev_private;
10359         struct drm_i915_gem_object *obj;
10360         struct drm_framebuffer *fb;
10361
10362         if (!dev_priv->fbdev)
10363                 return NULL;
10364
10365         if (!dev_priv->fbdev->fb)
10366                 return NULL;
10367
10368         obj = dev_priv->fbdev->fb->obj;
10369         BUG_ON(!obj);
10370
10371         fb = &dev_priv->fbdev->fb->base;
10372         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10373                                                                fb->bits_per_pixel))
10374                 return NULL;
10375
10376         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10377                 return NULL;
10378
10379         return fb;
10380 #else
10381         return NULL;
10382 #endif
10383 }
10384
10385 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10386                                            struct drm_crtc *crtc,
10387                                            struct drm_display_mode *mode,
10388                                            struct drm_framebuffer *fb,
10389                                            int x, int y)
10390 {
10391         struct drm_plane_state *plane_state;
10392         int hdisplay, vdisplay;
10393         int ret;
10394
10395         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10396         if (IS_ERR(plane_state))
10397                 return PTR_ERR(plane_state);
10398
10399         if (mode)
10400                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10401         else
10402                 hdisplay = vdisplay = 0;
10403
10404         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10405         if (ret)
10406                 return ret;
10407         drm_atomic_set_fb_for_plane(plane_state, fb);
10408         plane_state->crtc_x = 0;
10409         plane_state->crtc_y = 0;
10410         plane_state->crtc_w = hdisplay;
10411         plane_state->crtc_h = vdisplay;
10412         plane_state->src_x = x << 16;
10413         plane_state->src_y = y << 16;
10414         plane_state->src_w = hdisplay << 16;
10415         plane_state->src_h = vdisplay << 16;
10416
10417         return 0;
10418 }
10419
10420 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10421                                 struct drm_display_mode *mode,
10422                                 struct intel_load_detect_pipe *old,
10423                                 struct drm_modeset_acquire_ctx *ctx)
10424 {
10425         struct intel_crtc *intel_crtc;
10426         struct intel_encoder *intel_encoder =
10427                 intel_attached_encoder(connector);
10428         struct drm_crtc *possible_crtc;
10429         struct drm_encoder *encoder = &intel_encoder->base;
10430         struct drm_crtc *crtc = NULL;
10431         struct drm_device *dev = encoder->dev;
10432         struct drm_framebuffer *fb;
10433         struct drm_mode_config *config = &dev->mode_config;
10434         struct drm_atomic_state *state = NULL;
10435         struct drm_connector_state *connector_state;
10436         struct intel_crtc_state *crtc_state;
10437         int ret, i = -1;
10438
10439         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10440                       connector->base.id, connector->name,
10441                       encoder->base.id, encoder->name);
10442
10443 retry:
10444         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10445         if (ret)
10446                 goto fail;
10447
10448         /*
10449          * Algorithm gets a little messy:
10450          *
10451          *   - if the connector already has an assigned crtc, use it (but make
10452          *     sure it's on first)
10453          *
10454          *   - try to find the first unused crtc that can drive this connector,
10455          *     and use that if we find one
10456          */
10457
10458         /* See if we already have a CRTC for this connector */
10459         if (encoder->crtc) {
10460                 crtc = encoder->crtc;
10461
10462                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10463                 if (ret)
10464                         goto fail;
10465                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10466                 if (ret)
10467                         goto fail;
10468
10469                 old->dpms_mode = connector->dpms;
10470                 old->load_detect_temp = false;
10471
10472                 /* Make sure the crtc and connector are running */
10473                 if (connector->dpms != DRM_MODE_DPMS_ON)
10474                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10475
10476                 return true;
10477         }
10478
10479         /* Find an unused one (if possible) */
10480         for_each_crtc(dev, possible_crtc) {
10481                 i++;
10482                 if (!(encoder->possible_crtcs & (1 << i)))
10483                         continue;
10484                 if (possible_crtc->state->enable)
10485                         continue;
10486
10487                 crtc = possible_crtc;
10488                 break;
10489         }
10490
10491         /*
10492          * If we didn't find an unused CRTC, don't use any.
10493          */
10494         if (!crtc) {
10495                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10496                 goto fail;
10497         }
10498
10499         ret = drm_modeset_lock(&crtc->mutex, ctx);
10500         if (ret)
10501                 goto fail;
10502         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10503         if (ret)
10504                 goto fail;
10505
10506         intel_crtc = to_intel_crtc(crtc);
10507         old->dpms_mode = connector->dpms;
10508         old->load_detect_temp = true;
10509         old->release_fb = NULL;
10510
10511         state = drm_atomic_state_alloc(dev);
10512         if (!state)
10513                 return false;
10514
10515         state->acquire_ctx = ctx;
10516
10517         connector_state = drm_atomic_get_connector_state(state, connector);
10518         if (IS_ERR(connector_state)) {
10519                 ret = PTR_ERR(connector_state);
10520                 goto fail;
10521         }
10522
10523         connector_state->crtc = crtc;
10524
10525         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10526         if (IS_ERR(crtc_state)) {
10527                 ret = PTR_ERR(crtc_state);
10528                 goto fail;
10529         }
10530
10531         crtc_state->base.active = crtc_state->base.enable = true;
10532
10533         if (!mode)
10534                 mode = &load_detect_mode;
10535
10536         /* We need a framebuffer large enough to accommodate all accesses
10537          * that the plane may generate whilst we perform load detection.
10538          * We can not rely on the fbcon either being present (we get called
10539          * during its initialisation to detect all boot displays, or it may
10540          * not even exist) or that it is large enough to satisfy the
10541          * requested mode.
10542          */
10543         fb = mode_fits_in_fbdev(dev, mode);
10544         if (fb == NULL) {
10545                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10546                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10547                 old->release_fb = fb;
10548         } else
10549                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10550         if (IS_ERR(fb)) {
10551                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10552                 goto fail;
10553         }
10554
10555         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10556         if (ret)
10557                 goto fail;
10558
10559         drm_mode_copy(&crtc_state->base.mode, mode);
10560
10561         if (drm_atomic_commit(state)) {
10562                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10563                 if (old->release_fb)
10564                         old->release_fb->funcs->destroy(old->release_fb);
10565                 goto fail;
10566         }
10567         crtc->primary->crtc = crtc;
10568
10569         /* let the connector get through one full cycle before testing */
10570         intel_wait_for_vblank(dev, intel_crtc->pipe);
10571         return true;
10572
10573 fail:
10574         drm_atomic_state_free(state);
10575         state = NULL;
10576
10577         if (ret == -EDEADLK) {
10578                 drm_modeset_backoff(ctx);
10579                 goto retry;
10580         }
10581
10582         return false;
10583 }
10584
10585 void intel_release_load_detect_pipe(struct drm_connector *connector,
10586                                     struct intel_load_detect_pipe *old,
10587                                     struct drm_modeset_acquire_ctx *ctx)
10588 {
10589         struct drm_device *dev = connector->dev;
10590         struct intel_encoder *intel_encoder =
10591                 intel_attached_encoder(connector);
10592         struct drm_encoder *encoder = &intel_encoder->base;
10593         struct drm_crtc *crtc = encoder->crtc;
10594         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10595         struct drm_atomic_state *state;
10596         struct drm_connector_state *connector_state;
10597         struct intel_crtc_state *crtc_state;
10598         int ret;
10599
10600         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10601                       connector->base.id, connector->name,
10602                       encoder->base.id, encoder->name);
10603
10604         if (old->load_detect_temp) {
10605                 state = drm_atomic_state_alloc(dev);
10606                 if (!state)
10607                         goto fail;
10608
10609                 state->acquire_ctx = ctx;
10610
10611                 connector_state = drm_atomic_get_connector_state(state, connector);
10612                 if (IS_ERR(connector_state))
10613                         goto fail;
10614
10615                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10616                 if (IS_ERR(crtc_state))
10617                         goto fail;
10618
10619                 connector_state->crtc = NULL;
10620
10621                 crtc_state->base.enable = crtc_state->base.active = false;
10622
10623                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10624                                                       0, 0);
10625                 if (ret)
10626                         goto fail;
10627
10628                 ret = drm_atomic_commit(state);
10629                 if (ret)
10630                         goto fail;
10631
10632                 if (old->release_fb) {
10633                         drm_framebuffer_unregister_private(old->release_fb);
10634                         drm_framebuffer_unreference(old->release_fb);
10635                 }
10636
10637                 return;
10638         }
10639
10640         /* Switch crtc and encoder back off if necessary */
10641         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10642                 connector->funcs->dpms(connector, old->dpms_mode);
10643
10644         return;
10645 fail:
10646         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10647         drm_atomic_state_free(state);
10648 }
10649
10650 static int i9xx_pll_refclk(struct drm_device *dev,
10651                            const struct intel_crtc_state *pipe_config)
10652 {
10653         struct drm_i915_private *dev_priv = dev->dev_private;
10654         u32 dpll = pipe_config->dpll_hw_state.dpll;
10655
10656         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10657                 return dev_priv->vbt.lvds_ssc_freq;
10658         else if (HAS_PCH_SPLIT(dev))
10659                 return 120000;
10660         else if (!IS_GEN2(dev))
10661                 return 96000;
10662         else
10663                 return 48000;
10664 }
10665
10666 /* Returns the clock of the currently programmed mode of the given pipe. */
10667 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10668                                 struct intel_crtc_state *pipe_config)
10669 {
10670         struct drm_device *dev = crtc->base.dev;
10671         struct drm_i915_private *dev_priv = dev->dev_private;
10672         int pipe = pipe_config->cpu_transcoder;
10673         u32 dpll = pipe_config->dpll_hw_state.dpll;
10674         u32 fp;
10675         intel_clock_t clock;
10676         int port_clock;
10677         int refclk = i9xx_pll_refclk(dev, pipe_config);
10678
10679         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10680                 fp = pipe_config->dpll_hw_state.fp0;
10681         else
10682                 fp = pipe_config->dpll_hw_state.fp1;
10683
10684         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10685         if (IS_PINEVIEW(dev)) {
10686                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10687                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10688         } else {
10689                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10690                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10691         }
10692
10693         if (!IS_GEN2(dev)) {
10694                 if (IS_PINEVIEW(dev))
10695                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10696                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10697                 else
10698                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10699                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10700
10701                 switch (dpll & DPLL_MODE_MASK) {
10702                 case DPLLB_MODE_DAC_SERIAL:
10703                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10704                                 5 : 10;
10705                         break;
10706                 case DPLLB_MODE_LVDS:
10707                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10708                                 7 : 14;
10709                         break;
10710                 default:
10711                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10712                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10713                         return;
10714                 }
10715
10716                 if (IS_PINEVIEW(dev))
10717                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10718                 else
10719                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10720         } else {
10721                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10722                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10723
10724                 if (is_lvds) {
10725                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10726                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10727
10728                         if (lvds & LVDS_CLKB_POWER_UP)
10729                                 clock.p2 = 7;
10730                         else
10731                                 clock.p2 = 14;
10732                 } else {
10733                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10734                                 clock.p1 = 2;
10735                         else {
10736                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10737                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10738                         }
10739                         if (dpll & PLL_P2_DIVIDE_BY_4)
10740                                 clock.p2 = 4;
10741                         else
10742                                 clock.p2 = 2;
10743                 }
10744
10745                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10746         }
10747
10748         /*
10749          * This value includes pixel_multiplier. We will use
10750          * port_clock to compute adjusted_mode.crtc_clock in the
10751          * encoder's get_config() function.
10752          */
10753         pipe_config->port_clock = port_clock;
10754 }
10755
10756 int intel_dotclock_calculate(int link_freq,
10757                              const struct intel_link_m_n *m_n)
10758 {
10759         /*
10760          * The calculation for the data clock is:
10761          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10762          * But we want to avoid losing precison if possible, so:
10763          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10764          *
10765          * and the link clock is simpler:
10766          * link_clock = (m * link_clock) / n
10767          */
10768
10769         if (!m_n->link_n)
10770                 return 0;
10771
10772         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10773 }
10774
10775 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10776                                    struct intel_crtc_state *pipe_config)
10777 {
10778         struct drm_device *dev = crtc->base.dev;
10779
10780         /* read out port_clock from the DPLL */
10781         i9xx_crtc_clock_get(crtc, pipe_config);
10782
10783         /*
10784          * This value does not include pixel_multiplier.
10785          * We will check that port_clock and adjusted_mode.crtc_clock
10786          * agree once we know their relationship in the encoder's
10787          * get_config() function.
10788          */
10789         pipe_config->base.adjusted_mode.crtc_clock =
10790                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10791                                          &pipe_config->fdi_m_n);
10792 }
10793
10794 /** Returns the currently programmed mode of the given pipe. */
10795 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10796                                              struct drm_crtc *crtc)
10797 {
10798         struct drm_i915_private *dev_priv = dev->dev_private;
10799         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10800         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10801         struct drm_display_mode *mode;
10802         struct intel_crtc_state *pipe_config;
10803         int htot = I915_READ(HTOTAL(cpu_transcoder));
10804         int hsync = I915_READ(HSYNC(cpu_transcoder));
10805         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10806         int vsync = I915_READ(VSYNC(cpu_transcoder));
10807         enum pipe pipe = intel_crtc->pipe;
10808
10809         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10810         if (!mode)
10811                 return NULL;
10812
10813         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10814         if (!pipe_config) {
10815                 kfree(mode);
10816                 return NULL;
10817         }
10818
10819         /*
10820          * Construct a pipe_config sufficient for getting the clock info
10821          * back out of crtc_clock_get.
10822          *
10823          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10824          * to use a real value here instead.
10825          */
10826         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10827         pipe_config->pixel_multiplier = 1;
10828         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10829         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10830         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10831         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10832
10833         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10834         mode->hdisplay = (htot & 0xffff) + 1;
10835         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10836         mode->hsync_start = (hsync & 0xffff) + 1;
10837         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10838         mode->vdisplay = (vtot & 0xffff) + 1;
10839         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10840         mode->vsync_start = (vsync & 0xffff) + 1;
10841         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10842
10843         drm_mode_set_name(mode);
10844
10845         kfree(pipe_config);
10846
10847         return mode;
10848 }
10849
10850 void intel_mark_busy(struct drm_device *dev)
10851 {
10852         struct drm_i915_private *dev_priv = dev->dev_private;
10853
10854         if (dev_priv->mm.busy)
10855                 return;
10856
10857         intel_runtime_pm_get(dev_priv);
10858         i915_update_gfx_val(dev_priv);
10859         if (INTEL_INFO(dev)->gen >= 6)
10860                 gen6_rps_busy(dev_priv);
10861         dev_priv->mm.busy = true;
10862 }
10863
10864 void intel_mark_idle(struct drm_device *dev)
10865 {
10866         struct drm_i915_private *dev_priv = dev->dev_private;
10867
10868         if (!dev_priv->mm.busy)
10869                 return;
10870
10871         dev_priv->mm.busy = false;
10872
10873         if (INTEL_INFO(dev)->gen >= 6)
10874                 gen6_rps_idle(dev->dev_private);
10875
10876         intel_runtime_pm_put(dev_priv);
10877 }
10878
10879 static void intel_crtc_destroy(struct drm_crtc *crtc)
10880 {
10881         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10882         struct drm_device *dev = crtc->dev;
10883         struct intel_unpin_work *work;
10884
10885         spin_lock_irq(&dev->event_lock);
10886         work = intel_crtc->unpin_work;
10887         intel_crtc->unpin_work = NULL;
10888         spin_unlock_irq(&dev->event_lock);
10889
10890         if (work) {
10891                 cancel_work_sync(&work->work);
10892                 kfree(work);
10893         }
10894
10895         drm_crtc_cleanup(crtc);
10896
10897         kfree(intel_crtc);
10898 }
10899
10900 static void intel_unpin_work_fn(struct work_struct *__work)
10901 {
10902         struct intel_unpin_work *work =
10903                 container_of(__work, struct intel_unpin_work, work);
10904         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10905         struct drm_device *dev = crtc->base.dev;
10906         struct drm_plane *primary = crtc->base.primary;
10907
10908         mutex_lock(&dev->struct_mutex);
10909         intel_unpin_fb_obj(work->old_fb, primary->state);
10910         drm_gem_object_unreference(&work->pending_flip_obj->base);
10911
10912         if (work->flip_queued_req)
10913                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10914         mutex_unlock(&dev->struct_mutex);
10915
10916         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10917         intel_fbc_post_update(crtc);
10918         drm_framebuffer_unreference(work->old_fb);
10919
10920         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10921         atomic_dec(&crtc->unpin_work_count);
10922
10923         kfree(work);
10924 }
10925
10926 static void do_intel_finish_page_flip(struct drm_device *dev,
10927                                       struct drm_crtc *crtc)
10928 {
10929         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10930         struct intel_unpin_work *work;
10931         unsigned long flags;
10932
10933         /* Ignore early vblank irqs */
10934         if (intel_crtc == NULL)
10935                 return;
10936
10937         /*
10938          * This is called both by irq handlers and the reset code (to complete
10939          * lost pageflips) so needs the full irqsave spinlocks.
10940          */
10941         spin_lock_irqsave(&dev->event_lock, flags);
10942         work = intel_crtc->unpin_work;
10943
10944         /* Ensure we don't miss a work->pending update ... */
10945         smp_rmb();
10946
10947         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10948                 spin_unlock_irqrestore(&dev->event_lock, flags);
10949                 return;
10950         }
10951
10952         page_flip_completed(intel_crtc);
10953
10954         spin_unlock_irqrestore(&dev->event_lock, flags);
10955 }
10956
10957 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10958 {
10959         struct drm_i915_private *dev_priv = dev->dev_private;
10960         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10961
10962         do_intel_finish_page_flip(dev, crtc);
10963 }
10964
10965 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10966 {
10967         struct drm_i915_private *dev_priv = dev->dev_private;
10968         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10969
10970         do_intel_finish_page_flip(dev, crtc);
10971 }
10972
10973 /* Is 'a' after or equal to 'b'? */
10974 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10975 {
10976         return !((a - b) & 0x80000000);
10977 }
10978
10979 static bool page_flip_finished(struct intel_crtc *crtc)
10980 {
10981         struct drm_device *dev = crtc->base.dev;
10982         struct drm_i915_private *dev_priv = dev->dev_private;
10983
10984         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10985             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10986                 return true;
10987
10988         /*
10989          * The relevant registers doen't exist on pre-ctg.
10990          * As the flip done interrupt doesn't trigger for mmio
10991          * flips on gmch platforms, a flip count check isn't
10992          * really needed there. But since ctg has the registers,
10993          * include it in the check anyway.
10994          */
10995         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10996                 return true;
10997
10998         /*
10999          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11000          * used the same base address. In that case the mmio flip might
11001          * have completed, but the CS hasn't even executed the flip yet.
11002          *
11003          * A flip count check isn't enough as the CS might have updated
11004          * the base address just after start of vblank, but before we
11005          * managed to process the interrupt. This means we'd complete the
11006          * CS flip too soon.
11007          *
11008          * Combining both checks should get us a good enough result. It may
11009          * still happen that the CS flip has been executed, but has not
11010          * yet actually completed. But in case the base address is the same
11011          * anyway, we don't really care.
11012          */
11013         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11014                 crtc->unpin_work->gtt_offset &&
11015                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11016                                     crtc->unpin_work->flip_count);
11017 }
11018
11019 void intel_prepare_page_flip(struct drm_device *dev, int plane)
11020 {
11021         struct drm_i915_private *dev_priv = dev->dev_private;
11022         struct intel_crtc *intel_crtc =
11023                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
11024         unsigned long flags;
11025
11026
11027         /*
11028          * This is called both by irq handlers and the reset code (to complete
11029          * lost pageflips) so needs the full irqsave spinlocks.
11030          *
11031          * NB: An MMIO update of the plane base pointer will also
11032          * generate a page-flip completion irq, i.e. every modeset
11033          * is also accompanied by a spurious intel_prepare_page_flip().
11034          */
11035         spin_lock_irqsave(&dev->event_lock, flags);
11036         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
11037                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
11038         spin_unlock_irqrestore(&dev->event_lock, flags);
11039 }
11040
11041 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
11042 {
11043         /* Ensure that the work item is consistent when activating it ... */
11044         smp_wmb();
11045         atomic_set(&work->pending, INTEL_FLIP_PENDING);
11046         /* and that it is marked active as soon as the irq could fire. */
11047         smp_wmb();
11048 }
11049
11050 static int intel_gen2_queue_flip(struct drm_device *dev,
11051                                  struct drm_crtc *crtc,
11052                                  struct drm_framebuffer *fb,
11053                                  struct drm_i915_gem_object *obj,
11054                                  struct drm_i915_gem_request *req,
11055                                  uint32_t flags)
11056 {
11057         struct intel_engine_cs *ring = req->ring;
11058         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11059         u32 flip_mask;
11060         int ret;
11061
11062         ret = intel_ring_begin(req, 6);
11063         if (ret)
11064                 return ret;
11065
11066         /* Can't queue multiple flips, so wait for the previous
11067          * one to finish before executing the next.
11068          */
11069         if (intel_crtc->plane)
11070                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11071         else
11072                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11073         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11074         intel_ring_emit(ring, MI_NOOP);
11075         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11076                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11077         intel_ring_emit(ring, fb->pitches[0]);
11078         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11079         intel_ring_emit(ring, 0); /* aux display base address, unused */
11080
11081         intel_mark_page_flip_active(intel_crtc->unpin_work);
11082         return 0;
11083 }
11084
11085 static int intel_gen3_queue_flip(struct drm_device *dev,
11086                                  struct drm_crtc *crtc,
11087                                  struct drm_framebuffer *fb,
11088                                  struct drm_i915_gem_object *obj,
11089                                  struct drm_i915_gem_request *req,
11090                                  uint32_t flags)
11091 {
11092         struct intel_engine_cs *ring = req->ring;
11093         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11094         u32 flip_mask;
11095         int ret;
11096
11097         ret = intel_ring_begin(req, 6);
11098         if (ret)
11099                 return ret;
11100
11101         if (intel_crtc->plane)
11102                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11103         else
11104                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11105         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11106         intel_ring_emit(ring, MI_NOOP);
11107         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11108                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11109         intel_ring_emit(ring, fb->pitches[0]);
11110         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11111         intel_ring_emit(ring, MI_NOOP);
11112
11113         intel_mark_page_flip_active(intel_crtc->unpin_work);
11114         return 0;
11115 }
11116
11117 static int intel_gen4_queue_flip(struct drm_device *dev,
11118                                  struct drm_crtc *crtc,
11119                                  struct drm_framebuffer *fb,
11120                                  struct drm_i915_gem_object *obj,
11121                                  struct drm_i915_gem_request *req,
11122                                  uint32_t flags)
11123 {
11124         struct intel_engine_cs *ring = req->ring;
11125         struct drm_i915_private *dev_priv = dev->dev_private;
11126         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11127         uint32_t pf, pipesrc;
11128         int ret;
11129
11130         ret = intel_ring_begin(req, 4);
11131         if (ret)
11132                 return ret;
11133
11134         /* i965+ uses the linear or tiled offsets from the
11135          * Display Registers (which do not change across a page-flip)
11136          * so we need only reprogram the base address.
11137          */
11138         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11139                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11140         intel_ring_emit(ring, fb->pitches[0]);
11141         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11142                         obj->tiling_mode);
11143
11144         /* XXX Enabling the panel-fitter across page-flip is so far
11145          * untested on non-native modes, so ignore it for now.
11146          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11147          */
11148         pf = 0;
11149         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11150         intel_ring_emit(ring, pf | pipesrc);
11151
11152         intel_mark_page_flip_active(intel_crtc->unpin_work);
11153         return 0;
11154 }
11155
11156 static int intel_gen6_queue_flip(struct drm_device *dev,
11157                                  struct drm_crtc *crtc,
11158                                  struct drm_framebuffer *fb,
11159                                  struct drm_i915_gem_object *obj,
11160                                  struct drm_i915_gem_request *req,
11161                                  uint32_t flags)
11162 {
11163         struct intel_engine_cs *ring = req->ring;
11164         struct drm_i915_private *dev_priv = dev->dev_private;
11165         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11166         uint32_t pf, pipesrc;
11167         int ret;
11168
11169         ret = intel_ring_begin(req, 4);
11170         if (ret)
11171                 return ret;
11172
11173         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11174                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11175         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11176         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11177
11178         /* Contrary to the suggestions in the documentation,
11179          * "Enable Panel Fitter" does not seem to be required when page
11180          * flipping with a non-native mode, and worse causes a normal
11181          * modeset to fail.
11182          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11183          */
11184         pf = 0;
11185         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11186         intel_ring_emit(ring, pf | pipesrc);
11187
11188         intel_mark_page_flip_active(intel_crtc->unpin_work);
11189         return 0;
11190 }
11191
11192 static int intel_gen7_queue_flip(struct drm_device *dev,
11193                                  struct drm_crtc *crtc,
11194                                  struct drm_framebuffer *fb,
11195                                  struct drm_i915_gem_object *obj,
11196                                  struct drm_i915_gem_request *req,
11197                                  uint32_t flags)
11198 {
11199         struct intel_engine_cs *ring = req->ring;
11200         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11201         uint32_t plane_bit = 0;
11202         int len, ret;
11203
11204         switch (intel_crtc->plane) {
11205         case PLANE_A:
11206                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11207                 break;
11208         case PLANE_B:
11209                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11210                 break;
11211         case PLANE_C:
11212                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11213                 break;
11214         default:
11215                 WARN_ONCE(1, "unknown plane in flip command\n");
11216                 return -ENODEV;
11217         }
11218
11219         len = 4;
11220         if (ring->id == RCS) {
11221                 len += 6;
11222                 /*
11223                  * On Gen 8, SRM is now taking an extra dword to accommodate
11224                  * 48bits addresses, and we need a NOOP for the batch size to
11225                  * stay even.
11226                  */
11227                 if (IS_GEN8(dev))
11228                         len += 2;
11229         }
11230
11231         /*
11232          * BSpec MI_DISPLAY_FLIP for IVB:
11233          * "The full packet must be contained within the same cache line."
11234          *
11235          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11236          * cacheline, if we ever start emitting more commands before
11237          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11238          * then do the cacheline alignment, and finally emit the
11239          * MI_DISPLAY_FLIP.
11240          */
11241         ret = intel_ring_cacheline_align(req);
11242         if (ret)
11243                 return ret;
11244
11245         ret = intel_ring_begin(req, len);
11246         if (ret)
11247                 return ret;
11248
11249         /* Unmask the flip-done completion message. Note that the bspec says that
11250          * we should do this for both the BCS and RCS, and that we must not unmask
11251          * more than one flip event at any time (or ensure that one flip message
11252          * can be sent by waiting for flip-done prior to queueing new flips).
11253          * Experimentation says that BCS works despite DERRMR masking all
11254          * flip-done completion events and that unmasking all planes at once
11255          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11256          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11257          */
11258         if (ring->id == RCS) {
11259                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11260                 intel_ring_emit_reg(ring, DERRMR);
11261                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11262                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11263                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11264                 if (IS_GEN8(dev))
11265                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11266                                               MI_SRM_LRM_GLOBAL_GTT);
11267                 else
11268                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11269                                               MI_SRM_LRM_GLOBAL_GTT);
11270                 intel_ring_emit_reg(ring, DERRMR);
11271                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11272                 if (IS_GEN8(dev)) {
11273                         intel_ring_emit(ring, 0);
11274                         intel_ring_emit(ring, MI_NOOP);
11275                 }
11276         }
11277
11278         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11279         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11280         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11281         intel_ring_emit(ring, (MI_NOOP));
11282
11283         intel_mark_page_flip_active(intel_crtc->unpin_work);
11284         return 0;
11285 }
11286
11287 static bool use_mmio_flip(struct intel_engine_cs *ring,
11288                           struct drm_i915_gem_object *obj)
11289 {
11290         /*
11291          * This is not being used for older platforms, because
11292          * non-availability of flip done interrupt forces us to use
11293          * CS flips. Older platforms derive flip done using some clever
11294          * tricks involving the flip_pending status bits and vblank irqs.
11295          * So using MMIO flips there would disrupt this mechanism.
11296          */
11297
11298         if (ring == NULL)
11299                 return true;
11300
11301         if (INTEL_INFO(ring->dev)->gen < 5)
11302                 return false;
11303
11304         if (i915.use_mmio_flip < 0)
11305                 return false;
11306         else if (i915.use_mmio_flip > 0)
11307                 return true;
11308         else if (i915.enable_execlists)
11309                 return true;
11310         else if (obj->base.dma_buf &&
11311                  !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11312                                                        false))
11313                 return true;
11314         else
11315                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11316 }
11317
11318 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11319                              unsigned int rotation,
11320                              struct intel_unpin_work *work)
11321 {
11322         struct drm_device *dev = intel_crtc->base.dev;
11323         struct drm_i915_private *dev_priv = dev->dev_private;
11324         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11325         const enum pipe pipe = intel_crtc->pipe;
11326         u32 ctl, stride, tile_height;
11327
11328         ctl = I915_READ(PLANE_CTL(pipe, 0));
11329         ctl &= ~PLANE_CTL_TILED_MASK;
11330         switch (fb->modifier[0]) {
11331         case DRM_FORMAT_MOD_NONE:
11332                 break;
11333         case I915_FORMAT_MOD_X_TILED:
11334                 ctl |= PLANE_CTL_TILED_X;
11335                 break;
11336         case I915_FORMAT_MOD_Y_TILED:
11337                 ctl |= PLANE_CTL_TILED_Y;
11338                 break;
11339         case I915_FORMAT_MOD_Yf_TILED:
11340                 ctl |= PLANE_CTL_TILED_YF;
11341                 break;
11342         default:
11343                 MISSING_CASE(fb->modifier[0]);
11344         }
11345
11346         /*
11347          * The stride is either expressed as a multiple of 64 bytes chunks for
11348          * linear buffers or in number of tiles for tiled buffers.
11349          */
11350         if (intel_rotation_90_or_270(rotation)) {
11351                 /* stride = Surface height in tiles */
11352                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11353                 stride = DIV_ROUND_UP(fb->height, tile_height);
11354         } else {
11355                 stride = fb->pitches[0] /
11356                         intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11357                                                   fb->pixel_format);
11358         }
11359
11360         /*
11361          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11362          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11363          */
11364         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11365         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11366
11367         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11368         POSTING_READ(PLANE_SURF(pipe, 0));
11369 }
11370
11371 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11372                              struct intel_unpin_work *work)
11373 {
11374         struct drm_device *dev = intel_crtc->base.dev;
11375         struct drm_i915_private *dev_priv = dev->dev_private;
11376         struct intel_framebuffer *intel_fb =
11377                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11378         struct drm_i915_gem_object *obj = intel_fb->obj;
11379         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11380         u32 dspcntr;
11381
11382         dspcntr = I915_READ(reg);
11383
11384         if (obj->tiling_mode != I915_TILING_NONE)
11385                 dspcntr |= DISPPLANE_TILED;
11386         else
11387                 dspcntr &= ~DISPPLANE_TILED;
11388
11389         I915_WRITE(reg, dspcntr);
11390
11391         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11392         POSTING_READ(DSPSURF(intel_crtc->plane));
11393 }
11394
11395 /*
11396  * XXX: This is the temporary way to update the plane registers until we get
11397  * around to using the usual plane update functions for MMIO flips
11398  */
11399 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11400 {
11401         struct intel_crtc *crtc = mmio_flip->crtc;
11402         struct intel_unpin_work *work;
11403
11404         spin_lock_irq(&crtc->base.dev->event_lock);
11405         work = crtc->unpin_work;
11406         spin_unlock_irq(&crtc->base.dev->event_lock);
11407         if (work == NULL)
11408                 return;
11409
11410         intel_mark_page_flip_active(work);
11411
11412         intel_pipe_update_start(crtc);
11413
11414         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11415                 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11416         else
11417                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11418                 ilk_do_mmio_flip(crtc, work);
11419
11420         intel_pipe_update_end(crtc);
11421 }
11422
11423 static void intel_mmio_flip_work_func(struct work_struct *work)
11424 {
11425         struct intel_mmio_flip *mmio_flip =
11426                 container_of(work, struct intel_mmio_flip, work);
11427         struct intel_framebuffer *intel_fb =
11428                 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11429         struct drm_i915_gem_object *obj = intel_fb->obj;
11430
11431         if (mmio_flip->req) {
11432                 WARN_ON(__i915_wait_request(mmio_flip->req,
11433                                             mmio_flip->crtc->reset_counter,
11434                                             false, NULL,
11435                                             &mmio_flip->i915->rps.mmioflips));
11436                 i915_gem_request_unreference__unlocked(mmio_flip->req);
11437         }
11438
11439         /* For framebuffer backed by dmabuf, wait for fence */
11440         if (obj->base.dma_buf)
11441                 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11442                                                             false, false,
11443                                                             MAX_SCHEDULE_TIMEOUT) < 0);
11444
11445         intel_do_mmio_flip(mmio_flip);
11446         kfree(mmio_flip);
11447 }
11448
11449 static int intel_queue_mmio_flip(struct drm_device *dev,
11450                                  struct drm_crtc *crtc,
11451                                  struct drm_i915_gem_object *obj)
11452 {
11453         struct intel_mmio_flip *mmio_flip;
11454
11455         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11456         if (mmio_flip == NULL)
11457                 return -ENOMEM;
11458
11459         mmio_flip->i915 = to_i915(dev);
11460         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11461         mmio_flip->crtc = to_intel_crtc(crtc);
11462         mmio_flip->rotation = crtc->primary->state->rotation;
11463
11464         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11465         schedule_work(&mmio_flip->work);
11466
11467         return 0;
11468 }
11469
11470 static int intel_default_queue_flip(struct drm_device *dev,
11471                                     struct drm_crtc *crtc,
11472                                     struct drm_framebuffer *fb,
11473                                     struct drm_i915_gem_object *obj,
11474                                     struct drm_i915_gem_request *req,
11475                                     uint32_t flags)
11476 {
11477         return -ENODEV;
11478 }
11479
11480 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11481                                          struct drm_crtc *crtc)
11482 {
11483         struct drm_i915_private *dev_priv = dev->dev_private;
11484         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11485         struct intel_unpin_work *work = intel_crtc->unpin_work;
11486         u32 addr;
11487
11488         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11489                 return true;
11490
11491         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11492                 return false;
11493
11494         if (!work->enable_stall_check)
11495                 return false;
11496
11497         if (work->flip_ready_vblank == 0) {
11498                 if (work->flip_queued_req &&
11499                     !i915_gem_request_completed(work->flip_queued_req, true))
11500                         return false;
11501
11502                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11503         }
11504
11505         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11506                 return false;
11507
11508         /* Potential stall - if we see that the flip has happened,
11509          * assume a missed interrupt. */
11510         if (INTEL_INFO(dev)->gen >= 4)
11511                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11512         else
11513                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11514
11515         /* There is a potential issue here with a false positive after a flip
11516          * to the same address. We could address this by checking for a
11517          * non-incrementing frame counter.
11518          */
11519         return addr == work->gtt_offset;
11520 }
11521
11522 void intel_check_page_flip(struct drm_device *dev, int pipe)
11523 {
11524         struct drm_i915_private *dev_priv = dev->dev_private;
11525         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11526         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11527         struct intel_unpin_work *work;
11528
11529         WARN_ON(!in_interrupt());
11530
11531         if (crtc == NULL)
11532                 return;
11533
11534         spin_lock(&dev->event_lock);
11535         work = intel_crtc->unpin_work;
11536         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11537                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11538                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11539                 page_flip_completed(intel_crtc);
11540                 work = NULL;
11541         }
11542         if (work != NULL &&
11543             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11544                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11545         spin_unlock(&dev->event_lock);
11546 }
11547
11548 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11549                                 struct drm_framebuffer *fb,
11550                                 struct drm_pending_vblank_event *event,
11551                                 uint32_t page_flip_flags)
11552 {
11553         struct drm_device *dev = crtc->dev;
11554         struct drm_i915_private *dev_priv = dev->dev_private;
11555         struct drm_framebuffer *old_fb = crtc->primary->fb;
11556         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11557         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11558         struct drm_plane *primary = crtc->primary;
11559         enum pipe pipe = intel_crtc->pipe;
11560         struct intel_unpin_work *work;
11561         struct intel_engine_cs *ring;
11562         bool mmio_flip;
11563         struct drm_i915_gem_request *request = NULL;
11564         int ret;
11565
11566         /*
11567          * drm_mode_page_flip_ioctl() should already catch this, but double
11568          * check to be safe.  In the future we may enable pageflipping from
11569          * a disabled primary plane.
11570          */
11571         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11572                 return -EBUSY;
11573
11574         /* Can't change pixel format via MI display flips. */
11575         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11576                 return -EINVAL;
11577
11578         /*
11579          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11580          * Note that pitch changes could also affect these register.
11581          */
11582         if (INTEL_INFO(dev)->gen > 3 &&
11583             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11584              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11585                 return -EINVAL;
11586
11587         if (i915_terminally_wedged(&dev_priv->gpu_error))
11588                 goto out_hang;
11589
11590         work = kzalloc(sizeof(*work), GFP_KERNEL);
11591         if (work == NULL)
11592                 return -ENOMEM;
11593
11594         work->event = event;
11595         work->crtc = crtc;
11596         work->old_fb = old_fb;
11597         INIT_WORK(&work->work, intel_unpin_work_fn);
11598
11599         ret = drm_crtc_vblank_get(crtc);
11600         if (ret)
11601                 goto free_work;
11602
11603         /* We borrow the event spin lock for protecting unpin_work */
11604         spin_lock_irq(&dev->event_lock);
11605         if (intel_crtc->unpin_work) {
11606                 /* Before declaring the flip queue wedged, check if
11607                  * the hardware completed the operation behind our backs.
11608                  */
11609                 if (__intel_pageflip_stall_check(dev, crtc)) {
11610                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11611                         page_flip_completed(intel_crtc);
11612                 } else {
11613                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11614                         spin_unlock_irq(&dev->event_lock);
11615
11616                         drm_crtc_vblank_put(crtc);
11617                         kfree(work);
11618                         return -EBUSY;
11619                 }
11620         }
11621         intel_crtc->unpin_work = work;
11622         spin_unlock_irq(&dev->event_lock);
11623
11624         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11625                 flush_workqueue(dev_priv->wq);
11626
11627         /* Reference the objects for the scheduled work. */
11628         drm_framebuffer_reference(work->old_fb);
11629         drm_gem_object_reference(&obj->base);
11630
11631         crtc->primary->fb = fb;
11632         update_state_fb(crtc->primary);
11633         intel_fbc_pre_update(intel_crtc);
11634
11635         work->pending_flip_obj = obj;
11636
11637         ret = i915_mutex_lock_interruptible(dev);
11638         if (ret)
11639                 goto cleanup;
11640
11641         atomic_inc(&intel_crtc->unpin_work_count);
11642         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11643
11644         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11645                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11646
11647         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11648                 ring = &dev_priv->ring[BCS];
11649                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11650                         /* vlv: DISPLAY_FLIP fails to change tiling */
11651                         ring = NULL;
11652         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11653                 ring = &dev_priv->ring[BCS];
11654         } else if (INTEL_INFO(dev)->gen >= 7) {
11655                 ring = i915_gem_request_get_ring(obj->last_write_req);
11656                 if (ring == NULL || ring->id != RCS)
11657                         ring = &dev_priv->ring[BCS];
11658         } else {
11659                 ring = &dev_priv->ring[RCS];
11660         }
11661
11662         mmio_flip = use_mmio_flip(ring, obj);
11663
11664         /* When using CS flips, we want to emit semaphores between rings.
11665          * However, when using mmio flips we will create a task to do the
11666          * synchronisation, so all we want here is to pin the framebuffer
11667          * into the display plane and skip any waits.
11668          */
11669         if (!mmio_flip) {
11670                 ret = i915_gem_object_sync(obj, ring, &request);
11671                 if (ret)
11672                         goto cleanup_pending;
11673         }
11674
11675         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11676                                          crtc->primary->state);
11677         if (ret)
11678                 goto cleanup_pending;
11679
11680         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11681                                                   obj, 0);
11682         work->gtt_offset += intel_crtc->dspaddr_offset;
11683
11684         if (mmio_flip) {
11685                 ret = intel_queue_mmio_flip(dev, crtc, obj);
11686                 if (ret)
11687                         goto cleanup_unpin;
11688
11689                 i915_gem_request_assign(&work->flip_queued_req,
11690                                         obj->last_write_req);
11691         } else {
11692                 if (!request) {
11693                         request = i915_gem_request_alloc(ring, NULL);
11694                         if (IS_ERR(request)) {
11695                                 ret = PTR_ERR(request);
11696                                 goto cleanup_unpin;
11697                         }
11698                 }
11699
11700                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11701                                                    page_flip_flags);
11702                 if (ret)
11703                         goto cleanup_unpin;
11704
11705                 i915_gem_request_assign(&work->flip_queued_req, request);
11706         }
11707
11708         if (request)
11709                 i915_add_request_no_flush(request);
11710
11711         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11712         work->enable_stall_check = true;
11713
11714         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11715                           to_intel_plane(primary)->frontbuffer_bit);
11716         mutex_unlock(&dev->struct_mutex);
11717
11718         intel_frontbuffer_flip_prepare(dev,
11719                                        to_intel_plane(primary)->frontbuffer_bit);
11720
11721         trace_i915_flip_request(intel_crtc->plane, obj);
11722
11723         return 0;
11724
11725 cleanup_unpin:
11726         intel_unpin_fb_obj(fb, crtc->primary->state);
11727 cleanup_pending:
11728         if (!IS_ERR_OR_NULL(request))
11729                 i915_gem_request_cancel(request);
11730         atomic_dec(&intel_crtc->unpin_work_count);
11731         mutex_unlock(&dev->struct_mutex);
11732 cleanup:
11733         crtc->primary->fb = old_fb;
11734         update_state_fb(crtc->primary);
11735
11736         drm_gem_object_unreference_unlocked(&obj->base);
11737         drm_framebuffer_unreference(work->old_fb);
11738
11739         spin_lock_irq(&dev->event_lock);
11740         intel_crtc->unpin_work = NULL;
11741         spin_unlock_irq(&dev->event_lock);
11742
11743         drm_crtc_vblank_put(crtc);
11744 free_work:
11745         kfree(work);
11746
11747         if (ret == -EIO) {
11748                 struct drm_atomic_state *state;
11749                 struct drm_plane_state *plane_state;
11750
11751 out_hang:
11752                 state = drm_atomic_state_alloc(dev);
11753                 if (!state)
11754                         return -ENOMEM;
11755                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11756
11757 retry:
11758                 plane_state = drm_atomic_get_plane_state(state, primary);
11759                 ret = PTR_ERR_OR_ZERO(plane_state);
11760                 if (!ret) {
11761                         drm_atomic_set_fb_for_plane(plane_state, fb);
11762
11763                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11764                         if (!ret)
11765                                 ret = drm_atomic_commit(state);
11766                 }
11767
11768                 if (ret == -EDEADLK) {
11769                         drm_modeset_backoff(state->acquire_ctx);
11770                         drm_atomic_state_clear(state);
11771                         goto retry;
11772                 }
11773
11774                 if (ret)
11775                         drm_atomic_state_free(state);
11776
11777                 if (ret == 0 && event) {
11778                         spin_lock_irq(&dev->event_lock);
11779                         drm_send_vblank_event(dev, pipe, event);
11780                         spin_unlock_irq(&dev->event_lock);
11781                 }
11782         }
11783         return ret;
11784 }
11785
11786
11787 /**
11788  * intel_wm_need_update - Check whether watermarks need updating
11789  * @plane: drm plane
11790  * @state: new plane state
11791  *
11792  * Check current plane state versus the new one to determine whether
11793  * watermarks need to be recalculated.
11794  *
11795  * Returns true or false.
11796  */
11797 static bool intel_wm_need_update(struct drm_plane *plane,
11798                                  struct drm_plane_state *state)
11799 {
11800         struct intel_plane_state *new = to_intel_plane_state(state);
11801         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11802
11803         /* Update watermarks on tiling or size changes. */
11804         if (new->visible != cur->visible)
11805                 return true;
11806
11807         if (!cur->base.fb || !new->base.fb)
11808                 return false;
11809
11810         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11811             cur->base.rotation != new->base.rotation ||
11812             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11813             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11814             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11815             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11816                 return true;
11817
11818         return false;
11819 }
11820
11821 static bool needs_scaling(struct intel_plane_state *state)
11822 {
11823         int src_w = drm_rect_width(&state->src) >> 16;
11824         int src_h = drm_rect_height(&state->src) >> 16;
11825         int dst_w = drm_rect_width(&state->dst);
11826         int dst_h = drm_rect_height(&state->dst);
11827
11828         return (src_w != dst_w || src_h != dst_h);
11829 }
11830
11831 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11832                                     struct drm_plane_state *plane_state)
11833 {
11834         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11835         struct drm_crtc *crtc = crtc_state->crtc;
11836         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11837         struct drm_plane *plane = plane_state->plane;
11838         struct drm_device *dev = crtc->dev;
11839         struct intel_plane_state *old_plane_state =
11840                 to_intel_plane_state(plane->state);
11841         int idx = intel_crtc->base.base.id, ret;
11842         int i = drm_plane_index(plane);
11843         bool mode_changed = needs_modeset(crtc_state);
11844         bool was_crtc_enabled = crtc->state->active;
11845         bool is_crtc_enabled = crtc_state->active;
11846         bool turn_off, turn_on, visible, was_visible;
11847         struct drm_framebuffer *fb = plane_state->fb;
11848
11849         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11850             plane->type != DRM_PLANE_TYPE_CURSOR) {
11851                 ret = skl_update_scaler_plane(
11852                         to_intel_crtc_state(crtc_state),
11853                         to_intel_plane_state(plane_state));
11854                 if (ret)
11855                         return ret;
11856         }
11857
11858         was_visible = old_plane_state->visible;
11859         visible = to_intel_plane_state(plane_state)->visible;
11860
11861         if (!was_crtc_enabled && WARN_ON(was_visible))
11862                 was_visible = false;
11863
11864         /*
11865          * Visibility is calculated as if the crtc was on, but
11866          * after scaler setup everything depends on it being off
11867          * when the crtc isn't active.
11868          */
11869         if (!is_crtc_enabled)
11870                 to_intel_plane_state(plane_state)->visible = visible = false;
11871
11872         if (!was_visible && !visible)
11873                 return 0;
11874
11875         turn_off = was_visible && (!visible || mode_changed);
11876         turn_on = visible && (!was_visible || mode_changed);
11877
11878         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11879                          plane->base.id, fb ? fb->base.id : -1);
11880
11881         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11882                          plane->base.id, was_visible, visible,
11883                          turn_off, turn_on, mode_changed);
11884
11885         if (turn_on || turn_off) {
11886                 pipe_config->wm_changed = true;
11887
11888                 /* must disable cxsr around plane enable/disable */
11889                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11890                         if (is_crtc_enabled)
11891                                 intel_crtc->atomic.wait_vblank = true;
11892                         pipe_config->disable_cxsr = true;
11893                 }
11894         } else if (intel_wm_need_update(plane, plane_state)) {
11895                 pipe_config->wm_changed = true;
11896         }
11897
11898         if (visible || was_visible)
11899                 intel_crtc->atomic.fb_bits |=
11900                         to_intel_plane(plane)->frontbuffer_bit;
11901
11902         switch (plane->type) {
11903         case DRM_PLANE_TYPE_PRIMARY:
11904                 intel_crtc->atomic.post_enable_primary = turn_on;
11905                 intel_crtc->atomic.update_fbc = true;
11906
11907                 /*
11908                  * BDW signals flip done immediately if the plane
11909                  * is disabled, even if the plane enable is already
11910                  * armed to occur at the next vblank :(
11911                  */
11912                 if (turn_on && IS_BROADWELL(dev))
11913                         intel_crtc->atomic.wait_vblank = true;
11914
11915                 break;
11916         case DRM_PLANE_TYPE_CURSOR:
11917                 break;
11918         case DRM_PLANE_TYPE_OVERLAY:
11919                 /*
11920                  * WaCxSRDisabledForSpriteScaling:ivb
11921                  *
11922                  * cstate->update_wm was already set above, so this flag will
11923                  * take effect when we commit and program watermarks.
11924                  */
11925                 if (IS_IVYBRIDGE(dev) &&
11926                     needs_scaling(to_intel_plane_state(plane_state)) &&
11927                     !needs_scaling(old_plane_state)) {
11928                         to_intel_crtc_state(crtc_state)->disable_lp_wm = true;
11929                 } else if (turn_off && !mode_changed) {
11930                         intel_crtc->atomic.wait_vblank = true;
11931                         intel_crtc->atomic.update_sprite_watermarks |=
11932                                 1 << i;
11933                 }
11934
11935                 break;
11936         }
11937         return 0;
11938 }
11939
11940 static bool encoders_cloneable(const struct intel_encoder *a,
11941                                const struct intel_encoder *b)
11942 {
11943         /* masks could be asymmetric, so check both ways */
11944         return a == b || (a->cloneable & (1 << b->type) &&
11945                           b->cloneable & (1 << a->type));
11946 }
11947
11948 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11949                                          struct intel_crtc *crtc,
11950                                          struct intel_encoder *encoder)
11951 {
11952         struct intel_encoder *source_encoder;
11953         struct drm_connector *connector;
11954         struct drm_connector_state *connector_state;
11955         int i;
11956
11957         for_each_connector_in_state(state, connector, connector_state, i) {
11958                 if (connector_state->crtc != &crtc->base)
11959                         continue;
11960
11961                 source_encoder =
11962                         to_intel_encoder(connector_state->best_encoder);
11963                 if (!encoders_cloneable(encoder, source_encoder))
11964                         return false;
11965         }
11966
11967         return true;
11968 }
11969
11970 static bool check_encoder_cloning(struct drm_atomic_state *state,
11971                                   struct intel_crtc *crtc)
11972 {
11973         struct intel_encoder *encoder;
11974         struct drm_connector *connector;
11975         struct drm_connector_state *connector_state;
11976         int i;
11977
11978         for_each_connector_in_state(state, connector, connector_state, i) {
11979                 if (connector_state->crtc != &crtc->base)
11980                         continue;
11981
11982                 encoder = to_intel_encoder(connector_state->best_encoder);
11983                 if (!check_single_encoder_cloning(state, crtc, encoder))
11984                         return false;
11985         }
11986
11987         return true;
11988 }
11989
11990 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11991                                    struct drm_crtc_state *crtc_state)
11992 {
11993         struct drm_device *dev = crtc->dev;
11994         struct drm_i915_private *dev_priv = dev->dev_private;
11995         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11996         struct intel_crtc_state *pipe_config =
11997                 to_intel_crtc_state(crtc_state);
11998         struct drm_atomic_state *state = crtc_state->state;
11999         int ret;
12000         bool mode_changed = needs_modeset(crtc_state);
12001
12002         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
12003                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12004                 return -EINVAL;
12005         }
12006
12007         if (mode_changed && !crtc_state->active)
12008                 pipe_config->wm_changed = true;
12009
12010         if (mode_changed && crtc_state->enable &&
12011             dev_priv->display.crtc_compute_clock &&
12012             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
12013                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12014                                                            pipe_config);
12015                 if (ret)
12016                         return ret;
12017         }
12018
12019         ret = 0;
12020         if (dev_priv->display.compute_pipe_wm) {
12021                 ret = dev_priv->display.compute_pipe_wm(intel_crtc, state);
12022                 if (ret)
12023                         return ret;
12024         }
12025
12026         if (INTEL_INFO(dev)->gen >= 9) {
12027                 if (mode_changed)
12028                         ret = skl_update_scaler_crtc(pipe_config);
12029
12030                 if (!ret)
12031                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
12032                                                          pipe_config);
12033         }
12034
12035         return ret;
12036 }
12037
12038 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12039         .mode_set_base_atomic = intel_pipe_set_base_atomic,
12040         .load_lut = intel_crtc_load_lut,
12041         .atomic_begin = intel_begin_crtc_commit,
12042         .atomic_flush = intel_finish_crtc_commit,
12043         .atomic_check = intel_crtc_atomic_check,
12044 };
12045
12046 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12047 {
12048         struct intel_connector *connector;
12049
12050         for_each_intel_connector(dev, connector) {
12051                 if (connector->base.encoder) {
12052                         connector->base.state->best_encoder =
12053                                 connector->base.encoder;
12054                         connector->base.state->crtc =
12055                                 connector->base.encoder->crtc;
12056                 } else {
12057                         connector->base.state->best_encoder = NULL;
12058                         connector->base.state->crtc = NULL;
12059                 }
12060         }
12061 }
12062
12063 static void
12064 connected_sink_compute_bpp(struct intel_connector *connector,
12065                            struct intel_crtc_state *pipe_config)
12066 {
12067         int bpp = pipe_config->pipe_bpp;
12068
12069         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12070                 connector->base.base.id,
12071                 connector->base.name);
12072
12073         /* Don't use an invalid EDID bpc value */
12074         if (connector->base.display_info.bpc &&
12075             connector->base.display_info.bpc * 3 < bpp) {
12076                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12077                               bpp, connector->base.display_info.bpc*3);
12078                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12079         }
12080
12081         /* Clamp bpp to default limit on screens without EDID 1.4 */
12082         if (connector->base.display_info.bpc == 0) {
12083                 int type = connector->base.connector_type;
12084                 int clamp_bpp = 24;
12085
12086                 /* Fall back to 18 bpp when DP sink capability is unknown. */
12087                 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12088                     type == DRM_MODE_CONNECTOR_eDP)
12089                         clamp_bpp = 18;
12090
12091                 if (bpp > clamp_bpp) {
12092                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12093                                       bpp, clamp_bpp);
12094                         pipe_config->pipe_bpp = clamp_bpp;
12095                 }
12096         }
12097 }
12098
12099 static int
12100 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12101                           struct intel_crtc_state *pipe_config)
12102 {
12103         struct drm_device *dev = crtc->base.dev;
12104         struct drm_atomic_state *state;
12105         struct drm_connector *connector;
12106         struct drm_connector_state *connector_state;
12107         int bpp, i;
12108
12109         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12110                 bpp = 10*3;
12111         else if (INTEL_INFO(dev)->gen >= 5)
12112                 bpp = 12*3;
12113         else
12114                 bpp = 8*3;
12115
12116
12117         pipe_config->pipe_bpp = bpp;
12118
12119         state = pipe_config->base.state;
12120
12121         /* Clamp display bpp to EDID value */
12122         for_each_connector_in_state(state, connector, connector_state, i) {
12123                 if (connector_state->crtc != &crtc->base)
12124                         continue;
12125
12126                 connected_sink_compute_bpp(to_intel_connector(connector),
12127                                            pipe_config);
12128         }
12129
12130         return bpp;
12131 }
12132
12133 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12134 {
12135         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12136                         "type: 0x%x flags: 0x%x\n",
12137                 mode->crtc_clock,
12138                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12139                 mode->crtc_hsync_end, mode->crtc_htotal,
12140                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12141                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12142 }
12143
12144 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12145                                    struct intel_crtc_state *pipe_config,
12146                                    const char *context)
12147 {
12148         struct drm_device *dev = crtc->base.dev;
12149         struct drm_plane *plane;
12150         struct intel_plane *intel_plane;
12151         struct intel_plane_state *state;
12152         struct drm_framebuffer *fb;
12153
12154         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12155                       context, pipe_config, pipe_name(crtc->pipe));
12156
12157         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12158         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12159                       pipe_config->pipe_bpp, pipe_config->dither);
12160         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12161                       pipe_config->has_pch_encoder,
12162                       pipe_config->fdi_lanes,
12163                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12164                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12165                       pipe_config->fdi_m_n.tu);
12166         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12167                       pipe_config->has_dp_encoder,
12168                       pipe_config->lane_count,
12169                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12170                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12171                       pipe_config->dp_m_n.tu);
12172
12173         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12174                       pipe_config->has_dp_encoder,
12175                       pipe_config->lane_count,
12176                       pipe_config->dp_m2_n2.gmch_m,
12177                       pipe_config->dp_m2_n2.gmch_n,
12178                       pipe_config->dp_m2_n2.link_m,
12179                       pipe_config->dp_m2_n2.link_n,
12180                       pipe_config->dp_m2_n2.tu);
12181
12182         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12183                       pipe_config->has_audio,
12184                       pipe_config->has_infoframe);
12185
12186         DRM_DEBUG_KMS("requested mode:\n");
12187         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12188         DRM_DEBUG_KMS("adjusted mode:\n");
12189         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12190         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12191         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12192         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12193                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12194         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12195                       crtc->num_scalers,
12196                       pipe_config->scaler_state.scaler_users,
12197                       pipe_config->scaler_state.scaler_id);
12198         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12199                       pipe_config->gmch_pfit.control,
12200                       pipe_config->gmch_pfit.pgm_ratios,
12201                       pipe_config->gmch_pfit.lvds_border_bits);
12202         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12203                       pipe_config->pch_pfit.pos,
12204                       pipe_config->pch_pfit.size,
12205                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12206         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12207         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12208
12209         if (IS_BROXTON(dev)) {
12210                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12211                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12212                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12213                               pipe_config->ddi_pll_sel,
12214                               pipe_config->dpll_hw_state.ebb0,
12215                               pipe_config->dpll_hw_state.ebb4,
12216                               pipe_config->dpll_hw_state.pll0,
12217                               pipe_config->dpll_hw_state.pll1,
12218                               pipe_config->dpll_hw_state.pll2,
12219                               pipe_config->dpll_hw_state.pll3,
12220                               pipe_config->dpll_hw_state.pll6,
12221                               pipe_config->dpll_hw_state.pll8,
12222                               pipe_config->dpll_hw_state.pll9,
12223                               pipe_config->dpll_hw_state.pll10,
12224                               pipe_config->dpll_hw_state.pcsdw12);
12225         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12226                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12227                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12228                               pipe_config->ddi_pll_sel,
12229                               pipe_config->dpll_hw_state.ctrl1,
12230                               pipe_config->dpll_hw_state.cfgcr1,
12231                               pipe_config->dpll_hw_state.cfgcr2);
12232         } else if (HAS_DDI(dev)) {
12233                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12234                               pipe_config->ddi_pll_sel,
12235                               pipe_config->dpll_hw_state.wrpll,
12236                               pipe_config->dpll_hw_state.spll);
12237         } else {
12238                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12239                               "fp0: 0x%x, fp1: 0x%x\n",
12240                               pipe_config->dpll_hw_state.dpll,
12241                               pipe_config->dpll_hw_state.dpll_md,
12242                               pipe_config->dpll_hw_state.fp0,
12243                               pipe_config->dpll_hw_state.fp1);
12244         }
12245
12246         DRM_DEBUG_KMS("planes on this crtc\n");
12247         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12248                 intel_plane = to_intel_plane(plane);
12249                 if (intel_plane->pipe != crtc->pipe)
12250                         continue;
12251
12252                 state = to_intel_plane_state(plane->state);
12253                 fb = state->base.fb;
12254                 if (!fb) {
12255                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12256                                 "disabled, scaler_id = %d\n",
12257                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12258                                 plane->base.id, intel_plane->pipe,
12259                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12260                                 drm_plane_index(plane), state->scaler_id);
12261                         continue;
12262                 }
12263
12264                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12265                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12266                         plane->base.id, intel_plane->pipe,
12267                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12268                         drm_plane_index(plane));
12269                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12270                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12271                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12272                         state->scaler_id,
12273                         state->src.x1 >> 16, state->src.y1 >> 16,
12274                         drm_rect_width(&state->src) >> 16,
12275                         drm_rect_height(&state->src) >> 16,
12276                         state->dst.x1, state->dst.y1,
12277                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12278         }
12279 }
12280
12281 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12282 {
12283         struct drm_device *dev = state->dev;
12284         struct drm_connector *connector;
12285         unsigned int used_ports = 0;
12286
12287         /*
12288          * Walk the connector list instead of the encoder
12289          * list to detect the problem on ddi platforms
12290          * where there's just one encoder per digital port.
12291          */
12292         drm_for_each_connector(connector, dev) {
12293                 struct drm_connector_state *connector_state;
12294                 struct intel_encoder *encoder;
12295
12296                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12297                 if (!connector_state)
12298                         connector_state = connector->state;
12299
12300                 if (!connector_state->best_encoder)
12301                         continue;
12302
12303                 encoder = to_intel_encoder(connector_state->best_encoder);
12304
12305                 WARN_ON(!connector_state->crtc);
12306
12307                 switch (encoder->type) {
12308                         unsigned int port_mask;
12309                 case INTEL_OUTPUT_UNKNOWN:
12310                         if (WARN_ON(!HAS_DDI(dev)))
12311                                 break;
12312                 case INTEL_OUTPUT_DISPLAYPORT:
12313                 case INTEL_OUTPUT_HDMI:
12314                 case INTEL_OUTPUT_EDP:
12315                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12316
12317                         /* the same port mustn't appear more than once */
12318                         if (used_ports & port_mask)
12319                                 return false;
12320
12321                         used_ports |= port_mask;
12322                 default:
12323                         break;
12324                 }
12325         }
12326
12327         return true;
12328 }
12329
12330 static void
12331 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12332 {
12333         struct drm_crtc_state tmp_state;
12334         struct intel_crtc_scaler_state scaler_state;
12335         struct intel_dpll_hw_state dpll_hw_state;
12336         enum intel_dpll_id shared_dpll;
12337         uint32_t ddi_pll_sel;
12338         bool force_thru;
12339
12340         /* FIXME: before the switch to atomic started, a new pipe_config was
12341          * kzalloc'd. Code that depends on any field being zero should be
12342          * fixed, so that the crtc_state can be safely duplicated. For now,
12343          * only fields that are know to not cause problems are preserved. */
12344
12345         tmp_state = crtc_state->base;
12346         scaler_state = crtc_state->scaler_state;
12347         shared_dpll = crtc_state->shared_dpll;
12348         dpll_hw_state = crtc_state->dpll_hw_state;
12349         ddi_pll_sel = crtc_state->ddi_pll_sel;
12350         force_thru = crtc_state->pch_pfit.force_thru;
12351
12352         memset(crtc_state, 0, sizeof *crtc_state);
12353
12354         crtc_state->base = tmp_state;
12355         crtc_state->scaler_state = scaler_state;
12356         crtc_state->shared_dpll = shared_dpll;
12357         crtc_state->dpll_hw_state = dpll_hw_state;
12358         crtc_state->ddi_pll_sel = ddi_pll_sel;
12359         crtc_state->pch_pfit.force_thru = force_thru;
12360 }
12361
12362 static int
12363 intel_modeset_pipe_config(struct drm_crtc *crtc,
12364                           struct intel_crtc_state *pipe_config)
12365 {
12366         struct drm_atomic_state *state = pipe_config->base.state;
12367         struct intel_encoder *encoder;
12368         struct drm_connector *connector;
12369         struct drm_connector_state *connector_state;
12370         int base_bpp, ret = -EINVAL;
12371         int i;
12372         bool retry = true;
12373
12374         clear_intel_crtc_state(pipe_config);
12375
12376         pipe_config->cpu_transcoder =
12377                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12378
12379         /*
12380          * Sanitize sync polarity flags based on requested ones. If neither
12381          * positive or negative polarity is requested, treat this as meaning
12382          * negative polarity.
12383          */
12384         if (!(pipe_config->base.adjusted_mode.flags &
12385               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12386                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12387
12388         if (!(pipe_config->base.adjusted_mode.flags &
12389               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12390                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12391
12392         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12393                                              pipe_config);
12394         if (base_bpp < 0)
12395                 goto fail;
12396
12397         /*
12398          * Determine the real pipe dimensions. Note that stereo modes can
12399          * increase the actual pipe size due to the frame doubling and
12400          * insertion of additional space for blanks between the frame. This
12401          * is stored in the crtc timings. We use the requested mode to do this
12402          * computation to clearly distinguish it from the adjusted mode, which
12403          * can be changed by the connectors in the below retry loop.
12404          */
12405         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12406                                &pipe_config->pipe_src_w,
12407                                &pipe_config->pipe_src_h);
12408
12409 encoder_retry:
12410         /* Ensure the port clock defaults are reset when retrying. */
12411         pipe_config->port_clock = 0;
12412         pipe_config->pixel_multiplier = 1;
12413
12414         /* Fill in default crtc timings, allow encoders to overwrite them. */
12415         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12416                               CRTC_STEREO_DOUBLE);
12417
12418         /* Pass our mode to the connectors and the CRTC to give them a chance to
12419          * adjust it according to limitations or connector properties, and also
12420          * a chance to reject the mode entirely.
12421          */
12422         for_each_connector_in_state(state, connector, connector_state, i) {
12423                 if (connector_state->crtc != crtc)
12424                         continue;
12425
12426                 encoder = to_intel_encoder(connector_state->best_encoder);
12427
12428                 if (!(encoder->compute_config(encoder, pipe_config))) {
12429                         DRM_DEBUG_KMS("Encoder config failure\n");
12430                         goto fail;
12431                 }
12432         }
12433
12434         /* Set default port clock if not overwritten by the encoder. Needs to be
12435          * done afterwards in case the encoder adjusts the mode. */
12436         if (!pipe_config->port_clock)
12437                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12438                         * pipe_config->pixel_multiplier;
12439
12440         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12441         if (ret < 0) {
12442                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12443                 goto fail;
12444         }
12445
12446         if (ret == RETRY) {
12447                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12448                         ret = -EINVAL;
12449                         goto fail;
12450                 }
12451
12452                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12453                 retry = false;
12454                 goto encoder_retry;
12455         }
12456
12457         /* Dithering seems to not pass-through bits correctly when it should, so
12458          * only enable it on 6bpc panels. */
12459         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12460         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12461                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12462
12463 fail:
12464         return ret;
12465 }
12466
12467 static void
12468 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12469 {
12470         struct drm_crtc *crtc;
12471         struct drm_crtc_state *crtc_state;
12472         int i;
12473
12474         /* Double check state. */
12475         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12476                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12477
12478                 /* Update hwmode for vblank functions */
12479                 if (crtc->state->active)
12480                         crtc->hwmode = crtc->state->adjusted_mode;
12481                 else
12482                         crtc->hwmode.crtc_clock = 0;
12483
12484                 /*
12485                  * Update legacy state to satisfy fbc code. This can
12486                  * be removed when fbc uses the atomic state.
12487                  */
12488                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12489                         struct drm_plane_state *plane_state = crtc->primary->state;
12490
12491                         crtc->primary->fb = plane_state->fb;
12492                         crtc->x = plane_state->src_x >> 16;
12493                         crtc->y = plane_state->src_y >> 16;
12494                 }
12495         }
12496 }
12497
12498 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12499 {
12500         int diff;
12501
12502         if (clock1 == clock2)
12503                 return true;
12504
12505         if (!clock1 || !clock2)
12506                 return false;
12507
12508         diff = abs(clock1 - clock2);
12509
12510         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12511                 return true;
12512
12513         return false;
12514 }
12515
12516 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12517         list_for_each_entry((intel_crtc), \
12518                             &(dev)->mode_config.crtc_list, \
12519                             base.head) \
12520                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12521
12522 static bool
12523 intel_compare_m_n(unsigned int m, unsigned int n,
12524                   unsigned int m2, unsigned int n2,
12525                   bool exact)
12526 {
12527         if (m == m2 && n == n2)
12528                 return true;
12529
12530         if (exact || !m || !n || !m2 || !n2)
12531                 return false;
12532
12533         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12534
12535         if (n > n2) {
12536                 while (n > n2) {
12537                         m2 <<= 1;
12538                         n2 <<= 1;
12539                 }
12540         } else if (n < n2) {
12541                 while (n < n2) {
12542                         m <<= 1;
12543                         n <<= 1;
12544                 }
12545         }
12546
12547         if (n != n2)
12548                 return false;
12549
12550         return intel_fuzzy_clock_check(m, m2);
12551 }
12552
12553 static bool
12554 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12555                        struct intel_link_m_n *m2_n2,
12556                        bool adjust)
12557 {
12558         if (m_n->tu == m2_n2->tu &&
12559             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12560                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12561             intel_compare_m_n(m_n->link_m, m_n->link_n,
12562                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12563                 if (adjust)
12564                         *m2_n2 = *m_n;
12565
12566                 return true;
12567         }
12568
12569         return false;
12570 }
12571
12572 static bool
12573 intel_pipe_config_compare(struct drm_device *dev,
12574                           struct intel_crtc_state *current_config,
12575                           struct intel_crtc_state *pipe_config,
12576                           bool adjust)
12577 {
12578         bool ret = true;
12579
12580 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12581         do { \
12582                 if (!adjust) \
12583                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12584                 else \
12585                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12586         } while (0)
12587
12588 #define PIPE_CONF_CHECK_X(name) \
12589         if (current_config->name != pipe_config->name) { \
12590                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12591                           "(expected 0x%08x, found 0x%08x)\n", \
12592                           current_config->name, \
12593                           pipe_config->name); \
12594                 ret = false; \
12595         }
12596
12597 #define PIPE_CONF_CHECK_I(name) \
12598         if (current_config->name != pipe_config->name) { \
12599                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12600                           "(expected %i, found %i)\n", \
12601                           current_config->name, \
12602                           pipe_config->name); \
12603                 ret = false; \
12604         }
12605
12606 #define PIPE_CONF_CHECK_M_N(name) \
12607         if (!intel_compare_link_m_n(&current_config->name, \
12608                                     &pipe_config->name,\
12609                                     adjust)) { \
12610                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12611                           "(expected tu %i gmch %i/%i link %i/%i, " \
12612                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12613                           current_config->name.tu, \
12614                           current_config->name.gmch_m, \
12615                           current_config->name.gmch_n, \
12616                           current_config->name.link_m, \
12617                           current_config->name.link_n, \
12618                           pipe_config->name.tu, \
12619                           pipe_config->name.gmch_m, \
12620                           pipe_config->name.gmch_n, \
12621                           pipe_config->name.link_m, \
12622                           pipe_config->name.link_n); \
12623                 ret = false; \
12624         }
12625
12626 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12627         if (!intel_compare_link_m_n(&current_config->name, \
12628                                     &pipe_config->name, adjust) && \
12629             !intel_compare_link_m_n(&current_config->alt_name, \
12630                                     &pipe_config->name, adjust)) { \
12631                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12632                           "(expected tu %i gmch %i/%i link %i/%i, " \
12633                           "or tu %i gmch %i/%i link %i/%i, " \
12634                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12635                           current_config->name.tu, \
12636                           current_config->name.gmch_m, \
12637                           current_config->name.gmch_n, \
12638                           current_config->name.link_m, \
12639                           current_config->name.link_n, \
12640                           current_config->alt_name.tu, \
12641                           current_config->alt_name.gmch_m, \
12642                           current_config->alt_name.gmch_n, \
12643                           current_config->alt_name.link_m, \
12644                           current_config->alt_name.link_n, \
12645                           pipe_config->name.tu, \
12646                           pipe_config->name.gmch_m, \
12647                           pipe_config->name.gmch_n, \
12648                           pipe_config->name.link_m, \
12649                           pipe_config->name.link_n); \
12650                 ret = false; \
12651         }
12652
12653 /* This is required for BDW+ where there is only one set of registers for
12654  * switching between high and low RR.
12655  * This macro can be used whenever a comparison has to be made between one
12656  * hw state and multiple sw state variables.
12657  */
12658 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12659         if ((current_config->name != pipe_config->name) && \
12660                 (current_config->alt_name != pipe_config->name)) { \
12661                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12662                                   "(expected %i or %i, found %i)\n", \
12663                                   current_config->name, \
12664                                   current_config->alt_name, \
12665                                   pipe_config->name); \
12666                         ret = false; \
12667         }
12668
12669 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12670         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12671                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12672                           "(expected %i, found %i)\n", \
12673                           current_config->name & (mask), \
12674                           pipe_config->name & (mask)); \
12675                 ret = false; \
12676         }
12677
12678 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12679         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12680                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12681                           "(expected %i, found %i)\n", \
12682                           current_config->name, \
12683                           pipe_config->name); \
12684                 ret = false; \
12685         }
12686
12687 #define PIPE_CONF_QUIRK(quirk)  \
12688         ((current_config->quirks | pipe_config->quirks) & (quirk))
12689
12690         PIPE_CONF_CHECK_I(cpu_transcoder);
12691
12692         PIPE_CONF_CHECK_I(has_pch_encoder);
12693         PIPE_CONF_CHECK_I(fdi_lanes);
12694         PIPE_CONF_CHECK_M_N(fdi_m_n);
12695
12696         PIPE_CONF_CHECK_I(has_dp_encoder);
12697         PIPE_CONF_CHECK_I(lane_count);
12698
12699         if (INTEL_INFO(dev)->gen < 8) {
12700                 PIPE_CONF_CHECK_M_N(dp_m_n);
12701
12702                 if (current_config->has_drrs)
12703                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12704         } else
12705                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12706
12707         PIPE_CONF_CHECK_I(has_dsi_encoder);
12708
12709         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12710         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12711         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12712         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12713         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12714         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12715
12716         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12717         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12718         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12719         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12720         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12721         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12722
12723         PIPE_CONF_CHECK_I(pixel_multiplier);
12724         PIPE_CONF_CHECK_I(has_hdmi_sink);
12725         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12726             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12727                 PIPE_CONF_CHECK_I(limited_color_range);
12728         PIPE_CONF_CHECK_I(has_infoframe);
12729
12730         PIPE_CONF_CHECK_I(has_audio);
12731
12732         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12733                               DRM_MODE_FLAG_INTERLACE);
12734
12735         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12736                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12737                                       DRM_MODE_FLAG_PHSYNC);
12738                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12739                                       DRM_MODE_FLAG_NHSYNC);
12740                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12741                                       DRM_MODE_FLAG_PVSYNC);
12742                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12743                                       DRM_MODE_FLAG_NVSYNC);
12744         }
12745
12746         PIPE_CONF_CHECK_X(gmch_pfit.control);
12747         /* pfit ratios are autocomputed by the hw on gen4+ */
12748         if (INTEL_INFO(dev)->gen < 4)
12749                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12750         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12751
12752         if (!adjust) {
12753                 PIPE_CONF_CHECK_I(pipe_src_w);
12754                 PIPE_CONF_CHECK_I(pipe_src_h);
12755
12756                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12757                 if (current_config->pch_pfit.enabled) {
12758                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12759                         PIPE_CONF_CHECK_X(pch_pfit.size);
12760                 }
12761
12762                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12763         }
12764
12765         /* BDW+ don't expose a synchronous way to read the state */
12766         if (IS_HASWELL(dev))
12767                 PIPE_CONF_CHECK_I(ips_enabled);
12768
12769         PIPE_CONF_CHECK_I(double_wide);
12770
12771         PIPE_CONF_CHECK_X(ddi_pll_sel);
12772
12773         PIPE_CONF_CHECK_I(shared_dpll);
12774         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12775         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12776         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12777         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12778         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12779         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12780         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12781         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12782         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12783
12784         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12785                 PIPE_CONF_CHECK_I(pipe_bpp);
12786
12787         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12788         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12789
12790 #undef PIPE_CONF_CHECK_X
12791 #undef PIPE_CONF_CHECK_I
12792 #undef PIPE_CONF_CHECK_I_ALT
12793 #undef PIPE_CONF_CHECK_FLAGS
12794 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12795 #undef PIPE_CONF_QUIRK
12796 #undef INTEL_ERR_OR_DBG_KMS
12797
12798         return ret;
12799 }
12800
12801 static void check_wm_state(struct drm_device *dev)
12802 {
12803         struct drm_i915_private *dev_priv = dev->dev_private;
12804         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12805         struct intel_crtc *intel_crtc;
12806         int plane;
12807
12808         if (INTEL_INFO(dev)->gen < 9)
12809                 return;
12810
12811         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12812         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12813
12814         for_each_intel_crtc(dev, intel_crtc) {
12815                 struct skl_ddb_entry *hw_entry, *sw_entry;
12816                 const enum pipe pipe = intel_crtc->pipe;
12817
12818                 if (!intel_crtc->active)
12819                         continue;
12820
12821                 /* planes */
12822                 for_each_plane(dev_priv, pipe, plane) {
12823                         hw_entry = &hw_ddb.plane[pipe][plane];
12824                         sw_entry = &sw_ddb->plane[pipe][plane];
12825
12826                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12827                                 continue;
12828
12829                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12830                                   "(expected (%u,%u), found (%u,%u))\n",
12831                                   pipe_name(pipe), plane + 1,
12832                                   sw_entry->start, sw_entry->end,
12833                                   hw_entry->start, hw_entry->end);
12834                 }
12835
12836                 /* cursor */
12837                 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12838                 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12839
12840                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12841                         continue;
12842
12843                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12844                           "(expected (%u,%u), found (%u,%u))\n",
12845                           pipe_name(pipe),
12846                           sw_entry->start, sw_entry->end,
12847                           hw_entry->start, hw_entry->end);
12848         }
12849 }
12850
12851 static void
12852 check_connector_state(struct drm_device *dev,
12853                       struct drm_atomic_state *old_state)
12854 {
12855         struct drm_connector_state *old_conn_state;
12856         struct drm_connector *connector;
12857         int i;
12858
12859         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12860                 struct drm_encoder *encoder = connector->encoder;
12861                 struct drm_connector_state *state = connector->state;
12862
12863                 /* This also checks the encoder/connector hw state with the
12864                  * ->get_hw_state callbacks. */
12865                 intel_connector_check_state(to_intel_connector(connector));
12866
12867                 I915_STATE_WARN(state->best_encoder != encoder,
12868                      "connector's atomic encoder doesn't match legacy encoder\n");
12869         }
12870 }
12871
12872 static void
12873 check_encoder_state(struct drm_device *dev)
12874 {
12875         struct intel_encoder *encoder;
12876         struct intel_connector *connector;
12877
12878         for_each_intel_encoder(dev, encoder) {
12879                 bool enabled = false;
12880                 enum pipe pipe;
12881
12882                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12883                               encoder->base.base.id,
12884                               encoder->base.name);
12885
12886                 for_each_intel_connector(dev, connector) {
12887                         if (connector->base.state->best_encoder != &encoder->base)
12888                                 continue;
12889                         enabled = true;
12890
12891                         I915_STATE_WARN(connector->base.state->crtc !=
12892                                         encoder->base.crtc,
12893                              "connector's crtc doesn't match encoder crtc\n");
12894                 }
12895
12896                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12897                      "encoder's enabled state mismatch "
12898                      "(expected %i, found %i)\n",
12899                      !!encoder->base.crtc, enabled);
12900
12901                 if (!encoder->base.crtc) {
12902                         bool active;
12903
12904                         active = encoder->get_hw_state(encoder, &pipe);
12905                         I915_STATE_WARN(active,
12906                              "encoder detached but still enabled on pipe %c.\n",
12907                              pipe_name(pipe));
12908                 }
12909         }
12910 }
12911
12912 static void
12913 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12914 {
12915         struct drm_i915_private *dev_priv = dev->dev_private;
12916         struct intel_encoder *encoder;
12917         struct drm_crtc_state *old_crtc_state;
12918         struct drm_crtc *crtc;
12919         int i;
12920
12921         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12922                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12923                 struct intel_crtc_state *pipe_config, *sw_config;
12924                 bool active;
12925
12926                 if (!needs_modeset(crtc->state) &&
12927                     !to_intel_crtc_state(crtc->state)->update_pipe)
12928                         continue;
12929
12930                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12931                 pipe_config = to_intel_crtc_state(old_crtc_state);
12932                 memset(pipe_config, 0, sizeof(*pipe_config));
12933                 pipe_config->base.crtc = crtc;
12934                 pipe_config->base.state = old_state;
12935
12936                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12937                               crtc->base.id);
12938
12939                 active = dev_priv->display.get_pipe_config(intel_crtc,
12940                                                            pipe_config);
12941
12942                 /* hw state is inconsistent with the pipe quirk */
12943                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12944                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12945                         active = crtc->state->active;
12946
12947                 I915_STATE_WARN(crtc->state->active != active,
12948                      "crtc active state doesn't match with hw state "
12949                      "(expected %i, found %i)\n", crtc->state->active, active);
12950
12951                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12952                      "transitional active state does not match atomic hw state "
12953                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12954
12955                 for_each_encoder_on_crtc(dev, crtc, encoder) {
12956                         enum pipe pipe;
12957
12958                         active = encoder->get_hw_state(encoder, &pipe);
12959                         I915_STATE_WARN(active != crtc->state->active,
12960                                 "[ENCODER:%i] active %i with crtc active %i\n",
12961                                 encoder->base.base.id, active, crtc->state->active);
12962
12963                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12964                                         "Encoder connected to wrong pipe %c\n",
12965                                         pipe_name(pipe));
12966
12967                         if (active)
12968                                 encoder->get_config(encoder, pipe_config);
12969                 }
12970
12971                 if (!crtc->state->active)
12972                         continue;
12973
12974                 sw_config = to_intel_crtc_state(crtc->state);
12975                 if (!intel_pipe_config_compare(dev, sw_config,
12976                                                pipe_config, false)) {
12977                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12978                         intel_dump_pipe_config(intel_crtc, pipe_config,
12979                                                "[hw state]");
12980                         intel_dump_pipe_config(intel_crtc, sw_config,
12981                                                "[sw state]");
12982                 }
12983         }
12984 }
12985
12986 static void
12987 check_shared_dpll_state(struct drm_device *dev)
12988 {
12989         struct drm_i915_private *dev_priv = dev->dev_private;
12990         struct intel_crtc *crtc;
12991         struct intel_dpll_hw_state dpll_hw_state;
12992         int i;
12993
12994         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12995                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12996                 int enabled_crtcs = 0, active_crtcs = 0;
12997                 bool active;
12998
12999                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13000
13001                 DRM_DEBUG_KMS("%s\n", pll->name);
13002
13003                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
13004
13005                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
13006                      "more active pll users than references: %i vs %i\n",
13007                      pll->active, hweight32(pll->config.crtc_mask));
13008                 I915_STATE_WARN(pll->active && !pll->on,
13009                      "pll in active use but not on in sw tracking\n");
13010                 I915_STATE_WARN(pll->on && !pll->active,
13011                      "pll in on but not on in use in sw tracking\n");
13012                 I915_STATE_WARN(pll->on != active,
13013                      "pll on state mismatch (expected %i, found %i)\n",
13014                      pll->on, active);
13015
13016                 for_each_intel_crtc(dev, crtc) {
13017                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
13018                                 enabled_crtcs++;
13019                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13020                                 active_crtcs++;
13021                 }
13022                 I915_STATE_WARN(pll->active != active_crtcs,
13023                      "pll active crtcs mismatch (expected %i, found %i)\n",
13024                      pll->active, active_crtcs);
13025                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
13026                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
13027                      hweight32(pll->config.crtc_mask), enabled_crtcs);
13028
13029                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
13030                                        sizeof(dpll_hw_state)),
13031                      "pll hw state mismatch\n");
13032         }
13033 }
13034
13035 static void
13036 intel_modeset_check_state(struct drm_device *dev,
13037                           struct drm_atomic_state *old_state)
13038 {
13039         check_wm_state(dev);
13040         check_connector_state(dev, old_state);
13041         check_encoder_state(dev);
13042         check_crtc_state(dev, old_state);
13043         check_shared_dpll_state(dev);
13044 }
13045
13046 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
13047                                      int dotclock)
13048 {
13049         /*
13050          * FDI already provided one idea for the dotclock.
13051          * Yell if the encoder disagrees.
13052          */
13053         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
13054              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13055              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
13056 }
13057
13058 static void update_scanline_offset(struct intel_crtc *crtc)
13059 {
13060         struct drm_device *dev = crtc->base.dev;
13061
13062         /*
13063          * The scanline counter increments at the leading edge of hsync.
13064          *
13065          * On most platforms it starts counting from vtotal-1 on the
13066          * first active line. That means the scanline counter value is
13067          * always one less than what we would expect. Ie. just after
13068          * start of vblank, which also occurs at start of hsync (on the
13069          * last active line), the scanline counter will read vblank_start-1.
13070          *
13071          * On gen2 the scanline counter starts counting from 1 instead
13072          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13073          * to keep the value positive), instead of adding one.
13074          *
13075          * On HSW+ the behaviour of the scanline counter depends on the output
13076          * type. For DP ports it behaves like most other platforms, but on HDMI
13077          * there's an extra 1 line difference. So we need to add two instead of
13078          * one to the value.
13079          */
13080         if (IS_GEN2(dev)) {
13081                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13082                 int vtotal;
13083
13084                 vtotal = adjusted_mode->crtc_vtotal;
13085                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13086                         vtotal /= 2;
13087
13088                 crtc->scanline_offset = vtotal - 1;
13089         } else if (HAS_DDI(dev) &&
13090                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13091                 crtc->scanline_offset = 2;
13092         } else
13093                 crtc->scanline_offset = 1;
13094 }
13095
13096 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13097 {
13098         struct drm_device *dev = state->dev;
13099         struct drm_i915_private *dev_priv = to_i915(dev);
13100         struct intel_shared_dpll_config *shared_dpll = NULL;
13101         struct intel_crtc *intel_crtc;
13102         struct intel_crtc_state *intel_crtc_state;
13103         struct drm_crtc *crtc;
13104         struct drm_crtc_state *crtc_state;
13105         int i;
13106
13107         if (!dev_priv->display.crtc_compute_clock)
13108                 return;
13109
13110         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13111                 int dpll;
13112
13113                 intel_crtc = to_intel_crtc(crtc);
13114                 intel_crtc_state = to_intel_crtc_state(crtc_state);
13115                 dpll = intel_crtc_state->shared_dpll;
13116
13117                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
13118                         continue;
13119
13120                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
13121
13122                 if (!shared_dpll)
13123                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13124
13125                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
13126         }
13127 }
13128
13129 /*
13130  * This implements the workaround described in the "notes" section of the mode
13131  * set sequence documentation. When going from no pipes or single pipe to
13132  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13133  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13134  */
13135 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13136 {
13137         struct drm_crtc_state *crtc_state;
13138         struct intel_crtc *intel_crtc;
13139         struct drm_crtc *crtc;
13140         struct intel_crtc_state *first_crtc_state = NULL;
13141         struct intel_crtc_state *other_crtc_state = NULL;
13142         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13143         int i;
13144
13145         /* look at all crtc's that are going to be enabled in during modeset */
13146         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13147                 intel_crtc = to_intel_crtc(crtc);
13148
13149                 if (!crtc_state->active || !needs_modeset(crtc_state))
13150                         continue;
13151
13152                 if (first_crtc_state) {
13153                         other_crtc_state = to_intel_crtc_state(crtc_state);
13154                         break;
13155                 } else {
13156                         first_crtc_state = to_intel_crtc_state(crtc_state);
13157                         first_pipe = intel_crtc->pipe;
13158                 }
13159         }
13160
13161         /* No workaround needed? */
13162         if (!first_crtc_state)
13163                 return 0;
13164
13165         /* w/a possibly needed, check how many crtc's are already enabled. */
13166         for_each_intel_crtc(state->dev, intel_crtc) {
13167                 struct intel_crtc_state *pipe_config;
13168
13169                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13170                 if (IS_ERR(pipe_config))
13171                         return PTR_ERR(pipe_config);
13172
13173                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13174
13175                 if (!pipe_config->base.active ||
13176                     needs_modeset(&pipe_config->base))
13177                         continue;
13178
13179                 /* 2 or more enabled crtcs means no need for w/a */
13180                 if (enabled_pipe != INVALID_PIPE)
13181                         return 0;
13182
13183                 enabled_pipe = intel_crtc->pipe;
13184         }
13185
13186         if (enabled_pipe != INVALID_PIPE)
13187                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13188         else if (other_crtc_state)
13189                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13190
13191         return 0;
13192 }
13193
13194 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13195 {
13196         struct drm_crtc *crtc;
13197         struct drm_crtc_state *crtc_state;
13198         int ret = 0;
13199
13200         /* add all active pipes to the state */
13201         for_each_crtc(state->dev, crtc) {
13202                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13203                 if (IS_ERR(crtc_state))
13204                         return PTR_ERR(crtc_state);
13205
13206                 if (!crtc_state->active || needs_modeset(crtc_state))
13207                         continue;
13208
13209                 crtc_state->mode_changed = true;
13210
13211                 ret = drm_atomic_add_affected_connectors(state, crtc);
13212                 if (ret)
13213                         break;
13214
13215                 ret = drm_atomic_add_affected_planes(state, crtc);
13216                 if (ret)
13217                         break;
13218         }
13219
13220         return ret;
13221 }
13222
13223 static int intel_modeset_checks(struct drm_atomic_state *state)
13224 {
13225         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13226         struct drm_i915_private *dev_priv = state->dev->dev_private;
13227         struct drm_crtc *crtc;
13228         struct drm_crtc_state *crtc_state;
13229         int ret = 0, i;
13230
13231         if (!check_digital_port_conflicts(state)) {
13232                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13233                 return -EINVAL;
13234         }
13235
13236         intel_state->modeset = true;
13237         intel_state->active_crtcs = dev_priv->active_crtcs;
13238
13239         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13240                 if (crtc_state->active)
13241                         intel_state->active_crtcs |= 1 << i;
13242                 else
13243                         intel_state->active_crtcs &= ~(1 << i);
13244         }
13245
13246         /*
13247          * See if the config requires any additional preparation, e.g.
13248          * to adjust global state with pipes off.  We need to do this
13249          * here so we can get the modeset_pipe updated config for the new
13250          * mode set on this crtc.  For other crtcs we need to use the
13251          * adjusted_mode bits in the crtc directly.
13252          */
13253         if (dev_priv->display.modeset_calc_cdclk) {
13254                 ret = dev_priv->display.modeset_calc_cdclk(state);
13255
13256                 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
13257                         ret = intel_modeset_all_pipes(state);
13258
13259                 if (ret < 0)
13260                         return ret;
13261         } else
13262                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13263
13264         intel_modeset_clear_plls(state);
13265
13266         if (IS_HASWELL(dev_priv))
13267                 return haswell_mode_set_planes_workaround(state);
13268
13269         return 0;
13270 }
13271
13272 /*
13273  * Handle calculation of various watermark data at the end of the atomic check
13274  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13275  * handlers to ensure that all derived state has been updated.
13276  */
13277 static void calc_watermark_data(struct drm_atomic_state *state)
13278 {
13279         struct drm_device *dev = state->dev;
13280         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13281         struct drm_crtc *crtc;
13282         struct drm_crtc_state *cstate;
13283         struct drm_plane *plane;
13284         struct drm_plane_state *pstate;
13285
13286         /*
13287          * Calculate watermark configuration details now that derived
13288          * plane/crtc state is all properly updated.
13289          */
13290         drm_for_each_crtc(crtc, dev) {
13291                 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13292                         crtc->state;
13293
13294                 if (cstate->active)
13295                         intel_state->wm_config.num_pipes_active++;
13296         }
13297         drm_for_each_legacy_plane(plane, dev) {
13298                 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13299                         plane->state;
13300
13301                 if (!to_intel_plane_state(pstate)->visible)
13302                         continue;
13303
13304                 intel_state->wm_config.sprites_enabled = true;
13305                 if (pstate->crtc_w != pstate->src_w >> 16 ||
13306                     pstate->crtc_h != pstate->src_h >> 16)
13307                         intel_state->wm_config.sprites_scaled = true;
13308         }
13309 }
13310
13311 /**
13312  * intel_atomic_check - validate state object
13313  * @dev: drm device
13314  * @state: state to validate
13315  */
13316 static int intel_atomic_check(struct drm_device *dev,
13317                               struct drm_atomic_state *state)
13318 {
13319         struct drm_i915_private *dev_priv = to_i915(dev);
13320         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13321         struct drm_crtc *crtc;
13322         struct drm_crtc_state *crtc_state;
13323         int ret, i;
13324         bool any_ms = false;
13325
13326         ret = drm_atomic_helper_check_modeset(dev, state);
13327         if (ret)
13328                 return ret;
13329
13330         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13331                 struct intel_crtc_state *pipe_config =
13332                         to_intel_crtc_state(crtc_state);
13333
13334                 memset(&to_intel_crtc(crtc)->atomic, 0,
13335                        sizeof(struct intel_crtc_atomic_commit));
13336
13337                 /* Catch I915_MODE_FLAG_INHERITED */
13338                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13339                         crtc_state->mode_changed = true;
13340
13341                 if (!crtc_state->enable) {
13342                         if (needs_modeset(crtc_state))
13343                                 any_ms = true;
13344                         continue;
13345                 }
13346
13347                 if (!needs_modeset(crtc_state))
13348                         continue;
13349
13350                 /* FIXME: For only active_changed we shouldn't need to do any
13351                  * state recomputation at all. */
13352
13353                 ret = drm_atomic_add_affected_connectors(state, crtc);
13354                 if (ret)
13355                         return ret;
13356
13357                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13358                 if (ret)
13359                         return ret;
13360
13361                 if (i915.fastboot &&
13362                     intel_pipe_config_compare(dev,
13363                                         to_intel_crtc_state(crtc->state),
13364                                         pipe_config, true)) {
13365                         crtc_state->mode_changed = false;
13366                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13367                 }
13368
13369                 if (needs_modeset(crtc_state)) {
13370                         any_ms = true;
13371
13372                         ret = drm_atomic_add_affected_planes(state, crtc);
13373                         if (ret)
13374                                 return ret;
13375                 }
13376
13377                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13378                                        needs_modeset(crtc_state) ?
13379                                        "[modeset]" : "[fastset]");
13380         }
13381
13382         if (any_ms) {
13383                 ret = intel_modeset_checks(state);
13384
13385                 if (ret)
13386                         return ret;
13387         } else
13388                 intel_state->cdclk = dev_priv->cdclk_freq;
13389
13390         ret = drm_atomic_helper_check_planes(dev, state);
13391         if (ret)
13392                 return ret;
13393
13394         intel_fbc_choose_crtc(dev_priv, state);
13395         calc_watermark_data(state);
13396
13397         return 0;
13398 }
13399
13400 static int intel_atomic_prepare_commit(struct drm_device *dev,
13401                                        struct drm_atomic_state *state,
13402                                        bool async)
13403 {
13404         struct drm_i915_private *dev_priv = dev->dev_private;
13405         struct drm_plane_state *plane_state;
13406         struct drm_crtc_state *crtc_state;
13407         struct drm_plane *plane;
13408         struct drm_crtc *crtc;
13409         int i, ret;
13410
13411         if (async) {
13412                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13413                 return -EINVAL;
13414         }
13415
13416         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13417                 ret = intel_crtc_wait_for_pending_flips(crtc);
13418                 if (ret)
13419                         return ret;
13420
13421                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13422                         flush_workqueue(dev_priv->wq);
13423         }
13424
13425         ret = mutex_lock_interruptible(&dev->struct_mutex);
13426         if (ret)
13427                 return ret;
13428
13429         ret = drm_atomic_helper_prepare_planes(dev, state);
13430         if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13431                 u32 reset_counter;
13432
13433                 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13434                 mutex_unlock(&dev->struct_mutex);
13435
13436                 for_each_plane_in_state(state, plane, plane_state, i) {
13437                         struct intel_plane_state *intel_plane_state =
13438                                 to_intel_plane_state(plane_state);
13439
13440                         if (!intel_plane_state->wait_req)
13441                                 continue;
13442
13443                         ret = __i915_wait_request(intel_plane_state->wait_req,
13444                                                   reset_counter, true,
13445                                                   NULL, NULL);
13446
13447                         /* Swallow -EIO errors to allow updates during hw lockup. */
13448                         if (ret == -EIO)
13449                                 ret = 0;
13450
13451                         if (ret)
13452                                 break;
13453                 }
13454
13455                 if (!ret)
13456                         return 0;
13457
13458                 mutex_lock(&dev->struct_mutex);
13459                 drm_atomic_helper_cleanup_planes(dev, state);
13460         }
13461
13462         mutex_unlock(&dev->struct_mutex);
13463         return ret;
13464 }
13465
13466 /**
13467  * intel_atomic_commit - commit validated state object
13468  * @dev: DRM device
13469  * @state: the top-level driver state object
13470  * @async: asynchronous commit
13471  *
13472  * This function commits a top-level state object that has been validated
13473  * with drm_atomic_helper_check().
13474  *
13475  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13476  * we can only handle plane-related operations and do not yet support
13477  * asynchronous commit.
13478  *
13479  * RETURNS
13480  * Zero for success or -errno.
13481  */
13482 static int intel_atomic_commit(struct drm_device *dev,
13483                                struct drm_atomic_state *state,
13484                                bool async)
13485 {
13486         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13487         struct drm_i915_private *dev_priv = dev->dev_private;
13488         struct drm_crtc_state *crtc_state;
13489         struct drm_crtc *crtc;
13490         int ret = 0, i;
13491         bool hw_check = intel_state->modeset;
13492
13493         ret = intel_atomic_prepare_commit(dev, state, async);
13494         if (ret) {
13495                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13496                 return ret;
13497         }
13498
13499         drm_atomic_helper_swap_state(dev, state);
13500         dev_priv->wm.config = to_intel_atomic_state(state)->wm_config;
13501
13502         if (intel_state->modeset) {
13503                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13504                        sizeof(intel_state->min_pixclk));
13505                 dev_priv->active_crtcs = intel_state->active_crtcs;
13506                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13507         }
13508
13509         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13510                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13511
13512                 if (!needs_modeset(crtc->state))
13513                         continue;
13514
13515                 intel_pre_plane_update(to_intel_crtc_state(crtc_state));
13516
13517                 if (crtc_state->active) {
13518                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13519                         dev_priv->display.crtc_disable(crtc);
13520                         intel_crtc->active = false;
13521                         intel_fbc_disable(intel_crtc);
13522                         intel_disable_shared_dpll(intel_crtc);
13523
13524                         /*
13525                          * Underruns don't always raise
13526                          * interrupts, so check manually.
13527                          */
13528                         intel_check_cpu_fifo_underruns(dev_priv);
13529                         intel_check_pch_fifo_underruns(dev_priv);
13530
13531                         if (!crtc->state->active)
13532                                 intel_update_watermarks(crtc);
13533                 }
13534         }
13535
13536         /* Only after disabling all output pipelines that will be changed can we
13537          * update the the output configuration. */
13538         intel_modeset_update_crtc_state(state);
13539
13540         if (intel_state->modeset) {
13541                 intel_shared_dpll_commit(state);
13542
13543                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13544                 modeset_update_crtc_power_domains(state);
13545         }
13546
13547         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13548         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13549                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13550                 bool modeset = needs_modeset(crtc->state);
13551                 bool update_pipe = !modeset &&
13552                         to_intel_crtc_state(crtc->state)->update_pipe;
13553                 unsigned long put_domains = 0;
13554
13555                 if (modeset)
13556                         intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13557
13558                 if (modeset && crtc->state->active) {
13559                         update_scanline_offset(to_intel_crtc(crtc));
13560                         dev_priv->display.crtc_enable(crtc);
13561                 }
13562
13563                 if (update_pipe) {
13564                         put_domains = modeset_get_crtc_power_domains(crtc);
13565
13566                         /* make sure intel_modeset_check_state runs */
13567                         hw_check = true;
13568                 }
13569
13570                 if (!modeset)
13571                         intel_pre_plane_update(to_intel_crtc_state(crtc_state));
13572
13573                 if (crtc->state->active && intel_crtc->atomic.update_fbc)
13574                         intel_fbc_enable(intel_crtc);
13575
13576                 if (crtc->state->active &&
13577                     (crtc->state->planes_changed || update_pipe))
13578                         drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13579
13580                 if (put_domains)
13581                         modeset_put_power_domains(dev_priv, put_domains);
13582
13583                 intel_post_plane_update(intel_crtc);
13584
13585                 if (modeset)
13586                         intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13587         }
13588
13589         /* FIXME: add subpixel order */
13590
13591         drm_atomic_helper_wait_for_vblanks(dev, state);
13592
13593         mutex_lock(&dev->struct_mutex);
13594         drm_atomic_helper_cleanup_planes(dev, state);
13595         mutex_unlock(&dev->struct_mutex);
13596
13597         if (hw_check)
13598                 intel_modeset_check_state(dev, state);
13599
13600         drm_atomic_state_free(state);
13601
13602         /* As one of the primary mmio accessors, KMS has a high likelihood
13603          * of triggering bugs in unclaimed access. After we finish
13604          * modesetting, see if an error has been flagged, and if so
13605          * enable debugging for the next modeset - and hope we catch
13606          * the culprit.
13607          *
13608          * XXX note that we assume display power is on at this point.
13609          * This might hold true now but we need to add pm helper to check
13610          * unclaimed only when the hardware is on, as atomic commits
13611          * can happen also when the device is completely off.
13612          */
13613         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13614
13615         return 0;
13616 }
13617
13618 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13619 {
13620         struct drm_device *dev = crtc->dev;
13621         struct drm_atomic_state *state;
13622         struct drm_crtc_state *crtc_state;
13623         int ret;
13624
13625         state = drm_atomic_state_alloc(dev);
13626         if (!state) {
13627                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13628                               crtc->base.id);
13629                 return;
13630         }
13631
13632         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13633
13634 retry:
13635         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13636         ret = PTR_ERR_OR_ZERO(crtc_state);
13637         if (!ret) {
13638                 if (!crtc_state->active)
13639                         goto out;
13640
13641                 crtc_state->mode_changed = true;
13642                 ret = drm_atomic_commit(state);
13643         }
13644
13645         if (ret == -EDEADLK) {
13646                 drm_atomic_state_clear(state);
13647                 drm_modeset_backoff(state->acquire_ctx);
13648                 goto retry;
13649         }
13650
13651         if (ret)
13652 out:
13653                 drm_atomic_state_free(state);
13654 }
13655
13656 #undef for_each_intel_crtc_masked
13657
13658 static const struct drm_crtc_funcs intel_crtc_funcs = {
13659         .gamma_set = intel_crtc_gamma_set,
13660         .set_config = drm_atomic_helper_set_config,
13661         .destroy = intel_crtc_destroy,
13662         .page_flip = intel_crtc_page_flip,
13663         .atomic_duplicate_state = intel_crtc_duplicate_state,
13664         .atomic_destroy_state = intel_crtc_destroy_state,
13665 };
13666
13667 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13668                                       struct intel_shared_dpll *pll,
13669                                       struct intel_dpll_hw_state *hw_state)
13670 {
13671         uint32_t val;
13672
13673         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13674                 return false;
13675
13676         val = I915_READ(PCH_DPLL(pll->id));
13677         hw_state->dpll = val;
13678         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13679         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13680
13681         return val & DPLL_VCO_ENABLE;
13682 }
13683
13684 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13685                                   struct intel_shared_dpll *pll)
13686 {
13687         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13688         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13689 }
13690
13691 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13692                                 struct intel_shared_dpll *pll)
13693 {
13694         /* PCH refclock must be enabled first */
13695         ibx_assert_pch_refclk_enabled(dev_priv);
13696
13697         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13698
13699         /* Wait for the clocks to stabilize. */
13700         POSTING_READ(PCH_DPLL(pll->id));
13701         udelay(150);
13702
13703         /* The pixel multiplier can only be updated once the
13704          * DPLL is enabled and the clocks are stable.
13705          *
13706          * So write it again.
13707          */
13708         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13709         POSTING_READ(PCH_DPLL(pll->id));
13710         udelay(200);
13711 }
13712
13713 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13714                                  struct intel_shared_dpll *pll)
13715 {
13716         struct drm_device *dev = dev_priv->dev;
13717         struct intel_crtc *crtc;
13718
13719         /* Make sure no transcoder isn't still depending on us. */
13720         for_each_intel_crtc(dev, crtc) {
13721                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13722                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13723         }
13724
13725         I915_WRITE(PCH_DPLL(pll->id), 0);
13726         POSTING_READ(PCH_DPLL(pll->id));
13727         udelay(200);
13728 }
13729
13730 static char *ibx_pch_dpll_names[] = {
13731         "PCH DPLL A",
13732         "PCH DPLL B",
13733 };
13734
13735 static void ibx_pch_dpll_init(struct drm_device *dev)
13736 {
13737         struct drm_i915_private *dev_priv = dev->dev_private;
13738         int i;
13739
13740         dev_priv->num_shared_dpll = 2;
13741
13742         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13743                 dev_priv->shared_dplls[i].id = i;
13744                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13745                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13746                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13747                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13748                 dev_priv->shared_dplls[i].get_hw_state =
13749                         ibx_pch_dpll_get_hw_state;
13750         }
13751 }
13752
13753 static void intel_shared_dpll_init(struct drm_device *dev)
13754 {
13755         struct drm_i915_private *dev_priv = dev->dev_private;
13756
13757         if (HAS_DDI(dev))
13758                 intel_ddi_pll_init(dev);
13759         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13760                 ibx_pch_dpll_init(dev);
13761         else
13762                 dev_priv->num_shared_dpll = 0;
13763
13764         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13765 }
13766
13767 /**
13768  * intel_prepare_plane_fb - Prepare fb for usage on plane
13769  * @plane: drm plane to prepare for
13770  * @fb: framebuffer to prepare for presentation
13771  *
13772  * Prepares a framebuffer for usage on a display plane.  Generally this
13773  * involves pinning the underlying object and updating the frontbuffer tracking
13774  * bits.  Some older platforms need special physical address handling for
13775  * cursor planes.
13776  *
13777  * Must be called with struct_mutex held.
13778  *
13779  * Returns 0 on success, negative error code on failure.
13780  */
13781 int
13782 intel_prepare_plane_fb(struct drm_plane *plane,
13783                        const struct drm_plane_state *new_state)
13784 {
13785         struct drm_device *dev = plane->dev;
13786         struct drm_framebuffer *fb = new_state->fb;
13787         struct intel_plane *intel_plane = to_intel_plane(plane);
13788         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13789         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13790         int ret = 0;
13791
13792         if (!obj && !old_obj)
13793                 return 0;
13794
13795         if (old_obj) {
13796                 struct drm_crtc_state *crtc_state =
13797                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13798
13799                 /* Big Hammer, we also need to ensure that any pending
13800                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13801                  * current scanout is retired before unpinning the old
13802                  * framebuffer. Note that we rely on userspace rendering
13803                  * into the buffer attached to the pipe they are waiting
13804                  * on. If not, userspace generates a GPU hang with IPEHR
13805                  * point to the MI_WAIT_FOR_EVENT.
13806                  *
13807                  * This should only fail upon a hung GPU, in which case we
13808                  * can safely continue.
13809                  */
13810                 if (needs_modeset(crtc_state))
13811                         ret = i915_gem_object_wait_rendering(old_obj, true);
13812
13813                 /* Swallow -EIO errors to allow updates during hw lockup. */
13814                 if (ret && ret != -EIO)
13815                         return ret;
13816         }
13817
13818         /* For framebuffer backed by dmabuf, wait for fence */
13819         if (obj && obj->base.dma_buf) {
13820                 long lret;
13821
13822                 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13823                                                            false, true,
13824                                                            MAX_SCHEDULE_TIMEOUT);
13825                 if (lret == -ERESTARTSYS)
13826                         return lret;
13827
13828                 WARN(lret < 0, "waiting returns %li\n", lret);
13829         }
13830
13831         if (!obj) {
13832                 ret = 0;
13833         } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13834             INTEL_INFO(dev)->cursor_needs_physical) {
13835                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13836                 ret = i915_gem_object_attach_phys(obj, align);
13837                 if (ret)
13838                         DRM_DEBUG_KMS("failed to attach phys object\n");
13839         } else {
13840                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state);
13841         }
13842
13843         if (ret == 0) {
13844                 if (obj) {
13845                         struct intel_plane_state *plane_state =
13846                                 to_intel_plane_state(new_state);
13847
13848                         i915_gem_request_assign(&plane_state->wait_req,
13849                                                 obj->last_write_req);
13850                 }
13851
13852                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13853         }
13854
13855         return ret;
13856 }
13857
13858 /**
13859  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13860  * @plane: drm plane to clean up for
13861  * @fb: old framebuffer that was on plane
13862  *
13863  * Cleans up a framebuffer that has just been removed from a plane.
13864  *
13865  * Must be called with struct_mutex held.
13866  */
13867 void
13868 intel_cleanup_plane_fb(struct drm_plane *plane,
13869                        const struct drm_plane_state *old_state)
13870 {
13871         struct drm_device *dev = plane->dev;
13872         struct intel_plane *intel_plane = to_intel_plane(plane);
13873         struct intel_plane_state *old_intel_state;
13874         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13875         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13876
13877         old_intel_state = to_intel_plane_state(old_state);
13878
13879         if (!obj && !old_obj)
13880                 return;
13881
13882         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13883             !INTEL_INFO(dev)->cursor_needs_physical))
13884                 intel_unpin_fb_obj(old_state->fb, old_state);
13885
13886         /* prepare_fb aborted? */
13887         if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13888             (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13889                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13890
13891         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13892
13893 }
13894
13895 int
13896 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13897 {
13898         int max_scale;
13899         struct drm_device *dev;
13900         struct drm_i915_private *dev_priv;
13901         int crtc_clock, cdclk;
13902
13903         if (!intel_crtc || !crtc_state->base.enable)
13904                 return DRM_PLANE_HELPER_NO_SCALING;
13905
13906         dev = intel_crtc->base.dev;
13907         dev_priv = dev->dev_private;
13908         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13909         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13910
13911         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13912                 return DRM_PLANE_HELPER_NO_SCALING;
13913
13914         /*
13915          * skl max scale is lower of:
13916          *    close to 3 but not 3, -1 is for that purpose
13917          *            or
13918          *    cdclk/crtc_clock
13919          */
13920         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13921
13922         return max_scale;
13923 }
13924
13925 static int
13926 intel_check_primary_plane(struct drm_plane *plane,
13927                           struct intel_crtc_state *crtc_state,
13928                           struct intel_plane_state *state)
13929 {
13930         struct drm_crtc *crtc = state->base.crtc;
13931         struct drm_framebuffer *fb = state->base.fb;
13932         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13933         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13934         bool can_position = false;
13935
13936         if (INTEL_INFO(plane->dev)->gen >= 9) {
13937                 /* use scaler when colorkey is not required */
13938                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13939                         min_scale = 1;
13940                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13941                 }
13942                 can_position = true;
13943         }
13944
13945         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13946                                              &state->dst, &state->clip,
13947                                              min_scale, max_scale,
13948                                              can_position, true,
13949                                              &state->visible);
13950 }
13951
13952 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13953                                     struct drm_crtc_state *old_crtc_state)
13954 {
13955         struct drm_device *dev = crtc->dev;
13956         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13957         struct intel_crtc_state *old_intel_state =
13958                 to_intel_crtc_state(old_crtc_state);
13959         bool modeset = needs_modeset(crtc->state);
13960
13961         /* Perform vblank evasion around commit operation */
13962         intel_pipe_update_start(intel_crtc);
13963
13964         if (modeset)
13965                 return;
13966
13967         if (to_intel_crtc_state(crtc->state)->update_pipe)
13968                 intel_update_pipe_config(intel_crtc, old_intel_state);
13969         else if (INTEL_INFO(dev)->gen >= 9)
13970                 skl_detach_scalers(intel_crtc);
13971 }
13972
13973 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13974                                      struct drm_crtc_state *old_crtc_state)
13975 {
13976         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13977
13978         intel_pipe_update_end(intel_crtc);
13979 }
13980
13981 /**
13982  * intel_plane_destroy - destroy a plane
13983  * @plane: plane to destroy
13984  *
13985  * Common destruction function for all types of planes (primary, cursor,
13986  * sprite).
13987  */
13988 void intel_plane_destroy(struct drm_plane *plane)
13989 {
13990         struct intel_plane *intel_plane = to_intel_plane(plane);
13991         drm_plane_cleanup(plane);
13992         kfree(intel_plane);
13993 }
13994
13995 const struct drm_plane_funcs intel_plane_funcs = {
13996         .update_plane = drm_atomic_helper_update_plane,
13997         .disable_plane = drm_atomic_helper_disable_plane,
13998         .destroy = intel_plane_destroy,
13999         .set_property = drm_atomic_helper_plane_set_property,
14000         .atomic_get_property = intel_plane_atomic_get_property,
14001         .atomic_set_property = intel_plane_atomic_set_property,
14002         .atomic_duplicate_state = intel_plane_duplicate_state,
14003         .atomic_destroy_state = intel_plane_destroy_state,
14004
14005 };
14006
14007 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14008                                                     int pipe)
14009 {
14010         struct intel_plane *primary;
14011         struct intel_plane_state *state;
14012         const uint32_t *intel_primary_formats;
14013         unsigned int num_formats;
14014
14015         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14016         if (primary == NULL)
14017                 return NULL;
14018
14019         state = intel_create_plane_state(&primary->base);
14020         if (!state) {
14021                 kfree(primary);
14022                 return NULL;
14023         }
14024         primary->base.state = &state->base;
14025
14026         primary->can_scale = false;
14027         primary->max_downscale = 1;
14028         if (INTEL_INFO(dev)->gen >= 9) {
14029                 primary->can_scale = true;
14030                 state->scaler_id = -1;
14031         }
14032         primary->pipe = pipe;
14033         primary->plane = pipe;
14034         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14035         primary->check_plane = intel_check_primary_plane;
14036         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14037                 primary->plane = !pipe;
14038
14039         if (INTEL_INFO(dev)->gen >= 9) {
14040                 intel_primary_formats = skl_primary_formats;
14041                 num_formats = ARRAY_SIZE(skl_primary_formats);
14042
14043                 primary->update_plane = skylake_update_primary_plane;
14044                 primary->disable_plane = skylake_disable_primary_plane;
14045         } else if (HAS_PCH_SPLIT(dev)) {
14046                 intel_primary_formats = i965_primary_formats;
14047                 num_formats = ARRAY_SIZE(i965_primary_formats);
14048
14049                 primary->update_plane = ironlake_update_primary_plane;
14050                 primary->disable_plane = i9xx_disable_primary_plane;
14051         } else if (INTEL_INFO(dev)->gen >= 4) {
14052                 intel_primary_formats = i965_primary_formats;
14053                 num_formats = ARRAY_SIZE(i965_primary_formats);
14054
14055                 primary->update_plane = i9xx_update_primary_plane;
14056                 primary->disable_plane = i9xx_disable_primary_plane;
14057         } else {
14058                 intel_primary_formats = i8xx_primary_formats;
14059                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14060
14061                 primary->update_plane = i9xx_update_primary_plane;
14062                 primary->disable_plane = i9xx_disable_primary_plane;
14063         }
14064
14065         drm_universal_plane_init(dev, &primary->base, 0,
14066                                  &intel_plane_funcs,
14067                                  intel_primary_formats, num_formats,
14068                                  DRM_PLANE_TYPE_PRIMARY, NULL);
14069
14070         if (INTEL_INFO(dev)->gen >= 4)
14071                 intel_create_rotation_property(dev, primary);
14072
14073         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14074
14075         return &primary->base;
14076 }
14077
14078 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14079 {
14080         if (!dev->mode_config.rotation_property) {
14081                 unsigned long flags = BIT(DRM_ROTATE_0) |
14082                         BIT(DRM_ROTATE_180);
14083
14084                 if (INTEL_INFO(dev)->gen >= 9)
14085                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14086
14087                 dev->mode_config.rotation_property =
14088                         drm_mode_create_rotation_property(dev, flags);
14089         }
14090         if (dev->mode_config.rotation_property)
14091                 drm_object_attach_property(&plane->base.base,
14092                                 dev->mode_config.rotation_property,
14093                                 plane->base.state->rotation);
14094 }
14095
14096 static int
14097 intel_check_cursor_plane(struct drm_plane *plane,
14098                          struct intel_crtc_state *crtc_state,
14099                          struct intel_plane_state *state)
14100 {
14101         struct drm_crtc *crtc = crtc_state->base.crtc;
14102         struct drm_framebuffer *fb = state->base.fb;
14103         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14104         enum pipe pipe = to_intel_plane(plane)->pipe;
14105         unsigned stride;
14106         int ret;
14107
14108         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14109                                             &state->dst, &state->clip,
14110                                             DRM_PLANE_HELPER_NO_SCALING,
14111                                             DRM_PLANE_HELPER_NO_SCALING,
14112                                             true, true, &state->visible);
14113         if (ret)
14114                 return ret;
14115
14116         /* if we want to turn off the cursor ignore width and height */
14117         if (!obj)
14118                 return 0;
14119
14120         /* Check for which cursor types we support */
14121         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14122                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14123                           state->base.crtc_w, state->base.crtc_h);
14124                 return -EINVAL;
14125         }
14126
14127         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14128         if (obj->base.size < stride * state->base.crtc_h) {
14129                 DRM_DEBUG_KMS("buffer is too small\n");
14130                 return -ENOMEM;
14131         }
14132
14133         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14134                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14135                 return -EINVAL;
14136         }
14137
14138         /*
14139          * There's something wrong with the cursor on CHV pipe C.
14140          * If it straddles the left edge of the screen then
14141          * moving it away from the edge or disabling it often
14142          * results in a pipe underrun, and often that can lead to
14143          * dead pipe (constant underrun reported, and it scans
14144          * out just a solid color). To recover from that, the
14145          * display power well must be turned off and on again.
14146          * Refuse the put the cursor into that compromised position.
14147          */
14148         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14149             state->visible && state->base.crtc_x < 0) {
14150                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14151                 return -EINVAL;
14152         }
14153
14154         return 0;
14155 }
14156
14157 static void
14158 intel_disable_cursor_plane(struct drm_plane *plane,
14159                            struct drm_crtc *crtc)
14160 {
14161         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14162
14163         intel_crtc->cursor_addr = 0;
14164         intel_crtc_update_cursor(crtc, NULL);
14165 }
14166
14167 static void
14168 intel_update_cursor_plane(struct drm_plane *plane,
14169                           const struct intel_crtc_state *crtc_state,
14170                           const struct intel_plane_state *state)
14171 {
14172         struct drm_crtc *crtc = crtc_state->base.crtc;
14173         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14174         struct drm_device *dev = plane->dev;
14175         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14176         uint32_t addr;
14177
14178         if (!obj)
14179                 addr = 0;
14180         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14181                 addr = i915_gem_obj_ggtt_offset(obj);
14182         else
14183                 addr = obj->phys_handle->busaddr;
14184
14185         intel_crtc->cursor_addr = addr;
14186         intel_crtc_update_cursor(crtc, state);
14187 }
14188
14189 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14190                                                    int pipe)
14191 {
14192         struct intel_plane *cursor;
14193         struct intel_plane_state *state;
14194
14195         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14196         if (cursor == NULL)
14197                 return NULL;
14198
14199         state = intel_create_plane_state(&cursor->base);
14200         if (!state) {
14201                 kfree(cursor);
14202                 return NULL;
14203         }
14204         cursor->base.state = &state->base;
14205
14206         cursor->can_scale = false;
14207         cursor->max_downscale = 1;
14208         cursor->pipe = pipe;
14209         cursor->plane = pipe;
14210         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14211         cursor->check_plane = intel_check_cursor_plane;
14212         cursor->update_plane = intel_update_cursor_plane;
14213         cursor->disable_plane = intel_disable_cursor_plane;
14214
14215         drm_universal_plane_init(dev, &cursor->base, 0,
14216                                  &intel_plane_funcs,
14217                                  intel_cursor_formats,
14218                                  ARRAY_SIZE(intel_cursor_formats),
14219                                  DRM_PLANE_TYPE_CURSOR, NULL);
14220
14221         if (INTEL_INFO(dev)->gen >= 4) {
14222                 if (!dev->mode_config.rotation_property)
14223                         dev->mode_config.rotation_property =
14224                                 drm_mode_create_rotation_property(dev,
14225                                                         BIT(DRM_ROTATE_0) |
14226                                                         BIT(DRM_ROTATE_180));
14227                 if (dev->mode_config.rotation_property)
14228                         drm_object_attach_property(&cursor->base.base,
14229                                 dev->mode_config.rotation_property,
14230                                 state->base.rotation);
14231         }
14232
14233         if (INTEL_INFO(dev)->gen >=9)
14234                 state->scaler_id = -1;
14235
14236         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14237
14238         return &cursor->base;
14239 }
14240
14241 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14242         struct intel_crtc_state *crtc_state)
14243 {
14244         int i;
14245         struct intel_scaler *intel_scaler;
14246         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14247
14248         for (i = 0; i < intel_crtc->num_scalers; i++) {
14249                 intel_scaler = &scaler_state->scalers[i];
14250                 intel_scaler->in_use = 0;
14251                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14252         }
14253
14254         scaler_state->scaler_id = -1;
14255 }
14256
14257 static void intel_crtc_init(struct drm_device *dev, int pipe)
14258 {
14259         struct drm_i915_private *dev_priv = dev->dev_private;
14260         struct intel_crtc *intel_crtc;
14261         struct intel_crtc_state *crtc_state = NULL;
14262         struct drm_plane *primary = NULL;
14263         struct drm_plane *cursor = NULL;
14264         int i, ret;
14265
14266         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14267         if (intel_crtc == NULL)
14268                 return;
14269
14270         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14271         if (!crtc_state)
14272                 goto fail;
14273         intel_crtc->config = crtc_state;
14274         intel_crtc->base.state = &crtc_state->base;
14275         crtc_state->base.crtc = &intel_crtc->base;
14276
14277         /* initialize shared scalers */
14278         if (INTEL_INFO(dev)->gen >= 9) {
14279                 if (pipe == PIPE_C)
14280                         intel_crtc->num_scalers = 1;
14281                 else
14282                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14283
14284                 skl_init_scalers(dev, intel_crtc, crtc_state);
14285         }
14286
14287         primary = intel_primary_plane_create(dev, pipe);
14288         if (!primary)
14289                 goto fail;
14290
14291         cursor = intel_cursor_plane_create(dev, pipe);
14292         if (!cursor)
14293                 goto fail;
14294
14295         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14296                                         cursor, &intel_crtc_funcs, NULL);
14297         if (ret)
14298                 goto fail;
14299
14300         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
14301         for (i = 0; i < 256; i++) {
14302                 intel_crtc->lut_r[i] = i;
14303                 intel_crtc->lut_g[i] = i;
14304                 intel_crtc->lut_b[i] = i;
14305         }
14306
14307         /*
14308          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14309          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14310          */
14311         intel_crtc->pipe = pipe;
14312         intel_crtc->plane = pipe;
14313         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14314                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14315                 intel_crtc->plane = !pipe;
14316         }
14317
14318         intel_crtc->cursor_base = ~0;
14319         intel_crtc->cursor_cntl = ~0;
14320         intel_crtc->cursor_size = ~0;
14321
14322         intel_crtc->wm.cxsr_allowed = true;
14323
14324         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14325                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14326         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14327         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14328
14329         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14330
14331         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14332         return;
14333
14334 fail:
14335         if (primary)
14336                 drm_plane_cleanup(primary);
14337         if (cursor)
14338                 drm_plane_cleanup(cursor);
14339         kfree(crtc_state);
14340         kfree(intel_crtc);
14341 }
14342
14343 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14344 {
14345         struct drm_encoder *encoder = connector->base.encoder;
14346         struct drm_device *dev = connector->base.dev;
14347
14348         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14349
14350         if (!encoder || WARN_ON(!encoder->crtc))
14351                 return INVALID_PIPE;
14352
14353         return to_intel_crtc(encoder->crtc)->pipe;
14354 }
14355
14356 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14357                                 struct drm_file *file)
14358 {
14359         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14360         struct drm_crtc *drmmode_crtc;
14361         struct intel_crtc *crtc;
14362
14363         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14364
14365         if (!drmmode_crtc) {
14366                 DRM_ERROR("no such CRTC id\n");
14367                 return -ENOENT;
14368         }
14369
14370         crtc = to_intel_crtc(drmmode_crtc);
14371         pipe_from_crtc_id->pipe = crtc->pipe;
14372
14373         return 0;
14374 }
14375
14376 static int intel_encoder_clones(struct intel_encoder *encoder)
14377 {
14378         struct drm_device *dev = encoder->base.dev;
14379         struct intel_encoder *source_encoder;
14380         int index_mask = 0;
14381         int entry = 0;
14382
14383         for_each_intel_encoder(dev, source_encoder) {
14384                 if (encoders_cloneable(encoder, source_encoder))
14385                         index_mask |= (1 << entry);
14386
14387                 entry++;
14388         }
14389
14390         return index_mask;
14391 }
14392
14393 static bool has_edp_a(struct drm_device *dev)
14394 {
14395         struct drm_i915_private *dev_priv = dev->dev_private;
14396
14397         if (!IS_MOBILE(dev))
14398                 return false;
14399
14400         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14401                 return false;
14402
14403         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14404                 return false;
14405
14406         return true;
14407 }
14408
14409 static bool intel_crt_present(struct drm_device *dev)
14410 {
14411         struct drm_i915_private *dev_priv = dev->dev_private;
14412
14413         if (INTEL_INFO(dev)->gen >= 9)
14414                 return false;
14415
14416         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14417                 return false;
14418
14419         if (IS_CHERRYVIEW(dev))
14420                 return false;
14421
14422         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14423                 return false;
14424
14425         /* DDI E can't be used if DDI A requires 4 lanes */
14426         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14427                 return false;
14428
14429         if (!dev_priv->vbt.int_crt_support)
14430                 return false;
14431
14432         return true;
14433 }
14434
14435 static void intel_setup_outputs(struct drm_device *dev)
14436 {
14437         struct drm_i915_private *dev_priv = dev->dev_private;
14438         struct intel_encoder *encoder;
14439         bool dpd_is_edp = false;
14440
14441         intel_lvds_init(dev);
14442
14443         if (intel_crt_present(dev))
14444                 intel_crt_init(dev);
14445
14446         if (IS_BROXTON(dev)) {
14447                 /*
14448                  * FIXME: Broxton doesn't support port detection via the
14449                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14450                  * detect the ports.
14451                  */
14452                 intel_ddi_init(dev, PORT_A);
14453                 intel_ddi_init(dev, PORT_B);
14454                 intel_ddi_init(dev, PORT_C);
14455         } else if (HAS_DDI(dev)) {
14456                 int found;
14457
14458                 /*
14459                  * Haswell uses DDI functions to detect digital outputs.
14460                  * On SKL pre-D0 the strap isn't connected, so we assume
14461                  * it's there.
14462                  */
14463                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14464                 /* WaIgnoreDDIAStrap: skl */
14465                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14466                         intel_ddi_init(dev, PORT_A);
14467
14468                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14469                  * register */
14470                 found = I915_READ(SFUSE_STRAP);
14471
14472                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14473                         intel_ddi_init(dev, PORT_B);
14474                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14475                         intel_ddi_init(dev, PORT_C);
14476                 if (found & SFUSE_STRAP_DDID_DETECTED)
14477                         intel_ddi_init(dev, PORT_D);
14478                 /*
14479                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14480                  */
14481                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14482                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14483                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14484                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14485                         intel_ddi_init(dev, PORT_E);
14486
14487         } else if (HAS_PCH_SPLIT(dev)) {
14488                 int found;
14489                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14490
14491                 if (has_edp_a(dev))
14492                         intel_dp_init(dev, DP_A, PORT_A);
14493
14494                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14495                         /* PCH SDVOB multiplex with HDMIB */
14496                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14497                         if (!found)
14498                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14499                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14500                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14501                 }
14502
14503                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14504                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14505
14506                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14507                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14508
14509                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14510                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14511
14512                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14513                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14514         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14515                 /*
14516                  * The DP_DETECTED bit is the latched state of the DDC
14517                  * SDA pin at boot. However since eDP doesn't require DDC
14518                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14519                  * eDP ports may have been muxed to an alternate function.
14520                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14521                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14522                  * detect eDP ports.
14523                  */
14524                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14525                     !intel_dp_is_edp(dev, PORT_B))
14526                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14527                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14528                     intel_dp_is_edp(dev, PORT_B))
14529                         intel_dp_init(dev, VLV_DP_B, PORT_B);
14530
14531                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14532                     !intel_dp_is_edp(dev, PORT_C))
14533                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14534                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14535                     intel_dp_is_edp(dev, PORT_C))
14536                         intel_dp_init(dev, VLV_DP_C, PORT_C);
14537
14538                 if (IS_CHERRYVIEW(dev)) {
14539                         /* eDP not supported on port D, so don't check VBT */
14540                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14541                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14542                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
14543                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14544                 }
14545
14546                 intel_dsi_init(dev);
14547         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14548                 bool found = false;
14549
14550                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14551                         DRM_DEBUG_KMS("probing SDVOB\n");
14552                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14553                         if (!found && IS_G4X(dev)) {
14554                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14555                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14556                         }
14557
14558                         if (!found && IS_G4X(dev))
14559                                 intel_dp_init(dev, DP_B, PORT_B);
14560                 }
14561
14562                 /* Before G4X SDVOC doesn't have its own detect register */
14563
14564                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14565                         DRM_DEBUG_KMS("probing SDVOC\n");
14566                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14567                 }
14568
14569                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14570
14571                         if (IS_G4X(dev)) {
14572                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14573                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14574                         }
14575                         if (IS_G4X(dev))
14576                                 intel_dp_init(dev, DP_C, PORT_C);
14577                 }
14578
14579                 if (IS_G4X(dev) &&
14580                     (I915_READ(DP_D) & DP_DETECTED))
14581                         intel_dp_init(dev, DP_D, PORT_D);
14582         } else if (IS_GEN2(dev))
14583                 intel_dvo_init(dev);
14584
14585         if (SUPPORTS_TV(dev))
14586                 intel_tv_init(dev);
14587
14588         intel_psr_init(dev);
14589
14590         for_each_intel_encoder(dev, encoder) {
14591                 encoder->base.possible_crtcs = encoder->crtc_mask;
14592                 encoder->base.possible_clones =
14593                         intel_encoder_clones(encoder);
14594         }
14595
14596         intel_init_pch_refclk(dev);
14597
14598         drm_helper_move_panel_connectors_to_head(dev);
14599 }
14600
14601 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14602 {
14603         struct drm_device *dev = fb->dev;
14604         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14605
14606         drm_framebuffer_cleanup(fb);
14607         mutex_lock(&dev->struct_mutex);
14608         WARN_ON(!intel_fb->obj->framebuffer_references--);
14609         drm_gem_object_unreference(&intel_fb->obj->base);
14610         mutex_unlock(&dev->struct_mutex);
14611         kfree(intel_fb);
14612 }
14613
14614 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14615                                                 struct drm_file *file,
14616                                                 unsigned int *handle)
14617 {
14618         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14619         struct drm_i915_gem_object *obj = intel_fb->obj;
14620
14621         if (obj->userptr.mm) {
14622                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14623                 return -EINVAL;
14624         }
14625
14626         return drm_gem_handle_create(file, &obj->base, handle);
14627 }
14628
14629 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14630                                         struct drm_file *file,
14631                                         unsigned flags, unsigned color,
14632                                         struct drm_clip_rect *clips,
14633                                         unsigned num_clips)
14634 {
14635         struct drm_device *dev = fb->dev;
14636         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14637         struct drm_i915_gem_object *obj = intel_fb->obj;
14638
14639         mutex_lock(&dev->struct_mutex);
14640         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14641         mutex_unlock(&dev->struct_mutex);
14642
14643         return 0;
14644 }
14645
14646 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14647         .destroy = intel_user_framebuffer_destroy,
14648         .create_handle = intel_user_framebuffer_create_handle,
14649         .dirty = intel_user_framebuffer_dirty,
14650 };
14651
14652 static
14653 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14654                          uint32_t pixel_format)
14655 {
14656         u32 gen = INTEL_INFO(dev)->gen;
14657
14658         if (gen >= 9) {
14659                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14660
14661                 /* "The stride in bytes must not exceed the of the size of 8K
14662                  *  pixels and 32K bytes."
14663                  */
14664                 return min(8192 * cpp, 32768);
14665         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14666                 return 32*1024;
14667         } else if (gen >= 4) {
14668                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14669                         return 16*1024;
14670                 else
14671                         return 32*1024;
14672         } else if (gen >= 3) {
14673                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14674                         return 8*1024;
14675                 else
14676                         return 16*1024;
14677         } else {
14678                 /* XXX DSPC is limited to 4k tiled */
14679                 return 8*1024;
14680         }
14681 }
14682
14683 static int intel_framebuffer_init(struct drm_device *dev,
14684                                   struct intel_framebuffer *intel_fb,
14685                                   struct drm_mode_fb_cmd2 *mode_cmd,
14686                                   struct drm_i915_gem_object *obj)
14687 {
14688         struct drm_i915_private *dev_priv = to_i915(dev);
14689         unsigned int aligned_height;
14690         int ret;
14691         u32 pitch_limit, stride_alignment;
14692
14693         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14694
14695         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14696                 /* Enforce that fb modifier and tiling mode match, but only for
14697                  * X-tiled. This is needed for FBC. */
14698                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14699                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14700                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14701                         return -EINVAL;
14702                 }
14703         } else {
14704                 if (obj->tiling_mode == I915_TILING_X)
14705                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14706                 else if (obj->tiling_mode == I915_TILING_Y) {
14707                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14708                         return -EINVAL;
14709                 }
14710         }
14711
14712         /* Passed in modifier sanity checking. */
14713         switch (mode_cmd->modifier[0]) {
14714         case I915_FORMAT_MOD_Y_TILED:
14715         case I915_FORMAT_MOD_Yf_TILED:
14716                 if (INTEL_INFO(dev)->gen < 9) {
14717                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14718                                   mode_cmd->modifier[0]);
14719                         return -EINVAL;
14720                 }
14721         case DRM_FORMAT_MOD_NONE:
14722         case I915_FORMAT_MOD_X_TILED:
14723                 break;
14724         default:
14725                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14726                           mode_cmd->modifier[0]);
14727                 return -EINVAL;
14728         }
14729
14730         stride_alignment = intel_fb_stride_alignment(dev_priv,
14731                                                      mode_cmd->modifier[0],
14732                                                      mode_cmd->pixel_format);
14733         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14734                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14735                           mode_cmd->pitches[0], stride_alignment);
14736                 return -EINVAL;
14737         }
14738
14739         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14740                                            mode_cmd->pixel_format);
14741         if (mode_cmd->pitches[0] > pitch_limit) {
14742                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14743                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14744                           "tiled" : "linear",
14745                           mode_cmd->pitches[0], pitch_limit);
14746                 return -EINVAL;
14747         }
14748
14749         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14750             mode_cmd->pitches[0] != obj->stride) {
14751                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14752                           mode_cmd->pitches[0], obj->stride);
14753                 return -EINVAL;
14754         }
14755
14756         /* Reject formats not supported by any plane early. */
14757         switch (mode_cmd->pixel_format) {
14758         case DRM_FORMAT_C8:
14759         case DRM_FORMAT_RGB565:
14760         case DRM_FORMAT_XRGB8888:
14761         case DRM_FORMAT_ARGB8888:
14762                 break;
14763         case DRM_FORMAT_XRGB1555:
14764                 if (INTEL_INFO(dev)->gen > 3) {
14765                         DRM_DEBUG("unsupported pixel format: %s\n",
14766                                   drm_get_format_name(mode_cmd->pixel_format));
14767                         return -EINVAL;
14768                 }
14769                 break;
14770         case DRM_FORMAT_ABGR8888:
14771                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14772                     INTEL_INFO(dev)->gen < 9) {
14773                         DRM_DEBUG("unsupported pixel format: %s\n",
14774                                   drm_get_format_name(mode_cmd->pixel_format));
14775                         return -EINVAL;
14776                 }
14777                 break;
14778         case DRM_FORMAT_XBGR8888:
14779         case DRM_FORMAT_XRGB2101010:
14780         case DRM_FORMAT_XBGR2101010:
14781                 if (INTEL_INFO(dev)->gen < 4) {
14782                         DRM_DEBUG("unsupported pixel format: %s\n",
14783                                   drm_get_format_name(mode_cmd->pixel_format));
14784                         return -EINVAL;
14785                 }
14786                 break;
14787         case DRM_FORMAT_ABGR2101010:
14788                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14789                         DRM_DEBUG("unsupported pixel format: %s\n",
14790                                   drm_get_format_name(mode_cmd->pixel_format));
14791                         return -EINVAL;
14792                 }
14793                 break;
14794         case DRM_FORMAT_YUYV:
14795         case DRM_FORMAT_UYVY:
14796         case DRM_FORMAT_YVYU:
14797         case DRM_FORMAT_VYUY:
14798                 if (INTEL_INFO(dev)->gen < 5) {
14799                         DRM_DEBUG("unsupported pixel format: %s\n",
14800                                   drm_get_format_name(mode_cmd->pixel_format));
14801                         return -EINVAL;
14802                 }
14803                 break;
14804         default:
14805                 DRM_DEBUG("unsupported pixel format: %s\n",
14806                           drm_get_format_name(mode_cmd->pixel_format));
14807                 return -EINVAL;
14808         }
14809
14810         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14811         if (mode_cmd->offsets[0] != 0)
14812                 return -EINVAL;
14813
14814         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14815                                                mode_cmd->pixel_format,
14816                                                mode_cmd->modifier[0]);
14817         /* FIXME drm helper for size checks (especially planar formats)? */
14818         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14819                 return -EINVAL;
14820
14821         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14822         intel_fb->obj = obj;
14823
14824         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14825         if (ret) {
14826                 DRM_ERROR("framebuffer init failed %d\n", ret);
14827                 return ret;
14828         }
14829
14830         intel_fb->obj->framebuffer_references++;
14831
14832         return 0;
14833 }
14834
14835 static struct drm_framebuffer *
14836 intel_user_framebuffer_create(struct drm_device *dev,
14837                               struct drm_file *filp,
14838                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14839 {
14840         struct drm_framebuffer *fb;
14841         struct drm_i915_gem_object *obj;
14842         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14843
14844         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14845                                                 mode_cmd.handles[0]));
14846         if (&obj->base == NULL)
14847                 return ERR_PTR(-ENOENT);
14848
14849         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14850         if (IS_ERR(fb))
14851                 drm_gem_object_unreference_unlocked(&obj->base);
14852
14853         return fb;
14854 }
14855
14856 #ifndef CONFIG_DRM_FBDEV_EMULATION
14857 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14858 {
14859 }
14860 #endif
14861
14862 static const struct drm_mode_config_funcs intel_mode_funcs = {
14863         .fb_create = intel_user_framebuffer_create,
14864         .output_poll_changed = intel_fbdev_output_poll_changed,
14865         .atomic_check = intel_atomic_check,
14866         .atomic_commit = intel_atomic_commit,
14867         .atomic_state_alloc = intel_atomic_state_alloc,
14868         .atomic_state_clear = intel_atomic_state_clear,
14869 };
14870
14871 /* Set up chip specific display functions */
14872 static void intel_init_display(struct drm_device *dev)
14873 {
14874         struct drm_i915_private *dev_priv = dev->dev_private;
14875
14876         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14877                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14878         else if (IS_CHERRYVIEW(dev))
14879                 dev_priv->display.find_dpll = chv_find_best_dpll;
14880         else if (IS_VALLEYVIEW(dev))
14881                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14882         else if (IS_PINEVIEW(dev))
14883                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14884         else
14885                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14886
14887         if (INTEL_INFO(dev)->gen >= 9) {
14888                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14889                 dev_priv->display.get_initial_plane_config =
14890                         skylake_get_initial_plane_config;
14891                 dev_priv->display.crtc_compute_clock =
14892                         haswell_crtc_compute_clock;
14893                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14894                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14895         } else if (HAS_DDI(dev)) {
14896                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14897                 dev_priv->display.get_initial_plane_config =
14898                         ironlake_get_initial_plane_config;
14899                 dev_priv->display.crtc_compute_clock =
14900                         haswell_crtc_compute_clock;
14901                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14902                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14903         } else if (HAS_PCH_SPLIT(dev)) {
14904                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14905                 dev_priv->display.get_initial_plane_config =
14906                         ironlake_get_initial_plane_config;
14907                 dev_priv->display.crtc_compute_clock =
14908                         ironlake_crtc_compute_clock;
14909                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14910                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14911         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14912                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14913                 dev_priv->display.get_initial_plane_config =
14914                         i9xx_get_initial_plane_config;
14915                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14916                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14917                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14918         } else {
14919                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14920                 dev_priv->display.get_initial_plane_config =
14921                         i9xx_get_initial_plane_config;
14922                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14923                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14924                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14925         }
14926
14927         /* Returns the core display clock speed */
14928         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14929                 dev_priv->display.get_display_clock_speed =
14930                         skylake_get_display_clock_speed;
14931         else if (IS_BROXTON(dev))
14932                 dev_priv->display.get_display_clock_speed =
14933                         broxton_get_display_clock_speed;
14934         else if (IS_BROADWELL(dev))
14935                 dev_priv->display.get_display_clock_speed =
14936                         broadwell_get_display_clock_speed;
14937         else if (IS_HASWELL(dev))
14938                 dev_priv->display.get_display_clock_speed =
14939                         haswell_get_display_clock_speed;
14940         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
14941                 dev_priv->display.get_display_clock_speed =
14942                         valleyview_get_display_clock_speed;
14943         else if (IS_GEN5(dev))
14944                 dev_priv->display.get_display_clock_speed =
14945                         ilk_get_display_clock_speed;
14946         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14947                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14948                 dev_priv->display.get_display_clock_speed =
14949                         i945_get_display_clock_speed;
14950         else if (IS_GM45(dev))
14951                 dev_priv->display.get_display_clock_speed =
14952                         gm45_get_display_clock_speed;
14953         else if (IS_CRESTLINE(dev))
14954                 dev_priv->display.get_display_clock_speed =
14955                         i965gm_get_display_clock_speed;
14956         else if (IS_PINEVIEW(dev))
14957                 dev_priv->display.get_display_clock_speed =
14958                         pnv_get_display_clock_speed;
14959         else if (IS_G33(dev) || IS_G4X(dev))
14960                 dev_priv->display.get_display_clock_speed =
14961                         g33_get_display_clock_speed;
14962         else if (IS_I915G(dev))
14963                 dev_priv->display.get_display_clock_speed =
14964                         i915_get_display_clock_speed;
14965         else if (IS_I945GM(dev) || IS_845G(dev))
14966                 dev_priv->display.get_display_clock_speed =
14967                         i9xx_misc_get_display_clock_speed;
14968         else if (IS_I915GM(dev))
14969                 dev_priv->display.get_display_clock_speed =
14970                         i915gm_get_display_clock_speed;
14971         else if (IS_I865G(dev))
14972                 dev_priv->display.get_display_clock_speed =
14973                         i865_get_display_clock_speed;
14974         else if (IS_I85X(dev))
14975                 dev_priv->display.get_display_clock_speed =
14976                         i85x_get_display_clock_speed;
14977         else { /* 830 */
14978                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14979                 dev_priv->display.get_display_clock_speed =
14980                         i830_get_display_clock_speed;
14981         }
14982
14983         if (IS_GEN5(dev)) {
14984                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14985         } else if (IS_GEN6(dev)) {
14986                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14987         } else if (IS_IVYBRIDGE(dev)) {
14988                 /* FIXME: detect B0+ stepping and use auto training */
14989                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14990         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14991                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14992                 if (IS_BROADWELL(dev)) {
14993                         dev_priv->display.modeset_commit_cdclk =
14994                                 broadwell_modeset_commit_cdclk;
14995                         dev_priv->display.modeset_calc_cdclk =
14996                                 broadwell_modeset_calc_cdclk;
14997                 }
14998         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14999                 dev_priv->display.modeset_commit_cdclk =
15000                         valleyview_modeset_commit_cdclk;
15001                 dev_priv->display.modeset_calc_cdclk =
15002                         valleyview_modeset_calc_cdclk;
15003         } else if (IS_BROXTON(dev)) {
15004                 dev_priv->display.modeset_commit_cdclk =
15005                         broxton_modeset_commit_cdclk;
15006                 dev_priv->display.modeset_calc_cdclk =
15007                         broxton_modeset_calc_cdclk;
15008         }
15009
15010         switch (INTEL_INFO(dev)->gen) {
15011         case 2:
15012                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15013                 break;
15014
15015         case 3:
15016                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15017                 break;
15018
15019         case 4:
15020         case 5:
15021                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15022                 break;
15023
15024         case 6:
15025                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15026                 break;
15027         case 7:
15028         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15029                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15030                 break;
15031         case 9:
15032                 /* Drop through - unsupported since execlist only. */
15033         default:
15034                 /* Default just returns -ENODEV to indicate unsupported */
15035                 dev_priv->display.queue_flip = intel_default_queue_flip;
15036         }
15037
15038         mutex_init(&dev_priv->pps_mutex);
15039 }
15040
15041 /*
15042  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15043  * resume, or other times.  This quirk makes sure that's the case for
15044  * affected systems.
15045  */
15046 static void quirk_pipea_force(struct drm_device *dev)
15047 {
15048         struct drm_i915_private *dev_priv = dev->dev_private;
15049
15050         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15051         DRM_INFO("applying pipe a force quirk\n");
15052 }
15053
15054 static void quirk_pipeb_force(struct drm_device *dev)
15055 {
15056         struct drm_i915_private *dev_priv = dev->dev_private;
15057
15058         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15059         DRM_INFO("applying pipe b force quirk\n");
15060 }
15061
15062 /*
15063  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15064  */
15065 static void quirk_ssc_force_disable(struct drm_device *dev)
15066 {
15067         struct drm_i915_private *dev_priv = dev->dev_private;
15068         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15069         DRM_INFO("applying lvds SSC disable quirk\n");
15070 }
15071
15072 /*
15073  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15074  * brightness value
15075  */
15076 static void quirk_invert_brightness(struct drm_device *dev)
15077 {
15078         struct drm_i915_private *dev_priv = dev->dev_private;
15079         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15080         DRM_INFO("applying inverted panel brightness quirk\n");
15081 }
15082
15083 /* Some VBT's incorrectly indicate no backlight is present */
15084 static void quirk_backlight_present(struct drm_device *dev)
15085 {
15086         struct drm_i915_private *dev_priv = dev->dev_private;
15087         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15088         DRM_INFO("applying backlight present quirk\n");
15089 }
15090
15091 struct intel_quirk {
15092         int device;
15093         int subsystem_vendor;
15094         int subsystem_device;
15095         void (*hook)(struct drm_device *dev);
15096 };
15097
15098 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15099 struct intel_dmi_quirk {
15100         void (*hook)(struct drm_device *dev);
15101         const struct dmi_system_id (*dmi_id_list)[];
15102 };
15103
15104 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15105 {
15106         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15107         return 1;
15108 }
15109
15110 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15111         {
15112                 .dmi_id_list = &(const struct dmi_system_id[]) {
15113                         {
15114                                 .callback = intel_dmi_reverse_brightness,
15115                                 .ident = "NCR Corporation",
15116                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15117                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
15118                                 },
15119                         },
15120                         { }  /* terminating entry */
15121                 },
15122                 .hook = quirk_invert_brightness,
15123         },
15124 };
15125
15126 static struct intel_quirk intel_quirks[] = {
15127         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15128         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15129
15130         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15131         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15132
15133         /* 830 needs to leave pipe A & dpll A up */
15134         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15135
15136         /* 830 needs to leave pipe B & dpll B up */
15137         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15138
15139         /* Lenovo U160 cannot use SSC on LVDS */
15140         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15141
15142         /* Sony Vaio Y cannot use SSC on LVDS */
15143         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15144
15145         /* Acer Aspire 5734Z must invert backlight brightness */
15146         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15147
15148         /* Acer/eMachines G725 */
15149         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15150
15151         /* Acer/eMachines e725 */
15152         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15153
15154         /* Acer/Packard Bell NCL20 */
15155         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15156
15157         /* Acer Aspire 4736Z */
15158         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15159
15160         /* Acer Aspire 5336 */
15161         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15162
15163         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15164         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15165
15166         /* Acer C720 Chromebook (Core i3 4005U) */
15167         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15168
15169         /* Apple Macbook 2,1 (Core 2 T7400) */
15170         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15171
15172         /* Apple Macbook 4,1 */
15173         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15174
15175         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15176         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15177
15178         /* HP Chromebook 14 (Celeron 2955U) */
15179         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15180
15181         /* Dell Chromebook 11 */
15182         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15183
15184         /* Dell Chromebook 11 (2015 version) */
15185         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15186 };
15187
15188 static void intel_init_quirks(struct drm_device *dev)
15189 {
15190         struct pci_dev *d = dev->pdev;
15191         int i;
15192
15193         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15194                 struct intel_quirk *q = &intel_quirks[i];
15195
15196                 if (d->device == q->device &&
15197                     (d->subsystem_vendor == q->subsystem_vendor ||
15198                      q->subsystem_vendor == PCI_ANY_ID) &&
15199                     (d->subsystem_device == q->subsystem_device ||
15200                      q->subsystem_device == PCI_ANY_ID))
15201                         q->hook(dev);
15202         }
15203         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15204                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15205                         intel_dmi_quirks[i].hook(dev);
15206         }
15207 }
15208
15209 /* Disable the VGA plane that we never use */
15210 static void i915_disable_vga(struct drm_device *dev)
15211 {
15212         struct drm_i915_private *dev_priv = dev->dev_private;
15213         u8 sr1;
15214         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15215
15216         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15217         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15218         outb(SR01, VGA_SR_INDEX);
15219         sr1 = inb(VGA_SR_DATA);
15220         outb(sr1 | 1<<5, VGA_SR_DATA);
15221         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15222         udelay(300);
15223
15224         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15225         POSTING_READ(vga_reg);
15226 }
15227
15228 void intel_modeset_init_hw(struct drm_device *dev)
15229 {
15230         struct drm_i915_private *dev_priv = dev->dev_private;
15231
15232         intel_update_cdclk(dev);
15233
15234         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15235
15236         intel_init_clock_gating(dev);
15237         intel_enable_gt_powersave(dev);
15238 }
15239
15240 /*
15241  * Calculate what we think the watermarks should be for the state we've read
15242  * out of the hardware and then immediately program those watermarks so that
15243  * we ensure the hardware settings match our internal state.
15244  *
15245  * We can calculate what we think WM's should be by creating a duplicate of the
15246  * current state (which was constructed during hardware readout) and running it
15247  * through the atomic check code to calculate new watermark values in the
15248  * state object.
15249  */
15250 static void sanitize_watermarks(struct drm_device *dev)
15251 {
15252         struct drm_i915_private *dev_priv = to_i915(dev);
15253         struct drm_atomic_state *state;
15254         struct drm_crtc *crtc;
15255         struct drm_crtc_state *cstate;
15256         struct drm_modeset_acquire_ctx ctx;
15257         int ret;
15258         int i;
15259
15260         /* Only supported on platforms that use atomic watermark design */
15261         if (!dev_priv->display.program_watermarks)
15262                 return;
15263
15264         /*
15265          * We need to hold connection_mutex before calling duplicate_state so
15266          * that the connector loop is protected.
15267          */
15268         drm_modeset_acquire_init(&ctx, 0);
15269 retry:
15270         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15271         if (ret == -EDEADLK) {
15272                 drm_modeset_backoff(&ctx);
15273                 goto retry;
15274         } else if (WARN_ON(ret)) {
15275                 goto fail;
15276         }
15277
15278         state = drm_atomic_helper_duplicate_state(dev, &ctx);
15279         if (WARN_ON(IS_ERR(state)))
15280                 goto fail;
15281
15282         ret = intel_atomic_check(dev, state);
15283         if (ret) {
15284                 /*
15285                  * If we fail here, it means that the hardware appears to be
15286                  * programmed in a way that shouldn't be possible, given our
15287                  * understanding of watermark requirements.  This might mean a
15288                  * mistake in the hardware readout code or a mistake in the
15289                  * watermark calculations for a given platform.  Raise a WARN
15290                  * so that this is noticeable.
15291                  *
15292                  * If this actually happens, we'll have to just leave the
15293                  * BIOS-programmed watermarks untouched and hope for the best.
15294                  */
15295                 WARN(true, "Could not determine valid watermarks for inherited state\n");
15296                 goto fail;
15297         }
15298
15299         /* Write calculated watermark values back */
15300         to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15301         for_each_crtc_in_state(state, crtc, cstate, i) {
15302                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15303
15304                 dev_priv->display.program_watermarks(cs);
15305         }
15306
15307         drm_atomic_state_free(state);
15308 fail:
15309         drm_modeset_drop_locks(&ctx);
15310         drm_modeset_acquire_fini(&ctx);
15311 }
15312
15313 void intel_modeset_init(struct drm_device *dev)
15314 {
15315         struct drm_i915_private *dev_priv = dev->dev_private;
15316         int sprite, ret;
15317         enum pipe pipe;
15318         struct intel_crtc *crtc;
15319
15320         drm_mode_config_init(dev);
15321
15322         dev->mode_config.min_width = 0;
15323         dev->mode_config.min_height = 0;
15324
15325         dev->mode_config.preferred_depth = 24;
15326         dev->mode_config.prefer_shadow = 1;
15327
15328         dev->mode_config.allow_fb_modifiers = true;
15329
15330         dev->mode_config.funcs = &intel_mode_funcs;
15331
15332         intel_init_quirks(dev);
15333
15334         intel_init_pm(dev);
15335
15336         if (INTEL_INFO(dev)->num_pipes == 0)
15337                 return;
15338
15339         /*
15340          * There may be no VBT; and if the BIOS enabled SSC we can
15341          * just keep using it to avoid unnecessary flicker.  Whereas if the
15342          * BIOS isn't using it, don't assume it will work even if the VBT
15343          * indicates as much.
15344          */
15345         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15346                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15347                                             DREF_SSC1_ENABLE);
15348
15349                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15350                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15351                                      bios_lvds_use_ssc ? "en" : "dis",
15352                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15353                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15354                 }
15355         }
15356
15357         intel_init_display(dev);
15358         intel_init_audio(dev);
15359
15360         if (IS_GEN2(dev)) {
15361                 dev->mode_config.max_width = 2048;
15362                 dev->mode_config.max_height = 2048;
15363         } else if (IS_GEN3(dev)) {
15364                 dev->mode_config.max_width = 4096;
15365                 dev->mode_config.max_height = 4096;
15366         } else {
15367                 dev->mode_config.max_width = 8192;
15368                 dev->mode_config.max_height = 8192;
15369         }
15370
15371         if (IS_845G(dev) || IS_I865G(dev)) {
15372                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15373                 dev->mode_config.cursor_height = 1023;
15374         } else if (IS_GEN2(dev)) {
15375                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15376                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15377         } else {
15378                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15379                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15380         }
15381
15382         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
15383
15384         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15385                       INTEL_INFO(dev)->num_pipes,
15386                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15387
15388         for_each_pipe(dev_priv, pipe) {
15389                 intel_crtc_init(dev, pipe);
15390                 for_each_sprite(dev_priv, pipe, sprite) {
15391                         ret = intel_plane_init(dev, pipe, sprite);
15392                         if (ret)
15393                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15394                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15395                 }
15396         }
15397
15398         intel_update_czclk(dev_priv);
15399         intel_update_cdclk(dev);
15400
15401         intel_shared_dpll_init(dev);
15402
15403         /* Just disable it once at startup */
15404         i915_disable_vga(dev);
15405         intel_setup_outputs(dev);
15406
15407         drm_modeset_lock_all(dev);
15408         intel_modeset_setup_hw_state(dev);
15409         drm_modeset_unlock_all(dev);
15410
15411         for_each_intel_crtc(dev, crtc) {
15412                 struct intel_initial_plane_config plane_config = {};
15413
15414                 if (!crtc->active)
15415                         continue;
15416
15417                 /*
15418                  * Note that reserving the BIOS fb up front prevents us
15419                  * from stuffing other stolen allocations like the ring
15420                  * on top.  This prevents some ugliness at boot time, and
15421                  * can even allow for smooth boot transitions if the BIOS
15422                  * fb is large enough for the active pipe configuration.
15423                  */
15424                 dev_priv->display.get_initial_plane_config(crtc,
15425                                                            &plane_config);
15426
15427                 /*
15428                  * If the fb is shared between multiple heads, we'll
15429                  * just get the first one.
15430                  */
15431                 intel_find_initial_plane_obj(crtc, &plane_config);
15432         }
15433
15434         /*
15435          * Make sure hardware watermarks really match the state we read out.
15436          * Note that we need to do this after reconstructing the BIOS fb's
15437          * since the watermark calculation done here will use pstate->fb.
15438          */
15439         sanitize_watermarks(dev);
15440 }
15441
15442 static void intel_enable_pipe_a(struct drm_device *dev)
15443 {
15444         struct intel_connector *connector;
15445         struct drm_connector *crt = NULL;
15446         struct intel_load_detect_pipe load_detect_temp;
15447         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15448
15449         /* We can't just switch on the pipe A, we need to set things up with a
15450          * proper mode and output configuration. As a gross hack, enable pipe A
15451          * by enabling the load detect pipe once. */
15452         for_each_intel_connector(dev, connector) {
15453                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15454                         crt = &connector->base;
15455                         break;
15456                 }
15457         }
15458
15459         if (!crt)
15460                 return;
15461
15462         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15463                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15464 }
15465
15466 static bool
15467 intel_check_plane_mapping(struct intel_crtc *crtc)
15468 {
15469         struct drm_device *dev = crtc->base.dev;
15470         struct drm_i915_private *dev_priv = dev->dev_private;
15471         u32 val;
15472
15473         if (INTEL_INFO(dev)->num_pipes == 1)
15474                 return true;
15475
15476         val = I915_READ(DSPCNTR(!crtc->plane));
15477
15478         if ((val & DISPLAY_PLANE_ENABLE) &&
15479             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15480                 return false;
15481
15482         return true;
15483 }
15484
15485 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15486 {
15487         struct drm_device *dev = crtc->base.dev;
15488         struct intel_encoder *encoder;
15489
15490         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15491                 return true;
15492
15493         return false;
15494 }
15495
15496 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15497 {
15498         struct drm_device *dev = crtc->base.dev;
15499         struct drm_i915_private *dev_priv = dev->dev_private;
15500         i915_reg_t reg = PIPECONF(crtc->config->cpu_transcoder);
15501
15502         /* Clear any frame start delays used for debugging left by the BIOS */
15503         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15504
15505         /* restore vblank interrupts to correct state */
15506         drm_crtc_vblank_reset(&crtc->base);
15507         if (crtc->active) {
15508                 struct intel_plane *plane;
15509
15510                 drm_crtc_vblank_on(&crtc->base);
15511
15512                 /* Disable everything but the primary plane */
15513                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15514                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15515                                 continue;
15516
15517                         plane->disable_plane(&plane->base, &crtc->base);
15518                 }
15519         }
15520
15521         /* We need to sanitize the plane -> pipe mapping first because this will
15522          * disable the crtc (and hence change the state) if it is wrong. Note
15523          * that gen4+ has a fixed plane -> pipe mapping.  */
15524         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15525                 bool plane;
15526
15527                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15528                               crtc->base.base.id);
15529
15530                 /* Pipe has the wrong plane attached and the plane is active.
15531                  * Temporarily change the plane mapping and disable everything
15532                  * ...  */
15533                 plane = crtc->plane;
15534                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15535                 crtc->plane = !plane;
15536                 intel_crtc_disable_noatomic(&crtc->base);
15537                 crtc->plane = plane;
15538         }
15539
15540         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15541             crtc->pipe == PIPE_A && !crtc->active) {
15542                 /* BIOS forgot to enable pipe A, this mostly happens after
15543                  * resume. Force-enable the pipe to fix this, the update_dpms
15544                  * call below we restore the pipe to the right state, but leave
15545                  * the required bits on. */
15546                 intel_enable_pipe_a(dev);
15547         }
15548
15549         /* Adjust the state of the output pipe according to whether we
15550          * have active connectors/encoders. */
15551         if (!intel_crtc_has_encoders(crtc))
15552                 intel_crtc_disable_noatomic(&crtc->base);
15553
15554         if (crtc->active != crtc->base.state->active) {
15555                 struct intel_encoder *encoder;
15556
15557                 /* This can happen either due to bugs in the get_hw_state
15558                  * functions or because of calls to intel_crtc_disable_noatomic,
15559                  * or because the pipe is force-enabled due to the
15560                  * pipe A quirk. */
15561                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15562                               crtc->base.base.id,
15563                               crtc->base.state->enable ? "enabled" : "disabled",
15564                               crtc->active ? "enabled" : "disabled");
15565
15566                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15567                 crtc->base.state->active = crtc->active;
15568                 crtc->base.enabled = crtc->active;
15569                 crtc->base.state->connector_mask = 0;
15570                 crtc->base.state->encoder_mask = 0;
15571
15572                 /* Because we only establish the connector -> encoder ->
15573                  * crtc links if something is active, this means the
15574                  * crtc is now deactivated. Break the links. connector
15575                  * -> encoder links are only establish when things are
15576                  *  actually up, hence no need to break them. */
15577                 WARN_ON(crtc->active);
15578
15579                 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15580                         encoder->base.crtc = NULL;
15581         }
15582
15583         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15584                 /*
15585                  * We start out with underrun reporting disabled to avoid races.
15586                  * For correct bookkeeping mark this on active crtcs.
15587                  *
15588                  * Also on gmch platforms we dont have any hardware bits to
15589                  * disable the underrun reporting. Which means we need to start
15590                  * out with underrun reporting disabled also on inactive pipes,
15591                  * since otherwise we'll complain about the garbage we read when
15592                  * e.g. coming up after runtime pm.
15593                  *
15594                  * No protection against concurrent access is required - at
15595                  * worst a fifo underrun happens which also sets this to false.
15596                  */
15597                 crtc->cpu_fifo_underrun_disabled = true;
15598                 crtc->pch_fifo_underrun_disabled = true;
15599         }
15600 }
15601
15602 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15603 {
15604         struct intel_connector *connector;
15605         struct drm_device *dev = encoder->base.dev;
15606         bool active = false;
15607
15608         /* We need to check both for a crtc link (meaning that the
15609          * encoder is active and trying to read from a pipe) and the
15610          * pipe itself being active. */
15611         bool has_active_crtc = encoder->base.crtc &&
15612                 to_intel_crtc(encoder->base.crtc)->active;
15613
15614         for_each_intel_connector(dev, connector) {
15615                 if (connector->base.encoder != &encoder->base)
15616                         continue;
15617
15618                 active = true;
15619                 break;
15620         }
15621
15622         if (active && !has_active_crtc) {
15623                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15624                               encoder->base.base.id,
15625                               encoder->base.name);
15626
15627                 /* Connector is active, but has no active pipe. This is
15628                  * fallout from our resume register restoring. Disable
15629                  * the encoder manually again. */
15630                 if (encoder->base.crtc) {
15631                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15632                                       encoder->base.base.id,
15633                                       encoder->base.name);
15634                         encoder->disable(encoder);
15635                         if (encoder->post_disable)
15636                                 encoder->post_disable(encoder);
15637                 }
15638                 encoder->base.crtc = NULL;
15639
15640                 /* Inconsistent output/port/pipe state happens presumably due to
15641                  * a bug in one of the get_hw_state functions. Or someplace else
15642                  * in our code, like the register restore mess on resume. Clamp
15643                  * things to off as a safer default. */
15644                 for_each_intel_connector(dev, connector) {
15645                         if (connector->encoder != encoder)
15646                                 continue;
15647                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15648                         connector->base.encoder = NULL;
15649                 }
15650         }
15651         /* Enabled encoders without active connectors will be fixed in
15652          * the crtc fixup. */
15653 }
15654
15655 void i915_redisable_vga_power_on(struct drm_device *dev)
15656 {
15657         struct drm_i915_private *dev_priv = dev->dev_private;
15658         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15659
15660         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15661                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15662                 i915_disable_vga(dev);
15663         }
15664 }
15665
15666 void i915_redisable_vga(struct drm_device *dev)
15667 {
15668         struct drm_i915_private *dev_priv = dev->dev_private;
15669
15670         /* This function can be called both from intel_modeset_setup_hw_state or
15671          * at a very early point in our resume sequence, where the power well
15672          * structures are not yet restored. Since this function is at a very
15673          * paranoid "someone might have enabled VGA while we were not looking"
15674          * level, just check if the power well is enabled instead of trying to
15675          * follow the "don't touch the power well if we don't need it" policy
15676          * the rest of the driver uses. */
15677         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15678                 return;
15679
15680         i915_redisable_vga_power_on(dev);
15681 }
15682
15683 static bool primary_get_hw_state(struct intel_plane *plane)
15684 {
15685         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15686
15687         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15688 }
15689
15690 /* FIXME read out full plane state for all planes */
15691 static void readout_plane_state(struct intel_crtc *crtc)
15692 {
15693         struct drm_plane *primary = crtc->base.primary;
15694         struct intel_plane_state *plane_state =
15695                 to_intel_plane_state(primary->state);
15696
15697         plane_state->visible = crtc->active &&
15698                 primary_get_hw_state(to_intel_plane(primary));
15699
15700         if (plane_state->visible)
15701                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15702 }
15703
15704 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15705 {
15706         struct drm_i915_private *dev_priv = dev->dev_private;
15707         enum pipe pipe;
15708         struct intel_crtc *crtc;
15709         struct intel_encoder *encoder;
15710         struct intel_connector *connector;
15711         int i;
15712
15713         dev_priv->active_crtcs = 0;
15714
15715         for_each_intel_crtc(dev, crtc) {
15716                 struct intel_crtc_state *crtc_state = crtc->config;
15717                 int pixclk = 0;
15718
15719                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
15720                 memset(crtc_state, 0, sizeof(*crtc_state));
15721                 crtc_state->base.crtc = &crtc->base;
15722
15723                 crtc_state->base.active = crtc_state->base.enable =
15724                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15725
15726                 crtc->base.enabled = crtc_state->base.enable;
15727                 crtc->active = crtc_state->base.active;
15728
15729                 if (crtc_state->base.active) {
15730                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15731
15732                         if (IS_BROADWELL(dev_priv)) {
15733                                 pixclk = ilk_pipe_pixel_rate(crtc_state);
15734
15735                                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15736                                 if (crtc_state->ips_enabled)
15737                                         pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15738                         } else if (IS_VALLEYVIEW(dev_priv) ||
15739                                    IS_CHERRYVIEW(dev_priv) ||
15740                                    IS_BROXTON(dev_priv))
15741                                 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15742                         else
15743                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15744                 }
15745
15746                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15747
15748                 readout_plane_state(crtc);
15749
15750                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15751                               crtc->base.base.id,
15752                               crtc->active ? "enabled" : "disabled");
15753         }
15754
15755         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15756                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15757
15758                 pll->on = pll->get_hw_state(dev_priv, pll,
15759                                             &pll->config.hw_state);
15760                 pll->active = 0;
15761                 pll->config.crtc_mask = 0;
15762                 for_each_intel_crtc(dev, crtc) {
15763                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15764                                 pll->active++;
15765                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15766                         }
15767                 }
15768
15769                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15770                               pll->name, pll->config.crtc_mask, pll->on);
15771
15772                 if (pll->config.crtc_mask)
15773                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15774         }
15775
15776         for_each_intel_encoder(dev, encoder) {
15777                 pipe = 0;
15778
15779                 if (encoder->get_hw_state(encoder, &pipe)) {
15780                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15781                         encoder->base.crtc = &crtc->base;
15782                         encoder->get_config(encoder, crtc->config);
15783                 } else {
15784                         encoder->base.crtc = NULL;
15785                 }
15786
15787                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15788                               encoder->base.base.id,
15789                               encoder->base.name,
15790                               encoder->base.crtc ? "enabled" : "disabled",
15791                               pipe_name(pipe));
15792         }
15793
15794         for_each_intel_connector(dev, connector) {
15795                 if (connector->get_hw_state(connector)) {
15796                         connector->base.dpms = DRM_MODE_DPMS_ON;
15797
15798                         encoder = connector->encoder;
15799                         connector->base.encoder = &encoder->base;
15800
15801                         if (encoder->base.crtc &&
15802                             encoder->base.crtc->state->active) {
15803                                 /*
15804                                  * This has to be done during hardware readout
15805                                  * because anything calling .crtc_disable may
15806                                  * rely on the connector_mask being accurate.
15807                                  */
15808                                 encoder->base.crtc->state->connector_mask |=
15809                                         1 << drm_connector_index(&connector->base);
15810                                 encoder->base.crtc->state->encoder_mask |=
15811                                         1 << drm_encoder_index(&encoder->base);
15812                         }
15813
15814                 } else {
15815                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15816                         connector->base.encoder = NULL;
15817                 }
15818                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15819                               connector->base.base.id,
15820                               connector->base.name,
15821                               connector->base.encoder ? "enabled" : "disabled");
15822         }
15823
15824         for_each_intel_crtc(dev, crtc) {
15825                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15826
15827                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15828                 if (crtc->base.state->active) {
15829                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15830                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15831                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15832
15833                         /*
15834                          * The initial mode needs to be set in order to keep
15835                          * the atomic core happy. It wants a valid mode if the
15836                          * crtc's enabled, so we do the above call.
15837                          *
15838                          * At this point some state updated by the connectors
15839                          * in their ->detect() callback has not run yet, so
15840                          * no recalculation can be done yet.
15841                          *
15842                          * Even if we could do a recalculation and modeset
15843                          * right now it would cause a double modeset if
15844                          * fbdev or userspace chooses a different initial mode.
15845                          *
15846                          * If that happens, someone indicated they wanted a
15847                          * mode change, which means it's safe to do a full
15848                          * recalculation.
15849                          */
15850                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15851
15852                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15853                         update_scanline_offset(crtc);
15854                 }
15855         }
15856 }
15857
15858 /* Scan out the current hw modeset state,
15859  * and sanitizes it to the current state
15860  */
15861 static void
15862 intel_modeset_setup_hw_state(struct drm_device *dev)
15863 {
15864         struct drm_i915_private *dev_priv = dev->dev_private;
15865         enum pipe pipe;
15866         struct intel_crtc *crtc;
15867         struct intel_encoder *encoder;
15868         int i;
15869
15870         intel_modeset_readout_hw_state(dev);
15871
15872         /* HW state is read out, now we need to sanitize this mess. */
15873         for_each_intel_encoder(dev, encoder) {
15874                 intel_sanitize_encoder(encoder);
15875         }
15876
15877         for_each_pipe(dev_priv, pipe) {
15878                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15879                 intel_sanitize_crtc(crtc);
15880                 intel_dump_pipe_config(crtc, crtc->config,
15881                                        "[setup_hw_state]");
15882         }
15883
15884         intel_modeset_update_connector_atomic_state(dev);
15885
15886         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15887                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15888
15889                 if (!pll->on || pll->active)
15890                         continue;
15891
15892                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15893
15894                 pll->disable(dev_priv, pll);
15895                 pll->on = false;
15896         }
15897
15898         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15899                 vlv_wm_get_hw_state(dev);
15900         else if (IS_GEN9(dev))
15901                 skl_wm_get_hw_state(dev);
15902         else if (HAS_PCH_SPLIT(dev))
15903                 ilk_wm_get_hw_state(dev);
15904
15905         for_each_intel_crtc(dev, crtc) {
15906                 unsigned long put_domains;
15907
15908                 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15909                 if (WARN_ON(put_domains))
15910                         modeset_put_power_domains(dev_priv, put_domains);
15911         }
15912         intel_display_set_init_power(dev_priv, false);
15913
15914         intel_fbc_init_pipe_state(dev_priv);
15915 }
15916
15917 void intel_display_resume(struct drm_device *dev)
15918 {
15919         struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15920         struct intel_connector *conn;
15921         struct intel_plane *plane;
15922         struct drm_crtc *crtc;
15923         int ret;
15924
15925         if (!state)
15926                 return;
15927
15928         state->acquire_ctx = dev->mode_config.acquire_ctx;
15929
15930         /* preserve complete old state, including dpll */
15931         intel_atomic_get_shared_dpll_state(state);
15932
15933         for_each_crtc(dev, crtc) {
15934                 struct drm_crtc_state *crtc_state =
15935                         drm_atomic_get_crtc_state(state, crtc);
15936
15937                 ret = PTR_ERR_OR_ZERO(crtc_state);
15938                 if (ret)
15939                         goto err;
15940
15941                 /* force a restore */
15942                 crtc_state->mode_changed = true;
15943         }
15944
15945         for_each_intel_plane(dev, plane) {
15946                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15947                 if (ret)
15948                         goto err;
15949         }
15950
15951         for_each_intel_connector(dev, conn) {
15952                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15953                 if (ret)
15954                         goto err;
15955         }
15956
15957         intel_modeset_setup_hw_state(dev);
15958
15959         i915_redisable_vga(dev);
15960         ret = drm_atomic_commit(state);
15961         if (!ret)
15962                 return;
15963
15964 err:
15965         DRM_ERROR("Restoring old state failed with %i\n", ret);
15966         drm_atomic_state_free(state);
15967 }
15968
15969 void intel_modeset_gem_init(struct drm_device *dev)
15970 {
15971         struct drm_crtc *c;
15972         struct drm_i915_gem_object *obj;
15973         int ret;
15974
15975         mutex_lock(&dev->struct_mutex);
15976         intel_init_gt_powersave(dev);
15977         mutex_unlock(&dev->struct_mutex);
15978
15979         intel_modeset_init_hw(dev);
15980
15981         intel_setup_overlay(dev);
15982
15983         /*
15984          * Make sure any fbs we allocated at startup are properly
15985          * pinned & fenced.  When we do the allocation it's too early
15986          * for this.
15987          */
15988         for_each_crtc(dev, c) {
15989                 obj = intel_fb_obj(c->primary->fb);
15990                 if (obj == NULL)
15991                         continue;
15992
15993                 mutex_lock(&dev->struct_mutex);
15994                 ret = intel_pin_and_fence_fb_obj(c->primary,
15995                                                  c->primary->fb,
15996                                                  c->primary->state);
15997                 mutex_unlock(&dev->struct_mutex);
15998                 if (ret) {
15999                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
16000                                   to_intel_crtc(c)->pipe);
16001                         drm_framebuffer_unreference(c->primary->fb);
16002                         c->primary->fb = NULL;
16003                         c->primary->crtc = c->primary->state->crtc = NULL;
16004                         update_state_fb(c->primary);
16005                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16006                 }
16007         }
16008
16009         intel_backlight_register(dev);
16010 }
16011
16012 void intel_connector_unregister(struct intel_connector *intel_connector)
16013 {
16014         struct drm_connector *connector = &intel_connector->base;
16015
16016         intel_panel_destroy_backlight(connector);
16017         drm_connector_unregister(connector);
16018 }
16019
16020 void intel_modeset_cleanup(struct drm_device *dev)
16021 {
16022         struct drm_i915_private *dev_priv = dev->dev_private;
16023         struct intel_connector *connector;
16024
16025         intel_disable_gt_powersave(dev);
16026
16027         intel_backlight_unregister(dev);
16028
16029         /*
16030          * Interrupts and polling as the first thing to avoid creating havoc.
16031          * Too much stuff here (turning of connectors, ...) would
16032          * experience fancy races otherwise.
16033          */
16034         intel_irq_uninstall(dev_priv);
16035
16036         /*
16037          * Due to the hpd irq storm handling the hotplug work can re-arm the
16038          * poll handlers. Hence disable polling after hpd handling is shut down.
16039          */
16040         drm_kms_helper_poll_fini(dev);
16041
16042         intel_unregister_dsm_handler();
16043
16044         intel_fbc_global_disable(dev_priv);
16045
16046         /* flush any delayed tasks or pending work */
16047         flush_scheduled_work();
16048
16049         /* destroy the backlight and sysfs files before encoders/connectors */
16050         for_each_intel_connector(dev, connector)
16051                 connector->unregister(connector);
16052
16053         drm_mode_config_cleanup(dev);
16054
16055         intel_cleanup_overlay(dev);
16056
16057         mutex_lock(&dev->struct_mutex);
16058         intel_cleanup_gt_powersave(dev);
16059         mutex_unlock(&dev->struct_mutex);
16060
16061         intel_teardown_gmbus(dev);
16062 }
16063
16064 /*
16065  * Return which encoder is currently attached for connector.
16066  */
16067 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
16068 {
16069         return &intel_attached_encoder(connector)->base;
16070 }
16071
16072 void intel_connector_attach_encoder(struct intel_connector *connector,
16073                                     struct intel_encoder *encoder)
16074 {
16075         connector->encoder = encoder;
16076         drm_mode_connector_attach_encoder(&connector->base,
16077                                           &encoder->base);
16078 }
16079
16080 /*
16081  * set vga decode state - true == enable VGA decode
16082  */
16083 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16084 {
16085         struct drm_i915_private *dev_priv = dev->dev_private;
16086         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16087         u16 gmch_ctrl;
16088
16089         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16090                 DRM_ERROR("failed to read control word\n");
16091                 return -EIO;
16092         }
16093
16094         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16095                 return 0;
16096
16097         if (state)
16098                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16099         else
16100                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16101
16102         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16103                 DRM_ERROR("failed to write control word\n");
16104                 return -EIO;
16105         }
16106
16107         return 0;
16108 }
16109
16110 struct intel_display_error_state {
16111
16112         u32 power_well_driver;
16113
16114         int num_transcoders;
16115
16116         struct intel_cursor_error_state {
16117                 u32 control;
16118                 u32 position;
16119                 u32 base;
16120                 u32 size;
16121         } cursor[I915_MAX_PIPES];
16122
16123         struct intel_pipe_error_state {
16124                 bool power_domain_on;
16125                 u32 source;
16126                 u32 stat;
16127         } pipe[I915_MAX_PIPES];
16128
16129         struct intel_plane_error_state {
16130                 u32 control;
16131                 u32 stride;
16132                 u32 size;
16133                 u32 pos;
16134                 u32 addr;
16135                 u32 surface;
16136                 u32 tile_offset;
16137         } plane[I915_MAX_PIPES];
16138
16139         struct intel_transcoder_error_state {
16140                 bool power_domain_on;
16141                 enum transcoder cpu_transcoder;
16142
16143                 u32 conf;
16144
16145                 u32 htotal;
16146                 u32 hblank;
16147                 u32 hsync;
16148                 u32 vtotal;
16149                 u32 vblank;
16150                 u32 vsync;
16151         } transcoder[4];
16152 };
16153
16154 struct intel_display_error_state *
16155 intel_display_capture_error_state(struct drm_device *dev)
16156 {
16157         struct drm_i915_private *dev_priv = dev->dev_private;
16158         struct intel_display_error_state *error;
16159         int transcoders[] = {
16160                 TRANSCODER_A,
16161                 TRANSCODER_B,
16162                 TRANSCODER_C,
16163                 TRANSCODER_EDP,
16164         };
16165         int i;
16166
16167         if (INTEL_INFO(dev)->num_pipes == 0)
16168                 return NULL;
16169
16170         error = kzalloc(sizeof(*error), GFP_ATOMIC);
16171         if (error == NULL)
16172                 return NULL;
16173
16174         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16175                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16176
16177         for_each_pipe(dev_priv, i) {
16178                 error->pipe[i].power_domain_on =
16179                         __intel_display_power_is_enabled(dev_priv,
16180                                                          POWER_DOMAIN_PIPE(i));
16181                 if (!error->pipe[i].power_domain_on)
16182                         continue;
16183
16184                 error->cursor[i].control = I915_READ(CURCNTR(i));
16185                 error->cursor[i].position = I915_READ(CURPOS(i));
16186                 error->cursor[i].base = I915_READ(CURBASE(i));
16187
16188                 error->plane[i].control = I915_READ(DSPCNTR(i));
16189                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16190                 if (INTEL_INFO(dev)->gen <= 3) {
16191                         error->plane[i].size = I915_READ(DSPSIZE(i));
16192                         error->plane[i].pos = I915_READ(DSPPOS(i));
16193                 }
16194                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16195                         error->plane[i].addr = I915_READ(DSPADDR(i));
16196                 if (INTEL_INFO(dev)->gen >= 4) {
16197                         error->plane[i].surface = I915_READ(DSPSURF(i));
16198                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16199                 }
16200
16201                 error->pipe[i].source = I915_READ(PIPESRC(i));
16202
16203                 if (HAS_GMCH_DISPLAY(dev))
16204                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
16205         }
16206
16207         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16208         if (HAS_DDI(dev_priv->dev))
16209                 error->num_transcoders++; /* Account for eDP. */
16210
16211         for (i = 0; i < error->num_transcoders; i++) {
16212                 enum transcoder cpu_transcoder = transcoders[i];
16213
16214                 error->transcoder[i].power_domain_on =
16215                         __intel_display_power_is_enabled(dev_priv,
16216                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16217                 if (!error->transcoder[i].power_domain_on)
16218                         continue;
16219
16220                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16221
16222                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16223                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16224                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16225                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16226                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16227                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16228                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16229         }
16230
16231         return error;
16232 }
16233
16234 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16235
16236 void
16237 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16238                                 struct drm_device *dev,
16239                                 struct intel_display_error_state *error)
16240 {
16241         struct drm_i915_private *dev_priv = dev->dev_private;
16242         int i;
16243
16244         if (!error)
16245                 return;
16246
16247         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16248         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16249                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16250                            error->power_well_driver);
16251         for_each_pipe(dev_priv, i) {
16252                 err_printf(m, "Pipe [%d]:\n", i);
16253                 err_printf(m, "  Power: %s\n",
16254                            onoff(error->pipe[i].power_domain_on));
16255                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16256                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16257
16258                 err_printf(m, "Plane [%d]:\n", i);
16259                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16260                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16261                 if (INTEL_INFO(dev)->gen <= 3) {
16262                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16263                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16264                 }
16265                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16266                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16267                 if (INTEL_INFO(dev)->gen >= 4) {
16268                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16269                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16270                 }
16271
16272                 err_printf(m, "Cursor [%d]:\n", i);
16273                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16274                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16275                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16276         }
16277
16278         for (i = 0; i < error->num_transcoders; i++) {
16279                 err_printf(m, "CPU transcoder: %c\n",
16280                            transcoder_name(error->transcoder[i].cpu_transcoder));
16281                 err_printf(m, "  Power: %s\n",
16282                            onoff(error->transcoder[i].power_domain_on));
16283                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16284                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16285                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16286                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16287                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16288                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16289                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16290         }
16291 }