Merge tag 'integrator-multiplatform-for-arm-soc' of git://git.kernel.org/pub/scm...
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48         DRM_FORMAT_C8, \
49         DRM_FORMAT_RGB565, \
50         DRM_FORMAT_XRGB8888, \
51         DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55         COMMON_PRIMARY_FORMATS,
56         DRM_FORMAT_XRGB1555,
57         DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62         COMMON_PRIMARY_FORMATS, \
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_ABGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_ARGB2101010,
67         DRM_FORMAT_XBGR2101010,
68         DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73         DRM_FORMAT_ARGB8888,
74 };
75
76 static void intel_increase_pllclock(struct drm_device *dev,
77                                     enum pipe pipe);
78 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79
80 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
81                                 struct intel_crtc_config *pipe_config);
82 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
83                                    struct intel_crtc_config *pipe_config);
84
85 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
86                           int x, int y, struct drm_framebuffer *old_fb);
87 static int intel_framebuffer_init(struct drm_device *dev,
88                                   struct intel_framebuffer *ifb,
89                                   struct drm_mode_fb_cmd2 *mode_cmd,
90                                   struct drm_i915_gem_object *obj);
91 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
92 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
93 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
94                                          struct intel_link_m_n *m_n,
95                                          struct intel_link_m_n *m2_n2);
96 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
97 static void haswell_set_pipeconf(struct drm_crtc *crtc);
98 static void intel_set_pipe_csc(struct drm_crtc *crtc);
99 static void vlv_prepare_pll(struct intel_crtc *crtc);
100 static void chv_prepare_pll(struct intel_crtc *crtc);
101
102 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
103 {
104         if (!connector->mst_port)
105                 return connector->encoder;
106         else
107                 return &connector->mst_port->mst_encoders[pipe]->base;
108 }
109
110 typedef struct {
111         int     min, max;
112 } intel_range_t;
113
114 typedef struct {
115         int     dot_limit;
116         int     p2_slow, p2_fast;
117 } intel_p2_t;
118
119 typedef struct intel_limit intel_limit_t;
120 struct intel_limit {
121         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
122         intel_p2_t          p2;
123 };
124
125 int
126 intel_pch_rawclk(struct drm_device *dev)
127 {
128         struct drm_i915_private *dev_priv = dev->dev_private;
129
130         WARN_ON(!HAS_PCH_SPLIT(dev));
131
132         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
133 }
134
135 static inline u32 /* units of 100MHz */
136 intel_fdi_link_freq(struct drm_device *dev)
137 {
138         if (IS_GEN5(dev)) {
139                 struct drm_i915_private *dev_priv = dev->dev_private;
140                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
141         } else
142                 return 27;
143 }
144
145 static const intel_limit_t intel_limits_i8xx_dac = {
146         .dot = { .min = 25000, .max = 350000 },
147         .vco = { .min = 908000, .max = 1512000 },
148         .n = { .min = 2, .max = 16 },
149         .m = { .min = 96, .max = 140 },
150         .m1 = { .min = 18, .max = 26 },
151         .m2 = { .min = 6, .max = 16 },
152         .p = { .min = 4, .max = 128 },
153         .p1 = { .min = 2, .max = 33 },
154         .p2 = { .dot_limit = 165000,
155                 .p2_slow = 4, .p2_fast = 2 },
156 };
157
158 static const intel_limit_t intel_limits_i8xx_dvo = {
159         .dot = { .min = 25000, .max = 350000 },
160         .vco = { .min = 908000, .max = 1512000 },
161         .n = { .min = 2, .max = 16 },
162         .m = { .min = 96, .max = 140 },
163         .m1 = { .min = 18, .max = 26 },
164         .m2 = { .min = 6, .max = 16 },
165         .p = { .min = 4, .max = 128 },
166         .p1 = { .min = 2, .max = 33 },
167         .p2 = { .dot_limit = 165000,
168                 .p2_slow = 4, .p2_fast = 4 },
169 };
170
171 static const intel_limit_t intel_limits_i8xx_lvds = {
172         .dot = { .min = 25000, .max = 350000 },
173         .vco = { .min = 908000, .max = 1512000 },
174         .n = { .min = 2, .max = 16 },
175         .m = { .min = 96, .max = 140 },
176         .m1 = { .min = 18, .max = 26 },
177         .m2 = { .min = 6, .max = 16 },
178         .p = { .min = 4, .max = 128 },
179         .p1 = { .min = 1, .max = 6 },
180         .p2 = { .dot_limit = 165000,
181                 .p2_slow = 14, .p2_fast = 7 },
182 };
183
184 static const intel_limit_t intel_limits_i9xx_sdvo = {
185         .dot = { .min = 20000, .max = 400000 },
186         .vco = { .min = 1400000, .max = 2800000 },
187         .n = { .min = 1, .max = 6 },
188         .m = { .min = 70, .max = 120 },
189         .m1 = { .min = 8, .max = 18 },
190         .m2 = { .min = 3, .max = 7 },
191         .p = { .min = 5, .max = 80 },
192         .p1 = { .min = 1, .max = 8 },
193         .p2 = { .dot_limit = 200000,
194                 .p2_slow = 10, .p2_fast = 5 },
195 };
196
197 static const intel_limit_t intel_limits_i9xx_lvds = {
198         .dot = { .min = 20000, .max = 400000 },
199         .vco = { .min = 1400000, .max = 2800000 },
200         .n = { .min = 1, .max = 6 },
201         .m = { .min = 70, .max = 120 },
202         .m1 = { .min = 8, .max = 18 },
203         .m2 = { .min = 3, .max = 7 },
204         .p = { .min = 7, .max = 98 },
205         .p1 = { .min = 1, .max = 8 },
206         .p2 = { .dot_limit = 112000,
207                 .p2_slow = 14, .p2_fast = 7 },
208 };
209
210
211 static const intel_limit_t intel_limits_g4x_sdvo = {
212         .dot = { .min = 25000, .max = 270000 },
213         .vco = { .min = 1750000, .max = 3500000},
214         .n = { .min = 1, .max = 4 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 10, .max = 30 },
219         .p1 = { .min = 1, .max = 3},
220         .p2 = { .dot_limit = 270000,
221                 .p2_slow = 10,
222                 .p2_fast = 10
223         },
224 };
225
226 static const intel_limit_t intel_limits_g4x_hdmi = {
227         .dot = { .min = 22000, .max = 400000 },
228         .vco = { .min = 1750000, .max = 3500000},
229         .n = { .min = 1, .max = 4 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 16, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 5, .max = 80 },
234         .p1 = { .min = 1, .max = 8},
235         .p2 = { .dot_limit = 165000,
236                 .p2_slow = 10, .p2_fast = 5 },
237 };
238
239 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
240         .dot = { .min = 20000, .max = 115000 },
241         .vco = { .min = 1750000, .max = 3500000 },
242         .n = { .min = 1, .max = 3 },
243         .m = { .min = 104, .max = 138 },
244         .m1 = { .min = 17, .max = 23 },
245         .m2 = { .min = 5, .max = 11 },
246         .p = { .min = 28, .max = 112 },
247         .p1 = { .min = 2, .max = 8 },
248         .p2 = { .dot_limit = 0,
249                 .p2_slow = 14, .p2_fast = 14
250         },
251 };
252
253 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
254         .dot = { .min = 80000, .max = 224000 },
255         .vco = { .min = 1750000, .max = 3500000 },
256         .n = { .min = 1, .max = 3 },
257         .m = { .min = 104, .max = 138 },
258         .m1 = { .min = 17, .max = 23 },
259         .m2 = { .min = 5, .max = 11 },
260         .p = { .min = 14, .max = 42 },
261         .p1 = { .min = 2, .max = 6 },
262         .p2 = { .dot_limit = 0,
263                 .p2_slow = 7, .p2_fast = 7
264         },
265 };
266
267 static const intel_limit_t intel_limits_pineview_sdvo = {
268         .dot = { .min = 20000, .max = 400000},
269         .vco = { .min = 1700000, .max = 3500000 },
270         /* Pineview's Ncounter is a ring counter */
271         .n = { .min = 3, .max = 6 },
272         .m = { .min = 2, .max = 256 },
273         /* Pineview only has one combined m divider, which we treat as m2. */
274         .m1 = { .min = 0, .max = 0 },
275         .m2 = { .min = 0, .max = 254 },
276         .p = { .min = 5, .max = 80 },
277         .p1 = { .min = 1, .max = 8 },
278         .p2 = { .dot_limit = 200000,
279                 .p2_slow = 10, .p2_fast = 5 },
280 };
281
282 static const intel_limit_t intel_limits_pineview_lvds = {
283         .dot = { .min = 20000, .max = 400000 },
284         .vco = { .min = 1700000, .max = 3500000 },
285         .n = { .min = 3, .max = 6 },
286         .m = { .min = 2, .max = 256 },
287         .m1 = { .min = 0, .max = 0 },
288         .m2 = { .min = 0, .max = 254 },
289         .p = { .min = 7, .max = 112 },
290         .p1 = { .min = 1, .max = 8 },
291         .p2 = { .dot_limit = 112000,
292                 .p2_slow = 14, .p2_fast = 14 },
293 };
294
295 /* Ironlake / Sandybridge
296  *
297  * We calculate clock using (register_value + 2) for N/M1/M2, so here
298  * the range value for them is (actual_value - 2).
299  */
300 static const intel_limit_t intel_limits_ironlake_dac = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 5 },
304         .m = { .min = 79, .max = 127 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 5, .max = 80 },
308         .p1 = { .min = 1, .max = 8 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 10, .p2_fast = 5 },
311 };
312
313 static const intel_limit_t intel_limits_ironlake_single_lvds = {
314         .dot = { .min = 25000, .max = 350000 },
315         .vco = { .min = 1760000, .max = 3510000 },
316         .n = { .min = 1, .max = 3 },
317         .m = { .min = 79, .max = 118 },
318         .m1 = { .min = 12, .max = 22 },
319         .m2 = { .min = 5, .max = 9 },
320         .p = { .min = 28, .max = 112 },
321         .p1 = { .min = 2, .max = 8 },
322         .p2 = { .dot_limit = 225000,
323                 .p2_slow = 14, .p2_fast = 14 },
324 };
325
326 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
327         .dot = { .min = 25000, .max = 350000 },
328         .vco = { .min = 1760000, .max = 3510000 },
329         .n = { .min = 1, .max = 3 },
330         .m = { .min = 79, .max = 127 },
331         .m1 = { .min = 12, .max = 22 },
332         .m2 = { .min = 5, .max = 9 },
333         .p = { .min = 14, .max = 56 },
334         .p1 = { .min = 2, .max = 8 },
335         .p2 = { .dot_limit = 225000,
336                 .p2_slow = 7, .p2_fast = 7 },
337 };
338
339 /* LVDS 100mhz refclk limits. */
340 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
341         .dot = { .min = 25000, .max = 350000 },
342         .vco = { .min = 1760000, .max = 3510000 },
343         .n = { .min = 1, .max = 2 },
344         .m = { .min = 79, .max = 126 },
345         .m1 = { .min = 12, .max = 22 },
346         .m2 = { .min = 5, .max = 9 },
347         .p = { .min = 28, .max = 112 },
348         .p1 = { .min = 2, .max = 8 },
349         .p2 = { .dot_limit = 225000,
350                 .p2_slow = 14, .p2_fast = 14 },
351 };
352
353 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
354         .dot = { .min = 25000, .max = 350000 },
355         .vco = { .min = 1760000, .max = 3510000 },
356         .n = { .min = 1, .max = 3 },
357         .m = { .min = 79, .max = 126 },
358         .m1 = { .min = 12, .max = 22 },
359         .m2 = { .min = 5, .max = 9 },
360         .p = { .min = 14, .max = 42 },
361         .p1 = { .min = 2, .max = 6 },
362         .p2 = { .dot_limit = 225000,
363                 .p2_slow = 7, .p2_fast = 7 },
364 };
365
366 static const intel_limit_t intel_limits_vlv = {
367          /*
368           * These are the data rate limits (measured in fast clocks)
369           * since those are the strictest limits we have. The fast
370           * clock and actual rate limits are more relaxed, so checking
371           * them would make no difference.
372           */
373         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
374         .vco = { .min = 4000000, .max = 6000000 },
375         .n = { .min = 1, .max = 7 },
376         .m1 = { .min = 2, .max = 3 },
377         .m2 = { .min = 11, .max = 156 },
378         .p1 = { .min = 2, .max = 3 },
379         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
380 };
381
382 static const intel_limit_t intel_limits_chv = {
383         /*
384          * These are the data rate limits (measured in fast clocks)
385          * since those are the strictest limits we have.  The fast
386          * clock and actual rate limits are more relaxed, so checking
387          * them would make no difference.
388          */
389         .dot = { .min = 25000 * 5, .max = 540000 * 5},
390         .vco = { .min = 4860000, .max = 6700000 },
391         .n = { .min = 1, .max = 1 },
392         .m1 = { .min = 2, .max = 2 },
393         .m2 = { .min = 24 << 22, .max = 175 << 22 },
394         .p1 = { .min = 2, .max = 4 },
395         .p2 = { .p2_slow = 1, .p2_fast = 14 },
396 };
397
398 static void vlv_clock(int refclk, intel_clock_t *clock)
399 {
400         clock->m = clock->m1 * clock->m2;
401         clock->p = clock->p1 * clock->p2;
402         if (WARN_ON(clock->n == 0 || clock->p == 0))
403                 return;
404         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
405         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
406 }
407
408 /**
409  * Returns whether any output on the specified pipe is of the specified type
410  */
411 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
412 {
413         struct drm_device *dev = crtc->dev;
414         struct intel_encoder *encoder;
415
416         for_each_encoder_on_crtc(dev, crtc, encoder)
417                 if (encoder->type == type)
418                         return true;
419
420         return false;
421 }
422
423 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
424                                                 int refclk)
425 {
426         struct drm_device *dev = crtc->dev;
427         const intel_limit_t *limit;
428
429         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
430                 if (intel_is_dual_link_lvds(dev)) {
431                         if (refclk == 100000)
432                                 limit = &intel_limits_ironlake_dual_lvds_100m;
433                         else
434                                 limit = &intel_limits_ironlake_dual_lvds;
435                 } else {
436                         if (refclk == 100000)
437                                 limit = &intel_limits_ironlake_single_lvds_100m;
438                         else
439                                 limit = &intel_limits_ironlake_single_lvds;
440                 }
441         } else
442                 limit = &intel_limits_ironlake_dac;
443
444         return limit;
445 }
446
447 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
448 {
449         struct drm_device *dev = crtc->dev;
450         const intel_limit_t *limit;
451
452         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
453                 if (intel_is_dual_link_lvds(dev))
454                         limit = &intel_limits_g4x_dual_channel_lvds;
455                 else
456                         limit = &intel_limits_g4x_single_channel_lvds;
457         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
458                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
459                 limit = &intel_limits_g4x_hdmi;
460         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
461                 limit = &intel_limits_g4x_sdvo;
462         } else /* The option is for other outputs */
463                 limit = &intel_limits_i9xx_sdvo;
464
465         return limit;
466 }
467
468 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
469 {
470         struct drm_device *dev = crtc->dev;
471         const intel_limit_t *limit;
472
473         if (HAS_PCH_SPLIT(dev))
474                 limit = intel_ironlake_limit(crtc, refclk);
475         else if (IS_G4X(dev)) {
476                 limit = intel_g4x_limit(crtc);
477         } else if (IS_PINEVIEW(dev)) {
478                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
479                         limit = &intel_limits_pineview_lvds;
480                 else
481                         limit = &intel_limits_pineview_sdvo;
482         } else if (IS_CHERRYVIEW(dev)) {
483                 limit = &intel_limits_chv;
484         } else if (IS_VALLEYVIEW(dev)) {
485                 limit = &intel_limits_vlv;
486         } else if (!IS_GEN2(dev)) {
487                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
488                         limit = &intel_limits_i9xx_lvds;
489                 else
490                         limit = &intel_limits_i9xx_sdvo;
491         } else {
492                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
493                         limit = &intel_limits_i8xx_lvds;
494                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
495                         limit = &intel_limits_i8xx_dvo;
496                 else
497                         limit = &intel_limits_i8xx_dac;
498         }
499         return limit;
500 }
501
502 /* m1 is reserved as 0 in Pineview, n is a ring counter */
503 static void pineview_clock(int refclk, intel_clock_t *clock)
504 {
505         clock->m = clock->m2 + 2;
506         clock->p = clock->p1 * clock->p2;
507         if (WARN_ON(clock->n == 0 || clock->p == 0))
508                 return;
509         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
510         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
511 }
512
513 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
514 {
515         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
516 }
517
518 static void i9xx_clock(int refclk, intel_clock_t *clock)
519 {
520         clock->m = i9xx_dpll_compute_m(clock);
521         clock->p = clock->p1 * clock->p2;
522         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
523                 return;
524         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
525         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
526 }
527
528 static void chv_clock(int refclk, intel_clock_t *clock)
529 {
530         clock->m = clock->m1 * clock->m2;
531         clock->p = clock->p1 * clock->p2;
532         if (WARN_ON(clock->n == 0 || clock->p == 0))
533                 return;
534         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
535                         clock->n << 22);
536         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
537 }
538
539 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
540 /**
541  * Returns whether the given set of divisors are valid for a given refclk with
542  * the given connectors.
543  */
544
545 static bool intel_PLL_is_valid(struct drm_device *dev,
546                                const intel_limit_t *limit,
547                                const intel_clock_t *clock)
548 {
549         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
550                 INTELPllInvalid("n out of range\n");
551         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
552                 INTELPllInvalid("p1 out of range\n");
553         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
554                 INTELPllInvalid("m2 out of range\n");
555         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
556                 INTELPllInvalid("m1 out of range\n");
557
558         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
559                 if (clock->m1 <= clock->m2)
560                         INTELPllInvalid("m1 <= m2\n");
561
562         if (!IS_VALLEYVIEW(dev)) {
563                 if (clock->p < limit->p.min || limit->p.max < clock->p)
564                         INTELPllInvalid("p out of range\n");
565                 if (clock->m < limit->m.min || limit->m.max < clock->m)
566                         INTELPllInvalid("m out of range\n");
567         }
568
569         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
570                 INTELPllInvalid("vco out of range\n");
571         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
572          * connector, etc., rather than just a single range.
573          */
574         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
575                 INTELPllInvalid("dot out of range\n");
576
577         return true;
578 }
579
580 static bool
581 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
582                     int target, int refclk, intel_clock_t *match_clock,
583                     intel_clock_t *best_clock)
584 {
585         struct drm_device *dev = crtc->dev;
586         intel_clock_t clock;
587         int err = target;
588
589         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
590                 /*
591                  * For LVDS just rely on its current settings for dual-channel.
592                  * We haven't figured out how to reliably set up different
593                  * single/dual channel state, if we even can.
594                  */
595                 if (intel_is_dual_link_lvds(dev))
596                         clock.p2 = limit->p2.p2_fast;
597                 else
598                         clock.p2 = limit->p2.p2_slow;
599         } else {
600                 if (target < limit->p2.dot_limit)
601                         clock.p2 = limit->p2.p2_slow;
602                 else
603                         clock.p2 = limit->p2.p2_fast;
604         }
605
606         memset(best_clock, 0, sizeof(*best_clock));
607
608         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
609              clock.m1++) {
610                 for (clock.m2 = limit->m2.min;
611                      clock.m2 <= limit->m2.max; clock.m2++) {
612                         if (clock.m2 >= clock.m1)
613                                 break;
614                         for (clock.n = limit->n.min;
615                              clock.n <= limit->n.max; clock.n++) {
616                                 for (clock.p1 = limit->p1.min;
617                                         clock.p1 <= limit->p1.max; clock.p1++) {
618                                         int this_err;
619
620                                         i9xx_clock(refclk, &clock);
621                                         if (!intel_PLL_is_valid(dev, limit,
622                                                                 &clock))
623                                                 continue;
624                                         if (match_clock &&
625                                             clock.p != match_clock->p)
626                                                 continue;
627
628                                         this_err = abs(clock.dot - target);
629                                         if (this_err < err) {
630                                                 *best_clock = clock;
631                                                 err = this_err;
632                                         }
633                                 }
634                         }
635                 }
636         }
637
638         return (err != target);
639 }
640
641 static bool
642 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
643                    int target, int refclk, intel_clock_t *match_clock,
644                    intel_clock_t *best_clock)
645 {
646         struct drm_device *dev = crtc->dev;
647         intel_clock_t clock;
648         int err = target;
649
650         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
651                 /*
652                  * For LVDS just rely on its current settings for dual-channel.
653                  * We haven't figured out how to reliably set up different
654                  * single/dual channel state, if we even can.
655                  */
656                 if (intel_is_dual_link_lvds(dev))
657                         clock.p2 = limit->p2.p2_fast;
658                 else
659                         clock.p2 = limit->p2.p2_slow;
660         } else {
661                 if (target < limit->p2.dot_limit)
662                         clock.p2 = limit->p2.p2_slow;
663                 else
664                         clock.p2 = limit->p2.p2_fast;
665         }
666
667         memset(best_clock, 0, sizeof(*best_clock));
668
669         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
670              clock.m1++) {
671                 for (clock.m2 = limit->m2.min;
672                      clock.m2 <= limit->m2.max; clock.m2++) {
673                         for (clock.n = limit->n.min;
674                              clock.n <= limit->n.max; clock.n++) {
675                                 for (clock.p1 = limit->p1.min;
676                                         clock.p1 <= limit->p1.max; clock.p1++) {
677                                         int this_err;
678
679                                         pineview_clock(refclk, &clock);
680                                         if (!intel_PLL_is_valid(dev, limit,
681                                                                 &clock))
682                                                 continue;
683                                         if (match_clock &&
684                                             clock.p != match_clock->p)
685                                                 continue;
686
687                                         this_err = abs(clock.dot - target);
688                                         if (this_err < err) {
689                                                 *best_clock = clock;
690                                                 err = this_err;
691                                         }
692                                 }
693                         }
694                 }
695         }
696
697         return (err != target);
698 }
699
700 static bool
701 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
702                    int target, int refclk, intel_clock_t *match_clock,
703                    intel_clock_t *best_clock)
704 {
705         struct drm_device *dev = crtc->dev;
706         intel_clock_t clock;
707         int max_n;
708         bool found;
709         /* approximately equals target * 0.00585 */
710         int err_most = (target >> 8) + (target >> 9);
711         found = false;
712
713         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
714                 if (intel_is_dual_link_lvds(dev))
715                         clock.p2 = limit->p2.p2_fast;
716                 else
717                         clock.p2 = limit->p2.p2_slow;
718         } else {
719                 if (target < limit->p2.dot_limit)
720                         clock.p2 = limit->p2.p2_slow;
721                 else
722                         clock.p2 = limit->p2.p2_fast;
723         }
724
725         memset(best_clock, 0, sizeof(*best_clock));
726         max_n = limit->n.max;
727         /* based on hardware requirement, prefer smaller n to precision */
728         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
729                 /* based on hardware requirement, prefere larger m1,m2 */
730                 for (clock.m1 = limit->m1.max;
731                      clock.m1 >= limit->m1.min; clock.m1--) {
732                         for (clock.m2 = limit->m2.max;
733                              clock.m2 >= limit->m2.min; clock.m2--) {
734                                 for (clock.p1 = limit->p1.max;
735                                      clock.p1 >= limit->p1.min; clock.p1--) {
736                                         int this_err;
737
738                                         i9xx_clock(refclk, &clock);
739                                         if (!intel_PLL_is_valid(dev, limit,
740                                                                 &clock))
741                                                 continue;
742
743                                         this_err = abs(clock.dot - target);
744                                         if (this_err < err_most) {
745                                                 *best_clock = clock;
746                                                 err_most = this_err;
747                                                 max_n = clock.n;
748                                                 found = true;
749                                         }
750                                 }
751                         }
752                 }
753         }
754         return found;
755 }
756
757 static bool
758 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
759                    int target, int refclk, intel_clock_t *match_clock,
760                    intel_clock_t *best_clock)
761 {
762         struct drm_device *dev = crtc->dev;
763         intel_clock_t clock;
764         unsigned int bestppm = 1000000;
765         /* min update 19.2 MHz */
766         int max_n = min(limit->n.max, refclk / 19200);
767         bool found = false;
768
769         target *= 5; /* fast clock */
770
771         memset(best_clock, 0, sizeof(*best_clock));
772
773         /* based on hardware requirement, prefer smaller n to precision */
774         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
775                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
776                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
777                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
778                                 clock.p = clock.p1 * clock.p2;
779                                 /* based on hardware requirement, prefer bigger m1,m2 values */
780                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
781                                         unsigned int ppm, diff;
782
783                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
784                                                                      refclk * clock.m1);
785
786                                         vlv_clock(refclk, &clock);
787
788                                         if (!intel_PLL_is_valid(dev, limit,
789                                                                 &clock))
790                                                 continue;
791
792                                         diff = abs(clock.dot - target);
793                                         ppm = div_u64(1000000ULL * diff, target);
794
795                                         if (ppm < 100 && clock.p > best_clock->p) {
796                                                 bestppm = 0;
797                                                 *best_clock = clock;
798                                                 found = true;
799                                         }
800
801                                         if (bestppm >= 10 && ppm < bestppm - 10) {
802                                                 bestppm = ppm;
803                                                 *best_clock = clock;
804                                                 found = true;
805                                         }
806                                 }
807                         }
808                 }
809         }
810
811         return found;
812 }
813
814 static bool
815 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
816                    int target, int refclk, intel_clock_t *match_clock,
817                    intel_clock_t *best_clock)
818 {
819         struct drm_device *dev = crtc->dev;
820         intel_clock_t clock;
821         uint64_t m2;
822         int found = false;
823
824         memset(best_clock, 0, sizeof(*best_clock));
825
826         /*
827          * Based on hardware doc, the n always set to 1, and m1 always
828          * set to 2.  If requires to support 200Mhz refclk, we need to
829          * revisit this because n may not 1 anymore.
830          */
831         clock.n = 1, clock.m1 = 2;
832         target *= 5;    /* fast clock */
833
834         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
835                 for (clock.p2 = limit->p2.p2_fast;
836                                 clock.p2 >= limit->p2.p2_slow;
837                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
838
839                         clock.p = clock.p1 * clock.p2;
840
841                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
842                                         clock.n) << 22, refclk * clock.m1);
843
844                         if (m2 > INT_MAX/clock.m1)
845                                 continue;
846
847                         clock.m2 = m2;
848
849                         chv_clock(refclk, &clock);
850
851                         if (!intel_PLL_is_valid(dev, limit, &clock))
852                                 continue;
853
854                         /* based on hardware requirement, prefer bigger p
855                          */
856                         if (clock.p > best_clock->p) {
857                                 *best_clock = clock;
858                                 found = true;
859                         }
860                 }
861         }
862
863         return found;
864 }
865
866 bool intel_crtc_active(struct drm_crtc *crtc)
867 {
868         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
869
870         /* Be paranoid as we can arrive here with only partial
871          * state retrieved from the hardware during setup.
872          *
873          * We can ditch the adjusted_mode.crtc_clock check as soon
874          * as Haswell has gained clock readout/fastboot support.
875          *
876          * We can ditch the crtc->primary->fb check as soon as we can
877          * properly reconstruct framebuffers.
878          */
879         return intel_crtc->active && crtc->primary->fb &&
880                 intel_crtc->config.adjusted_mode.crtc_clock;
881 }
882
883 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
884                                              enum pipe pipe)
885 {
886         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
887         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
888
889         return intel_crtc->config.cpu_transcoder;
890 }
891
892 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
893 {
894         struct drm_i915_private *dev_priv = dev->dev_private;
895         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
896
897         frame = I915_READ(frame_reg);
898
899         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
900                 WARN(1, "vblank wait on pipe %c timed out\n",
901                      pipe_name(pipe));
902 }
903
904 /**
905  * intel_wait_for_vblank - wait for vblank on a given pipe
906  * @dev: drm device
907  * @pipe: pipe to wait for
908  *
909  * Wait for vblank to occur on a given pipe.  Needed for various bits of
910  * mode setting code.
911  */
912 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
913 {
914         struct drm_i915_private *dev_priv = dev->dev_private;
915         int pipestat_reg = PIPESTAT(pipe);
916
917         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
918                 g4x_wait_for_vblank(dev, pipe);
919                 return;
920         }
921
922         /* Clear existing vblank status. Note this will clear any other
923          * sticky status fields as well.
924          *
925          * This races with i915_driver_irq_handler() with the result
926          * that either function could miss a vblank event.  Here it is not
927          * fatal, as we will either wait upon the next vblank interrupt or
928          * timeout.  Generally speaking intel_wait_for_vblank() is only
929          * called during modeset at which time the GPU should be idle and
930          * should *not* be performing page flips and thus not waiting on
931          * vblanks...
932          * Currently, the result of us stealing a vblank from the irq
933          * handler is that a single frame will be skipped during swapbuffers.
934          */
935         I915_WRITE(pipestat_reg,
936                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
937
938         /* Wait for vblank interrupt bit to set */
939         if (wait_for(I915_READ(pipestat_reg) &
940                      PIPE_VBLANK_INTERRUPT_STATUS,
941                      50))
942                 DRM_DEBUG_KMS("vblank wait on pipe %c timed out\n",
943                               pipe_name(pipe));
944 }
945
946 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
947 {
948         struct drm_i915_private *dev_priv = dev->dev_private;
949         u32 reg = PIPEDSL(pipe);
950         u32 line1, line2;
951         u32 line_mask;
952
953         if (IS_GEN2(dev))
954                 line_mask = DSL_LINEMASK_GEN2;
955         else
956                 line_mask = DSL_LINEMASK_GEN3;
957
958         line1 = I915_READ(reg) & line_mask;
959         mdelay(5);
960         line2 = I915_READ(reg) & line_mask;
961
962         return line1 == line2;
963 }
964
965 /*
966  * intel_wait_for_pipe_off - wait for pipe to turn off
967  * @crtc: crtc whose pipe to wait for
968  *
969  * After disabling a pipe, we can't wait for vblank in the usual way,
970  * spinning on the vblank interrupt status bit, since we won't actually
971  * see an interrupt when the pipe is disabled.
972  *
973  * On Gen4 and above:
974  *   wait for the pipe register state bit to turn off
975  *
976  * Otherwise:
977  *   wait for the display line value to settle (it usually
978  *   ends up stopping at the start of the next frame).
979  *
980  */
981 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
982 {
983         struct drm_device *dev = crtc->base.dev;
984         struct drm_i915_private *dev_priv = dev->dev_private;
985         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
986         enum pipe pipe = crtc->pipe;
987
988         if (INTEL_INFO(dev)->gen >= 4) {
989                 int reg = PIPECONF(cpu_transcoder);
990
991                 /* Wait for the Pipe State to go off */
992                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
993                              100))
994                         WARN(1, "pipe_off wait timed out\n");
995         } else {
996                 /* Wait for the display line to settle */
997                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
998                         WARN(1, "pipe_off wait timed out\n");
999         }
1000 }
1001
1002 /*
1003  * ibx_digital_port_connected - is the specified port connected?
1004  * @dev_priv: i915 private structure
1005  * @port: the port to test
1006  *
1007  * Returns true if @port is connected, false otherwise.
1008  */
1009 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1010                                 struct intel_digital_port *port)
1011 {
1012         u32 bit;
1013
1014         if (HAS_PCH_IBX(dev_priv->dev)) {
1015                 switch (port->port) {
1016                 case PORT_B:
1017                         bit = SDE_PORTB_HOTPLUG;
1018                         break;
1019                 case PORT_C:
1020                         bit = SDE_PORTC_HOTPLUG;
1021                         break;
1022                 case PORT_D:
1023                         bit = SDE_PORTD_HOTPLUG;
1024                         break;
1025                 default:
1026                         return true;
1027                 }
1028         } else {
1029                 switch (port->port) {
1030                 case PORT_B:
1031                         bit = SDE_PORTB_HOTPLUG_CPT;
1032                         break;
1033                 case PORT_C:
1034                         bit = SDE_PORTC_HOTPLUG_CPT;
1035                         break;
1036                 case PORT_D:
1037                         bit = SDE_PORTD_HOTPLUG_CPT;
1038                         break;
1039                 default:
1040                         return true;
1041                 }
1042         }
1043
1044         return I915_READ(SDEISR) & bit;
1045 }
1046
1047 static const char *state_string(bool enabled)
1048 {
1049         return enabled ? "on" : "off";
1050 }
1051
1052 /* Only for pre-ILK configs */
1053 void assert_pll(struct drm_i915_private *dev_priv,
1054                 enum pipe pipe, bool state)
1055 {
1056         int reg;
1057         u32 val;
1058         bool cur_state;
1059
1060         reg = DPLL(pipe);
1061         val = I915_READ(reg);
1062         cur_state = !!(val & DPLL_VCO_ENABLE);
1063         WARN(cur_state != state,
1064              "PLL state assertion failure (expected %s, current %s)\n",
1065              state_string(state), state_string(cur_state));
1066 }
1067
1068 /* XXX: the dsi pll is shared between MIPI DSI ports */
1069 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1070 {
1071         u32 val;
1072         bool cur_state;
1073
1074         mutex_lock(&dev_priv->dpio_lock);
1075         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1076         mutex_unlock(&dev_priv->dpio_lock);
1077
1078         cur_state = val & DSI_PLL_VCO_EN;
1079         WARN(cur_state != state,
1080              "DSI PLL state assertion failure (expected %s, current %s)\n",
1081              state_string(state), state_string(cur_state));
1082 }
1083 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1084 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1085
1086 struct intel_shared_dpll *
1087 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1088 {
1089         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1090
1091         if (crtc->config.shared_dpll < 0)
1092                 return NULL;
1093
1094         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1095 }
1096
1097 /* For ILK+ */
1098 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1099                         struct intel_shared_dpll *pll,
1100                         bool state)
1101 {
1102         bool cur_state;
1103         struct intel_dpll_hw_state hw_state;
1104
1105         if (WARN (!pll,
1106                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1107                 return;
1108
1109         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1110         WARN(cur_state != state,
1111              "%s assertion failure (expected %s, current %s)\n",
1112              pll->name, state_string(state), state_string(cur_state));
1113 }
1114
1115 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116                           enum pipe pipe, bool state)
1117 {
1118         int reg;
1119         u32 val;
1120         bool cur_state;
1121         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122                                                                       pipe);
1123
1124         if (HAS_DDI(dev_priv->dev)) {
1125                 /* DDI does not have a specific FDI_TX register */
1126                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127                 val = I915_READ(reg);
1128                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129         } else {
1130                 reg = FDI_TX_CTL(pipe);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & FDI_TX_ENABLE);
1133         }
1134         WARN(cur_state != state,
1135              "FDI TX state assertion failure (expected %s, current %s)\n",
1136              state_string(state), state_string(cur_state));
1137 }
1138 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142                           enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX state assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159                                       enum pipe pipe)
1160 {
1161         int reg;
1162         u32 val;
1163
1164         /* ILK FDI PLL is always enabled */
1165         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1166                 return;
1167
1168         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169         if (HAS_DDI(dev_priv->dev))
1170                 return;
1171
1172         reg = FDI_TX_CTL(pipe);
1173         val = I915_READ(reg);
1174         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178                        enum pipe pipe, bool state)
1179 {
1180         int reg;
1181         u32 val;
1182         bool cur_state;
1183
1184         reg = FDI_RX_CTL(pipe);
1185         val = I915_READ(reg);
1186         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1187         WARN(cur_state != state,
1188              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1189              state_string(state), state_string(cur_state));
1190 }
1191
1192 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1193                                   enum pipe pipe)
1194 {
1195         struct drm_device *dev = dev_priv->dev;
1196         int pp_reg;
1197         u32 val;
1198         enum pipe panel_pipe = PIPE_A;
1199         bool locked = true;
1200
1201         if (WARN_ON(HAS_DDI(dev)))
1202                 return;
1203
1204         if (HAS_PCH_SPLIT(dev)) {
1205                 u32 port_sel;
1206
1207                 pp_reg = PCH_PP_CONTROL;
1208                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1209
1210                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1211                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1212                         panel_pipe = PIPE_B;
1213                 /* XXX: else fix for eDP */
1214         } else if (IS_VALLEYVIEW(dev)) {
1215                 /* presumably write lock depends on pipe, not port select */
1216                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1217                 panel_pipe = pipe;
1218         } else {
1219                 pp_reg = PP_CONTROL;
1220                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1221                         panel_pipe = PIPE_B;
1222         }
1223
1224         val = I915_READ(pp_reg);
1225         if (!(val & PANEL_POWER_ON) ||
1226             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1227                 locked = false;
1228
1229         WARN(panel_pipe == pipe && locked,
1230              "panel assertion failure, pipe %c regs locked\n",
1231              pipe_name(pipe));
1232 }
1233
1234 static void assert_cursor(struct drm_i915_private *dev_priv,
1235                           enum pipe pipe, bool state)
1236 {
1237         struct drm_device *dev = dev_priv->dev;
1238         bool cur_state;
1239
1240         if (IS_845G(dev) || IS_I865G(dev))
1241                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1242         else
1243                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1244
1245         WARN(cur_state != state,
1246              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1247              pipe_name(pipe), state_string(state), state_string(cur_state));
1248 }
1249 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1250 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1251
1252 void assert_pipe(struct drm_i915_private *dev_priv,
1253                  enum pipe pipe, bool state)
1254 {
1255         int reg;
1256         u32 val;
1257         bool cur_state;
1258         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1259                                                                       pipe);
1260
1261         /* if we need the pipe quirk it must be always on */
1262         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1263             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1264                 state = true;
1265
1266         if (!intel_display_power_enabled(dev_priv,
1267                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1268                 cur_state = false;
1269         } else {
1270                 reg = PIPECONF(cpu_transcoder);
1271                 val = I915_READ(reg);
1272                 cur_state = !!(val & PIPECONF_ENABLE);
1273         }
1274
1275         WARN(cur_state != state,
1276              "pipe %c assertion failure (expected %s, current %s)\n",
1277              pipe_name(pipe), state_string(state), state_string(cur_state));
1278 }
1279
1280 static void assert_plane(struct drm_i915_private *dev_priv,
1281                          enum plane plane, bool state)
1282 {
1283         int reg;
1284         u32 val;
1285         bool cur_state;
1286
1287         reg = DSPCNTR(plane);
1288         val = I915_READ(reg);
1289         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1290         WARN(cur_state != state,
1291              "plane %c assertion failure (expected %s, current %s)\n",
1292              plane_name(plane), state_string(state), state_string(cur_state));
1293 }
1294
1295 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1296 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1297
1298 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1299                                    enum pipe pipe)
1300 {
1301         struct drm_device *dev = dev_priv->dev;
1302         int reg, i;
1303         u32 val;
1304         int cur_pipe;
1305
1306         /* Primary planes are fixed to pipes on gen4+ */
1307         if (INTEL_INFO(dev)->gen >= 4) {
1308                 reg = DSPCNTR(pipe);
1309                 val = I915_READ(reg);
1310                 WARN(val & DISPLAY_PLANE_ENABLE,
1311                      "plane %c assertion failure, should be disabled but not\n",
1312                      plane_name(pipe));
1313                 return;
1314         }
1315
1316         /* Need to check both planes against the pipe */
1317         for_each_pipe(dev_priv, i) {
1318                 reg = DSPCNTR(i);
1319                 val = I915_READ(reg);
1320                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1321                         DISPPLANE_SEL_PIPE_SHIFT;
1322                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1323                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1324                      plane_name(i), pipe_name(pipe));
1325         }
1326 }
1327
1328 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1329                                     enum pipe pipe)
1330 {
1331         struct drm_device *dev = dev_priv->dev;
1332         int reg, sprite;
1333         u32 val;
1334
1335         if (IS_VALLEYVIEW(dev)) {
1336                 for_each_sprite(pipe, sprite) {
1337                         reg = SPCNTR(pipe, sprite);
1338                         val = I915_READ(reg);
1339                         WARN(val & SP_ENABLE,
1340                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1341                              sprite_name(pipe, sprite), pipe_name(pipe));
1342                 }
1343         } else if (INTEL_INFO(dev)->gen >= 7) {
1344                 reg = SPRCTL(pipe);
1345                 val = I915_READ(reg);
1346                 WARN(val & SPRITE_ENABLE,
1347                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1348                      plane_name(pipe), pipe_name(pipe));
1349         } else if (INTEL_INFO(dev)->gen >= 5) {
1350                 reg = DVSCNTR(pipe);
1351                 val = I915_READ(reg);
1352                 WARN(val & DVS_ENABLE,
1353                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1354                      plane_name(pipe), pipe_name(pipe));
1355         }
1356 }
1357
1358 static void assert_vblank_disabled(struct drm_crtc *crtc)
1359 {
1360         if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1361                 drm_crtc_vblank_put(crtc);
1362 }
1363
1364 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1365 {
1366         u32 val;
1367         bool enabled;
1368
1369         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1370
1371         val = I915_READ(PCH_DREF_CONTROL);
1372         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1373                             DREF_SUPERSPREAD_SOURCE_MASK));
1374         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1375 }
1376
1377 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1378                                            enum pipe pipe)
1379 {
1380         int reg;
1381         u32 val;
1382         bool enabled;
1383
1384         reg = PCH_TRANSCONF(pipe);
1385         val = I915_READ(reg);
1386         enabled = !!(val & TRANS_ENABLE);
1387         WARN(enabled,
1388              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1389              pipe_name(pipe));
1390 }
1391
1392 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1393                             enum pipe pipe, u32 port_sel, u32 val)
1394 {
1395         if ((val & DP_PORT_EN) == 0)
1396                 return false;
1397
1398         if (HAS_PCH_CPT(dev_priv->dev)) {
1399                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1400                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1401                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1402                         return false;
1403         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1404                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1405                         return false;
1406         } else {
1407                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1408                         return false;
1409         }
1410         return true;
1411 }
1412
1413 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1414                               enum pipe pipe, u32 val)
1415 {
1416         if ((val & SDVO_ENABLE) == 0)
1417                 return false;
1418
1419         if (HAS_PCH_CPT(dev_priv->dev)) {
1420                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1421                         return false;
1422         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1423                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1424                         return false;
1425         } else {
1426                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1427                         return false;
1428         }
1429         return true;
1430 }
1431
1432 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1433                               enum pipe pipe, u32 val)
1434 {
1435         if ((val & LVDS_PORT_EN) == 0)
1436                 return false;
1437
1438         if (HAS_PCH_CPT(dev_priv->dev)) {
1439                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1440                         return false;
1441         } else {
1442                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1443                         return false;
1444         }
1445         return true;
1446 }
1447
1448 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1449                               enum pipe pipe, u32 val)
1450 {
1451         if ((val & ADPA_DAC_ENABLE) == 0)
1452                 return false;
1453         if (HAS_PCH_CPT(dev_priv->dev)) {
1454                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1455                         return false;
1456         } else {
1457                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1458                         return false;
1459         }
1460         return true;
1461 }
1462
1463 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1464                                    enum pipe pipe, int reg, u32 port_sel)
1465 {
1466         u32 val = I915_READ(reg);
1467         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1468              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1469              reg, pipe_name(pipe));
1470
1471         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1472              && (val & DP_PIPEB_SELECT),
1473              "IBX PCH dp port still using transcoder B\n");
1474 }
1475
1476 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1477                                      enum pipe pipe, int reg)
1478 {
1479         u32 val = I915_READ(reg);
1480         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1481              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1482              reg, pipe_name(pipe));
1483
1484         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1485              && (val & SDVO_PIPE_B_SELECT),
1486              "IBX PCH hdmi port still using transcoder B\n");
1487 }
1488
1489 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1490                                       enum pipe pipe)
1491 {
1492         int reg;
1493         u32 val;
1494
1495         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1496         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1497         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1498
1499         reg = PCH_ADPA;
1500         val = I915_READ(reg);
1501         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1502              "PCH VGA enabled on transcoder %c, should be disabled\n",
1503              pipe_name(pipe));
1504
1505         reg = PCH_LVDS;
1506         val = I915_READ(reg);
1507         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1508              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1509              pipe_name(pipe));
1510
1511         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1512         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1513         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1514 }
1515
1516 static void intel_init_dpio(struct drm_device *dev)
1517 {
1518         struct drm_i915_private *dev_priv = dev->dev_private;
1519
1520         if (!IS_VALLEYVIEW(dev))
1521                 return;
1522
1523         /*
1524          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1525          * CHV x1 PHY (DP/HDMI D)
1526          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1527          */
1528         if (IS_CHERRYVIEW(dev)) {
1529                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1530                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1531         } else {
1532                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1533         }
1534 }
1535
1536 static void vlv_enable_pll(struct intel_crtc *crtc)
1537 {
1538         struct drm_device *dev = crtc->base.dev;
1539         struct drm_i915_private *dev_priv = dev->dev_private;
1540         int reg = DPLL(crtc->pipe);
1541         u32 dpll = crtc->config.dpll_hw_state.dpll;
1542
1543         assert_pipe_disabled(dev_priv, crtc->pipe);
1544
1545         /* No really, not for ILK+ */
1546         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1547
1548         /* PLL is protected by panel, make sure we can write it */
1549         if (IS_MOBILE(dev_priv->dev))
1550                 assert_panel_unlocked(dev_priv, crtc->pipe);
1551
1552         I915_WRITE(reg, dpll);
1553         POSTING_READ(reg);
1554         udelay(150);
1555
1556         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1557                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1558
1559         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1560         POSTING_READ(DPLL_MD(crtc->pipe));
1561
1562         /* We do this three times for luck */
1563         I915_WRITE(reg, dpll);
1564         POSTING_READ(reg);
1565         udelay(150); /* wait for warmup */
1566         I915_WRITE(reg, dpll);
1567         POSTING_READ(reg);
1568         udelay(150); /* wait for warmup */
1569         I915_WRITE(reg, dpll);
1570         POSTING_READ(reg);
1571         udelay(150); /* wait for warmup */
1572 }
1573
1574 static void chv_enable_pll(struct intel_crtc *crtc)
1575 {
1576         struct drm_device *dev = crtc->base.dev;
1577         struct drm_i915_private *dev_priv = dev->dev_private;
1578         int pipe = crtc->pipe;
1579         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1580         u32 tmp;
1581
1582         assert_pipe_disabled(dev_priv, crtc->pipe);
1583
1584         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1585
1586         mutex_lock(&dev_priv->dpio_lock);
1587
1588         /* Enable back the 10bit clock to display controller */
1589         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1590         tmp |= DPIO_DCLKP_EN;
1591         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1592
1593         /*
1594          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1595          */
1596         udelay(1);
1597
1598         /* Enable PLL */
1599         I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1600
1601         /* Check PLL is locked */
1602         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1603                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1604
1605         /* not sure when this should be written */
1606         I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1607         POSTING_READ(DPLL_MD(pipe));
1608
1609         mutex_unlock(&dev_priv->dpio_lock);
1610 }
1611
1612 static int intel_num_dvo_pipes(struct drm_device *dev)
1613 {
1614         struct intel_crtc *crtc;
1615         int count = 0;
1616
1617         for_each_intel_crtc(dev, crtc)
1618                 count += crtc->active &&
1619                         intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO);
1620
1621         return count;
1622 }
1623
1624 static void i9xx_enable_pll(struct intel_crtc *crtc)
1625 {
1626         struct drm_device *dev = crtc->base.dev;
1627         struct drm_i915_private *dev_priv = dev->dev_private;
1628         int reg = DPLL(crtc->pipe);
1629         u32 dpll = crtc->config.dpll_hw_state.dpll;
1630
1631         assert_pipe_disabled(dev_priv, crtc->pipe);
1632
1633         /* No really, not for ILK+ */
1634         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1635
1636         /* PLL is protected by panel, make sure we can write it */
1637         if (IS_MOBILE(dev) && !IS_I830(dev))
1638                 assert_panel_unlocked(dev_priv, crtc->pipe);
1639
1640         /* Enable DVO 2x clock on both PLLs if necessary */
1641         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1642                 /*
1643                  * It appears to be important that we don't enable this
1644                  * for the current pipe before otherwise configuring the
1645                  * PLL. No idea how this should be handled if multiple
1646                  * DVO outputs are enabled simultaneosly.
1647                  */
1648                 dpll |= DPLL_DVO_2X_MODE;
1649                 I915_WRITE(DPLL(!crtc->pipe),
1650                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1651         }
1652
1653         /* Wait for the clocks to stabilize. */
1654         POSTING_READ(reg);
1655         udelay(150);
1656
1657         if (INTEL_INFO(dev)->gen >= 4) {
1658                 I915_WRITE(DPLL_MD(crtc->pipe),
1659                            crtc->config.dpll_hw_state.dpll_md);
1660         } else {
1661                 /* The pixel multiplier can only be updated once the
1662                  * DPLL is enabled and the clocks are stable.
1663                  *
1664                  * So write it again.
1665                  */
1666                 I915_WRITE(reg, dpll);
1667         }
1668
1669         /* We do this three times for luck */
1670         I915_WRITE(reg, dpll);
1671         POSTING_READ(reg);
1672         udelay(150); /* wait for warmup */
1673         I915_WRITE(reg, dpll);
1674         POSTING_READ(reg);
1675         udelay(150); /* wait for warmup */
1676         I915_WRITE(reg, dpll);
1677         POSTING_READ(reg);
1678         udelay(150); /* wait for warmup */
1679 }
1680
1681 /**
1682  * i9xx_disable_pll - disable a PLL
1683  * @dev_priv: i915 private structure
1684  * @pipe: pipe PLL to disable
1685  *
1686  * Disable the PLL for @pipe, making sure the pipe is off first.
1687  *
1688  * Note!  This is for pre-ILK only.
1689  */
1690 static void i9xx_disable_pll(struct intel_crtc *crtc)
1691 {
1692         struct drm_device *dev = crtc->base.dev;
1693         struct drm_i915_private *dev_priv = dev->dev_private;
1694         enum pipe pipe = crtc->pipe;
1695
1696         /* Disable DVO 2x clock on both PLLs if necessary */
1697         if (IS_I830(dev) &&
1698             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO) &&
1699             intel_num_dvo_pipes(dev) == 1) {
1700                 I915_WRITE(DPLL(PIPE_B),
1701                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1702                 I915_WRITE(DPLL(PIPE_A),
1703                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1704         }
1705
1706         /* Don't disable pipe or pipe PLLs if needed */
1707         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1708             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1709                 return;
1710
1711         /* Make sure the pipe isn't still relying on us */
1712         assert_pipe_disabled(dev_priv, pipe);
1713
1714         I915_WRITE(DPLL(pipe), 0);
1715         POSTING_READ(DPLL(pipe));
1716 }
1717
1718 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1719 {
1720         u32 val = 0;
1721
1722         /* Make sure the pipe isn't still relying on us */
1723         assert_pipe_disabled(dev_priv, pipe);
1724
1725         /*
1726          * Leave integrated clock source and reference clock enabled for pipe B.
1727          * The latter is needed for VGA hotplug / manual detection.
1728          */
1729         if (pipe == PIPE_B)
1730                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1731         I915_WRITE(DPLL(pipe), val);
1732         POSTING_READ(DPLL(pipe));
1733
1734 }
1735
1736 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1737 {
1738         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1739         u32 val;
1740
1741         /* Make sure the pipe isn't still relying on us */
1742         assert_pipe_disabled(dev_priv, pipe);
1743
1744         /* Set PLL en = 0 */
1745         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1746         if (pipe != PIPE_A)
1747                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1748         I915_WRITE(DPLL(pipe), val);
1749         POSTING_READ(DPLL(pipe));
1750
1751         mutex_lock(&dev_priv->dpio_lock);
1752
1753         /* Disable 10bit clock to display controller */
1754         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1755         val &= ~DPIO_DCLKP_EN;
1756         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1757
1758         /* disable left/right clock distribution */
1759         if (pipe != PIPE_B) {
1760                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1761                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1762                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1763         } else {
1764                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1765                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1766                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1767         }
1768
1769         mutex_unlock(&dev_priv->dpio_lock);
1770 }
1771
1772 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1773                 struct intel_digital_port *dport)
1774 {
1775         u32 port_mask;
1776         int dpll_reg;
1777
1778         switch (dport->port) {
1779         case PORT_B:
1780                 port_mask = DPLL_PORTB_READY_MASK;
1781                 dpll_reg = DPLL(0);
1782                 break;
1783         case PORT_C:
1784                 port_mask = DPLL_PORTC_READY_MASK;
1785                 dpll_reg = DPLL(0);
1786                 break;
1787         case PORT_D:
1788                 port_mask = DPLL_PORTD_READY_MASK;
1789                 dpll_reg = DPIO_PHY_STATUS;
1790                 break;
1791         default:
1792                 BUG();
1793         }
1794
1795         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1796                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1797                      port_name(dport->port), I915_READ(dpll_reg));
1798 }
1799
1800 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1801 {
1802         struct drm_device *dev = crtc->base.dev;
1803         struct drm_i915_private *dev_priv = dev->dev_private;
1804         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1805
1806         if (WARN_ON(pll == NULL))
1807                 return;
1808
1809         WARN_ON(!pll->refcount);
1810         if (pll->active == 0) {
1811                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1812                 WARN_ON(pll->on);
1813                 assert_shared_dpll_disabled(dev_priv, pll);
1814
1815                 pll->mode_set(dev_priv, pll);
1816         }
1817 }
1818
1819 /**
1820  * intel_enable_shared_dpll - enable PCH PLL
1821  * @dev_priv: i915 private structure
1822  * @pipe: pipe PLL to enable
1823  *
1824  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1825  * drives the transcoder clock.
1826  */
1827 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1828 {
1829         struct drm_device *dev = crtc->base.dev;
1830         struct drm_i915_private *dev_priv = dev->dev_private;
1831         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1832
1833         if (WARN_ON(pll == NULL))
1834                 return;
1835
1836         if (WARN_ON(pll->refcount == 0))
1837                 return;
1838
1839         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1840                       pll->name, pll->active, pll->on,
1841                       crtc->base.base.id);
1842
1843         if (pll->active++) {
1844                 WARN_ON(!pll->on);
1845                 assert_shared_dpll_enabled(dev_priv, pll);
1846                 return;
1847         }
1848         WARN_ON(pll->on);
1849
1850         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1851
1852         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1853         pll->enable(dev_priv, pll);
1854         pll->on = true;
1855 }
1856
1857 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1858 {
1859         struct drm_device *dev = crtc->base.dev;
1860         struct drm_i915_private *dev_priv = dev->dev_private;
1861         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1862
1863         /* PCH only available on ILK+ */
1864         BUG_ON(INTEL_INFO(dev)->gen < 5);
1865         if (WARN_ON(pll == NULL))
1866                return;
1867
1868         if (WARN_ON(pll->refcount == 0))
1869                 return;
1870
1871         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1872                       pll->name, pll->active, pll->on,
1873                       crtc->base.base.id);
1874
1875         if (WARN_ON(pll->active == 0)) {
1876                 assert_shared_dpll_disabled(dev_priv, pll);
1877                 return;
1878         }
1879
1880         assert_shared_dpll_enabled(dev_priv, pll);
1881         WARN_ON(!pll->on);
1882         if (--pll->active)
1883                 return;
1884
1885         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1886         pll->disable(dev_priv, pll);
1887         pll->on = false;
1888
1889         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1890 }
1891
1892 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1893                                            enum pipe pipe)
1894 {
1895         struct drm_device *dev = dev_priv->dev;
1896         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1897         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1898         uint32_t reg, val, pipeconf_val;
1899
1900         /* PCH only available on ILK+ */
1901         BUG_ON(!HAS_PCH_SPLIT(dev));
1902
1903         /* Make sure PCH DPLL is enabled */
1904         assert_shared_dpll_enabled(dev_priv,
1905                                    intel_crtc_to_shared_dpll(intel_crtc));
1906
1907         /* FDI must be feeding us bits for PCH ports */
1908         assert_fdi_tx_enabled(dev_priv, pipe);
1909         assert_fdi_rx_enabled(dev_priv, pipe);
1910
1911         if (HAS_PCH_CPT(dev)) {
1912                 /* Workaround: Set the timing override bit before enabling the
1913                  * pch transcoder. */
1914                 reg = TRANS_CHICKEN2(pipe);
1915                 val = I915_READ(reg);
1916                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1917                 I915_WRITE(reg, val);
1918         }
1919
1920         reg = PCH_TRANSCONF(pipe);
1921         val = I915_READ(reg);
1922         pipeconf_val = I915_READ(PIPECONF(pipe));
1923
1924         if (HAS_PCH_IBX(dev_priv->dev)) {
1925                 /*
1926                  * make the BPC in transcoder be consistent with
1927                  * that in pipeconf reg.
1928                  */
1929                 val &= ~PIPECONF_BPC_MASK;
1930                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1931         }
1932
1933         val &= ~TRANS_INTERLACE_MASK;
1934         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1935                 if (HAS_PCH_IBX(dev_priv->dev) &&
1936                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1937                         val |= TRANS_LEGACY_INTERLACED_ILK;
1938                 else
1939                         val |= TRANS_INTERLACED;
1940         else
1941                 val |= TRANS_PROGRESSIVE;
1942
1943         I915_WRITE(reg, val | TRANS_ENABLE);
1944         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1945                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1946 }
1947
1948 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1949                                       enum transcoder cpu_transcoder)
1950 {
1951         u32 val, pipeconf_val;
1952
1953         /* PCH only available on ILK+ */
1954         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1955
1956         /* FDI must be feeding us bits for PCH ports */
1957         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1958         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1959
1960         /* Workaround: set timing override bit. */
1961         val = I915_READ(_TRANSA_CHICKEN2);
1962         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1963         I915_WRITE(_TRANSA_CHICKEN2, val);
1964
1965         val = TRANS_ENABLE;
1966         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1967
1968         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1969             PIPECONF_INTERLACED_ILK)
1970                 val |= TRANS_INTERLACED;
1971         else
1972                 val |= TRANS_PROGRESSIVE;
1973
1974         I915_WRITE(LPT_TRANSCONF, val);
1975         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1976                 DRM_ERROR("Failed to enable PCH transcoder\n");
1977 }
1978
1979 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1980                                             enum pipe pipe)
1981 {
1982         struct drm_device *dev = dev_priv->dev;
1983         uint32_t reg, val;
1984
1985         /* FDI relies on the transcoder */
1986         assert_fdi_tx_disabled(dev_priv, pipe);
1987         assert_fdi_rx_disabled(dev_priv, pipe);
1988
1989         /* Ports must be off as well */
1990         assert_pch_ports_disabled(dev_priv, pipe);
1991
1992         reg = PCH_TRANSCONF(pipe);
1993         val = I915_READ(reg);
1994         val &= ~TRANS_ENABLE;
1995         I915_WRITE(reg, val);
1996         /* wait for PCH transcoder off, transcoder state */
1997         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1998                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1999
2000         if (!HAS_PCH_IBX(dev)) {
2001                 /* Workaround: Clear the timing override chicken bit again. */
2002                 reg = TRANS_CHICKEN2(pipe);
2003                 val = I915_READ(reg);
2004                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2005                 I915_WRITE(reg, val);
2006         }
2007 }
2008
2009 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2010 {
2011         u32 val;
2012
2013         val = I915_READ(LPT_TRANSCONF);
2014         val &= ~TRANS_ENABLE;
2015         I915_WRITE(LPT_TRANSCONF, val);
2016         /* wait for PCH transcoder off, transcoder state */
2017         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2018                 DRM_ERROR("Failed to disable PCH transcoder\n");
2019
2020         /* Workaround: clear timing override bit. */
2021         val = I915_READ(_TRANSA_CHICKEN2);
2022         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2023         I915_WRITE(_TRANSA_CHICKEN2, val);
2024 }
2025
2026 /**
2027  * intel_enable_pipe - enable a pipe, asserting requirements
2028  * @crtc: crtc responsible for the pipe
2029  *
2030  * Enable @crtc's pipe, making sure that various hardware specific requirements
2031  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2032  */
2033 static void intel_enable_pipe(struct intel_crtc *crtc)
2034 {
2035         struct drm_device *dev = crtc->base.dev;
2036         struct drm_i915_private *dev_priv = dev->dev_private;
2037         enum pipe pipe = crtc->pipe;
2038         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2039                                                                       pipe);
2040         enum pipe pch_transcoder;
2041         int reg;
2042         u32 val;
2043
2044         assert_planes_disabled(dev_priv, pipe);
2045         assert_cursor_disabled(dev_priv, pipe);
2046         assert_sprites_disabled(dev_priv, pipe);
2047
2048         if (HAS_PCH_LPT(dev_priv->dev))
2049                 pch_transcoder = TRANSCODER_A;
2050         else
2051                 pch_transcoder = pipe;
2052
2053         /*
2054          * A pipe without a PLL won't actually be able to drive bits from
2055          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2056          * need the check.
2057          */
2058         if (!HAS_PCH_SPLIT(dev_priv->dev))
2059                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
2060                         assert_dsi_pll_enabled(dev_priv);
2061                 else
2062                         assert_pll_enabled(dev_priv, pipe);
2063         else {
2064                 if (crtc->config.has_pch_encoder) {
2065                         /* if driving the PCH, we need FDI enabled */
2066                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2067                         assert_fdi_tx_pll_enabled(dev_priv,
2068                                                   (enum pipe) cpu_transcoder);
2069                 }
2070                 /* FIXME: assert CPU port conditions for SNB+ */
2071         }
2072
2073         reg = PIPECONF(cpu_transcoder);
2074         val = I915_READ(reg);
2075         if (val & PIPECONF_ENABLE) {
2076                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2077                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2078                 return;
2079         }
2080
2081         I915_WRITE(reg, val | PIPECONF_ENABLE);
2082         POSTING_READ(reg);
2083 }
2084
2085 /**
2086  * intel_disable_pipe - disable a pipe, asserting requirements
2087  * @crtc: crtc whose pipes is to be disabled
2088  *
2089  * Disable the pipe of @crtc, making sure that various hardware
2090  * specific requirements are met, if applicable, e.g. plane
2091  * disabled, panel fitter off, etc.
2092  *
2093  * Will wait until the pipe has shut down before returning.
2094  */
2095 static void intel_disable_pipe(struct intel_crtc *crtc)
2096 {
2097         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2098         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2099         enum pipe pipe = crtc->pipe;
2100         int reg;
2101         u32 val;
2102
2103         /*
2104          * Make sure planes won't keep trying to pump pixels to us,
2105          * or we might hang the display.
2106          */
2107         assert_planes_disabled(dev_priv, pipe);
2108         assert_cursor_disabled(dev_priv, pipe);
2109         assert_sprites_disabled(dev_priv, pipe);
2110
2111         reg = PIPECONF(cpu_transcoder);
2112         val = I915_READ(reg);
2113         if ((val & PIPECONF_ENABLE) == 0)
2114                 return;
2115
2116         /*
2117          * Double wide has implications for planes
2118          * so best keep it disabled when not needed.
2119          */
2120         if (crtc->config.double_wide)
2121                 val &= ~PIPECONF_DOUBLE_WIDE;
2122
2123         /* Don't disable pipe or pipe PLLs if needed */
2124         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2125             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2126                 val &= ~PIPECONF_ENABLE;
2127
2128         I915_WRITE(reg, val);
2129         if ((val & PIPECONF_ENABLE) == 0)
2130                 intel_wait_for_pipe_off(crtc);
2131 }
2132
2133 /*
2134  * Plane regs are double buffered, going from enabled->disabled needs a
2135  * trigger in order to latch.  The display address reg provides this.
2136  */
2137 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2138                                enum plane plane)
2139 {
2140         struct drm_device *dev = dev_priv->dev;
2141         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2142
2143         I915_WRITE(reg, I915_READ(reg));
2144         POSTING_READ(reg);
2145 }
2146
2147 /**
2148  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2149  * @plane:  plane to be enabled
2150  * @crtc: crtc for the plane
2151  *
2152  * Enable @plane on @crtc, making sure that the pipe is running first.
2153  */
2154 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2155                                           struct drm_crtc *crtc)
2156 {
2157         struct drm_device *dev = plane->dev;
2158         struct drm_i915_private *dev_priv = dev->dev_private;
2159         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2160
2161         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2162         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2163
2164         if (intel_crtc->primary_enabled)
2165                 return;
2166
2167         intel_crtc->primary_enabled = true;
2168
2169         dev_priv->display.update_primary_plane(crtc, plane->fb,
2170                                                crtc->x, crtc->y);
2171
2172         /*
2173          * BDW signals flip done immediately if the plane
2174          * is disabled, even if the plane enable is already
2175          * armed to occur at the next vblank :(
2176          */
2177         if (IS_BROADWELL(dev))
2178                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2179 }
2180
2181 /**
2182  * intel_disable_primary_hw_plane - disable the primary hardware plane
2183  * @plane: plane to be disabled
2184  * @crtc: crtc for the plane
2185  *
2186  * Disable @plane on @crtc, making sure that the pipe is running first.
2187  */
2188 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2189                                            struct drm_crtc *crtc)
2190 {
2191         struct drm_device *dev = plane->dev;
2192         struct drm_i915_private *dev_priv = dev->dev_private;
2193         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2194
2195         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2196
2197         if (!intel_crtc->primary_enabled)
2198                 return;
2199
2200         intel_crtc->primary_enabled = false;
2201
2202         dev_priv->display.update_primary_plane(crtc, plane->fb,
2203                                                crtc->x, crtc->y);
2204 }
2205
2206 static bool need_vtd_wa(struct drm_device *dev)
2207 {
2208 #ifdef CONFIG_INTEL_IOMMU
2209         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2210                 return true;
2211 #endif
2212         return false;
2213 }
2214
2215 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2216 {
2217         int tile_height;
2218
2219         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2220         return ALIGN(height, tile_height);
2221 }
2222
2223 int
2224 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2225                            struct drm_i915_gem_object *obj,
2226                            struct intel_engine_cs *pipelined)
2227 {
2228         struct drm_i915_private *dev_priv = dev->dev_private;
2229         u32 alignment;
2230         int ret;
2231
2232         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2233
2234         switch (obj->tiling_mode) {
2235         case I915_TILING_NONE:
2236                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2237                         alignment = 128 * 1024;
2238                 else if (INTEL_INFO(dev)->gen >= 4)
2239                         alignment = 4 * 1024;
2240                 else
2241                         alignment = 64 * 1024;
2242                 break;
2243         case I915_TILING_X:
2244                 /* pin() will align the object as required by fence */
2245                 alignment = 0;
2246                 break;
2247         case I915_TILING_Y:
2248                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2249                 return -EINVAL;
2250         default:
2251                 BUG();
2252         }
2253
2254         /* Note that the w/a also requires 64 PTE of padding following the
2255          * bo. We currently fill all unused PTE with the shadow page and so
2256          * we should always have valid PTE following the scanout preventing
2257          * the VT-d warning.
2258          */
2259         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2260                 alignment = 256 * 1024;
2261
2262         /*
2263          * Global gtt pte registers are special registers which actually forward
2264          * writes to a chunk of system memory. Which means that there is no risk
2265          * that the register values disappear as soon as we call
2266          * intel_runtime_pm_put(), so it is correct to wrap only the
2267          * pin/unpin/fence and not more.
2268          */
2269         intel_runtime_pm_get(dev_priv);
2270
2271         dev_priv->mm.interruptible = false;
2272         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2273         if (ret)
2274                 goto err_interruptible;
2275
2276         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2277          * fence, whereas 965+ only requires a fence if using
2278          * framebuffer compression.  For simplicity, we always install
2279          * a fence as the cost is not that onerous.
2280          */
2281         ret = i915_gem_object_get_fence(obj);
2282         if (ret)
2283                 goto err_unpin;
2284
2285         i915_gem_object_pin_fence(obj);
2286
2287         dev_priv->mm.interruptible = true;
2288         intel_runtime_pm_put(dev_priv);
2289         return 0;
2290
2291 err_unpin:
2292         i915_gem_object_unpin_from_display_plane(obj);
2293 err_interruptible:
2294         dev_priv->mm.interruptible = true;
2295         intel_runtime_pm_put(dev_priv);
2296         return ret;
2297 }
2298
2299 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2300 {
2301         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2302
2303         i915_gem_object_unpin_fence(obj);
2304         i915_gem_object_unpin_from_display_plane(obj);
2305 }
2306
2307 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2308  * is assumed to be a power-of-two. */
2309 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2310                                              unsigned int tiling_mode,
2311                                              unsigned int cpp,
2312                                              unsigned int pitch)
2313 {
2314         if (tiling_mode != I915_TILING_NONE) {
2315                 unsigned int tile_rows, tiles;
2316
2317                 tile_rows = *y / 8;
2318                 *y %= 8;
2319
2320                 tiles = *x / (512/cpp);
2321                 *x %= 512/cpp;
2322
2323                 return tile_rows * pitch * 8 + tiles * 4096;
2324         } else {
2325                 unsigned int offset;
2326
2327                 offset = *y * pitch + *x * cpp;
2328                 *y = 0;
2329                 *x = (offset & 4095) / cpp;
2330                 return offset & -4096;
2331         }
2332 }
2333
2334 int intel_format_to_fourcc(int format)
2335 {
2336         switch (format) {
2337         case DISPPLANE_8BPP:
2338                 return DRM_FORMAT_C8;
2339         case DISPPLANE_BGRX555:
2340                 return DRM_FORMAT_XRGB1555;
2341         case DISPPLANE_BGRX565:
2342                 return DRM_FORMAT_RGB565;
2343         default:
2344         case DISPPLANE_BGRX888:
2345                 return DRM_FORMAT_XRGB8888;
2346         case DISPPLANE_RGBX888:
2347                 return DRM_FORMAT_XBGR8888;
2348         case DISPPLANE_BGRX101010:
2349                 return DRM_FORMAT_XRGB2101010;
2350         case DISPPLANE_RGBX101010:
2351                 return DRM_FORMAT_XBGR2101010;
2352         }
2353 }
2354
2355 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2356                                   struct intel_plane_config *plane_config)
2357 {
2358         struct drm_device *dev = crtc->base.dev;
2359         struct drm_i915_gem_object *obj = NULL;
2360         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2361         u32 base = plane_config->base;
2362
2363         if (plane_config->size == 0)
2364                 return false;
2365
2366         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2367                                                              plane_config->size);
2368         if (!obj)
2369                 return false;
2370
2371         if (plane_config->tiled) {
2372                 obj->tiling_mode = I915_TILING_X;
2373                 obj->stride = crtc->base.primary->fb->pitches[0];
2374         }
2375
2376         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2377         mode_cmd.width = crtc->base.primary->fb->width;
2378         mode_cmd.height = crtc->base.primary->fb->height;
2379         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2380
2381         mutex_lock(&dev->struct_mutex);
2382
2383         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2384                                    &mode_cmd, obj)) {
2385                 DRM_DEBUG_KMS("intel fb init failed\n");
2386                 goto out_unref_obj;
2387         }
2388
2389         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2390         mutex_unlock(&dev->struct_mutex);
2391
2392         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2393         return true;
2394
2395 out_unref_obj:
2396         drm_gem_object_unreference(&obj->base);
2397         mutex_unlock(&dev->struct_mutex);
2398         return false;
2399 }
2400
2401 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2402                                  struct intel_plane_config *plane_config)
2403 {
2404         struct drm_device *dev = intel_crtc->base.dev;
2405         struct drm_crtc *c;
2406         struct intel_crtc *i;
2407         struct drm_i915_gem_object *obj;
2408
2409         if (!intel_crtc->base.primary->fb)
2410                 return;
2411
2412         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2413                 return;
2414
2415         kfree(intel_crtc->base.primary->fb);
2416         intel_crtc->base.primary->fb = NULL;
2417
2418         /*
2419          * Failed to alloc the obj, check to see if we should share
2420          * an fb with another CRTC instead
2421          */
2422         for_each_crtc(dev, c) {
2423                 i = to_intel_crtc(c);
2424
2425                 if (c == &intel_crtc->base)
2426                         continue;
2427
2428                 if (!i->active)
2429                         continue;
2430
2431                 obj = intel_fb_obj(c->primary->fb);
2432                 if (obj == NULL)
2433                         continue;
2434
2435                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2436                         drm_framebuffer_reference(c->primary->fb);
2437                         intel_crtc->base.primary->fb = c->primary->fb;
2438                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2439                         break;
2440                 }
2441         }
2442 }
2443
2444 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2445                                       struct drm_framebuffer *fb,
2446                                       int x, int y)
2447 {
2448         struct drm_device *dev = crtc->dev;
2449         struct drm_i915_private *dev_priv = dev->dev_private;
2450         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2451         struct drm_i915_gem_object *obj;
2452         int plane = intel_crtc->plane;
2453         unsigned long linear_offset;
2454         u32 dspcntr;
2455         u32 reg = DSPCNTR(plane);
2456         int pixel_size;
2457
2458         if (!intel_crtc->primary_enabled) {
2459                 I915_WRITE(reg, 0);
2460                 if (INTEL_INFO(dev)->gen >= 4)
2461                         I915_WRITE(DSPSURF(plane), 0);
2462                 else
2463                         I915_WRITE(DSPADDR(plane), 0);
2464                 POSTING_READ(reg);
2465                 return;
2466         }
2467
2468         obj = intel_fb_obj(fb);
2469         if (WARN_ON(obj == NULL))
2470                 return;
2471
2472         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2473
2474         dspcntr = DISPPLANE_GAMMA_ENABLE;
2475
2476         dspcntr |= DISPLAY_PLANE_ENABLE;
2477
2478         if (INTEL_INFO(dev)->gen < 4) {
2479                 if (intel_crtc->pipe == PIPE_B)
2480                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2481
2482                 /* pipesrc and dspsize control the size that is scaled from,
2483                  * which should always be the user's requested size.
2484                  */
2485                 I915_WRITE(DSPSIZE(plane),
2486                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2487                            (intel_crtc->config.pipe_src_w - 1));
2488                 I915_WRITE(DSPPOS(plane), 0);
2489         }
2490
2491         switch (fb->pixel_format) {
2492         case DRM_FORMAT_C8:
2493                 dspcntr |= DISPPLANE_8BPP;
2494                 break;
2495         case DRM_FORMAT_XRGB1555:
2496         case DRM_FORMAT_ARGB1555:
2497                 dspcntr |= DISPPLANE_BGRX555;
2498                 break;
2499         case DRM_FORMAT_RGB565:
2500                 dspcntr |= DISPPLANE_BGRX565;
2501                 break;
2502         case DRM_FORMAT_XRGB8888:
2503         case DRM_FORMAT_ARGB8888:
2504                 dspcntr |= DISPPLANE_BGRX888;
2505                 break;
2506         case DRM_FORMAT_XBGR8888:
2507         case DRM_FORMAT_ABGR8888:
2508                 dspcntr |= DISPPLANE_RGBX888;
2509                 break;
2510         case DRM_FORMAT_XRGB2101010:
2511         case DRM_FORMAT_ARGB2101010:
2512                 dspcntr |= DISPPLANE_BGRX101010;
2513                 break;
2514         case DRM_FORMAT_XBGR2101010:
2515         case DRM_FORMAT_ABGR2101010:
2516                 dspcntr |= DISPPLANE_RGBX101010;
2517                 break;
2518         default:
2519                 BUG();
2520         }
2521
2522         if (INTEL_INFO(dev)->gen >= 4 &&
2523             obj->tiling_mode != I915_TILING_NONE)
2524                 dspcntr |= DISPPLANE_TILED;
2525
2526         if (IS_G4X(dev))
2527                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2528
2529         linear_offset = y * fb->pitches[0] + x * pixel_size;
2530
2531         if (INTEL_INFO(dev)->gen >= 4) {
2532                 intel_crtc->dspaddr_offset =
2533                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2534                                                        pixel_size,
2535                                                        fb->pitches[0]);
2536                 linear_offset -= intel_crtc->dspaddr_offset;
2537         } else {
2538                 intel_crtc->dspaddr_offset = linear_offset;
2539         }
2540
2541         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2542                 dspcntr |= DISPPLANE_ROTATE_180;
2543
2544                 x += (intel_crtc->config.pipe_src_w - 1);
2545                 y += (intel_crtc->config.pipe_src_h - 1);
2546
2547                 /* Finding the last pixel of the last line of the display
2548                 data and adding to linear_offset*/
2549                 linear_offset +=
2550                         (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2551                         (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2552         }
2553
2554         I915_WRITE(reg, dspcntr);
2555
2556         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2557                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2558                       fb->pitches[0]);
2559         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2560         if (INTEL_INFO(dev)->gen >= 4) {
2561                 I915_WRITE(DSPSURF(plane),
2562                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2563                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2564                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2565         } else
2566                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2567         POSTING_READ(reg);
2568 }
2569
2570 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2571                                           struct drm_framebuffer *fb,
2572                                           int x, int y)
2573 {
2574         struct drm_device *dev = crtc->dev;
2575         struct drm_i915_private *dev_priv = dev->dev_private;
2576         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2577         struct drm_i915_gem_object *obj;
2578         int plane = intel_crtc->plane;
2579         unsigned long linear_offset;
2580         u32 dspcntr;
2581         u32 reg = DSPCNTR(plane);
2582         int pixel_size;
2583
2584         if (!intel_crtc->primary_enabled) {
2585                 I915_WRITE(reg, 0);
2586                 I915_WRITE(DSPSURF(plane), 0);
2587                 POSTING_READ(reg);
2588                 return;
2589         }
2590
2591         obj = intel_fb_obj(fb);
2592         if (WARN_ON(obj == NULL))
2593                 return;
2594
2595         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2596
2597         dspcntr = DISPPLANE_GAMMA_ENABLE;
2598
2599         dspcntr |= DISPLAY_PLANE_ENABLE;
2600
2601         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2602                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2603
2604         switch (fb->pixel_format) {
2605         case DRM_FORMAT_C8:
2606                 dspcntr |= DISPPLANE_8BPP;
2607                 break;
2608         case DRM_FORMAT_RGB565:
2609                 dspcntr |= DISPPLANE_BGRX565;
2610                 break;
2611         case DRM_FORMAT_XRGB8888:
2612         case DRM_FORMAT_ARGB8888:
2613                 dspcntr |= DISPPLANE_BGRX888;
2614                 break;
2615         case DRM_FORMAT_XBGR8888:
2616         case DRM_FORMAT_ABGR8888:
2617                 dspcntr |= DISPPLANE_RGBX888;
2618                 break;
2619         case DRM_FORMAT_XRGB2101010:
2620         case DRM_FORMAT_ARGB2101010:
2621                 dspcntr |= DISPPLANE_BGRX101010;
2622                 break;
2623         case DRM_FORMAT_XBGR2101010:
2624         case DRM_FORMAT_ABGR2101010:
2625                 dspcntr |= DISPPLANE_RGBX101010;
2626                 break;
2627         default:
2628                 BUG();
2629         }
2630
2631         if (obj->tiling_mode != I915_TILING_NONE)
2632                 dspcntr |= DISPPLANE_TILED;
2633
2634         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2635                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2636
2637         linear_offset = y * fb->pitches[0] + x * pixel_size;
2638         intel_crtc->dspaddr_offset =
2639                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2640                                                pixel_size,
2641                                                fb->pitches[0]);
2642         linear_offset -= intel_crtc->dspaddr_offset;
2643         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2644                 dspcntr |= DISPPLANE_ROTATE_180;
2645
2646                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2647                         x += (intel_crtc->config.pipe_src_w - 1);
2648                         y += (intel_crtc->config.pipe_src_h - 1);
2649
2650                         /* Finding the last pixel of the last line of the display
2651                         data and adding to linear_offset*/
2652                         linear_offset +=
2653                                 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2654                                 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2655                 }
2656         }
2657
2658         I915_WRITE(reg, dspcntr);
2659
2660         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2661                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2662                       fb->pitches[0]);
2663         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2664         I915_WRITE(DSPSURF(plane),
2665                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2666         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2667                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2668         } else {
2669                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2670                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2671         }
2672         POSTING_READ(reg);
2673 }
2674
2675 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2676 static int
2677 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2678                            int x, int y, enum mode_set_atomic state)
2679 {
2680         struct drm_device *dev = crtc->dev;
2681         struct drm_i915_private *dev_priv = dev->dev_private;
2682
2683         if (dev_priv->display.disable_fbc)
2684                 dev_priv->display.disable_fbc(dev);
2685         intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
2686
2687         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2688
2689         return 0;
2690 }
2691
2692 void intel_display_handle_reset(struct drm_device *dev)
2693 {
2694         struct drm_i915_private *dev_priv = dev->dev_private;
2695         struct drm_crtc *crtc;
2696
2697         /*
2698          * Flips in the rings have been nuked by the reset,
2699          * so complete all pending flips so that user space
2700          * will get its events and not get stuck.
2701          *
2702          * Also update the base address of all primary
2703          * planes to the the last fb to make sure we're
2704          * showing the correct fb after a reset.
2705          *
2706          * Need to make two loops over the crtcs so that we
2707          * don't try to grab a crtc mutex before the
2708          * pending_flip_queue really got woken up.
2709          */
2710
2711         for_each_crtc(dev, crtc) {
2712                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2713                 enum plane plane = intel_crtc->plane;
2714
2715                 intel_prepare_page_flip(dev, plane);
2716                 intel_finish_page_flip_plane(dev, plane);
2717         }
2718
2719         for_each_crtc(dev, crtc) {
2720                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2721
2722                 drm_modeset_lock(&crtc->mutex, NULL);
2723                 /*
2724                  * FIXME: Once we have proper support for primary planes (and
2725                  * disabling them without disabling the entire crtc) allow again
2726                  * a NULL crtc->primary->fb.
2727                  */
2728                 if (intel_crtc->active && crtc->primary->fb)
2729                         dev_priv->display.update_primary_plane(crtc,
2730                                                                crtc->primary->fb,
2731                                                                crtc->x,
2732                                                                crtc->y);
2733                 drm_modeset_unlock(&crtc->mutex);
2734         }
2735 }
2736
2737 static int
2738 intel_finish_fb(struct drm_framebuffer *old_fb)
2739 {
2740         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2741         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2742         bool was_interruptible = dev_priv->mm.interruptible;
2743         int ret;
2744
2745         /* Big Hammer, we also need to ensure that any pending
2746          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2747          * current scanout is retired before unpinning the old
2748          * framebuffer.
2749          *
2750          * This should only fail upon a hung GPU, in which case we
2751          * can safely continue.
2752          */
2753         dev_priv->mm.interruptible = false;
2754         ret = i915_gem_object_finish_gpu(obj);
2755         dev_priv->mm.interruptible = was_interruptible;
2756
2757         return ret;
2758 }
2759
2760 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2761 {
2762         struct drm_device *dev = crtc->dev;
2763         struct drm_i915_private *dev_priv = dev->dev_private;
2764         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2765         unsigned long flags;
2766         bool pending;
2767
2768         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2769             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2770                 return false;
2771
2772         spin_lock_irqsave(&dev->event_lock, flags);
2773         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2774         spin_unlock_irqrestore(&dev->event_lock, flags);
2775
2776         return pending;
2777 }
2778
2779 static int
2780 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2781                     struct drm_framebuffer *fb)
2782 {
2783         struct drm_device *dev = crtc->dev;
2784         struct drm_i915_private *dev_priv = dev->dev_private;
2785         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2786         enum pipe pipe = intel_crtc->pipe;
2787         struct drm_framebuffer *old_fb = crtc->primary->fb;
2788         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2789         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2790         int ret;
2791
2792         if (intel_crtc_has_pending_flip(crtc)) {
2793                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2794                 return -EBUSY;
2795         }
2796
2797         /* no fb bound */
2798         if (!fb) {
2799                 DRM_ERROR("No FB bound\n");
2800                 return 0;
2801         }
2802
2803         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2804                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2805                           plane_name(intel_crtc->plane),
2806                           INTEL_INFO(dev)->num_pipes);
2807                 return -EINVAL;
2808         }
2809
2810         mutex_lock(&dev->struct_mutex);
2811         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2812         if (ret == 0)
2813                 i915_gem_track_fb(old_obj, obj,
2814                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
2815         mutex_unlock(&dev->struct_mutex);
2816         if (ret != 0) {
2817                 DRM_ERROR("pin & fence failed\n");
2818                 return ret;
2819         }
2820
2821         /*
2822          * Update pipe size and adjust fitter if needed: the reason for this is
2823          * that in compute_mode_changes we check the native mode (not the pfit
2824          * mode) to see if we can flip rather than do a full mode set. In the
2825          * fastboot case, we'll flip, but if we don't update the pipesrc and
2826          * pfit state, we'll end up with a big fb scanned out into the wrong
2827          * sized surface.
2828          *
2829          * To fix this properly, we need to hoist the checks up into
2830          * compute_mode_changes (or above), check the actual pfit state and
2831          * whether the platform allows pfit disable with pipe active, and only
2832          * then update the pipesrc and pfit state, even on the flip path.
2833          */
2834         if (i915.fastboot) {
2835                 const struct drm_display_mode *adjusted_mode =
2836                         &intel_crtc->config.adjusted_mode;
2837
2838                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2839                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2840                            (adjusted_mode->crtc_vdisplay - 1));
2841                 if (!intel_crtc->config.pch_pfit.enabled &&
2842                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2843                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2844                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2845                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2846                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2847                 }
2848                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2849                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2850         }
2851
2852         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2853
2854         if (intel_crtc->active)
2855                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2856
2857         crtc->primary->fb = fb;
2858         crtc->x = x;
2859         crtc->y = y;
2860
2861         if (old_fb) {
2862                 if (intel_crtc->active && old_fb != fb)
2863                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2864                 mutex_lock(&dev->struct_mutex);
2865                 intel_unpin_fb_obj(old_obj);
2866                 mutex_unlock(&dev->struct_mutex);
2867         }
2868
2869         mutex_lock(&dev->struct_mutex);
2870         intel_update_fbc(dev);
2871         mutex_unlock(&dev->struct_mutex);
2872
2873         return 0;
2874 }
2875
2876 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2877 {
2878         struct drm_device *dev = crtc->dev;
2879         struct drm_i915_private *dev_priv = dev->dev_private;
2880         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2881         int pipe = intel_crtc->pipe;
2882         u32 reg, temp;
2883
2884         /* enable normal train */
2885         reg = FDI_TX_CTL(pipe);
2886         temp = I915_READ(reg);
2887         if (IS_IVYBRIDGE(dev)) {
2888                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2889                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2890         } else {
2891                 temp &= ~FDI_LINK_TRAIN_NONE;
2892                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2893         }
2894         I915_WRITE(reg, temp);
2895
2896         reg = FDI_RX_CTL(pipe);
2897         temp = I915_READ(reg);
2898         if (HAS_PCH_CPT(dev)) {
2899                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2900                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2901         } else {
2902                 temp &= ~FDI_LINK_TRAIN_NONE;
2903                 temp |= FDI_LINK_TRAIN_NONE;
2904         }
2905         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2906
2907         /* wait one idle pattern time */
2908         POSTING_READ(reg);
2909         udelay(1000);
2910
2911         /* IVB wants error correction enabled */
2912         if (IS_IVYBRIDGE(dev))
2913                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2914                            FDI_FE_ERRC_ENABLE);
2915 }
2916
2917 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2918 {
2919         return crtc->base.enabled && crtc->active &&
2920                 crtc->config.has_pch_encoder;
2921 }
2922
2923 static void ivb_modeset_global_resources(struct drm_device *dev)
2924 {
2925         struct drm_i915_private *dev_priv = dev->dev_private;
2926         struct intel_crtc *pipe_B_crtc =
2927                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2928         struct intel_crtc *pipe_C_crtc =
2929                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2930         uint32_t temp;
2931
2932         /*
2933          * When everything is off disable fdi C so that we could enable fdi B
2934          * with all lanes. Note that we don't care about enabled pipes without
2935          * an enabled pch encoder.
2936          */
2937         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2938             !pipe_has_enabled_pch(pipe_C_crtc)) {
2939                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2940                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2941
2942                 temp = I915_READ(SOUTH_CHICKEN1);
2943                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2944                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2945                 I915_WRITE(SOUTH_CHICKEN1, temp);
2946         }
2947 }
2948
2949 /* The FDI link training functions for ILK/Ibexpeak. */
2950 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2951 {
2952         struct drm_device *dev = crtc->dev;
2953         struct drm_i915_private *dev_priv = dev->dev_private;
2954         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2955         int pipe = intel_crtc->pipe;
2956         u32 reg, temp, tries;
2957
2958         /* FDI needs bits from pipe first */
2959         assert_pipe_enabled(dev_priv, pipe);
2960
2961         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2962            for train result */
2963         reg = FDI_RX_IMR(pipe);
2964         temp = I915_READ(reg);
2965         temp &= ~FDI_RX_SYMBOL_LOCK;
2966         temp &= ~FDI_RX_BIT_LOCK;
2967         I915_WRITE(reg, temp);
2968         I915_READ(reg);
2969         udelay(150);
2970
2971         /* enable CPU FDI TX and PCH FDI RX */
2972         reg = FDI_TX_CTL(pipe);
2973         temp = I915_READ(reg);
2974         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2975         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2976         temp &= ~FDI_LINK_TRAIN_NONE;
2977         temp |= FDI_LINK_TRAIN_PATTERN_1;
2978         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2979
2980         reg = FDI_RX_CTL(pipe);
2981         temp = I915_READ(reg);
2982         temp &= ~FDI_LINK_TRAIN_NONE;
2983         temp |= FDI_LINK_TRAIN_PATTERN_1;
2984         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2985
2986         POSTING_READ(reg);
2987         udelay(150);
2988
2989         /* Ironlake workaround, enable clock pointer after FDI enable*/
2990         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2991         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2992                    FDI_RX_PHASE_SYNC_POINTER_EN);
2993
2994         reg = FDI_RX_IIR(pipe);
2995         for (tries = 0; tries < 5; tries++) {
2996                 temp = I915_READ(reg);
2997                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2998
2999                 if ((temp & FDI_RX_BIT_LOCK)) {
3000                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3001                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3002                         break;
3003                 }
3004         }
3005         if (tries == 5)
3006                 DRM_ERROR("FDI train 1 fail!\n");
3007
3008         /* Train 2 */
3009         reg = FDI_TX_CTL(pipe);
3010         temp = I915_READ(reg);
3011         temp &= ~FDI_LINK_TRAIN_NONE;
3012         temp |= FDI_LINK_TRAIN_PATTERN_2;
3013         I915_WRITE(reg, temp);
3014
3015         reg = FDI_RX_CTL(pipe);
3016         temp = I915_READ(reg);
3017         temp &= ~FDI_LINK_TRAIN_NONE;
3018         temp |= FDI_LINK_TRAIN_PATTERN_2;
3019         I915_WRITE(reg, temp);
3020
3021         POSTING_READ(reg);
3022         udelay(150);
3023
3024         reg = FDI_RX_IIR(pipe);
3025         for (tries = 0; tries < 5; tries++) {
3026                 temp = I915_READ(reg);
3027                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3028
3029                 if (temp & FDI_RX_SYMBOL_LOCK) {
3030                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3031                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3032                         break;
3033                 }
3034         }
3035         if (tries == 5)
3036                 DRM_ERROR("FDI train 2 fail!\n");
3037
3038         DRM_DEBUG_KMS("FDI train done\n");
3039
3040 }
3041
3042 static const int snb_b_fdi_train_param[] = {
3043         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3044         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3045         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3046         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3047 };
3048
3049 /* The FDI link training functions for SNB/Cougarpoint. */
3050 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3051 {
3052         struct drm_device *dev = crtc->dev;
3053         struct drm_i915_private *dev_priv = dev->dev_private;
3054         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3055         int pipe = intel_crtc->pipe;
3056         u32 reg, temp, i, retry;
3057
3058         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3059            for train result */
3060         reg = FDI_RX_IMR(pipe);
3061         temp = I915_READ(reg);
3062         temp &= ~FDI_RX_SYMBOL_LOCK;
3063         temp &= ~FDI_RX_BIT_LOCK;
3064         I915_WRITE(reg, temp);
3065
3066         POSTING_READ(reg);
3067         udelay(150);
3068
3069         /* enable CPU FDI TX and PCH FDI RX */
3070         reg = FDI_TX_CTL(pipe);
3071         temp = I915_READ(reg);
3072         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3073         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3074         temp &= ~FDI_LINK_TRAIN_NONE;
3075         temp |= FDI_LINK_TRAIN_PATTERN_1;
3076         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3077         /* SNB-B */
3078         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3079         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3080
3081         I915_WRITE(FDI_RX_MISC(pipe),
3082                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3083
3084         reg = FDI_RX_CTL(pipe);
3085         temp = I915_READ(reg);
3086         if (HAS_PCH_CPT(dev)) {
3087                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3088                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3089         } else {
3090                 temp &= ~FDI_LINK_TRAIN_NONE;
3091                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3092         }
3093         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3094
3095         POSTING_READ(reg);
3096         udelay(150);
3097
3098         for (i = 0; i < 4; i++) {
3099                 reg = FDI_TX_CTL(pipe);
3100                 temp = I915_READ(reg);
3101                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3102                 temp |= snb_b_fdi_train_param[i];
3103                 I915_WRITE(reg, temp);
3104
3105                 POSTING_READ(reg);
3106                 udelay(500);
3107
3108                 for (retry = 0; retry < 5; retry++) {
3109                         reg = FDI_RX_IIR(pipe);
3110                         temp = I915_READ(reg);
3111                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3112                         if (temp & FDI_RX_BIT_LOCK) {
3113                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3114                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3115                                 break;
3116                         }
3117                         udelay(50);
3118                 }
3119                 if (retry < 5)
3120                         break;
3121         }
3122         if (i == 4)
3123                 DRM_ERROR("FDI train 1 fail!\n");
3124
3125         /* Train 2 */
3126         reg = FDI_TX_CTL(pipe);
3127         temp = I915_READ(reg);
3128         temp &= ~FDI_LINK_TRAIN_NONE;
3129         temp |= FDI_LINK_TRAIN_PATTERN_2;
3130         if (IS_GEN6(dev)) {
3131                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3132                 /* SNB-B */
3133                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3134         }
3135         I915_WRITE(reg, temp);
3136
3137         reg = FDI_RX_CTL(pipe);
3138         temp = I915_READ(reg);
3139         if (HAS_PCH_CPT(dev)) {
3140                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3141                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3142         } else {
3143                 temp &= ~FDI_LINK_TRAIN_NONE;
3144                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3145         }
3146         I915_WRITE(reg, temp);
3147
3148         POSTING_READ(reg);
3149         udelay(150);
3150
3151         for (i = 0; i < 4; i++) {
3152                 reg = FDI_TX_CTL(pipe);
3153                 temp = I915_READ(reg);
3154                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3155                 temp |= snb_b_fdi_train_param[i];
3156                 I915_WRITE(reg, temp);
3157
3158                 POSTING_READ(reg);
3159                 udelay(500);
3160
3161                 for (retry = 0; retry < 5; retry++) {
3162                         reg = FDI_RX_IIR(pipe);
3163                         temp = I915_READ(reg);
3164                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3165                         if (temp & FDI_RX_SYMBOL_LOCK) {
3166                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3167                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3168                                 break;
3169                         }
3170                         udelay(50);
3171                 }
3172                 if (retry < 5)
3173                         break;
3174         }
3175         if (i == 4)
3176                 DRM_ERROR("FDI train 2 fail!\n");
3177
3178         DRM_DEBUG_KMS("FDI train done.\n");
3179 }
3180
3181 /* Manual link training for Ivy Bridge A0 parts */
3182 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3183 {
3184         struct drm_device *dev = crtc->dev;
3185         struct drm_i915_private *dev_priv = dev->dev_private;
3186         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3187         int pipe = intel_crtc->pipe;
3188         u32 reg, temp, i, j;
3189
3190         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3191            for train result */
3192         reg = FDI_RX_IMR(pipe);
3193         temp = I915_READ(reg);
3194         temp &= ~FDI_RX_SYMBOL_LOCK;
3195         temp &= ~FDI_RX_BIT_LOCK;
3196         I915_WRITE(reg, temp);
3197
3198         POSTING_READ(reg);
3199         udelay(150);
3200
3201         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3202                       I915_READ(FDI_RX_IIR(pipe)));
3203
3204         /* Try each vswing and preemphasis setting twice before moving on */
3205         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3206                 /* disable first in case we need to retry */
3207                 reg = FDI_TX_CTL(pipe);
3208                 temp = I915_READ(reg);
3209                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3210                 temp &= ~FDI_TX_ENABLE;
3211                 I915_WRITE(reg, temp);
3212
3213                 reg = FDI_RX_CTL(pipe);
3214                 temp = I915_READ(reg);
3215                 temp &= ~FDI_LINK_TRAIN_AUTO;
3216                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3217                 temp &= ~FDI_RX_ENABLE;
3218                 I915_WRITE(reg, temp);
3219
3220                 /* enable CPU FDI TX and PCH FDI RX */
3221                 reg = FDI_TX_CTL(pipe);
3222                 temp = I915_READ(reg);
3223                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3224                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3225                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3226                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3227                 temp |= snb_b_fdi_train_param[j/2];
3228                 temp |= FDI_COMPOSITE_SYNC;
3229                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3230
3231                 I915_WRITE(FDI_RX_MISC(pipe),
3232                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3233
3234                 reg = FDI_RX_CTL(pipe);
3235                 temp = I915_READ(reg);
3236                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3237                 temp |= FDI_COMPOSITE_SYNC;
3238                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3239
3240                 POSTING_READ(reg);
3241                 udelay(1); /* should be 0.5us */
3242
3243                 for (i = 0; i < 4; i++) {
3244                         reg = FDI_RX_IIR(pipe);
3245                         temp = I915_READ(reg);
3246                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3247
3248                         if (temp & FDI_RX_BIT_LOCK ||
3249                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3250                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3251                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3252                                               i);
3253                                 break;
3254                         }
3255                         udelay(1); /* should be 0.5us */
3256                 }
3257                 if (i == 4) {
3258                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3259                         continue;
3260                 }
3261
3262                 /* Train 2 */
3263                 reg = FDI_TX_CTL(pipe);
3264                 temp = I915_READ(reg);
3265                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3266                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3267                 I915_WRITE(reg, temp);
3268
3269                 reg = FDI_RX_CTL(pipe);
3270                 temp = I915_READ(reg);
3271                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3272                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3273                 I915_WRITE(reg, temp);
3274
3275                 POSTING_READ(reg);
3276                 udelay(2); /* should be 1.5us */
3277
3278                 for (i = 0; i < 4; i++) {
3279                         reg = FDI_RX_IIR(pipe);
3280                         temp = I915_READ(reg);
3281                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3282
3283                         if (temp & FDI_RX_SYMBOL_LOCK ||
3284                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3285                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3286                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3287                                               i);
3288                                 goto train_done;
3289                         }
3290                         udelay(2); /* should be 1.5us */
3291                 }
3292                 if (i == 4)
3293                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3294         }
3295
3296 train_done:
3297         DRM_DEBUG_KMS("FDI train done.\n");
3298 }
3299
3300 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3301 {
3302         struct drm_device *dev = intel_crtc->base.dev;
3303         struct drm_i915_private *dev_priv = dev->dev_private;
3304         int pipe = intel_crtc->pipe;
3305         u32 reg, temp;
3306
3307
3308         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3309         reg = FDI_RX_CTL(pipe);
3310         temp = I915_READ(reg);
3311         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3312         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3313         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3314         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3315
3316         POSTING_READ(reg);
3317         udelay(200);
3318
3319         /* Switch from Rawclk to PCDclk */
3320         temp = I915_READ(reg);
3321         I915_WRITE(reg, temp | FDI_PCDCLK);
3322
3323         POSTING_READ(reg);
3324         udelay(200);
3325
3326         /* Enable CPU FDI TX PLL, always on for Ironlake */
3327         reg = FDI_TX_CTL(pipe);
3328         temp = I915_READ(reg);
3329         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3330                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3331
3332                 POSTING_READ(reg);
3333                 udelay(100);
3334         }
3335 }
3336
3337 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3338 {
3339         struct drm_device *dev = intel_crtc->base.dev;
3340         struct drm_i915_private *dev_priv = dev->dev_private;
3341         int pipe = intel_crtc->pipe;
3342         u32 reg, temp;
3343
3344         /* Switch from PCDclk to Rawclk */
3345         reg = FDI_RX_CTL(pipe);
3346         temp = I915_READ(reg);
3347         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3348
3349         /* Disable CPU FDI TX PLL */
3350         reg = FDI_TX_CTL(pipe);
3351         temp = I915_READ(reg);
3352         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3353
3354         POSTING_READ(reg);
3355         udelay(100);
3356
3357         reg = FDI_RX_CTL(pipe);
3358         temp = I915_READ(reg);
3359         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3360
3361         /* Wait for the clocks to turn off. */
3362         POSTING_READ(reg);
3363         udelay(100);
3364 }
3365
3366 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3367 {
3368         struct drm_device *dev = crtc->dev;
3369         struct drm_i915_private *dev_priv = dev->dev_private;
3370         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3371         int pipe = intel_crtc->pipe;
3372         u32 reg, temp;
3373
3374         /* disable CPU FDI tx and PCH FDI rx */
3375         reg = FDI_TX_CTL(pipe);
3376         temp = I915_READ(reg);
3377         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3378         POSTING_READ(reg);
3379
3380         reg = FDI_RX_CTL(pipe);
3381         temp = I915_READ(reg);
3382         temp &= ~(0x7 << 16);
3383         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3384         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3385
3386         POSTING_READ(reg);
3387         udelay(100);
3388
3389         /* Ironlake workaround, disable clock pointer after downing FDI */
3390         if (HAS_PCH_IBX(dev))
3391                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3392
3393         /* still set train pattern 1 */
3394         reg = FDI_TX_CTL(pipe);
3395         temp = I915_READ(reg);
3396         temp &= ~FDI_LINK_TRAIN_NONE;
3397         temp |= FDI_LINK_TRAIN_PATTERN_1;
3398         I915_WRITE(reg, temp);
3399
3400         reg = FDI_RX_CTL(pipe);
3401         temp = I915_READ(reg);
3402         if (HAS_PCH_CPT(dev)) {
3403                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3404                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3405         } else {
3406                 temp &= ~FDI_LINK_TRAIN_NONE;
3407                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3408         }
3409         /* BPC in FDI rx is consistent with that in PIPECONF */
3410         temp &= ~(0x07 << 16);
3411         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3412         I915_WRITE(reg, temp);
3413
3414         POSTING_READ(reg);
3415         udelay(100);
3416 }
3417
3418 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3419 {
3420         struct intel_crtc *crtc;
3421
3422         /* Note that we don't need to be called with mode_config.lock here
3423          * as our list of CRTC objects is static for the lifetime of the
3424          * device and so cannot disappear as we iterate. Similarly, we can
3425          * happily treat the predicates as racy, atomic checks as userspace
3426          * cannot claim and pin a new fb without at least acquring the
3427          * struct_mutex and so serialising with us.
3428          */
3429         for_each_intel_crtc(dev, crtc) {
3430                 if (atomic_read(&crtc->unpin_work_count) == 0)
3431                         continue;
3432
3433                 if (crtc->unpin_work)
3434                         intel_wait_for_vblank(dev, crtc->pipe);
3435
3436                 return true;
3437         }
3438
3439         return false;
3440 }
3441
3442 static void page_flip_completed(struct intel_crtc *intel_crtc)
3443 {
3444         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3445         struct intel_unpin_work *work = intel_crtc->unpin_work;
3446
3447         /* ensure that the unpin work is consistent wrt ->pending. */
3448         smp_rmb();
3449         intel_crtc->unpin_work = NULL;
3450
3451         if (work->event)
3452                 drm_send_vblank_event(intel_crtc->base.dev,
3453                                       intel_crtc->pipe,
3454                                       work->event);
3455
3456         drm_crtc_vblank_put(&intel_crtc->base);
3457
3458         wake_up_all(&dev_priv->pending_flip_queue);
3459         queue_work(dev_priv->wq, &work->work);
3460
3461         trace_i915_flip_complete(intel_crtc->plane,
3462                                  work->pending_flip_obj);
3463 }
3464
3465 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3466 {
3467         struct drm_device *dev = crtc->dev;
3468         struct drm_i915_private *dev_priv = dev->dev_private;
3469
3470         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3471         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3472                                        !intel_crtc_has_pending_flip(crtc),
3473                                        60*HZ) == 0)) {
3474                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3475                 unsigned long flags;
3476
3477                 spin_lock_irqsave(&dev->event_lock, flags);
3478                 if (intel_crtc->unpin_work) {
3479                         WARN_ONCE(1, "Removing stuck page flip\n");
3480                         page_flip_completed(intel_crtc);
3481                 }
3482                 spin_unlock_irqrestore(&dev->event_lock, flags);
3483         }
3484
3485         if (crtc->primary->fb) {
3486                 mutex_lock(&dev->struct_mutex);
3487                 intel_finish_fb(crtc->primary->fb);
3488                 mutex_unlock(&dev->struct_mutex);
3489         }
3490 }
3491
3492 /* Program iCLKIP clock to the desired frequency */
3493 static void lpt_program_iclkip(struct drm_crtc *crtc)
3494 {
3495         struct drm_device *dev = crtc->dev;
3496         struct drm_i915_private *dev_priv = dev->dev_private;
3497         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3498         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3499         u32 temp;
3500
3501         mutex_lock(&dev_priv->dpio_lock);
3502
3503         /* It is necessary to ungate the pixclk gate prior to programming
3504          * the divisors, and gate it back when it is done.
3505          */
3506         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3507
3508         /* Disable SSCCTL */
3509         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3510                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3511                                 SBI_SSCCTL_DISABLE,
3512                         SBI_ICLK);
3513
3514         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3515         if (clock == 20000) {
3516                 auxdiv = 1;
3517                 divsel = 0x41;
3518                 phaseinc = 0x20;
3519         } else {
3520                 /* The iCLK virtual clock root frequency is in MHz,
3521                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3522                  * divisors, it is necessary to divide one by another, so we
3523                  * convert the virtual clock precision to KHz here for higher
3524                  * precision.
3525                  */
3526                 u32 iclk_virtual_root_freq = 172800 * 1000;
3527                 u32 iclk_pi_range = 64;
3528                 u32 desired_divisor, msb_divisor_value, pi_value;
3529
3530                 desired_divisor = (iclk_virtual_root_freq / clock);
3531                 msb_divisor_value = desired_divisor / iclk_pi_range;
3532                 pi_value = desired_divisor % iclk_pi_range;
3533
3534                 auxdiv = 0;
3535                 divsel = msb_divisor_value - 2;
3536                 phaseinc = pi_value;
3537         }
3538
3539         /* This should not happen with any sane values */
3540         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3541                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3542         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3543                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3544
3545         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3546                         clock,
3547                         auxdiv,
3548                         divsel,
3549                         phasedir,
3550                         phaseinc);
3551
3552         /* Program SSCDIVINTPHASE6 */
3553         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3554         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3555         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3556         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3557         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3558         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3559         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3560         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3561
3562         /* Program SSCAUXDIV */
3563         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3564         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3565         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3566         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3567
3568         /* Enable modulator and associated divider */
3569         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3570         temp &= ~SBI_SSCCTL_DISABLE;
3571         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3572
3573         /* Wait for initialization time */
3574         udelay(24);
3575
3576         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3577
3578         mutex_unlock(&dev_priv->dpio_lock);
3579 }
3580
3581 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3582                                                 enum pipe pch_transcoder)
3583 {
3584         struct drm_device *dev = crtc->base.dev;
3585         struct drm_i915_private *dev_priv = dev->dev_private;
3586         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3587
3588         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3589                    I915_READ(HTOTAL(cpu_transcoder)));
3590         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3591                    I915_READ(HBLANK(cpu_transcoder)));
3592         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3593                    I915_READ(HSYNC(cpu_transcoder)));
3594
3595         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3596                    I915_READ(VTOTAL(cpu_transcoder)));
3597         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3598                    I915_READ(VBLANK(cpu_transcoder)));
3599         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3600                    I915_READ(VSYNC(cpu_transcoder)));
3601         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3602                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3603 }
3604
3605 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3606 {
3607         struct drm_i915_private *dev_priv = dev->dev_private;
3608         uint32_t temp;
3609
3610         temp = I915_READ(SOUTH_CHICKEN1);
3611         if (temp & FDI_BC_BIFURCATION_SELECT)
3612                 return;
3613
3614         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3615         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3616
3617         temp |= FDI_BC_BIFURCATION_SELECT;
3618         DRM_DEBUG_KMS("enabling fdi C rx\n");
3619         I915_WRITE(SOUTH_CHICKEN1, temp);
3620         POSTING_READ(SOUTH_CHICKEN1);
3621 }
3622
3623 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3624 {
3625         struct drm_device *dev = intel_crtc->base.dev;
3626         struct drm_i915_private *dev_priv = dev->dev_private;
3627
3628         switch (intel_crtc->pipe) {
3629         case PIPE_A:
3630                 break;
3631         case PIPE_B:
3632                 if (intel_crtc->config.fdi_lanes > 2)
3633                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3634                 else
3635                         cpt_enable_fdi_bc_bifurcation(dev);
3636
3637                 break;
3638         case PIPE_C:
3639                 cpt_enable_fdi_bc_bifurcation(dev);
3640
3641                 break;
3642         default:
3643                 BUG();
3644         }
3645 }
3646
3647 /*
3648  * Enable PCH resources required for PCH ports:
3649  *   - PCH PLLs
3650  *   - FDI training & RX/TX
3651  *   - update transcoder timings
3652  *   - DP transcoding bits
3653  *   - transcoder
3654  */
3655 static void ironlake_pch_enable(struct drm_crtc *crtc)
3656 {
3657         struct drm_device *dev = crtc->dev;
3658         struct drm_i915_private *dev_priv = dev->dev_private;
3659         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3660         int pipe = intel_crtc->pipe;
3661         u32 reg, temp;
3662
3663         assert_pch_transcoder_disabled(dev_priv, pipe);
3664
3665         if (IS_IVYBRIDGE(dev))
3666                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3667
3668         /* Write the TU size bits before fdi link training, so that error
3669          * detection works. */
3670         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3671                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3672
3673         /* For PCH output, training FDI link */
3674         dev_priv->display.fdi_link_train(crtc);
3675
3676         /* We need to program the right clock selection before writing the pixel
3677          * mutliplier into the DPLL. */
3678         if (HAS_PCH_CPT(dev)) {
3679                 u32 sel;
3680
3681                 temp = I915_READ(PCH_DPLL_SEL);
3682                 temp |= TRANS_DPLL_ENABLE(pipe);
3683                 sel = TRANS_DPLLB_SEL(pipe);
3684                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3685                         temp |= sel;
3686                 else
3687                         temp &= ~sel;
3688                 I915_WRITE(PCH_DPLL_SEL, temp);
3689         }
3690
3691         /* XXX: pch pll's can be enabled any time before we enable the PCH
3692          * transcoder, and we actually should do this to not upset any PCH
3693          * transcoder that already use the clock when we share it.
3694          *
3695          * Note that enable_shared_dpll tries to do the right thing, but
3696          * get_shared_dpll unconditionally resets the pll - we need that to have
3697          * the right LVDS enable sequence. */
3698         intel_enable_shared_dpll(intel_crtc);
3699
3700         /* set transcoder timing, panel must allow it */
3701         assert_panel_unlocked(dev_priv, pipe);
3702         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3703
3704         intel_fdi_normal_train(crtc);
3705
3706         /* For PCH DP, enable TRANS_DP_CTL */
3707         if (HAS_PCH_CPT(dev) &&
3708             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3709              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3710                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3711                 reg = TRANS_DP_CTL(pipe);
3712                 temp = I915_READ(reg);
3713                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3714                           TRANS_DP_SYNC_MASK |
3715                           TRANS_DP_BPC_MASK);
3716                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3717                          TRANS_DP_ENH_FRAMING);
3718                 temp |= bpc << 9; /* same format but at 11:9 */
3719
3720                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3721                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3722                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3723                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3724
3725                 switch (intel_trans_dp_port_sel(crtc)) {
3726                 case PCH_DP_B:
3727                         temp |= TRANS_DP_PORT_SEL_B;
3728                         break;
3729                 case PCH_DP_C:
3730                         temp |= TRANS_DP_PORT_SEL_C;
3731                         break;
3732                 case PCH_DP_D:
3733                         temp |= TRANS_DP_PORT_SEL_D;
3734                         break;
3735                 default:
3736                         BUG();
3737                 }
3738
3739                 I915_WRITE(reg, temp);
3740         }
3741
3742         ironlake_enable_pch_transcoder(dev_priv, pipe);
3743 }
3744
3745 static void lpt_pch_enable(struct drm_crtc *crtc)
3746 {
3747         struct drm_device *dev = crtc->dev;
3748         struct drm_i915_private *dev_priv = dev->dev_private;
3749         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3750         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3751
3752         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3753
3754         lpt_program_iclkip(crtc);
3755
3756         /* Set transcoder timing. */
3757         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3758
3759         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3760 }
3761
3762 void intel_put_shared_dpll(struct intel_crtc *crtc)
3763 {
3764         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3765
3766         if (pll == NULL)
3767                 return;
3768
3769         if (pll->refcount == 0) {
3770                 WARN(1, "bad %s refcount\n", pll->name);
3771                 return;
3772         }
3773
3774         if (--pll->refcount == 0) {
3775                 WARN_ON(pll->on);
3776                 WARN_ON(pll->active);
3777         }
3778
3779         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3780 }
3781
3782 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3783 {
3784         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3785         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3786         enum intel_dpll_id i;
3787
3788         if (pll) {
3789                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3790                               crtc->base.base.id, pll->name);
3791                 intel_put_shared_dpll(crtc);
3792         }
3793
3794         if (HAS_PCH_IBX(dev_priv->dev)) {
3795                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3796                 i = (enum intel_dpll_id) crtc->pipe;
3797                 pll = &dev_priv->shared_dplls[i];
3798
3799                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3800                               crtc->base.base.id, pll->name);
3801
3802                 WARN_ON(pll->refcount);
3803
3804                 goto found;
3805         }
3806
3807         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3808                 pll = &dev_priv->shared_dplls[i];
3809
3810                 /* Only want to check enabled timings first */
3811                 if (pll->refcount == 0)
3812                         continue;
3813
3814                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3815                            sizeof(pll->hw_state)) == 0) {
3816                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3817                                       crtc->base.base.id,
3818                                       pll->name, pll->refcount, pll->active);
3819
3820                         goto found;
3821                 }
3822         }
3823
3824         /* Ok no matching timings, maybe there's a free one? */
3825         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3826                 pll = &dev_priv->shared_dplls[i];
3827                 if (pll->refcount == 0) {
3828                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3829                                       crtc->base.base.id, pll->name);
3830                         goto found;
3831                 }
3832         }
3833
3834         return NULL;
3835
3836 found:
3837         if (pll->refcount == 0)
3838                 pll->hw_state = crtc->config.dpll_hw_state;
3839
3840         crtc->config.shared_dpll = i;
3841         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3842                          pipe_name(crtc->pipe));
3843
3844         pll->refcount++;
3845
3846         return pll;
3847 }
3848
3849 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3850 {
3851         struct drm_i915_private *dev_priv = dev->dev_private;
3852         int dslreg = PIPEDSL(pipe);
3853         u32 temp;
3854
3855         temp = I915_READ(dslreg);
3856         udelay(500);
3857         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3858                 if (wait_for(I915_READ(dslreg) != temp, 5))
3859                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3860         }
3861 }
3862
3863 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3864 {
3865         struct drm_device *dev = crtc->base.dev;
3866         struct drm_i915_private *dev_priv = dev->dev_private;
3867         int pipe = crtc->pipe;
3868
3869         if (crtc->config.pch_pfit.enabled) {
3870                 /* Force use of hard-coded filter coefficients
3871                  * as some pre-programmed values are broken,
3872                  * e.g. x201.
3873                  */
3874                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3875                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3876                                                  PF_PIPE_SEL_IVB(pipe));
3877                 else
3878                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3879                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3880                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3881         }
3882 }
3883
3884 static void intel_enable_planes(struct drm_crtc *crtc)
3885 {
3886         struct drm_device *dev = crtc->dev;
3887         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3888         struct drm_plane *plane;
3889         struct intel_plane *intel_plane;
3890
3891         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3892                 intel_plane = to_intel_plane(plane);
3893                 if (intel_plane->pipe == pipe)
3894                         intel_plane_restore(&intel_plane->base);
3895         }
3896 }
3897
3898 static void intel_disable_planes(struct drm_crtc *crtc)
3899 {
3900         struct drm_device *dev = crtc->dev;
3901         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3902         struct drm_plane *plane;
3903         struct intel_plane *intel_plane;
3904
3905         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3906                 intel_plane = to_intel_plane(plane);
3907                 if (intel_plane->pipe == pipe)
3908                         intel_plane_disable(&intel_plane->base);
3909         }
3910 }
3911
3912 void hsw_enable_ips(struct intel_crtc *crtc)
3913 {
3914         struct drm_device *dev = crtc->base.dev;
3915         struct drm_i915_private *dev_priv = dev->dev_private;
3916
3917         if (!crtc->config.ips_enabled)
3918                 return;
3919
3920         /* We can only enable IPS after we enable a plane and wait for a vblank */
3921         intel_wait_for_vblank(dev, crtc->pipe);
3922
3923         assert_plane_enabled(dev_priv, crtc->plane);
3924         if (IS_BROADWELL(dev)) {
3925                 mutex_lock(&dev_priv->rps.hw_lock);
3926                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3927                 mutex_unlock(&dev_priv->rps.hw_lock);
3928                 /* Quoting Art Runyan: "its not safe to expect any particular
3929                  * value in IPS_CTL bit 31 after enabling IPS through the
3930                  * mailbox." Moreover, the mailbox may return a bogus state,
3931                  * so we need to just enable it and continue on.
3932                  */
3933         } else {
3934                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3935                 /* The bit only becomes 1 in the next vblank, so this wait here
3936                  * is essentially intel_wait_for_vblank. If we don't have this
3937                  * and don't wait for vblanks until the end of crtc_enable, then
3938                  * the HW state readout code will complain that the expected
3939                  * IPS_CTL value is not the one we read. */
3940                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3941                         DRM_ERROR("Timed out waiting for IPS enable\n");
3942         }
3943 }
3944
3945 void hsw_disable_ips(struct intel_crtc *crtc)
3946 {
3947         struct drm_device *dev = crtc->base.dev;
3948         struct drm_i915_private *dev_priv = dev->dev_private;
3949
3950         if (!crtc->config.ips_enabled)
3951                 return;
3952
3953         assert_plane_enabled(dev_priv, crtc->plane);
3954         if (IS_BROADWELL(dev)) {
3955                 mutex_lock(&dev_priv->rps.hw_lock);
3956                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3957                 mutex_unlock(&dev_priv->rps.hw_lock);
3958                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3959                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3960                         DRM_ERROR("Timed out waiting for IPS disable\n");
3961         } else {
3962                 I915_WRITE(IPS_CTL, 0);
3963                 POSTING_READ(IPS_CTL);
3964         }
3965
3966         /* We need to wait for a vblank before we can disable the plane. */
3967         intel_wait_for_vblank(dev, crtc->pipe);
3968 }
3969
3970 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3971 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3972 {
3973         struct drm_device *dev = crtc->dev;
3974         struct drm_i915_private *dev_priv = dev->dev_private;
3975         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3976         enum pipe pipe = intel_crtc->pipe;
3977         int palreg = PALETTE(pipe);
3978         int i;
3979         bool reenable_ips = false;
3980
3981         /* The clocks have to be on to load the palette. */
3982         if (!crtc->enabled || !intel_crtc->active)
3983                 return;
3984
3985         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3986                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3987                         assert_dsi_pll_enabled(dev_priv);
3988                 else
3989                         assert_pll_enabled(dev_priv, pipe);
3990         }
3991
3992         /* use legacy palette for Ironlake */
3993         if (!HAS_GMCH_DISPLAY(dev))
3994                 palreg = LGC_PALETTE(pipe);
3995
3996         /* Workaround : Do not read or write the pipe palette/gamma data while
3997          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3998          */
3999         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4000             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4001              GAMMA_MODE_MODE_SPLIT)) {
4002                 hsw_disable_ips(intel_crtc);
4003                 reenable_ips = true;
4004         }
4005
4006         for (i = 0; i < 256; i++) {
4007                 I915_WRITE(palreg + 4 * i,
4008                            (intel_crtc->lut_r[i] << 16) |
4009                            (intel_crtc->lut_g[i] << 8) |
4010                            intel_crtc->lut_b[i]);
4011         }
4012
4013         if (reenable_ips)
4014                 hsw_enable_ips(intel_crtc);
4015 }
4016
4017 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4018 {
4019         if (!enable && intel_crtc->overlay) {
4020                 struct drm_device *dev = intel_crtc->base.dev;
4021                 struct drm_i915_private *dev_priv = dev->dev_private;
4022
4023                 mutex_lock(&dev->struct_mutex);
4024                 dev_priv->mm.interruptible = false;
4025                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4026                 dev_priv->mm.interruptible = true;
4027                 mutex_unlock(&dev->struct_mutex);
4028         }
4029
4030         /* Let userspace switch the overlay on again. In most cases userspace
4031          * has to recompute where to put it anyway.
4032          */
4033 }
4034
4035 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4036 {
4037         struct drm_device *dev = crtc->dev;
4038         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4039         int pipe = intel_crtc->pipe;
4040
4041         assert_vblank_disabled(crtc);
4042
4043         drm_vblank_on(dev, pipe);
4044
4045         intel_enable_primary_hw_plane(crtc->primary, crtc);
4046         intel_enable_planes(crtc);
4047         intel_crtc_update_cursor(crtc, true);
4048         intel_crtc_dpms_overlay(intel_crtc, true);
4049
4050         hsw_enable_ips(intel_crtc);
4051
4052         mutex_lock(&dev->struct_mutex);
4053         intel_update_fbc(dev);
4054         mutex_unlock(&dev->struct_mutex);
4055
4056         /*
4057          * FIXME: Once we grow proper nuclear flip support out of this we need
4058          * to compute the mask of flip planes precisely. For the time being
4059          * consider this a flip from a NULL plane.
4060          */
4061         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4062 }
4063
4064 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4065 {
4066         struct drm_device *dev = crtc->dev;
4067         struct drm_i915_private *dev_priv = dev->dev_private;
4068         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4069         int pipe = intel_crtc->pipe;
4070         int plane = intel_crtc->plane;
4071
4072         intel_crtc_wait_for_pending_flips(crtc);
4073
4074         if (dev_priv->fbc.plane == plane)
4075                 intel_disable_fbc(dev);
4076
4077         hsw_disable_ips(intel_crtc);
4078
4079         intel_crtc_dpms_overlay(intel_crtc, false);
4080         intel_crtc_update_cursor(crtc, false);
4081         intel_disable_planes(crtc);
4082         intel_disable_primary_hw_plane(crtc->primary, crtc);
4083
4084         /*
4085          * FIXME: Once we grow proper nuclear flip support out of this we need
4086          * to compute the mask of flip planes precisely. For the time being
4087          * consider this a flip to a NULL plane.
4088          */
4089         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4090
4091         drm_vblank_off(dev, pipe);
4092
4093         assert_vblank_disabled(crtc);
4094 }
4095
4096 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4097 {
4098         struct drm_device *dev = crtc->dev;
4099         struct drm_i915_private *dev_priv = dev->dev_private;
4100         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4101         struct intel_encoder *encoder;
4102         int pipe = intel_crtc->pipe;
4103
4104         WARN_ON(!crtc->enabled);
4105
4106         if (intel_crtc->active)
4107                 return;
4108
4109         if (intel_crtc->config.has_pch_encoder)
4110                 intel_prepare_shared_dpll(intel_crtc);
4111
4112         if (intel_crtc->config.has_dp_encoder)
4113                 intel_dp_set_m_n(intel_crtc);
4114
4115         intel_set_pipe_timings(intel_crtc);
4116
4117         if (intel_crtc->config.has_pch_encoder) {
4118                 intel_cpu_transcoder_set_m_n(intel_crtc,
4119                                      &intel_crtc->config.fdi_m_n, NULL);
4120         }
4121
4122         ironlake_set_pipeconf(crtc);
4123
4124         intel_crtc->active = true;
4125
4126         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4127         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4128
4129         for_each_encoder_on_crtc(dev, crtc, encoder)
4130                 if (encoder->pre_enable)
4131                         encoder->pre_enable(encoder);
4132
4133         if (intel_crtc->config.has_pch_encoder) {
4134                 /* Note: FDI PLL enabling _must_ be done before we enable the
4135                  * cpu pipes, hence this is separate from all the other fdi/pch
4136                  * enabling. */
4137                 ironlake_fdi_pll_enable(intel_crtc);
4138         } else {
4139                 assert_fdi_tx_disabled(dev_priv, pipe);
4140                 assert_fdi_rx_disabled(dev_priv, pipe);
4141         }
4142
4143         ironlake_pfit_enable(intel_crtc);
4144
4145         /*
4146          * On ILK+ LUT must be loaded before the pipe is running but with
4147          * clocks enabled
4148          */
4149         intel_crtc_load_lut(crtc);
4150
4151         intel_update_watermarks(crtc);
4152         intel_enable_pipe(intel_crtc);
4153
4154         if (intel_crtc->config.has_pch_encoder)
4155                 ironlake_pch_enable(crtc);
4156
4157         for_each_encoder_on_crtc(dev, crtc, encoder)
4158                 encoder->enable(encoder);
4159
4160         if (HAS_PCH_CPT(dev))
4161                 cpt_verify_modeset(dev, intel_crtc->pipe);
4162
4163         intel_crtc_enable_planes(crtc);
4164 }
4165
4166 /* IPS only exists on ULT machines and is tied to pipe A. */
4167 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4168 {
4169         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4170 }
4171
4172 /*
4173  * This implements the workaround described in the "notes" section of the mode
4174  * set sequence documentation. When going from no pipes or single pipe to
4175  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4176  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4177  */
4178 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4179 {
4180         struct drm_device *dev = crtc->base.dev;
4181         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4182
4183         /* We want to get the other_active_crtc only if there's only 1 other
4184          * active crtc. */
4185         for_each_intel_crtc(dev, crtc_it) {
4186                 if (!crtc_it->active || crtc_it == crtc)
4187                         continue;
4188
4189                 if (other_active_crtc)
4190                         return;
4191
4192                 other_active_crtc = crtc_it;
4193         }
4194         if (!other_active_crtc)
4195                 return;
4196
4197         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4198         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4199 }
4200
4201 static void haswell_crtc_enable(struct drm_crtc *crtc)
4202 {
4203         struct drm_device *dev = crtc->dev;
4204         struct drm_i915_private *dev_priv = dev->dev_private;
4205         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4206         struct intel_encoder *encoder;
4207         int pipe = intel_crtc->pipe;
4208
4209         WARN_ON(!crtc->enabled);
4210
4211         if (intel_crtc->active)
4212                 return;
4213
4214         if (intel_crtc_to_shared_dpll(intel_crtc))
4215                 intel_enable_shared_dpll(intel_crtc);
4216
4217         if (intel_crtc->config.has_dp_encoder)
4218                 intel_dp_set_m_n(intel_crtc);
4219
4220         intel_set_pipe_timings(intel_crtc);
4221
4222         if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4223                 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4224                            intel_crtc->config.pixel_multiplier - 1);
4225         }
4226
4227         if (intel_crtc->config.has_pch_encoder) {
4228                 intel_cpu_transcoder_set_m_n(intel_crtc,
4229                                      &intel_crtc->config.fdi_m_n, NULL);
4230         }
4231
4232         haswell_set_pipeconf(crtc);
4233
4234         intel_set_pipe_csc(crtc);
4235
4236         intel_crtc->active = true;
4237
4238         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4239         for_each_encoder_on_crtc(dev, crtc, encoder)
4240                 if (encoder->pre_enable)
4241                         encoder->pre_enable(encoder);
4242
4243         if (intel_crtc->config.has_pch_encoder) {
4244                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4245                 dev_priv->display.fdi_link_train(crtc);
4246         }
4247
4248         intel_ddi_enable_pipe_clock(intel_crtc);
4249
4250         ironlake_pfit_enable(intel_crtc);
4251
4252         /*
4253          * On ILK+ LUT must be loaded before the pipe is running but with
4254          * clocks enabled
4255          */
4256         intel_crtc_load_lut(crtc);
4257
4258         intel_ddi_set_pipe_settings(crtc);
4259         intel_ddi_enable_transcoder_func(crtc);
4260
4261         intel_update_watermarks(crtc);
4262         intel_enable_pipe(intel_crtc);
4263
4264         if (intel_crtc->config.has_pch_encoder)
4265                 lpt_pch_enable(crtc);
4266
4267         if (intel_crtc->config.dp_encoder_is_mst)
4268                 intel_ddi_set_vc_payload_alloc(crtc, true);
4269
4270         for_each_encoder_on_crtc(dev, crtc, encoder) {
4271                 encoder->enable(encoder);
4272                 intel_opregion_notify_encoder(encoder, true);
4273         }
4274
4275         /* If we change the relative order between pipe/planes enabling, we need
4276          * to change the workaround. */
4277         haswell_mode_set_planes_workaround(intel_crtc);
4278         intel_crtc_enable_planes(crtc);
4279 }
4280
4281 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4282 {
4283         struct drm_device *dev = crtc->base.dev;
4284         struct drm_i915_private *dev_priv = dev->dev_private;
4285         int pipe = crtc->pipe;
4286
4287         /* To avoid upsetting the power well on haswell only disable the pfit if
4288          * it's in use. The hw state code will make sure we get this right. */
4289         if (crtc->config.pch_pfit.enabled) {
4290                 I915_WRITE(PF_CTL(pipe), 0);
4291                 I915_WRITE(PF_WIN_POS(pipe), 0);
4292                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4293         }
4294 }
4295
4296 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4297 {
4298         struct drm_device *dev = crtc->dev;
4299         struct drm_i915_private *dev_priv = dev->dev_private;
4300         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4301         struct intel_encoder *encoder;
4302         int pipe = intel_crtc->pipe;
4303         u32 reg, temp;
4304
4305         if (!intel_crtc->active)
4306                 return;
4307
4308         intel_crtc_disable_planes(crtc);
4309
4310         for_each_encoder_on_crtc(dev, crtc, encoder)
4311                 encoder->disable(encoder);
4312
4313         if (intel_crtc->config.has_pch_encoder)
4314                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4315
4316         intel_disable_pipe(intel_crtc);
4317
4318         ironlake_pfit_disable(intel_crtc);
4319
4320         for_each_encoder_on_crtc(dev, crtc, encoder)
4321                 if (encoder->post_disable)
4322                         encoder->post_disable(encoder);
4323
4324         if (intel_crtc->config.has_pch_encoder) {
4325                 ironlake_fdi_disable(crtc);
4326
4327                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4328                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4329
4330                 if (HAS_PCH_CPT(dev)) {
4331                         /* disable TRANS_DP_CTL */
4332                         reg = TRANS_DP_CTL(pipe);
4333                         temp = I915_READ(reg);
4334                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4335                                   TRANS_DP_PORT_SEL_MASK);
4336                         temp |= TRANS_DP_PORT_SEL_NONE;
4337                         I915_WRITE(reg, temp);
4338
4339                         /* disable DPLL_SEL */
4340                         temp = I915_READ(PCH_DPLL_SEL);
4341                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4342                         I915_WRITE(PCH_DPLL_SEL, temp);
4343                 }
4344
4345                 /* disable PCH DPLL */
4346                 intel_disable_shared_dpll(intel_crtc);
4347
4348                 ironlake_fdi_pll_disable(intel_crtc);
4349         }
4350
4351         intel_crtc->active = false;
4352         intel_update_watermarks(crtc);
4353
4354         mutex_lock(&dev->struct_mutex);
4355         intel_update_fbc(dev);
4356         mutex_unlock(&dev->struct_mutex);
4357 }
4358
4359 static void haswell_crtc_disable(struct drm_crtc *crtc)
4360 {
4361         struct drm_device *dev = crtc->dev;
4362         struct drm_i915_private *dev_priv = dev->dev_private;
4363         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4364         struct intel_encoder *encoder;
4365         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4366
4367         if (!intel_crtc->active)
4368                 return;
4369
4370         intel_crtc_disable_planes(crtc);
4371
4372         for_each_encoder_on_crtc(dev, crtc, encoder) {
4373                 intel_opregion_notify_encoder(encoder, false);
4374                 encoder->disable(encoder);
4375         }
4376
4377         if (intel_crtc->config.has_pch_encoder)
4378                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4379         intel_disable_pipe(intel_crtc);
4380
4381         if (intel_crtc->config.dp_encoder_is_mst)
4382                 intel_ddi_set_vc_payload_alloc(crtc, false);
4383
4384         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4385
4386         ironlake_pfit_disable(intel_crtc);
4387
4388         intel_ddi_disable_pipe_clock(intel_crtc);
4389
4390         if (intel_crtc->config.has_pch_encoder) {
4391                 lpt_disable_pch_transcoder(dev_priv);
4392                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4393                 intel_ddi_fdi_disable(crtc);
4394         }
4395
4396         for_each_encoder_on_crtc(dev, crtc, encoder)
4397                 if (encoder->post_disable)
4398                         encoder->post_disable(encoder);
4399
4400         intel_crtc->active = false;
4401         intel_update_watermarks(crtc);
4402
4403         mutex_lock(&dev->struct_mutex);
4404         intel_update_fbc(dev);
4405         mutex_unlock(&dev->struct_mutex);
4406
4407         if (intel_crtc_to_shared_dpll(intel_crtc))
4408                 intel_disable_shared_dpll(intel_crtc);
4409 }
4410
4411 static void ironlake_crtc_off(struct drm_crtc *crtc)
4412 {
4413         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4414         intel_put_shared_dpll(intel_crtc);
4415 }
4416
4417
4418 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4419 {
4420         struct drm_device *dev = crtc->base.dev;
4421         struct drm_i915_private *dev_priv = dev->dev_private;
4422         struct intel_crtc_config *pipe_config = &crtc->config;
4423
4424         if (!crtc->config.gmch_pfit.control)
4425                 return;
4426
4427         /*
4428          * The panel fitter should only be adjusted whilst the pipe is disabled,
4429          * according to register description and PRM.
4430          */
4431         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4432         assert_pipe_disabled(dev_priv, crtc->pipe);
4433
4434         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4435         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4436
4437         /* Border color in case we don't scale up to the full screen. Black by
4438          * default, change to something else for debugging. */
4439         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4440 }
4441
4442 static enum intel_display_power_domain port_to_power_domain(enum port port)
4443 {
4444         switch (port) {
4445         case PORT_A:
4446                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4447         case PORT_B:
4448                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4449         case PORT_C:
4450                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4451         case PORT_D:
4452                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4453         default:
4454                 WARN_ON_ONCE(1);
4455                 return POWER_DOMAIN_PORT_OTHER;
4456         }
4457 }
4458
4459 #define for_each_power_domain(domain, mask)                             \
4460         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4461                 if ((1 << (domain)) & (mask))
4462
4463 enum intel_display_power_domain
4464 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4465 {
4466         struct drm_device *dev = intel_encoder->base.dev;
4467         struct intel_digital_port *intel_dig_port;
4468
4469         switch (intel_encoder->type) {
4470         case INTEL_OUTPUT_UNKNOWN:
4471                 /* Only DDI platforms should ever use this output type */
4472                 WARN_ON_ONCE(!HAS_DDI(dev));
4473         case INTEL_OUTPUT_DISPLAYPORT:
4474         case INTEL_OUTPUT_HDMI:
4475         case INTEL_OUTPUT_EDP:
4476                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4477                 return port_to_power_domain(intel_dig_port->port);
4478         case INTEL_OUTPUT_DP_MST:
4479                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4480                 return port_to_power_domain(intel_dig_port->port);
4481         case INTEL_OUTPUT_ANALOG:
4482                 return POWER_DOMAIN_PORT_CRT;
4483         case INTEL_OUTPUT_DSI:
4484                 return POWER_DOMAIN_PORT_DSI;
4485         default:
4486                 return POWER_DOMAIN_PORT_OTHER;
4487         }
4488 }
4489
4490 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4491 {
4492         struct drm_device *dev = crtc->dev;
4493         struct intel_encoder *intel_encoder;
4494         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4495         enum pipe pipe = intel_crtc->pipe;
4496         unsigned long mask;
4497         enum transcoder transcoder;
4498
4499         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4500
4501         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4502         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4503         if (intel_crtc->config.pch_pfit.enabled ||
4504             intel_crtc->config.pch_pfit.force_thru)
4505                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4506
4507         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4508                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4509
4510         return mask;
4511 }
4512
4513 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4514                                   bool enable)
4515 {
4516         if (dev_priv->power_domains.init_power_on == enable)
4517                 return;
4518
4519         if (enable)
4520                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4521         else
4522                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4523
4524         dev_priv->power_domains.init_power_on = enable;
4525 }
4526
4527 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4528 {
4529         struct drm_i915_private *dev_priv = dev->dev_private;
4530         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4531         struct intel_crtc *crtc;
4532
4533         /*
4534          * First get all needed power domains, then put all unneeded, to avoid
4535          * any unnecessary toggling of the power wells.
4536          */
4537         for_each_intel_crtc(dev, crtc) {
4538                 enum intel_display_power_domain domain;
4539
4540                 if (!crtc->base.enabled)
4541                         continue;
4542
4543                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4544
4545                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4546                         intel_display_power_get(dev_priv, domain);
4547         }
4548
4549         for_each_intel_crtc(dev, crtc) {
4550                 enum intel_display_power_domain domain;
4551
4552                 for_each_power_domain(domain, crtc->enabled_power_domains)
4553                         intel_display_power_put(dev_priv, domain);
4554
4555                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4556         }
4557
4558         intel_display_set_init_power(dev_priv, false);
4559 }
4560
4561 /* returns HPLL frequency in kHz */
4562 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4563 {
4564         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4565
4566         /* Obtain SKU information */
4567         mutex_lock(&dev_priv->dpio_lock);
4568         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4569                 CCK_FUSE_HPLL_FREQ_MASK;
4570         mutex_unlock(&dev_priv->dpio_lock);
4571
4572         return vco_freq[hpll_freq] * 1000;
4573 }
4574
4575 static void vlv_update_cdclk(struct drm_device *dev)
4576 {
4577         struct drm_i915_private *dev_priv = dev->dev_private;
4578
4579         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4580         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4581                          dev_priv->vlv_cdclk_freq);
4582
4583         /*
4584          * Program the gmbus_freq based on the cdclk frequency.
4585          * BSpec erroneously claims we should aim for 4MHz, but
4586          * in fact 1MHz is the correct frequency.
4587          */
4588         I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4589 }
4590
4591 /* Adjust CDclk dividers to allow high res or save power if possible */
4592 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4593 {
4594         struct drm_i915_private *dev_priv = dev->dev_private;
4595         u32 val, cmd;
4596
4597         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4598
4599         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4600                 cmd = 2;
4601         else if (cdclk == 266667)
4602                 cmd = 1;
4603         else
4604                 cmd = 0;
4605
4606         mutex_lock(&dev_priv->rps.hw_lock);
4607         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4608         val &= ~DSPFREQGUAR_MASK;
4609         val |= (cmd << DSPFREQGUAR_SHIFT);
4610         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4611         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4612                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4613                      50)) {
4614                 DRM_ERROR("timed out waiting for CDclk change\n");
4615         }
4616         mutex_unlock(&dev_priv->rps.hw_lock);
4617
4618         if (cdclk == 400000) {
4619                 u32 divider, vco;
4620
4621                 vco = valleyview_get_vco(dev_priv);
4622                 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4623
4624                 mutex_lock(&dev_priv->dpio_lock);
4625                 /* adjust cdclk divider */
4626                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4627                 val &= ~DISPLAY_FREQUENCY_VALUES;
4628                 val |= divider;
4629                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4630
4631                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4632                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4633                              50))
4634                         DRM_ERROR("timed out waiting for CDclk change\n");
4635                 mutex_unlock(&dev_priv->dpio_lock);
4636         }
4637
4638         mutex_lock(&dev_priv->dpio_lock);
4639         /* adjust self-refresh exit latency value */
4640         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4641         val &= ~0x7f;
4642
4643         /*
4644          * For high bandwidth configs, we set a higher latency in the bunit
4645          * so that the core display fetch happens in time to avoid underruns.
4646          */
4647         if (cdclk == 400000)
4648                 val |= 4500 / 250; /* 4.5 usec */
4649         else
4650                 val |= 3000 / 250; /* 3.0 usec */
4651         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4652         mutex_unlock(&dev_priv->dpio_lock);
4653
4654         vlv_update_cdclk(dev);
4655 }
4656
4657 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4658 {
4659         struct drm_i915_private *dev_priv = dev->dev_private;
4660         u32 val, cmd;
4661
4662         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4663
4664         switch (cdclk) {
4665         case 400000:
4666                 cmd = 3;
4667                 break;
4668         case 333333:
4669         case 320000:
4670                 cmd = 2;
4671                 break;
4672         case 266667:
4673                 cmd = 1;
4674                 break;
4675         case 200000:
4676                 cmd = 0;
4677                 break;
4678         default:
4679                 WARN_ON(1);
4680                 return;
4681         }
4682
4683         mutex_lock(&dev_priv->rps.hw_lock);
4684         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4685         val &= ~DSPFREQGUAR_MASK_CHV;
4686         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4687         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4688         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4689                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4690                      50)) {
4691                 DRM_ERROR("timed out waiting for CDclk change\n");
4692         }
4693         mutex_unlock(&dev_priv->rps.hw_lock);
4694
4695         vlv_update_cdclk(dev);
4696 }
4697
4698 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4699                                  int max_pixclk)
4700 {
4701         int vco = valleyview_get_vco(dev_priv);
4702         int freq_320 = (vco <<  1) % 320000 != 0 ? 333333 : 320000;
4703
4704         /* FIXME: Punit isn't quite ready yet */
4705         if (IS_CHERRYVIEW(dev_priv->dev))
4706                 return 400000;
4707
4708         /*
4709          * Really only a few cases to deal with, as only 4 CDclks are supported:
4710          *   200MHz
4711          *   267MHz
4712          *   320/333MHz (depends on HPLL freq)
4713          *   400MHz
4714          * So we check to see whether we're above 90% of the lower bin and
4715          * adjust if needed.
4716          *
4717          * We seem to get an unstable or solid color picture at 200MHz.
4718          * Not sure what's wrong. For now use 200MHz only when all pipes
4719          * are off.
4720          */
4721         if (max_pixclk > freq_320*9/10)
4722                 return 400000;
4723         else if (max_pixclk > 266667*9/10)
4724                 return freq_320;
4725         else if (max_pixclk > 0)
4726                 return 266667;
4727         else
4728                 return 200000;
4729 }
4730
4731 /* compute the max pixel clock for new configuration */
4732 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4733 {
4734         struct drm_device *dev = dev_priv->dev;
4735         struct intel_crtc *intel_crtc;
4736         int max_pixclk = 0;
4737
4738         for_each_intel_crtc(dev, intel_crtc) {
4739                 if (intel_crtc->new_enabled)
4740                         max_pixclk = max(max_pixclk,
4741                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4742         }
4743
4744         return max_pixclk;
4745 }
4746
4747 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4748                                             unsigned *prepare_pipes)
4749 {
4750         struct drm_i915_private *dev_priv = dev->dev_private;
4751         struct intel_crtc *intel_crtc;
4752         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4753
4754         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4755             dev_priv->vlv_cdclk_freq)
4756                 return;
4757
4758         /* disable/enable all currently active pipes while we change cdclk */
4759         for_each_intel_crtc(dev, intel_crtc)
4760                 if (intel_crtc->base.enabled)
4761                         *prepare_pipes |= (1 << intel_crtc->pipe);
4762 }
4763
4764 static void valleyview_modeset_global_resources(struct drm_device *dev)
4765 {
4766         struct drm_i915_private *dev_priv = dev->dev_private;
4767         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4768         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4769
4770         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4771                 if (IS_CHERRYVIEW(dev))
4772                         cherryview_set_cdclk(dev, req_cdclk);
4773                 else
4774                         valleyview_set_cdclk(dev, req_cdclk);
4775         }
4776
4777         modeset_update_crtc_power_domains(dev);
4778 }
4779
4780 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4781 {
4782         struct drm_device *dev = crtc->dev;
4783         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4784         struct intel_encoder *encoder;
4785         int pipe = intel_crtc->pipe;
4786         bool is_dsi;
4787
4788         WARN_ON(!crtc->enabled);
4789
4790         if (intel_crtc->active)
4791                 return;
4792
4793         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4794
4795         if (!is_dsi) {
4796                 if (IS_CHERRYVIEW(dev))
4797                         chv_prepare_pll(intel_crtc);
4798                 else
4799                         vlv_prepare_pll(intel_crtc);
4800         }
4801
4802         if (intel_crtc->config.has_dp_encoder)
4803                 intel_dp_set_m_n(intel_crtc);
4804
4805         intel_set_pipe_timings(intel_crtc);
4806
4807         i9xx_set_pipeconf(intel_crtc);
4808
4809         intel_crtc->active = true;
4810
4811         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4812
4813         for_each_encoder_on_crtc(dev, crtc, encoder)
4814                 if (encoder->pre_pll_enable)
4815                         encoder->pre_pll_enable(encoder);
4816
4817         if (!is_dsi) {
4818                 if (IS_CHERRYVIEW(dev))
4819                         chv_enable_pll(intel_crtc);
4820                 else
4821                         vlv_enable_pll(intel_crtc);
4822         }
4823
4824         for_each_encoder_on_crtc(dev, crtc, encoder)
4825                 if (encoder->pre_enable)
4826                         encoder->pre_enable(encoder);
4827
4828         i9xx_pfit_enable(intel_crtc);
4829
4830         intel_crtc_load_lut(crtc);
4831
4832         intel_update_watermarks(crtc);
4833         intel_enable_pipe(intel_crtc);
4834
4835         for_each_encoder_on_crtc(dev, crtc, encoder)
4836                 encoder->enable(encoder);
4837
4838         intel_crtc_enable_planes(crtc);
4839
4840         /* Underruns don't raise interrupts, so check manually. */
4841         i9xx_check_fifo_underruns(dev);
4842 }
4843
4844 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4845 {
4846         struct drm_device *dev = crtc->base.dev;
4847         struct drm_i915_private *dev_priv = dev->dev_private;
4848
4849         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4850         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4851 }
4852
4853 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4854 {
4855         struct drm_device *dev = crtc->dev;
4856         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4857         struct intel_encoder *encoder;
4858         int pipe = intel_crtc->pipe;
4859
4860         WARN_ON(!crtc->enabled);
4861
4862         if (intel_crtc->active)
4863                 return;
4864
4865         i9xx_set_pll_dividers(intel_crtc);
4866
4867         if (intel_crtc->config.has_dp_encoder)
4868                 intel_dp_set_m_n(intel_crtc);
4869
4870         intel_set_pipe_timings(intel_crtc);
4871
4872         i9xx_set_pipeconf(intel_crtc);
4873
4874         intel_crtc->active = true;
4875
4876         if (!IS_GEN2(dev))
4877                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4878
4879         for_each_encoder_on_crtc(dev, crtc, encoder)
4880                 if (encoder->pre_enable)
4881                         encoder->pre_enable(encoder);
4882
4883         i9xx_enable_pll(intel_crtc);
4884
4885         i9xx_pfit_enable(intel_crtc);
4886
4887         intel_crtc_load_lut(crtc);
4888
4889         intel_update_watermarks(crtc);
4890         intel_enable_pipe(intel_crtc);
4891
4892         for_each_encoder_on_crtc(dev, crtc, encoder)
4893                 encoder->enable(encoder);
4894
4895         intel_crtc_enable_planes(crtc);
4896
4897         /*
4898          * Gen2 reports pipe underruns whenever all planes are disabled.
4899          * So don't enable underrun reporting before at least some planes
4900          * are enabled.
4901          * FIXME: Need to fix the logic to work when we turn off all planes
4902          * but leave the pipe running.
4903          */
4904         if (IS_GEN2(dev))
4905                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4906
4907         /* Underruns don't raise interrupts, so check manually. */
4908         i9xx_check_fifo_underruns(dev);
4909 }
4910
4911 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4912 {
4913         struct drm_device *dev = crtc->base.dev;
4914         struct drm_i915_private *dev_priv = dev->dev_private;
4915
4916         if (!crtc->config.gmch_pfit.control)
4917                 return;
4918
4919         assert_pipe_disabled(dev_priv, crtc->pipe);
4920
4921         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4922                          I915_READ(PFIT_CONTROL));
4923         I915_WRITE(PFIT_CONTROL, 0);
4924 }
4925
4926 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4927 {
4928         struct drm_device *dev = crtc->dev;
4929         struct drm_i915_private *dev_priv = dev->dev_private;
4930         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4931         struct intel_encoder *encoder;
4932         int pipe = intel_crtc->pipe;
4933
4934         if (!intel_crtc->active)
4935                 return;
4936
4937         /*
4938          * Gen2 reports pipe underruns whenever all planes are disabled.
4939          * So diasble underrun reporting before all the planes get disabled.
4940          * FIXME: Need to fix the logic to work when we turn off all planes
4941          * but leave the pipe running.
4942          */
4943         if (IS_GEN2(dev))
4944                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4945
4946         /*
4947          * Vblank time updates from the shadow to live plane control register
4948          * are blocked if the memory self-refresh mode is active at that
4949          * moment. So to make sure the plane gets truly disabled, disable
4950          * first the self-refresh mode. The self-refresh enable bit in turn
4951          * will be checked/applied by the HW only at the next frame start
4952          * event which is after the vblank start event, so we need to have a
4953          * wait-for-vblank between disabling the plane and the pipe.
4954          */
4955         intel_set_memory_cxsr(dev_priv, false);
4956         intel_crtc_disable_planes(crtc);
4957
4958         for_each_encoder_on_crtc(dev, crtc, encoder)
4959                 encoder->disable(encoder);
4960
4961         /*
4962          * On gen2 planes are double buffered but the pipe isn't, so we must
4963          * wait for planes to fully turn off before disabling the pipe.
4964          * We also need to wait on all gmch platforms because of the
4965          * self-refresh mode constraint explained above.
4966          */
4967         intel_wait_for_vblank(dev, pipe);
4968
4969         intel_disable_pipe(intel_crtc);
4970
4971         i9xx_pfit_disable(intel_crtc);
4972
4973         for_each_encoder_on_crtc(dev, crtc, encoder)
4974                 if (encoder->post_disable)
4975                         encoder->post_disable(encoder);
4976
4977         if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4978                 if (IS_CHERRYVIEW(dev))
4979                         chv_disable_pll(dev_priv, pipe);
4980                 else if (IS_VALLEYVIEW(dev))
4981                         vlv_disable_pll(dev_priv, pipe);
4982                 else
4983                         i9xx_disable_pll(intel_crtc);
4984         }
4985
4986         if (!IS_GEN2(dev))
4987                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4988
4989         intel_crtc->active = false;
4990         intel_update_watermarks(crtc);
4991
4992         mutex_lock(&dev->struct_mutex);
4993         intel_update_fbc(dev);
4994         mutex_unlock(&dev->struct_mutex);
4995 }
4996
4997 static void i9xx_crtc_off(struct drm_crtc *crtc)
4998 {
4999 }
5000
5001 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5002                                     bool enabled)
5003 {
5004         struct drm_device *dev = crtc->dev;
5005         struct drm_i915_master_private *master_priv;
5006         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5007         int pipe = intel_crtc->pipe;
5008
5009         if (!dev->primary->master)
5010                 return;
5011
5012         master_priv = dev->primary->master->driver_priv;
5013         if (!master_priv->sarea_priv)
5014                 return;
5015
5016         switch (pipe) {
5017         case 0:
5018                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5019                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5020                 break;
5021         case 1:
5022                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5023                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5024                 break;
5025         default:
5026                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
5027                 break;
5028         }
5029 }
5030
5031 /* Master function to enable/disable CRTC and corresponding power wells */
5032 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5033 {
5034         struct drm_device *dev = crtc->dev;
5035         struct drm_i915_private *dev_priv = dev->dev_private;
5036         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5037         enum intel_display_power_domain domain;
5038         unsigned long domains;
5039
5040         if (enable) {
5041                 if (!intel_crtc->active) {
5042                         domains = get_crtc_power_domains(crtc);
5043                         for_each_power_domain(domain, domains)
5044                                 intel_display_power_get(dev_priv, domain);
5045                         intel_crtc->enabled_power_domains = domains;
5046
5047                         dev_priv->display.crtc_enable(crtc);
5048                 }
5049         } else {
5050                 if (intel_crtc->active) {
5051                         dev_priv->display.crtc_disable(crtc);
5052
5053                         domains = intel_crtc->enabled_power_domains;
5054                         for_each_power_domain(domain, domains)
5055                                 intel_display_power_put(dev_priv, domain);
5056                         intel_crtc->enabled_power_domains = 0;
5057                 }
5058         }
5059 }
5060
5061 /**
5062  * Sets the power management mode of the pipe and plane.
5063  */
5064 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5065 {
5066         struct drm_device *dev = crtc->dev;
5067         struct intel_encoder *intel_encoder;
5068         bool enable = false;
5069
5070         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5071                 enable |= intel_encoder->connectors_active;
5072
5073         intel_crtc_control(crtc, enable);
5074
5075         intel_crtc_update_sarea(crtc, enable);
5076 }
5077
5078 static void intel_crtc_disable(struct drm_crtc *crtc)
5079 {
5080         struct drm_device *dev = crtc->dev;
5081         struct drm_connector *connector;
5082         struct drm_i915_private *dev_priv = dev->dev_private;
5083         struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
5084         enum pipe pipe = to_intel_crtc(crtc)->pipe;
5085
5086         /* crtc should still be enabled when we disable it. */
5087         WARN_ON(!crtc->enabled);
5088
5089         dev_priv->display.crtc_disable(crtc);
5090         intel_crtc_update_sarea(crtc, false);
5091         dev_priv->display.off(crtc);
5092
5093         if (crtc->primary->fb) {
5094                 mutex_lock(&dev->struct_mutex);
5095                 intel_unpin_fb_obj(old_obj);
5096                 i915_gem_track_fb(old_obj, NULL,
5097                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
5098                 mutex_unlock(&dev->struct_mutex);
5099                 crtc->primary->fb = NULL;
5100         }
5101
5102         /* Update computed state. */
5103         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5104                 if (!connector->encoder || !connector->encoder->crtc)
5105                         continue;
5106
5107                 if (connector->encoder->crtc != crtc)
5108                         continue;
5109
5110                 connector->dpms = DRM_MODE_DPMS_OFF;
5111                 to_intel_encoder(connector->encoder)->connectors_active = false;
5112         }
5113 }
5114
5115 void intel_encoder_destroy(struct drm_encoder *encoder)
5116 {
5117         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5118
5119         drm_encoder_cleanup(encoder);
5120         kfree(intel_encoder);
5121 }
5122
5123 /* Simple dpms helper for encoders with just one connector, no cloning and only
5124  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5125  * state of the entire output pipe. */
5126 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5127 {
5128         if (mode == DRM_MODE_DPMS_ON) {
5129                 encoder->connectors_active = true;
5130
5131                 intel_crtc_update_dpms(encoder->base.crtc);
5132         } else {
5133                 encoder->connectors_active = false;
5134
5135                 intel_crtc_update_dpms(encoder->base.crtc);
5136         }
5137 }
5138
5139 /* Cross check the actual hw state with our own modeset state tracking (and it's
5140  * internal consistency). */
5141 static void intel_connector_check_state(struct intel_connector *connector)
5142 {
5143         if (connector->get_hw_state(connector)) {
5144                 struct intel_encoder *encoder = connector->encoder;
5145                 struct drm_crtc *crtc;
5146                 bool encoder_enabled;
5147                 enum pipe pipe;
5148
5149                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5150                               connector->base.base.id,
5151                               connector->base.name);
5152
5153                 /* there is no real hw state for MST connectors */
5154                 if (connector->mst_port)
5155                         return;
5156
5157                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5158                      "wrong connector dpms state\n");
5159                 WARN(connector->base.encoder != &encoder->base,
5160                      "active connector not linked to encoder\n");
5161
5162                 if (encoder) {
5163                         WARN(!encoder->connectors_active,
5164                              "encoder->connectors_active not set\n");
5165
5166                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5167                         WARN(!encoder_enabled, "encoder not enabled\n");
5168                         if (WARN_ON(!encoder->base.crtc))
5169                                 return;
5170
5171                         crtc = encoder->base.crtc;
5172
5173                         WARN(!crtc->enabled, "crtc not enabled\n");
5174                         WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5175                         WARN(pipe != to_intel_crtc(crtc)->pipe,
5176                              "encoder active on the wrong pipe\n");
5177                 }
5178         }
5179 }
5180
5181 /* Even simpler default implementation, if there's really no special case to
5182  * consider. */
5183 void intel_connector_dpms(struct drm_connector *connector, int mode)
5184 {
5185         /* All the simple cases only support two dpms states. */
5186         if (mode != DRM_MODE_DPMS_ON)
5187                 mode = DRM_MODE_DPMS_OFF;
5188
5189         if (mode == connector->dpms)
5190                 return;
5191
5192         connector->dpms = mode;
5193
5194         /* Only need to change hw state when actually enabled */
5195         if (connector->encoder)
5196                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5197
5198         intel_modeset_check_state(connector->dev);
5199 }
5200
5201 /* Simple connector->get_hw_state implementation for encoders that support only
5202  * one connector and no cloning and hence the encoder state determines the state
5203  * of the connector. */
5204 bool intel_connector_get_hw_state(struct intel_connector *connector)
5205 {
5206         enum pipe pipe = 0;
5207         struct intel_encoder *encoder = connector->encoder;
5208
5209         return encoder->get_hw_state(encoder, &pipe);
5210 }
5211
5212 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5213                                      struct intel_crtc_config *pipe_config)
5214 {
5215         struct drm_i915_private *dev_priv = dev->dev_private;
5216         struct intel_crtc *pipe_B_crtc =
5217                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5218
5219         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5220                       pipe_name(pipe), pipe_config->fdi_lanes);
5221         if (pipe_config->fdi_lanes > 4) {
5222                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5223                               pipe_name(pipe), pipe_config->fdi_lanes);
5224                 return false;
5225         }
5226
5227         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5228                 if (pipe_config->fdi_lanes > 2) {
5229                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5230                                       pipe_config->fdi_lanes);
5231                         return false;
5232                 } else {
5233                         return true;
5234                 }
5235         }
5236
5237         if (INTEL_INFO(dev)->num_pipes == 2)
5238                 return true;
5239
5240         /* Ivybridge 3 pipe is really complicated */
5241         switch (pipe) {
5242         case PIPE_A:
5243                 return true;
5244         case PIPE_B:
5245                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5246                     pipe_config->fdi_lanes > 2) {
5247                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5248                                       pipe_name(pipe), pipe_config->fdi_lanes);
5249                         return false;
5250                 }
5251                 return true;
5252         case PIPE_C:
5253                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5254                     pipe_B_crtc->config.fdi_lanes <= 2) {
5255                         if (pipe_config->fdi_lanes > 2) {
5256                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5257                                               pipe_name(pipe), pipe_config->fdi_lanes);
5258                                 return false;
5259                         }
5260                 } else {
5261                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5262                         return false;
5263                 }
5264                 return true;
5265         default:
5266                 BUG();
5267         }
5268 }
5269
5270 #define RETRY 1
5271 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5272                                        struct intel_crtc_config *pipe_config)
5273 {
5274         struct drm_device *dev = intel_crtc->base.dev;
5275         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5276         int lane, link_bw, fdi_dotclock;
5277         bool setup_ok, needs_recompute = false;
5278
5279 retry:
5280         /* FDI is a binary signal running at ~2.7GHz, encoding
5281          * each output octet as 10 bits. The actual frequency
5282          * is stored as a divider into a 100MHz clock, and the
5283          * mode pixel clock is stored in units of 1KHz.
5284          * Hence the bw of each lane in terms of the mode signal
5285          * is:
5286          */
5287         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5288
5289         fdi_dotclock = adjusted_mode->crtc_clock;
5290
5291         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5292                                            pipe_config->pipe_bpp);
5293
5294         pipe_config->fdi_lanes = lane;
5295
5296         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5297                                link_bw, &pipe_config->fdi_m_n);
5298
5299         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5300                                             intel_crtc->pipe, pipe_config);
5301         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5302                 pipe_config->pipe_bpp -= 2*3;
5303                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5304                               pipe_config->pipe_bpp);
5305                 needs_recompute = true;
5306                 pipe_config->bw_constrained = true;
5307
5308                 goto retry;
5309         }
5310
5311         if (needs_recompute)
5312                 return RETRY;
5313
5314         return setup_ok ? 0 : -EINVAL;
5315 }
5316
5317 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5318                                    struct intel_crtc_config *pipe_config)
5319 {
5320         pipe_config->ips_enabled = i915.enable_ips &&
5321                                    hsw_crtc_supports_ips(crtc) &&
5322                                    pipe_config->pipe_bpp <= 24;
5323 }
5324
5325 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5326                                      struct intel_crtc_config *pipe_config)
5327 {
5328         struct drm_device *dev = crtc->base.dev;
5329         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5330
5331         /* FIXME should check pixel clock limits on all platforms */
5332         if (INTEL_INFO(dev)->gen < 4) {
5333                 struct drm_i915_private *dev_priv = dev->dev_private;
5334                 int clock_limit =
5335                         dev_priv->display.get_display_clock_speed(dev);
5336
5337                 /*
5338                  * Enable pixel doubling when the dot clock
5339                  * is > 90% of the (display) core speed.
5340                  *
5341                  * GDG double wide on either pipe,
5342                  * otherwise pipe A only.
5343                  */
5344                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5345                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5346                         clock_limit *= 2;
5347                         pipe_config->double_wide = true;
5348                 }
5349
5350                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5351                         return -EINVAL;
5352         }
5353
5354         /*
5355          * Pipe horizontal size must be even in:
5356          * - DVO ganged mode
5357          * - LVDS dual channel mode
5358          * - Double wide pipe
5359          */
5360         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5361              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5362                 pipe_config->pipe_src_w &= ~1;
5363
5364         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5365          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5366          */
5367         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5368                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5369                 return -EINVAL;
5370
5371         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5372                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5373         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5374                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5375                  * for lvds. */
5376                 pipe_config->pipe_bpp = 8*3;
5377         }
5378
5379         if (HAS_IPS(dev))
5380                 hsw_compute_ips_config(crtc, pipe_config);
5381
5382         /*
5383          * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5384          * old clock survives for now.
5385          */
5386         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
5387                 pipe_config->shared_dpll = crtc->config.shared_dpll;
5388
5389         if (pipe_config->has_pch_encoder)
5390                 return ironlake_fdi_compute_config(crtc, pipe_config);
5391
5392         return 0;
5393 }
5394
5395 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5396 {
5397         struct drm_i915_private *dev_priv = dev->dev_private;
5398         int vco = valleyview_get_vco(dev_priv);
5399         u32 val;
5400         int divider;
5401
5402         /* FIXME: Punit isn't quite ready yet */
5403         if (IS_CHERRYVIEW(dev))
5404                 return 400000;
5405
5406         mutex_lock(&dev_priv->dpio_lock);
5407         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5408         mutex_unlock(&dev_priv->dpio_lock);
5409
5410         divider = val & DISPLAY_FREQUENCY_VALUES;
5411
5412         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5413              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5414              "cdclk change in progress\n");
5415
5416         return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5417 }
5418
5419 static int i945_get_display_clock_speed(struct drm_device *dev)
5420 {
5421         return 400000;
5422 }
5423
5424 static int i915_get_display_clock_speed(struct drm_device *dev)
5425 {
5426         return 333000;
5427 }
5428
5429 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5430 {
5431         return 200000;
5432 }
5433
5434 static int pnv_get_display_clock_speed(struct drm_device *dev)
5435 {
5436         u16 gcfgc = 0;
5437
5438         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5439
5440         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5441         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5442                 return 267000;
5443         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5444                 return 333000;
5445         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5446                 return 444000;
5447         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5448                 return 200000;
5449         default:
5450                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5451         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5452                 return 133000;
5453         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5454                 return 167000;
5455         }
5456 }
5457
5458 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5459 {
5460         u16 gcfgc = 0;
5461
5462         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5463
5464         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5465                 return 133000;
5466         else {
5467                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5468                 case GC_DISPLAY_CLOCK_333_MHZ:
5469                         return 333000;
5470                 default:
5471                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5472                         return 190000;
5473                 }
5474         }
5475 }
5476
5477 static int i865_get_display_clock_speed(struct drm_device *dev)
5478 {
5479         return 266000;
5480 }
5481
5482 static int i855_get_display_clock_speed(struct drm_device *dev)
5483 {
5484         u16 hpllcc = 0;
5485         /* Assume that the hardware is in the high speed state.  This
5486          * should be the default.
5487          */
5488         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5489         case GC_CLOCK_133_200:
5490         case GC_CLOCK_100_200:
5491                 return 200000;
5492         case GC_CLOCK_166_250:
5493                 return 250000;
5494         case GC_CLOCK_100_133:
5495                 return 133000;
5496         }
5497
5498         /* Shouldn't happen */
5499         return 0;
5500 }
5501
5502 static int i830_get_display_clock_speed(struct drm_device *dev)
5503 {
5504         return 133000;
5505 }
5506
5507 static void
5508 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5509 {
5510         while (*num > DATA_LINK_M_N_MASK ||
5511                *den > DATA_LINK_M_N_MASK) {
5512                 *num >>= 1;
5513                 *den >>= 1;
5514         }
5515 }
5516
5517 static void compute_m_n(unsigned int m, unsigned int n,
5518                         uint32_t *ret_m, uint32_t *ret_n)
5519 {
5520         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5521         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5522         intel_reduce_m_n_ratio(ret_m, ret_n);
5523 }
5524
5525 void
5526 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5527                        int pixel_clock, int link_clock,
5528                        struct intel_link_m_n *m_n)
5529 {
5530         m_n->tu = 64;
5531
5532         compute_m_n(bits_per_pixel * pixel_clock,
5533                     link_clock * nlanes * 8,
5534                     &m_n->gmch_m, &m_n->gmch_n);
5535
5536         compute_m_n(pixel_clock, link_clock,
5537                     &m_n->link_m, &m_n->link_n);
5538 }
5539
5540 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5541 {
5542         if (i915.panel_use_ssc >= 0)
5543                 return i915.panel_use_ssc != 0;
5544         return dev_priv->vbt.lvds_use_ssc
5545                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5546 }
5547
5548 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5549 {
5550         struct drm_device *dev = crtc->dev;
5551         struct drm_i915_private *dev_priv = dev->dev_private;
5552         int refclk;
5553
5554         if (IS_VALLEYVIEW(dev)) {
5555                 refclk = 100000;
5556         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5557             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5558                 refclk = dev_priv->vbt.lvds_ssc_freq;
5559                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5560         } else if (!IS_GEN2(dev)) {
5561                 refclk = 96000;
5562         } else {
5563                 refclk = 48000;
5564         }
5565
5566         return refclk;
5567 }
5568
5569 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5570 {
5571         return (1 << dpll->n) << 16 | dpll->m2;
5572 }
5573
5574 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5575 {
5576         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5577 }
5578
5579 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5580                                      intel_clock_t *reduced_clock)
5581 {
5582         struct drm_device *dev = crtc->base.dev;
5583         u32 fp, fp2 = 0;
5584
5585         if (IS_PINEVIEW(dev)) {
5586                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5587                 if (reduced_clock)
5588                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5589         } else {
5590                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5591                 if (reduced_clock)
5592                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5593         }
5594
5595         crtc->config.dpll_hw_state.fp0 = fp;
5596
5597         crtc->lowfreq_avail = false;
5598         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5599             reduced_clock && i915.powersave) {
5600                 crtc->config.dpll_hw_state.fp1 = fp2;
5601                 crtc->lowfreq_avail = true;
5602         } else {
5603                 crtc->config.dpll_hw_state.fp1 = fp;
5604         }
5605 }
5606
5607 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5608                 pipe)
5609 {
5610         u32 reg_val;
5611
5612         /*
5613          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5614          * and set it to a reasonable value instead.
5615          */
5616         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5617         reg_val &= 0xffffff00;
5618         reg_val |= 0x00000030;
5619         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5620
5621         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5622         reg_val &= 0x8cffffff;
5623         reg_val = 0x8c000000;
5624         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5625
5626         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5627         reg_val &= 0xffffff00;
5628         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5629
5630         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5631         reg_val &= 0x00ffffff;
5632         reg_val |= 0xb0000000;
5633         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5634 }
5635
5636 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5637                                          struct intel_link_m_n *m_n)
5638 {
5639         struct drm_device *dev = crtc->base.dev;
5640         struct drm_i915_private *dev_priv = dev->dev_private;
5641         int pipe = crtc->pipe;
5642
5643         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5644         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5645         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5646         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5647 }
5648
5649 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5650                                          struct intel_link_m_n *m_n,
5651                                          struct intel_link_m_n *m2_n2)
5652 {
5653         struct drm_device *dev = crtc->base.dev;
5654         struct drm_i915_private *dev_priv = dev->dev_private;
5655         int pipe = crtc->pipe;
5656         enum transcoder transcoder = crtc->config.cpu_transcoder;
5657
5658         if (INTEL_INFO(dev)->gen >= 5) {
5659                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5660                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5661                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5662                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5663                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5664                  * for gen < 8) and if DRRS is supported (to make sure the
5665                  * registers are not unnecessarily accessed).
5666                  */
5667                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5668                         crtc->config.has_drrs) {
5669                         I915_WRITE(PIPE_DATA_M2(transcoder),
5670                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5671                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5672                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5673                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5674                 }
5675         } else {
5676                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5677                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5678                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5679                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5680         }
5681 }
5682
5683 void intel_dp_set_m_n(struct intel_crtc *crtc)
5684 {
5685         if (crtc->config.has_pch_encoder)
5686                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5687         else
5688                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5689                                                    &crtc->config.dp_m2_n2);
5690 }
5691
5692 static void vlv_update_pll(struct intel_crtc *crtc)
5693 {
5694         u32 dpll, dpll_md;
5695
5696         /*
5697          * Enable DPIO clock input. We should never disable the reference
5698          * clock for pipe B, since VGA hotplug / manual detection depends
5699          * on it.
5700          */
5701         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5702                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5703         /* We should never disable this, set it here for state tracking */
5704         if (crtc->pipe == PIPE_B)
5705                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5706         dpll |= DPLL_VCO_ENABLE;
5707         crtc->config.dpll_hw_state.dpll = dpll;
5708
5709         dpll_md = (crtc->config.pixel_multiplier - 1)
5710                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5711         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5712 }
5713
5714 static void vlv_prepare_pll(struct intel_crtc *crtc)
5715 {
5716         struct drm_device *dev = crtc->base.dev;
5717         struct drm_i915_private *dev_priv = dev->dev_private;
5718         int pipe = crtc->pipe;
5719         u32 mdiv;
5720         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5721         u32 coreclk, reg_val;
5722
5723         mutex_lock(&dev_priv->dpio_lock);
5724
5725         bestn = crtc->config.dpll.n;
5726         bestm1 = crtc->config.dpll.m1;
5727         bestm2 = crtc->config.dpll.m2;
5728         bestp1 = crtc->config.dpll.p1;
5729         bestp2 = crtc->config.dpll.p2;
5730
5731         /* See eDP HDMI DPIO driver vbios notes doc */
5732
5733         /* PLL B needs special handling */
5734         if (pipe == PIPE_B)
5735                 vlv_pllb_recal_opamp(dev_priv, pipe);
5736
5737         /* Set up Tx target for periodic Rcomp update */
5738         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5739
5740         /* Disable target IRef on PLL */
5741         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5742         reg_val &= 0x00ffffff;
5743         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5744
5745         /* Disable fast lock */
5746         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5747
5748         /* Set idtafcrecal before PLL is enabled */
5749         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5750         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5751         mdiv |= ((bestn << DPIO_N_SHIFT));
5752         mdiv |= (1 << DPIO_K_SHIFT);
5753
5754         /*
5755          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5756          * but we don't support that).
5757          * Note: don't use the DAC post divider as it seems unstable.
5758          */
5759         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5760         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5761
5762         mdiv |= DPIO_ENABLE_CALIBRATION;
5763         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5764
5765         /* Set HBR and RBR LPF coefficients */
5766         if (crtc->config.port_clock == 162000 ||
5767             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5768             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5769                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5770                                  0x009f0003);
5771         else
5772                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5773                                  0x00d0000f);
5774
5775         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5776             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5777                 /* Use SSC source */
5778                 if (pipe == PIPE_A)
5779                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5780                                          0x0df40000);
5781                 else
5782                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5783                                          0x0df70000);
5784         } else { /* HDMI or VGA */
5785                 /* Use bend source */
5786                 if (pipe == PIPE_A)
5787                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5788                                          0x0df70000);
5789                 else
5790                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5791                                          0x0df40000);
5792         }
5793
5794         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5795         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5796         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5797             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5798                 coreclk |= 0x01000000;
5799         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5800
5801         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5802         mutex_unlock(&dev_priv->dpio_lock);
5803 }
5804
5805 static void chv_update_pll(struct intel_crtc *crtc)
5806 {
5807         crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5808                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5809                 DPLL_VCO_ENABLE;
5810         if (crtc->pipe != PIPE_A)
5811                 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5812
5813         crtc->config.dpll_hw_state.dpll_md =
5814                 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5815 }
5816
5817 static void chv_prepare_pll(struct intel_crtc *crtc)
5818 {
5819         struct drm_device *dev = crtc->base.dev;
5820         struct drm_i915_private *dev_priv = dev->dev_private;
5821         int pipe = crtc->pipe;
5822         int dpll_reg = DPLL(crtc->pipe);
5823         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5824         u32 loopfilter, intcoeff;
5825         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5826         int refclk;
5827
5828         bestn = crtc->config.dpll.n;
5829         bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5830         bestm1 = crtc->config.dpll.m1;
5831         bestm2 = crtc->config.dpll.m2 >> 22;
5832         bestp1 = crtc->config.dpll.p1;
5833         bestp2 = crtc->config.dpll.p2;
5834
5835         /*
5836          * Enable Refclk and SSC
5837          */
5838         I915_WRITE(dpll_reg,
5839                    crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5840
5841         mutex_lock(&dev_priv->dpio_lock);
5842
5843         /* p1 and p2 divider */
5844         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5845                         5 << DPIO_CHV_S1_DIV_SHIFT |
5846                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5847                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5848                         1 << DPIO_CHV_K_DIV_SHIFT);
5849
5850         /* Feedback post-divider - m2 */
5851         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5852
5853         /* Feedback refclk divider - n and m1 */
5854         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5855                         DPIO_CHV_M1_DIV_BY_2 |
5856                         1 << DPIO_CHV_N_DIV_SHIFT);
5857
5858         /* M2 fraction division */
5859         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5860
5861         /* M2 fraction division enable */
5862         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5863                        DPIO_CHV_FRAC_DIV_EN |
5864                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5865
5866         /* Loop filter */
5867         refclk = i9xx_get_refclk(&crtc->base, 0);
5868         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5869                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5870         if (refclk == 100000)
5871                 intcoeff = 11;
5872         else if (refclk == 38400)
5873                 intcoeff = 10;
5874         else
5875                 intcoeff = 9;
5876         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5877         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5878
5879         /* AFC Recal */
5880         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5881                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5882                         DPIO_AFC_RECAL);
5883
5884         mutex_unlock(&dev_priv->dpio_lock);
5885 }
5886
5887 static void i9xx_update_pll(struct intel_crtc *crtc,
5888                             intel_clock_t *reduced_clock,
5889                             int num_connectors)
5890 {
5891         struct drm_device *dev = crtc->base.dev;
5892         struct drm_i915_private *dev_priv = dev->dev_private;
5893         u32 dpll;
5894         bool is_sdvo;
5895         struct dpll *clock = &crtc->config.dpll;
5896
5897         i9xx_update_pll_dividers(crtc, reduced_clock);
5898
5899         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5900                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5901
5902         dpll = DPLL_VGA_MODE_DIS;
5903
5904         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5905                 dpll |= DPLLB_MODE_LVDS;
5906         else
5907                 dpll |= DPLLB_MODE_DAC_SERIAL;
5908
5909         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5910                 dpll |= (crtc->config.pixel_multiplier - 1)
5911                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5912         }
5913
5914         if (is_sdvo)
5915                 dpll |= DPLL_SDVO_HIGH_SPEED;
5916
5917         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5918                 dpll |= DPLL_SDVO_HIGH_SPEED;
5919
5920         /* compute bitmask from p1 value */
5921         if (IS_PINEVIEW(dev))
5922                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5923         else {
5924                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5925                 if (IS_G4X(dev) && reduced_clock)
5926                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5927         }
5928         switch (clock->p2) {
5929         case 5:
5930                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5931                 break;
5932         case 7:
5933                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5934                 break;
5935         case 10:
5936                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5937                 break;
5938         case 14:
5939                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5940                 break;
5941         }
5942         if (INTEL_INFO(dev)->gen >= 4)
5943                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5944
5945         if (crtc->config.sdvo_tv_clock)
5946                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5947         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5948                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5949                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5950         else
5951                 dpll |= PLL_REF_INPUT_DREFCLK;
5952
5953         dpll |= DPLL_VCO_ENABLE;
5954         crtc->config.dpll_hw_state.dpll = dpll;
5955
5956         if (INTEL_INFO(dev)->gen >= 4) {
5957                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5958                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5959                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5960         }
5961 }
5962
5963 static void i8xx_update_pll(struct intel_crtc *crtc,
5964                             intel_clock_t *reduced_clock,
5965                             int num_connectors)
5966 {
5967         struct drm_device *dev = crtc->base.dev;
5968         struct drm_i915_private *dev_priv = dev->dev_private;
5969         u32 dpll;
5970         struct dpll *clock = &crtc->config.dpll;
5971
5972         i9xx_update_pll_dividers(crtc, reduced_clock);
5973
5974         dpll = DPLL_VGA_MODE_DIS;
5975
5976         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5977                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5978         } else {
5979                 if (clock->p1 == 2)
5980                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5981                 else
5982                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5983                 if (clock->p2 == 4)
5984                         dpll |= PLL_P2_DIVIDE_BY_4;
5985         }
5986
5987         if (!IS_I830(dev) && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5988                 dpll |= DPLL_DVO_2X_MODE;
5989
5990         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5991                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5992                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5993         else
5994                 dpll |= PLL_REF_INPUT_DREFCLK;
5995
5996         dpll |= DPLL_VCO_ENABLE;
5997         crtc->config.dpll_hw_state.dpll = dpll;
5998 }
5999
6000 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6001 {
6002         struct drm_device *dev = intel_crtc->base.dev;
6003         struct drm_i915_private *dev_priv = dev->dev_private;
6004         enum pipe pipe = intel_crtc->pipe;
6005         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6006         struct drm_display_mode *adjusted_mode =
6007                 &intel_crtc->config.adjusted_mode;
6008         uint32_t crtc_vtotal, crtc_vblank_end;
6009         int vsyncshift = 0;
6010
6011         /* We need to be careful not to changed the adjusted mode, for otherwise
6012          * the hw state checker will get angry at the mismatch. */
6013         crtc_vtotal = adjusted_mode->crtc_vtotal;
6014         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6015
6016         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6017                 /* the chip adds 2 halflines automatically */
6018                 crtc_vtotal -= 1;
6019                 crtc_vblank_end -= 1;
6020
6021                 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6022                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6023                 else
6024                         vsyncshift = adjusted_mode->crtc_hsync_start -
6025                                 adjusted_mode->crtc_htotal / 2;
6026                 if (vsyncshift < 0)
6027                         vsyncshift += adjusted_mode->crtc_htotal;
6028         }
6029
6030         if (INTEL_INFO(dev)->gen > 3)
6031                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6032
6033         I915_WRITE(HTOTAL(cpu_transcoder),
6034                    (adjusted_mode->crtc_hdisplay - 1) |
6035                    ((adjusted_mode->crtc_htotal - 1) << 16));
6036         I915_WRITE(HBLANK(cpu_transcoder),
6037                    (adjusted_mode->crtc_hblank_start - 1) |
6038                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6039         I915_WRITE(HSYNC(cpu_transcoder),
6040                    (adjusted_mode->crtc_hsync_start - 1) |
6041                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6042
6043         I915_WRITE(VTOTAL(cpu_transcoder),
6044                    (adjusted_mode->crtc_vdisplay - 1) |
6045                    ((crtc_vtotal - 1) << 16));
6046         I915_WRITE(VBLANK(cpu_transcoder),
6047                    (adjusted_mode->crtc_vblank_start - 1) |
6048                    ((crtc_vblank_end - 1) << 16));
6049         I915_WRITE(VSYNC(cpu_transcoder),
6050                    (adjusted_mode->crtc_vsync_start - 1) |
6051                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6052
6053         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6054          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6055          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6056          * bits. */
6057         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6058             (pipe == PIPE_B || pipe == PIPE_C))
6059                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6060
6061         /* pipesrc controls the size that is scaled from, which should
6062          * always be the user's requested size.
6063          */
6064         I915_WRITE(PIPESRC(pipe),
6065                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
6066                    (intel_crtc->config.pipe_src_h - 1));
6067 }
6068
6069 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6070                                    struct intel_crtc_config *pipe_config)
6071 {
6072         struct drm_device *dev = crtc->base.dev;
6073         struct drm_i915_private *dev_priv = dev->dev_private;
6074         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6075         uint32_t tmp;
6076
6077         tmp = I915_READ(HTOTAL(cpu_transcoder));
6078         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6079         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6080         tmp = I915_READ(HBLANK(cpu_transcoder));
6081         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6082         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6083         tmp = I915_READ(HSYNC(cpu_transcoder));
6084         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6085         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6086
6087         tmp = I915_READ(VTOTAL(cpu_transcoder));
6088         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6089         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6090         tmp = I915_READ(VBLANK(cpu_transcoder));
6091         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6092         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6093         tmp = I915_READ(VSYNC(cpu_transcoder));
6094         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6095         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6096
6097         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6098                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6099                 pipe_config->adjusted_mode.crtc_vtotal += 1;
6100                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6101         }
6102
6103         tmp = I915_READ(PIPESRC(crtc->pipe));
6104         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6105         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6106
6107         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6108         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6109 }
6110
6111 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6112                                  struct intel_crtc_config *pipe_config)
6113 {
6114         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6115         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6116         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6117         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6118
6119         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6120         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6121         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6122         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6123
6124         mode->flags = pipe_config->adjusted_mode.flags;
6125
6126         mode->clock = pipe_config->adjusted_mode.crtc_clock;
6127         mode->flags |= pipe_config->adjusted_mode.flags;
6128 }
6129
6130 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6131 {
6132         struct drm_device *dev = intel_crtc->base.dev;
6133         struct drm_i915_private *dev_priv = dev->dev_private;
6134         uint32_t pipeconf;
6135
6136         pipeconf = 0;
6137
6138         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6139             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6140                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6141
6142         if (intel_crtc->config.double_wide)
6143                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6144
6145         /* only g4x and later have fancy bpc/dither controls */
6146         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6147                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6148                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6149                         pipeconf |= PIPECONF_DITHER_EN |
6150                                     PIPECONF_DITHER_TYPE_SP;
6151
6152                 switch (intel_crtc->config.pipe_bpp) {
6153                 case 18:
6154                         pipeconf |= PIPECONF_6BPC;
6155                         break;
6156                 case 24:
6157                         pipeconf |= PIPECONF_8BPC;
6158                         break;
6159                 case 30:
6160                         pipeconf |= PIPECONF_10BPC;
6161                         break;
6162                 default:
6163                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6164                         BUG();
6165                 }
6166         }
6167
6168         if (HAS_PIPE_CXSR(dev)) {
6169                 if (intel_crtc->lowfreq_avail) {
6170                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6171                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6172                 } else {
6173                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6174                 }
6175         }
6176
6177         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6178                 if (INTEL_INFO(dev)->gen < 4 ||
6179                     intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6180                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6181                 else
6182                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6183         } else
6184                 pipeconf |= PIPECONF_PROGRESSIVE;
6185
6186         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6187                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6188
6189         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6190         POSTING_READ(PIPECONF(intel_crtc->pipe));
6191 }
6192
6193 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
6194                               int x, int y,
6195                               struct drm_framebuffer *fb)
6196 {
6197         struct drm_device *dev = crtc->dev;
6198         struct drm_i915_private *dev_priv = dev->dev_private;
6199         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6200         int refclk, num_connectors = 0;
6201         intel_clock_t clock, reduced_clock;
6202         bool ok, has_reduced_clock = false;
6203         bool is_lvds = false, is_dsi = false;
6204         struct intel_encoder *encoder;
6205         const intel_limit_t *limit;
6206
6207         for_each_encoder_on_crtc(dev, crtc, encoder) {
6208                 switch (encoder->type) {
6209                 case INTEL_OUTPUT_LVDS:
6210                         is_lvds = true;
6211                         break;
6212                 case INTEL_OUTPUT_DSI:
6213                         is_dsi = true;
6214                         break;
6215                 }
6216
6217                 num_connectors++;
6218         }
6219
6220         if (is_dsi)
6221                 return 0;
6222
6223         if (!intel_crtc->config.clock_set) {
6224                 refclk = i9xx_get_refclk(crtc, num_connectors);
6225
6226                 /*
6227                  * Returns a set of divisors for the desired target clock with
6228                  * the given refclk, or FALSE.  The returned values represent
6229                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6230                  * 2) / p1 / p2.
6231                  */
6232                 limit = intel_limit(crtc, refclk);
6233                 ok = dev_priv->display.find_dpll(limit, crtc,
6234                                                  intel_crtc->config.port_clock,
6235                                                  refclk, NULL, &clock);
6236                 if (!ok) {
6237                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6238                         return -EINVAL;
6239                 }
6240
6241                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6242                         /*
6243                          * Ensure we match the reduced clock's P to the target
6244                          * clock.  If the clocks don't match, we can't switch
6245                          * the display clock by using the FP0/FP1. In such case
6246                          * we will disable the LVDS downclock feature.
6247                          */
6248                         has_reduced_clock =
6249                                 dev_priv->display.find_dpll(limit, crtc,
6250                                                             dev_priv->lvds_downclock,
6251                                                             refclk, &clock,
6252                                                             &reduced_clock);
6253                 }
6254                 /* Compat-code for transition, will disappear. */
6255                 intel_crtc->config.dpll.n = clock.n;
6256                 intel_crtc->config.dpll.m1 = clock.m1;
6257                 intel_crtc->config.dpll.m2 = clock.m2;
6258                 intel_crtc->config.dpll.p1 = clock.p1;
6259                 intel_crtc->config.dpll.p2 = clock.p2;
6260         }
6261
6262         if (IS_GEN2(dev)) {
6263                 i8xx_update_pll(intel_crtc,
6264                                 has_reduced_clock ? &reduced_clock : NULL,
6265                                 num_connectors);
6266         } else if (IS_CHERRYVIEW(dev)) {
6267                 chv_update_pll(intel_crtc);
6268         } else if (IS_VALLEYVIEW(dev)) {
6269                 vlv_update_pll(intel_crtc);
6270         } else {
6271                 i9xx_update_pll(intel_crtc,
6272                                 has_reduced_clock ? &reduced_clock : NULL,
6273                                 num_connectors);
6274         }
6275
6276         return 0;
6277 }
6278
6279 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6280                                  struct intel_crtc_config *pipe_config)
6281 {
6282         struct drm_device *dev = crtc->base.dev;
6283         struct drm_i915_private *dev_priv = dev->dev_private;
6284         uint32_t tmp;
6285
6286         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6287                 return;
6288
6289         tmp = I915_READ(PFIT_CONTROL);
6290         if (!(tmp & PFIT_ENABLE))
6291                 return;
6292
6293         /* Check whether the pfit is attached to our pipe. */
6294         if (INTEL_INFO(dev)->gen < 4) {
6295                 if (crtc->pipe != PIPE_B)
6296                         return;
6297         } else {
6298                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6299                         return;
6300         }
6301
6302         pipe_config->gmch_pfit.control = tmp;
6303         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6304         if (INTEL_INFO(dev)->gen < 5)
6305                 pipe_config->gmch_pfit.lvds_border_bits =
6306                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6307 }
6308
6309 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6310                                struct intel_crtc_config *pipe_config)
6311 {
6312         struct drm_device *dev = crtc->base.dev;
6313         struct drm_i915_private *dev_priv = dev->dev_private;
6314         int pipe = pipe_config->cpu_transcoder;
6315         intel_clock_t clock;
6316         u32 mdiv;
6317         int refclk = 100000;
6318
6319         /* In case of MIPI DPLL will not even be used */
6320         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6321                 return;
6322
6323         mutex_lock(&dev_priv->dpio_lock);
6324         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6325         mutex_unlock(&dev_priv->dpio_lock);
6326
6327         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6328         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6329         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6330         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6331         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6332
6333         vlv_clock(refclk, &clock);
6334
6335         /* clock.dot is the fast clock */
6336         pipe_config->port_clock = clock.dot / 5;
6337 }
6338
6339 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6340                                   struct intel_plane_config *plane_config)
6341 {
6342         struct drm_device *dev = crtc->base.dev;
6343         struct drm_i915_private *dev_priv = dev->dev_private;
6344         u32 val, base, offset;
6345         int pipe = crtc->pipe, plane = crtc->plane;
6346         int fourcc, pixel_format;
6347         int aligned_height;
6348
6349         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6350         if (!crtc->base.primary->fb) {
6351                 DRM_DEBUG_KMS("failed to alloc fb\n");
6352                 return;
6353         }
6354
6355         val = I915_READ(DSPCNTR(plane));
6356
6357         if (INTEL_INFO(dev)->gen >= 4)
6358                 if (val & DISPPLANE_TILED)
6359                         plane_config->tiled = true;
6360
6361         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6362         fourcc = intel_format_to_fourcc(pixel_format);
6363         crtc->base.primary->fb->pixel_format = fourcc;
6364         crtc->base.primary->fb->bits_per_pixel =
6365                 drm_format_plane_cpp(fourcc, 0) * 8;
6366
6367         if (INTEL_INFO(dev)->gen >= 4) {
6368                 if (plane_config->tiled)
6369                         offset = I915_READ(DSPTILEOFF(plane));
6370                 else
6371                         offset = I915_READ(DSPLINOFF(plane));
6372                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6373         } else {
6374                 base = I915_READ(DSPADDR(plane));
6375         }
6376         plane_config->base = base;
6377
6378         val = I915_READ(PIPESRC(pipe));
6379         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6380         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6381
6382         val = I915_READ(DSPSTRIDE(pipe));
6383         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6384
6385         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6386                                             plane_config->tiled);
6387
6388         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6389                                         aligned_height);
6390
6391         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6392                       pipe, plane, crtc->base.primary->fb->width,
6393                       crtc->base.primary->fb->height,
6394                       crtc->base.primary->fb->bits_per_pixel, base,
6395                       crtc->base.primary->fb->pitches[0],
6396                       plane_config->size);
6397
6398 }
6399
6400 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6401                                struct intel_crtc_config *pipe_config)
6402 {
6403         struct drm_device *dev = crtc->base.dev;
6404         struct drm_i915_private *dev_priv = dev->dev_private;
6405         int pipe = pipe_config->cpu_transcoder;
6406         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6407         intel_clock_t clock;
6408         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6409         int refclk = 100000;
6410
6411         mutex_lock(&dev_priv->dpio_lock);
6412         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6413         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6414         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6415         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6416         mutex_unlock(&dev_priv->dpio_lock);
6417
6418         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6419         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6420         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6421         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6422         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6423
6424         chv_clock(refclk, &clock);
6425
6426         /* clock.dot is the fast clock */
6427         pipe_config->port_clock = clock.dot / 5;
6428 }
6429
6430 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6431                                  struct intel_crtc_config *pipe_config)
6432 {
6433         struct drm_device *dev = crtc->base.dev;
6434         struct drm_i915_private *dev_priv = dev->dev_private;
6435         uint32_t tmp;
6436
6437         if (!intel_display_power_enabled(dev_priv,
6438                                          POWER_DOMAIN_PIPE(crtc->pipe)))
6439                 return false;
6440
6441         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6442         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6443
6444         tmp = I915_READ(PIPECONF(crtc->pipe));
6445         if (!(tmp & PIPECONF_ENABLE))
6446                 return false;
6447
6448         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6449                 switch (tmp & PIPECONF_BPC_MASK) {
6450                 case PIPECONF_6BPC:
6451                         pipe_config->pipe_bpp = 18;
6452                         break;
6453                 case PIPECONF_8BPC:
6454                         pipe_config->pipe_bpp = 24;
6455                         break;
6456                 case PIPECONF_10BPC:
6457                         pipe_config->pipe_bpp = 30;
6458                         break;
6459                 default:
6460                         break;
6461                 }
6462         }
6463
6464         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6465                 pipe_config->limited_color_range = true;
6466
6467         if (INTEL_INFO(dev)->gen < 4)
6468                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6469
6470         intel_get_pipe_timings(crtc, pipe_config);
6471
6472         i9xx_get_pfit_config(crtc, pipe_config);
6473
6474         if (INTEL_INFO(dev)->gen >= 4) {
6475                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6476                 pipe_config->pixel_multiplier =
6477                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6478                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6479                 pipe_config->dpll_hw_state.dpll_md = tmp;
6480         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6481                 tmp = I915_READ(DPLL(crtc->pipe));
6482                 pipe_config->pixel_multiplier =
6483                         ((tmp & SDVO_MULTIPLIER_MASK)
6484                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6485         } else {
6486                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6487                  * port and will be fixed up in the encoder->get_config
6488                  * function. */
6489                 pipe_config->pixel_multiplier = 1;
6490         }
6491         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6492         if (!IS_VALLEYVIEW(dev)) {
6493                 /*
6494                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6495                  * on 830. Filter it out here so that we don't
6496                  * report errors due to that.
6497                  */
6498                 if (IS_I830(dev))
6499                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6500
6501                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6502                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6503         } else {
6504                 /* Mask out read-only status bits. */
6505                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6506                                                      DPLL_PORTC_READY_MASK |
6507                                                      DPLL_PORTB_READY_MASK);
6508         }
6509
6510         if (IS_CHERRYVIEW(dev))
6511                 chv_crtc_clock_get(crtc, pipe_config);
6512         else if (IS_VALLEYVIEW(dev))
6513                 vlv_crtc_clock_get(crtc, pipe_config);
6514         else
6515                 i9xx_crtc_clock_get(crtc, pipe_config);
6516
6517         return true;
6518 }
6519
6520 static void ironlake_init_pch_refclk(struct drm_device *dev)
6521 {
6522         struct drm_i915_private *dev_priv = dev->dev_private;
6523         struct intel_encoder *encoder;
6524         u32 val, final;
6525         bool has_lvds = false;
6526         bool has_cpu_edp = false;
6527         bool has_panel = false;
6528         bool has_ck505 = false;
6529         bool can_ssc = false;
6530
6531         /* We need to take the global config into account */
6532         for_each_intel_encoder(dev, encoder) {
6533                 switch (encoder->type) {
6534                 case INTEL_OUTPUT_LVDS:
6535                         has_panel = true;
6536                         has_lvds = true;
6537                         break;
6538                 case INTEL_OUTPUT_EDP:
6539                         has_panel = true;
6540                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6541                                 has_cpu_edp = true;
6542                         break;
6543                 }
6544         }
6545
6546         if (HAS_PCH_IBX(dev)) {
6547                 has_ck505 = dev_priv->vbt.display_clock_mode;
6548                 can_ssc = has_ck505;
6549         } else {
6550                 has_ck505 = false;
6551                 can_ssc = true;
6552         }
6553
6554         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6555                       has_panel, has_lvds, has_ck505);
6556
6557         /* Ironlake: try to setup display ref clock before DPLL
6558          * enabling. This is only under driver's control after
6559          * PCH B stepping, previous chipset stepping should be
6560          * ignoring this setting.
6561          */
6562         val = I915_READ(PCH_DREF_CONTROL);
6563
6564         /* As we must carefully and slowly disable/enable each source in turn,
6565          * compute the final state we want first and check if we need to
6566          * make any changes at all.
6567          */
6568         final = val;
6569         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6570         if (has_ck505)
6571                 final |= DREF_NONSPREAD_CK505_ENABLE;
6572         else
6573                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6574
6575         final &= ~DREF_SSC_SOURCE_MASK;
6576         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6577         final &= ~DREF_SSC1_ENABLE;
6578
6579         if (has_panel) {
6580                 final |= DREF_SSC_SOURCE_ENABLE;
6581
6582                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6583                         final |= DREF_SSC1_ENABLE;
6584
6585                 if (has_cpu_edp) {
6586                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6587                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6588                         else
6589                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6590                 } else
6591                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6592         } else {
6593                 final |= DREF_SSC_SOURCE_DISABLE;
6594                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6595         }
6596
6597         if (final == val)
6598                 return;
6599
6600         /* Always enable nonspread source */
6601         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6602
6603         if (has_ck505)
6604                 val |= DREF_NONSPREAD_CK505_ENABLE;
6605         else
6606                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6607
6608         if (has_panel) {
6609                 val &= ~DREF_SSC_SOURCE_MASK;
6610                 val |= DREF_SSC_SOURCE_ENABLE;
6611
6612                 /* SSC must be turned on before enabling the CPU output  */
6613                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6614                         DRM_DEBUG_KMS("Using SSC on panel\n");
6615                         val |= DREF_SSC1_ENABLE;
6616                 } else
6617                         val &= ~DREF_SSC1_ENABLE;
6618
6619                 /* Get SSC going before enabling the outputs */
6620                 I915_WRITE(PCH_DREF_CONTROL, val);
6621                 POSTING_READ(PCH_DREF_CONTROL);
6622                 udelay(200);
6623
6624                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6625
6626                 /* Enable CPU source on CPU attached eDP */
6627                 if (has_cpu_edp) {
6628                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6629                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6630                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6631                         } else
6632                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6633                 } else
6634                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6635
6636                 I915_WRITE(PCH_DREF_CONTROL, val);
6637                 POSTING_READ(PCH_DREF_CONTROL);
6638                 udelay(200);
6639         } else {
6640                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6641
6642                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6643
6644                 /* Turn off CPU output */
6645                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6646
6647                 I915_WRITE(PCH_DREF_CONTROL, val);
6648                 POSTING_READ(PCH_DREF_CONTROL);
6649                 udelay(200);
6650
6651                 /* Turn off the SSC source */
6652                 val &= ~DREF_SSC_SOURCE_MASK;
6653                 val |= DREF_SSC_SOURCE_DISABLE;
6654
6655                 /* Turn off SSC1 */
6656                 val &= ~DREF_SSC1_ENABLE;
6657
6658                 I915_WRITE(PCH_DREF_CONTROL, val);
6659                 POSTING_READ(PCH_DREF_CONTROL);
6660                 udelay(200);
6661         }
6662
6663         BUG_ON(val != final);
6664 }
6665
6666 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6667 {
6668         uint32_t tmp;
6669
6670         tmp = I915_READ(SOUTH_CHICKEN2);
6671         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6672         I915_WRITE(SOUTH_CHICKEN2, tmp);
6673
6674         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6675                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6676                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6677
6678         tmp = I915_READ(SOUTH_CHICKEN2);
6679         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6680         I915_WRITE(SOUTH_CHICKEN2, tmp);
6681
6682         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6683                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6684                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6685 }
6686
6687 /* WaMPhyProgramming:hsw */
6688 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6689 {
6690         uint32_t tmp;
6691
6692         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6693         tmp &= ~(0xFF << 24);
6694         tmp |= (0x12 << 24);
6695         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6696
6697         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6698         tmp |= (1 << 11);
6699         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6700
6701         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6702         tmp |= (1 << 11);
6703         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6704
6705         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6706         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6707         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6708
6709         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6710         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6711         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6712
6713         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6714         tmp &= ~(7 << 13);
6715         tmp |= (5 << 13);
6716         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6717
6718         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6719         tmp &= ~(7 << 13);
6720         tmp |= (5 << 13);
6721         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6722
6723         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6724         tmp &= ~0xFF;
6725         tmp |= 0x1C;
6726         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6727
6728         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6729         tmp &= ~0xFF;
6730         tmp |= 0x1C;
6731         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6732
6733         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6734         tmp &= ~(0xFF << 16);
6735         tmp |= (0x1C << 16);
6736         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6737
6738         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6739         tmp &= ~(0xFF << 16);
6740         tmp |= (0x1C << 16);
6741         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6742
6743         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6744         tmp |= (1 << 27);
6745         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6746
6747         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6748         tmp |= (1 << 27);
6749         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6750
6751         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6752         tmp &= ~(0xF << 28);
6753         tmp |= (4 << 28);
6754         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6755
6756         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6757         tmp &= ~(0xF << 28);
6758         tmp |= (4 << 28);
6759         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6760 }
6761
6762 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6763  * Programming" based on the parameters passed:
6764  * - Sequence to enable CLKOUT_DP
6765  * - Sequence to enable CLKOUT_DP without spread
6766  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6767  */
6768 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6769                                  bool with_fdi)
6770 {
6771         struct drm_i915_private *dev_priv = dev->dev_private;
6772         uint32_t reg, tmp;
6773
6774         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6775                 with_spread = true;
6776         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6777                  with_fdi, "LP PCH doesn't have FDI\n"))
6778                 with_fdi = false;
6779
6780         mutex_lock(&dev_priv->dpio_lock);
6781
6782         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6783         tmp &= ~SBI_SSCCTL_DISABLE;
6784         tmp |= SBI_SSCCTL_PATHALT;
6785         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6786
6787         udelay(24);
6788
6789         if (with_spread) {
6790                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6791                 tmp &= ~SBI_SSCCTL_PATHALT;
6792                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6793
6794                 if (with_fdi) {
6795                         lpt_reset_fdi_mphy(dev_priv);
6796                         lpt_program_fdi_mphy(dev_priv);
6797                 }
6798         }
6799
6800         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6801                SBI_GEN0 : SBI_DBUFF0;
6802         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6803         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6804         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6805
6806         mutex_unlock(&dev_priv->dpio_lock);
6807 }
6808
6809 /* Sequence to disable CLKOUT_DP */
6810 static void lpt_disable_clkout_dp(struct drm_device *dev)
6811 {
6812         struct drm_i915_private *dev_priv = dev->dev_private;
6813         uint32_t reg, tmp;
6814
6815         mutex_lock(&dev_priv->dpio_lock);
6816
6817         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6818                SBI_GEN0 : SBI_DBUFF0;
6819         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6820         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6821         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6822
6823         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6824         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6825                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6826                         tmp |= SBI_SSCCTL_PATHALT;
6827                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6828                         udelay(32);
6829                 }
6830                 tmp |= SBI_SSCCTL_DISABLE;
6831                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6832         }
6833
6834         mutex_unlock(&dev_priv->dpio_lock);
6835 }
6836
6837 static void lpt_init_pch_refclk(struct drm_device *dev)
6838 {
6839         struct intel_encoder *encoder;
6840         bool has_vga = false;
6841
6842         for_each_intel_encoder(dev, encoder) {
6843                 switch (encoder->type) {
6844                 case INTEL_OUTPUT_ANALOG:
6845                         has_vga = true;
6846                         break;
6847                 }
6848         }
6849
6850         if (has_vga)
6851                 lpt_enable_clkout_dp(dev, true, true);
6852         else
6853                 lpt_disable_clkout_dp(dev);
6854 }
6855
6856 /*
6857  * Initialize reference clocks when the driver loads
6858  */
6859 void intel_init_pch_refclk(struct drm_device *dev)
6860 {
6861         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6862                 ironlake_init_pch_refclk(dev);
6863         else if (HAS_PCH_LPT(dev))
6864                 lpt_init_pch_refclk(dev);
6865 }
6866
6867 static int ironlake_get_refclk(struct drm_crtc *crtc)
6868 {
6869         struct drm_device *dev = crtc->dev;
6870         struct drm_i915_private *dev_priv = dev->dev_private;
6871         struct intel_encoder *encoder;
6872         int num_connectors = 0;
6873         bool is_lvds = false;
6874
6875         for_each_encoder_on_crtc(dev, crtc, encoder) {
6876                 switch (encoder->type) {
6877                 case INTEL_OUTPUT_LVDS:
6878                         is_lvds = true;
6879                         break;
6880                 }
6881                 num_connectors++;
6882         }
6883
6884         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6885                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6886                               dev_priv->vbt.lvds_ssc_freq);
6887                 return dev_priv->vbt.lvds_ssc_freq;
6888         }
6889
6890         return 120000;
6891 }
6892
6893 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6894 {
6895         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6896         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6897         int pipe = intel_crtc->pipe;
6898         uint32_t val;
6899
6900         val = 0;
6901
6902         switch (intel_crtc->config.pipe_bpp) {
6903         case 18:
6904                 val |= PIPECONF_6BPC;
6905                 break;
6906         case 24:
6907                 val |= PIPECONF_8BPC;
6908                 break;
6909         case 30:
6910                 val |= PIPECONF_10BPC;
6911                 break;
6912         case 36:
6913                 val |= PIPECONF_12BPC;
6914                 break;
6915         default:
6916                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6917                 BUG();
6918         }
6919
6920         if (intel_crtc->config.dither)
6921                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6922
6923         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6924                 val |= PIPECONF_INTERLACED_ILK;
6925         else
6926                 val |= PIPECONF_PROGRESSIVE;
6927
6928         if (intel_crtc->config.limited_color_range)
6929                 val |= PIPECONF_COLOR_RANGE_SELECT;
6930
6931         I915_WRITE(PIPECONF(pipe), val);
6932         POSTING_READ(PIPECONF(pipe));
6933 }
6934
6935 /*
6936  * Set up the pipe CSC unit.
6937  *
6938  * Currently only full range RGB to limited range RGB conversion
6939  * is supported, but eventually this should handle various
6940  * RGB<->YCbCr scenarios as well.
6941  */
6942 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6943 {
6944         struct drm_device *dev = crtc->dev;
6945         struct drm_i915_private *dev_priv = dev->dev_private;
6946         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6947         int pipe = intel_crtc->pipe;
6948         uint16_t coeff = 0x7800; /* 1.0 */
6949
6950         /*
6951          * TODO: Check what kind of values actually come out of the pipe
6952          * with these coeff/postoff values and adjust to get the best
6953          * accuracy. Perhaps we even need to take the bpc value into
6954          * consideration.
6955          */
6956
6957         if (intel_crtc->config.limited_color_range)
6958                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6959
6960         /*
6961          * GY/GU and RY/RU should be the other way around according
6962          * to BSpec, but reality doesn't agree. Just set them up in
6963          * a way that results in the correct picture.
6964          */
6965         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6966         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6967
6968         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6969         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6970
6971         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6972         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6973
6974         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6975         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6976         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6977
6978         if (INTEL_INFO(dev)->gen > 6) {
6979                 uint16_t postoff = 0;
6980
6981                 if (intel_crtc->config.limited_color_range)
6982                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6983
6984                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6985                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6986                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6987
6988                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6989         } else {
6990                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6991
6992                 if (intel_crtc->config.limited_color_range)
6993                         mode |= CSC_BLACK_SCREEN_OFFSET;
6994
6995                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6996         }
6997 }
6998
6999 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7000 {
7001         struct drm_device *dev = crtc->dev;
7002         struct drm_i915_private *dev_priv = dev->dev_private;
7003         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7004         enum pipe pipe = intel_crtc->pipe;
7005         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7006         uint32_t val;
7007
7008         val = 0;
7009
7010         if (IS_HASWELL(dev) && intel_crtc->config.dither)
7011                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7012
7013         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7014                 val |= PIPECONF_INTERLACED_ILK;
7015         else
7016                 val |= PIPECONF_PROGRESSIVE;
7017
7018         I915_WRITE(PIPECONF(cpu_transcoder), val);
7019         POSTING_READ(PIPECONF(cpu_transcoder));
7020
7021         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7022         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7023
7024         if (IS_BROADWELL(dev)) {
7025                 val = 0;
7026
7027                 switch (intel_crtc->config.pipe_bpp) {
7028                 case 18:
7029                         val |= PIPEMISC_DITHER_6_BPC;
7030                         break;
7031                 case 24:
7032                         val |= PIPEMISC_DITHER_8_BPC;
7033                         break;
7034                 case 30:
7035                         val |= PIPEMISC_DITHER_10_BPC;
7036                         break;
7037                 case 36:
7038                         val |= PIPEMISC_DITHER_12_BPC;
7039                         break;
7040                 default:
7041                         /* Case prevented by pipe_config_set_bpp. */
7042                         BUG();
7043                 }
7044
7045                 if (intel_crtc->config.dither)
7046                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7047
7048                 I915_WRITE(PIPEMISC(pipe), val);
7049         }
7050 }
7051
7052 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7053                                     intel_clock_t *clock,
7054                                     bool *has_reduced_clock,
7055                                     intel_clock_t *reduced_clock)
7056 {
7057         struct drm_device *dev = crtc->dev;
7058         struct drm_i915_private *dev_priv = dev->dev_private;
7059         struct intel_encoder *intel_encoder;
7060         int refclk;
7061         const intel_limit_t *limit;
7062         bool ret, is_lvds = false;
7063
7064         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7065                 switch (intel_encoder->type) {
7066                 case INTEL_OUTPUT_LVDS:
7067                         is_lvds = true;
7068                         break;
7069                 }
7070         }
7071
7072         refclk = ironlake_get_refclk(crtc);
7073
7074         /*
7075          * Returns a set of divisors for the desired target clock with the given
7076          * refclk, or FALSE.  The returned values represent the clock equation:
7077          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7078          */
7079         limit = intel_limit(crtc, refclk);
7080         ret = dev_priv->display.find_dpll(limit, crtc,
7081                                           to_intel_crtc(crtc)->config.port_clock,
7082                                           refclk, NULL, clock);
7083         if (!ret)
7084                 return false;
7085
7086         if (is_lvds && dev_priv->lvds_downclock_avail) {
7087                 /*
7088                  * Ensure we match the reduced clock's P to the target clock.
7089                  * If the clocks don't match, we can't switch the display clock
7090                  * by using the FP0/FP1. In such case we will disable the LVDS
7091                  * downclock feature.
7092                 */
7093                 *has_reduced_clock =
7094                         dev_priv->display.find_dpll(limit, crtc,
7095                                                     dev_priv->lvds_downclock,
7096                                                     refclk, clock,
7097                                                     reduced_clock);
7098         }
7099
7100         return true;
7101 }
7102
7103 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7104 {
7105         /*
7106          * Account for spread spectrum to avoid
7107          * oversubscribing the link. Max center spread
7108          * is 2.5%; use 5% for safety's sake.
7109          */
7110         u32 bps = target_clock * bpp * 21 / 20;
7111         return DIV_ROUND_UP(bps, link_bw * 8);
7112 }
7113
7114 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7115 {
7116         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7117 }
7118
7119 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7120                                       u32 *fp,
7121                                       intel_clock_t *reduced_clock, u32 *fp2)
7122 {
7123         struct drm_crtc *crtc = &intel_crtc->base;
7124         struct drm_device *dev = crtc->dev;
7125         struct drm_i915_private *dev_priv = dev->dev_private;
7126         struct intel_encoder *intel_encoder;
7127         uint32_t dpll;
7128         int factor, num_connectors = 0;
7129         bool is_lvds = false, is_sdvo = false;
7130
7131         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7132                 switch (intel_encoder->type) {
7133                 case INTEL_OUTPUT_LVDS:
7134                         is_lvds = true;
7135                         break;
7136                 case INTEL_OUTPUT_SDVO:
7137                 case INTEL_OUTPUT_HDMI:
7138                         is_sdvo = true;
7139                         break;
7140                 }
7141
7142                 num_connectors++;
7143         }
7144
7145         /* Enable autotuning of the PLL clock (if permissible) */
7146         factor = 21;
7147         if (is_lvds) {
7148                 if ((intel_panel_use_ssc(dev_priv) &&
7149                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7150                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7151                         factor = 25;
7152         } else if (intel_crtc->config.sdvo_tv_clock)
7153                 factor = 20;
7154
7155         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7156                 *fp |= FP_CB_TUNE;
7157
7158         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7159                 *fp2 |= FP_CB_TUNE;
7160
7161         dpll = 0;
7162
7163         if (is_lvds)
7164                 dpll |= DPLLB_MODE_LVDS;
7165         else
7166                 dpll |= DPLLB_MODE_DAC_SERIAL;
7167
7168         dpll |= (intel_crtc->config.pixel_multiplier - 1)
7169                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7170
7171         if (is_sdvo)
7172                 dpll |= DPLL_SDVO_HIGH_SPEED;
7173         if (intel_crtc->config.has_dp_encoder)
7174                 dpll |= DPLL_SDVO_HIGH_SPEED;
7175
7176         /* compute bitmask from p1 value */
7177         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7178         /* also FPA1 */
7179         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7180
7181         switch (intel_crtc->config.dpll.p2) {
7182         case 5:
7183                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7184                 break;
7185         case 7:
7186                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7187                 break;
7188         case 10:
7189                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7190                 break;
7191         case 14:
7192                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7193                 break;
7194         }
7195
7196         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7197                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7198         else
7199                 dpll |= PLL_REF_INPUT_DREFCLK;
7200
7201         return dpll | DPLL_VCO_ENABLE;
7202 }
7203
7204 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
7205                                   int x, int y,
7206                                   struct drm_framebuffer *fb)
7207 {
7208         struct drm_device *dev = crtc->dev;
7209         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7210         int num_connectors = 0;
7211         intel_clock_t clock, reduced_clock;
7212         u32 dpll = 0, fp = 0, fp2 = 0;
7213         bool ok, has_reduced_clock = false;
7214         bool is_lvds = false;
7215         struct intel_encoder *encoder;
7216         struct intel_shared_dpll *pll;
7217
7218         for_each_encoder_on_crtc(dev, crtc, encoder) {
7219                 switch (encoder->type) {
7220                 case INTEL_OUTPUT_LVDS:
7221                         is_lvds = true;
7222                         break;
7223                 }
7224
7225                 num_connectors++;
7226         }
7227
7228         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7229              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7230
7231         ok = ironlake_compute_clocks(crtc, &clock,
7232                                      &has_reduced_clock, &reduced_clock);
7233         if (!ok && !intel_crtc->config.clock_set) {
7234                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7235                 return -EINVAL;
7236         }
7237         /* Compat-code for transition, will disappear. */
7238         if (!intel_crtc->config.clock_set) {
7239                 intel_crtc->config.dpll.n = clock.n;
7240                 intel_crtc->config.dpll.m1 = clock.m1;
7241                 intel_crtc->config.dpll.m2 = clock.m2;
7242                 intel_crtc->config.dpll.p1 = clock.p1;
7243                 intel_crtc->config.dpll.p2 = clock.p2;
7244         }
7245
7246         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7247         if (intel_crtc->config.has_pch_encoder) {
7248                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
7249                 if (has_reduced_clock)
7250                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7251
7252                 dpll = ironlake_compute_dpll(intel_crtc,
7253                                              &fp, &reduced_clock,
7254                                              has_reduced_clock ? &fp2 : NULL);
7255
7256                 intel_crtc->config.dpll_hw_state.dpll = dpll;
7257                 intel_crtc->config.dpll_hw_state.fp0 = fp;
7258                 if (has_reduced_clock)
7259                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
7260                 else
7261                         intel_crtc->config.dpll_hw_state.fp1 = fp;
7262
7263                 pll = intel_get_shared_dpll(intel_crtc);
7264                 if (pll == NULL) {
7265                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7266                                          pipe_name(intel_crtc->pipe));
7267                         return -EINVAL;
7268                 }
7269         } else
7270                 intel_put_shared_dpll(intel_crtc);
7271
7272         if (is_lvds && has_reduced_clock && i915.powersave)
7273                 intel_crtc->lowfreq_avail = true;
7274         else
7275                 intel_crtc->lowfreq_avail = false;
7276
7277         return 0;
7278 }
7279
7280 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7281                                          struct intel_link_m_n *m_n)
7282 {
7283         struct drm_device *dev = crtc->base.dev;
7284         struct drm_i915_private *dev_priv = dev->dev_private;
7285         enum pipe pipe = crtc->pipe;
7286
7287         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7288         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7289         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7290                 & ~TU_SIZE_MASK;
7291         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7292         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7293                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7294 }
7295
7296 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7297                                          enum transcoder transcoder,
7298                                          struct intel_link_m_n *m_n,
7299                                          struct intel_link_m_n *m2_n2)
7300 {
7301         struct drm_device *dev = crtc->base.dev;
7302         struct drm_i915_private *dev_priv = dev->dev_private;
7303         enum pipe pipe = crtc->pipe;
7304
7305         if (INTEL_INFO(dev)->gen >= 5) {
7306                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7307                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7308                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7309                         & ~TU_SIZE_MASK;
7310                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7311                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7312                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7313                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7314                  * gen < 8) and if DRRS is supported (to make sure the
7315                  * registers are not unnecessarily read).
7316                  */
7317                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7318                         crtc->config.has_drrs) {
7319                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7320                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7321                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7322                                         & ~TU_SIZE_MASK;
7323                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7324                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7325                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7326                 }
7327         } else {
7328                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7329                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7330                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7331                         & ~TU_SIZE_MASK;
7332                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7333                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7334                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7335         }
7336 }
7337
7338 void intel_dp_get_m_n(struct intel_crtc *crtc,
7339                       struct intel_crtc_config *pipe_config)
7340 {
7341         if (crtc->config.has_pch_encoder)
7342                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7343         else
7344                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7345                                              &pipe_config->dp_m_n,
7346                                              &pipe_config->dp_m2_n2);
7347 }
7348
7349 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7350                                         struct intel_crtc_config *pipe_config)
7351 {
7352         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7353                                      &pipe_config->fdi_m_n, NULL);
7354 }
7355
7356 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7357                                      struct intel_crtc_config *pipe_config)
7358 {
7359         struct drm_device *dev = crtc->base.dev;
7360         struct drm_i915_private *dev_priv = dev->dev_private;
7361         uint32_t tmp;
7362
7363         tmp = I915_READ(PF_CTL(crtc->pipe));
7364
7365         if (tmp & PF_ENABLE) {
7366                 pipe_config->pch_pfit.enabled = true;
7367                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7368                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7369
7370                 /* We currently do not free assignements of panel fitters on
7371                  * ivb/hsw (since we don't use the higher upscaling modes which
7372                  * differentiates them) so just WARN about this case for now. */
7373                 if (IS_GEN7(dev)) {
7374                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7375                                 PF_PIPE_SEL_IVB(crtc->pipe));
7376                 }
7377         }
7378 }
7379
7380 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7381                                       struct intel_plane_config *plane_config)
7382 {
7383         struct drm_device *dev = crtc->base.dev;
7384         struct drm_i915_private *dev_priv = dev->dev_private;
7385         u32 val, base, offset;
7386         int pipe = crtc->pipe, plane = crtc->plane;
7387         int fourcc, pixel_format;
7388         int aligned_height;
7389
7390         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7391         if (!crtc->base.primary->fb) {
7392                 DRM_DEBUG_KMS("failed to alloc fb\n");
7393                 return;
7394         }
7395
7396         val = I915_READ(DSPCNTR(plane));
7397
7398         if (INTEL_INFO(dev)->gen >= 4)
7399                 if (val & DISPPLANE_TILED)
7400                         plane_config->tiled = true;
7401
7402         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7403         fourcc = intel_format_to_fourcc(pixel_format);
7404         crtc->base.primary->fb->pixel_format = fourcc;
7405         crtc->base.primary->fb->bits_per_pixel =
7406                 drm_format_plane_cpp(fourcc, 0) * 8;
7407
7408         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7409         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7410                 offset = I915_READ(DSPOFFSET(plane));
7411         } else {
7412                 if (plane_config->tiled)
7413                         offset = I915_READ(DSPTILEOFF(plane));
7414                 else
7415                         offset = I915_READ(DSPLINOFF(plane));
7416         }
7417         plane_config->base = base;
7418
7419         val = I915_READ(PIPESRC(pipe));
7420         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7421         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7422
7423         val = I915_READ(DSPSTRIDE(pipe));
7424         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7425
7426         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7427                                             plane_config->tiled);
7428
7429         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7430                                         aligned_height);
7431
7432         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7433                       pipe, plane, crtc->base.primary->fb->width,
7434                       crtc->base.primary->fb->height,
7435                       crtc->base.primary->fb->bits_per_pixel, base,
7436                       crtc->base.primary->fb->pitches[0],
7437                       plane_config->size);
7438 }
7439
7440 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7441                                      struct intel_crtc_config *pipe_config)
7442 {
7443         struct drm_device *dev = crtc->base.dev;
7444         struct drm_i915_private *dev_priv = dev->dev_private;
7445         uint32_t tmp;
7446
7447         if (!intel_display_power_enabled(dev_priv,
7448                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7449                 return false;
7450
7451         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7452         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7453
7454         tmp = I915_READ(PIPECONF(crtc->pipe));
7455         if (!(tmp & PIPECONF_ENABLE))
7456                 return false;
7457
7458         switch (tmp & PIPECONF_BPC_MASK) {
7459         case PIPECONF_6BPC:
7460                 pipe_config->pipe_bpp = 18;
7461                 break;
7462         case PIPECONF_8BPC:
7463                 pipe_config->pipe_bpp = 24;
7464                 break;
7465         case PIPECONF_10BPC:
7466                 pipe_config->pipe_bpp = 30;
7467                 break;
7468         case PIPECONF_12BPC:
7469                 pipe_config->pipe_bpp = 36;
7470                 break;
7471         default:
7472                 break;
7473         }
7474
7475         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7476                 pipe_config->limited_color_range = true;
7477
7478         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7479                 struct intel_shared_dpll *pll;
7480
7481                 pipe_config->has_pch_encoder = true;
7482
7483                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7484                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7485                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7486
7487                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7488
7489                 if (HAS_PCH_IBX(dev_priv->dev)) {
7490                         pipe_config->shared_dpll =
7491                                 (enum intel_dpll_id) crtc->pipe;
7492                 } else {
7493                         tmp = I915_READ(PCH_DPLL_SEL);
7494                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7495                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7496                         else
7497                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7498                 }
7499
7500                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7501
7502                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7503                                            &pipe_config->dpll_hw_state));
7504
7505                 tmp = pipe_config->dpll_hw_state.dpll;
7506                 pipe_config->pixel_multiplier =
7507                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7508                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7509
7510                 ironlake_pch_clock_get(crtc, pipe_config);
7511         } else {
7512                 pipe_config->pixel_multiplier = 1;
7513         }
7514
7515         intel_get_pipe_timings(crtc, pipe_config);
7516
7517         ironlake_get_pfit_config(crtc, pipe_config);
7518
7519         return true;
7520 }
7521
7522 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7523 {
7524         struct drm_device *dev = dev_priv->dev;
7525         struct intel_crtc *crtc;
7526
7527         for_each_intel_crtc(dev, crtc)
7528                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7529                      pipe_name(crtc->pipe));
7530
7531         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7532         WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7533         WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7534         WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7535         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7536         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7537              "CPU PWM1 enabled\n");
7538         if (IS_HASWELL(dev))
7539                 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7540                      "CPU PWM2 enabled\n");
7541         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7542              "PCH PWM1 enabled\n");
7543         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7544              "Utility pin enabled\n");
7545         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7546
7547         /*
7548          * In theory we can still leave IRQs enabled, as long as only the HPD
7549          * interrupts remain enabled. We used to check for that, but since it's
7550          * gen-specific and since we only disable LCPLL after we fully disable
7551          * the interrupts, the check below should be enough.
7552          */
7553         WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7554 }
7555
7556 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7557 {
7558         struct drm_device *dev = dev_priv->dev;
7559
7560         if (IS_HASWELL(dev))
7561                 return I915_READ(D_COMP_HSW);
7562         else
7563                 return I915_READ(D_COMP_BDW);
7564 }
7565
7566 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7567 {
7568         struct drm_device *dev = dev_priv->dev;
7569
7570         if (IS_HASWELL(dev)) {
7571                 mutex_lock(&dev_priv->rps.hw_lock);
7572                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7573                                             val))
7574                         DRM_ERROR("Failed to write to D_COMP\n");
7575                 mutex_unlock(&dev_priv->rps.hw_lock);
7576         } else {
7577                 I915_WRITE(D_COMP_BDW, val);
7578                 POSTING_READ(D_COMP_BDW);
7579         }
7580 }
7581
7582 /*
7583  * This function implements pieces of two sequences from BSpec:
7584  * - Sequence for display software to disable LCPLL
7585  * - Sequence for display software to allow package C8+
7586  * The steps implemented here are just the steps that actually touch the LCPLL
7587  * register. Callers should take care of disabling all the display engine
7588  * functions, doing the mode unset, fixing interrupts, etc.
7589  */
7590 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7591                               bool switch_to_fclk, bool allow_power_down)
7592 {
7593         uint32_t val;
7594
7595         assert_can_disable_lcpll(dev_priv);
7596
7597         val = I915_READ(LCPLL_CTL);
7598
7599         if (switch_to_fclk) {
7600                 val |= LCPLL_CD_SOURCE_FCLK;
7601                 I915_WRITE(LCPLL_CTL, val);
7602
7603                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7604                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7605                         DRM_ERROR("Switching to FCLK failed\n");
7606
7607                 val = I915_READ(LCPLL_CTL);
7608         }
7609
7610         val |= LCPLL_PLL_DISABLE;
7611         I915_WRITE(LCPLL_CTL, val);
7612         POSTING_READ(LCPLL_CTL);
7613
7614         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7615                 DRM_ERROR("LCPLL still locked\n");
7616
7617         val = hsw_read_dcomp(dev_priv);
7618         val |= D_COMP_COMP_DISABLE;
7619         hsw_write_dcomp(dev_priv, val);
7620         ndelay(100);
7621
7622         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7623                      1))
7624                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7625
7626         if (allow_power_down) {
7627                 val = I915_READ(LCPLL_CTL);
7628                 val |= LCPLL_POWER_DOWN_ALLOW;
7629                 I915_WRITE(LCPLL_CTL, val);
7630                 POSTING_READ(LCPLL_CTL);
7631         }
7632 }
7633
7634 /*
7635  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7636  * source.
7637  */
7638 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7639 {
7640         uint32_t val;
7641         unsigned long irqflags;
7642
7643         val = I915_READ(LCPLL_CTL);
7644
7645         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7646                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7647                 return;
7648
7649         /*
7650          * Make sure we're not on PC8 state before disabling PC8, otherwise
7651          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7652          *
7653          * The other problem is that hsw_restore_lcpll() is called as part of
7654          * the runtime PM resume sequence, so we can't just call
7655          * gen6_gt_force_wake_get() because that function calls
7656          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7657          * while we are on the resume sequence. So to solve this problem we have
7658          * to call special forcewake code that doesn't touch runtime PM and
7659          * doesn't enable the forcewake delayed work.
7660          */
7661         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7662         if (dev_priv->uncore.forcewake_count++ == 0)
7663                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7664         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7665
7666         if (val & LCPLL_POWER_DOWN_ALLOW) {
7667                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7668                 I915_WRITE(LCPLL_CTL, val);
7669                 POSTING_READ(LCPLL_CTL);
7670         }
7671
7672         val = hsw_read_dcomp(dev_priv);
7673         val |= D_COMP_COMP_FORCE;
7674         val &= ~D_COMP_COMP_DISABLE;
7675         hsw_write_dcomp(dev_priv, val);
7676
7677         val = I915_READ(LCPLL_CTL);
7678         val &= ~LCPLL_PLL_DISABLE;
7679         I915_WRITE(LCPLL_CTL, val);
7680
7681         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7682                 DRM_ERROR("LCPLL not locked yet\n");
7683
7684         if (val & LCPLL_CD_SOURCE_FCLK) {
7685                 val = I915_READ(LCPLL_CTL);
7686                 val &= ~LCPLL_CD_SOURCE_FCLK;
7687                 I915_WRITE(LCPLL_CTL, val);
7688
7689                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7690                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7691                         DRM_ERROR("Switching back to LCPLL failed\n");
7692         }
7693
7694         /* See the big comment above. */
7695         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7696         if (--dev_priv->uncore.forcewake_count == 0)
7697                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7698         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7699 }
7700
7701 /*
7702  * Package states C8 and deeper are really deep PC states that can only be
7703  * reached when all the devices on the system allow it, so even if the graphics
7704  * device allows PC8+, it doesn't mean the system will actually get to these
7705  * states. Our driver only allows PC8+ when going into runtime PM.
7706  *
7707  * The requirements for PC8+ are that all the outputs are disabled, the power
7708  * well is disabled and most interrupts are disabled, and these are also
7709  * requirements for runtime PM. When these conditions are met, we manually do
7710  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7711  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7712  * hang the machine.
7713  *
7714  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7715  * the state of some registers, so when we come back from PC8+ we need to
7716  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7717  * need to take care of the registers kept by RC6. Notice that this happens even
7718  * if we don't put the device in PCI D3 state (which is what currently happens
7719  * because of the runtime PM support).
7720  *
7721  * For more, read "Display Sequences for Package C8" on the hardware
7722  * documentation.
7723  */
7724 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7725 {
7726         struct drm_device *dev = dev_priv->dev;
7727         uint32_t val;
7728
7729         DRM_DEBUG_KMS("Enabling package C8+\n");
7730
7731         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7732                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7733                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7734                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7735         }
7736
7737         lpt_disable_clkout_dp(dev);
7738         hsw_disable_lcpll(dev_priv, true, true);
7739 }
7740
7741 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7742 {
7743         struct drm_device *dev = dev_priv->dev;
7744         uint32_t val;
7745
7746         DRM_DEBUG_KMS("Disabling package C8+\n");
7747
7748         hsw_restore_lcpll(dev_priv);
7749         lpt_init_pch_refclk(dev);
7750
7751         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7752                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7753                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7754                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7755         }
7756
7757         intel_prepare_ddi(dev);
7758 }
7759
7760 static void snb_modeset_global_resources(struct drm_device *dev)
7761 {
7762         modeset_update_crtc_power_domains(dev);
7763 }
7764
7765 static void haswell_modeset_global_resources(struct drm_device *dev)
7766 {
7767         modeset_update_crtc_power_domains(dev);
7768 }
7769
7770 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7771                                  int x, int y,
7772                                  struct drm_framebuffer *fb)
7773 {
7774         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7775
7776         if (!intel_ddi_pll_select(intel_crtc))
7777                 return -EINVAL;
7778
7779         intel_crtc->lowfreq_avail = false;
7780
7781         return 0;
7782 }
7783
7784 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7785                                 enum port port,
7786                                 struct intel_crtc_config *pipe_config)
7787 {
7788         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7789
7790         switch (pipe_config->ddi_pll_sel) {
7791         case PORT_CLK_SEL_WRPLL1:
7792                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7793                 break;
7794         case PORT_CLK_SEL_WRPLL2:
7795                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7796                 break;
7797         }
7798 }
7799
7800 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7801                                        struct intel_crtc_config *pipe_config)
7802 {
7803         struct drm_device *dev = crtc->base.dev;
7804         struct drm_i915_private *dev_priv = dev->dev_private;
7805         struct intel_shared_dpll *pll;
7806         enum port port;
7807         uint32_t tmp;
7808
7809         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7810
7811         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7812
7813         haswell_get_ddi_pll(dev_priv, port, pipe_config);
7814
7815         if (pipe_config->shared_dpll >= 0) {
7816                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7817
7818                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7819                                            &pipe_config->dpll_hw_state));
7820         }
7821
7822         /*
7823          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7824          * DDI E. So just check whether this pipe is wired to DDI E and whether
7825          * the PCH transcoder is on.
7826          */
7827         if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7828                 pipe_config->has_pch_encoder = true;
7829
7830                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7831                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7832                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7833
7834                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7835         }
7836 }
7837
7838 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7839                                     struct intel_crtc_config *pipe_config)
7840 {
7841         struct drm_device *dev = crtc->base.dev;
7842         struct drm_i915_private *dev_priv = dev->dev_private;
7843         enum intel_display_power_domain pfit_domain;
7844         uint32_t tmp;
7845
7846         if (!intel_display_power_enabled(dev_priv,
7847                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7848                 return false;
7849
7850         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7851         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7852
7853         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7854         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7855                 enum pipe trans_edp_pipe;
7856                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7857                 default:
7858                         WARN(1, "unknown pipe linked to edp transcoder\n");
7859                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7860                 case TRANS_DDI_EDP_INPUT_A_ON:
7861                         trans_edp_pipe = PIPE_A;
7862                         break;
7863                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7864                         trans_edp_pipe = PIPE_B;
7865                         break;
7866                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7867                         trans_edp_pipe = PIPE_C;
7868                         break;
7869                 }
7870
7871                 if (trans_edp_pipe == crtc->pipe)
7872                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7873         }
7874
7875         if (!intel_display_power_enabled(dev_priv,
7876                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7877                 return false;
7878
7879         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7880         if (!(tmp & PIPECONF_ENABLE))
7881                 return false;
7882
7883         haswell_get_ddi_port_state(crtc, pipe_config);
7884
7885         intel_get_pipe_timings(crtc, pipe_config);
7886
7887         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7888         if (intel_display_power_enabled(dev_priv, pfit_domain))
7889                 ironlake_get_pfit_config(crtc, pipe_config);
7890
7891         if (IS_HASWELL(dev))
7892                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7893                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7894
7895         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
7896                 pipe_config->pixel_multiplier =
7897                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
7898         } else {
7899                 pipe_config->pixel_multiplier = 1;
7900         }
7901
7902         return true;
7903 }
7904
7905 static struct {
7906         int clock;
7907         u32 config;
7908 } hdmi_audio_clock[] = {
7909         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7910         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7911         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7912         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7913         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7914         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7915         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7916         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7917         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7918         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7919 };
7920
7921 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7922 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7923 {
7924         int i;
7925
7926         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7927                 if (mode->clock == hdmi_audio_clock[i].clock)
7928                         break;
7929         }
7930
7931         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7932                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7933                 i = 1;
7934         }
7935
7936         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7937                       hdmi_audio_clock[i].clock,
7938                       hdmi_audio_clock[i].config);
7939
7940         return hdmi_audio_clock[i].config;
7941 }
7942
7943 static bool intel_eld_uptodate(struct drm_connector *connector,
7944                                int reg_eldv, uint32_t bits_eldv,
7945                                int reg_elda, uint32_t bits_elda,
7946                                int reg_edid)
7947 {
7948         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7949         uint8_t *eld = connector->eld;
7950         uint32_t i;
7951
7952         i = I915_READ(reg_eldv);
7953         i &= bits_eldv;
7954
7955         if (!eld[0])
7956                 return !i;
7957
7958         if (!i)
7959                 return false;
7960
7961         i = I915_READ(reg_elda);
7962         i &= ~bits_elda;
7963         I915_WRITE(reg_elda, i);
7964
7965         for (i = 0; i < eld[2]; i++)
7966                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7967                         return false;
7968
7969         return true;
7970 }
7971
7972 static void g4x_write_eld(struct drm_connector *connector,
7973                           struct drm_crtc *crtc,
7974                           struct drm_display_mode *mode)
7975 {
7976         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7977         uint8_t *eld = connector->eld;
7978         uint32_t eldv;
7979         uint32_t len;
7980         uint32_t i;
7981
7982         i = I915_READ(G4X_AUD_VID_DID);
7983
7984         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7985                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7986         else
7987                 eldv = G4X_ELDV_DEVCTG;
7988
7989         if (intel_eld_uptodate(connector,
7990                                G4X_AUD_CNTL_ST, eldv,
7991                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7992                                G4X_HDMIW_HDMIEDID))
7993                 return;
7994
7995         i = I915_READ(G4X_AUD_CNTL_ST);
7996         i &= ~(eldv | G4X_ELD_ADDR);
7997         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7998         I915_WRITE(G4X_AUD_CNTL_ST, i);
7999
8000         if (!eld[0])
8001                 return;
8002
8003         len = min_t(uint8_t, eld[2], len);
8004         DRM_DEBUG_DRIVER("ELD size %d\n", len);
8005         for (i = 0; i < len; i++)
8006                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
8007
8008         i = I915_READ(G4X_AUD_CNTL_ST);
8009         i |= eldv;
8010         I915_WRITE(G4X_AUD_CNTL_ST, i);
8011 }
8012
8013 static void haswell_write_eld(struct drm_connector *connector,
8014                               struct drm_crtc *crtc,
8015                               struct drm_display_mode *mode)
8016 {
8017         struct drm_i915_private *dev_priv = connector->dev->dev_private;
8018         uint8_t *eld = connector->eld;
8019         uint32_t eldv;
8020         uint32_t i;
8021         int len;
8022         int pipe = to_intel_crtc(crtc)->pipe;
8023         int tmp;
8024
8025         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
8026         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
8027         int aud_config = HSW_AUD_CFG(pipe);
8028         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
8029
8030         /* Audio output enable */
8031         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
8032         tmp = I915_READ(aud_cntrl_st2);
8033         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
8034         I915_WRITE(aud_cntrl_st2, tmp);
8035         POSTING_READ(aud_cntrl_st2);
8036
8037         assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
8038
8039         /* Set ELD valid state */
8040         tmp = I915_READ(aud_cntrl_st2);
8041         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
8042         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
8043         I915_WRITE(aud_cntrl_st2, tmp);
8044         tmp = I915_READ(aud_cntrl_st2);
8045         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
8046
8047         /* Enable HDMI mode */
8048         tmp = I915_READ(aud_config);
8049         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
8050         /* clear N_programing_enable and N_value_index */
8051         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
8052         I915_WRITE(aud_config, tmp);
8053
8054         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8055
8056         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
8057
8058         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8059                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8060                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
8061                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
8062         } else {
8063                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8064         }
8065
8066         if (intel_eld_uptodate(connector,
8067                                aud_cntrl_st2, eldv,
8068                                aud_cntl_st, IBX_ELD_ADDRESS,
8069                                hdmiw_hdmiedid))
8070                 return;
8071
8072         i = I915_READ(aud_cntrl_st2);
8073         i &= ~eldv;
8074         I915_WRITE(aud_cntrl_st2, i);
8075
8076         if (!eld[0])
8077                 return;
8078
8079         i = I915_READ(aud_cntl_st);
8080         i &= ~IBX_ELD_ADDRESS;
8081         I915_WRITE(aud_cntl_st, i);
8082         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
8083         DRM_DEBUG_DRIVER("port num:%d\n", i);
8084
8085         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
8086         DRM_DEBUG_DRIVER("ELD size %d\n", len);
8087         for (i = 0; i < len; i++)
8088                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8089
8090         i = I915_READ(aud_cntrl_st2);
8091         i |= eldv;
8092         I915_WRITE(aud_cntrl_st2, i);
8093
8094 }
8095
8096 static void ironlake_write_eld(struct drm_connector *connector,
8097                                struct drm_crtc *crtc,
8098                                struct drm_display_mode *mode)
8099 {
8100         struct drm_i915_private *dev_priv = connector->dev->dev_private;
8101         uint8_t *eld = connector->eld;
8102         uint32_t eldv;
8103         uint32_t i;
8104         int len;
8105         int hdmiw_hdmiedid;
8106         int aud_config;
8107         int aud_cntl_st;
8108         int aud_cntrl_st2;
8109         int pipe = to_intel_crtc(crtc)->pipe;
8110
8111         if (HAS_PCH_IBX(connector->dev)) {
8112                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
8113                 aud_config = IBX_AUD_CFG(pipe);
8114                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
8115                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
8116         } else if (IS_VALLEYVIEW(connector->dev)) {
8117                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
8118                 aud_config = VLV_AUD_CFG(pipe);
8119                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
8120                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
8121         } else {
8122                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
8123                 aud_config = CPT_AUD_CFG(pipe);
8124                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
8125                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
8126         }
8127
8128         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8129
8130         if (IS_VALLEYVIEW(connector->dev))  {
8131                 struct intel_encoder *intel_encoder;
8132                 struct intel_digital_port *intel_dig_port;
8133
8134                 intel_encoder = intel_attached_encoder(connector);
8135                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8136                 i = intel_dig_port->port;
8137         } else {
8138                 i = I915_READ(aud_cntl_st);
8139                 i = (i >> 29) & DIP_PORT_SEL_MASK;
8140                 /* DIP_Port_Select, 0x1 = PortB */
8141         }
8142
8143         if (!i) {
8144                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8145                 /* operate blindly on all ports */
8146                 eldv = IBX_ELD_VALIDB;
8147                 eldv |= IBX_ELD_VALIDB << 4;
8148                 eldv |= IBX_ELD_VALIDB << 8;
8149         } else {
8150                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
8151                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
8152         }
8153
8154         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8155                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8156                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
8157                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
8158         } else {
8159                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8160         }
8161
8162         if (intel_eld_uptodate(connector,
8163                                aud_cntrl_st2, eldv,
8164                                aud_cntl_st, IBX_ELD_ADDRESS,
8165                                hdmiw_hdmiedid))
8166                 return;
8167
8168         i = I915_READ(aud_cntrl_st2);
8169         i &= ~eldv;
8170         I915_WRITE(aud_cntrl_st2, i);
8171
8172         if (!eld[0])
8173                 return;
8174
8175         i = I915_READ(aud_cntl_st);
8176         i &= ~IBX_ELD_ADDRESS;
8177         I915_WRITE(aud_cntl_st, i);
8178
8179         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
8180         DRM_DEBUG_DRIVER("ELD size %d\n", len);
8181         for (i = 0; i < len; i++)
8182                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8183
8184         i = I915_READ(aud_cntrl_st2);
8185         i |= eldv;
8186         I915_WRITE(aud_cntrl_st2, i);
8187 }
8188
8189 void intel_write_eld(struct drm_encoder *encoder,
8190                      struct drm_display_mode *mode)
8191 {
8192         struct drm_crtc *crtc = encoder->crtc;
8193         struct drm_connector *connector;
8194         struct drm_device *dev = encoder->dev;
8195         struct drm_i915_private *dev_priv = dev->dev_private;
8196
8197         connector = drm_select_eld(encoder, mode);
8198         if (!connector)
8199                 return;
8200
8201         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8202                          connector->base.id,
8203                          connector->name,
8204                          connector->encoder->base.id,
8205                          connector->encoder->name);
8206
8207         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8208
8209         if (dev_priv->display.write_eld)
8210                 dev_priv->display.write_eld(connector, crtc, mode);
8211 }
8212
8213 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8214 {
8215         struct drm_device *dev = crtc->dev;
8216         struct drm_i915_private *dev_priv = dev->dev_private;
8217         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8218         uint32_t cntl = 0, size = 0;
8219
8220         if (base) {
8221                 unsigned int width = intel_crtc->cursor_width;
8222                 unsigned int height = intel_crtc->cursor_height;
8223                 unsigned int stride = roundup_pow_of_two(width) * 4;
8224
8225                 switch (stride) {
8226                 default:
8227                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8228                                   width, stride);
8229                         stride = 256;
8230                         /* fallthrough */
8231                 case 256:
8232                 case 512:
8233                 case 1024:
8234                 case 2048:
8235                         break;
8236                 }
8237
8238                 cntl |= CURSOR_ENABLE |
8239                         CURSOR_GAMMA_ENABLE |
8240                         CURSOR_FORMAT_ARGB |
8241                         CURSOR_STRIDE(stride);
8242
8243                 size = (height << 12) | width;
8244         }
8245
8246         if (intel_crtc->cursor_cntl != 0 &&
8247             (intel_crtc->cursor_base != base ||
8248              intel_crtc->cursor_size != size ||
8249              intel_crtc->cursor_cntl != cntl)) {
8250                 /* On these chipsets we can only modify the base/size/stride
8251                  * whilst the cursor is disabled.
8252                  */
8253                 I915_WRITE(_CURACNTR, 0);
8254                 POSTING_READ(_CURACNTR);
8255                 intel_crtc->cursor_cntl = 0;
8256         }
8257
8258         if (intel_crtc->cursor_base != base)
8259                 I915_WRITE(_CURABASE, base);
8260
8261         if (intel_crtc->cursor_size != size) {
8262                 I915_WRITE(CURSIZE, size);
8263                 intel_crtc->cursor_size = size;
8264         }
8265
8266         if (intel_crtc->cursor_cntl != cntl) {
8267                 I915_WRITE(_CURACNTR, cntl);
8268                 POSTING_READ(_CURACNTR);
8269                 intel_crtc->cursor_cntl = cntl;
8270         }
8271 }
8272
8273 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8274 {
8275         struct drm_device *dev = crtc->dev;
8276         struct drm_i915_private *dev_priv = dev->dev_private;
8277         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8278         int pipe = intel_crtc->pipe;
8279         uint32_t cntl;
8280
8281         cntl = 0;
8282         if (base) {
8283                 cntl = MCURSOR_GAMMA_ENABLE;
8284                 switch (intel_crtc->cursor_width) {
8285                         case 64:
8286                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8287                                 break;
8288                         case 128:
8289                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8290                                 break;
8291                         case 256:
8292                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8293                                 break;
8294                         default:
8295                                 WARN_ON(1);
8296                                 return;
8297                 }
8298                 cntl |= pipe << 28; /* Connect to correct pipe */
8299         }
8300         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8301                 cntl |= CURSOR_PIPE_CSC_ENABLE;
8302
8303         if (intel_crtc->cursor_cntl != cntl) {
8304                 I915_WRITE(CURCNTR(pipe), cntl);
8305                 POSTING_READ(CURCNTR(pipe));
8306                 intel_crtc->cursor_cntl = cntl;
8307         }
8308
8309         /* and commit changes on next vblank */
8310         I915_WRITE(CURBASE(pipe), base);
8311         POSTING_READ(CURBASE(pipe));
8312 }
8313
8314 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8315 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8316                                      bool on)
8317 {
8318         struct drm_device *dev = crtc->dev;
8319         struct drm_i915_private *dev_priv = dev->dev_private;
8320         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8321         int pipe = intel_crtc->pipe;
8322         int x = crtc->cursor_x;
8323         int y = crtc->cursor_y;
8324         u32 base = 0, pos = 0;
8325
8326         if (on)
8327                 base = intel_crtc->cursor_addr;
8328
8329         if (x >= intel_crtc->config.pipe_src_w)
8330                 base = 0;
8331
8332         if (y >= intel_crtc->config.pipe_src_h)
8333                 base = 0;
8334
8335         if (x < 0) {
8336                 if (x + intel_crtc->cursor_width <= 0)
8337                         base = 0;
8338
8339                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8340                 x = -x;
8341         }
8342         pos |= x << CURSOR_X_SHIFT;
8343
8344         if (y < 0) {
8345                 if (y + intel_crtc->cursor_height <= 0)
8346                         base = 0;
8347
8348                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8349                 y = -y;
8350         }
8351         pos |= y << CURSOR_Y_SHIFT;
8352
8353         if (base == 0 && intel_crtc->cursor_base == 0)
8354                 return;
8355
8356         I915_WRITE(CURPOS(pipe), pos);
8357
8358         if (IS_845G(dev) || IS_I865G(dev))
8359                 i845_update_cursor(crtc, base);
8360         else
8361                 i9xx_update_cursor(crtc, base);
8362         intel_crtc->cursor_base = base;
8363 }
8364
8365 static bool cursor_size_ok(struct drm_device *dev,
8366                            uint32_t width, uint32_t height)
8367 {
8368         if (width == 0 || height == 0)
8369                 return false;
8370
8371         /*
8372          * 845g/865g are special in that they are only limited by
8373          * the width of their cursors, the height is arbitrary up to
8374          * the precision of the register. Everything else requires
8375          * square cursors, limited to a few power-of-two sizes.
8376          */
8377         if (IS_845G(dev) || IS_I865G(dev)) {
8378                 if ((width & 63) != 0)
8379                         return false;
8380
8381                 if (width > (IS_845G(dev) ? 64 : 512))
8382                         return false;
8383
8384                 if (height > 1023)
8385                         return false;
8386         } else {
8387                 switch (width | height) {
8388                 case 256:
8389                 case 128:
8390                         if (IS_GEN2(dev))
8391                                 return false;
8392                 case 64:
8393                         break;
8394                 default:
8395                         return false;
8396                 }
8397         }
8398
8399         return true;
8400 }
8401
8402 /*
8403  * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8404  *
8405  * Note that the object's reference will be consumed if the update fails.  If
8406  * the update succeeds, the reference of the old object (if any) will be
8407  * consumed.
8408  */
8409 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8410                                      struct drm_i915_gem_object *obj,
8411                                      uint32_t width, uint32_t height)
8412 {
8413         struct drm_device *dev = crtc->dev;
8414         struct drm_i915_private *dev_priv = dev->dev_private;
8415         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8416         enum pipe pipe = intel_crtc->pipe;
8417         unsigned old_width, stride;
8418         uint32_t addr;
8419         int ret;
8420
8421         /* if we want to turn off the cursor ignore width and height */
8422         if (!obj) {
8423                 DRM_DEBUG_KMS("cursor off\n");
8424                 addr = 0;
8425                 mutex_lock(&dev->struct_mutex);
8426                 goto finish;
8427         }
8428
8429         /* Check for which cursor types we support */
8430         if (!cursor_size_ok(dev, width, height)) {
8431                 DRM_DEBUG("Cursor dimension not supported\n");
8432                 return -EINVAL;
8433         }
8434
8435         stride = roundup_pow_of_two(width) * 4;
8436         if (obj->base.size < stride * height) {
8437                 DRM_DEBUG_KMS("buffer is too small\n");
8438                 ret = -ENOMEM;
8439                 goto fail;
8440         }
8441
8442         /* we only need to pin inside GTT if cursor is non-phy */
8443         mutex_lock(&dev->struct_mutex);
8444         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8445                 unsigned alignment;
8446
8447                 if (obj->tiling_mode) {
8448                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
8449                         ret = -EINVAL;
8450                         goto fail_locked;
8451                 }
8452
8453                 /*
8454                  * Global gtt pte registers are special registers which actually
8455                  * forward writes to a chunk of system memory. Which means that
8456                  * there is no risk that the register values disappear as soon
8457                  * as we call intel_runtime_pm_put(), so it is correct to wrap
8458                  * only the pin/unpin/fence and not more.
8459                  */
8460                 intel_runtime_pm_get(dev_priv);
8461
8462                 /* Note that the w/a also requires 2 PTE of padding following
8463                  * the bo. We currently fill all unused PTE with the shadow
8464                  * page and so we should always have valid PTE following the
8465                  * cursor preventing the VT-d warning.
8466                  */
8467                 alignment = 0;
8468                 if (need_vtd_wa(dev))
8469                         alignment = 64*1024;
8470
8471                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8472                 if (ret) {
8473                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8474                         intel_runtime_pm_put(dev_priv);
8475                         goto fail_locked;
8476                 }
8477
8478                 ret = i915_gem_object_put_fence(obj);
8479                 if (ret) {
8480                         DRM_DEBUG_KMS("failed to release fence for cursor");
8481                         intel_runtime_pm_put(dev_priv);
8482                         goto fail_unpin;
8483                 }
8484
8485                 addr = i915_gem_obj_ggtt_offset(obj);
8486
8487                 intel_runtime_pm_put(dev_priv);
8488         } else {
8489                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8490                 ret = i915_gem_object_attach_phys(obj, align);
8491                 if (ret) {
8492                         DRM_DEBUG_KMS("failed to attach phys object\n");
8493                         goto fail_locked;
8494                 }
8495                 addr = obj->phys_handle->busaddr;
8496         }
8497
8498  finish:
8499         if (intel_crtc->cursor_bo) {
8500                 if (!INTEL_INFO(dev)->cursor_needs_physical)
8501                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8502         }
8503
8504         i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8505                           INTEL_FRONTBUFFER_CURSOR(pipe));
8506         mutex_unlock(&dev->struct_mutex);
8507
8508         old_width = intel_crtc->cursor_width;
8509
8510         intel_crtc->cursor_addr = addr;
8511         intel_crtc->cursor_bo = obj;
8512         intel_crtc->cursor_width = width;
8513         intel_crtc->cursor_height = height;
8514
8515         if (intel_crtc->active) {
8516                 if (old_width != width)
8517                         intel_update_watermarks(crtc);
8518                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8519         }
8520
8521         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8522
8523         return 0;
8524 fail_unpin:
8525         i915_gem_object_unpin_from_display_plane(obj);
8526 fail_locked:
8527         mutex_unlock(&dev->struct_mutex);
8528 fail:
8529         drm_gem_object_unreference_unlocked(&obj->base);
8530         return ret;
8531 }
8532
8533 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8534                                  u16 *blue, uint32_t start, uint32_t size)
8535 {
8536         int end = (start + size > 256) ? 256 : start + size, i;
8537         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8538
8539         for (i = start; i < end; i++) {
8540                 intel_crtc->lut_r[i] = red[i] >> 8;
8541                 intel_crtc->lut_g[i] = green[i] >> 8;
8542                 intel_crtc->lut_b[i] = blue[i] >> 8;
8543         }
8544
8545         intel_crtc_load_lut(crtc);
8546 }
8547
8548 /* VESA 640x480x72Hz mode to set on the pipe */
8549 static struct drm_display_mode load_detect_mode = {
8550         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8551                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8552 };
8553
8554 struct drm_framebuffer *
8555 __intel_framebuffer_create(struct drm_device *dev,
8556                            struct drm_mode_fb_cmd2 *mode_cmd,
8557                            struct drm_i915_gem_object *obj)
8558 {
8559         struct intel_framebuffer *intel_fb;
8560         int ret;
8561
8562         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8563         if (!intel_fb) {
8564                 drm_gem_object_unreference_unlocked(&obj->base);
8565                 return ERR_PTR(-ENOMEM);
8566         }
8567
8568         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8569         if (ret)
8570                 goto err;
8571
8572         return &intel_fb->base;
8573 err:
8574         drm_gem_object_unreference_unlocked(&obj->base);
8575         kfree(intel_fb);
8576
8577         return ERR_PTR(ret);
8578 }
8579
8580 static struct drm_framebuffer *
8581 intel_framebuffer_create(struct drm_device *dev,
8582                          struct drm_mode_fb_cmd2 *mode_cmd,
8583                          struct drm_i915_gem_object *obj)
8584 {
8585         struct drm_framebuffer *fb;
8586         int ret;
8587
8588         ret = i915_mutex_lock_interruptible(dev);
8589         if (ret)
8590                 return ERR_PTR(ret);
8591         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8592         mutex_unlock(&dev->struct_mutex);
8593
8594         return fb;
8595 }
8596
8597 static u32
8598 intel_framebuffer_pitch_for_width(int width, int bpp)
8599 {
8600         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8601         return ALIGN(pitch, 64);
8602 }
8603
8604 static u32
8605 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8606 {
8607         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8608         return PAGE_ALIGN(pitch * mode->vdisplay);
8609 }
8610
8611 static struct drm_framebuffer *
8612 intel_framebuffer_create_for_mode(struct drm_device *dev,
8613                                   struct drm_display_mode *mode,
8614                                   int depth, int bpp)
8615 {
8616         struct drm_i915_gem_object *obj;
8617         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8618
8619         obj = i915_gem_alloc_object(dev,
8620                                     intel_framebuffer_size_for_mode(mode, bpp));
8621         if (obj == NULL)
8622                 return ERR_PTR(-ENOMEM);
8623
8624         mode_cmd.width = mode->hdisplay;
8625         mode_cmd.height = mode->vdisplay;
8626         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8627                                                                 bpp);
8628         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8629
8630         return intel_framebuffer_create(dev, &mode_cmd, obj);
8631 }
8632
8633 static struct drm_framebuffer *
8634 mode_fits_in_fbdev(struct drm_device *dev,
8635                    struct drm_display_mode *mode)
8636 {
8637 #ifdef CONFIG_DRM_I915_FBDEV
8638         struct drm_i915_private *dev_priv = dev->dev_private;
8639         struct drm_i915_gem_object *obj;
8640         struct drm_framebuffer *fb;
8641
8642         if (!dev_priv->fbdev)
8643                 return NULL;
8644
8645         if (!dev_priv->fbdev->fb)
8646                 return NULL;
8647
8648         obj = dev_priv->fbdev->fb->obj;
8649         BUG_ON(!obj);
8650
8651         fb = &dev_priv->fbdev->fb->base;
8652         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8653                                                                fb->bits_per_pixel))
8654                 return NULL;
8655
8656         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8657                 return NULL;
8658
8659         return fb;
8660 #else
8661         return NULL;
8662 #endif
8663 }
8664
8665 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8666                                 struct drm_display_mode *mode,
8667                                 struct intel_load_detect_pipe *old,
8668                                 struct drm_modeset_acquire_ctx *ctx)
8669 {
8670         struct intel_crtc *intel_crtc;
8671         struct intel_encoder *intel_encoder =
8672                 intel_attached_encoder(connector);
8673         struct drm_crtc *possible_crtc;
8674         struct drm_encoder *encoder = &intel_encoder->base;
8675         struct drm_crtc *crtc = NULL;
8676         struct drm_device *dev = encoder->dev;
8677         struct drm_framebuffer *fb;
8678         struct drm_mode_config *config = &dev->mode_config;
8679         int ret, i = -1;
8680
8681         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8682                       connector->base.id, connector->name,
8683                       encoder->base.id, encoder->name);
8684
8685 retry:
8686         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8687         if (ret)
8688                 goto fail_unlock;
8689
8690         /*
8691          * Algorithm gets a little messy:
8692          *
8693          *   - if the connector already has an assigned crtc, use it (but make
8694          *     sure it's on first)
8695          *
8696          *   - try to find the first unused crtc that can drive this connector,
8697          *     and use that if we find one
8698          */
8699
8700         /* See if we already have a CRTC for this connector */
8701         if (encoder->crtc) {
8702                 crtc = encoder->crtc;
8703
8704                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8705                 if (ret)
8706                         goto fail_unlock;
8707
8708                 old->dpms_mode = connector->dpms;
8709                 old->load_detect_temp = false;
8710
8711                 /* Make sure the crtc and connector are running */
8712                 if (connector->dpms != DRM_MODE_DPMS_ON)
8713                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8714
8715                 return true;
8716         }
8717
8718         /* Find an unused one (if possible) */
8719         for_each_crtc(dev, possible_crtc) {
8720                 i++;
8721                 if (!(encoder->possible_crtcs & (1 << i)))
8722                         continue;
8723                 if (possible_crtc->enabled)
8724                         continue;
8725                 /* This can occur when applying the pipe A quirk on resume. */
8726                 if (to_intel_crtc(possible_crtc)->new_enabled)
8727                         continue;
8728
8729                 crtc = possible_crtc;
8730                 break;
8731         }
8732
8733         /*
8734          * If we didn't find an unused CRTC, don't use any.
8735          */
8736         if (!crtc) {
8737                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8738                 goto fail_unlock;
8739         }
8740
8741         ret = drm_modeset_lock(&crtc->mutex, ctx);
8742         if (ret)
8743                 goto fail_unlock;
8744         intel_encoder->new_crtc = to_intel_crtc(crtc);
8745         to_intel_connector(connector)->new_encoder = intel_encoder;
8746
8747         intel_crtc = to_intel_crtc(crtc);
8748         intel_crtc->new_enabled = true;
8749         intel_crtc->new_config = &intel_crtc->config;
8750         old->dpms_mode = connector->dpms;
8751         old->load_detect_temp = true;
8752         old->release_fb = NULL;
8753
8754         if (!mode)
8755                 mode = &load_detect_mode;
8756
8757         /* We need a framebuffer large enough to accommodate all accesses
8758          * that the plane may generate whilst we perform load detection.
8759          * We can not rely on the fbcon either being present (we get called
8760          * during its initialisation to detect all boot displays, or it may
8761          * not even exist) or that it is large enough to satisfy the
8762          * requested mode.
8763          */
8764         fb = mode_fits_in_fbdev(dev, mode);
8765         if (fb == NULL) {
8766                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8767                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8768                 old->release_fb = fb;
8769         } else
8770                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8771         if (IS_ERR(fb)) {
8772                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8773                 goto fail;
8774         }
8775
8776         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8777                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8778                 if (old->release_fb)
8779                         old->release_fb->funcs->destroy(old->release_fb);
8780                 goto fail;
8781         }
8782
8783         /* let the connector get through one full cycle before testing */
8784         intel_wait_for_vblank(dev, intel_crtc->pipe);
8785         return true;
8786
8787  fail:
8788         intel_crtc->new_enabled = crtc->enabled;
8789         if (intel_crtc->new_enabled)
8790                 intel_crtc->new_config = &intel_crtc->config;
8791         else
8792                 intel_crtc->new_config = NULL;
8793 fail_unlock:
8794         if (ret == -EDEADLK) {
8795                 drm_modeset_backoff(ctx);
8796                 goto retry;
8797         }
8798
8799         return false;
8800 }
8801
8802 void intel_release_load_detect_pipe(struct drm_connector *connector,
8803                                     struct intel_load_detect_pipe *old)
8804 {
8805         struct intel_encoder *intel_encoder =
8806                 intel_attached_encoder(connector);
8807         struct drm_encoder *encoder = &intel_encoder->base;
8808         struct drm_crtc *crtc = encoder->crtc;
8809         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8810
8811         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8812                       connector->base.id, connector->name,
8813                       encoder->base.id, encoder->name);
8814
8815         if (old->load_detect_temp) {
8816                 to_intel_connector(connector)->new_encoder = NULL;
8817                 intel_encoder->new_crtc = NULL;
8818                 intel_crtc->new_enabled = false;
8819                 intel_crtc->new_config = NULL;
8820                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8821
8822                 if (old->release_fb) {
8823                         drm_framebuffer_unregister_private(old->release_fb);
8824                         drm_framebuffer_unreference(old->release_fb);
8825                 }
8826
8827                 return;
8828         }
8829
8830         /* Switch crtc and encoder back off if necessary */
8831         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8832                 connector->funcs->dpms(connector, old->dpms_mode);
8833 }
8834
8835 static int i9xx_pll_refclk(struct drm_device *dev,
8836                            const struct intel_crtc_config *pipe_config)
8837 {
8838         struct drm_i915_private *dev_priv = dev->dev_private;
8839         u32 dpll = pipe_config->dpll_hw_state.dpll;
8840
8841         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8842                 return dev_priv->vbt.lvds_ssc_freq;
8843         else if (HAS_PCH_SPLIT(dev))
8844                 return 120000;
8845         else if (!IS_GEN2(dev))
8846                 return 96000;
8847         else
8848                 return 48000;
8849 }
8850
8851 /* Returns the clock of the currently programmed mode of the given pipe. */
8852 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8853                                 struct intel_crtc_config *pipe_config)
8854 {
8855         struct drm_device *dev = crtc->base.dev;
8856         struct drm_i915_private *dev_priv = dev->dev_private;
8857         int pipe = pipe_config->cpu_transcoder;
8858         u32 dpll = pipe_config->dpll_hw_state.dpll;
8859         u32 fp;
8860         intel_clock_t clock;
8861         int refclk = i9xx_pll_refclk(dev, pipe_config);
8862
8863         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8864                 fp = pipe_config->dpll_hw_state.fp0;
8865         else
8866                 fp = pipe_config->dpll_hw_state.fp1;
8867
8868         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8869         if (IS_PINEVIEW(dev)) {
8870                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8871                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8872         } else {
8873                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8874                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8875         }
8876
8877         if (!IS_GEN2(dev)) {
8878                 if (IS_PINEVIEW(dev))
8879                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8880                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8881                 else
8882                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8883                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8884
8885                 switch (dpll & DPLL_MODE_MASK) {
8886                 case DPLLB_MODE_DAC_SERIAL:
8887                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8888                                 5 : 10;
8889                         break;
8890                 case DPLLB_MODE_LVDS:
8891                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8892                                 7 : 14;
8893                         break;
8894                 default:
8895                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8896                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8897                         return;
8898                 }
8899
8900                 if (IS_PINEVIEW(dev))
8901                         pineview_clock(refclk, &clock);
8902                 else
8903                         i9xx_clock(refclk, &clock);
8904         } else {
8905                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8906                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8907
8908                 if (is_lvds) {
8909                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8910                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8911
8912                         if (lvds & LVDS_CLKB_POWER_UP)
8913                                 clock.p2 = 7;
8914                         else
8915                                 clock.p2 = 14;
8916                 } else {
8917                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8918                                 clock.p1 = 2;
8919                         else {
8920                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8921                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8922                         }
8923                         if (dpll & PLL_P2_DIVIDE_BY_4)
8924                                 clock.p2 = 4;
8925                         else
8926                                 clock.p2 = 2;
8927                 }
8928
8929                 i9xx_clock(refclk, &clock);
8930         }
8931
8932         /*
8933          * This value includes pixel_multiplier. We will use
8934          * port_clock to compute adjusted_mode.crtc_clock in the
8935          * encoder's get_config() function.
8936          */
8937         pipe_config->port_clock = clock.dot;
8938 }
8939
8940 int intel_dotclock_calculate(int link_freq,
8941                              const struct intel_link_m_n *m_n)
8942 {
8943         /*
8944          * The calculation for the data clock is:
8945          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8946          * But we want to avoid losing precison if possible, so:
8947          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8948          *
8949          * and the link clock is simpler:
8950          * link_clock = (m * link_clock) / n
8951          */
8952
8953         if (!m_n->link_n)
8954                 return 0;
8955
8956         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8957 }
8958
8959 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8960                                    struct intel_crtc_config *pipe_config)
8961 {
8962         struct drm_device *dev = crtc->base.dev;
8963
8964         /* read out port_clock from the DPLL */
8965         i9xx_crtc_clock_get(crtc, pipe_config);
8966
8967         /*
8968          * This value does not include pixel_multiplier.
8969          * We will check that port_clock and adjusted_mode.crtc_clock
8970          * agree once we know their relationship in the encoder's
8971          * get_config() function.
8972          */
8973         pipe_config->adjusted_mode.crtc_clock =
8974                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8975                                          &pipe_config->fdi_m_n);
8976 }
8977
8978 /** Returns the currently programmed mode of the given pipe. */
8979 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8980                                              struct drm_crtc *crtc)
8981 {
8982         struct drm_i915_private *dev_priv = dev->dev_private;
8983         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8984         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8985         struct drm_display_mode *mode;
8986         struct intel_crtc_config pipe_config;
8987         int htot = I915_READ(HTOTAL(cpu_transcoder));
8988         int hsync = I915_READ(HSYNC(cpu_transcoder));
8989         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8990         int vsync = I915_READ(VSYNC(cpu_transcoder));
8991         enum pipe pipe = intel_crtc->pipe;
8992
8993         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8994         if (!mode)
8995                 return NULL;
8996
8997         /*
8998          * Construct a pipe_config sufficient for getting the clock info
8999          * back out of crtc_clock_get.
9000          *
9001          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9002          * to use a real value here instead.
9003          */
9004         pipe_config.cpu_transcoder = (enum transcoder) pipe;
9005         pipe_config.pixel_multiplier = 1;
9006         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9007         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9008         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9009         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9010
9011         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
9012         mode->hdisplay = (htot & 0xffff) + 1;
9013         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9014         mode->hsync_start = (hsync & 0xffff) + 1;
9015         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9016         mode->vdisplay = (vtot & 0xffff) + 1;
9017         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9018         mode->vsync_start = (vsync & 0xffff) + 1;
9019         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9020
9021         drm_mode_set_name(mode);
9022
9023         return mode;
9024 }
9025
9026 static void intel_increase_pllclock(struct drm_device *dev,
9027                                     enum pipe pipe)
9028 {
9029         struct drm_i915_private *dev_priv = dev->dev_private;
9030         int dpll_reg = DPLL(pipe);
9031         int dpll;
9032
9033         if (!HAS_GMCH_DISPLAY(dev))
9034                 return;
9035
9036         if (!dev_priv->lvds_downclock_avail)
9037                 return;
9038
9039         dpll = I915_READ(dpll_reg);
9040         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
9041                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
9042
9043                 assert_panel_unlocked(dev_priv, pipe);
9044
9045                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
9046                 I915_WRITE(dpll_reg, dpll);
9047                 intel_wait_for_vblank(dev, pipe);
9048
9049                 dpll = I915_READ(dpll_reg);
9050                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
9051                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
9052         }
9053 }
9054
9055 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9056 {
9057         struct drm_device *dev = crtc->dev;
9058         struct drm_i915_private *dev_priv = dev->dev_private;
9059         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9060
9061         if (!HAS_GMCH_DISPLAY(dev))
9062                 return;
9063
9064         if (!dev_priv->lvds_downclock_avail)
9065                 return;
9066
9067         /*
9068          * Since this is called by a timer, we should never get here in
9069          * the manual case.
9070          */
9071         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9072                 int pipe = intel_crtc->pipe;
9073                 int dpll_reg = DPLL(pipe);
9074                 int dpll;
9075
9076                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9077
9078                 assert_panel_unlocked(dev_priv, pipe);
9079
9080                 dpll = I915_READ(dpll_reg);
9081                 dpll |= DISPLAY_RATE_SELECT_FPA1;
9082                 I915_WRITE(dpll_reg, dpll);
9083                 intel_wait_for_vblank(dev, pipe);
9084                 dpll = I915_READ(dpll_reg);
9085                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9086                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9087         }
9088
9089 }
9090
9091 void intel_mark_busy(struct drm_device *dev)
9092 {
9093         struct drm_i915_private *dev_priv = dev->dev_private;
9094
9095         if (dev_priv->mm.busy)
9096                 return;
9097
9098         intel_runtime_pm_get(dev_priv);
9099         i915_update_gfx_val(dev_priv);
9100         dev_priv->mm.busy = true;
9101 }
9102
9103 void intel_mark_idle(struct drm_device *dev)
9104 {
9105         struct drm_i915_private *dev_priv = dev->dev_private;
9106         struct drm_crtc *crtc;
9107
9108         if (!dev_priv->mm.busy)
9109                 return;
9110
9111         dev_priv->mm.busy = false;
9112
9113         if (!i915.powersave)
9114                 goto out;
9115
9116         for_each_crtc(dev, crtc) {
9117                 if (!crtc->primary->fb)
9118                         continue;
9119
9120                 intel_decrease_pllclock(crtc);
9121         }
9122
9123         if (INTEL_INFO(dev)->gen >= 6)
9124                 gen6_rps_idle(dev->dev_private);
9125
9126 out:
9127         intel_runtime_pm_put(dev_priv);
9128 }
9129
9130
9131 /**
9132  * intel_mark_fb_busy - mark given planes as busy
9133  * @dev: DRM device
9134  * @frontbuffer_bits: bits for the affected planes
9135  * @ring: optional ring for asynchronous commands
9136  *
9137  * This function gets called every time the screen contents change. It can be
9138  * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
9139  */
9140 static void intel_mark_fb_busy(struct drm_device *dev,
9141                                unsigned frontbuffer_bits,
9142                                struct intel_engine_cs *ring)
9143 {
9144         struct drm_i915_private *dev_priv = dev->dev_private;
9145         enum pipe pipe;
9146
9147         if (!i915.powersave)
9148                 return;
9149
9150         for_each_pipe(dev_priv, pipe) {
9151                 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
9152                         continue;
9153
9154                 intel_increase_pllclock(dev, pipe);
9155                 if (ring && intel_fbc_enabled(dev))
9156                         ring->fbc_dirty = true;
9157         }
9158 }
9159
9160 /**
9161  * intel_fb_obj_invalidate - invalidate frontbuffer object
9162  * @obj: GEM object to invalidate
9163  * @ring: set for asynchronous rendering
9164  *
9165  * This function gets called every time rendering on the given object starts and
9166  * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
9167  * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
9168  * until the rendering completes or a flip on this frontbuffer plane is
9169  * scheduled.
9170  */
9171 void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
9172                              struct intel_engine_cs *ring)
9173 {
9174         struct drm_device *dev = obj->base.dev;
9175         struct drm_i915_private *dev_priv = dev->dev_private;
9176
9177         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9178
9179         if (!obj->frontbuffer_bits)
9180                 return;
9181
9182         if (ring) {
9183                 mutex_lock(&dev_priv->fb_tracking.lock);
9184                 dev_priv->fb_tracking.busy_bits
9185                         |= obj->frontbuffer_bits;
9186                 dev_priv->fb_tracking.flip_bits
9187                         &= ~obj->frontbuffer_bits;
9188                 mutex_unlock(&dev_priv->fb_tracking.lock);
9189         }
9190
9191         intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
9192
9193         intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
9194 }
9195
9196 /**
9197  * intel_frontbuffer_flush - flush frontbuffer
9198  * @dev: DRM device
9199  * @frontbuffer_bits: frontbuffer plane tracking bits
9200  *
9201  * This function gets called every time rendering on the given planes has
9202  * completed and frontbuffer caching can be started again. Flushes will get
9203  * delayed if they're blocked by some oustanding asynchronous rendering.
9204  *
9205  * Can be called without any locks held.
9206  */
9207 void intel_frontbuffer_flush(struct drm_device *dev,
9208                              unsigned frontbuffer_bits)
9209 {
9210         struct drm_i915_private *dev_priv = dev->dev_private;
9211
9212         /* Delay flushing when rings are still busy.*/
9213         mutex_lock(&dev_priv->fb_tracking.lock);
9214         frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9215         mutex_unlock(&dev_priv->fb_tracking.lock);
9216
9217         intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9218
9219         intel_edp_psr_flush(dev, frontbuffer_bits);
9220
9221         /*
9222          * FIXME: Unconditional fbc flushing here is a rather gross hack and
9223          * needs to be reworked into a proper frontbuffer tracking scheme like
9224          * psr employs.
9225          */
9226         if (IS_BROADWELL(dev))
9227                 gen8_fbc_sw_flush(dev, FBC_REND_CACHE_CLEAN);
9228 }
9229
9230 /**
9231  * intel_fb_obj_flush - flush frontbuffer object
9232  * @obj: GEM object to flush
9233  * @retire: set when retiring asynchronous rendering
9234  *
9235  * This function gets called every time rendering on the given object has
9236  * completed and frontbuffer caching can be started again. If @retire is true
9237  * then any delayed flushes will be unblocked.
9238  */
9239 void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9240                         bool retire)
9241 {
9242         struct drm_device *dev = obj->base.dev;
9243         struct drm_i915_private *dev_priv = dev->dev_private;
9244         unsigned frontbuffer_bits;
9245
9246         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9247
9248         if (!obj->frontbuffer_bits)
9249                 return;
9250
9251         frontbuffer_bits = obj->frontbuffer_bits;
9252
9253         if (retire) {
9254                 mutex_lock(&dev_priv->fb_tracking.lock);
9255                 /* Filter out new bits since rendering started. */
9256                 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9257
9258                 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9259                 mutex_unlock(&dev_priv->fb_tracking.lock);
9260         }
9261
9262         intel_frontbuffer_flush(dev, frontbuffer_bits);
9263 }
9264
9265 /**
9266  * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9267  * @dev: DRM device
9268  * @frontbuffer_bits: frontbuffer plane tracking bits
9269  *
9270  * This function gets called after scheduling a flip on @obj. The actual
9271  * frontbuffer flushing will be delayed until completion is signalled with
9272  * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9273  * flush will be cancelled.
9274  *
9275  * Can be called without any locks held.
9276  */
9277 void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9278                                     unsigned frontbuffer_bits)
9279 {
9280         struct drm_i915_private *dev_priv = dev->dev_private;
9281
9282         mutex_lock(&dev_priv->fb_tracking.lock);
9283         dev_priv->fb_tracking.flip_bits
9284                 |= frontbuffer_bits;
9285         mutex_unlock(&dev_priv->fb_tracking.lock);
9286 }
9287
9288 /**
9289  * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9290  * @dev: DRM device
9291  * @frontbuffer_bits: frontbuffer plane tracking bits
9292  *
9293  * This function gets called after the flip has been latched and will complete
9294  * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9295  *
9296  * Can be called without any locks held.
9297  */
9298 void intel_frontbuffer_flip_complete(struct drm_device *dev,
9299                                      unsigned frontbuffer_bits)
9300 {
9301         struct drm_i915_private *dev_priv = dev->dev_private;
9302
9303         mutex_lock(&dev_priv->fb_tracking.lock);
9304         /* Mask any cancelled flips. */
9305         frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9306         dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9307         mutex_unlock(&dev_priv->fb_tracking.lock);
9308
9309         intel_frontbuffer_flush(dev, frontbuffer_bits);
9310 }
9311
9312 static void intel_crtc_destroy(struct drm_crtc *crtc)
9313 {
9314         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9315         struct drm_device *dev = crtc->dev;
9316         struct intel_unpin_work *work;
9317         unsigned long flags;
9318
9319         spin_lock_irqsave(&dev->event_lock, flags);
9320         work = intel_crtc->unpin_work;
9321         intel_crtc->unpin_work = NULL;
9322         spin_unlock_irqrestore(&dev->event_lock, flags);
9323
9324         if (work) {
9325                 cancel_work_sync(&work->work);
9326                 kfree(work);
9327         }
9328
9329         drm_crtc_cleanup(crtc);
9330
9331         kfree(intel_crtc);
9332 }
9333
9334 static void intel_unpin_work_fn(struct work_struct *__work)
9335 {
9336         struct intel_unpin_work *work =
9337                 container_of(__work, struct intel_unpin_work, work);
9338         struct drm_device *dev = work->crtc->dev;
9339         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9340
9341         mutex_lock(&dev->struct_mutex);
9342         intel_unpin_fb_obj(work->old_fb_obj);
9343         drm_gem_object_unreference(&work->pending_flip_obj->base);
9344         drm_gem_object_unreference(&work->old_fb_obj->base);
9345
9346         intel_update_fbc(dev);
9347         mutex_unlock(&dev->struct_mutex);
9348
9349         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9350
9351         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9352         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9353
9354         kfree(work);
9355 }
9356
9357 static void do_intel_finish_page_flip(struct drm_device *dev,
9358                                       struct drm_crtc *crtc)
9359 {
9360         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9361         struct intel_unpin_work *work;
9362         unsigned long flags;
9363
9364         /* Ignore early vblank irqs */
9365         if (intel_crtc == NULL)
9366                 return;
9367
9368         spin_lock_irqsave(&dev->event_lock, flags);
9369         work = intel_crtc->unpin_work;
9370
9371         /* Ensure we don't miss a work->pending update ... */
9372         smp_rmb();
9373
9374         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9375                 spin_unlock_irqrestore(&dev->event_lock, flags);
9376                 return;
9377         }
9378
9379         page_flip_completed(intel_crtc);
9380
9381         spin_unlock_irqrestore(&dev->event_lock, flags);
9382 }
9383
9384 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9385 {
9386         struct drm_i915_private *dev_priv = dev->dev_private;
9387         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9388
9389         do_intel_finish_page_flip(dev, crtc);
9390 }
9391
9392 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9393 {
9394         struct drm_i915_private *dev_priv = dev->dev_private;
9395         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9396
9397         do_intel_finish_page_flip(dev, crtc);
9398 }
9399
9400 /* Is 'a' after or equal to 'b'? */
9401 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9402 {
9403         return !((a - b) & 0x80000000);
9404 }
9405
9406 static bool page_flip_finished(struct intel_crtc *crtc)
9407 {
9408         struct drm_device *dev = crtc->base.dev;
9409         struct drm_i915_private *dev_priv = dev->dev_private;
9410
9411         /*
9412          * The relevant registers doen't exist on pre-ctg.
9413          * As the flip done interrupt doesn't trigger for mmio
9414          * flips on gmch platforms, a flip count check isn't
9415          * really needed there. But since ctg has the registers,
9416          * include it in the check anyway.
9417          */
9418         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9419                 return true;
9420
9421         /*
9422          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9423          * used the same base address. In that case the mmio flip might
9424          * have completed, but the CS hasn't even executed the flip yet.
9425          *
9426          * A flip count check isn't enough as the CS might have updated
9427          * the base address just after start of vblank, but before we
9428          * managed to process the interrupt. This means we'd complete the
9429          * CS flip too soon.
9430          *
9431          * Combining both checks should get us a good enough result. It may
9432          * still happen that the CS flip has been executed, but has not
9433          * yet actually completed. But in case the base address is the same
9434          * anyway, we don't really care.
9435          */
9436         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9437                 crtc->unpin_work->gtt_offset &&
9438                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9439                                     crtc->unpin_work->flip_count);
9440 }
9441
9442 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9443 {
9444         struct drm_i915_private *dev_priv = dev->dev_private;
9445         struct intel_crtc *intel_crtc =
9446                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9447         unsigned long flags;
9448
9449         /* NB: An MMIO update of the plane base pointer will also
9450          * generate a page-flip completion irq, i.e. every modeset
9451          * is also accompanied by a spurious intel_prepare_page_flip().
9452          */
9453         spin_lock_irqsave(&dev->event_lock, flags);
9454         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9455                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9456         spin_unlock_irqrestore(&dev->event_lock, flags);
9457 }
9458
9459 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9460 {
9461         /* Ensure that the work item is consistent when activating it ... */
9462         smp_wmb();
9463         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9464         /* and that it is marked active as soon as the irq could fire. */
9465         smp_wmb();
9466 }
9467
9468 static int intel_gen2_queue_flip(struct drm_device *dev,
9469                                  struct drm_crtc *crtc,
9470                                  struct drm_framebuffer *fb,
9471                                  struct drm_i915_gem_object *obj,
9472                                  struct intel_engine_cs *ring,
9473                                  uint32_t flags)
9474 {
9475         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9476         u32 flip_mask;
9477         int ret;
9478
9479         ret = intel_ring_begin(ring, 6);
9480         if (ret)
9481                 return ret;
9482
9483         /* Can't queue multiple flips, so wait for the previous
9484          * one to finish before executing the next.
9485          */
9486         if (intel_crtc->plane)
9487                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9488         else
9489                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9490         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9491         intel_ring_emit(ring, MI_NOOP);
9492         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9493                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9494         intel_ring_emit(ring, fb->pitches[0]);
9495         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9496         intel_ring_emit(ring, 0); /* aux display base address, unused */
9497
9498         intel_mark_page_flip_active(intel_crtc);
9499         __intel_ring_advance(ring);
9500         return 0;
9501 }
9502
9503 static int intel_gen3_queue_flip(struct drm_device *dev,
9504                                  struct drm_crtc *crtc,
9505                                  struct drm_framebuffer *fb,
9506                                  struct drm_i915_gem_object *obj,
9507                                  struct intel_engine_cs *ring,
9508                                  uint32_t flags)
9509 {
9510         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9511         u32 flip_mask;
9512         int ret;
9513
9514         ret = intel_ring_begin(ring, 6);
9515         if (ret)
9516                 return ret;
9517
9518         if (intel_crtc->plane)
9519                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9520         else
9521                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9522         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9523         intel_ring_emit(ring, MI_NOOP);
9524         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9525                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9526         intel_ring_emit(ring, fb->pitches[0]);
9527         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9528         intel_ring_emit(ring, MI_NOOP);
9529
9530         intel_mark_page_flip_active(intel_crtc);
9531         __intel_ring_advance(ring);
9532         return 0;
9533 }
9534
9535 static int intel_gen4_queue_flip(struct drm_device *dev,
9536                                  struct drm_crtc *crtc,
9537                                  struct drm_framebuffer *fb,
9538                                  struct drm_i915_gem_object *obj,
9539                                  struct intel_engine_cs *ring,
9540                                  uint32_t flags)
9541 {
9542         struct drm_i915_private *dev_priv = dev->dev_private;
9543         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9544         uint32_t pf, pipesrc;
9545         int ret;
9546
9547         ret = intel_ring_begin(ring, 4);
9548         if (ret)
9549                 return ret;
9550
9551         /* i965+ uses the linear or tiled offsets from the
9552          * Display Registers (which do not change across a page-flip)
9553          * so we need only reprogram the base address.
9554          */
9555         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9556                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9557         intel_ring_emit(ring, fb->pitches[0]);
9558         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9559                         obj->tiling_mode);
9560
9561         /* XXX Enabling the panel-fitter across page-flip is so far
9562          * untested on non-native modes, so ignore it for now.
9563          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9564          */
9565         pf = 0;
9566         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9567         intel_ring_emit(ring, pf | pipesrc);
9568
9569         intel_mark_page_flip_active(intel_crtc);
9570         __intel_ring_advance(ring);
9571         return 0;
9572 }
9573
9574 static int intel_gen6_queue_flip(struct drm_device *dev,
9575                                  struct drm_crtc *crtc,
9576                                  struct drm_framebuffer *fb,
9577                                  struct drm_i915_gem_object *obj,
9578                                  struct intel_engine_cs *ring,
9579                                  uint32_t flags)
9580 {
9581         struct drm_i915_private *dev_priv = dev->dev_private;
9582         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9583         uint32_t pf, pipesrc;
9584         int ret;
9585
9586         ret = intel_ring_begin(ring, 4);
9587         if (ret)
9588                 return ret;
9589
9590         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9591                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9592         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9593         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9594
9595         /* Contrary to the suggestions in the documentation,
9596          * "Enable Panel Fitter" does not seem to be required when page
9597          * flipping with a non-native mode, and worse causes a normal
9598          * modeset to fail.
9599          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9600          */
9601         pf = 0;
9602         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9603         intel_ring_emit(ring, pf | pipesrc);
9604
9605         intel_mark_page_flip_active(intel_crtc);
9606         __intel_ring_advance(ring);
9607         return 0;
9608 }
9609
9610 static int intel_gen7_queue_flip(struct drm_device *dev,
9611                                  struct drm_crtc *crtc,
9612                                  struct drm_framebuffer *fb,
9613                                  struct drm_i915_gem_object *obj,
9614                                  struct intel_engine_cs *ring,
9615                                  uint32_t flags)
9616 {
9617         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9618         uint32_t plane_bit = 0;
9619         int len, ret;
9620
9621         switch (intel_crtc->plane) {
9622         case PLANE_A:
9623                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9624                 break;
9625         case PLANE_B:
9626                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9627                 break;
9628         case PLANE_C:
9629                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9630                 break;
9631         default:
9632                 WARN_ONCE(1, "unknown plane in flip command\n");
9633                 return -ENODEV;
9634         }
9635
9636         len = 4;
9637         if (ring->id == RCS) {
9638                 len += 6;
9639                 /*
9640                  * On Gen 8, SRM is now taking an extra dword to accommodate
9641                  * 48bits addresses, and we need a NOOP for the batch size to
9642                  * stay even.
9643                  */
9644                 if (IS_GEN8(dev))
9645                         len += 2;
9646         }
9647
9648         /*
9649          * BSpec MI_DISPLAY_FLIP for IVB:
9650          * "The full packet must be contained within the same cache line."
9651          *
9652          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9653          * cacheline, if we ever start emitting more commands before
9654          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9655          * then do the cacheline alignment, and finally emit the
9656          * MI_DISPLAY_FLIP.
9657          */
9658         ret = intel_ring_cacheline_align(ring);
9659         if (ret)
9660                 return ret;
9661
9662         ret = intel_ring_begin(ring, len);
9663         if (ret)
9664                 return ret;
9665
9666         /* Unmask the flip-done completion message. Note that the bspec says that
9667          * we should do this for both the BCS and RCS, and that we must not unmask
9668          * more than one flip event at any time (or ensure that one flip message
9669          * can be sent by waiting for flip-done prior to queueing new flips).
9670          * Experimentation says that BCS works despite DERRMR masking all
9671          * flip-done completion events and that unmasking all planes at once
9672          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9673          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9674          */
9675         if (ring->id == RCS) {
9676                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9677                 intel_ring_emit(ring, DERRMR);
9678                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9679                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9680                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9681                 if (IS_GEN8(dev))
9682                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9683                                               MI_SRM_LRM_GLOBAL_GTT);
9684                 else
9685                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9686                                               MI_SRM_LRM_GLOBAL_GTT);
9687                 intel_ring_emit(ring, DERRMR);
9688                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9689                 if (IS_GEN8(dev)) {
9690                         intel_ring_emit(ring, 0);
9691                         intel_ring_emit(ring, MI_NOOP);
9692                 }
9693         }
9694
9695         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9696         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9697         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9698         intel_ring_emit(ring, (MI_NOOP));
9699
9700         intel_mark_page_flip_active(intel_crtc);
9701         __intel_ring_advance(ring);
9702         return 0;
9703 }
9704
9705 static bool use_mmio_flip(struct intel_engine_cs *ring,
9706                           struct drm_i915_gem_object *obj)
9707 {
9708         /*
9709          * This is not being used for older platforms, because
9710          * non-availability of flip done interrupt forces us to use
9711          * CS flips. Older platforms derive flip done using some clever
9712          * tricks involving the flip_pending status bits and vblank irqs.
9713          * So using MMIO flips there would disrupt this mechanism.
9714          */
9715
9716         if (ring == NULL)
9717                 return true;
9718
9719         if (INTEL_INFO(ring->dev)->gen < 5)
9720                 return false;
9721
9722         if (i915.use_mmio_flip < 0)
9723                 return false;
9724         else if (i915.use_mmio_flip > 0)
9725                 return true;
9726         else if (i915.enable_execlists)
9727                 return true;
9728         else
9729                 return ring != obj->ring;
9730 }
9731
9732 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9733 {
9734         struct drm_device *dev = intel_crtc->base.dev;
9735         struct drm_i915_private *dev_priv = dev->dev_private;
9736         struct intel_framebuffer *intel_fb =
9737                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9738         struct drm_i915_gem_object *obj = intel_fb->obj;
9739         u32 dspcntr;
9740         u32 reg;
9741
9742         intel_mark_page_flip_active(intel_crtc);
9743
9744         reg = DSPCNTR(intel_crtc->plane);
9745         dspcntr = I915_READ(reg);
9746
9747         if (INTEL_INFO(dev)->gen >= 4) {
9748                 if (obj->tiling_mode != I915_TILING_NONE)
9749                         dspcntr |= DISPPLANE_TILED;
9750                 else
9751                         dspcntr &= ~DISPPLANE_TILED;
9752         }
9753         I915_WRITE(reg, dspcntr);
9754
9755         I915_WRITE(DSPSURF(intel_crtc->plane),
9756                    intel_crtc->unpin_work->gtt_offset);
9757         POSTING_READ(DSPSURF(intel_crtc->plane));
9758 }
9759
9760 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9761 {
9762         struct intel_engine_cs *ring;
9763         int ret;
9764
9765         lockdep_assert_held(&obj->base.dev->struct_mutex);
9766
9767         if (!obj->last_write_seqno)
9768                 return 0;
9769
9770         ring = obj->ring;
9771
9772         if (i915_seqno_passed(ring->get_seqno(ring, true),
9773                               obj->last_write_seqno))
9774                 return 0;
9775
9776         ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9777         if (ret)
9778                 return ret;
9779
9780         if (WARN_ON(!ring->irq_get(ring)))
9781                 return 0;
9782
9783         return 1;
9784 }
9785
9786 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9787 {
9788         struct drm_i915_private *dev_priv = to_i915(ring->dev);
9789         struct intel_crtc *intel_crtc;
9790         unsigned long irq_flags;
9791         u32 seqno;
9792
9793         seqno = ring->get_seqno(ring, false);
9794
9795         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9796         for_each_intel_crtc(ring->dev, intel_crtc) {
9797                 struct intel_mmio_flip *mmio_flip;
9798
9799                 mmio_flip = &intel_crtc->mmio_flip;
9800                 if (mmio_flip->seqno == 0)
9801                         continue;
9802
9803                 if (ring->id != mmio_flip->ring_id)
9804                         continue;
9805
9806                 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9807                         intel_do_mmio_flip(intel_crtc);
9808                         mmio_flip->seqno = 0;
9809                         ring->irq_put(ring);
9810                 }
9811         }
9812         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9813 }
9814
9815 static int intel_queue_mmio_flip(struct drm_device *dev,
9816                                  struct drm_crtc *crtc,
9817                                  struct drm_framebuffer *fb,
9818                                  struct drm_i915_gem_object *obj,
9819                                  struct intel_engine_cs *ring,
9820                                  uint32_t flags)
9821 {
9822         struct drm_i915_private *dev_priv = dev->dev_private;
9823         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9824         unsigned long irq_flags;
9825         int ret;
9826
9827         if (WARN_ON(intel_crtc->mmio_flip.seqno))
9828                 return -EBUSY;
9829
9830         ret = intel_postpone_flip(obj);
9831         if (ret < 0)
9832                 return ret;
9833         if (ret == 0) {
9834                 intel_do_mmio_flip(intel_crtc);
9835                 return 0;
9836         }
9837
9838         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9839         intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9840         intel_crtc->mmio_flip.ring_id = obj->ring->id;
9841         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9842
9843         /*
9844          * Double check to catch cases where irq fired before
9845          * mmio flip data was ready
9846          */
9847         intel_notify_mmio_flip(obj->ring);
9848         return 0;
9849 }
9850
9851 static int intel_default_queue_flip(struct drm_device *dev,
9852                                     struct drm_crtc *crtc,
9853                                     struct drm_framebuffer *fb,
9854                                     struct drm_i915_gem_object *obj,
9855                                     struct intel_engine_cs *ring,
9856                                     uint32_t flags)
9857 {
9858         return -ENODEV;
9859 }
9860
9861 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9862                                          struct drm_crtc *crtc)
9863 {
9864         struct drm_i915_private *dev_priv = dev->dev_private;
9865         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9866         struct intel_unpin_work *work = intel_crtc->unpin_work;
9867         u32 addr;
9868
9869         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9870                 return true;
9871
9872         if (!work->enable_stall_check)
9873                 return false;
9874
9875         if (work->flip_ready_vblank == 0) {
9876                 if (work->flip_queued_ring &&
9877                     !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9878                                        work->flip_queued_seqno))
9879                         return false;
9880
9881                 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9882         }
9883
9884         if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9885                 return false;
9886
9887         /* Potential stall - if we see that the flip has happened,
9888          * assume a missed interrupt. */
9889         if (INTEL_INFO(dev)->gen >= 4)
9890                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9891         else
9892                 addr = I915_READ(DSPADDR(intel_crtc->plane));
9893
9894         /* There is a potential issue here with a false positive after a flip
9895          * to the same address. We could address this by checking for a
9896          * non-incrementing frame counter.
9897          */
9898         return addr == work->gtt_offset;
9899 }
9900
9901 void intel_check_page_flip(struct drm_device *dev, int pipe)
9902 {
9903         struct drm_i915_private *dev_priv = dev->dev_private;
9904         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9905         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9906         unsigned long flags;
9907
9908         if (crtc == NULL)
9909                 return;
9910
9911         spin_lock_irqsave(&dev->event_lock, flags);
9912         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9913                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9914                          intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9915                 page_flip_completed(intel_crtc);
9916         }
9917         spin_unlock_irqrestore(&dev->event_lock, flags);
9918 }
9919
9920 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9921                                 struct drm_framebuffer *fb,
9922                                 struct drm_pending_vblank_event *event,
9923                                 uint32_t page_flip_flags)
9924 {
9925         struct drm_device *dev = crtc->dev;
9926         struct drm_i915_private *dev_priv = dev->dev_private;
9927         struct drm_framebuffer *old_fb = crtc->primary->fb;
9928         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9929         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9930         enum pipe pipe = intel_crtc->pipe;
9931         struct intel_unpin_work *work;
9932         struct intel_engine_cs *ring;
9933         unsigned long flags;
9934         int ret;
9935
9936         /*
9937          * drm_mode_page_flip_ioctl() should already catch this, but double
9938          * check to be safe.  In the future we may enable pageflipping from
9939          * a disabled primary plane.
9940          */
9941         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9942                 return -EBUSY;
9943
9944         /* Can't change pixel format via MI display flips. */
9945         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9946                 return -EINVAL;
9947
9948         /*
9949          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9950          * Note that pitch changes could also affect these register.
9951          */
9952         if (INTEL_INFO(dev)->gen > 3 &&
9953             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9954              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9955                 return -EINVAL;
9956
9957         if (i915_terminally_wedged(&dev_priv->gpu_error))
9958                 goto out_hang;
9959
9960         work = kzalloc(sizeof(*work), GFP_KERNEL);
9961         if (work == NULL)
9962                 return -ENOMEM;
9963
9964         work->event = event;
9965         work->crtc = crtc;
9966         work->old_fb_obj = intel_fb_obj(old_fb);
9967         INIT_WORK(&work->work, intel_unpin_work_fn);
9968
9969         ret = drm_crtc_vblank_get(crtc);
9970         if (ret)
9971                 goto free_work;
9972
9973         /* We borrow the event spin lock for protecting unpin_work */
9974         spin_lock_irqsave(&dev->event_lock, flags);
9975         if (intel_crtc->unpin_work) {
9976                 /* Before declaring the flip queue wedged, check if
9977                  * the hardware completed the operation behind our backs.
9978                  */
9979                 if (__intel_pageflip_stall_check(dev, crtc)) {
9980                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9981                         page_flip_completed(intel_crtc);
9982                 } else {
9983                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9984                         spin_unlock_irqrestore(&dev->event_lock, flags);
9985
9986                         drm_crtc_vblank_put(crtc);
9987                         kfree(work);
9988                         return -EBUSY;
9989                 }
9990         }
9991         intel_crtc->unpin_work = work;
9992         spin_unlock_irqrestore(&dev->event_lock, flags);
9993
9994         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9995                 flush_workqueue(dev_priv->wq);
9996
9997         ret = i915_mutex_lock_interruptible(dev);
9998         if (ret)
9999                 goto cleanup;
10000
10001         /* Reference the objects for the scheduled work. */
10002         drm_gem_object_reference(&work->old_fb_obj->base);
10003         drm_gem_object_reference(&obj->base);
10004
10005         crtc->primary->fb = fb;
10006
10007         work->pending_flip_obj = obj;
10008
10009         atomic_inc(&intel_crtc->unpin_work_count);
10010         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
10011
10012         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
10013                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
10014
10015         if (IS_VALLEYVIEW(dev)) {
10016                 ring = &dev_priv->ring[BCS];
10017                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
10018                         /* vlv: DISPLAY_FLIP fails to change tiling */
10019                         ring = NULL;
10020         } else if (IS_IVYBRIDGE(dev)) {
10021                 ring = &dev_priv->ring[BCS];
10022         } else if (INTEL_INFO(dev)->gen >= 7) {
10023                 ring = obj->ring;
10024                 if (ring == NULL || ring->id != RCS)
10025                         ring = &dev_priv->ring[BCS];
10026         } else {
10027                 ring = &dev_priv->ring[RCS];
10028         }
10029
10030         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
10031         if (ret)
10032                 goto cleanup_pending;
10033
10034         work->gtt_offset =
10035                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
10036
10037         if (use_mmio_flip(ring, obj)) {
10038                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10039                                             page_flip_flags);
10040                 if (ret)
10041                         goto cleanup_unpin;
10042
10043                 work->flip_queued_seqno = obj->last_write_seqno;
10044                 work->flip_queued_ring = obj->ring;
10045         } else {
10046                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10047                                                    page_flip_flags);
10048                 if (ret)
10049                         goto cleanup_unpin;
10050
10051                 work->flip_queued_seqno = intel_ring_get_seqno(ring);
10052                 work->flip_queued_ring = ring;
10053         }
10054
10055         work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
10056         work->enable_stall_check = true;
10057
10058         i915_gem_track_fb(work->old_fb_obj, obj,
10059                           INTEL_FRONTBUFFER_PRIMARY(pipe));
10060
10061         intel_disable_fbc(dev);
10062         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10063         mutex_unlock(&dev->struct_mutex);
10064
10065         trace_i915_flip_request(intel_crtc->plane, obj);
10066
10067         return 0;
10068
10069 cleanup_unpin:
10070         intel_unpin_fb_obj(obj);
10071 cleanup_pending:
10072         atomic_dec(&intel_crtc->unpin_work_count);
10073         crtc->primary->fb = old_fb;
10074         drm_gem_object_unreference(&work->old_fb_obj->base);
10075         drm_gem_object_unreference(&obj->base);
10076         mutex_unlock(&dev->struct_mutex);
10077
10078 cleanup:
10079         spin_lock_irqsave(&dev->event_lock, flags);
10080         intel_crtc->unpin_work = NULL;
10081         spin_unlock_irqrestore(&dev->event_lock, flags);
10082
10083         drm_crtc_vblank_put(crtc);
10084 free_work:
10085         kfree(work);
10086
10087         if (ret == -EIO) {
10088 out_hang:
10089                 intel_crtc_wait_for_pending_flips(crtc);
10090                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
10091                 if (ret == 0 && event) {
10092                         spin_lock_irqsave(&dev->event_lock, flags);
10093                         drm_send_vblank_event(dev, pipe, event);
10094                         spin_unlock_irqrestore(&dev->event_lock, flags);
10095                 }
10096         }
10097         return ret;
10098 }
10099
10100 static struct drm_crtc_helper_funcs intel_helper_funcs = {
10101         .mode_set_base_atomic = intel_pipe_set_base_atomic,
10102         .load_lut = intel_crtc_load_lut,
10103 };
10104
10105 /**
10106  * intel_modeset_update_staged_output_state
10107  *
10108  * Updates the staged output configuration state, e.g. after we've read out the
10109  * current hw state.
10110  */
10111 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
10112 {
10113         struct intel_crtc *crtc;
10114         struct intel_encoder *encoder;
10115         struct intel_connector *connector;
10116
10117         list_for_each_entry(connector, &dev->mode_config.connector_list,
10118                             base.head) {
10119                 connector->new_encoder =
10120                         to_intel_encoder(connector->base.encoder);
10121         }
10122
10123         for_each_intel_encoder(dev, encoder) {
10124                 encoder->new_crtc =
10125                         to_intel_crtc(encoder->base.crtc);
10126         }
10127
10128         for_each_intel_crtc(dev, crtc) {
10129                 crtc->new_enabled = crtc->base.enabled;
10130
10131                 if (crtc->new_enabled)
10132                         crtc->new_config = &crtc->config;
10133                 else
10134                         crtc->new_config = NULL;
10135         }
10136 }
10137
10138 /**
10139  * intel_modeset_commit_output_state
10140  *
10141  * This function copies the stage display pipe configuration to the real one.
10142  */
10143 static void intel_modeset_commit_output_state(struct drm_device *dev)
10144 {
10145         struct intel_crtc *crtc;
10146         struct intel_encoder *encoder;
10147         struct intel_connector *connector;
10148
10149         list_for_each_entry(connector, &dev->mode_config.connector_list,
10150                             base.head) {
10151                 connector->base.encoder = &connector->new_encoder->base;
10152         }
10153
10154         for_each_intel_encoder(dev, encoder) {
10155                 encoder->base.crtc = &encoder->new_crtc->base;
10156         }
10157
10158         for_each_intel_crtc(dev, crtc) {
10159                 crtc->base.enabled = crtc->new_enabled;
10160         }
10161 }
10162
10163 static void
10164 connected_sink_compute_bpp(struct intel_connector *connector,
10165                            struct intel_crtc_config *pipe_config)
10166 {
10167         int bpp = pipe_config->pipe_bpp;
10168
10169         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10170                 connector->base.base.id,
10171                 connector->base.name);
10172
10173         /* Don't use an invalid EDID bpc value */
10174         if (connector->base.display_info.bpc &&
10175             connector->base.display_info.bpc * 3 < bpp) {
10176                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10177                               bpp, connector->base.display_info.bpc*3);
10178                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10179         }
10180
10181         /* Clamp bpp to 8 on screens without EDID 1.4 */
10182         if (connector->base.display_info.bpc == 0 && bpp > 24) {
10183                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10184                               bpp);
10185                 pipe_config->pipe_bpp = 24;
10186         }
10187 }
10188
10189 static int
10190 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10191                           struct drm_framebuffer *fb,
10192                           struct intel_crtc_config *pipe_config)
10193 {
10194         struct drm_device *dev = crtc->base.dev;
10195         struct intel_connector *connector;
10196         int bpp;
10197
10198         switch (fb->pixel_format) {
10199         case DRM_FORMAT_C8:
10200                 bpp = 8*3; /* since we go through a colormap */
10201                 break;
10202         case DRM_FORMAT_XRGB1555:
10203         case DRM_FORMAT_ARGB1555:
10204                 /* checked in intel_framebuffer_init already */
10205                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10206                         return -EINVAL;
10207         case DRM_FORMAT_RGB565:
10208                 bpp = 6*3; /* min is 18bpp */
10209                 break;
10210         case DRM_FORMAT_XBGR8888:
10211         case DRM_FORMAT_ABGR8888:
10212                 /* checked in intel_framebuffer_init already */
10213                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10214                         return -EINVAL;
10215         case DRM_FORMAT_XRGB8888:
10216         case DRM_FORMAT_ARGB8888:
10217                 bpp = 8*3;
10218                 break;
10219         case DRM_FORMAT_XRGB2101010:
10220         case DRM_FORMAT_ARGB2101010:
10221         case DRM_FORMAT_XBGR2101010:
10222         case DRM_FORMAT_ABGR2101010:
10223                 /* checked in intel_framebuffer_init already */
10224                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10225                         return -EINVAL;
10226                 bpp = 10*3;
10227                 break;
10228         /* TODO: gen4+ supports 16 bpc floating point, too. */
10229         default:
10230                 DRM_DEBUG_KMS("unsupported depth\n");
10231                 return -EINVAL;
10232         }
10233
10234         pipe_config->pipe_bpp = bpp;
10235
10236         /* Clamp display bpp to EDID value */
10237         list_for_each_entry(connector, &dev->mode_config.connector_list,
10238                             base.head) {
10239                 if (!connector->new_encoder ||
10240                     connector->new_encoder->new_crtc != crtc)
10241                         continue;
10242
10243                 connected_sink_compute_bpp(connector, pipe_config);
10244         }
10245
10246         return bpp;
10247 }
10248
10249 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10250 {
10251         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10252                         "type: 0x%x flags: 0x%x\n",
10253                 mode->crtc_clock,
10254                 mode->crtc_hdisplay, mode->crtc_hsync_start,
10255                 mode->crtc_hsync_end, mode->crtc_htotal,
10256                 mode->crtc_vdisplay, mode->crtc_vsync_start,
10257                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10258 }
10259
10260 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10261                                    struct intel_crtc_config *pipe_config,
10262                                    const char *context)
10263 {
10264         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10265                       context, pipe_name(crtc->pipe));
10266
10267         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10268         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10269                       pipe_config->pipe_bpp, pipe_config->dither);
10270         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10271                       pipe_config->has_pch_encoder,
10272                       pipe_config->fdi_lanes,
10273                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10274                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10275                       pipe_config->fdi_m_n.tu);
10276         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10277                       pipe_config->has_dp_encoder,
10278                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10279                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10280                       pipe_config->dp_m_n.tu);
10281
10282         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10283                       pipe_config->has_dp_encoder,
10284                       pipe_config->dp_m2_n2.gmch_m,
10285                       pipe_config->dp_m2_n2.gmch_n,
10286                       pipe_config->dp_m2_n2.link_m,
10287                       pipe_config->dp_m2_n2.link_n,
10288                       pipe_config->dp_m2_n2.tu);
10289
10290         DRM_DEBUG_KMS("requested mode:\n");
10291         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10292         DRM_DEBUG_KMS("adjusted mode:\n");
10293         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
10294         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
10295         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10296         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10297                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10298         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10299                       pipe_config->gmch_pfit.control,
10300                       pipe_config->gmch_pfit.pgm_ratios,
10301                       pipe_config->gmch_pfit.lvds_border_bits);
10302         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10303                       pipe_config->pch_pfit.pos,
10304                       pipe_config->pch_pfit.size,
10305                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10306         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10307         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10308 }
10309
10310 static bool encoders_cloneable(const struct intel_encoder *a,
10311                                const struct intel_encoder *b)
10312 {
10313         /* masks could be asymmetric, so check both ways */
10314         return a == b || (a->cloneable & (1 << b->type) &&
10315                           b->cloneable & (1 << a->type));
10316 }
10317
10318 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10319                                          struct intel_encoder *encoder)
10320 {
10321         struct drm_device *dev = crtc->base.dev;
10322         struct intel_encoder *source_encoder;
10323
10324         for_each_intel_encoder(dev, source_encoder) {
10325                 if (source_encoder->new_crtc != crtc)
10326                         continue;
10327
10328                 if (!encoders_cloneable(encoder, source_encoder))
10329                         return false;
10330         }
10331
10332         return true;
10333 }
10334
10335 static bool check_encoder_cloning(struct intel_crtc *crtc)
10336 {
10337         struct drm_device *dev = crtc->base.dev;
10338         struct intel_encoder *encoder;
10339
10340         for_each_intel_encoder(dev, encoder) {
10341                 if (encoder->new_crtc != crtc)
10342                         continue;
10343
10344                 if (!check_single_encoder_cloning(crtc, encoder))
10345                         return false;
10346         }
10347
10348         return true;
10349 }
10350
10351 static struct intel_crtc_config *
10352 intel_modeset_pipe_config(struct drm_crtc *crtc,
10353                           struct drm_framebuffer *fb,
10354                           struct drm_display_mode *mode)
10355 {
10356         struct drm_device *dev = crtc->dev;
10357         struct intel_encoder *encoder;
10358         struct intel_crtc_config *pipe_config;
10359         int plane_bpp, ret = -EINVAL;
10360         bool retry = true;
10361
10362         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10363                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10364                 return ERR_PTR(-EINVAL);
10365         }
10366
10367         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10368         if (!pipe_config)
10369                 return ERR_PTR(-ENOMEM);
10370
10371         drm_mode_copy(&pipe_config->adjusted_mode, mode);
10372         drm_mode_copy(&pipe_config->requested_mode, mode);
10373
10374         pipe_config->cpu_transcoder =
10375                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10376         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10377
10378         /*
10379          * Sanitize sync polarity flags based on requested ones. If neither
10380          * positive or negative polarity is requested, treat this as meaning
10381          * negative polarity.
10382          */
10383         if (!(pipe_config->adjusted_mode.flags &
10384               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10385                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10386
10387         if (!(pipe_config->adjusted_mode.flags &
10388               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10389                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10390
10391         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10392          * plane pixel format and any sink constraints into account. Returns the
10393          * source plane bpp so that dithering can be selected on mismatches
10394          * after encoders and crtc also have had their say. */
10395         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10396                                               fb, pipe_config);
10397         if (plane_bpp < 0)
10398                 goto fail;
10399
10400         /*
10401          * Determine the real pipe dimensions. Note that stereo modes can
10402          * increase the actual pipe size due to the frame doubling and
10403          * insertion of additional space for blanks between the frame. This
10404          * is stored in the crtc timings. We use the requested mode to do this
10405          * computation to clearly distinguish it from the adjusted mode, which
10406          * can be changed by the connectors in the below retry loop.
10407          */
10408         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10409         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10410         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10411
10412 encoder_retry:
10413         /* Ensure the port clock defaults are reset when retrying. */
10414         pipe_config->port_clock = 0;
10415         pipe_config->pixel_multiplier = 1;
10416
10417         /* Fill in default crtc timings, allow encoders to overwrite them. */
10418         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10419
10420         /* Pass our mode to the connectors and the CRTC to give them a chance to
10421          * adjust it according to limitations or connector properties, and also
10422          * a chance to reject the mode entirely.
10423          */
10424         for_each_intel_encoder(dev, encoder) {
10425
10426                 if (&encoder->new_crtc->base != crtc)
10427                         continue;
10428
10429                 if (!(encoder->compute_config(encoder, pipe_config))) {
10430                         DRM_DEBUG_KMS("Encoder config failure\n");
10431                         goto fail;
10432                 }
10433         }
10434
10435         /* Set default port clock if not overwritten by the encoder. Needs to be
10436          * done afterwards in case the encoder adjusts the mode. */
10437         if (!pipe_config->port_clock)
10438                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10439                         * pipe_config->pixel_multiplier;
10440
10441         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10442         if (ret < 0) {
10443                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10444                 goto fail;
10445         }
10446
10447         if (ret == RETRY) {
10448                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10449                         ret = -EINVAL;
10450                         goto fail;
10451                 }
10452
10453                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10454                 retry = false;
10455                 goto encoder_retry;
10456         }
10457
10458         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10459         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10460                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10461
10462         return pipe_config;
10463 fail:
10464         kfree(pipe_config);
10465         return ERR_PTR(ret);
10466 }
10467
10468 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10469  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10470 static void
10471 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10472                              unsigned *prepare_pipes, unsigned *disable_pipes)
10473 {
10474         struct intel_crtc *intel_crtc;
10475         struct drm_device *dev = crtc->dev;
10476         struct intel_encoder *encoder;
10477         struct intel_connector *connector;
10478         struct drm_crtc *tmp_crtc;
10479
10480         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10481
10482         /* Check which crtcs have changed outputs connected to them, these need
10483          * to be part of the prepare_pipes mask. We don't (yet) support global
10484          * modeset across multiple crtcs, so modeset_pipes will only have one
10485          * bit set at most. */
10486         list_for_each_entry(connector, &dev->mode_config.connector_list,
10487                             base.head) {
10488                 if (connector->base.encoder == &connector->new_encoder->base)
10489                         continue;
10490
10491                 if (connector->base.encoder) {
10492                         tmp_crtc = connector->base.encoder->crtc;
10493
10494                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10495                 }
10496
10497                 if (connector->new_encoder)
10498                         *prepare_pipes |=
10499                                 1 << connector->new_encoder->new_crtc->pipe;
10500         }
10501
10502         for_each_intel_encoder(dev, encoder) {
10503                 if (encoder->base.crtc == &encoder->new_crtc->base)
10504                         continue;
10505
10506                 if (encoder->base.crtc) {
10507                         tmp_crtc = encoder->base.crtc;
10508
10509                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10510                 }
10511
10512                 if (encoder->new_crtc)
10513                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10514         }
10515
10516         /* Check for pipes that will be enabled/disabled ... */
10517         for_each_intel_crtc(dev, intel_crtc) {
10518                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10519                         continue;
10520
10521                 if (!intel_crtc->new_enabled)
10522                         *disable_pipes |= 1 << intel_crtc->pipe;
10523                 else
10524                         *prepare_pipes |= 1 << intel_crtc->pipe;
10525         }
10526
10527
10528         /* set_mode is also used to update properties on life display pipes. */
10529         intel_crtc = to_intel_crtc(crtc);
10530         if (intel_crtc->new_enabled)
10531                 *prepare_pipes |= 1 << intel_crtc->pipe;
10532
10533         /*
10534          * For simplicity do a full modeset on any pipe where the output routing
10535          * changed. We could be more clever, but that would require us to be
10536          * more careful with calling the relevant encoder->mode_set functions.
10537          */
10538         if (*prepare_pipes)
10539                 *modeset_pipes = *prepare_pipes;
10540
10541         /* ... and mask these out. */
10542         *modeset_pipes &= ~(*disable_pipes);
10543         *prepare_pipes &= ~(*disable_pipes);
10544
10545         /*
10546          * HACK: We don't (yet) fully support global modesets. intel_set_config
10547          * obies this rule, but the modeset restore mode of
10548          * intel_modeset_setup_hw_state does not.
10549          */
10550         *modeset_pipes &= 1 << intel_crtc->pipe;
10551         *prepare_pipes &= 1 << intel_crtc->pipe;
10552
10553         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10554                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10555 }
10556
10557 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10558 {
10559         struct drm_encoder *encoder;
10560         struct drm_device *dev = crtc->dev;
10561
10562         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10563                 if (encoder->crtc == crtc)
10564                         return true;
10565
10566         return false;
10567 }
10568
10569 static void
10570 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10571 {
10572         struct intel_encoder *intel_encoder;
10573         struct intel_crtc *intel_crtc;
10574         struct drm_connector *connector;
10575
10576         for_each_intel_encoder(dev, intel_encoder) {
10577                 if (!intel_encoder->base.crtc)
10578                         continue;
10579
10580                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10581
10582                 if (prepare_pipes & (1 << intel_crtc->pipe))
10583                         intel_encoder->connectors_active = false;
10584         }
10585
10586         intel_modeset_commit_output_state(dev);
10587
10588         /* Double check state. */
10589         for_each_intel_crtc(dev, intel_crtc) {
10590                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10591                 WARN_ON(intel_crtc->new_config &&
10592                         intel_crtc->new_config != &intel_crtc->config);
10593                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10594         }
10595
10596         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10597                 if (!connector->encoder || !connector->encoder->crtc)
10598                         continue;
10599
10600                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10601
10602                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10603                         struct drm_property *dpms_property =
10604                                 dev->mode_config.dpms_property;
10605
10606                         connector->dpms = DRM_MODE_DPMS_ON;
10607                         drm_object_property_set_value(&connector->base,
10608                                                          dpms_property,
10609                                                          DRM_MODE_DPMS_ON);
10610
10611                         intel_encoder = to_intel_encoder(connector->encoder);
10612                         intel_encoder->connectors_active = true;
10613                 }
10614         }
10615
10616 }
10617
10618 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10619 {
10620         int diff;
10621
10622         if (clock1 == clock2)
10623                 return true;
10624
10625         if (!clock1 || !clock2)
10626                 return false;
10627
10628         diff = abs(clock1 - clock2);
10629
10630         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10631                 return true;
10632
10633         return false;
10634 }
10635
10636 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10637         list_for_each_entry((intel_crtc), \
10638                             &(dev)->mode_config.crtc_list, \
10639                             base.head) \
10640                 if (mask & (1 <<(intel_crtc)->pipe))
10641
10642 static bool
10643 intel_pipe_config_compare(struct drm_device *dev,
10644                           struct intel_crtc_config *current_config,
10645                           struct intel_crtc_config *pipe_config)
10646 {
10647 #define PIPE_CONF_CHECK_X(name) \
10648         if (current_config->name != pipe_config->name) { \
10649                 DRM_ERROR("mismatch in " #name " " \
10650                           "(expected 0x%08x, found 0x%08x)\n", \
10651                           current_config->name, \
10652                           pipe_config->name); \
10653                 return false; \
10654         }
10655
10656 #define PIPE_CONF_CHECK_I(name) \
10657         if (current_config->name != pipe_config->name) { \
10658                 DRM_ERROR("mismatch in " #name " " \
10659                           "(expected %i, found %i)\n", \
10660                           current_config->name, \
10661                           pipe_config->name); \
10662                 return false; \
10663         }
10664
10665 /* This is required for BDW+ where there is only one set of registers for
10666  * switching between high and low RR.
10667  * This macro can be used whenever a comparison has to be made between one
10668  * hw state and multiple sw state variables.
10669  */
10670 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10671         if ((current_config->name != pipe_config->name) && \
10672                 (current_config->alt_name != pipe_config->name)) { \
10673                         DRM_ERROR("mismatch in " #name " " \
10674                                   "(expected %i or %i, found %i)\n", \
10675                                   current_config->name, \
10676                                   current_config->alt_name, \
10677                                   pipe_config->name); \
10678                         return false; \
10679         }
10680
10681 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10682         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10683                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10684                           "(expected %i, found %i)\n", \
10685                           current_config->name & (mask), \
10686                           pipe_config->name & (mask)); \
10687                 return false; \
10688         }
10689
10690 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10691         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10692                 DRM_ERROR("mismatch in " #name " " \
10693                           "(expected %i, found %i)\n", \
10694                           current_config->name, \
10695                           pipe_config->name); \
10696                 return false; \
10697         }
10698
10699 #define PIPE_CONF_QUIRK(quirk)  \
10700         ((current_config->quirks | pipe_config->quirks) & (quirk))
10701
10702         PIPE_CONF_CHECK_I(cpu_transcoder);
10703
10704         PIPE_CONF_CHECK_I(has_pch_encoder);
10705         PIPE_CONF_CHECK_I(fdi_lanes);
10706         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10707         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10708         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10709         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10710         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10711
10712         PIPE_CONF_CHECK_I(has_dp_encoder);
10713
10714         if (INTEL_INFO(dev)->gen < 8) {
10715                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10716                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10717                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10718                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10719                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10720
10721                 if (current_config->has_drrs) {
10722                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10723                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10724                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10725                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10726                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10727                 }
10728         } else {
10729                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10730                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10731                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10732                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10733                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10734         }
10735
10736         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10737         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10738         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10739         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10740         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10741         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10742
10743         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10744         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10745         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10746         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10747         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10748         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10749
10750         PIPE_CONF_CHECK_I(pixel_multiplier);
10751         PIPE_CONF_CHECK_I(has_hdmi_sink);
10752         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10753             IS_VALLEYVIEW(dev))
10754                 PIPE_CONF_CHECK_I(limited_color_range);
10755
10756         PIPE_CONF_CHECK_I(has_audio);
10757
10758         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10759                               DRM_MODE_FLAG_INTERLACE);
10760
10761         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10762                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10763                                       DRM_MODE_FLAG_PHSYNC);
10764                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10765                                       DRM_MODE_FLAG_NHSYNC);
10766                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10767                                       DRM_MODE_FLAG_PVSYNC);
10768                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10769                                       DRM_MODE_FLAG_NVSYNC);
10770         }
10771
10772         PIPE_CONF_CHECK_I(pipe_src_w);
10773         PIPE_CONF_CHECK_I(pipe_src_h);
10774
10775         /*
10776          * FIXME: BIOS likes to set up a cloned config with lvds+external
10777          * screen. Since we don't yet re-compute the pipe config when moving
10778          * just the lvds port away to another pipe the sw tracking won't match.
10779          *
10780          * Proper atomic modesets with recomputed global state will fix this.
10781          * Until then just don't check gmch state for inherited modes.
10782          */
10783         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10784                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10785                 /* pfit ratios are autocomputed by the hw on gen4+ */
10786                 if (INTEL_INFO(dev)->gen < 4)
10787                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10788                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10789         }
10790
10791         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10792         if (current_config->pch_pfit.enabled) {
10793                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10794                 PIPE_CONF_CHECK_I(pch_pfit.size);
10795         }
10796
10797         /* BDW+ don't expose a synchronous way to read the state */
10798         if (IS_HASWELL(dev))
10799                 PIPE_CONF_CHECK_I(ips_enabled);
10800
10801         PIPE_CONF_CHECK_I(double_wide);
10802
10803         PIPE_CONF_CHECK_X(ddi_pll_sel);
10804
10805         PIPE_CONF_CHECK_I(shared_dpll);
10806         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10807         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10808         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10809         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10810         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10811
10812         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10813                 PIPE_CONF_CHECK_I(pipe_bpp);
10814
10815         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10816         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10817
10818 #undef PIPE_CONF_CHECK_X
10819 #undef PIPE_CONF_CHECK_I
10820 #undef PIPE_CONF_CHECK_I_ALT
10821 #undef PIPE_CONF_CHECK_FLAGS
10822 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10823 #undef PIPE_CONF_QUIRK
10824
10825         return true;
10826 }
10827
10828 static void
10829 check_connector_state(struct drm_device *dev)
10830 {
10831         struct intel_connector *connector;
10832
10833         list_for_each_entry(connector, &dev->mode_config.connector_list,
10834                             base.head) {
10835                 /* This also checks the encoder/connector hw state with the
10836                  * ->get_hw_state callbacks. */
10837                 intel_connector_check_state(connector);
10838
10839                 WARN(&connector->new_encoder->base != connector->base.encoder,
10840                      "connector's staged encoder doesn't match current encoder\n");
10841         }
10842 }
10843
10844 static void
10845 check_encoder_state(struct drm_device *dev)
10846 {
10847         struct intel_encoder *encoder;
10848         struct intel_connector *connector;
10849
10850         for_each_intel_encoder(dev, encoder) {
10851                 bool enabled = false;
10852                 bool active = false;
10853                 enum pipe pipe, tracked_pipe;
10854
10855                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10856                               encoder->base.base.id,
10857                               encoder->base.name);
10858
10859                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10860                      "encoder's stage crtc doesn't match current crtc\n");
10861                 WARN(encoder->connectors_active && !encoder->base.crtc,
10862                      "encoder's active_connectors set, but no crtc\n");
10863
10864                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10865                                     base.head) {
10866                         if (connector->base.encoder != &encoder->base)
10867                                 continue;
10868                         enabled = true;
10869                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10870                                 active = true;
10871                 }
10872                 /*
10873                  * for MST connectors if we unplug the connector is gone
10874                  * away but the encoder is still connected to a crtc
10875                  * until a modeset happens in response to the hotplug.
10876                  */
10877                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10878                         continue;
10879
10880                 WARN(!!encoder->base.crtc != enabled,
10881                      "encoder's enabled state mismatch "
10882                      "(expected %i, found %i)\n",
10883                      !!encoder->base.crtc, enabled);
10884                 WARN(active && !encoder->base.crtc,
10885                      "active encoder with no crtc\n");
10886
10887                 WARN(encoder->connectors_active != active,
10888                      "encoder's computed active state doesn't match tracked active state "
10889                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10890
10891                 active = encoder->get_hw_state(encoder, &pipe);
10892                 WARN(active != encoder->connectors_active,
10893                      "encoder's hw state doesn't match sw tracking "
10894                      "(expected %i, found %i)\n",
10895                      encoder->connectors_active, active);
10896
10897                 if (!encoder->base.crtc)
10898                         continue;
10899
10900                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10901                 WARN(active && pipe != tracked_pipe,
10902                      "active encoder's pipe doesn't match"
10903                      "(expected %i, found %i)\n",
10904                      tracked_pipe, pipe);
10905
10906         }
10907 }
10908
10909 static void
10910 check_crtc_state(struct drm_device *dev)
10911 {
10912         struct drm_i915_private *dev_priv = dev->dev_private;
10913         struct intel_crtc *crtc;
10914         struct intel_encoder *encoder;
10915         struct intel_crtc_config pipe_config;
10916
10917         for_each_intel_crtc(dev, crtc) {
10918                 bool enabled = false;
10919                 bool active = false;
10920
10921                 memset(&pipe_config, 0, sizeof(pipe_config));
10922
10923                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10924                               crtc->base.base.id);
10925
10926                 WARN(crtc->active && !crtc->base.enabled,
10927                      "active crtc, but not enabled in sw tracking\n");
10928
10929                 for_each_intel_encoder(dev, encoder) {
10930                         if (encoder->base.crtc != &crtc->base)
10931                                 continue;
10932                         enabled = true;
10933                         if (encoder->connectors_active)
10934                                 active = true;
10935                 }
10936
10937                 WARN(active != crtc->active,
10938                      "crtc's computed active state doesn't match tracked active state "
10939                      "(expected %i, found %i)\n", active, crtc->active);
10940                 WARN(enabled != crtc->base.enabled,
10941                      "crtc's computed enabled state doesn't match tracked enabled state "
10942                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10943
10944                 active = dev_priv->display.get_pipe_config(crtc,
10945                                                            &pipe_config);
10946
10947                 /* hw state is inconsistent with the pipe quirk */
10948                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10949                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10950                         active = crtc->active;
10951
10952                 for_each_intel_encoder(dev, encoder) {
10953                         enum pipe pipe;
10954                         if (encoder->base.crtc != &crtc->base)
10955                                 continue;
10956                         if (encoder->get_hw_state(encoder, &pipe))
10957                                 encoder->get_config(encoder, &pipe_config);
10958                 }
10959
10960                 WARN(crtc->active != active,
10961                      "crtc active state doesn't match with hw state "
10962                      "(expected %i, found %i)\n", crtc->active, active);
10963
10964                 if (active &&
10965                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10966                         WARN(1, "pipe state doesn't match!\n");
10967                         intel_dump_pipe_config(crtc, &pipe_config,
10968                                                "[hw state]");
10969                         intel_dump_pipe_config(crtc, &crtc->config,
10970                                                "[sw state]");
10971                 }
10972         }
10973 }
10974
10975 static void
10976 check_shared_dpll_state(struct drm_device *dev)
10977 {
10978         struct drm_i915_private *dev_priv = dev->dev_private;
10979         struct intel_crtc *crtc;
10980         struct intel_dpll_hw_state dpll_hw_state;
10981         int i;
10982
10983         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10984                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10985                 int enabled_crtcs = 0, active_crtcs = 0;
10986                 bool active;
10987
10988                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10989
10990                 DRM_DEBUG_KMS("%s\n", pll->name);
10991
10992                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10993
10994                 WARN(pll->active > pll->refcount,
10995                      "more active pll users than references: %i vs %i\n",
10996                      pll->active, pll->refcount);
10997                 WARN(pll->active && !pll->on,
10998                      "pll in active use but not on in sw tracking\n");
10999                 WARN(pll->on && !pll->active,
11000                      "pll in on but not on in use in sw tracking\n");
11001                 WARN(pll->on != active,
11002                      "pll on state mismatch (expected %i, found %i)\n",
11003                      pll->on, active);
11004
11005                 for_each_intel_crtc(dev, crtc) {
11006                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
11007                                 enabled_crtcs++;
11008                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11009                                 active_crtcs++;
11010                 }
11011                 WARN(pll->active != active_crtcs,
11012                      "pll active crtcs mismatch (expected %i, found %i)\n",
11013                      pll->active, active_crtcs);
11014                 WARN(pll->refcount != enabled_crtcs,
11015                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
11016                      pll->refcount, enabled_crtcs);
11017
11018                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
11019                                        sizeof(dpll_hw_state)),
11020                      "pll hw state mismatch\n");
11021         }
11022 }
11023
11024 void
11025 intel_modeset_check_state(struct drm_device *dev)
11026 {
11027         check_connector_state(dev);
11028         check_encoder_state(dev);
11029         check_crtc_state(dev);
11030         check_shared_dpll_state(dev);
11031 }
11032
11033 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
11034                                      int dotclock)
11035 {
11036         /*
11037          * FDI already provided one idea for the dotclock.
11038          * Yell if the encoder disagrees.
11039          */
11040         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
11041              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11042              pipe_config->adjusted_mode.crtc_clock, dotclock);
11043 }
11044
11045 static void update_scanline_offset(struct intel_crtc *crtc)
11046 {
11047         struct drm_device *dev = crtc->base.dev;
11048
11049         /*
11050          * The scanline counter increments at the leading edge of hsync.
11051          *
11052          * On most platforms it starts counting from vtotal-1 on the
11053          * first active line. That means the scanline counter value is
11054          * always one less than what we would expect. Ie. just after
11055          * start of vblank, which also occurs at start of hsync (on the
11056          * last active line), the scanline counter will read vblank_start-1.
11057          *
11058          * On gen2 the scanline counter starts counting from 1 instead
11059          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11060          * to keep the value positive), instead of adding one.
11061          *
11062          * On HSW+ the behaviour of the scanline counter depends on the output
11063          * type. For DP ports it behaves like most other platforms, but on HDMI
11064          * there's an extra 1 line difference. So we need to add two instead of
11065          * one to the value.
11066          */
11067         if (IS_GEN2(dev)) {
11068                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
11069                 int vtotal;
11070
11071                 vtotal = mode->crtc_vtotal;
11072                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11073                         vtotal /= 2;
11074
11075                 crtc->scanline_offset = vtotal - 1;
11076         } else if (HAS_DDI(dev) &&
11077                    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
11078                 crtc->scanline_offset = 2;
11079         } else
11080                 crtc->scanline_offset = 1;
11081 }
11082
11083 static int __intel_set_mode(struct drm_crtc *crtc,
11084                             struct drm_display_mode *mode,
11085                             int x, int y, struct drm_framebuffer *fb)
11086 {
11087         struct drm_device *dev = crtc->dev;
11088         struct drm_i915_private *dev_priv = dev->dev_private;
11089         struct drm_display_mode *saved_mode;
11090         struct intel_crtc_config *pipe_config = NULL;
11091         struct intel_crtc *intel_crtc;
11092         unsigned disable_pipes, prepare_pipes, modeset_pipes;
11093         int ret = 0;
11094
11095         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11096         if (!saved_mode)
11097                 return -ENOMEM;
11098
11099         intel_modeset_affected_pipes(crtc, &modeset_pipes,
11100                                      &prepare_pipes, &disable_pipes);
11101
11102         *saved_mode = crtc->mode;
11103
11104         /* Hack: Because we don't (yet) support global modeset on multiple
11105          * crtcs, we don't keep track of the new mode for more than one crtc.
11106          * Hence simply check whether any bit is set in modeset_pipes in all the
11107          * pieces of code that are not yet converted to deal with mutliple crtcs
11108          * changing their mode at the same time. */
11109         if (modeset_pipes) {
11110                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11111                 if (IS_ERR(pipe_config)) {
11112                         ret = PTR_ERR(pipe_config);
11113                         pipe_config = NULL;
11114
11115                         goto out;
11116                 }
11117                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11118                                        "[modeset]");
11119                 to_intel_crtc(crtc)->new_config = pipe_config;
11120         }
11121
11122         /*
11123          * See if the config requires any additional preparation, e.g.
11124          * to adjust global state with pipes off.  We need to do this
11125          * here so we can get the modeset_pipe updated config for the new
11126          * mode set on this crtc.  For other crtcs we need to use the
11127          * adjusted_mode bits in the crtc directly.
11128          */
11129         if (IS_VALLEYVIEW(dev)) {
11130                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11131
11132                 /* may have added more to prepare_pipes than we should */
11133                 prepare_pipes &= ~disable_pipes;
11134         }
11135
11136         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11137                 intel_crtc_disable(&intel_crtc->base);
11138
11139         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11140                 if (intel_crtc->base.enabled)
11141                         dev_priv->display.crtc_disable(&intel_crtc->base);
11142         }
11143
11144         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11145          * to set it here already despite that we pass it down the callchain.
11146          */
11147         if (modeset_pipes) {
11148                 crtc->mode = *mode;
11149                 /* mode_set/enable/disable functions rely on a correct pipe
11150                  * config. */
11151                 to_intel_crtc(crtc)->config = *pipe_config;
11152                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
11153
11154                 /*
11155                  * Calculate and store various constants which
11156                  * are later needed by vblank and swap-completion
11157                  * timestamping. They are derived from true hwmode.
11158                  */
11159                 drm_calc_timestamping_constants(crtc,
11160                                                 &pipe_config->adjusted_mode);
11161         }
11162
11163         /* Only after disabling all output pipelines that will be changed can we
11164          * update the the output configuration. */
11165         intel_modeset_update_state(dev, prepare_pipes);
11166
11167         if (dev_priv->display.modeset_global_resources)
11168                 dev_priv->display.modeset_global_resources(dev);
11169
11170         /* Set up the DPLL and any encoders state that needs to adjust or depend
11171          * on the DPLL.
11172          */
11173         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11174                 struct drm_framebuffer *old_fb = crtc->primary->fb;
11175                 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
11176                 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11177
11178                 mutex_lock(&dev->struct_mutex);
11179                 ret = intel_pin_and_fence_fb_obj(dev,
11180                                                  obj,
11181                                                  NULL);
11182                 if (ret != 0) {
11183                         DRM_ERROR("pin & fence failed\n");
11184                         mutex_unlock(&dev->struct_mutex);
11185                         goto done;
11186                 }
11187                 if (old_fb)
11188                         intel_unpin_fb_obj(old_obj);
11189                 i915_gem_track_fb(old_obj, obj,
11190                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11191                 mutex_unlock(&dev->struct_mutex);
11192
11193                 crtc->primary->fb = fb;
11194                 crtc->x = x;
11195                 crtc->y = y;
11196
11197                 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
11198                                                       x, y, fb);
11199                 if (ret)
11200                         goto done;
11201         }
11202
11203         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11204         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11205                 update_scanline_offset(intel_crtc);
11206
11207                 dev_priv->display.crtc_enable(&intel_crtc->base);
11208         }
11209
11210         /* FIXME: add subpixel order */
11211 done:
11212         if (ret && crtc->enabled)
11213                 crtc->mode = *saved_mode;
11214
11215 out:
11216         kfree(pipe_config);
11217         kfree(saved_mode);
11218         return ret;
11219 }
11220
11221 static int intel_set_mode(struct drm_crtc *crtc,
11222                           struct drm_display_mode *mode,
11223                           int x, int y, struct drm_framebuffer *fb)
11224 {
11225         int ret;
11226
11227         ret = __intel_set_mode(crtc, mode, x, y, fb);
11228
11229         if (ret == 0)
11230                 intel_modeset_check_state(crtc->dev);
11231
11232         return ret;
11233 }
11234
11235 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11236 {
11237         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11238 }
11239
11240 #undef for_each_intel_crtc_masked
11241
11242 static void intel_set_config_free(struct intel_set_config *config)
11243 {
11244         if (!config)
11245                 return;
11246
11247         kfree(config->save_connector_encoders);
11248         kfree(config->save_encoder_crtcs);
11249         kfree(config->save_crtc_enabled);
11250         kfree(config);
11251 }
11252
11253 static int intel_set_config_save_state(struct drm_device *dev,
11254                                        struct intel_set_config *config)
11255 {
11256         struct drm_crtc *crtc;
11257         struct drm_encoder *encoder;
11258         struct drm_connector *connector;
11259         int count;
11260
11261         config->save_crtc_enabled =
11262                 kcalloc(dev->mode_config.num_crtc,
11263                         sizeof(bool), GFP_KERNEL);
11264         if (!config->save_crtc_enabled)
11265                 return -ENOMEM;
11266
11267         config->save_encoder_crtcs =
11268                 kcalloc(dev->mode_config.num_encoder,
11269                         sizeof(struct drm_crtc *), GFP_KERNEL);
11270         if (!config->save_encoder_crtcs)
11271                 return -ENOMEM;
11272
11273         config->save_connector_encoders =
11274                 kcalloc(dev->mode_config.num_connector,
11275                         sizeof(struct drm_encoder *), GFP_KERNEL);
11276         if (!config->save_connector_encoders)
11277                 return -ENOMEM;
11278
11279         /* Copy data. Note that driver private data is not affected.
11280          * Should anything bad happen only the expected state is
11281          * restored, not the drivers personal bookkeeping.
11282          */
11283         count = 0;
11284         for_each_crtc(dev, crtc) {
11285                 config->save_crtc_enabled[count++] = crtc->enabled;
11286         }
11287
11288         count = 0;
11289         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11290                 config->save_encoder_crtcs[count++] = encoder->crtc;
11291         }
11292
11293         count = 0;
11294         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11295                 config->save_connector_encoders[count++] = connector->encoder;
11296         }
11297
11298         return 0;
11299 }
11300
11301 static void intel_set_config_restore_state(struct drm_device *dev,
11302                                            struct intel_set_config *config)
11303 {
11304         struct intel_crtc *crtc;
11305         struct intel_encoder *encoder;
11306         struct intel_connector *connector;
11307         int count;
11308
11309         count = 0;
11310         for_each_intel_crtc(dev, crtc) {
11311                 crtc->new_enabled = config->save_crtc_enabled[count++];
11312
11313                 if (crtc->new_enabled)
11314                         crtc->new_config = &crtc->config;
11315                 else
11316                         crtc->new_config = NULL;
11317         }
11318
11319         count = 0;
11320         for_each_intel_encoder(dev, encoder) {
11321                 encoder->new_crtc =
11322                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11323         }
11324
11325         count = 0;
11326         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11327                 connector->new_encoder =
11328                         to_intel_encoder(config->save_connector_encoders[count++]);
11329         }
11330 }
11331
11332 static bool
11333 is_crtc_connector_off(struct drm_mode_set *set)
11334 {
11335         int i;
11336
11337         if (set->num_connectors == 0)
11338                 return false;
11339
11340         if (WARN_ON(set->connectors == NULL))
11341                 return false;
11342
11343         for (i = 0; i < set->num_connectors; i++)
11344                 if (set->connectors[i]->encoder &&
11345                     set->connectors[i]->encoder->crtc == set->crtc &&
11346                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11347                         return true;
11348
11349         return false;
11350 }
11351
11352 static void
11353 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11354                                       struct intel_set_config *config)
11355 {
11356
11357         /* We should be able to check here if the fb has the same properties
11358          * and then just flip_or_move it */
11359         if (is_crtc_connector_off(set)) {
11360                 config->mode_changed = true;
11361         } else if (set->crtc->primary->fb != set->fb) {
11362                 /*
11363                  * If we have no fb, we can only flip as long as the crtc is
11364                  * active, otherwise we need a full mode set.  The crtc may
11365                  * be active if we've only disabled the primary plane, or
11366                  * in fastboot situations.
11367                  */
11368                 if (set->crtc->primary->fb == NULL) {
11369                         struct intel_crtc *intel_crtc =
11370                                 to_intel_crtc(set->crtc);
11371
11372                         if (intel_crtc->active) {
11373                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11374                                 config->fb_changed = true;
11375                         } else {
11376                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11377                                 config->mode_changed = true;
11378                         }
11379                 } else if (set->fb == NULL) {
11380                         config->mode_changed = true;
11381                 } else if (set->fb->pixel_format !=
11382                            set->crtc->primary->fb->pixel_format) {
11383                         config->mode_changed = true;
11384                 } else {
11385                         config->fb_changed = true;
11386                 }
11387         }
11388
11389         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11390                 config->fb_changed = true;
11391
11392         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11393                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11394                 drm_mode_debug_printmodeline(&set->crtc->mode);
11395                 drm_mode_debug_printmodeline(set->mode);
11396                 config->mode_changed = true;
11397         }
11398
11399         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11400                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11401 }
11402
11403 static int
11404 intel_modeset_stage_output_state(struct drm_device *dev,
11405                                  struct drm_mode_set *set,
11406                                  struct intel_set_config *config)
11407 {
11408         struct intel_connector *connector;
11409         struct intel_encoder *encoder;
11410         struct intel_crtc *crtc;
11411         int ro;
11412
11413         /* The upper layers ensure that we either disable a crtc or have a list
11414          * of connectors. For paranoia, double-check this. */
11415         WARN_ON(!set->fb && (set->num_connectors != 0));
11416         WARN_ON(set->fb && (set->num_connectors == 0));
11417
11418         list_for_each_entry(connector, &dev->mode_config.connector_list,
11419                             base.head) {
11420                 /* Otherwise traverse passed in connector list and get encoders
11421                  * for them. */
11422                 for (ro = 0; ro < set->num_connectors; ro++) {
11423                         if (set->connectors[ro] == &connector->base) {
11424                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11425                                 break;
11426                         }
11427                 }
11428
11429                 /* If we disable the crtc, disable all its connectors. Also, if
11430                  * the connector is on the changing crtc but not on the new
11431                  * connector list, disable it. */
11432                 if ((!set->fb || ro == set->num_connectors) &&
11433                     connector->base.encoder &&
11434                     connector->base.encoder->crtc == set->crtc) {
11435                         connector->new_encoder = NULL;
11436
11437                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11438                                 connector->base.base.id,
11439                                 connector->base.name);
11440                 }
11441
11442
11443                 if (&connector->new_encoder->base != connector->base.encoder) {
11444                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11445                         config->mode_changed = true;
11446                 }
11447         }
11448         /* connector->new_encoder is now updated for all connectors. */
11449
11450         /* Update crtc of enabled connectors. */
11451         list_for_each_entry(connector, &dev->mode_config.connector_list,
11452                             base.head) {
11453                 struct drm_crtc *new_crtc;
11454
11455                 if (!connector->new_encoder)
11456                         continue;
11457
11458                 new_crtc = connector->new_encoder->base.crtc;
11459
11460                 for (ro = 0; ro < set->num_connectors; ro++) {
11461                         if (set->connectors[ro] == &connector->base)
11462                                 new_crtc = set->crtc;
11463                 }
11464
11465                 /* Make sure the new CRTC will work with the encoder */
11466                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11467                                          new_crtc)) {
11468                         return -EINVAL;
11469                 }
11470                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11471
11472                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11473                         connector->base.base.id,
11474                         connector->base.name,
11475                         new_crtc->base.id);
11476         }
11477
11478         /* Check for any encoders that needs to be disabled. */
11479         for_each_intel_encoder(dev, encoder) {
11480                 int num_connectors = 0;
11481                 list_for_each_entry(connector,
11482                                     &dev->mode_config.connector_list,
11483                                     base.head) {
11484                         if (connector->new_encoder == encoder) {
11485                                 WARN_ON(!connector->new_encoder->new_crtc);
11486                                 num_connectors++;
11487                         }
11488                 }
11489
11490                 if (num_connectors == 0)
11491                         encoder->new_crtc = NULL;
11492                 else if (num_connectors > 1)
11493                         return -EINVAL;
11494
11495                 /* Only now check for crtc changes so we don't miss encoders
11496                  * that will be disabled. */
11497                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11498                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11499                         config->mode_changed = true;
11500                 }
11501         }
11502         /* Now we've also updated encoder->new_crtc for all encoders. */
11503         list_for_each_entry(connector, &dev->mode_config.connector_list,
11504                             base.head) {
11505                 if (connector->new_encoder)
11506                         if (connector->new_encoder != connector->encoder)
11507                                 connector->encoder = connector->new_encoder;
11508         }
11509         for_each_intel_crtc(dev, crtc) {
11510                 crtc->new_enabled = false;
11511
11512                 for_each_intel_encoder(dev, encoder) {
11513                         if (encoder->new_crtc == crtc) {
11514                                 crtc->new_enabled = true;
11515                                 break;
11516                         }
11517                 }
11518
11519                 if (crtc->new_enabled != crtc->base.enabled) {
11520                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11521                                       crtc->new_enabled ? "en" : "dis");
11522                         config->mode_changed = true;
11523                 }
11524
11525                 if (crtc->new_enabled)
11526                         crtc->new_config = &crtc->config;
11527                 else
11528                         crtc->new_config = NULL;
11529         }
11530
11531         return 0;
11532 }
11533
11534 static void disable_crtc_nofb(struct intel_crtc *crtc)
11535 {
11536         struct drm_device *dev = crtc->base.dev;
11537         struct intel_encoder *encoder;
11538         struct intel_connector *connector;
11539
11540         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11541                       pipe_name(crtc->pipe));
11542
11543         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11544                 if (connector->new_encoder &&
11545                     connector->new_encoder->new_crtc == crtc)
11546                         connector->new_encoder = NULL;
11547         }
11548
11549         for_each_intel_encoder(dev, encoder) {
11550                 if (encoder->new_crtc == crtc)
11551                         encoder->new_crtc = NULL;
11552         }
11553
11554         crtc->new_enabled = false;
11555         crtc->new_config = NULL;
11556 }
11557
11558 static int intel_crtc_set_config(struct drm_mode_set *set)
11559 {
11560         struct drm_device *dev;
11561         struct drm_mode_set save_set;
11562         struct intel_set_config *config;
11563         int ret;
11564
11565         BUG_ON(!set);
11566         BUG_ON(!set->crtc);
11567         BUG_ON(!set->crtc->helper_private);
11568
11569         /* Enforce sane interface api - has been abused by the fb helper. */
11570         BUG_ON(!set->mode && set->fb);
11571         BUG_ON(set->fb && set->num_connectors == 0);
11572
11573         if (set->fb) {
11574                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11575                                 set->crtc->base.id, set->fb->base.id,
11576                                 (int)set->num_connectors, set->x, set->y);
11577         } else {
11578                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11579         }
11580
11581         dev = set->crtc->dev;
11582
11583         ret = -ENOMEM;
11584         config = kzalloc(sizeof(*config), GFP_KERNEL);
11585         if (!config)
11586                 goto out_config;
11587
11588         ret = intel_set_config_save_state(dev, config);
11589         if (ret)
11590                 goto out_config;
11591
11592         save_set.crtc = set->crtc;
11593         save_set.mode = &set->crtc->mode;
11594         save_set.x = set->crtc->x;
11595         save_set.y = set->crtc->y;
11596         save_set.fb = set->crtc->primary->fb;
11597
11598         /* Compute whether we need a full modeset, only an fb base update or no
11599          * change at all. In the future we might also check whether only the
11600          * mode changed, e.g. for LVDS where we only change the panel fitter in
11601          * such cases. */
11602         intel_set_config_compute_mode_changes(set, config);
11603
11604         ret = intel_modeset_stage_output_state(dev, set, config);
11605         if (ret)
11606                 goto fail;
11607
11608         if (config->mode_changed) {
11609                 ret = intel_set_mode(set->crtc, set->mode,
11610                                      set->x, set->y, set->fb);
11611         } else if (config->fb_changed) {
11612                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11613
11614                 intel_crtc_wait_for_pending_flips(set->crtc);
11615
11616                 ret = intel_pipe_set_base(set->crtc,
11617                                           set->x, set->y, set->fb);
11618
11619                 /*
11620                  * We need to make sure the primary plane is re-enabled if it
11621                  * has previously been turned off.
11622                  */
11623                 if (!intel_crtc->primary_enabled && ret == 0) {
11624                         WARN_ON(!intel_crtc->active);
11625                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11626                 }
11627
11628                 /*
11629                  * In the fastboot case this may be our only check of the
11630                  * state after boot.  It would be better to only do it on
11631                  * the first update, but we don't have a nice way of doing that
11632                  * (and really, set_config isn't used much for high freq page
11633                  * flipping, so increasing its cost here shouldn't be a big
11634                  * deal).
11635                  */
11636                 if (i915.fastboot && ret == 0)
11637                         intel_modeset_check_state(set->crtc->dev);
11638         }
11639
11640         if (ret) {
11641                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11642                               set->crtc->base.id, ret);
11643 fail:
11644                 intel_set_config_restore_state(dev, config);
11645
11646                 /*
11647                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11648                  * force the pipe off to avoid oopsing in the modeset code
11649                  * due to fb==NULL. This should only happen during boot since
11650                  * we don't yet reconstruct the FB from the hardware state.
11651                  */
11652                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11653                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11654
11655                 /* Try to restore the config */
11656                 if (config->mode_changed &&
11657                     intel_set_mode(save_set.crtc, save_set.mode,
11658                                    save_set.x, save_set.y, save_set.fb))
11659                         DRM_ERROR("failed to restore config after modeset failure\n");
11660         }
11661
11662 out_config:
11663         intel_set_config_free(config);
11664         return ret;
11665 }
11666
11667 static const struct drm_crtc_funcs intel_crtc_funcs = {
11668         .gamma_set = intel_crtc_gamma_set,
11669         .set_config = intel_crtc_set_config,
11670         .destroy = intel_crtc_destroy,
11671         .page_flip = intel_crtc_page_flip,
11672 };
11673
11674 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11675                                       struct intel_shared_dpll *pll,
11676                                       struct intel_dpll_hw_state *hw_state)
11677 {
11678         uint32_t val;
11679
11680         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11681                 return false;
11682
11683         val = I915_READ(PCH_DPLL(pll->id));
11684         hw_state->dpll = val;
11685         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11686         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11687
11688         return val & DPLL_VCO_ENABLE;
11689 }
11690
11691 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11692                                   struct intel_shared_dpll *pll)
11693 {
11694         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11695         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11696 }
11697
11698 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11699                                 struct intel_shared_dpll *pll)
11700 {
11701         /* PCH refclock must be enabled first */
11702         ibx_assert_pch_refclk_enabled(dev_priv);
11703
11704         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11705
11706         /* Wait for the clocks to stabilize. */
11707         POSTING_READ(PCH_DPLL(pll->id));
11708         udelay(150);
11709
11710         /* The pixel multiplier can only be updated once the
11711          * DPLL is enabled and the clocks are stable.
11712          *
11713          * So write it again.
11714          */
11715         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11716         POSTING_READ(PCH_DPLL(pll->id));
11717         udelay(200);
11718 }
11719
11720 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11721                                  struct intel_shared_dpll *pll)
11722 {
11723         struct drm_device *dev = dev_priv->dev;
11724         struct intel_crtc *crtc;
11725
11726         /* Make sure no transcoder isn't still depending on us. */
11727         for_each_intel_crtc(dev, crtc) {
11728                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11729                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11730         }
11731
11732         I915_WRITE(PCH_DPLL(pll->id), 0);
11733         POSTING_READ(PCH_DPLL(pll->id));
11734         udelay(200);
11735 }
11736
11737 static char *ibx_pch_dpll_names[] = {
11738         "PCH DPLL A",
11739         "PCH DPLL B",
11740 };
11741
11742 static void ibx_pch_dpll_init(struct drm_device *dev)
11743 {
11744         struct drm_i915_private *dev_priv = dev->dev_private;
11745         int i;
11746
11747         dev_priv->num_shared_dpll = 2;
11748
11749         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11750                 dev_priv->shared_dplls[i].id = i;
11751                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11752                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11753                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11754                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11755                 dev_priv->shared_dplls[i].get_hw_state =
11756                         ibx_pch_dpll_get_hw_state;
11757         }
11758 }
11759
11760 static void intel_shared_dpll_init(struct drm_device *dev)
11761 {
11762         struct drm_i915_private *dev_priv = dev->dev_private;
11763
11764         if (HAS_DDI(dev))
11765                 intel_ddi_pll_init(dev);
11766         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11767                 ibx_pch_dpll_init(dev);
11768         else
11769                 dev_priv->num_shared_dpll = 0;
11770
11771         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11772 }
11773
11774 static int
11775 intel_primary_plane_disable(struct drm_plane *plane)
11776 {
11777         struct drm_device *dev = plane->dev;
11778         struct intel_crtc *intel_crtc;
11779
11780         if (!plane->fb)
11781                 return 0;
11782
11783         BUG_ON(!plane->crtc);
11784
11785         intel_crtc = to_intel_crtc(plane->crtc);
11786
11787         /*
11788          * Even though we checked plane->fb above, it's still possible that
11789          * the primary plane has been implicitly disabled because the crtc
11790          * coordinates given weren't visible, or because we detected
11791          * that it was 100% covered by a sprite plane.  Or, the CRTC may be
11792          * off and we've set a fb, but haven't actually turned on the CRTC yet.
11793          * In either case, we need to unpin the FB and let the fb pointer get
11794          * updated, but otherwise we don't need to touch the hardware.
11795          */
11796         if (!intel_crtc->primary_enabled)
11797                 goto disable_unpin;
11798
11799         intel_crtc_wait_for_pending_flips(plane->crtc);
11800         intel_disable_primary_hw_plane(plane, plane->crtc);
11801
11802 disable_unpin:
11803         mutex_lock(&dev->struct_mutex);
11804         i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11805                           INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11806         intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11807         mutex_unlock(&dev->struct_mutex);
11808         plane->fb = NULL;
11809
11810         return 0;
11811 }
11812
11813 static int
11814 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11815                              struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11816                              unsigned int crtc_w, unsigned int crtc_h,
11817                              uint32_t src_x, uint32_t src_y,
11818                              uint32_t src_w, uint32_t src_h)
11819 {
11820         struct drm_device *dev = crtc->dev;
11821         struct drm_i915_private *dev_priv = dev->dev_private;
11822         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11823         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11824         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11825         struct drm_rect dest = {
11826                 /* integer pixels */
11827                 .x1 = crtc_x,
11828                 .y1 = crtc_y,
11829                 .x2 = crtc_x + crtc_w,
11830                 .y2 = crtc_y + crtc_h,
11831         };
11832         struct drm_rect src = {
11833                 /* 16.16 fixed point */
11834                 .x1 = src_x,
11835                 .y1 = src_y,
11836                 .x2 = src_x + src_w,
11837                 .y2 = src_y + src_h,
11838         };
11839         const struct drm_rect clip = {
11840                 /* integer pixels */
11841                 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11842                 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11843         };
11844         const struct {
11845                 int crtc_x, crtc_y;
11846                 unsigned int crtc_w, crtc_h;
11847                 uint32_t src_x, src_y, src_w, src_h;
11848         } orig = {
11849                 .crtc_x = crtc_x,
11850                 .crtc_y = crtc_y,
11851                 .crtc_w = crtc_w,
11852                 .crtc_h = crtc_h,
11853                 .src_x = src_x,
11854                 .src_y = src_y,
11855                 .src_w = src_w,
11856                 .src_h = src_h,
11857         };
11858         struct intel_plane *intel_plane = to_intel_plane(plane);
11859         bool visible;
11860         int ret;
11861
11862         ret = drm_plane_helper_check_update(plane, crtc, fb,
11863                                             &src, &dest, &clip,
11864                                             DRM_PLANE_HELPER_NO_SCALING,
11865                                             DRM_PLANE_HELPER_NO_SCALING,
11866                                             false, true, &visible);
11867
11868         if (ret)
11869                 return ret;
11870
11871         /*
11872          * If the CRTC isn't enabled, we're just pinning the framebuffer,
11873          * updating the fb pointer, and returning without touching the
11874          * hardware.  This allows us to later do a drmModeSetCrtc with fb=-1 to
11875          * turn on the display with all planes setup as desired.
11876          */
11877         if (!crtc->enabled) {
11878                 mutex_lock(&dev->struct_mutex);
11879
11880                 /*
11881                  * If we already called setplane while the crtc was disabled,
11882                  * we may have an fb pinned; unpin it.
11883                  */
11884                 if (plane->fb)
11885                         intel_unpin_fb_obj(old_obj);
11886
11887                 i915_gem_track_fb(old_obj, obj,
11888                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11889
11890                 /* Pin and return without programming hardware */
11891                 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11892                 mutex_unlock(&dev->struct_mutex);
11893
11894                 return ret;
11895         }
11896
11897         intel_crtc_wait_for_pending_flips(crtc);
11898
11899         /*
11900          * If clipping results in a non-visible primary plane, we'll disable
11901          * the primary plane.  Note that this is a bit different than what
11902          * happens if userspace explicitly disables the plane by passing fb=0
11903          * because plane->fb still gets set and pinned.
11904          */
11905         if (!visible) {
11906                 mutex_lock(&dev->struct_mutex);
11907
11908                 /*
11909                  * Try to pin the new fb first so that we can bail out if we
11910                  * fail.
11911                  */
11912                 if (plane->fb != fb) {
11913                         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11914                         if (ret) {
11915                                 mutex_unlock(&dev->struct_mutex);
11916                                 return ret;
11917                         }
11918                 }
11919
11920                 i915_gem_track_fb(old_obj, obj,
11921                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11922
11923                 if (intel_crtc->primary_enabled)
11924                         intel_disable_primary_hw_plane(plane, crtc);
11925
11926
11927                 if (plane->fb != fb)
11928                         if (plane->fb)
11929                                 intel_unpin_fb_obj(old_obj);
11930
11931                 mutex_unlock(&dev->struct_mutex);
11932
11933         } else {
11934                 if (intel_crtc && intel_crtc->active &&
11935                     intel_crtc->primary_enabled) {
11936                         /*
11937                          * FBC does not work on some platforms for rotated
11938                          * planes, so disable it when rotation is not 0 and
11939                          * update it when rotation is set back to 0.
11940                          *
11941                          * FIXME: This is redundant with the fbc update done in
11942                          * the primary plane enable function except that that
11943                          * one is done too late. We eventually need to unify
11944                          * this.
11945                          */
11946                         if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11947                             dev_priv->fbc.plane == intel_crtc->plane &&
11948                             intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11949                                 intel_disable_fbc(dev);
11950                         }
11951                 }
11952                 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11953                 if (ret)
11954                         return ret;
11955
11956                 if (!intel_crtc->primary_enabled)
11957                         intel_enable_primary_hw_plane(plane, crtc);
11958         }
11959
11960         intel_plane->crtc_x = orig.crtc_x;
11961         intel_plane->crtc_y = orig.crtc_y;
11962         intel_plane->crtc_w = orig.crtc_w;
11963         intel_plane->crtc_h = orig.crtc_h;
11964         intel_plane->src_x = orig.src_x;
11965         intel_plane->src_y = orig.src_y;
11966         intel_plane->src_w = orig.src_w;
11967         intel_plane->src_h = orig.src_h;
11968         intel_plane->obj = obj;
11969
11970         return 0;
11971 }
11972
11973 /* Common destruction function for both primary and cursor planes */
11974 static void intel_plane_destroy(struct drm_plane *plane)
11975 {
11976         struct intel_plane *intel_plane = to_intel_plane(plane);
11977         drm_plane_cleanup(plane);
11978         kfree(intel_plane);
11979 }
11980
11981 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11982         .update_plane = intel_primary_plane_setplane,
11983         .disable_plane = intel_primary_plane_disable,
11984         .destroy = intel_plane_destroy,
11985         .set_property = intel_plane_set_property
11986 };
11987
11988 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11989                                                     int pipe)
11990 {
11991         struct intel_plane *primary;
11992         const uint32_t *intel_primary_formats;
11993         int num_formats;
11994
11995         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11996         if (primary == NULL)
11997                 return NULL;
11998
11999         primary->can_scale = false;
12000         primary->max_downscale = 1;
12001         primary->pipe = pipe;
12002         primary->plane = pipe;
12003         primary->rotation = BIT(DRM_ROTATE_0);
12004         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12005                 primary->plane = !pipe;
12006
12007         if (INTEL_INFO(dev)->gen <= 3) {
12008                 intel_primary_formats = intel_primary_formats_gen2;
12009                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12010         } else {
12011                 intel_primary_formats = intel_primary_formats_gen4;
12012                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12013         }
12014
12015         drm_universal_plane_init(dev, &primary->base, 0,
12016                                  &intel_primary_plane_funcs,
12017                                  intel_primary_formats, num_formats,
12018                                  DRM_PLANE_TYPE_PRIMARY);
12019
12020         if (INTEL_INFO(dev)->gen >= 4) {
12021                 if (!dev->mode_config.rotation_property)
12022                         dev->mode_config.rotation_property =
12023                                 drm_mode_create_rotation_property(dev,
12024                                                         BIT(DRM_ROTATE_0) |
12025                                                         BIT(DRM_ROTATE_180));
12026                 if (dev->mode_config.rotation_property)
12027                         drm_object_attach_property(&primary->base.base,
12028                                 dev->mode_config.rotation_property,
12029                                 primary->rotation);
12030         }
12031
12032         return &primary->base;
12033 }
12034
12035 static int
12036 intel_cursor_plane_disable(struct drm_plane *plane)
12037 {
12038         if (!plane->fb)
12039                 return 0;
12040
12041         BUG_ON(!plane->crtc);
12042
12043         return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
12044 }
12045
12046 static int
12047 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
12048                           struct drm_framebuffer *fb, int crtc_x, int crtc_y,
12049                           unsigned int crtc_w, unsigned int crtc_h,
12050                           uint32_t src_x, uint32_t src_y,
12051                           uint32_t src_w, uint32_t src_h)
12052 {
12053         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12054         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12055         struct drm_i915_gem_object *obj = intel_fb->obj;
12056         struct drm_rect dest = {
12057                 /* integer pixels */
12058                 .x1 = crtc_x,
12059                 .y1 = crtc_y,
12060                 .x2 = crtc_x + crtc_w,
12061                 .y2 = crtc_y + crtc_h,
12062         };
12063         struct drm_rect src = {
12064                 /* 16.16 fixed point */
12065                 .x1 = src_x,
12066                 .y1 = src_y,
12067                 .x2 = src_x + src_w,
12068                 .y2 = src_y + src_h,
12069         };
12070         const struct drm_rect clip = {
12071                 /* integer pixels */
12072                 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
12073                 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
12074         };
12075         bool visible;
12076         int ret;
12077
12078         ret = drm_plane_helper_check_update(plane, crtc, fb,
12079                                             &src, &dest, &clip,
12080                                             DRM_PLANE_HELPER_NO_SCALING,
12081                                             DRM_PLANE_HELPER_NO_SCALING,
12082                                             true, true, &visible);
12083         if (ret)
12084                 return ret;
12085
12086         crtc->cursor_x = crtc_x;
12087         crtc->cursor_y = crtc_y;
12088         if (fb != crtc->cursor->fb) {
12089                 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
12090         } else {
12091                 intel_crtc_update_cursor(crtc, visible);
12092
12093                 intel_frontbuffer_flip(crtc->dev,
12094                                        INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
12095
12096                 return 0;
12097         }
12098 }
12099 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12100         .update_plane = intel_cursor_plane_update,
12101         .disable_plane = intel_cursor_plane_disable,
12102         .destroy = intel_plane_destroy,
12103 };
12104
12105 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12106                                                    int pipe)
12107 {
12108         struct intel_plane *cursor;
12109
12110         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12111         if (cursor == NULL)
12112                 return NULL;
12113
12114         cursor->can_scale = false;
12115         cursor->max_downscale = 1;
12116         cursor->pipe = pipe;
12117         cursor->plane = pipe;
12118
12119         drm_universal_plane_init(dev, &cursor->base, 0,
12120                                  &intel_cursor_plane_funcs,
12121                                  intel_cursor_formats,
12122                                  ARRAY_SIZE(intel_cursor_formats),
12123                                  DRM_PLANE_TYPE_CURSOR);
12124         return &cursor->base;
12125 }
12126
12127 static void intel_crtc_init(struct drm_device *dev, int pipe)
12128 {
12129         struct drm_i915_private *dev_priv = dev->dev_private;
12130         struct intel_crtc *intel_crtc;
12131         struct drm_plane *primary = NULL;
12132         struct drm_plane *cursor = NULL;
12133         int i, ret;
12134
12135         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12136         if (intel_crtc == NULL)
12137                 return;
12138
12139         primary = intel_primary_plane_create(dev, pipe);
12140         if (!primary)
12141                 goto fail;
12142
12143         cursor = intel_cursor_plane_create(dev, pipe);
12144         if (!cursor)
12145                 goto fail;
12146
12147         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12148                                         cursor, &intel_crtc_funcs);
12149         if (ret)
12150                 goto fail;
12151
12152         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12153         for (i = 0; i < 256; i++) {
12154                 intel_crtc->lut_r[i] = i;
12155                 intel_crtc->lut_g[i] = i;
12156                 intel_crtc->lut_b[i] = i;
12157         }
12158
12159         /*
12160          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12161          * is hooked to pipe B. Hence we want plane A feeding pipe B.
12162          */
12163         intel_crtc->pipe = pipe;
12164         intel_crtc->plane = pipe;
12165         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12166                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12167                 intel_crtc->plane = !pipe;
12168         }
12169
12170         intel_crtc->cursor_base = ~0;
12171         intel_crtc->cursor_cntl = ~0;
12172         intel_crtc->cursor_size = ~0;
12173
12174         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12175                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12176         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12177         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12178
12179         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12180
12181         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12182         return;
12183
12184 fail:
12185         if (primary)
12186                 drm_plane_cleanup(primary);
12187         if (cursor)
12188                 drm_plane_cleanup(cursor);
12189         kfree(intel_crtc);
12190 }
12191
12192 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12193 {
12194         struct drm_encoder *encoder = connector->base.encoder;
12195         struct drm_device *dev = connector->base.dev;
12196
12197         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12198
12199         if (!encoder)
12200                 return INVALID_PIPE;
12201
12202         return to_intel_crtc(encoder->crtc)->pipe;
12203 }
12204
12205 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12206                                 struct drm_file *file)
12207 {
12208         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12209         struct drm_crtc *drmmode_crtc;
12210         struct intel_crtc *crtc;
12211
12212         if (!drm_core_check_feature(dev, DRIVER_MODESET))
12213                 return -ENODEV;
12214
12215         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12216
12217         if (!drmmode_crtc) {
12218                 DRM_ERROR("no such CRTC id\n");
12219                 return -ENOENT;
12220         }
12221
12222         crtc = to_intel_crtc(drmmode_crtc);
12223         pipe_from_crtc_id->pipe = crtc->pipe;
12224
12225         return 0;
12226 }
12227
12228 static int intel_encoder_clones(struct intel_encoder *encoder)
12229 {
12230         struct drm_device *dev = encoder->base.dev;
12231         struct intel_encoder *source_encoder;
12232         int index_mask = 0;
12233         int entry = 0;
12234
12235         for_each_intel_encoder(dev, source_encoder) {
12236                 if (encoders_cloneable(encoder, source_encoder))
12237                         index_mask |= (1 << entry);
12238
12239                 entry++;
12240         }
12241
12242         return index_mask;
12243 }
12244
12245 static bool has_edp_a(struct drm_device *dev)
12246 {
12247         struct drm_i915_private *dev_priv = dev->dev_private;
12248
12249         if (!IS_MOBILE(dev))
12250                 return false;
12251
12252         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12253                 return false;
12254
12255         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12256                 return false;
12257
12258         return true;
12259 }
12260
12261 const char *intel_output_name(int output)
12262 {
12263         static const char *names[] = {
12264                 [INTEL_OUTPUT_UNUSED] = "Unused",
12265                 [INTEL_OUTPUT_ANALOG] = "Analog",
12266                 [INTEL_OUTPUT_DVO] = "DVO",
12267                 [INTEL_OUTPUT_SDVO] = "SDVO",
12268                 [INTEL_OUTPUT_LVDS] = "LVDS",
12269                 [INTEL_OUTPUT_TVOUT] = "TV",
12270                 [INTEL_OUTPUT_HDMI] = "HDMI",
12271                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12272                 [INTEL_OUTPUT_EDP] = "eDP",
12273                 [INTEL_OUTPUT_DSI] = "DSI",
12274                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12275         };
12276
12277         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12278                 return "Invalid";
12279
12280         return names[output];
12281 }
12282
12283 static bool intel_crt_present(struct drm_device *dev)
12284 {
12285         struct drm_i915_private *dev_priv = dev->dev_private;
12286
12287         if (IS_ULT(dev))
12288                 return false;
12289
12290         if (IS_CHERRYVIEW(dev))
12291                 return false;
12292
12293         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12294                 return false;
12295
12296         return true;
12297 }
12298
12299 static void intel_setup_outputs(struct drm_device *dev)
12300 {
12301         struct drm_i915_private *dev_priv = dev->dev_private;
12302         struct intel_encoder *encoder;
12303         bool dpd_is_edp = false;
12304
12305         intel_lvds_init(dev);
12306
12307         if (intel_crt_present(dev))
12308                 intel_crt_init(dev);
12309
12310         if (HAS_DDI(dev)) {
12311                 int found;
12312
12313                 /* Haswell uses DDI functions to detect digital outputs */
12314                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12315                 /* DDI A only supports eDP */
12316                 if (found)
12317                         intel_ddi_init(dev, PORT_A);
12318
12319                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12320                  * register */
12321                 found = I915_READ(SFUSE_STRAP);
12322
12323                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12324                         intel_ddi_init(dev, PORT_B);
12325                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12326                         intel_ddi_init(dev, PORT_C);
12327                 if (found & SFUSE_STRAP_DDID_DETECTED)
12328                         intel_ddi_init(dev, PORT_D);
12329         } else if (HAS_PCH_SPLIT(dev)) {
12330                 int found;
12331                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12332
12333                 if (has_edp_a(dev))
12334                         intel_dp_init(dev, DP_A, PORT_A);
12335
12336                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12337                         /* PCH SDVOB multiplex with HDMIB */
12338                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12339                         if (!found)
12340                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12341                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12342                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12343                 }
12344
12345                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12346                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12347
12348                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12349                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12350
12351                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12352                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12353
12354                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12355                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12356         } else if (IS_VALLEYVIEW(dev)) {
12357                 /*
12358                  * The DP_DETECTED bit is the latched state of the DDC
12359                  * SDA pin at boot. However since eDP doesn't require DDC
12360                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
12361                  * eDP ports may have been muxed to an alternate function.
12362                  * Thus we can't rely on the DP_DETECTED bit alone to detect
12363                  * eDP ports. Consult the VBT as well as DP_DETECTED to
12364                  * detect eDP ports.
12365                  */
12366                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
12367                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12368                                         PORT_B);
12369                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12370                     intel_dp_is_edp(dev, PORT_B))
12371                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12372
12373                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
12374                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12375                                         PORT_C);
12376                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12377                     intel_dp_is_edp(dev, PORT_C))
12378                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12379
12380                 if (IS_CHERRYVIEW(dev)) {
12381                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12382                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12383                                                 PORT_D);
12384                         /* eDP not supported on port D, so don't check VBT */
12385                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12386                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12387                 }
12388
12389                 intel_dsi_init(dev);
12390         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12391                 bool found = false;
12392
12393                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12394                         DRM_DEBUG_KMS("probing SDVOB\n");
12395                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12396                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12397                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12398                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12399                         }
12400
12401                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12402                                 intel_dp_init(dev, DP_B, PORT_B);
12403                 }
12404
12405                 /* Before G4X SDVOC doesn't have its own detect register */
12406
12407                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12408                         DRM_DEBUG_KMS("probing SDVOC\n");
12409                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12410                 }
12411
12412                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12413
12414                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12415                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12416                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12417                         }
12418                         if (SUPPORTS_INTEGRATED_DP(dev))
12419                                 intel_dp_init(dev, DP_C, PORT_C);
12420                 }
12421
12422                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12423                     (I915_READ(DP_D) & DP_DETECTED))
12424                         intel_dp_init(dev, DP_D, PORT_D);
12425         } else if (IS_GEN2(dev))
12426                 intel_dvo_init(dev);
12427
12428         if (SUPPORTS_TV(dev))
12429                 intel_tv_init(dev);
12430
12431         intel_edp_psr_init(dev);
12432
12433         for_each_intel_encoder(dev, encoder) {
12434                 encoder->base.possible_crtcs = encoder->crtc_mask;
12435                 encoder->base.possible_clones =
12436                         intel_encoder_clones(encoder);
12437         }
12438
12439         intel_init_pch_refclk(dev);
12440
12441         drm_helper_move_panel_connectors_to_head(dev);
12442 }
12443
12444 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12445 {
12446         struct drm_device *dev = fb->dev;
12447         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12448
12449         drm_framebuffer_cleanup(fb);
12450         mutex_lock(&dev->struct_mutex);
12451         WARN_ON(!intel_fb->obj->framebuffer_references--);
12452         drm_gem_object_unreference(&intel_fb->obj->base);
12453         mutex_unlock(&dev->struct_mutex);
12454         kfree(intel_fb);
12455 }
12456
12457 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12458                                                 struct drm_file *file,
12459                                                 unsigned int *handle)
12460 {
12461         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12462         struct drm_i915_gem_object *obj = intel_fb->obj;
12463
12464         return drm_gem_handle_create(file, &obj->base, handle);
12465 }
12466
12467 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12468         .destroy = intel_user_framebuffer_destroy,
12469         .create_handle = intel_user_framebuffer_create_handle,
12470 };
12471
12472 static int intel_framebuffer_init(struct drm_device *dev,
12473                                   struct intel_framebuffer *intel_fb,
12474                                   struct drm_mode_fb_cmd2 *mode_cmd,
12475                                   struct drm_i915_gem_object *obj)
12476 {
12477         int aligned_height;
12478         int pitch_limit;
12479         int ret;
12480
12481         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12482
12483         if (obj->tiling_mode == I915_TILING_Y) {
12484                 DRM_DEBUG("hardware does not support tiling Y\n");
12485                 return -EINVAL;
12486         }
12487
12488         if (mode_cmd->pitches[0] & 63) {
12489                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12490                           mode_cmd->pitches[0]);
12491                 return -EINVAL;
12492         }
12493
12494         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12495                 pitch_limit = 32*1024;
12496         } else if (INTEL_INFO(dev)->gen >= 4) {
12497                 if (obj->tiling_mode)
12498                         pitch_limit = 16*1024;
12499                 else
12500                         pitch_limit = 32*1024;
12501         } else if (INTEL_INFO(dev)->gen >= 3) {
12502                 if (obj->tiling_mode)
12503                         pitch_limit = 8*1024;
12504                 else
12505                         pitch_limit = 16*1024;
12506         } else
12507                 /* XXX DSPC is limited to 4k tiled */
12508                 pitch_limit = 8*1024;
12509
12510         if (mode_cmd->pitches[0] > pitch_limit) {
12511                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12512                           obj->tiling_mode ? "tiled" : "linear",
12513                           mode_cmd->pitches[0], pitch_limit);
12514                 return -EINVAL;
12515         }
12516
12517         if (obj->tiling_mode != I915_TILING_NONE &&
12518             mode_cmd->pitches[0] != obj->stride) {
12519                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12520                           mode_cmd->pitches[0], obj->stride);
12521                 return -EINVAL;
12522         }
12523
12524         /* Reject formats not supported by any plane early. */
12525         switch (mode_cmd->pixel_format) {
12526         case DRM_FORMAT_C8:
12527         case DRM_FORMAT_RGB565:
12528         case DRM_FORMAT_XRGB8888:
12529         case DRM_FORMAT_ARGB8888:
12530                 break;
12531         case DRM_FORMAT_XRGB1555:
12532         case DRM_FORMAT_ARGB1555:
12533                 if (INTEL_INFO(dev)->gen > 3) {
12534                         DRM_DEBUG("unsupported pixel format: %s\n",
12535                                   drm_get_format_name(mode_cmd->pixel_format));
12536                         return -EINVAL;
12537                 }
12538                 break;
12539         case DRM_FORMAT_XBGR8888:
12540         case DRM_FORMAT_ABGR8888:
12541         case DRM_FORMAT_XRGB2101010:
12542         case DRM_FORMAT_ARGB2101010:
12543         case DRM_FORMAT_XBGR2101010:
12544         case DRM_FORMAT_ABGR2101010:
12545                 if (INTEL_INFO(dev)->gen < 4) {
12546                         DRM_DEBUG("unsupported pixel format: %s\n",
12547                                   drm_get_format_name(mode_cmd->pixel_format));
12548                         return -EINVAL;
12549                 }
12550                 break;
12551         case DRM_FORMAT_YUYV:
12552         case DRM_FORMAT_UYVY:
12553         case DRM_FORMAT_YVYU:
12554         case DRM_FORMAT_VYUY:
12555                 if (INTEL_INFO(dev)->gen < 5) {
12556                         DRM_DEBUG("unsupported pixel format: %s\n",
12557                                   drm_get_format_name(mode_cmd->pixel_format));
12558                         return -EINVAL;
12559                 }
12560                 break;
12561         default:
12562                 DRM_DEBUG("unsupported pixel format: %s\n",
12563                           drm_get_format_name(mode_cmd->pixel_format));
12564                 return -EINVAL;
12565         }
12566
12567         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12568         if (mode_cmd->offsets[0] != 0)
12569                 return -EINVAL;
12570
12571         aligned_height = intel_align_height(dev, mode_cmd->height,
12572                                             obj->tiling_mode);
12573         /* FIXME drm helper for size checks (especially planar formats)? */
12574         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12575                 return -EINVAL;
12576
12577         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12578         intel_fb->obj = obj;
12579         intel_fb->obj->framebuffer_references++;
12580
12581         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12582         if (ret) {
12583                 DRM_ERROR("framebuffer init failed %d\n", ret);
12584                 return ret;
12585         }
12586
12587         return 0;
12588 }
12589
12590 static struct drm_framebuffer *
12591 intel_user_framebuffer_create(struct drm_device *dev,
12592                               struct drm_file *filp,
12593                               struct drm_mode_fb_cmd2 *mode_cmd)
12594 {
12595         struct drm_i915_gem_object *obj;
12596
12597         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12598                                                 mode_cmd->handles[0]));
12599         if (&obj->base == NULL)
12600                 return ERR_PTR(-ENOENT);
12601
12602         return intel_framebuffer_create(dev, mode_cmd, obj);
12603 }
12604
12605 #ifndef CONFIG_DRM_I915_FBDEV
12606 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12607 {
12608 }
12609 #endif
12610
12611 static const struct drm_mode_config_funcs intel_mode_funcs = {
12612         .fb_create = intel_user_framebuffer_create,
12613         .output_poll_changed = intel_fbdev_output_poll_changed,
12614 };
12615
12616 /* Set up chip specific display functions */
12617 static void intel_init_display(struct drm_device *dev)
12618 {
12619         struct drm_i915_private *dev_priv = dev->dev_private;
12620
12621         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12622                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12623         else if (IS_CHERRYVIEW(dev))
12624                 dev_priv->display.find_dpll = chv_find_best_dpll;
12625         else if (IS_VALLEYVIEW(dev))
12626                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12627         else if (IS_PINEVIEW(dev))
12628                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12629         else
12630                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12631
12632         if (HAS_DDI(dev)) {
12633                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12634                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12635                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
12636                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12637                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12638                 dev_priv->display.off = ironlake_crtc_off;
12639                 dev_priv->display.update_primary_plane =
12640                         ironlake_update_primary_plane;
12641         } else if (HAS_PCH_SPLIT(dev)) {
12642                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12643                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12644                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
12645                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12646                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12647                 dev_priv->display.off = ironlake_crtc_off;
12648                 dev_priv->display.update_primary_plane =
12649                         ironlake_update_primary_plane;
12650         } else if (IS_VALLEYVIEW(dev)) {
12651                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12652                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12653                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12654                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12655                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12656                 dev_priv->display.off = i9xx_crtc_off;
12657                 dev_priv->display.update_primary_plane =
12658                         i9xx_update_primary_plane;
12659         } else {
12660                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12661                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12662                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12663                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12664                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12665                 dev_priv->display.off = i9xx_crtc_off;
12666                 dev_priv->display.update_primary_plane =
12667                         i9xx_update_primary_plane;
12668         }
12669
12670         /* Returns the core display clock speed */
12671         if (IS_VALLEYVIEW(dev))
12672                 dev_priv->display.get_display_clock_speed =
12673                         valleyview_get_display_clock_speed;
12674         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12675                 dev_priv->display.get_display_clock_speed =
12676                         i945_get_display_clock_speed;
12677         else if (IS_I915G(dev))
12678                 dev_priv->display.get_display_clock_speed =
12679                         i915_get_display_clock_speed;
12680         else if (IS_I945GM(dev) || IS_845G(dev))
12681                 dev_priv->display.get_display_clock_speed =
12682                         i9xx_misc_get_display_clock_speed;
12683         else if (IS_PINEVIEW(dev))
12684                 dev_priv->display.get_display_clock_speed =
12685                         pnv_get_display_clock_speed;
12686         else if (IS_I915GM(dev))
12687                 dev_priv->display.get_display_clock_speed =
12688                         i915gm_get_display_clock_speed;
12689         else if (IS_I865G(dev))
12690                 dev_priv->display.get_display_clock_speed =
12691                         i865_get_display_clock_speed;
12692         else if (IS_I85X(dev))
12693                 dev_priv->display.get_display_clock_speed =
12694                         i855_get_display_clock_speed;
12695         else /* 852, 830 */
12696                 dev_priv->display.get_display_clock_speed =
12697                         i830_get_display_clock_speed;
12698
12699         if (IS_G4X(dev)) {
12700                 dev_priv->display.write_eld = g4x_write_eld;
12701         } else if (IS_GEN5(dev)) {
12702                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12703                 dev_priv->display.write_eld = ironlake_write_eld;
12704         } else if (IS_GEN6(dev)) {
12705                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12706                 dev_priv->display.write_eld = ironlake_write_eld;
12707                 dev_priv->display.modeset_global_resources =
12708                         snb_modeset_global_resources;
12709         } else if (IS_IVYBRIDGE(dev)) {
12710                 /* FIXME: detect B0+ stepping and use auto training */
12711                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12712                 dev_priv->display.write_eld = ironlake_write_eld;
12713                 dev_priv->display.modeset_global_resources =
12714                         ivb_modeset_global_resources;
12715         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12716                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12717                 dev_priv->display.write_eld = haswell_write_eld;
12718                 dev_priv->display.modeset_global_resources =
12719                         haswell_modeset_global_resources;
12720         } else if (IS_VALLEYVIEW(dev)) {
12721                 dev_priv->display.modeset_global_resources =
12722                         valleyview_modeset_global_resources;
12723                 dev_priv->display.write_eld = ironlake_write_eld;
12724         }
12725
12726         /* Default just returns -ENODEV to indicate unsupported */
12727         dev_priv->display.queue_flip = intel_default_queue_flip;
12728
12729         switch (INTEL_INFO(dev)->gen) {
12730         case 2:
12731                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12732                 break;
12733
12734         case 3:
12735                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12736                 break;
12737
12738         case 4:
12739         case 5:
12740                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12741                 break;
12742
12743         case 6:
12744                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12745                 break;
12746         case 7:
12747         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12748                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12749                 break;
12750         }
12751
12752         intel_panel_init_backlight_funcs(dev);
12753
12754         mutex_init(&dev_priv->pps_mutex);
12755 }
12756
12757 /*
12758  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12759  * resume, or other times.  This quirk makes sure that's the case for
12760  * affected systems.
12761  */
12762 static void quirk_pipea_force(struct drm_device *dev)
12763 {
12764         struct drm_i915_private *dev_priv = dev->dev_private;
12765
12766         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12767         DRM_INFO("applying pipe a force quirk\n");
12768 }
12769
12770 static void quirk_pipeb_force(struct drm_device *dev)
12771 {
12772         struct drm_i915_private *dev_priv = dev->dev_private;
12773
12774         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12775         DRM_INFO("applying pipe b force quirk\n");
12776 }
12777
12778 /*
12779  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12780  */
12781 static void quirk_ssc_force_disable(struct drm_device *dev)
12782 {
12783         struct drm_i915_private *dev_priv = dev->dev_private;
12784         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12785         DRM_INFO("applying lvds SSC disable quirk\n");
12786 }
12787
12788 /*
12789  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12790  * brightness value
12791  */
12792 static void quirk_invert_brightness(struct drm_device *dev)
12793 {
12794         struct drm_i915_private *dev_priv = dev->dev_private;
12795         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12796         DRM_INFO("applying inverted panel brightness quirk\n");
12797 }
12798
12799 /* Some VBT's incorrectly indicate no backlight is present */
12800 static void quirk_backlight_present(struct drm_device *dev)
12801 {
12802         struct drm_i915_private *dev_priv = dev->dev_private;
12803         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12804         DRM_INFO("applying backlight present quirk\n");
12805 }
12806
12807 struct intel_quirk {
12808         int device;
12809         int subsystem_vendor;
12810         int subsystem_device;
12811         void (*hook)(struct drm_device *dev);
12812 };
12813
12814 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12815 struct intel_dmi_quirk {
12816         void (*hook)(struct drm_device *dev);
12817         const struct dmi_system_id (*dmi_id_list)[];
12818 };
12819
12820 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12821 {
12822         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12823         return 1;
12824 }
12825
12826 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12827         {
12828                 .dmi_id_list = &(const struct dmi_system_id[]) {
12829                         {
12830                                 .callback = intel_dmi_reverse_brightness,
12831                                 .ident = "NCR Corporation",
12832                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12833                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
12834                                 },
12835                         },
12836                         { }  /* terminating entry */
12837                 },
12838                 .hook = quirk_invert_brightness,
12839         },
12840 };
12841
12842 static struct intel_quirk intel_quirks[] = {
12843         /* HP Mini needs pipe A force quirk (LP: #322104) */
12844         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12845
12846         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12847         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12848
12849         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12850         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12851
12852         /* 830 needs to leave pipe A & dpll A up */
12853         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12854
12855         /* 830 needs to leave pipe B & dpll B up */
12856         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12857
12858         /* Lenovo U160 cannot use SSC on LVDS */
12859         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12860
12861         /* Sony Vaio Y cannot use SSC on LVDS */
12862         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12863
12864         /* Acer Aspire 5734Z must invert backlight brightness */
12865         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12866
12867         /* Acer/eMachines G725 */
12868         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12869
12870         /* Acer/eMachines e725 */
12871         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12872
12873         /* Acer/Packard Bell NCL20 */
12874         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12875
12876         /* Acer Aspire 4736Z */
12877         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12878
12879         /* Acer Aspire 5336 */
12880         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12881
12882         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12883         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12884
12885         /* Acer C720 Chromebook (Core i3 4005U) */
12886         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12887
12888         /* Apple Macbook 2,1 (Core 2 T7400) */
12889         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
12890
12891         /* Toshiba CB35 Chromebook (Celeron 2955U) */
12892         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12893
12894         /* HP Chromebook 14 (Celeron 2955U) */
12895         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12896 };
12897
12898 static void intel_init_quirks(struct drm_device *dev)
12899 {
12900         struct pci_dev *d = dev->pdev;
12901         int i;
12902
12903         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12904                 struct intel_quirk *q = &intel_quirks[i];
12905
12906                 if (d->device == q->device &&
12907                     (d->subsystem_vendor == q->subsystem_vendor ||
12908                      q->subsystem_vendor == PCI_ANY_ID) &&
12909                     (d->subsystem_device == q->subsystem_device ||
12910                      q->subsystem_device == PCI_ANY_ID))
12911                         q->hook(dev);
12912         }
12913         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12914                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12915                         intel_dmi_quirks[i].hook(dev);
12916         }
12917 }
12918
12919 /* Disable the VGA plane that we never use */
12920 static void i915_disable_vga(struct drm_device *dev)
12921 {
12922         struct drm_i915_private *dev_priv = dev->dev_private;
12923         u8 sr1;
12924         u32 vga_reg = i915_vgacntrl_reg(dev);
12925
12926         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12927         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12928         outb(SR01, VGA_SR_INDEX);
12929         sr1 = inb(VGA_SR_DATA);
12930         outb(sr1 | 1<<5, VGA_SR_DATA);
12931         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12932         udelay(300);
12933
12934         /*
12935          * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12936          * from S3 without preserving (some of?) the other bits.
12937          */
12938         I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
12939         POSTING_READ(vga_reg);
12940 }
12941
12942 void intel_modeset_init_hw(struct drm_device *dev)
12943 {
12944         intel_prepare_ddi(dev);
12945
12946         if (IS_VALLEYVIEW(dev))
12947                 vlv_update_cdclk(dev);
12948
12949         intel_init_clock_gating(dev);
12950
12951         intel_enable_gt_powersave(dev);
12952 }
12953
12954 void intel_modeset_suspend_hw(struct drm_device *dev)
12955 {
12956         intel_suspend_hw(dev);
12957 }
12958
12959 void intel_modeset_init(struct drm_device *dev)
12960 {
12961         struct drm_i915_private *dev_priv = dev->dev_private;
12962         int sprite, ret;
12963         enum pipe pipe;
12964         struct intel_crtc *crtc;
12965
12966         drm_mode_config_init(dev);
12967
12968         dev->mode_config.min_width = 0;
12969         dev->mode_config.min_height = 0;
12970
12971         dev->mode_config.preferred_depth = 24;
12972         dev->mode_config.prefer_shadow = 1;
12973
12974         dev->mode_config.funcs = &intel_mode_funcs;
12975
12976         intel_init_quirks(dev);
12977
12978         intel_init_pm(dev);
12979
12980         if (INTEL_INFO(dev)->num_pipes == 0)
12981                 return;
12982
12983         intel_init_display(dev);
12984
12985         if (IS_GEN2(dev)) {
12986                 dev->mode_config.max_width = 2048;
12987                 dev->mode_config.max_height = 2048;
12988         } else if (IS_GEN3(dev)) {
12989                 dev->mode_config.max_width = 4096;
12990                 dev->mode_config.max_height = 4096;
12991         } else {
12992                 dev->mode_config.max_width = 8192;
12993                 dev->mode_config.max_height = 8192;
12994         }
12995
12996         if (IS_845G(dev) || IS_I865G(dev)) {
12997                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12998                 dev->mode_config.cursor_height = 1023;
12999         } else if (IS_GEN2(dev)) {
13000                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13001                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13002         } else {
13003                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13004                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13005         }
13006
13007         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13008
13009         DRM_DEBUG_KMS("%d display pipe%s available.\n",
13010                       INTEL_INFO(dev)->num_pipes,
13011                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13012
13013         for_each_pipe(dev_priv, pipe) {
13014                 intel_crtc_init(dev, pipe);
13015                 for_each_sprite(pipe, sprite) {
13016                         ret = intel_plane_init(dev, pipe, sprite);
13017                         if (ret)
13018                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13019                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
13020                 }
13021         }
13022
13023         intel_init_dpio(dev);
13024
13025         intel_shared_dpll_init(dev);
13026
13027         /* save the BIOS value before clobbering it */
13028         dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
13029         /* Just disable it once at startup */
13030         i915_disable_vga(dev);
13031         intel_setup_outputs(dev);
13032
13033         /* Just in case the BIOS is doing something questionable. */
13034         intel_disable_fbc(dev);
13035
13036         drm_modeset_lock_all(dev);
13037         intel_modeset_setup_hw_state(dev, false);
13038         drm_modeset_unlock_all(dev);
13039
13040         for_each_intel_crtc(dev, crtc) {
13041                 if (!crtc->active)
13042                         continue;
13043
13044                 /*
13045                  * Note that reserving the BIOS fb up front prevents us
13046                  * from stuffing other stolen allocations like the ring
13047                  * on top.  This prevents some ugliness at boot time, and
13048                  * can even allow for smooth boot transitions if the BIOS
13049                  * fb is large enough for the active pipe configuration.
13050                  */
13051                 if (dev_priv->display.get_plane_config) {
13052                         dev_priv->display.get_plane_config(crtc,
13053                                                            &crtc->plane_config);
13054                         /*
13055                          * If the fb is shared between multiple heads, we'll
13056                          * just get the first one.
13057                          */
13058                         intel_find_plane_obj(crtc, &crtc->plane_config);
13059                 }
13060         }
13061 }
13062
13063 static void intel_enable_pipe_a(struct drm_device *dev)
13064 {
13065         struct intel_connector *connector;
13066         struct drm_connector *crt = NULL;
13067         struct intel_load_detect_pipe load_detect_temp;
13068         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13069
13070         /* We can't just switch on the pipe A, we need to set things up with a
13071          * proper mode and output configuration. As a gross hack, enable pipe A
13072          * by enabling the load detect pipe once. */
13073         list_for_each_entry(connector,
13074                             &dev->mode_config.connector_list,
13075                             base.head) {
13076                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13077                         crt = &connector->base;
13078                         break;
13079                 }
13080         }
13081
13082         if (!crt)
13083                 return;
13084
13085         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13086                 intel_release_load_detect_pipe(crt, &load_detect_temp);
13087 }
13088
13089 static bool
13090 intel_check_plane_mapping(struct intel_crtc *crtc)
13091 {
13092         struct drm_device *dev = crtc->base.dev;
13093         struct drm_i915_private *dev_priv = dev->dev_private;
13094         u32 reg, val;
13095
13096         if (INTEL_INFO(dev)->num_pipes == 1)
13097                 return true;
13098
13099         reg = DSPCNTR(!crtc->plane);
13100         val = I915_READ(reg);
13101
13102         if ((val & DISPLAY_PLANE_ENABLE) &&
13103             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13104                 return false;
13105
13106         return true;
13107 }
13108
13109 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13110 {
13111         struct drm_device *dev = crtc->base.dev;
13112         struct drm_i915_private *dev_priv = dev->dev_private;
13113         u32 reg;
13114
13115         /* Clear any frame start delays used for debugging left by the BIOS */
13116         reg = PIPECONF(crtc->config.cpu_transcoder);
13117         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13118
13119         /* restore vblank interrupts to correct state */
13120         if (crtc->active) {
13121                 update_scanline_offset(crtc);
13122                 drm_vblank_on(dev, crtc->pipe);
13123         } else
13124                 drm_vblank_off(dev, crtc->pipe);
13125
13126         /* We need to sanitize the plane -> pipe mapping first because this will
13127          * disable the crtc (and hence change the state) if it is wrong. Note
13128          * that gen4+ has a fixed plane -> pipe mapping.  */
13129         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13130                 struct intel_connector *connector;
13131                 bool plane;
13132
13133                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13134                               crtc->base.base.id);
13135
13136                 /* Pipe has the wrong plane attached and the plane is active.
13137                  * Temporarily change the plane mapping and disable everything
13138                  * ...  */
13139                 plane = crtc->plane;
13140                 crtc->plane = !plane;
13141                 crtc->primary_enabled = true;
13142                 dev_priv->display.crtc_disable(&crtc->base);
13143                 crtc->plane = plane;
13144
13145                 /* ... and break all links. */
13146                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13147                                     base.head) {
13148                         if (connector->encoder->base.crtc != &crtc->base)
13149                                 continue;
13150
13151                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13152                         connector->base.encoder = NULL;
13153                 }
13154                 /* multiple connectors may have the same encoder:
13155                  *  handle them and break crtc link separately */
13156                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13157                                     base.head)
13158                         if (connector->encoder->base.crtc == &crtc->base) {
13159                                 connector->encoder->base.crtc = NULL;
13160                                 connector->encoder->connectors_active = false;
13161                         }
13162
13163                 WARN_ON(crtc->active);
13164                 crtc->base.enabled = false;
13165         }
13166
13167         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13168             crtc->pipe == PIPE_A && !crtc->active) {
13169                 /* BIOS forgot to enable pipe A, this mostly happens after
13170                  * resume. Force-enable the pipe to fix this, the update_dpms
13171                  * call below we restore the pipe to the right state, but leave
13172                  * the required bits on. */
13173                 intel_enable_pipe_a(dev);
13174         }
13175
13176         /* Adjust the state of the output pipe according to whether we
13177          * have active connectors/encoders. */
13178         intel_crtc_update_dpms(&crtc->base);
13179
13180         if (crtc->active != crtc->base.enabled) {
13181                 struct intel_encoder *encoder;
13182
13183                 /* This can happen either due to bugs in the get_hw_state
13184                  * functions or because the pipe is force-enabled due to the
13185                  * pipe A quirk. */
13186                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13187                               crtc->base.base.id,
13188                               crtc->base.enabled ? "enabled" : "disabled",
13189                               crtc->active ? "enabled" : "disabled");
13190
13191                 crtc->base.enabled = crtc->active;
13192
13193                 /* Because we only establish the connector -> encoder ->
13194                  * crtc links if something is active, this means the
13195                  * crtc is now deactivated. Break the links. connector
13196                  * -> encoder links are only establish when things are
13197                  *  actually up, hence no need to break them. */
13198                 WARN_ON(crtc->active);
13199
13200                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13201                         WARN_ON(encoder->connectors_active);
13202                         encoder->base.crtc = NULL;
13203                 }
13204         }
13205
13206         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13207                 /*
13208                  * We start out with underrun reporting disabled to avoid races.
13209                  * For correct bookkeeping mark this on active crtcs.
13210                  *
13211                  * Also on gmch platforms we dont have any hardware bits to
13212                  * disable the underrun reporting. Which means we need to start
13213                  * out with underrun reporting disabled also on inactive pipes,
13214                  * since otherwise we'll complain about the garbage we read when
13215                  * e.g. coming up after runtime pm.
13216                  *
13217                  * No protection against concurrent access is required - at
13218                  * worst a fifo underrun happens which also sets this to false.
13219                  */
13220                 crtc->cpu_fifo_underrun_disabled = true;
13221                 crtc->pch_fifo_underrun_disabled = true;
13222         }
13223 }
13224
13225 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13226 {
13227         struct intel_connector *connector;
13228         struct drm_device *dev = encoder->base.dev;
13229
13230         /* We need to check both for a crtc link (meaning that the
13231          * encoder is active and trying to read from a pipe) and the
13232          * pipe itself being active. */
13233         bool has_active_crtc = encoder->base.crtc &&
13234                 to_intel_crtc(encoder->base.crtc)->active;
13235
13236         if (encoder->connectors_active && !has_active_crtc) {
13237                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13238                               encoder->base.base.id,
13239                               encoder->base.name);
13240
13241                 /* Connector is active, but has no active pipe. This is
13242                  * fallout from our resume register restoring. Disable
13243                  * the encoder manually again. */
13244                 if (encoder->base.crtc) {
13245                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13246                                       encoder->base.base.id,
13247                                       encoder->base.name);
13248                         encoder->disable(encoder);
13249                         if (encoder->post_disable)
13250                                 encoder->post_disable(encoder);
13251                 }
13252                 encoder->base.crtc = NULL;
13253                 encoder->connectors_active = false;
13254
13255                 /* Inconsistent output/port/pipe state happens presumably due to
13256                  * a bug in one of the get_hw_state functions. Or someplace else
13257                  * in our code, like the register restore mess on resume. Clamp
13258                  * things to off as a safer default. */
13259                 list_for_each_entry(connector,
13260                                     &dev->mode_config.connector_list,
13261                                     base.head) {
13262                         if (connector->encoder != encoder)
13263                                 continue;
13264                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13265                         connector->base.encoder = NULL;
13266                 }
13267         }
13268         /* Enabled encoders without active connectors will be fixed in
13269          * the crtc fixup. */
13270 }
13271
13272 void i915_redisable_vga_power_on(struct drm_device *dev)
13273 {
13274         struct drm_i915_private *dev_priv = dev->dev_private;
13275         u32 vga_reg = i915_vgacntrl_reg(dev);
13276
13277         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13278                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13279                 i915_disable_vga(dev);
13280         }
13281 }
13282
13283 void i915_redisable_vga(struct drm_device *dev)
13284 {
13285         struct drm_i915_private *dev_priv = dev->dev_private;
13286
13287         /* This function can be called both from intel_modeset_setup_hw_state or
13288          * at a very early point in our resume sequence, where the power well
13289          * structures are not yet restored. Since this function is at a very
13290          * paranoid "someone might have enabled VGA while we were not looking"
13291          * level, just check if the power well is enabled instead of trying to
13292          * follow the "don't touch the power well if we don't need it" policy
13293          * the rest of the driver uses. */
13294         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
13295                 return;
13296
13297         i915_redisable_vga_power_on(dev);
13298 }
13299
13300 static bool primary_get_hw_state(struct intel_crtc *crtc)
13301 {
13302         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13303
13304         if (!crtc->active)
13305                 return false;
13306
13307         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13308 }
13309
13310 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13311 {
13312         struct drm_i915_private *dev_priv = dev->dev_private;
13313         enum pipe pipe;
13314         struct intel_crtc *crtc;
13315         struct intel_encoder *encoder;
13316         struct intel_connector *connector;
13317         int i;
13318
13319         for_each_intel_crtc(dev, crtc) {
13320                 memset(&crtc->config, 0, sizeof(crtc->config));
13321
13322                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13323
13324                 crtc->active = dev_priv->display.get_pipe_config(crtc,
13325                                                                  &crtc->config);
13326
13327                 crtc->base.enabled = crtc->active;
13328                 crtc->primary_enabled = primary_get_hw_state(crtc);
13329
13330                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13331                               crtc->base.base.id,
13332                               crtc->active ? "enabled" : "disabled");
13333         }
13334
13335         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13336                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13337
13338                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13339                 pll->active = 0;
13340                 for_each_intel_crtc(dev, crtc) {
13341                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13342                                 pll->active++;
13343                 }
13344                 pll->refcount = pll->active;
13345
13346                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13347                               pll->name, pll->refcount, pll->on);
13348
13349                 if (pll->refcount)
13350                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13351         }
13352
13353         for_each_intel_encoder(dev, encoder) {
13354                 pipe = 0;
13355
13356                 if (encoder->get_hw_state(encoder, &pipe)) {
13357                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13358                         encoder->base.crtc = &crtc->base;
13359                         encoder->get_config(encoder, &crtc->config);
13360                 } else {
13361                         encoder->base.crtc = NULL;
13362                 }
13363
13364                 encoder->connectors_active = false;
13365                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13366                               encoder->base.base.id,
13367                               encoder->base.name,
13368                               encoder->base.crtc ? "enabled" : "disabled",
13369                               pipe_name(pipe));
13370         }
13371
13372         list_for_each_entry(connector, &dev->mode_config.connector_list,
13373                             base.head) {
13374                 if (connector->get_hw_state(connector)) {
13375                         connector->base.dpms = DRM_MODE_DPMS_ON;
13376                         connector->encoder->connectors_active = true;
13377                         connector->base.encoder = &connector->encoder->base;
13378                 } else {
13379                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13380                         connector->base.encoder = NULL;
13381                 }
13382                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13383                               connector->base.base.id,
13384                               connector->base.name,
13385                               connector->base.encoder ? "enabled" : "disabled");
13386         }
13387 }
13388
13389 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13390  * and i915 state tracking structures. */
13391 void intel_modeset_setup_hw_state(struct drm_device *dev,
13392                                   bool force_restore)
13393 {
13394         struct drm_i915_private *dev_priv = dev->dev_private;
13395         enum pipe pipe;
13396         struct intel_crtc *crtc;
13397         struct intel_encoder *encoder;
13398         int i;
13399
13400         intel_modeset_readout_hw_state(dev);
13401
13402         /*
13403          * Now that we have the config, copy it to each CRTC struct
13404          * Note that this could go away if we move to using crtc_config
13405          * checking everywhere.
13406          */
13407         for_each_intel_crtc(dev, crtc) {
13408                 if (crtc->active && i915.fastboot) {
13409                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13410                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13411                                       crtc->base.base.id);
13412                         drm_mode_debug_printmodeline(&crtc->base.mode);
13413                 }
13414         }
13415
13416         /* HW state is read out, now we need to sanitize this mess. */
13417         for_each_intel_encoder(dev, encoder) {
13418                 intel_sanitize_encoder(encoder);
13419         }
13420
13421         for_each_pipe(dev_priv, pipe) {
13422                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13423                 intel_sanitize_crtc(crtc);
13424                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13425         }
13426
13427         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13428                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13429
13430                 if (!pll->on || pll->active)
13431                         continue;
13432
13433                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13434
13435                 pll->disable(dev_priv, pll);
13436                 pll->on = false;
13437         }
13438
13439         if (HAS_PCH_SPLIT(dev))
13440                 ilk_wm_get_hw_state(dev);
13441
13442         if (force_restore) {
13443                 i915_redisable_vga(dev);
13444
13445                 /*
13446                  * We need to use raw interfaces for restoring state to avoid
13447                  * checking (bogus) intermediate states.
13448                  */
13449                 for_each_pipe(dev_priv, pipe) {
13450                         struct drm_crtc *crtc =
13451                                 dev_priv->pipe_to_crtc_mapping[pipe];
13452
13453                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13454                                          crtc->primary->fb);
13455                 }
13456         } else {
13457                 intel_modeset_update_staged_output_state(dev);
13458         }
13459
13460         intel_modeset_check_state(dev);
13461 }
13462
13463 void intel_modeset_gem_init(struct drm_device *dev)
13464 {
13465         struct drm_crtc *c;
13466         struct drm_i915_gem_object *obj;
13467
13468         mutex_lock(&dev->struct_mutex);
13469         intel_init_gt_powersave(dev);
13470         mutex_unlock(&dev->struct_mutex);
13471
13472         intel_modeset_init_hw(dev);
13473
13474         intel_setup_overlay(dev);
13475
13476         /*
13477          * Make sure any fbs we allocated at startup are properly
13478          * pinned & fenced.  When we do the allocation it's too early
13479          * for this.
13480          */
13481         mutex_lock(&dev->struct_mutex);
13482         for_each_crtc(dev, c) {
13483                 obj = intel_fb_obj(c->primary->fb);
13484                 if (obj == NULL)
13485                         continue;
13486
13487                 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
13488                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13489                                   to_intel_crtc(c)->pipe);
13490                         drm_framebuffer_unreference(c->primary->fb);
13491                         c->primary->fb = NULL;
13492                 }
13493         }
13494         mutex_unlock(&dev->struct_mutex);
13495 }
13496
13497 void intel_connector_unregister(struct intel_connector *intel_connector)
13498 {
13499         struct drm_connector *connector = &intel_connector->base;
13500
13501         intel_panel_destroy_backlight(connector);
13502         drm_connector_unregister(connector);
13503 }
13504
13505 void intel_modeset_cleanup(struct drm_device *dev)
13506 {
13507         struct drm_i915_private *dev_priv = dev->dev_private;
13508         struct drm_connector *connector;
13509
13510         /*
13511          * Interrupts and polling as the first thing to avoid creating havoc.
13512          * Too much stuff here (turning of rps, connectors, ...) would
13513          * experience fancy races otherwise.
13514          */
13515         drm_irq_uninstall(dev);
13516         intel_hpd_cancel_work(dev_priv);
13517         dev_priv->pm._irqs_disabled = true;
13518
13519         /*
13520          * Due to the hpd irq storm handling the hotplug work can re-arm the
13521          * poll handlers. Hence disable polling after hpd handling is shut down.
13522          */
13523         drm_kms_helper_poll_fini(dev);
13524
13525         mutex_lock(&dev->struct_mutex);
13526
13527         intel_unregister_dsm_handler();
13528
13529         intel_disable_fbc(dev);
13530
13531         intel_disable_gt_powersave(dev);
13532
13533         ironlake_teardown_rc6(dev);
13534
13535         mutex_unlock(&dev->struct_mutex);
13536
13537         /* flush any delayed tasks or pending work */
13538         flush_scheduled_work();
13539
13540         /* destroy the backlight and sysfs files before encoders/connectors */
13541         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13542                 struct intel_connector *intel_connector;
13543
13544                 intel_connector = to_intel_connector(connector);
13545                 intel_connector->unregister(intel_connector);
13546         }
13547
13548         drm_mode_config_cleanup(dev);
13549
13550         intel_cleanup_overlay(dev);
13551
13552         mutex_lock(&dev->struct_mutex);
13553         intel_cleanup_gt_powersave(dev);
13554         mutex_unlock(&dev->struct_mutex);
13555 }
13556
13557 /*
13558  * Return which encoder is currently attached for connector.
13559  */
13560 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13561 {
13562         return &intel_attached_encoder(connector)->base;
13563 }
13564
13565 void intel_connector_attach_encoder(struct intel_connector *connector,
13566                                     struct intel_encoder *encoder)
13567 {
13568         connector->encoder = encoder;
13569         drm_mode_connector_attach_encoder(&connector->base,
13570                                           &encoder->base);
13571 }
13572
13573 /*
13574  * set vga decode state - true == enable VGA decode
13575  */
13576 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13577 {
13578         struct drm_i915_private *dev_priv = dev->dev_private;
13579         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13580         u16 gmch_ctrl;
13581
13582         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13583                 DRM_ERROR("failed to read control word\n");
13584                 return -EIO;
13585         }
13586
13587         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13588                 return 0;
13589
13590         if (state)
13591                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13592         else
13593                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13594
13595         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13596                 DRM_ERROR("failed to write control word\n");
13597                 return -EIO;
13598         }
13599
13600         return 0;
13601 }
13602
13603 struct intel_display_error_state {
13604
13605         u32 power_well_driver;
13606
13607         int num_transcoders;
13608
13609         struct intel_cursor_error_state {
13610                 u32 control;
13611                 u32 position;
13612                 u32 base;
13613                 u32 size;
13614         } cursor[I915_MAX_PIPES];
13615
13616         struct intel_pipe_error_state {
13617                 bool power_domain_on;
13618                 u32 source;
13619                 u32 stat;
13620         } pipe[I915_MAX_PIPES];
13621
13622         struct intel_plane_error_state {
13623                 u32 control;
13624                 u32 stride;
13625                 u32 size;
13626                 u32 pos;
13627                 u32 addr;
13628                 u32 surface;
13629                 u32 tile_offset;
13630         } plane[I915_MAX_PIPES];
13631
13632         struct intel_transcoder_error_state {
13633                 bool power_domain_on;
13634                 enum transcoder cpu_transcoder;
13635
13636                 u32 conf;
13637
13638                 u32 htotal;
13639                 u32 hblank;
13640                 u32 hsync;
13641                 u32 vtotal;
13642                 u32 vblank;
13643                 u32 vsync;
13644         } transcoder[4];
13645 };
13646
13647 struct intel_display_error_state *
13648 intel_display_capture_error_state(struct drm_device *dev)
13649 {
13650         struct drm_i915_private *dev_priv = dev->dev_private;
13651         struct intel_display_error_state *error;
13652         int transcoders[] = {
13653                 TRANSCODER_A,
13654                 TRANSCODER_B,
13655                 TRANSCODER_C,
13656                 TRANSCODER_EDP,
13657         };
13658         int i;
13659
13660         if (INTEL_INFO(dev)->num_pipes == 0)
13661                 return NULL;
13662
13663         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13664         if (error == NULL)
13665                 return NULL;
13666
13667         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13668                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13669
13670         for_each_pipe(dev_priv, i) {
13671                 error->pipe[i].power_domain_on =
13672                         intel_display_power_enabled_unlocked(dev_priv,
13673                                                            POWER_DOMAIN_PIPE(i));
13674                 if (!error->pipe[i].power_domain_on)
13675                         continue;
13676
13677                 error->cursor[i].control = I915_READ(CURCNTR(i));
13678                 error->cursor[i].position = I915_READ(CURPOS(i));
13679                 error->cursor[i].base = I915_READ(CURBASE(i));
13680
13681                 error->plane[i].control = I915_READ(DSPCNTR(i));
13682                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13683                 if (INTEL_INFO(dev)->gen <= 3) {
13684                         error->plane[i].size = I915_READ(DSPSIZE(i));
13685                         error->plane[i].pos = I915_READ(DSPPOS(i));
13686                 }
13687                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13688                         error->plane[i].addr = I915_READ(DSPADDR(i));
13689                 if (INTEL_INFO(dev)->gen >= 4) {
13690                         error->plane[i].surface = I915_READ(DSPSURF(i));
13691                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13692                 }
13693
13694                 error->pipe[i].source = I915_READ(PIPESRC(i));
13695
13696                 if (HAS_GMCH_DISPLAY(dev))
13697                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13698         }
13699
13700         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13701         if (HAS_DDI(dev_priv->dev))
13702                 error->num_transcoders++; /* Account for eDP. */
13703
13704         for (i = 0; i < error->num_transcoders; i++) {
13705                 enum transcoder cpu_transcoder = transcoders[i];
13706
13707                 error->transcoder[i].power_domain_on =
13708                         intel_display_power_enabled_unlocked(dev_priv,
13709                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13710                 if (!error->transcoder[i].power_domain_on)
13711                         continue;
13712
13713                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13714
13715                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13716                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13717                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13718                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13719                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13720                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13721                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13722         }
13723
13724         return error;
13725 }
13726
13727 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13728
13729 void
13730 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13731                                 struct drm_device *dev,
13732                                 struct intel_display_error_state *error)
13733 {
13734         struct drm_i915_private *dev_priv = dev->dev_private;
13735         int i;
13736
13737         if (!error)
13738                 return;
13739
13740         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13741         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13742                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13743                            error->power_well_driver);
13744         for_each_pipe(dev_priv, i) {
13745                 err_printf(m, "Pipe [%d]:\n", i);
13746                 err_printf(m, "  Power: %s\n",
13747                            error->pipe[i].power_domain_on ? "on" : "off");
13748                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13749                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13750
13751                 err_printf(m, "Plane [%d]:\n", i);
13752                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13753                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13754                 if (INTEL_INFO(dev)->gen <= 3) {
13755                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13756                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13757                 }
13758                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13759                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13760                 if (INTEL_INFO(dev)->gen >= 4) {
13761                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13762                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13763                 }
13764
13765                 err_printf(m, "Cursor [%d]:\n", i);
13766                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13767                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13768                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13769         }
13770
13771         for (i = 0; i < error->num_transcoders; i++) {
13772                 err_printf(m, "CPU transcoder: %c\n",
13773                            transcoder_name(error->transcoder[i].cpu_transcoder));
13774                 err_printf(m, "  Power: %s\n",
13775                            error->transcoder[i].power_domain_on ? "on" : "off");
13776                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13777                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13778                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13779                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13780                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13781                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13782                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13783         }
13784 }
13785
13786 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13787 {
13788         struct intel_crtc *crtc;
13789
13790         for_each_intel_crtc(dev, crtc) {
13791                 struct intel_unpin_work *work;
13792                 unsigned long irqflags;
13793
13794                 spin_lock_irqsave(&dev->event_lock, irqflags);
13795
13796                 work = crtc->unpin_work;
13797
13798                 if (work && work->event &&
13799                     work->event->base.file_priv == file) {
13800                         kfree(work->event);
13801                         work->event = NULL;
13802                 }
13803
13804                 spin_unlock_irqrestore(&dev->event_lock, irqflags);
13805         }
13806 }