Merge tag 'drm-vc4-fixes-2015-01-19' of http://github.com/anholt/linux into drm-fixes
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47 #include <linux/reservation.h>
48 #include <linux/dma-buf.h>
49
50 /* Primary plane formats for gen <= 3 */
51 static const uint32_t i8xx_primary_formats[] = {
52         DRM_FORMAT_C8,
53         DRM_FORMAT_RGB565,
54         DRM_FORMAT_XRGB1555,
55         DRM_FORMAT_XRGB8888,
56 };
57
58 /* Primary plane formats for gen >= 4 */
59 static const uint32_t i965_primary_formats[] = {
60         DRM_FORMAT_C8,
61         DRM_FORMAT_RGB565,
62         DRM_FORMAT_XRGB8888,
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_XRGB2101010,
65         DRM_FORMAT_XBGR2101010,
66 };
67
68 static const uint32_t skl_primary_formats[] = {
69         DRM_FORMAT_C8,
70         DRM_FORMAT_RGB565,
71         DRM_FORMAT_XRGB8888,
72         DRM_FORMAT_XBGR8888,
73         DRM_FORMAT_ARGB8888,
74         DRM_FORMAT_ABGR8888,
75         DRM_FORMAT_XRGB2101010,
76         DRM_FORMAT_XBGR2101010,
77         DRM_FORMAT_YUYV,
78         DRM_FORMAT_YVYU,
79         DRM_FORMAT_UYVY,
80         DRM_FORMAT_VYUY,
81 };
82
83 /* Cursor formats */
84 static const uint32_t intel_cursor_formats[] = {
85         DRM_FORMAT_ARGB8888,
86 };
87
88 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
89
90 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
91                                 struct intel_crtc_state *pipe_config);
92 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
93                                    struct intel_crtc_state *pipe_config);
94
95 static int intel_framebuffer_init(struct drm_device *dev,
96                                   struct intel_framebuffer *ifb,
97                                   struct drm_mode_fb_cmd2 *mode_cmd,
98                                   struct drm_i915_gem_object *obj);
99 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
100 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
101 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
102                                          struct intel_link_m_n *m_n,
103                                          struct intel_link_m_n *m2_n2);
104 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
105 static void haswell_set_pipeconf(struct drm_crtc *crtc);
106 static void intel_set_pipe_csc(struct drm_crtc *crtc);
107 static void vlv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void chv_prepare_pll(struct intel_crtc *crtc,
110                             const struct intel_crtc_state *pipe_config);
111 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
112 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
113 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
114         struct intel_crtc_state *crtc_state);
115 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
116                            int num_connectors);
117 static void skylake_pfit_enable(struct intel_crtc *crtc);
118 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
119 static void ironlake_pfit_enable(struct intel_crtc *crtc);
120 static void intel_modeset_setup_hw_state(struct drm_device *dev);
121 static void intel_pre_disable_primary(struct drm_crtc *crtc);
122
123 typedef struct {
124         int     min, max;
125 } intel_range_t;
126
127 typedef struct {
128         int     dot_limit;
129         int     p2_slow, p2_fast;
130 } intel_p2_t;
131
132 typedef struct intel_limit intel_limit_t;
133 struct intel_limit {
134         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
135         intel_p2_t          p2;
136 };
137
138 /* returns HPLL frequency in kHz */
139 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
140 {
141         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
142
143         /* Obtain SKU information */
144         mutex_lock(&dev_priv->sb_lock);
145         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
146                 CCK_FUSE_HPLL_FREQ_MASK;
147         mutex_unlock(&dev_priv->sb_lock);
148
149         return vco_freq[hpll_freq] * 1000;
150 }
151
152 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
153                                   const char *name, u32 reg)
154 {
155         u32 val;
156         int divider;
157
158         if (dev_priv->hpll_freq == 0)
159                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
160
161         mutex_lock(&dev_priv->sb_lock);
162         val = vlv_cck_read(dev_priv, reg);
163         mutex_unlock(&dev_priv->sb_lock);
164
165         divider = val & CCK_FREQUENCY_VALUES;
166
167         WARN((val & CCK_FREQUENCY_STATUS) !=
168              (divider << CCK_FREQUENCY_STATUS_SHIFT),
169              "%s change in progress\n", name);
170
171         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
172 }
173
174 int
175 intel_pch_rawclk(struct drm_device *dev)
176 {
177         struct drm_i915_private *dev_priv = dev->dev_private;
178
179         WARN_ON(!HAS_PCH_SPLIT(dev));
180
181         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
182 }
183
184 /* hrawclock is 1/4 the FSB frequency */
185 int intel_hrawclk(struct drm_device *dev)
186 {
187         struct drm_i915_private *dev_priv = dev->dev_private;
188         uint32_t clkcfg;
189
190         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
191         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
192                 return 200;
193
194         clkcfg = I915_READ(CLKCFG);
195         switch (clkcfg & CLKCFG_FSB_MASK) {
196         case CLKCFG_FSB_400:
197                 return 100;
198         case CLKCFG_FSB_533:
199                 return 133;
200         case CLKCFG_FSB_667:
201                 return 166;
202         case CLKCFG_FSB_800:
203                 return 200;
204         case CLKCFG_FSB_1067:
205                 return 266;
206         case CLKCFG_FSB_1333:
207                 return 333;
208         /* these two are just a guess; one of them might be right */
209         case CLKCFG_FSB_1600:
210         case CLKCFG_FSB_1600_ALT:
211                 return 400;
212         default:
213                 return 133;
214         }
215 }
216
217 static void intel_update_czclk(struct drm_i915_private *dev_priv)
218 {
219         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
220                 return;
221
222         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
223                                                       CCK_CZ_CLOCK_CONTROL);
224
225         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
226 }
227
228 static inline u32 /* units of 100MHz */
229 intel_fdi_link_freq(struct drm_device *dev)
230 {
231         if (IS_GEN5(dev)) {
232                 struct drm_i915_private *dev_priv = dev->dev_private;
233                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
234         } else
235                 return 27;
236 }
237
238 static const intel_limit_t intel_limits_i8xx_dac = {
239         .dot = { .min = 25000, .max = 350000 },
240         .vco = { .min = 908000, .max = 1512000 },
241         .n = { .min = 2, .max = 16 },
242         .m = { .min = 96, .max = 140 },
243         .m1 = { .min = 18, .max = 26 },
244         .m2 = { .min = 6, .max = 16 },
245         .p = { .min = 4, .max = 128 },
246         .p1 = { .min = 2, .max = 33 },
247         .p2 = { .dot_limit = 165000,
248                 .p2_slow = 4, .p2_fast = 2 },
249 };
250
251 static const intel_limit_t intel_limits_i8xx_dvo = {
252         .dot = { .min = 25000, .max = 350000 },
253         .vco = { .min = 908000, .max = 1512000 },
254         .n = { .min = 2, .max = 16 },
255         .m = { .min = 96, .max = 140 },
256         .m1 = { .min = 18, .max = 26 },
257         .m2 = { .min = 6, .max = 16 },
258         .p = { .min = 4, .max = 128 },
259         .p1 = { .min = 2, .max = 33 },
260         .p2 = { .dot_limit = 165000,
261                 .p2_slow = 4, .p2_fast = 4 },
262 };
263
264 static const intel_limit_t intel_limits_i8xx_lvds = {
265         .dot = { .min = 25000, .max = 350000 },
266         .vco = { .min = 908000, .max = 1512000 },
267         .n = { .min = 2, .max = 16 },
268         .m = { .min = 96, .max = 140 },
269         .m1 = { .min = 18, .max = 26 },
270         .m2 = { .min = 6, .max = 16 },
271         .p = { .min = 4, .max = 128 },
272         .p1 = { .min = 1, .max = 6 },
273         .p2 = { .dot_limit = 165000,
274                 .p2_slow = 14, .p2_fast = 7 },
275 };
276
277 static const intel_limit_t intel_limits_i9xx_sdvo = {
278         .dot = { .min = 20000, .max = 400000 },
279         .vco = { .min = 1400000, .max = 2800000 },
280         .n = { .min = 1, .max = 6 },
281         .m = { .min = 70, .max = 120 },
282         .m1 = { .min = 8, .max = 18 },
283         .m2 = { .min = 3, .max = 7 },
284         .p = { .min = 5, .max = 80 },
285         .p1 = { .min = 1, .max = 8 },
286         .p2 = { .dot_limit = 200000,
287                 .p2_slow = 10, .p2_fast = 5 },
288 };
289
290 static const intel_limit_t intel_limits_i9xx_lvds = {
291         .dot = { .min = 20000, .max = 400000 },
292         .vco = { .min = 1400000, .max = 2800000 },
293         .n = { .min = 1, .max = 6 },
294         .m = { .min = 70, .max = 120 },
295         .m1 = { .min = 8, .max = 18 },
296         .m2 = { .min = 3, .max = 7 },
297         .p = { .min = 7, .max = 98 },
298         .p1 = { .min = 1, .max = 8 },
299         .p2 = { .dot_limit = 112000,
300                 .p2_slow = 14, .p2_fast = 7 },
301 };
302
303
304 static const intel_limit_t intel_limits_g4x_sdvo = {
305         .dot = { .min = 25000, .max = 270000 },
306         .vco = { .min = 1750000, .max = 3500000},
307         .n = { .min = 1, .max = 4 },
308         .m = { .min = 104, .max = 138 },
309         .m1 = { .min = 17, .max = 23 },
310         .m2 = { .min = 5, .max = 11 },
311         .p = { .min = 10, .max = 30 },
312         .p1 = { .min = 1, .max = 3},
313         .p2 = { .dot_limit = 270000,
314                 .p2_slow = 10,
315                 .p2_fast = 10
316         },
317 };
318
319 static const intel_limit_t intel_limits_g4x_hdmi = {
320         .dot = { .min = 22000, .max = 400000 },
321         .vco = { .min = 1750000, .max = 3500000},
322         .n = { .min = 1, .max = 4 },
323         .m = { .min = 104, .max = 138 },
324         .m1 = { .min = 16, .max = 23 },
325         .m2 = { .min = 5, .max = 11 },
326         .p = { .min = 5, .max = 80 },
327         .p1 = { .min = 1, .max = 8},
328         .p2 = { .dot_limit = 165000,
329                 .p2_slow = 10, .p2_fast = 5 },
330 };
331
332 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
333         .dot = { .min = 20000, .max = 115000 },
334         .vco = { .min = 1750000, .max = 3500000 },
335         .n = { .min = 1, .max = 3 },
336         .m = { .min = 104, .max = 138 },
337         .m1 = { .min = 17, .max = 23 },
338         .m2 = { .min = 5, .max = 11 },
339         .p = { .min = 28, .max = 112 },
340         .p1 = { .min = 2, .max = 8 },
341         .p2 = { .dot_limit = 0,
342                 .p2_slow = 14, .p2_fast = 14
343         },
344 };
345
346 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
347         .dot = { .min = 80000, .max = 224000 },
348         .vco = { .min = 1750000, .max = 3500000 },
349         .n = { .min = 1, .max = 3 },
350         .m = { .min = 104, .max = 138 },
351         .m1 = { .min = 17, .max = 23 },
352         .m2 = { .min = 5, .max = 11 },
353         .p = { .min = 14, .max = 42 },
354         .p1 = { .min = 2, .max = 6 },
355         .p2 = { .dot_limit = 0,
356                 .p2_slow = 7, .p2_fast = 7
357         },
358 };
359
360 static const intel_limit_t intel_limits_pineview_sdvo = {
361         .dot = { .min = 20000, .max = 400000},
362         .vco = { .min = 1700000, .max = 3500000 },
363         /* Pineview's Ncounter is a ring counter */
364         .n = { .min = 3, .max = 6 },
365         .m = { .min = 2, .max = 256 },
366         /* Pineview only has one combined m divider, which we treat as m2. */
367         .m1 = { .min = 0, .max = 0 },
368         .m2 = { .min = 0, .max = 254 },
369         .p = { .min = 5, .max = 80 },
370         .p1 = { .min = 1, .max = 8 },
371         .p2 = { .dot_limit = 200000,
372                 .p2_slow = 10, .p2_fast = 5 },
373 };
374
375 static const intel_limit_t intel_limits_pineview_lvds = {
376         .dot = { .min = 20000, .max = 400000 },
377         .vco = { .min = 1700000, .max = 3500000 },
378         .n = { .min = 3, .max = 6 },
379         .m = { .min = 2, .max = 256 },
380         .m1 = { .min = 0, .max = 0 },
381         .m2 = { .min = 0, .max = 254 },
382         .p = { .min = 7, .max = 112 },
383         .p1 = { .min = 1, .max = 8 },
384         .p2 = { .dot_limit = 112000,
385                 .p2_slow = 14, .p2_fast = 14 },
386 };
387
388 /* Ironlake / Sandybridge
389  *
390  * We calculate clock using (register_value + 2) for N/M1/M2, so here
391  * the range value for them is (actual_value - 2).
392  */
393 static const intel_limit_t intel_limits_ironlake_dac = {
394         .dot = { .min = 25000, .max = 350000 },
395         .vco = { .min = 1760000, .max = 3510000 },
396         .n = { .min = 1, .max = 5 },
397         .m = { .min = 79, .max = 127 },
398         .m1 = { .min = 12, .max = 22 },
399         .m2 = { .min = 5, .max = 9 },
400         .p = { .min = 5, .max = 80 },
401         .p1 = { .min = 1, .max = 8 },
402         .p2 = { .dot_limit = 225000,
403                 .p2_slow = 10, .p2_fast = 5 },
404 };
405
406 static const intel_limit_t intel_limits_ironlake_single_lvds = {
407         .dot = { .min = 25000, .max = 350000 },
408         .vco = { .min = 1760000, .max = 3510000 },
409         .n = { .min = 1, .max = 3 },
410         .m = { .min = 79, .max = 118 },
411         .m1 = { .min = 12, .max = 22 },
412         .m2 = { .min = 5, .max = 9 },
413         .p = { .min = 28, .max = 112 },
414         .p1 = { .min = 2, .max = 8 },
415         .p2 = { .dot_limit = 225000,
416                 .p2_slow = 14, .p2_fast = 14 },
417 };
418
419 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
420         .dot = { .min = 25000, .max = 350000 },
421         .vco = { .min = 1760000, .max = 3510000 },
422         .n = { .min = 1, .max = 3 },
423         .m = { .min = 79, .max = 127 },
424         .m1 = { .min = 12, .max = 22 },
425         .m2 = { .min = 5, .max = 9 },
426         .p = { .min = 14, .max = 56 },
427         .p1 = { .min = 2, .max = 8 },
428         .p2 = { .dot_limit = 225000,
429                 .p2_slow = 7, .p2_fast = 7 },
430 };
431
432 /* LVDS 100mhz refclk limits. */
433 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
434         .dot = { .min = 25000, .max = 350000 },
435         .vco = { .min = 1760000, .max = 3510000 },
436         .n = { .min = 1, .max = 2 },
437         .m = { .min = 79, .max = 126 },
438         .m1 = { .min = 12, .max = 22 },
439         .m2 = { .min = 5, .max = 9 },
440         .p = { .min = 28, .max = 112 },
441         .p1 = { .min = 2, .max = 8 },
442         .p2 = { .dot_limit = 225000,
443                 .p2_slow = 14, .p2_fast = 14 },
444 };
445
446 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
447         .dot = { .min = 25000, .max = 350000 },
448         .vco = { .min = 1760000, .max = 3510000 },
449         .n = { .min = 1, .max = 3 },
450         .m = { .min = 79, .max = 126 },
451         .m1 = { .min = 12, .max = 22 },
452         .m2 = { .min = 5, .max = 9 },
453         .p = { .min = 14, .max = 42 },
454         .p1 = { .min = 2, .max = 6 },
455         .p2 = { .dot_limit = 225000,
456                 .p2_slow = 7, .p2_fast = 7 },
457 };
458
459 static const intel_limit_t intel_limits_vlv = {
460          /*
461           * These are the data rate limits (measured in fast clocks)
462           * since those are the strictest limits we have. The fast
463           * clock and actual rate limits are more relaxed, so checking
464           * them would make no difference.
465           */
466         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
467         .vco = { .min = 4000000, .max = 6000000 },
468         .n = { .min = 1, .max = 7 },
469         .m1 = { .min = 2, .max = 3 },
470         .m2 = { .min = 11, .max = 156 },
471         .p1 = { .min = 2, .max = 3 },
472         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
473 };
474
475 static const intel_limit_t intel_limits_chv = {
476         /*
477          * These are the data rate limits (measured in fast clocks)
478          * since those are the strictest limits we have.  The fast
479          * clock and actual rate limits are more relaxed, so checking
480          * them would make no difference.
481          */
482         .dot = { .min = 25000 * 5, .max = 540000 * 5},
483         .vco = { .min = 4800000, .max = 6480000 },
484         .n = { .min = 1, .max = 1 },
485         .m1 = { .min = 2, .max = 2 },
486         .m2 = { .min = 24 << 22, .max = 175 << 22 },
487         .p1 = { .min = 2, .max = 4 },
488         .p2 = { .p2_slow = 1, .p2_fast = 14 },
489 };
490
491 static const intel_limit_t intel_limits_bxt = {
492         /* FIXME: find real dot limits */
493         .dot = { .min = 0, .max = INT_MAX },
494         .vco = { .min = 4800000, .max = 6700000 },
495         .n = { .min = 1, .max = 1 },
496         .m1 = { .min = 2, .max = 2 },
497         /* FIXME: find real m2 limits */
498         .m2 = { .min = 2 << 22, .max = 255 << 22 },
499         .p1 = { .min = 2, .max = 4 },
500         .p2 = { .p2_slow = 1, .p2_fast = 20 },
501 };
502
503 static bool
504 needs_modeset(struct drm_crtc_state *state)
505 {
506         return drm_atomic_crtc_needs_modeset(state);
507 }
508
509 /**
510  * Returns whether any output on the specified pipe is of the specified type
511  */
512 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
513 {
514         struct drm_device *dev = crtc->base.dev;
515         struct intel_encoder *encoder;
516
517         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
518                 if (encoder->type == type)
519                         return true;
520
521         return false;
522 }
523
524 /**
525  * Returns whether any output on the specified pipe will have the specified
526  * type after a staged modeset is complete, i.e., the same as
527  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
528  * encoder->crtc.
529  */
530 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
531                                       int type)
532 {
533         struct drm_atomic_state *state = crtc_state->base.state;
534         struct drm_connector *connector;
535         struct drm_connector_state *connector_state;
536         struct intel_encoder *encoder;
537         int i, num_connectors = 0;
538
539         for_each_connector_in_state(state, connector, connector_state, i) {
540                 if (connector_state->crtc != crtc_state->base.crtc)
541                         continue;
542
543                 num_connectors++;
544
545                 encoder = to_intel_encoder(connector_state->best_encoder);
546                 if (encoder->type == type)
547                         return true;
548         }
549
550         WARN_ON(num_connectors == 0);
551
552         return false;
553 }
554
555 static const intel_limit_t *
556 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
557 {
558         struct drm_device *dev = crtc_state->base.crtc->dev;
559         const intel_limit_t *limit;
560
561         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
562                 if (intel_is_dual_link_lvds(dev)) {
563                         if (refclk == 100000)
564                                 limit = &intel_limits_ironlake_dual_lvds_100m;
565                         else
566                                 limit = &intel_limits_ironlake_dual_lvds;
567                 } else {
568                         if (refclk == 100000)
569                                 limit = &intel_limits_ironlake_single_lvds_100m;
570                         else
571                                 limit = &intel_limits_ironlake_single_lvds;
572                 }
573         } else
574                 limit = &intel_limits_ironlake_dac;
575
576         return limit;
577 }
578
579 static const intel_limit_t *
580 intel_g4x_limit(struct intel_crtc_state *crtc_state)
581 {
582         struct drm_device *dev = crtc_state->base.crtc->dev;
583         const intel_limit_t *limit;
584
585         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
586                 if (intel_is_dual_link_lvds(dev))
587                         limit = &intel_limits_g4x_dual_channel_lvds;
588                 else
589                         limit = &intel_limits_g4x_single_channel_lvds;
590         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
591                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
592                 limit = &intel_limits_g4x_hdmi;
593         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
594                 limit = &intel_limits_g4x_sdvo;
595         } else /* The option is for other outputs */
596                 limit = &intel_limits_i9xx_sdvo;
597
598         return limit;
599 }
600
601 static const intel_limit_t *
602 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
603 {
604         struct drm_device *dev = crtc_state->base.crtc->dev;
605         const intel_limit_t *limit;
606
607         if (IS_BROXTON(dev))
608                 limit = &intel_limits_bxt;
609         else if (HAS_PCH_SPLIT(dev))
610                 limit = intel_ironlake_limit(crtc_state, refclk);
611         else if (IS_G4X(dev)) {
612                 limit = intel_g4x_limit(crtc_state);
613         } else if (IS_PINEVIEW(dev)) {
614                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
615                         limit = &intel_limits_pineview_lvds;
616                 else
617                         limit = &intel_limits_pineview_sdvo;
618         } else if (IS_CHERRYVIEW(dev)) {
619                 limit = &intel_limits_chv;
620         } else if (IS_VALLEYVIEW(dev)) {
621                 limit = &intel_limits_vlv;
622         } else if (!IS_GEN2(dev)) {
623                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
624                         limit = &intel_limits_i9xx_lvds;
625                 else
626                         limit = &intel_limits_i9xx_sdvo;
627         } else {
628                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
629                         limit = &intel_limits_i8xx_lvds;
630                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
631                         limit = &intel_limits_i8xx_dvo;
632                 else
633                         limit = &intel_limits_i8xx_dac;
634         }
635         return limit;
636 }
637
638 /*
639  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
640  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
641  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
642  * The helpers' return value is the rate of the clock that is fed to the
643  * display engine's pipe which can be the above fast dot clock rate or a
644  * divided-down version of it.
645  */
646 /* m1 is reserved as 0 in Pineview, n is a ring counter */
647 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
648 {
649         clock->m = clock->m2 + 2;
650         clock->p = clock->p1 * clock->p2;
651         if (WARN_ON(clock->n == 0 || clock->p == 0))
652                 return 0;
653         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
654         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
655
656         return clock->dot;
657 }
658
659 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
660 {
661         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
662 }
663
664 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
665 {
666         clock->m = i9xx_dpll_compute_m(clock);
667         clock->p = clock->p1 * clock->p2;
668         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
669                 return 0;
670         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
671         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
672
673         return clock->dot;
674 }
675
676 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
677 {
678         clock->m = clock->m1 * clock->m2;
679         clock->p = clock->p1 * clock->p2;
680         if (WARN_ON(clock->n == 0 || clock->p == 0))
681                 return 0;
682         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
683         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
684
685         return clock->dot / 5;
686 }
687
688 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
689 {
690         clock->m = clock->m1 * clock->m2;
691         clock->p = clock->p1 * clock->p2;
692         if (WARN_ON(clock->n == 0 || clock->p == 0))
693                 return 0;
694         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
695                         clock->n << 22);
696         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
697
698         return clock->dot / 5;
699 }
700
701 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
702 /**
703  * Returns whether the given set of divisors are valid for a given refclk with
704  * the given connectors.
705  */
706
707 static bool intel_PLL_is_valid(struct drm_device *dev,
708                                const intel_limit_t *limit,
709                                const intel_clock_t *clock)
710 {
711         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
712                 INTELPllInvalid("n out of range\n");
713         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
714                 INTELPllInvalid("p1 out of range\n");
715         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
716                 INTELPllInvalid("m2 out of range\n");
717         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
718                 INTELPllInvalid("m1 out of range\n");
719
720         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
721             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
722                 if (clock->m1 <= clock->m2)
723                         INTELPllInvalid("m1 <= m2\n");
724
725         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
726                 if (clock->p < limit->p.min || limit->p.max < clock->p)
727                         INTELPllInvalid("p out of range\n");
728                 if (clock->m < limit->m.min || limit->m.max < clock->m)
729                         INTELPllInvalid("m out of range\n");
730         }
731
732         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
733                 INTELPllInvalid("vco out of range\n");
734         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
735          * connector, etc., rather than just a single range.
736          */
737         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
738                 INTELPllInvalid("dot out of range\n");
739
740         return true;
741 }
742
743 static int
744 i9xx_select_p2_div(const intel_limit_t *limit,
745                    const struct intel_crtc_state *crtc_state,
746                    int target)
747 {
748         struct drm_device *dev = crtc_state->base.crtc->dev;
749
750         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
751                 /*
752                  * For LVDS just rely on its current settings for dual-channel.
753                  * We haven't figured out how to reliably set up different
754                  * single/dual channel state, if we even can.
755                  */
756                 if (intel_is_dual_link_lvds(dev))
757                         return limit->p2.p2_fast;
758                 else
759                         return limit->p2.p2_slow;
760         } else {
761                 if (target < limit->p2.dot_limit)
762                         return limit->p2.p2_slow;
763                 else
764                         return limit->p2.p2_fast;
765         }
766 }
767
768 static bool
769 i9xx_find_best_dpll(const intel_limit_t *limit,
770                     struct intel_crtc_state *crtc_state,
771                     int target, int refclk, intel_clock_t *match_clock,
772                     intel_clock_t *best_clock)
773 {
774         struct drm_device *dev = crtc_state->base.crtc->dev;
775         intel_clock_t clock;
776         int err = target;
777
778         memset(best_clock, 0, sizeof(*best_clock));
779
780         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
781
782         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
783              clock.m1++) {
784                 for (clock.m2 = limit->m2.min;
785                      clock.m2 <= limit->m2.max; clock.m2++) {
786                         if (clock.m2 >= clock.m1)
787                                 break;
788                         for (clock.n = limit->n.min;
789                              clock.n <= limit->n.max; clock.n++) {
790                                 for (clock.p1 = limit->p1.min;
791                                         clock.p1 <= limit->p1.max; clock.p1++) {
792                                         int this_err;
793
794                                         i9xx_calc_dpll_params(refclk, &clock);
795                                         if (!intel_PLL_is_valid(dev, limit,
796                                                                 &clock))
797                                                 continue;
798                                         if (match_clock &&
799                                             clock.p != match_clock->p)
800                                                 continue;
801
802                                         this_err = abs(clock.dot - target);
803                                         if (this_err < err) {
804                                                 *best_clock = clock;
805                                                 err = this_err;
806                                         }
807                                 }
808                         }
809                 }
810         }
811
812         return (err != target);
813 }
814
815 static bool
816 pnv_find_best_dpll(const intel_limit_t *limit,
817                    struct intel_crtc_state *crtc_state,
818                    int target, int refclk, intel_clock_t *match_clock,
819                    intel_clock_t *best_clock)
820 {
821         struct drm_device *dev = crtc_state->base.crtc->dev;
822         intel_clock_t clock;
823         int err = target;
824
825         memset(best_clock, 0, sizeof(*best_clock));
826
827         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
828
829         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
830              clock.m1++) {
831                 for (clock.m2 = limit->m2.min;
832                      clock.m2 <= limit->m2.max; clock.m2++) {
833                         for (clock.n = limit->n.min;
834                              clock.n <= limit->n.max; clock.n++) {
835                                 for (clock.p1 = limit->p1.min;
836                                         clock.p1 <= limit->p1.max; clock.p1++) {
837                                         int this_err;
838
839                                         pnv_calc_dpll_params(refclk, &clock);
840                                         if (!intel_PLL_is_valid(dev, limit,
841                                                                 &clock))
842                                                 continue;
843                                         if (match_clock &&
844                                             clock.p != match_clock->p)
845                                                 continue;
846
847                                         this_err = abs(clock.dot - target);
848                                         if (this_err < err) {
849                                                 *best_clock = clock;
850                                                 err = this_err;
851                                         }
852                                 }
853                         }
854                 }
855         }
856
857         return (err != target);
858 }
859
860 static bool
861 g4x_find_best_dpll(const intel_limit_t *limit,
862                    struct intel_crtc_state *crtc_state,
863                    int target, int refclk, intel_clock_t *match_clock,
864                    intel_clock_t *best_clock)
865 {
866         struct drm_device *dev = crtc_state->base.crtc->dev;
867         intel_clock_t clock;
868         int max_n;
869         bool found = false;
870         /* approximately equals target * 0.00585 */
871         int err_most = (target >> 8) + (target >> 9);
872
873         memset(best_clock, 0, sizeof(*best_clock));
874
875         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
876
877         max_n = limit->n.max;
878         /* based on hardware requirement, prefer smaller n to precision */
879         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
880                 /* based on hardware requirement, prefere larger m1,m2 */
881                 for (clock.m1 = limit->m1.max;
882                      clock.m1 >= limit->m1.min; clock.m1--) {
883                         for (clock.m2 = limit->m2.max;
884                              clock.m2 >= limit->m2.min; clock.m2--) {
885                                 for (clock.p1 = limit->p1.max;
886                                      clock.p1 >= limit->p1.min; clock.p1--) {
887                                         int this_err;
888
889                                         i9xx_calc_dpll_params(refclk, &clock);
890                                         if (!intel_PLL_is_valid(dev, limit,
891                                                                 &clock))
892                                                 continue;
893
894                                         this_err = abs(clock.dot - target);
895                                         if (this_err < err_most) {
896                                                 *best_clock = clock;
897                                                 err_most = this_err;
898                                                 max_n = clock.n;
899                                                 found = true;
900                                         }
901                                 }
902                         }
903                 }
904         }
905         return found;
906 }
907
908 /*
909  * Check if the calculated PLL configuration is more optimal compared to the
910  * best configuration and error found so far. Return the calculated error.
911  */
912 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
913                                const intel_clock_t *calculated_clock,
914                                const intel_clock_t *best_clock,
915                                unsigned int best_error_ppm,
916                                unsigned int *error_ppm)
917 {
918         /*
919          * For CHV ignore the error and consider only the P value.
920          * Prefer a bigger P value based on HW requirements.
921          */
922         if (IS_CHERRYVIEW(dev)) {
923                 *error_ppm = 0;
924
925                 return calculated_clock->p > best_clock->p;
926         }
927
928         if (WARN_ON_ONCE(!target_freq))
929                 return false;
930
931         *error_ppm = div_u64(1000000ULL *
932                                 abs(target_freq - calculated_clock->dot),
933                              target_freq);
934         /*
935          * Prefer a better P value over a better (smaller) error if the error
936          * is small. Ensure this preference for future configurations too by
937          * setting the error to 0.
938          */
939         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
940                 *error_ppm = 0;
941
942                 return true;
943         }
944
945         return *error_ppm + 10 < best_error_ppm;
946 }
947
948 static bool
949 vlv_find_best_dpll(const intel_limit_t *limit,
950                    struct intel_crtc_state *crtc_state,
951                    int target, int refclk, intel_clock_t *match_clock,
952                    intel_clock_t *best_clock)
953 {
954         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
955         struct drm_device *dev = crtc->base.dev;
956         intel_clock_t clock;
957         unsigned int bestppm = 1000000;
958         /* min update 19.2 MHz */
959         int max_n = min(limit->n.max, refclk / 19200);
960         bool found = false;
961
962         target *= 5; /* fast clock */
963
964         memset(best_clock, 0, sizeof(*best_clock));
965
966         /* based on hardware requirement, prefer smaller n to precision */
967         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
968                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
969                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
970                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
971                                 clock.p = clock.p1 * clock.p2;
972                                 /* based on hardware requirement, prefer bigger m1,m2 values */
973                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
974                                         unsigned int ppm;
975
976                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
977                                                                      refclk * clock.m1);
978
979                                         vlv_calc_dpll_params(refclk, &clock);
980
981                                         if (!intel_PLL_is_valid(dev, limit,
982                                                                 &clock))
983                                                 continue;
984
985                                         if (!vlv_PLL_is_optimal(dev, target,
986                                                                 &clock,
987                                                                 best_clock,
988                                                                 bestppm, &ppm))
989                                                 continue;
990
991                                         *best_clock = clock;
992                                         bestppm = ppm;
993                                         found = true;
994                                 }
995                         }
996                 }
997         }
998
999         return found;
1000 }
1001
1002 static bool
1003 chv_find_best_dpll(const intel_limit_t *limit,
1004                    struct intel_crtc_state *crtc_state,
1005                    int target, int refclk, intel_clock_t *match_clock,
1006                    intel_clock_t *best_clock)
1007 {
1008         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1009         struct drm_device *dev = crtc->base.dev;
1010         unsigned int best_error_ppm;
1011         intel_clock_t clock;
1012         uint64_t m2;
1013         int found = false;
1014
1015         memset(best_clock, 0, sizeof(*best_clock));
1016         best_error_ppm = 1000000;
1017
1018         /*
1019          * Based on hardware doc, the n always set to 1, and m1 always
1020          * set to 2.  If requires to support 200Mhz refclk, we need to
1021          * revisit this because n may not 1 anymore.
1022          */
1023         clock.n = 1, clock.m1 = 2;
1024         target *= 5;    /* fast clock */
1025
1026         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1027                 for (clock.p2 = limit->p2.p2_fast;
1028                                 clock.p2 >= limit->p2.p2_slow;
1029                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1030                         unsigned int error_ppm;
1031
1032                         clock.p = clock.p1 * clock.p2;
1033
1034                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1035                                         clock.n) << 22, refclk * clock.m1);
1036
1037                         if (m2 > INT_MAX/clock.m1)
1038                                 continue;
1039
1040                         clock.m2 = m2;
1041
1042                         chv_calc_dpll_params(refclk, &clock);
1043
1044                         if (!intel_PLL_is_valid(dev, limit, &clock))
1045                                 continue;
1046
1047                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1048                                                 best_error_ppm, &error_ppm))
1049                                 continue;
1050
1051                         *best_clock = clock;
1052                         best_error_ppm = error_ppm;
1053                         found = true;
1054                 }
1055         }
1056
1057         return found;
1058 }
1059
1060 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1061                         intel_clock_t *best_clock)
1062 {
1063         int refclk = i9xx_get_refclk(crtc_state, 0);
1064
1065         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1066                                   target_clock, refclk, NULL, best_clock);
1067 }
1068
1069 bool intel_crtc_active(struct drm_crtc *crtc)
1070 {
1071         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1072
1073         /* Be paranoid as we can arrive here with only partial
1074          * state retrieved from the hardware during setup.
1075          *
1076          * We can ditch the adjusted_mode.crtc_clock check as soon
1077          * as Haswell has gained clock readout/fastboot support.
1078          *
1079          * We can ditch the crtc->primary->fb check as soon as we can
1080          * properly reconstruct framebuffers.
1081          *
1082          * FIXME: The intel_crtc->active here should be switched to
1083          * crtc->state->active once we have proper CRTC states wired up
1084          * for atomic.
1085          */
1086         return intel_crtc->active && crtc->primary->state->fb &&
1087                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1088 }
1089
1090 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1091                                              enum pipe pipe)
1092 {
1093         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1094         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1095
1096         return intel_crtc->config->cpu_transcoder;
1097 }
1098
1099 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1100 {
1101         struct drm_i915_private *dev_priv = dev->dev_private;
1102         i915_reg_t reg = PIPEDSL(pipe);
1103         u32 line1, line2;
1104         u32 line_mask;
1105
1106         if (IS_GEN2(dev))
1107                 line_mask = DSL_LINEMASK_GEN2;
1108         else
1109                 line_mask = DSL_LINEMASK_GEN3;
1110
1111         line1 = I915_READ(reg) & line_mask;
1112         msleep(5);
1113         line2 = I915_READ(reg) & line_mask;
1114
1115         return line1 == line2;
1116 }
1117
1118 /*
1119  * intel_wait_for_pipe_off - wait for pipe to turn off
1120  * @crtc: crtc whose pipe to wait for
1121  *
1122  * After disabling a pipe, we can't wait for vblank in the usual way,
1123  * spinning on the vblank interrupt status bit, since we won't actually
1124  * see an interrupt when the pipe is disabled.
1125  *
1126  * On Gen4 and above:
1127  *   wait for the pipe register state bit to turn off
1128  *
1129  * Otherwise:
1130  *   wait for the display line value to settle (it usually
1131  *   ends up stopping at the start of the next frame).
1132  *
1133  */
1134 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1135 {
1136         struct drm_device *dev = crtc->base.dev;
1137         struct drm_i915_private *dev_priv = dev->dev_private;
1138         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1139         enum pipe pipe = crtc->pipe;
1140
1141         if (INTEL_INFO(dev)->gen >= 4) {
1142                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1143
1144                 /* Wait for the Pipe State to go off */
1145                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1146                              100))
1147                         WARN(1, "pipe_off wait timed out\n");
1148         } else {
1149                 /* Wait for the display line to settle */
1150                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1151                         WARN(1, "pipe_off wait timed out\n");
1152         }
1153 }
1154
1155 static const char *state_string(bool enabled)
1156 {
1157         return enabled ? "on" : "off";
1158 }
1159
1160 /* Only for pre-ILK configs */
1161 void assert_pll(struct drm_i915_private *dev_priv,
1162                 enum pipe pipe, bool state)
1163 {
1164         u32 val;
1165         bool cur_state;
1166
1167         val = I915_READ(DPLL(pipe));
1168         cur_state = !!(val & DPLL_VCO_ENABLE);
1169         I915_STATE_WARN(cur_state != state,
1170              "PLL state assertion failure (expected %s, current %s)\n",
1171              state_string(state), state_string(cur_state));
1172 }
1173
1174 /* XXX: the dsi pll is shared between MIPI DSI ports */
1175 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1176 {
1177         u32 val;
1178         bool cur_state;
1179
1180         mutex_lock(&dev_priv->sb_lock);
1181         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1182         mutex_unlock(&dev_priv->sb_lock);
1183
1184         cur_state = val & DSI_PLL_VCO_EN;
1185         I915_STATE_WARN(cur_state != state,
1186              "DSI PLL state assertion failure (expected %s, current %s)\n",
1187              state_string(state), state_string(cur_state));
1188 }
1189 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1190 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1191
1192 struct intel_shared_dpll *
1193 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1194 {
1195         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1196
1197         if (crtc->config->shared_dpll < 0)
1198                 return NULL;
1199
1200         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1201 }
1202
1203 /* For ILK+ */
1204 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1205                         struct intel_shared_dpll *pll,
1206                         bool state)
1207 {
1208         bool cur_state;
1209         struct intel_dpll_hw_state hw_state;
1210
1211         if (WARN (!pll,
1212                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1213                 return;
1214
1215         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1216         I915_STATE_WARN(cur_state != state,
1217              "%s assertion failure (expected %s, current %s)\n",
1218              pll->name, state_string(state), state_string(cur_state));
1219 }
1220
1221 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1222                           enum pipe pipe, bool state)
1223 {
1224         bool cur_state;
1225         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1226                                                                       pipe);
1227
1228         if (HAS_DDI(dev_priv->dev)) {
1229                 /* DDI does not have a specific FDI_TX register */
1230                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1231                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1232         } else {
1233                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1234                 cur_state = !!(val & FDI_TX_ENABLE);
1235         }
1236         I915_STATE_WARN(cur_state != state,
1237              "FDI TX state assertion failure (expected %s, current %s)\n",
1238              state_string(state), state_string(cur_state));
1239 }
1240 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1241 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1242
1243 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1244                           enum pipe pipe, bool state)
1245 {
1246         u32 val;
1247         bool cur_state;
1248
1249         val = I915_READ(FDI_RX_CTL(pipe));
1250         cur_state = !!(val & FDI_RX_ENABLE);
1251         I915_STATE_WARN(cur_state != state,
1252              "FDI RX state assertion failure (expected %s, current %s)\n",
1253              state_string(state), state_string(cur_state));
1254 }
1255 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1256 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1257
1258 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1259                                       enum pipe pipe)
1260 {
1261         u32 val;
1262
1263         /* ILK FDI PLL is always enabled */
1264         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1265                 return;
1266
1267         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1268         if (HAS_DDI(dev_priv->dev))
1269                 return;
1270
1271         val = I915_READ(FDI_TX_CTL(pipe));
1272         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1273 }
1274
1275 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1276                        enum pipe pipe, bool state)
1277 {
1278         u32 val;
1279         bool cur_state;
1280
1281         val = I915_READ(FDI_RX_CTL(pipe));
1282         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1283         I915_STATE_WARN(cur_state != state,
1284              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1285              state_string(state), state_string(cur_state));
1286 }
1287
1288 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1289                            enum pipe pipe)
1290 {
1291         struct drm_device *dev = dev_priv->dev;
1292         i915_reg_t pp_reg;
1293         u32 val;
1294         enum pipe panel_pipe = PIPE_A;
1295         bool locked = true;
1296
1297         if (WARN_ON(HAS_DDI(dev)))
1298                 return;
1299
1300         if (HAS_PCH_SPLIT(dev)) {
1301                 u32 port_sel;
1302
1303                 pp_reg = PCH_PP_CONTROL;
1304                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1305
1306                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1307                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1308                         panel_pipe = PIPE_B;
1309                 /* XXX: else fix for eDP */
1310         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1311                 /* presumably write lock depends on pipe, not port select */
1312                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1313                 panel_pipe = pipe;
1314         } else {
1315                 pp_reg = PP_CONTROL;
1316                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1317                         panel_pipe = PIPE_B;
1318         }
1319
1320         val = I915_READ(pp_reg);
1321         if (!(val & PANEL_POWER_ON) ||
1322             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1323                 locked = false;
1324
1325         I915_STATE_WARN(panel_pipe == pipe && locked,
1326              "panel assertion failure, pipe %c regs locked\n",
1327              pipe_name(pipe));
1328 }
1329
1330 static void assert_cursor(struct drm_i915_private *dev_priv,
1331                           enum pipe pipe, bool state)
1332 {
1333         struct drm_device *dev = dev_priv->dev;
1334         bool cur_state;
1335
1336         if (IS_845G(dev) || IS_I865G(dev))
1337                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1338         else
1339                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1340
1341         I915_STATE_WARN(cur_state != state,
1342              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1343              pipe_name(pipe), state_string(state), state_string(cur_state));
1344 }
1345 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1346 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1347
1348 void assert_pipe(struct drm_i915_private *dev_priv,
1349                  enum pipe pipe, bool state)
1350 {
1351         bool cur_state;
1352         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1353                                                                       pipe);
1354
1355         /* if we need the pipe quirk it must be always on */
1356         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1357             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1358                 state = true;
1359
1360         if (!intel_display_power_is_enabled(dev_priv,
1361                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1362                 cur_state = false;
1363         } else {
1364                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1365                 cur_state = !!(val & PIPECONF_ENABLE);
1366         }
1367
1368         I915_STATE_WARN(cur_state != state,
1369              "pipe %c assertion failure (expected %s, current %s)\n",
1370              pipe_name(pipe), state_string(state), state_string(cur_state));
1371 }
1372
1373 static void assert_plane(struct drm_i915_private *dev_priv,
1374                          enum plane plane, bool state)
1375 {
1376         u32 val;
1377         bool cur_state;
1378
1379         val = I915_READ(DSPCNTR(plane));
1380         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1381         I915_STATE_WARN(cur_state != state,
1382              "plane %c assertion failure (expected %s, current %s)\n",
1383              plane_name(plane), state_string(state), state_string(cur_state));
1384 }
1385
1386 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1387 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1388
1389 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1390                                    enum pipe pipe)
1391 {
1392         struct drm_device *dev = dev_priv->dev;
1393         int i;
1394
1395         /* Primary planes are fixed to pipes on gen4+ */
1396         if (INTEL_INFO(dev)->gen >= 4) {
1397                 u32 val = I915_READ(DSPCNTR(pipe));
1398                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1399                      "plane %c assertion failure, should be disabled but not\n",
1400                      plane_name(pipe));
1401                 return;
1402         }
1403
1404         /* Need to check both planes against the pipe */
1405         for_each_pipe(dev_priv, i) {
1406                 u32 val = I915_READ(DSPCNTR(i));
1407                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1408                         DISPPLANE_SEL_PIPE_SHIFT;
1409                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1410                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1411                      plane_name(i), pipe_name(pipe));
1412         }
1413 }
1414
1415 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1416                                     enum pipe pipe)
1417 {
1418         struct drm_device *dev = dev_priv->dev;
1419         int sprite;
1420
1421         if (INTEL_INFO(dev)->gen >= 9) {
1422                 for_each_sprite(dev_priv, pipe, sprite) {
1423                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1424                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1425                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1426                              sprite, pipe_name(pipe));
1427                 }
1428         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1429                 for_each_sprite(dev_priv, pipe, sprite) {
1430                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1431                         I915_STATE_WARN(val & SP_ENABLE,
1432                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1433                              sprite_name(pipe, sprite), pipe_name(pipe));
1434                 }
1435         } else if (INTEL_INFO(dev)->gen >= 7) {
1436                 u32 val = I915_READ(SPRCTL(pipe));
1437                 I915_STATE_WARN(val & SPRITE_ENABLE,
1438                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1439                      plane_name(pipe), pipe_name(pipe));
1440         } else if (INTEL_INFO(dev)->gen >= 5) {
1441                 u32 val = I915_READ(DVSCNTR(pipe));
1442                 I915_STATE_WARN(val & DVS_ENABLE,
1443                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1444                      plane_name(pipe), pipe_name(pipe));
1445         }
1446 }
1447
1448 static void assert_vblank_disabled(struct drm_crtc *crtc)
1449 {
1450         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1451                 drm_crtc_vblank_put(crtc);
1452 }
1453
1454 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1455 {
1456         u32 val;
1457         bool enabled;
1458
1459         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1460
1461         val = I915_READ(PCH_DREF_CONTROL);
1462         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1463                             DREF_SUPERSPREAD_SOURCE_MASK));
1464         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1465 }
1466
1467 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1468                                            enum pipe pipe)
1469 {
1470         u32 val;
1471         bool enabled;
1472
1473         val = I915_READ(PCH_TRANSCONF(pipe));
1474         enabled = !!(val & TRANS_ENABLE);
1475         I915_STATE_WARN(enabled,
1476              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1477              pipe_name(pipe));
1478 }
1479
1480 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1481                             enum pipe pipe, u32 port_sel, u32 val)
1482 {
1483         if ((val & DP_PORT_EN) == 0)
1484                 return false;
1485
1486         if (HAS_PCH_CPT(dev_priv->dev)) {
1487                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1488                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1489                         return false;
1490         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1491                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1492                         return false;
1493         } else {
1494                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1495                         return false;
1496         }
1497         return true;
1498 }
1499
1500 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1501                               enum pipe pipe, u32 val)
1502 {
1503         if ((val & SDVO_ENABLE) == 0)
1504                 return false;
1505
1506         if (HAS_PCH_CPT(dev_priv->dev)) {
1507                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1508                         return false;
1509         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1510                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1511                         return false;
1512         } else {
1513                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1514                         return false;
1515         }
1516         return true;
1517 }
1518
1519 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1520                               enum pipe pipe, u32 val)
1521 {
1522         if ((val & LVDS_PORT_EN) == 0)
1523                 return false;
1524
1525         if (HAS_PCH_CPT(dev_priv->dev)) {
1526                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1527                         return false;
1528         } else {
1529                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1530                         return false;
1531         }
1532         return true;
1533 }
1534
1535 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1536                               enum pipe pipe, u32 val)
1537 {
1538         if ((val & ADPA_DAC_ENABLE) == 0)
1539                 return false;
1540         if (HAS_PCH_CPT(dev_priv->dev)) {
1541                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1542                         return false;
1543         } else {
1544                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1545                         return false;
1546         }
1547         return true;
1548 }
1549
1550 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1551                                    enum pipe pipe, i915_reg_t reg,
1552                                    u32 port_sel)
1553 {
1554         u32 val = I915_READ(reg);
1555         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1556              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1557              i915_mmio_reg_offset(reg), pipe_name(pipe));
1558
1559         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1560              && (val & DP_PIPEB_SELECT),
1561              "IBX PCH dp port still using transcoder B\n");
1562 }
1563
1564 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1565                                      enum pipe pipe, i915_reg_t reg)
1566 {
1567         u32 val = I915_READ(reg);
1568         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1569              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1570              i915_mmio_reg_offset(reg), pipe_name(pipe));
1571
1572         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1573              && (val & SDVO_PIPE_B_SELECT),
1574              "IBX PCH hdmi port still using transcoder B\n");
1575 }
1576
1577 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1578                                       enum pipe pipe)
1579 {
1580         u32 val;
1581
1582         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1583         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1584         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1585
1586         val = I915_READ(PCH_ADPA);
1587         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1588              "PCH VGA enabled on transcoder %c, should be disabled\n",
1589              pipe_name(pipe));
1590
1591         val = I915_READ(PCH_LVDS);
1592         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1593              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1594              pipe_name(pipe));
1595
1596         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1597         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1598         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1599 }
1600
1601 static void vlv_enable_pll(struct intel_crtc *crtc,
1602                            const struct intel_crtc_state *pipe_config)
1603 {
1604         struct drm_device *dev = crtc->base.dev;
1605         struct drm_i915_private *dev_priv = dev->dev_private;
1606         i915_reg_t reg = DPLL(crtc->pipe);
1607         u32 dpll = pipe_config->dpll_hw_state.dpll;
1608
1609         assert_pipe_disabled(dev_priv, crtc->pipe);
1610
1611         /* PLL is protected by panel, make sure we can write it */
1612         if (IS_MOBILE(dev_priv->dev))
1613                 assert_panel_unlocked(dev_priv, crtc->pipe);
1614
1615         I915_WRITE(reg, dpll);
1616         POSTING_READ(reg);
1617         udelay(150);
1618
1619         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1620                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1621
1622         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1623         POSTING_READ(DPLL_MD(crtc->pipe));
1624
1625         /* We do this three times for luck */
1626         I915_WRITE(reg, dpll);
1627         POSTING_READ(reg);
1628         udelay(150); /* wait for warmup */
1629         I915_WRITE(reg, dpll);
1630         POSTING_READ(reg);
1631         udelay(150); /* wait for warmup */
1632         I915_WRITE(reg, dpll);
1633         POSTING_READ(reg);
1634         udelay(150); /* wait for warmup */
1635 }
1636
1637 static void chv_enable_pll(struct intel_crtc *crtc,
1638                            const struct intel_crtc_state *pipe_config)
1639 {
1640         struct drm_device *dev = crtc->base.dev;
1641         struct drm_i915_private *dev_priv = dev->dev_private;
1642         int pipe = crtc->pipe;
1643         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1644         u32 tmp;
1645
1646         assert_pipe_disabled(dev_priv, crtc->pipe);
1647
1648         mutex_lock(&dev_priv->sb_lock);
1649
1650         /* Enable back the 10bit clock to display controller */
1651         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1652         tmp |= DPIO_DCLKP_EN;
1653         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1654
1655         mutex_unlock(&dev_priv->sb_lock);
1656
1657         /*
1658          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1659          */
1660         udelay(1);
1661
1662         /* Enable PLL */
1663         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1664
1665         /* Check PLL is locked */
1666         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1667                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1668
1669         /* not sure when this should be written */
1670         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1671         POSTING_READ(DPLL_MD(pipe));
1672 }
1673
1674 static int intel_num_dvo_pipes(struct drm_device *dev)
1675 {
1676         struct intel_crtc *crtc;
1677         int count = 0;
1678
1679         for_each_intel_crtc(dev, crtc)
1680                 count += crtc->base.state->active &&
1681                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1682
1683         return count;
1684 }
1685
1686 static void i9xx_enable_pll(struct intel_crtc *crtc)
1687 {
1688         struct drm_device *dev = crtc->base.dev;
1689         struct drm_i915_private *dev_priv = dev->dev_private;
1690         i915_reg_t reg = DPLL(crtc->pipe);
1691         u32 dpll = crtc->config->dpll_hw_state.dpll;
1692
1693         assert_pipe_disabled(dev_priv, crtc->pipe);
1694
1695         /* No really, not for ILK+ */
1696         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1697
1698         /* PLL is protected by panel, make sure we can write it */
1699         if (IS_MOBILE(dev) && !IS_I830(dev))
1700                 assert_panel_unlocked(dev_priv, crtc->pipe);
1701
1702         /* Enable DVO 2x clock on both PLLs if necessary */
1703         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1704                 /*
1705                  * It appears to be important that we don't enable this
1706                  * for the current pipe before otherwise configuring the
1707                  * PLL. No idea how this should be handled if multiple
1708                  * DVO outputs are enabled simultaneosly.
1709                  */
1710                 dpll |= DPLL_DVO_2X_MODE;
1711                 I915_WRITE(DPLL(!crtc->pipe),
1712                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1713         }
1714
1715         /*
1716          * Apparently we need to have VGA mode enabled prior to changing
1717          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1718          * dividers, even though the register value does change.
1719          */
1720         I915_WRITE(reg, 0);
1721
1722         I915_WRITE(reg, dpll);
1723
1724         /* Wait for the clocks to stabilize. */
1725         POSTING_READ(reg);
1726         udelay(150);
1727
1728         if (INTEL_INFO(dev)->gen >= 4) {
1729                 I915_WRITE(DPLL_MD(crtc->pipe),
1730                            crtc->config->dpll_hw_state.dpll_md);
1731         } else {
1732                 /* The pixel multiplier can only be updated once the
1733                  * DPLL is enabled and the clocks are stable.
1734                  *
1735                  * So write it again.
1736                  */
1737                 I915_WRITE(reg, dpll);
1738         }
1739
1740         /* We do this three times for luck */
1741         I915_WRITE(reg, dpll);
1742         POSTING_READ(reg);
1743         udelay(150); /* wait for warmup */
1744         I915_WRITE(reg, dpll);
1745         POSTING_READ(reg);
1746         udelay(150); /* wait for warmup */
1747         I915_WRITE(reg, dpll);
1748         POSTING_READ(reg);
1749         udelay(150); /* wait for warmup */
1750 }
1751
1752 /**
1753  * i9xx_disable_pll - disable a PLL
1754  * @dev_priv: i915 private structure
1755  * @pipe: pipe PLL to disable
1756  *
1757  * Disable the PLL for @pipe, making sure the pipe is off first.
1758  *
1759  * Note!  This is for pre-ILK only.
1760  */
1761 static void i9xx_disable_pll(struct intel_crtc *crtc)
1762 {
1763         struct drm_device *dev = crtc->base.dev;
1764         struct drm_i915_private *dev_priv = dev->dev_private;
1765         enum pipe pipe = crtc->pipe;
1766
1767         /* Disable DVO 2x clock on both PLLs if necessary */
1768         if (IS_I830(dev) &&
1769             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1770             !intel_num_dvo_pipes(dev)) {
1771                 I915_WRITE(DPLL(PIPE_B),
1772                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1773                 I915_WRITE(DPLL(PIPE_A),
1774                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1775         }
1776
1777         /* Don't disable pipe or pipe PLLs if needed */
1778         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1779             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1780                 return;
1781
1782         /* Make sure the pipe isn't still relying on us */
1783         assert_pipe_disabled(dev_priv, pipe);
1784
1785         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1786         POSTING_READ(DPLL(pipe));
1787 }
1788
1789 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1790 {
1791         u32 val;
1792
1793         /* Make sure the pipe isn't still relying on us */
1794         assert_pipe_disabled(dev_priv, pipe);
1795
1796         /*
1797          * Leave integrated clock source and reference clock enabled for pipe B.
1798          * The latter is needed for VGA hotplug / manual detection.
1799          */
1800         val = DPLL_VGA_MODE_DIS;
1801         if (pipe == PIPE_B)
1802                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1803         I915_WRITE(DPLL(pipe), val);
1804         POSTING_READ(DPLL(pipe));
1805
1806 }
1807
1808 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1809 {
1810         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1811         u32 val;
1812
1813         /* Make sure the pipe isn't still relying on us */
1814         assert_pipe_disabled(dev_priv, pipe);
1815
1816         /* Set PLL en = 0 */
1817         val = DPLL_SSC_REF_CLK_CHV |
1818                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1819         if (pipe != PIPE_A)
1820                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1821         I915_WRITE(DPLL(pipe), val);
1822         POSTING_READ(DPLL(pipe));
1823
1824         mutex_lock(&dev_priv->sb_lock);
1825
1826         /* Disable 10bit clock to display controller */
1827         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1828         val &= ~DPIO_DCLKP_EN;
1829         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1830
1831         mutex_unlock(&dev_priv->sb_lock);
1832 }
1833
1834 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1835                          struct intel_digital_port *dport,
1836                          unsigned int expected_mask)
1837 {
1838         u32 port_mask;
1839         i915_reg_t dpll_reg;
1840
1841         switch (dport->port) {
1842         case PORT_B:
1843                 port_mask = DPLL_PORTB_READY_MASK;
1844                 dpll_reg = DPLL(0);
1845                 break;
1846         case PORT_C:
1847                 port_mask = DPLL_PORTC_READY_MASK;
1848                 dpll_reg = DPLL(0);
1849                 expected_mask <<= 4;
1850                 break;
1851         case PORT_D:
1852                 port_mask = DPLL_PORTD_READY_MASK;
1853                 dpll_reg = DPIO_PHY_STATUS;
1854                 break;
1855         default:
1856                 BUG();
1857         }
1858
1859         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1860                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1861                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1862 }
1863
1864 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1865 {
1866         struct drm_device *dev = crtc->base.dev;
1867         struct drm_i915_private *dev_priv = dev->dev_private;
1868         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1869
1870         if (WARN_ON(pll == NULL))
1871                 return;
1872
1873         WARN_ON(!pll->config.crtc_mask);
1874         if (pll->active == 0) {
1875                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1876                 WARN_ON(pll->on);
1877                 assert_shared_dpll_disabled(dev_priv, pll);
1878
1879                 pll->mode_set(dev_priv, pll);
1880         }
1881 }
1882
1883 /**
1884  * intel_enable_shared_dpll - enable PCH PLL
1885  * @dev_priv: i915 private structure
1886  * @pipe: pipe PLL to enable
1887  *
1888  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1889  * drives the transcoder clock.
1890  */
1891 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1892 {
1893         struct drm_device *dev = crtc->base.dev;
1894         struct drm_i915_private *dev_priv = dev->dev_private;
1895         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1896
1897         if (WARN_ON(pll == NULL))
1898                 return;
1899
1900         if (WARN_ON(pll->config.crtc_mask == 0))
1901                 return;
1902
1903         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1904                       pll->name, pll->active, pll->on,
1905                       crtc->base.base.id);
1906
1907         if (pll->active++) {
1908                 WARN_ON(!pll->on);
1909                 assert_shared_dpll_enabled(dev_priv, pll);
1910                 return;
1911         }
1912         WARN_ON(pll->on);
1913
1914         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1915
1916         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1917         pll->enable(dev_priv, pll);
1918         pll->on = true;
1919 }
1920
1921 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1922 {
1923         struct drm_device *dev = crtc->base.dev;
1924         struct drm_i915_private *dev_priv = dev->dev_private;
1925         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1926
1927         /* PCH only available on ILK+ */
1928         if (INTEL_INFO(dev)->gen < 5)
1929                 return;
1930
1931         if (pll == NULL)
1932                 return;
1933
1934         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1935                 return;
1936
1937         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1938                       pll->name, pll->active, pll->on,
1939                       crtc->base.base.id);
1940
1941         if (WARN_ON(pll->active == 0)) {
1942                 assert_shared_dpll_disabled(dev_priv, pll);
1943                 return;
1944         }
1945
1946         assert_shared_dpll_enabled(dev_priv, pll);
1947         WARN_ON(!pll->on);
1948         if (--pll->active)
1949                 return;
1950
1951         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1952         pll->disable(dev_priv, pll);
1953         pll->on = false;
1954
1955         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1956 }
1957
1958 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1959                                            enum pipe pipe)
1960 {
1961         struct drm_device *dev = dev_priv->dev;
1962         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1964         i915_reg_t reg;
1965         uint32_t val, pipeconf_val;
1966
1967         /* PCH only available on ILK+ */
1968         BUG_ON(!HAS_PCH_SPLIT(dev));
1969
1970         /* Make sure PCH DPLL is enabled */
1971         assert_shared_dpll_enabled(dev_priv,
1972                                    intel_crtc_to_shared_dpll(intel_crtc));
1973
1974         /* FDI must be feeding us bits for PCH ports */
1975         assert_fdi_tx_enabled(dev_priv, pipe);
1976         assert_fdi_rx_enabled(dev_priv, pipe);
1977
1978         if (HAS_PCH_CPT(dev)) {
1979                 /* Workaround: Set the timing override bit before enabling the
1980                  * pch transcoder. */
1981                 reg = TRANS_CHICKEN2(pipe);
1982                 val = I915_READ(reg);
1983                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1984                 I915_WRITE(reg, val);
1985         }
1986
1987         reg = PCH_TRANSCONF(pipe);
1988         val = I915_READ(reg);
1989         pipeconf_val = I915_READ(PIPECONF(pipe));
1990
1991         if (HAS_PCH_IBX(dev_priv->dev)) {
1992                 /*
1993                  * Make the BPC in transcoder be consistent with
1994                  * that in pipeconf reg. For HDMI we must use 8bpc
1995                  * here for both 8bpc and 12bpc.
1996                  */
1997                 val &= ~PIPECONF_BPC_MASK;
1998                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1999                         val |= PIPECONF_8BPC;
2000                 else
2001                         val |= pipeconf_val & PIPECONF_BPC_MASK;
2002         }
2003
2004         val &= ~TRANS_INTERLACE_MASK;
2005         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2006                 if (HAS_PCH_IBX(dev_priv->dev) &&
2007                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2008                         val |= TRANS_LEGACY_INTERLACED_ILK;
2009                 else
2010                         val |= TRANS_INTERLACED;
2011         else
2012                 val |= TRANS_PROGRESSIVE;
2013
2014         I915_WRITE(reg, val | TRANS_ENABLE);
2015         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2016                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2017 }
2018
2019 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2020                                       enum transcoder cpu_transcoder)
2021 {
2022         u32 val, pipeconf_val;
2023
2024         /* PCH only available on ILK+ */
2025         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2026
2027         /* FDI must be feeding us bits for PCH ports */
2028         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2029         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2030
2031         /* Workaround: set timing override bit. */
2032         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2033         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2034         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2035
2036         val = TRANS_ENABLE;
2037         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2038
2039         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2040             PIPECONF_INTERLACED_ILK)
2041                 val |= TRANS_INTERLACED;
2042         else
2043                 val |= TRANS_PROGRESSIVE;
2044
2045         I915_WRITE(LPT_TRANSCONF, val);
2046         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2047                 DRM_ERROR("Failed to enable PCH transcoder\n");
2048 }
2049
2050 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2051                                             enum pipe pipe)
2052 {
2053         struct drm_device *dev = dev_priv->dev;
2054         i915_reg_t reg;
2055         uint32_t val;
2056
2057         /* FDI relies on the transcoder */
2058         assert_fdi_tx_disabled(dev_priv, pipe);
2059         assert_fdi_rx_disabled(dev_priv, pipe);
2060
2061         /* Ports must be off as well */
2062         assert_pch_ports_disabled(dev_priv, pipe);
2063
2064         reg = PCH_TRANSCONF(pipe);
2065         val = I915_READ(reg);
2066         val &= ~TRANS_ENABLE;
2067         I915_WRITE(reg, val);
2068         /* wait for PCH transcoder off, transcoder state */
2069         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2070                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2071
2072         if (HAS_PCH_CPT(dev)) {
2073                 /* Workaround: Clear the timing override chicken bit again. */
2074                 reg = TRANS_CHICKEN2(pipe);
2075                 val = I915_READ(reg);
2076                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2077                 I915_WRITE(reg, val);
2078         }
2079 }
2080
2081 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2082 {
2083         u32 val;
2084
2085         val = I915_READ(LPT_TRANSCONF);
2086         val &= ~TRANS_ENABLE;
2087         I915_WRITE(LPT_TRANSCONF, val);
2088         /* wait for PCH transcoder off, transcoder state */
2089         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2090                 DRM_ERROR("Failed to disable PCH transcoder\n");
2091
2092         /* Workaround: clear timing override bit. */
2093         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2094         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2095         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2096 }
2097
2098 /**
2099  * intel_enable_pipe - enable a pipe, asserting requirements
2100  * @crtc: crtc responsible for the pipe
2101  *
2102  * Enable @crtc's pipe, making sure that various hardware specific requirements
2103  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2104  */
2105 static void intel_enable_pipe(struct intel_crtc *crtc)
2106 {
2107         struct drm_device *dev = crtc->base.dev;
2108         struct drm_i915_private *dev_priv = dev->dev_private;
2109         enum pipe pipe = crtc->pipe;
2110         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2111         enum pipe pch_transcoder;
2112         i915_reg_t reg;
2113         u32 val;
2114
2115         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2116
2117         assert_planes_disabled(dev_priv, pipe);
2118         assert_cursor_disabled(dev_priv, pipe);
2119         assert_sprites_disabled(dev_priv, pipe);
2120
2121         if (HAS_PCH_LPT(dev_priv->dev))
2122                 pch_transcoder = TRANSCODER_A;
2123         else
2124                 pch_transcoder = pipe;
2125
2126         /*
2127          * A pipe without a PLL won't actually be able to drive bits from
2128          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2129          * need the check.
2130          */
2131         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2132                 if (crtc->config->has_dsi_encoder)
2133                         assert_dsi_pll_enabled(dev_priv);
2134                 else
2135                         assert_pll_enabled(dev_priv, pipe);
2136         else {
2137                 if (crtc->config->has_pch_encoder) {
2138                         /* if driving the PCH, we need FDI enabled */
2139                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2140                         assert_fdi_tx_pll_enabled(dev_priv,
2141                                                   (enum pipe) cpu_transcoder);
2142                 }
2143                 /* FIXME: assert CPU port conditions for SNB+ */
2144         }
2145
2146         reg = PIPECONF(cpu_transcoder);
2147         val = I915_READ(reg);
2148         if (val & PIPECONF_ENABLE) {
2149                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2150                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2151                 return;
2152         }
2153
2154         I915_WRITE(reg, val | PIPECONF_ENABLE);
2155         POSTING_READ(reg);
2156 }
2157
2158 /**
2159  * intel_disable_pipe - disable a pipe, asserting requirements
2160  * @crtc: crtc whose pipes is to be disabled
2161  *
2162  * Disable the pipe of @crtc, making sure that various hardware
2163  * specific requirements are met, if applicable, e.g. plane
2164  * disabled, panel fitter off, etc.
2165  *
2166  * Will wait until the pipe has shut down before returning.
2167  */
2168 static void intel_disable_pipe(struct intel_crtc *crtc)
2169 {
2170         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2171         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2172         enum pipe pipe = crtc->pipe;
2173         i915_reg_t reg;
2174         u32 val;
2175
2176         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2177
2178         /*
2179          * Make sure planes won't keep trying to pump pixels to us,
2180          * or we might hang the display.
2181          */
2182         assert_planes_disabled(dev_priv, pipe);
2183         assert_cursor_disabled(dev_priv, pipe);
2184         assert_sprites_disabled(dev_priv, pipe);
2185
2186         reg = PIPECONF(cpu_transcoder);
2187         val = I915_READ(reg);
2188         if ((val & PIPECONF_ENABLE) == 0)
2189                 return;
2190
2191         /*
2192          * Double wide has implications for planes
2193          * so best keep it disabled when not needed.
2194          */
2195         if (crtc->config->double_wide)
2196                 val &= ~PIPECONF_DOUBLE_WIDE;
2197
2198         /* Don't disable pipe or pipe PLLs if needed */
2199         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2200             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2201                 val &= ~PIPECONF_ENABLE;
2202
2203         I915_WRITE(reg, val);
2204         if ((val & PIPECONF_ENABLE) == 0)
2205                 intel_wait_for_pipe_off(crtc);
2206 }
2207
2208 static bool need_vtd_wa(struct drm_device *dev)
2209 {
2210 #ifdef CONFIG_INTEL_IOMMU
2211         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2212                 return true;
2213 #endif
2214         return false;
2215 }
2216
2217 unsigned int
2218 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2219                   uint64_t fb_format_modifier, unsigned int plane)
2220 {
2221         unsigned int tile_height;
2222         uint32_t pixel_bytes;
2223
2224         switch (fb_format_modifier) {
2225         case DRM_FORMAT_MOD_NONE:
2226                 tile_height = 1;
2227                 break;
2228         case I915_FORMAT_MOD_X_TILED:
2229                 tile_height = IS_GEN2(dev) ? 16 : 8;
2230                 break;
2231         case I915_FORMAT_MOD_Y_TILED:
2232                 tile_height = 32;
2233                 break;
2234         case I915_FORMAT_MOD_Yf_TILED:
2235                 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
2236                 switch (pixel_bytes) {
2237                 default:
2238                 case 1:
2239                         tile_height = 64;
2240                         break;
2241                 case 2:
2242                 case 4:
2243                         tile_height = 32;
2244                         break;
2245                 case 8:
2246                         tile_height = 16;
2247                         break;
2248                 case 16:
2249                         WARN_ONCE(1,
2250                                   "128-bit pixels are not supported for display!");
2251                         tile_height = 16;
2252                         break;
2253                 }
2254                 break;
2255         default:
2256                 MISSING_CASE(fb_format_modifier);
2257                 tile_height = 1;
2258                 break;
2259         }
2260
2261         return tile_height;
2262 }
2263
2264 unsigned int
2265 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2266                       uint32_t pixel_format, uint64_t fb_format_modifier)
2267 {
2268         return ALIGN(height, intel_tile_height(dev, pixel_format,
2269                                                fb_format_modifier, 0));
2270 }
2271
2272 static void
2273 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2274                         const struct drm_plane_state *plane_state)
2275 {
2276         struct intel_rotation_info *info = &view->params.rotation_info;
2277         unsigned int tile_height, tile_pitch;
2278
2279         *view = i915_ggtt_view_normal;
2280
2281         if (!plane_state)
2282                 return;
2283
2284         if (!intel_rotation_90_or_270(plane_state->rotation))
2285                 return;
2286
2287         *view = i915_ggtt_view_rotated;
2288
2289         info->height = fb->height;
2290         info->pixel_format = fb->pixel_format;
2291         info->pitch = fb->pitches[0];
2292         info->uv_offset = fb->offsets[1];
2293         info->fb_modifier = fb->modifier[0];
2294
2295         tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2296                                         fb->modifier[0], 0);
2297         tile_pitch = PAGE_SIZE / tile_height;
2298         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2299         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2300         info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2301
2302         if (info->pixel_format == DRM_FORMAT_NV12) {
2303                 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2304                                                 fb->modifier[0], 1);
2305                 tile_pitch = PAGE_SIZE / tile_height;
2306                 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2307                 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2308                                                      tile_height);
2309                 info->size_uv = info->width_pages_uv * info->height_pages_uv *
2310                                 PAGE_SIZE;
2311         }
2312 }
2313
2314 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2315 {
2316         if (INTEL_INFO(dev_priv)->gen >= 9)
2317                 return 256 * 1024;
2318         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2319                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2320                 return 128 * 1024;
2321         else if (INTEL_INFO(dev_priv)->gen >= 4)
2322                 return 4 * 1024;
2323         else
2324                 return 0;
2325 }
2326
2327 int
2328 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2329                            struct drm_framebuffer *fb,
2330                            const struct drm_plane_state *plane_state)
2331 {
2332         struct drm_device *dev = fb->dev;
2333         struct drm_i915_private *dev_priv = dev->dev_private;
2334         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2335         struct i915_ggtt_view view;
2336         u32 alignment;
2337         int ret;
2338
2339         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2340
2341         switch (fb->modifier[0]) {
2342         case DRM_FORMAT_MOD_NONE:
2343                 alignment = intel_linear_alignment(dev_priv);
2344                 break;
2345         case I915_FORMAT_MOD_X_TILED:
2346                 if (INTEL_INFO(dev)->gen >= 9)
2347                         alignment = 256 * 1024;
2348                 else {
2349                         /* pin() will align the object as required by fence */
2350                         alignment = 0;
2351                 }
2352                 break;
2353         case I915_FORMAT_MOD_Y_TILED:
2354         case I915_FORMAT_MOD_Yf_TILED:
2355                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2356                           "Y tiling bo slipped through, driver bug!\n"))
2357                         return -EINVAL;
2358                 alignment = 1 * 1024 * 1024;
2359                 break;
2360         default:
2361                 MISSING_CASE(fb->modifier[0]);
2362                 return -EINVAL;
2363         }
2364
2365         intel_fill_fb_ggtt_view(&view, fb, plane_state);
2366
2367         /* Note that the w/a also requires 64 PTE of padding following the
2368          * bo. We currently fill all unused PTE with the shadow page and so
2369          * we should always have valid PTE following the scanout preventing
2370          * the VT-d warning.
2371          */
2372         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2373                 alignment = 256 * 1024;
2374
2375         /*
2376          * Global gtt pte registers are special registers which actually forward
2377          * writes to a chunk of system memory. Which means that there is no risk
2378          * that the register values disappear as soon as we call
2379          * intel_runtime_pm_put(), so it is correct to wrap only the
2380          * pin/unpin/fence and not more.
2381          */
2382         intel_runtime_pm_get(dev_priv);
2383
2384         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2385                                                    &view);
2386         if (ret)
2387                 goto err_pm;
2388
2389         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2390          * fence, whereas 965+ only requires a fence if using
2391          * framebuffer compression.  For simplicity, we always install
2392          * a fence as the cost is not that onerous.
2393          */
2394         if (view.type == I915_GGTT_VIEW_NORMAL) {
2395                 ret = i915_gem_object_get_fence(obj);
2396                 if (ret == -EDEADLK) {
2397                         /*
2398                          * -EDEADLK means there are no free fences
2399                          * no pending flips.
2400                          *
2401                          * This is propagated to atomic, but it uses
2402                          * -EDEADLK to force a locking recovery, so
2403                          * change the returned error to -EBUSY.
2404                          */
2405                         ret = -EBUSY;
2406                         goto err_unpin;
2407                 } else if (ret)
2408                         goto err_unpin;
2409
2410                 i915_gem_object_pin_fence(obj);
2411         }
2412
2413         intel_runtime_pm_put(dev_priv);
2414         return 0;
2415
2416 err_unpin:
2417         i915_gem_object_unpin_from_display_plane(obj, &view);
2418 err_pm:
2419         intel_runtime_pm_put(dev_priv);
2420         return ret;
2421 }
2422
2423 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2424                                const struct drm_plane_state *plane_state)
2425 {
2426         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2427         struct i915_ggtt_view view;
2428
2429         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2430
2431         intel_fill_fb_ggtt_view(&view, fb, plane_state);
2432
2433         if (view.type == I915_GGTT_VIEW_NORMAL)
2434                 i915_gem_object_unpin_fence(obj);
2435
2436         i915_gem_object_unpin_from_display_plane(obj, &view);
2437 }
2438
2439 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2440  * is assumed to be a power-of-two. */
2441 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2442                                              int *x, int *y,
2443                                              unsigned int tiling_mode,
2444                                              unsigned int cpp,
2445                                              unsigned int pitch)
2446 {
2447         if (tiling_mode != I915_TILING_NONE) {
2448                 unsigned int tile_rows, tiles;
2449
2450                 tile_rows = *y / 8;
2451                 *y %= 8;
2452
2453                 tiles = *x / (512/cpp);
2454                 *x %= 512/cpp;
2455
2456                 return tile_rows * pitch * 8 + tiles * 4096;
2457         } else {
2458                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2459                 unsigned int offset;
2460
2461                 offset = *y * pitch + *x * cpp;
2462                 *y = (offset & alignment) / pitch;
2463                 *x = ((offset & alignment) - *y * pitch) / cpp;
2464                 return offset & ~alignment;
2465         }
2466 }
2467
2468 static int i9xx_format_to_fourcc(int format)
2469 {
2470         switch (format) {
2471         case DISPPLANE_8BPP:
2472                 return DRM_FORMAT_C8;
2473         case DISPPLANE_BGRX555:
2474                 return DRM_FORMAT_XRGB1555;
2475         case DISPPLANE_BGRX565:
2476                 return DRM_FORMAT_RGB565;
2477         default:
2478         case DISPPLANE_BGRX888:
2479                 return DRM_FORMAT_XRGB8888;
2480         case DISPPLANE_RGBX888:
2481                 return DRM_FORMAT_XBGR8888;
2482         case DISPPLANE_BGRX101010:
2483                 return DRM_FORMAT_XRGB2101010;
2484         case DISPPLANE_RGBX101010:
2485                 return DRM_FORMAT_XBGR2101010;
2486         }
2487 }
2488
2489 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2490 {
2491         switch (format) {
2492         case PLANE_CTL_FORMAT_RGB_565:
2493                 return DRM_FORMAT_RGB565;
2494         default:
2495         case PLANE_CTL_FORMAT_XRGB_8888:
2496                 if (rgb_order) {
2497                         if (alpha)
2498                                 return DRM_FORMAT_ABGR8888;
2499                         else
2500                                 return DRM_FORMAT_XBGR8888;
2501                 } else {
2502                         if (alpha)
2503                                 return DRM_FORMAT_ARGB8888;
2504                         else
2505                                 return DRM_FORMAT_XRGB8888;
2506                 }
2507         case PLANE_CTL_FORMAT_XRGB_2101010:
2508                 if (rgb_order)
2509                         return DRM_FORMAT_XBGR2101010;
2510                 else
2511                         return DRM_FORMAT_XRGB2101010;
2512         }
2513 }
2514
2515 static bool
2516 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2517                               struct intel_initial_plane_config *plane_config)
2518 {
2519         struct drm_device *dev = crtc->base.dev;
2520         struct drm_i915_private *dev_priv = to_i915(dev);
2521         struct drm_i915_gem_object *obj = NULL;
2522         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2523         struct drm_framebuffer *fb = &plane_config->fb->base;
2524         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2525         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2526                                     PAGE_SIZE);
2527
2528         size_aligned -= base_aligned;
2529
2530         if (plane_config->size == 0)
2531                 return false;
2532
2533         /* If the FB is too big, just don't use it since fbdev is not very
2534          * important and we should probably use that space with FBC or other
2535          * features. */
2536         if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2537                 return false;
2538
2539         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2540                                                              base_aligned,
2541                                                              base_aligned,
2542                                                              size_aligned);
2543         if (!obj)
2544                 return false;
2545
2546         obj->tiling_mode = plane_config->tiling;
2547         if (obj->tiling_mode == I915_TILING_X)
2548                 obj->stride = fb->pitches[0];
2549
2550         mode_cmd.pixel_format = fb->pixel_format;
2551         mode_cmd.width = fb->width;
2552         mode_cmd.height = fb->height;
2553         mode_cmd.pitches[0] = fb->pitches[0];
2554         mode_cmd.modifier[0] = fb->modifier[0];
2555         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2556
2557         mutex_lock(&dev->struct_mutex);
2558         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2559                                    &mode_cmd, obj)) {
2560                 DRM_DEBUG_KMS("intel fb init failed\n");
2561                 goto out_unref_obj;
2562         }
2563         mutex_unlock(&dev->struct_mutex);
2564
2565         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2566         return true;
2567
2568 out_unref_obj:
2569         drm_gem_object_unreference(&obj->base);
2570         mutex_unlock(&dev->struct_mutex);
2571         return false;
2572 }
2573
2574 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2575 static void
2576 update_state_fb(struct drm_plane *plane)
2577 {
2578         if (plane->fb == plane->state->fb)
2579                 return;
2580
2581         if (plane->state->fb)
2582                 drm_framebuffer_unreference(plane->state->fb);
2583         plane->state->fb = plane->fb;
2584         if (plane->state->fb)
2585                 drm_framebuffer_reference(plane->state->fb);
2586 }
2587
2588 static void
2589 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2590                              struct intel_initial_plane_config *plane_config)
2591 {
2592         struct drm_device *dev = intel_crtc->base.dev;
2593         struct drm_i915_private *dev_priv = dev->dev_private;
2594         struct drm_crtc *c;
2595         struct intel_crtc *i;
2596         struct drm_i915_gem_object *obj;
2597         struct drm_plane *primary = intel_crtc->base.primary;
2598         struct drm_plane_state *plane_state = primary->state;
2599         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2600         struct intel_plane *intel_plane = to_intel_plane(primary);
2601         struct drm_framebuffer *fb;
2602
2603         if (!plane_config->fb)
2604                 return;
2605
2606         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2607                 fb = &plane_config->fb->base;
2608                 goto valid_fb;
2609         }
2610
2611         kfree(plane_config->fb);
2612
2613         /*
2614          * Failed to alloc the obj, check to see if we should share
2615          * an fb with another CRTC instead
2616          */
2617         for_each_crtc(dev, c) {
2618                 i = to_intel_crtc(c);
2619
2620                 if (c == &intel_crtc->base)
2621                         continue;
2622
2623                 if (!i->active)
2624                         continue;
2625
2626                 fb = c->primary->fb;
2627                 if (!fb)
2628                         continue;
2629
2630                 obj = intel_fb_obj(fb);
2631                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2632                         drm_framebuffer_reference(fb);
2633                         goto valid_fb;
2634                 }
2635         }
2636
2637         /*
2638          * We've failed to reconstruct the BIOS FB.  Current display state
2639          * indicates that the primary plane is visible, but has a NULL FB,
2640          * which will lead to problems later if we don't fix it up.  The
2641          * simplest solution is to just disable the primary plane now and
2642          * pretend the BIOS never had it enabled.
2643          */
2644         to_intel_plane_state(plane_state)->visible = false;
2645         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2646         intel_pre_disable_primary(&intel_crtc->base);
2647         intel_plane->disable_plane(primary, &intel_crtc->base);
2648
2649         return;
2650
2651 valid_fb:
2652         plane_state->src_x = 0;
2653         plane_state->src_y = 0;
2654         plane_state->src_w = fb->width << 16;
2655         plane_state->src_h = fb->height << 16;
2656
2657         plane_state->crtc_x = 0;
2658         plane_state->crtc_y = 0;
2659         plane_state->crtc_w = fb->width;
2660         plane_state->crtc_h = fb->height;
2661
2662         obj = intel_fb_obj(fb);
2663         if (obj->tiling_mode != I915_TILING_NONE)
2664                 dev_priv->preserve_bios_swizzle = true;
2665
2666         drm_framebuffer_reference(fb);
2667         primary->fb = primary->state->fb = fb;
2668         primary->crtc = primary->state->crtc = &intel_crtc->base;
2669         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2670         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2671 }
2672
2673 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2674                                       struct drm_framebuffer *fb,
2675                                       int x, int y)
2676 {
2677         struct drm_device *dev = crtc->dev;
2678         struct drm_i915_private *dev_priv = dev->dev_private;
2679         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2680         struct drm_plane *primary = crtc->primary;
2681         bool visible = to_intel_plane_state(primary->state)->visible;
2682         struct drm_i915_gem_object *obj;
2683         int plane = intel_crtc->plane;
2684         unsigned long linear_offset;
2685         u32 dspcntr;
2686         i915_reg_t reg = DSPCNTR(plane);
2687         int pixel_size;
2688
2689         if (!visible || !fb) {
2690                 I915_WRITE(reg, 0);
2691                 if (INTEL_INFO(dev)->gen >= 4)
2692                         I915_WRITE(DSPSURF(plane), 0);
2693                 else
2694                         I915_WRITE(DSPADDR(plane), 0);
2695                 POSTING_READ(reg);
2696                 return;
2697         }
2698
2699         obj = intel_fb_obj(fb);
2700         if (WARN_ON(obj == NULL))
2701                 return;
2702
2703         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2704
2705         dspcntr = DISPPLANE_GAMMA_ENABLE;
2706
2707         dspcntr |= DISPLAY_PLANE_ENABLE;
2708
2709         if (INTEL_INFO(dev)->gen < 4) {
2710                 if (intel_crtc->pipe == PIPE_B)
2711                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2712
2713                 /* pipesrc and dspsize control the size that is scaled from,
2714                  * which should always be the user's requested size.
2715                  */
2716                 I915_WRITE(DSPSIZE(plane),
2717                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2718                            (intel_crtc->config->pipe_src_w - 1));
2719                 I915_WRITE(DSPPOS(plane), 0);
2720         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2721                 I915_WRITE(PRIMSIZE(plane),
2722                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2723                            (intel_crtc->config->pipe_src_w - 1));
2724                 I915_WRITE(PRIMPOS(plane), 0);
2725                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2726         }
2727
2728         switch (fb->pixel_format) {
2729         case DRM_FORMAT_C8:
2730                 dspcntr |= DISPPLANE_8BPP;
2731                 break;
2732         case DRM_FORMAT_XRGB1555:
2733                 dspcntr |= DISPPLANE_BGRX555;
2734                 break;
2735         case DRM_FORMAT_RGB565:
2736                 dspcntr |= DISPPLANE_BGRX565;
2737                 break;
2738         case DRM_FORMAT_XRGB8888:
2739                 dspcntr |= DISPPLANE_BGRX888;
2740                 break;
2741         case DRM_FORMAT_XBGR8888:
2742                 dspcntr |= DISPPLANE_RGBX888;
2743                 break;
2744         case DRM_FORMAT_XRGB2101010:
2745                 dspcntr |= DISPPLANE_BGRX101010;
2746                 break;
2747         case DRM_FORMAT_XBGR2101010:
2748                 dspcntr |= DISPPLANE_RGBX101010;
2749                 break;
2750         default:
2751                 BUG();
2752         }
2753
2754         if (INTEL_INFO(dev)->gen >= 4 &&
2755             obj->tiling_mode != I915_TILING_NONE)
2756                 dspcntr |= DISPPLANE_TILED;
2757
2758         if (IS_G4X(dev))
2759                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2760
2761         linear_offset = y * fb->pitches[0] + x * pixel_size;
2762
2763         if (INTEL_INFO(dev)->gen >= 4) {
2764                 intel_crtc->dspaddr_offset =
2765                         intel_gen4_compute_page_offset(dev_priv,
2766                                                        &x, &y, obj->tiling_mode,
2767                                                        pixel_size,
2768                                                        fb->pitches[0]);
2769                 linear_offset -= intel_crtc->dspaddr_offset;
2770         } else {
2771                 intel_crtc->dspaddr_offset = linear_offset;
2772         }
2773
2774         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2775                 dspcntr |= DISPPLANE_ROTATE_180;
2776
2777                 x += (intel_crtc->config->pipe_src_w - 1);
2778                 y += (intel_crtc->config->pipe_src_h - 1);
2779
2780                 /* Finding the last pixel of the last line of the display
2781                 data and adding to linear_offset*/
2782                 linear_offset +=
2783                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2784                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2785         }
2786
2787         intel_crtc->adjusted_x = x;
2788         intel_crtc->adjusted_y = y;
2789
2790         I915_WRITE(reg, dspcntr);
2791
2792         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2793         if (INTEL_INFO(dev)->gen >= 4) {
2794                 I915_WRITE(DSPSURF(plane),
2795                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2796                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2797                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2798         } else
2799                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2800         POSTING_READ(reg);
2801 }
2802
2803 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2804                                           struct drm_framebuffer *fb,
2805                                           int x, int y)
2806 {
2807         struct drm_device *dev = crtc->dev;
2808         struct drm_i915_private *dev_priv = dev->dev_private;
2809         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2810         struct drm_plane *primary = crtc->primary;
2811         bool visible = to_intel_plane_state(primary->state)->visible;
2812         struct drm_i915_gem_object *obj;
2813         int plane = intel_crtc->plane;
2814         unsigned long linear_offset;
2815         u32 dspcntr;
2816         i915_reg_t reg = DSPCNTR(plane);
2817         int pixel_size;
2818
2819         if (!visible || !fb) {
2820                 I915_WRITE(reg, 0);
2821                 I915_WRITE(DSPSURF(plane), 0);
2822                 POSTING_READ(reg);
2823                 return;
2824         }
2825
2826         obj = intel_fb_obj(fb);
2827         if (WARN_ON(obj == NULL))
2828                 return;
2829
2830         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2831
2832         dspcntr = DISPPLANE_GAMMA_ENABLE;
2833
2834         dspcntr |= DISPLAY_PLANE_ENABLE;
2835
2836         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2837                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2838
2839         switch (fb->pixel_format) {
2840         case DRM_FORMAT_C8:
2841                 dspcntr |= DISPPLANE_8BPP;
2842                 break;
2843         case DRM_FORMAT_RGB565:
2844                 dspcntr |= DISPPLANE_BGRX565;
2845                 break;
2846         case DRM_FORMAT_XRGB8888:
2847                 dspcntr |= DISPPLANE_BGRX888;
2848                 break;
2849         case DRM_FORMAT_XBGR8888:
2850                 dspcntr |= DISPPLANE_RGBX888;
2851                 break;
2852         case DRM_FORMAT_XRGB2101010:
2853                 dspcntr |= DISPPLANE_BGRX101010;
2854                 break;
2855         case DRM_FORMAT_XBGR2101010:
2856                 dspcntr |= DISPPLANE_RGBX101010;
2857                 break;
2858         default:
2859                 BUG();
2860         }
2861
2862         if (obj->tiling_mode != I915_TILING_NONE)
2863                 dspcntr |= DISPPLANE_TILED;
2864
2865         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2866                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2867
2868         linear_offset = y * fb->pitches[0] + x * pixel_size;
2869         intel_crtc->dspaddr_offset =
2870                 intel_gen4_compute_page_offset(dev_priv,
2871                                                &x, &y, obj->tiling_mode,
2872                                                pixel_size,
2873                                                fb->pitches[0]);
2874         linear_offset -= intel_crtc->dspaddr_offset;
2875         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2876                 dspcntr |= DISPPLANE_ROTATE_180;
2877
2878                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2879                         x += (intel_crtc->config->pipe_src_w - 1);
2880                         y += (intel_crtc->config->pipe_src_h - 1);
2881
2882                         /* Finding the last pixel of the last line of the display
2883                         data and adding to linear_offset*/
2884                         linear_offset +=
2885                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2886                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2887                 }
2888         }
2889
2890         intel_crtc->adjusted_x = x;
2891         intel_crtc->adjusted_y = y;
2892
2893         I915_WRITE(reg, dspcntr);
2894
2895         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2896         I915_WRITE(DSPSURF(plane),
2897                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2898         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2899                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2900         } else {
2901                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2902                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2903         }
2904         POSTING_READ(reg);
2905 }
2906
2907 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2908                               uint32_t pixel_format)
2909 {
2910         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2911
2912         /*
2913          * The stride is either expressed as a multiple of 64 bytes
2914          * chunks for linear buffers or in number of tiles for tiled
2915          * buffers.
2916          */
2917         switch (fb_modifier) {
2918         case DRM_FORMAT_MOD_NONE:
2919                 return 64;
2920         case I915_FORMAT_MOD_X_TILED:
2921                 if (INTEL_INFO(dev)->gen == 2)
2922                         return 128;
2923                 return 512;
2924         case I915_FORMAT_MOD_Y_TILED:
2925                 /* No need to check for old gens and Y tiling since this is
2926                  * about the display engine and those will be blocked before
2927                  * we get here.
2928                  */
2929                 return 128;
2930         case I915_FORMAT_MOD_Yf_TILED:
2931                 if (bits_per_pixel == 8)
2932                         return 64;
2933                 else
2934                         return 128;
2935         default:
2936                 MISSING_CASE(fb_modifier);
2937                 return 64;
2938         }
2939 }
2940
2941 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2942                            struct drm_i915_gem_object *obj,
2943                            unsigned int plane)
2944 {
2945         struct i915_ggtt_view view;
2946         struct i915_vma *vma;
2947         u64 offset;
2948
2949         intel_fill_fb_ggtt_view(&view, intel_plane->base.fb,
2950                                 intel_plane->base.state);
2951
2952         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2953         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2954                 view.type))
2955                 return -1;
2956
2957         offset = vma->node.start;
2958
2959         if (plane == 1) {
2960                 offset += vma->ggtt_view.params.rotation_info.uv_start_page *
2961                           PAGE_SIZE;
2962         }
2963
2964         WARN_ON(upper_32_bits(offset));
2965
2966         return lower_32_bits(offset);
2967 }
2968
2969 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2970 {
2971         struct drm_device *dev = intel_crtc->base.dev;
2972         struct drm_i915_private *dev_priv = dev->dev_private;
2973
2974         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2975         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2976         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2977 }
2978
2979 /*
2980  * This function detaches (aka. unbinds) unused scalers in hardware
2981  */
2982 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2983 {
2984         struct intel_crtc_scaler_state *scaler_state;
2985         int i;
2986
2987         scaler_state = &intel_crtc->config->scaler_state;
2988
2989         /* loop through and disable scalers that aren't in use */
2990         for (i = 0; i < intel_crtc->num_scalers; i++) {
2991                 if (!scaler_state->scalers[i].in_use)
2992                         skl_detach_scaler(intel_crtc, i);
2993         }
2994 }
2995
2996 u32 skl_plane_ctl_format(uint32_t pixel_format)
2997 {
2998         switch (pixel_format) {
2999         case DRM_FORMAT_C8:
3000                 return PLANE_CTL_FORMAT_INDEXED;
3001         case DRM_FORMAT_RGB565:
3002                 return PLANE_CTL_FORMAT_RGB_565;
3003         case DRM_FORMAT_XBGR8888:
3004                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3005         case DRM_FORMAT_XRGB8888:
3006                 return PLANE_CTL_FORMAT_XRGB_8888;
3007         /*
3008          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3009          * to be already pre-multiplied. We need to add a knob (or a different
3010          * DRM_FORMAT) for user-space to configure that.
3011          */
3012         case DRM_FORMAT_ABGR8888:
3013                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3014                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3015         case DRM_FORMAT_ARGB8888:
3016                 return PLANE_CTL_FORMAT_XRGB_8888 |
3017                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3018         case DRM_FORMAT_XRGB2101010:
3019                 return PLANE_CTL_FORMAT_XRGB_2101010;
3020         case DRM_FORMAT_XBGR2101010:
3021                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3022         case DRM_FORMAT_YUYV:
3023                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3024         case DRM_FORMAT_YVYU:
3025                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3026         case DRM_FORMAT_UYVY:
3027                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3028         case DRM_FORMAT_VYUY:
3029                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3030         default:
3031                 MISSING_CASE(pixel_format);
3032         }
3033
3034         return 0;
3035 }
3036
3037 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3038 {
3039         switch (fb_modifier) {
3040         case DRM_FORMAT_MOD_NONE:
3041                 break;
3042         case I915_FORMAT_MOD_X_TILED:
3043                 return PLANE_CTL_TILED_X;
3044         case I915_FORMAT_MOD_Y_TILED:
3045                 return PLANE_CTL_TILED_Y;
3046         case I915_FORMAT_MOD_Yf_TILED:
3047                 return PLANE_CTL_TILED_YF;
3048         default:
3049                 MISSING_CASE(fb_modifier);
3050         }
3051
3052         return 0;
3053 }
3054
3055 u32 skl_plane_ctl_rotation(unsigned int rotation)
3056 {
3057         switch (rotation) {
3058         case BIT(DRM_ROTATE_0):
3059                 break;
3060         /*
3061          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3062          * while i915 HW rotation is clockwise, thats why this swapping.
3063          */
3064         case BIT(DRM_ROTATE_90):
3065                 return PLANE_CTL_ROTATE_270;
3066         case BIT(DRM_ROTATE_180):
3067                 return PLANE_CTL_ROTATE_180;
3068         case BIT(DRM_ROTATE_270):
3069                 return PLANE_CTL_ROTATE_90;
3070         default:
3071                 MISSING_CASE(rotation);
3072         }
3073
3074         return 0;
3075 }
3076
3077 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3078                                          struct drm_framebuffer *fb,
3079                                          int x, int y)
3080 {
3081         struct drm_device *dev = crtc->dev;
3082         struct drm_i915_private *dev_priv = dev->dev_private;
3083         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3084         struct drm_plane *plane = crtc->primary;
3085         bool visible = to_intel_plane_state(plane->state)->visible;
3086         struct drm_i915_gem_object *obj;
3087         int pipe = intel_crtc->pipe;
3088         u32 plane_ctl, stride_div, stride;
3089         u32 tile_height, plane_offset, plane_size;
3090         unsigned int rotation;
3091         int x_offset, y_offset;
3092         u32 surf_addr;
3093         struct intel_crtc_state *crtc_state = intel_crtc->config;
3094         struct intel_plane_state *plane_state;
3095         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3096         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3097         int scaler_id = -1;
3098
3099         plane_state = to_intel_plane_state(plane->state);
3100
3101         if (!visible || !fb) {
3102                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3103                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3104                 POSTING_READ(PLANE_CTL(pipe, 0));
3105                 return;
3106         }
3107
3108         plane_ctl = PLANE_CTL_ENABLE |
3109                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3110                     PLANE_CTL_PIPE_CSC_ENABLE;
3111
3112         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3113         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3114         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3115
3116         rotation = plane->state->rotation;
3117         plane_ctl |= skl_plane_ctl_rotation(rotation);
3118
3119         obj = intel_fb_obj(fb);
3120         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3121                                                fb->pixel_format);
3122         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3123
3124         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3125
3126         scaler_id = plane_state->scaler_id;
3127         src_x = plane_state->src.x1 >> 16;
3128         src_y = plane_state->src.y1 >> 16;
3129         src_w = drm_rect_width(&plane_state->src) >> 16;
3130         src_h = drm_rect_height(&plane_state->src) >> 16;
3131         dst_x = plane_state->dst.x1;
3132         dst_y = plane_state->dst.y1;
3133         dst_w = drm_rect_width(&plane_state->dst);
3134         dst_h = drm_rect_height(&plane_state->dst);
3135
3136         WARN_ON(x != src_x || y != src_y);
3137
3138         if (intel_rotation_90_or_270(rotation)) {
3139                 /* stride = Surface height in tiles */
3140                 tile_height = intel_tile_height(dev, fb->pixel_format,
3141                                                 fb->modifier[0], 0);
3142                 stride = DIV_ROUND_UP(fb->height, tile_height);
3143                 x_offset = stride * tile_height - y - src_h;
3144                 y_offset = x;
3145                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3146         } else {
3147                 stride = fb->pitches[0] / stride_div;
3148                 x_offset = x;
3149                 y_offset = y;
3150                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3151         }
3152         plane_offset = y_offset << 16 | x_offset;
3153
3154         intel_crtc->adjusted_x = x_offset;
3155         intel_crtc->adjusted_y = y_offset;
3156
3157         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3158         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3159         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3160         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3161
3162         if (scaler_id >= 0) {
3163                 uint32_t ps_ctrl = 0;
3164
3165                 WARN_ON(!dst_w || !dst_h);
3166                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3167                         crtc_state->scaler_state.scalers[scaler_id].mode;
3168                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3169                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3170                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3171                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3172                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3173         } else {
3174                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3175         }
3176
3177         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3178
3179         POSTING_READ(PLANE_SURF(pipe, 0));
3180 }
3181
3182 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3183 static int
3184 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3185                            int x, int y, enum mode_set_atomic state)
3186 {
3187         struct drm_device *dev = crtc->dev;
3188         struct drm_i915_private *dev_priv = dev->dev_private;
3189
3190         if (dev_priv->fbc.deactivate)
3191                 dev_priv->fbc.deactivate(dev_priv);
3192
3193         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3194
3195         return 0;
3196 }
3197
3198 static void intel_complete_page_flips(struct drm_device *dev)
3199 {
3200         struct drm_crtc *crtc;
3201
3202         for_each_crtc(dev, crtc) {
3203                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3204                 enum plane plane = intel_crtc->plane;
3205
3206                 intel_prepare_page_flip(dev, plane);
3207                 intel_finish_page_flip_plane(dev, plane);
3208         }
3209 }
3210
3211 static void intel_update_primary_planes(struct drm_device *dev)
3212 {
3213         struct drm_crtc *crtc;
3214
3215         for_each_crtc(dev, crtc) {
3216                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3217                 struct intel_plane_state *plane_state;
3218
3219                 drm_modeset_lock_crtc(crtc, &plane->base);
3220                 plane_state = to_intel_plane_state(plane->base.state);
3221
3222                 if (crtc->state->active && plane_state->base.fb)
3223                         plane->commit_plane(&plane->base, plane_state);
3224
3225                 drm_modeset_unlock_crtc(crtc);
3226         }
3227 }
3228
3229 void intel_prepare_reset(struct drm_device *dev)
3230 {
3231         /* no reset support for gen2 */
3232         if (IS_GEN2(dev))
3233                 return;
3234
3235         /* reset doesn't touch the display */
3236         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3237                 return;
3238
3239         drm_modeset_lock_all(dev);
3240         /*
3241          * Disabling the crtcs gracefully seems nicer. Also the
3242          * g33 docs say we should at least disable all the planes.
3243          */
3244         intel_display_suspend(dev);
3245 }
3246
3247 void intel_finish_reset(struct drm_device *dev)
3248 {
3249         struct drm_i915_private *dev_priv = to_i915(dev);
3250
3251         /*
3252          * Flips in the rings will be nuked by the reset,
3253          * so complete all pending flips so that user space
3254          * will get its events and not get stuck.
3255          */
3256         intel_complete_page_flips(dev);
3257
3258         /* no reset support for gen2 */
3259         if (IS_GEN2(dev))
3260                 return;
3261
3262         /* reset doesn't touch the display */
3263         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3264                 /*
3265                  * Flips in the rings have been nuked by the reset,
3266                  * so update the base address of all primary
3267                  * planes to the the last fb to make sure we're
3268                  * showing the correct fb after a reset.
3269                  *
3270                  * FIXME: Atomic will make this obsolete since we won't schedule
3271                  * CS-based flips (which might get lost in gpu resets) any more.
3272                  */
3273                 intel_update_primary_planes(dev);
3274                 return;
3275         }
3276
3277         /*
3278          * The display has been reset as well,
3279          * so need a full re-initialization.
3280          */
3281         intel_runtime_pm_disable_interrupts(dev_priv);
3282         intel_runtime_pm_enable_interrupts(dev_priv);
3283
3284         intel_modeset_init_hw(dev);
3285
3286         spin_lock_irq(&dev_priv->irq_lock);
3287         if (dev_priv->display.hpd_irq_setup)
3288                 dev_priv->display.hpd_irq_setup(dev);
3289         spin_unlock_irq(&dev_priv->irq_lock);
3290
3291         intel_display_resume(dev);
3292
3293         intel_hpd_init(dev_priv);
3294
3295         drm_modeset_unlock_all(dev);
3296 }
3297
3298 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3299 {
3300         struct drm_device *dev = crtc->dev;
3301         struct drm_i915_private *dev_priv = dev->dev_private;
3302         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3303         bool pending;
3304
3305         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3306             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3307                 return false;
3308
3309         spin_lock_irq(&dev->event_lock);
3310         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3311         spin_unlock_irq(&dev->event_lock);
3312
3313         return pending;
3314 }
3315
3316 static void intel_update_pipe_config(struct intel_crtc *crtc,
3317                                      struct intel_crtc_state *old_crtc_state)
3318 {
3319         struct drm_device *dev = crtc->base.dev;
3320         struct drm_i915_private *dev_priv = dev->dev_private;
3321         struct intel_crtc_state *pipe_config =
3322                 to_intel_crtc_state(crtc->base.state);
3323
3324         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3325         crtc->base.mode = crtc->base.state->mode;
3326
3327         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3328                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3329                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3330
3331         if (HAS_DDI(dev))
3332                 intel_set_pipe_csc(&crtc->base);
3333
3334         /*
3335          * Update pipe size and adjust fitter if needed: the reason for this is
3336          * that in compute_mode_changes we check the native mode (not the pfit
3337          * mode) to see if we can flip rather than do a full mode set. In the
3338          * fastboot case, we'll flip, but if we don't update the pipesrc and
3339          * pfit state, we'll end up with a big fb scanned out into the wrong
3340          * sized surface.
3341          */
3342
3343         I915_WRITE(PIPESRC(crtc->pipe),
3344                    ((pipe_config->pipe_src_w - 1) << 16) |
3345                    (pipe_config->pipe_src_h - 1));
3346
3347         /* on skylake this is done by detaching scalers */
3348         if (INTEL_INFO(dev)->gen >= 9) {
3349                 skl_detach_scalers(crtc);
3350
3351                 if (pipe_config->pch_pfit.enabled)
3352                         skylake_pfit_enable(crtc);
3353         } else if (HAS_PCH_SPLIT(dev)) {
3354                 if (pipe_config->pch_pfit.enabled)
3355                         ironlake_pfit_enable(crtc);
3356                 else if (old_crtc_state->pch_pfit.enabled)
3357                         ironlake_pfit_disable(crtc, true);
3358         }
3359 }
3360
3361 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3362 {
3363         struct drm_device *dev = crtc->dev;
3364         struct drm_i915_private *dev_priv = dev->dev_private;
3365         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3366         int pipe = intel_crtc->pipe;
3367         i915_reg_t reg;
3368         u32 temp;
3369
3370         /* enable normal train */
3371         reg = FDI_TX_CTL(pipe);
3372         temp = I915_READ(reg);
3373         if (IS_IVYBRIDGE(dev)) {
3374                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3375                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3376         } else {
3377                 temp &= ~FDI_LINK_TRAIN_NONE;
3378                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3379         }
3380         I915_WRITE(reg, temp);
3381
3382         reg = FDI_RX_CTL(pipe);
3383         temp = I915_READ(reg);
3384         if (HAS_PCH_CPT(dev)) {
3385                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3386                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3387         } else {
3388                 temp &= ~FDI_LINK_TRAIN_NONE;
3389                 temp |= FDI_LINK_TRAIN_NONE;
3390         }
3391         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3392
3393         /* wait one idle pattern time */
3394         POSTING_READ(reg);
3395         udelay(1000);
3396
3397         /* IVB wants error correction enabled */
3398         if (IS_IVYBRIDGE(dev))
3399                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3400                            FDI_FE_ERRC_ENABLE);
3401 }
3402
3403 /* The FDI link training functions for ILK/Ibexpeak. */
3404 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3405 {
3406         struct drm_device *dev = crtc->dev;
3407         struct drm_i915_private *dev_priv = dev->dev_private;
3408         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3409         int pipe = intel_crtc->pipe;
3410         i915_reg_t reg;
3411         u32 temp, tries;
3412
3413         /* FDI needs bits from pipe first */
3414         assert_pipe_enabled(dev_priv, pipe);
3415
3416         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3417            for train result */
3418         reg = FDI_RX_IMR(pipe);
3419         temp = I915_READ(reg);
3420         temp &= ~FDI_RX_SYMBOL_LOCK;
3421         temp &= ~FDI_RX_BIT_LOCK;
3422         I915_WRITE(reg, temp);
3423         I915_READ(reg);
3424         udelay(150);
3425
3426         /* enable CPU FDI TX and PCH FDI RX */
3427         reg = FDI_TX_CTL(pipe);
3428         temp = I915_READ(reg);
3429         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3430         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3431         temp &= ~FDI_LINK_TRAIN_NONE;
3432         temp |= FDI_LINK_TRAIN_PATTERN_1;
3433         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3434
3435         reg = FDI_RX_CTL(pipe);
3436         temp = I915_READ(reg);
3437         temp &= ~FDI_LINK_TRAIN_NONE;
3438         temp |= FDI_LINK_TRAIN_PATTERN_1;
3439         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3440
3441         POSTING_READ(reg);
3442         udelay(150);
3443
3444         /* Ironlake workaround, enable clock pointer after FDI enable*/
3445         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3446         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3447                    FDI_RX_PHASE_SYNC_POINTER_EN);
3448
3449         reg = FDI_RX_IIR(pipe);
3450         for (tries = 0; tries < 5; tries++) {
3451                 temp = I915_READ(reg);
3452                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3453
3454                 if ((temp & FDI_RX_BIT_LOCK)) {
3455                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3456                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3457                         break;
3458                 }
3459         }
3460         if (tries == 5)
3461                 DRM_ERROR("FDI train 1 fail!\n");
3462
3463         /* Train 2 */
3464         reg = FDI_TX_CTL(pipe);
3465         temp = I915_READ(reg);
3466         temp &= ~FDI_LINK_TRAIN_NONE;
3467         temp |= FDI_LINK_TRAIN_PATTERN_2;
3468         I915_WRITE(reg, temp);
3469
3470         reg = FDI_RX_CTL(pipe);
3471         temp = I915_READ(reg);
3472         temp &= ~FDI_LINK_TRAIN_NONE;
3473         temp |= FDI_LINK_TRAIN_PATTERN_2;
3474         I915_WRITE(reg, temp);
3475
3476         POSTING_READ(reg);
3477         udelay(150);
3478
3479         reg = FDI_RX_IIR(pipe);
3480         for (tries = 0; tries < 5; tries++) {
3481                 temp = I915_READ(reg);
3482                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3483
3484                 if (temp & FDI_RX_SYMBOL_LOCK) {
3485                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3486                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3487                         break;
3488                 }
3489         }
3490         if (tries == 5)
3491                 DRM_ERROR("FDI train 2 fail!\n");
3492
3493         DRM_DEBUG_KMS("FDI train done\n");
3494
3495 }
3496
3497 static const int snb_b_fdi_train_param[] = {
3498         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3499         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3500         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3501         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3502 };
3503
3504 /* The FDI link training functions for SNB/Cougarpoint. */
3505 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3506 {
3507         struct drm_device *dev = crtc->dev;
3508         struct drm_i915_private *dev_priv = dev->dev_private;
3509         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3510         int pipe = intel_crtc->pipe;
3511         i915_reg_t reg;
3512         u32 temp, i, retry;
3513
3514         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3515            for train result */
3516         reg = FDI_RX_IMR(pipe);
3517         temp = I915_READ(reg);
3518         temp &= ~FDI_RX_SYMBOL_LOCK;
3519         temp &= ~FDI_RX_BIT_LOCK;
3520         I915_WRITE(reg, temp);
3521
3522         POSTING_READ(reg);
3523         udelay(150);
3524
3525         /* enable CPU FDI TX and PCH FDI RX */
3526         reg = FDI_TX_CTL(pipe);
3527         temp = I915_READ(reg);
3528         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3529         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3530         temp &= ~FDI_LINK_TRAIN_NONE;
3531         temp |= FDI_LINK_TRAIN_PATTERN_1;
3532         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3533         /* SNB-B */
3534         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3535         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3536
3537         I915_WRITE(FDI_RX_MISC(pipe),
3538                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3539
3540         reg = FDI_RX_CTL(pipe);
3541         temp = I915_READ(reg);
3542         if (HAS_PCH_CPT(dev)) {
3543                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3544                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3545         } else {
3546                 temp &= ~FDI_LINK_TRAIN_NONE;
3547                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3548         }
3549         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3550
3551         POSTING_READ(reg);
3552         udelay(150);
3553
3554         for (i = 0; i < 4; i++) {
3555                 reg = FDI_TX_CTL(pipe);
3556                 temp = I915_READ(reg);
3557                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3558                 temp |= snb_b_fdi_train_param[i];
3559                 I915_WRITE(reg, temp);
3560
3561                 POSTING_READ(reg);
3562                 udelay(500);
3563
3564                 for (retry = 0; retry < 5; retry++) {
3565                         reg = FDI_RX_IIR(pipe);
3566                         temp = I915_READ(reg);
3567                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3568                         if (temp & FDI_RX_BIT_LOCK) {
3569                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3570                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3571                                 break;
3572                         }
3573                         udelay(50);
3574                 }
3575                 if (retry < 5)
3576                         break;
3577         }
3578         if (i == 4)
3579                 DRM_ERROR("FDI train 1 fail!\n");
3580
3581         /* Train 2 */
3582         reg = FDI_TX_CTL(pipe);
3583         temp = I915_READ(reg);
3584         temp &= ~FDI_LINK_TRAIN_NONE;
3585         temp |= FDI_LINK_TRAIN_PATTERN_2;
3586         if (IS_GEN6(dev)) {
3587                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3588                 /* SNB-B */
3589                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3590         }
3591         I915_WRITE(reg, temp);
3592
3593         reg = FDI_RX_CTL(pipe);
3594         temp = I915_READ(reg);
3595         if (HAS_PCH_CPT(dev)) {
3596                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3597                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3598         } else {
3599                 temp &= ~FDI_LINK_TRAIN_NONE;
3600                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3601         }
3602         I915_WRITE(reg, temp);
3603
3604         POSTING_READ(reg);
3605         udelay(150);
3606
3607         for (i = 0; i < 4; i++) {
3608                 reg = FDI_TX_CTL(pipe);
3609                 temp = I915_READ(reg);
3610                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3611                 temp |= snb_b_fdi_train_param[i];
3612                 I915_WRITE(reg, temp);
3613
3614                 POSTING_READ(reg);
3615                 udelay(500);
3616
3617                 for (retry = 0; retry < 5; retry++) {
3618                         reg = FDI_RX_IIR(pipe);
3619                         temp = I915_READ(reg);
3620                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3621                         if (temp & FDI_RX_SYMBOL_LOCK) {
3622                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3623                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3624                                 break;
3625                         }
3626                         udelay(50);
3627                 }
3628                 if (retry < 5)
3629                         break;
3630         }
3631         if (i == 4)
3632                 DRM_ERROR("FDI train 2 fail!\n");
3633
3634         DRM_DEBUG_KMS("FDI train done.\n");
3635 }
3636
3637 /* Manual link training for Ivy Bridge A0 parts */
3638 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3639 {
3640         struct drm_device *dev = crtc->dev;
3641         struct drm_i915_private *dev_priv = dev->dev_private;
3642         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3643         int pipe = intel_crtc->pipe;
3644         i915_reg_t reg;
3645         u32 temp, i, j;
3646
3647         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3648            for train result */
3649         reg = FDI_RX_IMR(pipe);
3650         temp = I915_READ(reg);
3651         temp &= ~FDI_RX_SYMBOL_LOCK;
3652         temp &= ~FDI_RX_BIT_LOCK;
3653         I915_WRITE(reg, temp);
3654
3655         POSTING_READ(reg);
3656         udelay(150);
3657
3658         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3659                       I915_READ(FDI_RX_IIR(pipe)));
3660
3661         /* Try each vswing and preemphasis setting twice before moving on */
3662         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3663                 /* disable first in case we need to retry */
3664                 reg = FDI_TX_CTL(pipe);
3665                 temp = I915_READ(reg);
3666                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3667                 temp &= ~FDI_TX_ENABLE;
3668                 I915_WRITE(reg, temp);
3669
3670                 reg = FDI_RX_CTL(pipe);
3671                 temp = I915_READ(reg);
3672                 temp &= ~FDI_LINK_TRAIN_AUTO;
3673                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3674                 temp &= ~FDI_RX_ENABLE;
3675                 I915_WRITE(reg, temp);
3676
3677                 /* enable CPU FDI TX and PCH FDI RX */
3678                 reg = FDI_TX_CTL(pipe);
3679                 temp = I915_READ(reg);
3680                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3681                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3682                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3683                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3684                 temp |= snb_b_fdi_train_param[j/2];
3685                 temp |= FDI_COMPOSITE_SYNC;
3686                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3687
3688                 I915_WRITE(FDI_RX_MISC(pipe),
3689                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3690
3691                 reg = FDI_RX_CTL(pipe);
3692                 temp = I915_READ(reg);
3693                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3694                 temp |= FDI_COMPOSITE_SYNC;
3695                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3696
3697                 POSTING_READ(reg);
3698                 udelay(1); /* should be 0.5us */
3699
3700                 for (i = 0; i < 4; i++) {
3701                         reg = FDI_RX_IIR(pipe);
3702                         temp = I915_READ(reg);
3703                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3704
3705                         if (temp & FDI_RX_BIT_LOCK ||
3706                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3707                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3708                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3709                                               i);
3710                                 break;
3711                         }
3712                         udelay(1); /* should be 0.5us */
3713                 }
3714                 if (i == 4) {
3715                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3716                         continue;
3717                 }
3718
3719                 /* Train 2 */
3720                 reg = FDI_TX_CTL(pipe);
3721                 temp = I915_READ(reg);
3722                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3723                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3724                 I915_WRITE(reg, temp);
3725
3726                 reg = FDI_RX_CTL(pipe);
3727                 temp = I915_READ(reg);
3728                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3729                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3730                 I915_WRITE(reg, temp);
3731
3732                 POSTING_READ(reg);
3733                 udelay(2); /* should be 1.5us */
3734
3735                 for (i = 0; i < 4; i++) {
3736                         reg = FDI_RX_IIR(pipe);
3737                         temp = I915_READ(reg);
3738                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3739
3740                         if (temp & FDI_RX_SYMBOL_LOCK ||
3741                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3742                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3743                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3744                                               i);
3745                                 goto train_done;
3746                         }
3747                         udelay(2); /* should be 1.5us */
3748                 }
3749                 if (i == 4)
3750                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3751         }
3752
3753 train_done:
3754         DRM_DEBUG_KMS("FDI train done.\n");
3755 }
3756
3757 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3758 {
3759         struct drm_device *dev = intel_crtc->base.dev;
3760         struct drm_i915_private *dev_priv = dev->dev_private;
3761         int pipe = intel_crtc->pipe;
3762         i915_reg_t reg;
3763         u32 temp;
3764
3765         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3766         reg = FDI_RX_CTL(pipe);
3767         temp = I915_READ(reg);
3768         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3769         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3770         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3771         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3772
3773         POSTING_READ(reg);
3774         udelay(200);
3775
3776         /* Switch from Rawclk to PCDclk */
3777         temp = I915_READ(reg);
3778         I915_WRITE(reg, temp | FDI_PCDCLK);
3779
3780         POSTING_READ(reg);
3781         udelay(200);
3782
3783         /* Enable CPU FDI TX PLL, always on for Ironlake */
3784         reg = FDI_TX_CTL(pipe);
3785         temp = I915_READ(reg);
3786         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3787                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3788
3789                 POSTING_READ(reg);
3790                 udelay(100);
3791         }
3792 }
3793
3794 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3795 {
3796         struct drm_device *dev = intel_crtc->base.dev;
3797         struct drm_i915_private *dev_priv = dev->dev_private;
3798         int pipe = intel_crtc->pipe;
3799         i915_reg_t reg;
3800         u32 temp;
3801
3802         /* Switch from PCDclk to Rawclk */
3803         reg = FDI_RX_CTL(pipe);
3804         temp = I915_READ(reg);
3805         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3806
3807         /* Disable CPU FDI TX PLL */
3808         reg = FDI_TX_CTL(pipe);
3809         temp = I915_READ(reg);
3810         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3811
3812         POSTING_READ(reg);
3813         udelay(100);
3814
3815         reg = FDI_RX_CTL(pipe);
3816         temp = I915_READ(reg);
3817         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3818
3819         /* Wait for the clocks to turn off. */
3820         POSTING_READ(reg);
3821         udelay(100);
3822 }
3823
3824 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3825 {
3826         struct drm_device *dev = crtc->dev;
3827         struct drm_i915_private *dev_priv = dev->dev_private;
3828         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3829         int pipe = intel_crtc->pipe;
3830         i915_reg_t reg;
3831         u32 temp;
3832
3833         /* disable CPU FDI tx and PCH FDI rx */
3834         reg = FDI_TX_CTL(pipe);
3835         temp = I915_READ(reg);
3836         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3837         POSTING_READ(reg);
3838
3839         reg = FDI_RX_CTL(pipe);
3840         temp = I915_READ(reg);
3841         temp &= ~(0x7 << 16);
3842         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3843         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3844
3845         POSTING_READ(reg);
3846         udelay(100);
3847
3848         /* Ironlake workaround, disable clock pointer after downing FDI */
3849         if (HAS_PCH_IBX(dev))
3850                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3851
3852         /* still set train pattern 1 */
3853         reg = FDI_TX_CTL(pipe);
3854         temp = I915_READ(reg);
3855         temp &= ~FDI_LINK_TRAIN_NONE;
3856         temp |= FDI_LINK_TRAIN_PATTERN_1;
3857         I915_WRITE(reg, temp);
3858
3859         reg = FDI_RX_CTL(pipe);
3860         temp = I915_READ(reg);
3861         if (HAS_PCH_CPT(dev)) {
3862                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3863                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3864         } else {
3865                 temp &= ~FDI_LINK_TRAIN_NONE;
3866                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3867         }
3868         /* BPC in FDI rx is consistent with that in PIPECONF */
3869         temp &= ~(0x07 << 16);
3870         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3871         I915_WRITE(reg, temp);
3872
3873         POSTING_READ(reg);
3874         udelay(100);
3875 }
3876
3877 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3878 {
3879         struct intel_crtc *crtc;
3880
3881         /* Note that we don't need to be called with mode_config.lock here
3882          * as our list of CRTC objects is static for the lifetime of the
3883          * device and so cannot disappear as we iterate. Similarly, we can
3884          * happily treat the predicates as racy, atomic checks as userspace
3885          * cannot claim and pin a new fb without at least acquring the
3886          * struct_mutex and so serialising with us.
3887          */
3888         for_each_intel_crtc(dev, crtc) {
3889                 if (atomic_read(&crtc->unpin_work_count) == 0)
3890                         continue;
3891
3892                 if (crtc->unpin_work)
3893                         intel_wait_for_vblank(dev, crtc->pipe);
3894
3895                 return true;
3896         }
3897
3898         return false;
3899 }
3900
3901 static void page_flip_completed(struct intel_crtc *intel_crtc)
3902 {
3903         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3904         struct intel_unpin_work *work = intel_crtc->unpin_work;
3905
3906         /* ensure that the unpin work is consistent wrt ->pending. */
3907         smp_rmb();
3908         intel_crtc->unpin_work = NULL;
3909
3910         if (work->event)
3911                 drm_send_vblank_event(intel_crtc->base.dev,
3912                                       intel_crtc->pipe,
3913                                       work->event);
3914
3915         drm_crtc_vblank_put(&intel_crtc->base);
3916
3917         wake_up_all(&dev_priv->pending_flip_queue);
3918         queue_work(dev_priv->wq, &work->work);
3919
3920         trace_i915_flip_complete(intel_crtc->plane,
3921                                  work->pending_flip_obj);
3922 }
3923
3924 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3925 {
3926         struct drm_device *dev = crtc->dev;
3927         struct drm_i915_private *dev_priv = dev->dev_private;
3928         long ret;
3929
3930         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3931
3932         ret = wait_event_interruptible_timeout(
3933                                         dev_priv->pending_flip_queue,
3934                                         !intel_crtc_has_pending_flip(crtc),
3935                                         60*HZ);
3936
3937         if (ret < 0)
3938                 return ret;
3939
3940         if (ret == 0) {
3941                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3942
3943                 spin_lock_irq(&dev->event_lock);
3944                 if (intel_crtc->unpin_work) {
3945                         WARN_ONCE(1, "Removing stuck page flip\n");
3946                         page_flip_completed(intel_crtc);
3947                 }
3948                 spin_unlock_irq(&dev->event_lock);
3949         }
3950
3951         return 0;
3952 }
3953
3954 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3955 {
3956         u32 temp;
3957
3958         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3959
3960         mutex_lock(&dev_priv->sb_lock);
3961
3962         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3963         temp |= SBI_SSCCTL_DISABLE;
3964         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3965
3966         mutex_unlock(&dev_priv->sb_lock);
3967 }
3968
3969 /* Program iCLKIP clock to the desired frequency */
3970 static void lpt_program_iclkip(struct drm_crtc *crtc)
3971 {
3972         struct drm_device *dev = crtc->dev;
3973         struct drm_i915_private *dev_priv = dev->dev_private;
3974         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3975         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3976         u32 temp;
3977
3978         lpt_disable_iclkip(dev_priv);
3979
3980         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3981         if (clock == 20000) {
3982                 auxdiv = 1;
3983                 divsel = 0x41;
3984                 phaseinc = 0x20;
3985         } else {
3986                 /* The iCLK virtual clock root frequency is in MHz,
3987                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3988                  * divisors, it is necessary to divide one by another, so we
3989                  * convert the virtual clock precision to KHz here for higher
3990                  * precision.
3991                  */
3992                 u32 iclk_virtual_root_freq = 172800 * 1000;
3993                 u32 iclk_pi_range = 64;
3994                 u32 desired_divisor, msb_divisor_value, pi_value;
3995
3996                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, clock);
3997                 msb_divisor_value = desired_divisor / iclk_pi_range;
3998                 pi_value = desired_divisor % iclk_pi_range;
3999
4000                 auxdiv = 0;
4001                 divsel = msb_divisor_value - 2;
4002                 phaseinc = pi_value;
4003         }
4004
4005         /* This should not happen with any sane values */
4006         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4007                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4008         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4009                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4010
4011         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4012                         clock,
4013                         auxdiv,
4014                         divsel,
4015                         phasedir,
4016                         phaseinc);
4017
4018         mutex_lock(&dev_priv->sb_lock);
4019
4020         /* Program SSCDIVINTPHASE6 */
4021         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4022         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4023         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4024         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4025         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4026         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4027         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4028         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4029
4030         /* Program SSCAUXDIV */
4031         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4032         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4033         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4034         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4035
4036         /* Enable modulator and associated divider */
4037         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4038         temp &= ~SBI_SSCCTL_DISABLE;
4039         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4040
4041         mutex_unlock(&dev_priv->sb_lock);
4042
4043         /* Wait for initialization time */
4044         udelay(24);
4045
4046         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4047 }
4048
4049 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4050                                                 enum pipe pch_transcoder)
4051 {
4052         struct drm_device *dev = crtc->base.dev;
4053         struct drm_i915_private *dev_priv = dev->dev_private;
4054         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4055
4056         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4057                    I915_READ(HTOTAL(cpu_transcoder)));
4058         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4059                    I915_READ(HBLANK(cpu_transcoder)));
4060         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4061                    I915_READ(HSYNC(cpu_transcoder)));
4062
4063         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4064                    I915_READ(VTOTAL(cpu_transcoder)));
4065         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4066                    I915_READ(VBLANK(cpu_transcoder)));
4067         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4068                    I915_READ(VSYNC(cpu_transcoder)));
4069         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4070                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4071 }
4072
4073 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4074 {
4075         struct drm_i915_private *dev_priv = dev->dev_private;
4076         uint32_t temp;
4077
4078         temp = I915_READ(SOUTH_CHICKEN1);
4079         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4080                 return;
4081
4082         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4083         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4084
4085         temp &= ~FDI_BC_BIFURCATION_SELECT;
4086         if (enable)
4087                 temp |= FDI_BC_BIFURCATION_SELECT;
4088
4089         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4090         I915_WRITE(SOUTH_CHICKEN1, temp);
4091         POSTING_READ(SOUTH_CHICKEN1);
4092 }
4093
4094 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4095 {
4096         struct drm_device *dev = intel_crtc->base.dev;
4097
4098         switch (intel_crtc->pipe) {
4099         case PIPE_A:
4100                 break;
4101         case PIPE_B:
4102                 if (intel_crtc->config->fdi_lanes > 2)
4103                         cpt_set_fdi_bc_bifurcation(dev, false);
4104                 else
4105                         cpt_set_fdi_bc_bifurcation(dev, true);
4106
4107                 break;
4108         case PIPE_C:
4109                 cpt_set_fdi_bc_bifurcation(dev, true);
4110
4111                 break;
4112         default:
4113                 BUG();
4114         }
4115 }
4116
4117 /* Return which DP Port should be selected for Transcoder DP control */
4118 static enum port
4119 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4120 {
4121         struct drm_device *dev = crtc->dev;
4122         struct intel_encoder *encoder;
4123
4124         for_each_encoder_on_crtc(dev, crtc, encoder) {
4125                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4126                     encoder->type == INTEL_OUTPUT_EDP)
4127                         return enc_to_dig_port(&encoder->base)->port;
4128         }
4129
4130         return -1;
4131 }
4132
4133 /*
4134  * Enable PCH resources required for PCH ports:
4135  *   - PCH PLLs
4136  *   - FDI training & RX/TX
4137  *   - update transcoder timings
4138  *   - DP transcoding bits
4139  *   - transcoder
4140  */
4141 static void ironlake_pch_enable(struct drm_crtc *crtc)
4142 {
4143         struct drm_device *dev = crtc->dev;
4144         struct drm_i915_private *dev_priv = dev->dev_private;
4145         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4146         int pipe = intel_crtc->pipe;
4147         u32 temp;
4148
4149         assert_pch_transcoder_disabled(dev_priv, pipe);
4150
4151         if (IS_IVYBRIDGE(dev))
4152                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4153
4154         /* Write the TU size bits before fdi link training, so that error
4155          * detection works. */
4156         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4157                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4158
4159         /*
4160          * Sometimes spurious CPU pipe underruns happen during FDI
4161          * training, at least with VGA+HDMI cloning. Suppress them.
4162          */
4163         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4164
4165         /* For PCH output, training FDI link */
4166         dev_priv->display.fdi_link_train(crtc);
4167
4168         /* We need to program the right clock selection before writing the pixel
4169          * mutliplier into the DPLL. */
4170         if (HAS_PCH_CPT(dev)) {
4171                 u32 sel;
4172
4173                 temp = I915_READ(PCH_DPLL_SEL);
4174                 temp |= TRANS_DPLL_ENABLE(pipe);
4175                 sel = TRANS_DPLLB_SEL(pipe);
4176                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4177                         temp |= sel;
4178                 else
4179                         temp &= ~sel;
4180                 I915_WRITE(PCH_DPLL_SEL, temp);
4181         }
4182
4183         /* XXX: pch pll's can be enabled any time before we enable the PCH
4184          * transcoder, and we actually should do this to not upset any PCH
4185          * transcoder that already use the clock when we share it.
4186          *
4187          * Note that enable_shared_dpll tries to do the right thing, but
4188          * get_shared_dpll unconditionally resets the pll - we need that to have
4189          * the right LVDS enable sequence. */
4190         intel_enable_shared_dpll(intel_crtc);
4191
4192         /* set transcoder timing, panel must allow it */
4193         assert_panel_unlocked(dev_priv, pipe);
4194         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4195
4196         intel_fdi_normal_train(crtc);
4197
4198         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4199
4200         /* For PCH DP, enable TRANS_DP_CTL */
4201         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4202                 const struct drm_display_mode *adjusted_mode =
4203                         &intel_crtc->config->base.adjusted_mode;
4204                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4205                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4206                 temp = I915_READ(reg);
4207                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4208                           TRANS_DP_SYNC_MASK |
4209                           TRANS_DP_BPC_MASK);
4210                 temp |= TRANS_DP_OUTPUT_ENABLE;
4211                 temp |= bpc << 9; /* same format but at 11:9 */
4212
4213                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4214                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4215                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4216                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4217
4218                 switch (intel_trans_dp_port_sel(crtc)) {
4219                 case PORT_B:
4220                         temp |= TRANS_DP_PORT_SEL_B;
4221                         break;
4222                 case PORT_C:
4223                         temp |= TRANS_DP_PORT_SEL_C;
4224                         break;
4225                 case PORT_D:
4226                         temp |= TRANS_DP_PORT_SEL_D;
4227                         break;
4228                 default:
4229                         BUG();
4230                 }
4231
4232                 I915_WRITE(reg, temp);
4233         }
4234
4235         ironlake_enable_pch_transcoder(dev_priv, pipe);
4236 }
4237
4238 static void lpt_pch_enable(struct drm_crtc *crtc)
4239 {
4240         struct drm_device *dev = crtc->dev;
4241         struct drm_i915_private *dev_priv = dev->dev_private;
4242         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4243         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4244
4245         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4246
4247         lpt_program_iclkip(crtc);
4248
4249         /* Set transcoder timing. */
4250         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4251
4252         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4253 }
4254
4255 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4256                                                 struct intel_crtc_state *crtc_state)
4257 {
4258         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4259         struct intel_shared_dpll *pll;
4260         struct intel_shared_dpll_config *shared_dpll;
4261         enum intel_dpll_id i;
4262         int max = dev_priv->num_shared_dpll;
4263
4264         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4265
4266         if (HAS_PCH_IBX(dev_priv->dev)) {
4267                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4268                 i = (enum intel_dpll_id) crtc->pipe;
4269                 pll = &dev_priv->shared_dplls[i];
4270
4271                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4272                               crtc->base.base.id, pll->name);
4273
4274                 WARN_ON(shared_dpll[i].crtc_mask);
4275
4276                 goto found;
4277         }
4278
4279         if (IS_BROXTON(dev_priv->dev)) {
4280                 /* PLL is attached to port in bxt */
4281                 struct intel_encoder *encoder;
4282                 struct intel_digital_port *intel_dig_port;
4283
4284                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4285                 if (WARN_ON(!encoder))
4286                         return NULL;
4287
4288                 intel_dig_port = enc_to_dig_port(&encoder->base);
4289                 /* 1:1 mapping between ports and PLLs */
4290                 i = (enum intel_dpll_id)intel_dig_port->port;
4291                 pll = &dev_priv->shared_dplls[i];
4292                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4293                         crtc->base.base.id, pll->name);
4294                 WARN_ON(shared_dpll[i].crtc_mask);
4295
4296                 goto found;
4297         } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4298                 /* Do not consider SPLL */
4299                 max = 2;
4300
4301         for (i = 0; i < max; i++) {
4302                 pll = &dev_priv->shared_dplls[i];
4303
4304                 /* Only want to check enabled timings first */
4305                 if (shared_dpll[i].crtc_mask == 0)
4306                         continue;
4307
4308                 if (memcmp(&crtc_state->dpll_hw_state,
4309                            &shared_dpll[i].hw_state,
4310                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4311                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4312                                       crtc->base.base.id, pll->name,
4313                                       shared_dpll[i].crtc_mask,
4314                                       pll->active);
4315                         goto found;
4316                 }
4317         }
4318
4319         /* Ok no matching timings, maybe there's a free one? */
4320         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4321                 pll = &dev_priv->shared_dplls[i];
4322                 if (shared_dpll[i].crtc_mask == 0) {
4323                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4324                                       crtc->base.base.id, pll->name);
4325                         goto found;
4326                 }
4327         }
4328
4329         return NULL;
4330
4331 found:
4332         if (shared_dpll[i].crtc_mask == 0)
4333                 shared_dpll[i].hw_state =
4334                         crtc_state->dpll_hw_state;
4335
4336         crtc_state->shared_dpll = i;
4337         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4338                          pipe_name(crtc->pipe));
4339
4340         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4341
4342         return pll;
4343 }
4344
4345 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4346 {
4347         struct drm_i915_private *dev_priv = to_i915(state->dev);
4348         struct intel_shared_dpll_config *shared_dpll;
4349         struct intel_shared_dpll *pll;
4350         enum intel_dpll_id i;
4351
4352         if (!to_intel_atomic_state(state)->dpll_set)
4353                 return;
4354
4355         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4356         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4357                 pll = &dev_priv->shared_dplls[i];
4358                 pll->config = shared_dpll[i];
4359         }
4360 }
4361
4362 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4363 {
4364         struct drm_i915_private *dev_priv = dev->dev_private;
4365         i915_reg_t dslreg = PIPEDSL(pipe);
4366         u32 temp;
4367
4368         temp = I915_READ(dslreg);
4369         udelay(500);
4370         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4371                 if (wait_for(I915_READ(dslreg) != temp, 5))
4372                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4373         }
4374 }
4375
4376 static int
4377 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4378                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4379                   int src_w, int src_h, int dst_w, int dst_h)
4380 {
4381         struct intel_crtc_scaler_state *scaler_state =
4382                 &crtc_state->scaler_state;
4383         struct intel_crtc *intel_crtc =
4384                 to_intel_crtc(crtc_state->base.crtc);
4385         int need_scaling;
4386
4387         need_scaling = intel_rotation_90_or_270(rotation) ?
4388                 (src_h != dst_w || src_w != dst_h):
4389                 (src_w != dst_w || src_h != dst_h);
4390
4391         /*
4392          * if plane is being disabled or scaler is no more required or force detach
4393          *  - free scaler binded to this plane/crtc
4394          *  - in order to do this, update crtc->scaler_usage
4395          *
4396          * Here scaler state in crtc_state is set free so that
4397          * scaler can be assigned to other user. Actual register
4398          * update to free the scaler is done in plane/panel-fit programming.
4399          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4400          */
4401         if (force_detach || !need_scaling) {
4402                 if (*scaler_id >= 0) {
4403                         scaler_state->scaler_users &= ~(1 << scaler_user);
4404                         scaler_state->scalers[*scaler_id].in_use = 0;
4405
4406                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4407                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4408                                 intel_crtc->pipe, scaler_user, *scaler_id,
4409                                 scaler_state->scaler_users);
4410                         *scaler_id = -1;
4411                 }
4412                 return 0;
4413         }
4414
4415         /* range checks */
4416         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4417                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4418
4419                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4420                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4421                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4422                         "size is out of scaler range\n",
4423                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4424                 return -EINVAL;
4425         }
4426
4427         /* mark this plane as a scaler user in crtc_state */
4428         scaler_state->scaler_users |= (1 << scaler_user);
4429         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4430                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4431                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4432                 scaler_state->scaler_users);
4433
4434         return 0;
4435 }
4436
4437 /**
4438  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4439  *
4440  * @state: crtc's scaler state
4441  *
4442  * Return
4443  *     0 - scaler_usage updated successfully
4444  *    error - requested scaling cannot be supported or other error condition
4445  */
4446 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4447 {
4448         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4449         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4450
4451         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4452                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4453
4454         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4455                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4456                 state->pipe_src_w, state->pipe_src_h,
4457                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4458 }
4459
4460 /**
4461  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4462  *
4463  * @state: crtc's scaler state
4464  * @plane_state: atomic plane state to update
4465  *
4466  * Return
4467  *     0 - scaler_usage updated successfully
4468  *    error - requested scaling cannot be supported or other error condition
4469  */
4470 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4471                                    struct intel_plane_state *plane_state)
4472 {
4473
4474         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4475         struct intel_plane *intel_plane =
4476                 to_intel_plane(plane_state->base.plane);
4477         struct drm_framebuffer *fb = plane_state->base.fb;
4478         int ret;
4479
4480         bool force_detach = !fb || !plane_state->visible;
4481
4482         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4483                       intel_plane->base.base.id, intel_crtc->pipe,
4484                       drm_plane_index(&intel_plane->base));
4485
4486         ret = skl_update_scaler(crtc_state, force_detach,
4487                                 drm_plane_index(&intel_plane->base),
4488                                 &plane_state->scaler_id,
4489                                 plane_state->base.rotation,
4490                                 drm_rect_width(&plane_state->src) >> 16,
4491                                 drm_rect_height(&plane_state->src) >> 16,
4492                                 drm_rect_width(&plane_state->dst),
4493                                 drm_rect_height(&plane_state->dst));
4494
4495         if (ret || plane_state->scaler_id < 0)
4496                 return ret;
4497
4498         /* check colorkey */
4499         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4500                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4501                               intel_plane->base.base.id);
4502                 return -EINVAL;
4503         }
4504
4505         /* Check src format */
4506         switch (fb->pixel_format) {
4507         case DRM_FORMAT_RGB565:
4508         case DRM_FORMAT_XBGR8888:
4509         case DRM_FORMAT_XRGB8888:
4510         case DRM_FORMAT_ABGR8888:
4511         case DRM_FORMAT_ARGB8888:
4512         case DRM_FORMAT_XRGB2101010:
4513         case DRM_FORMAT_XBGR2101010:
4514         case DRM_FORMAT_YUYV:
4515         case DRM_FORMAT_YVYU:
4516         case DRM_FORMAT_UYVY:
4517         case DRM_FORMAT_VYUY:
4518                 break;
4519         default:
4520                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4521                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4522                 return -EINVAL;
4523         }
4524
4525         return 0;
4526 }
4527
4528 static void skylake_scaler_disable(struct intel_crtc *crtc)
4529 {
4530         int i;
4531
4532         for (i = 0; i < crtc->num_scalers; i++)
4533                 skl_detach_scaler(crtc, i);
4534 }
4535
4536 static void skylake_pfit_enable(struct intel_crtc *crtc)
4537 {
4538         struct drm_device *dev = crtc->base.dev;
4539         struct drm_i915_private *dev_priv = dev->dev_private;
4540         int pipe = crtc->pipe;
4541         struct intel_crtc_scaler_state *scaler_state =
4542                 &crtc->config->scaler_state;
4543
4544         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4545
4546         if (crtc->config->pch_pfit.enabled) {
4547                 int id;
4548
4549                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4550                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4551                         return;
4552                 }
4553
4554                 id = scaler_state->scaler_id;
4555                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4556                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4557                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4558                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4559
4560                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4561         }
4562 }
4563
4564 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4565 {
4566         struct drm_device *dev = crtc->base.dev;
4567         struct drm_i915_private *dev_priv = dev->dev_private;
4568         int pipe = crtc->pipe;
4569
4570         if (crtc->config->pch_pfit.enabled) {
4571                 /* Force use of hard-coded filter coefficients
4572                  * as some pre-programmed values are broken,
4573                  * e.g. x201.
4574                  */
4575                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4576                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4577                                                  PF_PIPE_SEL_IVB(pipe));
4578                 else
4579                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4580                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4581                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4582         }
4583 }
4584
4585 void hsw_enable_ips(struct intel_crtc *crtc)
4586 {
4587         struct drm_device *dev = crtc->base.dev;
4588         struct drm_i915_private *dev_priv = dev->dev_private;
4589
4590         if (!crtc->config->ips_enabled)
4591                 return;
4592
4593         /* We can only enable IPS after we enable a plane and wait for a vblank */
4594         intel_wait_for_vblank(dev, crtc->pipe);
4595
4596         assert_plane_enabled(dev_priv, crtc->plane);
4597         if (IS_BROADWELL(dev)) {
4598                 mutex_lock(&dev_priv->rps.hw_lock);
4599                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4600                 mutex_unlock(&dev_priv->rps.hw_lock);
4601                 /* Quoting Art Runyan: "its not safe to expect any particular
4602                  * value in IPS_CTL bit 31 after enabling IPS through the
4603                  * mailbox." Moreover, the mailbox may return a bogus state,
4604                  * so we need to just enable it and continue on.
4605                  */
4606         } else {
4607                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4608                 /* The bit only becomes 1 in the next vblank, so this wait here
4609                  * is essentially intel_wait_for_vblank. If we don't have this
4610                  * and don't wait for vblanks until the end of crtc_enable, then
4611                  * the HW state readout code will complain that the expected
4612                  * IPS_CTL value is not the one we read. */
4613                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4614                         DRM_ERROR("Timed out waiting for IPS enable\n");
4615         }
4616 }
4617
4618 void hsw_disable_ips(struct intel_crtc *crtc)
4619 {
4620         struct drm_device *dev = crtc->base.dev;
4621         struct drm_i915_private *dev_priv = dev->dev_private;
4622
4623         if (!crtc->config->ips_enabled)
4624                 return;
4625
4626         assert_plane_enabled(dev_priv, crtc->plane);
4627         if (IS_BROADWELL(dev)) {
4628                 mutex_lock(&dev_priv->rps.hw_lock);
4629                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4630                 mutex_unlock(&dev_priv->rps.hw_lock);
4631                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4632                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4633                         DRM_ERROR("Timed out waiting for IPS disable\n");
4634         } else {
4635                 I915_WRITE(IPS_CTL, 0);
4636                 POSTING_READ(IPS_CTL);
4637         }
4638
4639         /* We need to wait for a vblank before we can disable the plane. */
4640         intel_wait_for_vblank(dev, crtc->pipe);
4641 }
4642
4643 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4644 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4645 {
4646         struct drm_device *dev = crtc->dev;
4647         struct drm_i915_private *dev_priv = dev->dev_private;
4648         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4649         enum pipe pipe = intel_crtc->pipe;
4650         int i;
4651         bool reenable_ips = false;
4652
4653         /* The clocks have to be on to load the palette. */
4654         if (!crtc->state->active)
4655                 return;
4656
4657         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4658                 if (intel_crtc->config->has_dsi_encoder)
4659                         assert_dsi_pll_enabled(dev_priv);
4660                 else
4661                         assert_pll_enabled(dev_priv, pipe);
4662         }
4663
4664         /* Workaround : Do not read or write the pipe palette/gamma data while
4665          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4666          */
4667         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4668             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4669              GAMMA_MODE_MODE_SPLIT)) {
4670                 hsw_disable_ips(intel_crtc);
4671                 reenable_ips = true;
4672         }
4673
4674         for (i = 0; i < 256; i++) {
4675                 i915_reg_t palreg;
4676
4677                 if (HAS_GMCH_DISPLAY(dev))
4678                         palreg = PALETTE(pipe, i);
4679                 else
4680                         palreg = LGC_PALETTE(pipe, i);
4681
4682                 I915_WRITE(palreg,
4683                            (intel_crtc->lut_r[i] << 16) |
4684                            (intel_crtc->lut_g[i] << 8) |
4685                            intel_crtc->lut_b[i]);
4686         }
4687
4688         if (reenable_ips)
4689                 hsw_enable_ips(intel_crtc);
4690 }
4691
4692 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4693 {
4694         if (intel_crtc->overlay) {
4695                 struct drm_device *dev = intel_crtc->base.dev;
4696                 struct drm_i915_private *dev_priv = dev->dev_private;
4697
4698                 mutex_lock(&dev->struct_mutex);
4699                 dev_priv->mm.interruptible = false;
4700                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4701                 dev_priv->mm.interruptible = true;
4702                 mutex_unlock(&dev->struct_mutex);
4703         }
4704
4705         /* Let userspace switch the overlay on again. In most cases userspace
4706          * has to recompute where to put it anyway.
4707          */
4708 }
4709
4710 /**
4711  * intel_post_enable_primary - Perform operations after enabling primary plane
4712  * @crtc: the CRTC whose primary plane was just enabled
4713  *
4714  * Performs potentially sleeping operations that must be done after the primary
4715  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4716  * called due to an explicit primary plane update, or due to an implicit
4717  * re-enable that is caused when a sprite plane is updated to no longer
4718  * completely hide the primary plane.
4719  */
4720 static void
4721 intel_post_enable_primary(struct drm_crtc *crtc)
4722 {
4723         struct drm_device *dev = crtc->dev;
4724         struct drm_i915_private *dev_priv = dev->dev_private;
4725         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4726         int pipe = intel_crtc->pipe;
4727
4728         /*
4729          * FIXME IPS should be fine as long as one plane is
4730          * enabled, but in practice it seems to have problems
4731          * when going from primary only to sprite only and vice
4732          * versa.
4733          */
4734         hsw_enable_ips(intel_crtc);
4735
4736         /*
4737          * Gen2 reports pipe underruns whenever all planes are disabled.
4738          * So don't enable underrun reporting before at least some planes
4739          * are enabled.
4740          * FIXME: Need to fix the logic to work when we turn off all planes
4741          * but leave the pipe running.
4742          */
4743         if (IS_GEN2(dev))
4744                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4745
4746         /* Underruns don't always raise interrupts, so check manually. */
4747         intel_check_cpu_fifo_underruns(dev_priv);
4748         intel_check_pch_fifo_underruns(dev_priv);
4749 }
4750
4751 /**
4752  * intel_pre_disable_primary - Perform operations before disabling primary plane
4753  * @crtc: the CRTC whose primary plane is to be disabled
4754  *
4755  * Performs potentially sleeping operations that must be done before the
4756  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4757  * be called due to an explicit primary plane update, or due to an implicit
4758  * disable that is caused when a sprite plane completely hides the primary
4759  * plane.
4760  */
4761 static void
4762 intel_pre_disable_primary(struct drm_crtc *crtc)
4763 {
4764         struct drm_device *dev = crtc->dev;
4765         struct drm_i915_private *dev_priv = dev->dev_private;
4766         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4767         int pipe = intel_crtc->pipe;
4768
4769         /*
4770          * Gen2 reports pipe underruns whenever all planes are disabled.
4771          * So diasble underrun reporting before all the planes get disabled.
4772          * FIXME: Need to fix the logic to work when we turn off all planes
4773          * but leave the pipe running.
4774          */
4775         if (IS_GEN2(dev))
4776                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4777
4778         /*
4779          * Vblank time updates from the shadow to live plane control register
4780          * are blocked if the memory self-refresh mode is active at that
4781          * moment. So to make sure the plane gets truly disabled, disable
4782          * first the self-refresh mode. The self-refresh enable bit in turn
4783          * will be checked/applied by the HW only at the next frame start
4784          * event which is after the vblank start event, so we need to have a
4785          * wait-for-vblank between disabling the plane and the pipe.
4786          */
4787         if (HAS_GMCH_DISPLAY(dev)) {
4788                 intel_set_memory_cxsr(dev_priv, false);
4789                 dev_priv->wm.vlv.cxsr = false;
4790                 intel_wait_for_vblank(dev, pipe);
4791         }
4792
4793         /*
4794          * FIXME IPS should be fine as long as one plane is
4795          * enabled, but in practice it seems to have problems
4796          * when going from primary only to sprite only and vice
4797          * versa.
4798          */
4799         hsw_disable_ips(intel_crtc);
4800 }
4801
4802 static void intel_post_plane_update(struct intel_crtc *crtc)
4803 {
4804         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4805         struct intel_crtc_state *pipe_config =
4806                 to_intel_crtc_state(crtc->base.state);
4807         struct drm_device *dev = crtc->base.dev;
4808
4809         if (atomic->wait_vblank)
4810                 intel_wait_for_vblank(dev, crtc->pipe);
4811
4812         intel_frontbuffer_flip(dev, atomic->fb_bits);
4813
4814         crtc->wm.cxsr_allowed = true;
4815
4816         if (pipe_config->wm_changed && pipe_config->base.active)
4817                 intel_update_watermarks(&crtc->base);
4818
4819         if (atomic->update_fbc)
4820                 intel_fbc_update(crtc);
4821
4822         if (atomic->post_enable_primary)
4823                 intel_post_enable_primary(&crtc->base);
4824
4825         memset(atomic, 0, sizeof(*atomic));
4826 }
4827
4828 static void intel_pre_plane_update(struct intel_crtc *crtc)
4829 {
4830         struct drm_device *dev = crtc->base.dev;
4831         struct drm_i915_private *dev_priv = dev->dev_private;
4832         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4833         struct intel_crtc_state *pipe_config =
4834                 to_intel_crtc_state(crtc->base.state);
4835
4836         if (atomic->disable_fbc)
4837                 intel_fbc_deactivate(crtc);
4838
4839         if (crtc->atomic.disable_ips)
4840                 hsw_disable_ips(crtc);
4841
4842         if (atomic->pre_disable_primary)
4843                 intel_pre_disable_primary(&crtc->base);
4844
4845         if (pipe_config->disable_cxsr) {
4846                 crtc->wm.cxsr_allowed = false;
4847                 intel_set_memory_cxsr(dev_priv, false);
4848         }
4849
4850         if (!needs_modeset(&pipe_config->base) && pipe_config->wm_changed)
4851                 intel_update_watermarks(&crtc->base);
4852 }
4853
4854 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4855 {
4856         struct drm_device *dev = crtc->dev;
4857         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4858         struct drm_plane *p;
4859         int pipe = intel_crtc->pipe;
4860
4861         intel_crtc_dpms_overlay_disable(intel_crtc);
4862
4863         drm_for_each_plane_mask(p, dev, plane_mask)
4864                 to_intel_plane(p)->disable_plane(p, crtc);
4865
4866         /*
4867          * FIXME: Once we grow proper nuclear flip support out of this we need
4868          * to compute the mask of flip planes precisely. For the time being
4869          * consider this a flip to a NULL plane.
4870          */
4871         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4872 }
4873
4874 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4875 {
4876         struct drm_device *dev = crtc->dev;
4877         struct drm_i915_private *dev_priv = dev->dev_private;
4878         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4879         struct intel_encoder *encoder;
4880         int pipe = intel_crtc->pipe;
4881
4882         if (WARN_ON(intel_crtc->active))
4883                 return;
4884
4885         if (intel_crtc->config->has_pch_encoder)
4886                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4887
4888         if (intel_crtc->config->has_pch_encoder)
4889                 intel_prepare_shared_dpll(intel_crtc);
4890
4891         if (intel_crtc->config->has_dp_encoder)
4892                 intel_dp_set_m_n(intel_crtc, M1_N1);
4893
4894         intel_set_pipe_timings(intel_crtc);
4895
4896         if (intel_crtc->config->has_pch_encoder) {
4897                 intel_cpu_transcoder_set_m_n(intel_crtc,
4898                                      &intel_crtc->config->fdi_m_n, NULL);
4899         }
4900
4901         ironlake_set_pipeconf(crtc);
4902
4903         intel_crtc->active = true;
4904
4905         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4906
4907         for_each_encoder_on_crtc(dev, crtc, encoder)
4908                 if (encoder->pre_enable)
4909                         encoder->pre_enable(encoder);
4910
4911         if (intel_crtc->config->has_pch_encoder) {
4912                 /* Note: FDI PLL enabling _must_ be done before we enable the
4913                  * cpu pipes, hence this is separate from all the other fdi/pch
4914                  * enabling. */
4915                 ironlake_fdi_pll_enable(intel_crtc);
4916         } else {
4917                 assert_fdi_tx_disabled(dev_priv, pipe);
4918                 assert_fdi_rx_disabled(dev_priv, pipe);
4919         }
4920
4921         ironlake_pfit_enable(intel_crtc);
4922
4923         /*
4924          * On ILK+ LUT must be loaded before the pipe is running but with
4925          * clocks enabled
4926          */
4927         intel_crtc_load_lut(crtc);
4928
4929         intel_update_watermarks(crtc);
4930         intel_enable_pipe(intel_crtc);
4931
4932         if (intel_crtc->config->has_pch_encoder)
4933                 ironlake_pch_enable(crtc);
4934
4935         assert_vblank_disabled(crtc);
4936         drm_crtc_vblank_on(crtc);
4937
4938         for_each_encoder_on_crtc(dev, crtc, encoder)
4939                 encoder->enable(encoder);
4940
4941         if (HAS_PCH_CPT(dev))
4942                 cpt_verify_modeset(dev, intel_crtc->pipe);
4943
4944         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4945         if (intel_crtc->config->has_pch_encoder)
4946                 intel_wait_for_vblank(dev, pipe);
4947         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4948
4949         intel_fbc_enable(intel_crtc);
4950 }
4951
4952 /* IPS only exists on ULT machines and is tied to pipe A. */
4953 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4954 {
4955         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4956 }
4957
4958 static void haswell_crtc_enable(struct drm_crtc *crtc)
4959 {
4960         struct drm_device *dev = crtc->dev;
4961         struct drm_i915_private *dev_priv = dev->dev_private;
4962         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4963         struct intel_encoder *encoder;
4964         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4965         struct intel_crtc_state *pipe_config =
4966                 to_intel_crtc_state(crtc->state);
4967
4968         if (WARN_ON(intel_crtc->active))
4969                 return;
4970
4971         if (intel_crtc->config->has_pch_encoder)
4972                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4973                                                       false);
4974
4975         if (intel_crtc_to_shared_dpll(intel_crtc))
4976                 intel_enable_shared_dpll(intel_crtc);
4977
4978         if (intel_crtc->config->has_dp_encoder)
4979                 intel_dp_set_m_n(intel_crtc, M1_N1);
4980
4981         intel_set_pipe_timings(intel_crtc);
4982
4983         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4984                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4985                            intel_crtc->config->pixel_multiplier - 1);
4986         }
4987
4988         if (intel_crtc->config->has_pch_encoder) {
4989                 intel_cpu_transcoder_set_m_n(intel_crtc,
4990                                      &intel_crtc->config->fdi_m_n, NULL);
4991         }
4992
4993         haswell_set_pipeconf(crtc);
4994
4995         intel_set_pipe_csc(crtc);
4996
4997         intel_crtc->active = true;
4998
4999         if (intel_crtc->config->has_pch_encoder)
5000                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5001         else
5002                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5003
5004         for_each_encoder_on_crtc(dev, crtc, encoder) {
5005                 if (encoder->pre_enable)
5006                         encoder->pre_enable(encoder);
5007         }
5008
5009         if (intel_crtc->config->has_pch_encoder)
5010                 dev_priv->display.fdi_link_train(crtc);
5011
5012         if (!intel_crtc->config->has_dsi_encoder)
5013                 intel_ddi_enable_pipe_clock(intel_crtc);
5014
5015         if (INTEL_INFO(dev)->gen >= 9)
5016                 skylake_pfit_enable(intel_crtc);
5017         else
5018                 ironlake_pfit_enable(intel_crtc);
5019
5020         /*
5021          * On ILK+ LUT must be loaded before the pipe is running but with
5022          * clocks enabled
5023          */
5024         intel_crtc_load_lut(crtc);
5025
5026         intel_ddi_set_pipe_settings(crtc);
5027         if (!intel_crtc->config->has_dsi_encoder)
5028                 intel_ddi_enable_transcoder_func(crtc);
5029
5030         intel_update_watermarks(crtc);
5031         intel_enable_pipe(intel_crtc);
5032
5033         if (intel_crtc->config->has_pch_encoder)
5034                 lpt_pch_enable(crtc);
5035
5036         if (intel_crtc->config->dp_encoder_is_mst)
5037                 intel_ddi_set_vc_payload_alloc(crtc, true);
5038
5039         assert_vblank_disabled(crtc);
5040         drm_crtc_vblank_on(crtc);
5041
5042         for_each_encoder_on_crtc(dev, crtc, encoder) {
5043                 encoder->enable(encoder);
5044                 intel_opregion_notify_encoder(encoder, true);
5045         }
5046
5047         if (intel_crtc->config->has_pch_encoder) {
5048                 intel_wait_for_vblank(dev, pipe);
5049                 intel_wait_for_vblank(dev, pipe);
5050                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5051                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5052                                                       true);
5053         }
5054
5055         /* If we change the relative order between pipe/planes enabling, we need
5056          * to change the workaround. */
5057         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5058         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5059                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5060                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5061         }
5062
5063         intel_fbc_enable(intel_crtc);
5064 }
5065
5066 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5067 {
5068         struct drm_device *dev = crtc->base.dev;
5069         struct drm_i915_private *dev_priv = dev->dev_private;
5070         int pipe = crtc->pipe;
5071
5072         /* To avoid upsetting the power well on haswell only disable the pfit if
5073          * it's in use. The hw state code will make sure we get this right. */
5074         if (force || crtc->config->pch_pfit.enabled) {
5075                 I915_WRITE(PF_CTL(pipe), 0);
5076                 I915_WRITE(PF_WIN_POS(pipe), 0);
5077                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5078         }
5079 }
5080
5081 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5082 {
5083         struct drm_device *dev = crtc->dev;
5084         struct drm_i915_private *dev_priv = dev->dev_private;
5085         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5086         struct intel_encoder *encoder;
5087         int pipe = intel_crtc->pipe;
5088
5089         if (intel_crtc->config->has_pch_encoder)
5090                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5091
5092         for_each_encoder_on_crtc(dev, crtc, encoder)
5093                 encoder->disable(encoder);
5094
5095         drm_crtc_vblank_off(crtc);
5096         assert_vblank_disabled(crtc);
5097
5098         /*
5099          * Sometimes spurious CPU pipe underruns happen when the
5100          * pipe is already disabled, but FDI RX/TX is still enabled.
5101          * Happens at least with VGA+HDMI cloning. Suppress them.
5102          */
5103         if (intel_crtc->config->has_pch_encoder)
5104                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5105
5106         intel_disable_pipe(intel_crtc);
5107
5108         ironlake_pfit_disable(intel_crtc, false);
5109
5110         if (intel_crtc->config->has_pch_encoder) {
5111                 ironlake_fdi_disable(crtc);
5112                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5113         }
5114
5115         for_each_encoder_on_crtc(dev, crtc, encoder)
5116                 if (encoder->post_disable)
5117                         encoder->post_disable(encoder);
5118
5119         if (intel_crtc->config->has_pch_encoder) {
5120                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5121
5122                 if (HAS_PCH_CPT(dev)) {
5123                         i915_reg_t reg;
5124                         u32 temp;
5125
5126                         /* disable TRANS_DP_CTL */
5127                         reg = TRANS_DP_CTL(pipe);
5128                         temp = I915_READ(reg);
5129                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5130                                   TRANS_DP_PORT_SEL_MASK);
5131                         temp |= TRANS_DP_PORT_SEL_NONE;
5132                         I915_WRITE(reg, temp);
5133
5134                         /* disable DPLL_SEL */
5135                         temp = I915_READ(PCH_DPLL_SEL);
5136                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5137                         I915_WRITE(PCH_DPLL_SEL, temp);
5138                 }
5139
5140                 ironlake_fdi_pll_disable(intel_crtc);
5141         }
5142
5143         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5144
5145         intel_fbc_disable_crtc(intel_crtc);
5146 }
5147
5148 static void haswell_crtc_disable(struct drm_crtc *crtc)
5149 {
5150         struct drm_device *dev = crtc->dev;
5151         struct drm_i915_private *dev_priv = dev->dev_private;
5152         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5153         struct intel_encoder *encoder;
5154         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5155
5156         if (intel_crtc->config->has_pch_encoder)
5157                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5158                                                       false);
5159
5160         for_each_encoder_on_crtc(dev, crtc, encoder) {
5161                 intel_opregion_notify_encoder(encoder, false);
5162                 encoder->disable(encoder);
5163         }
5164
5165         drm_crtc_vblank_off(crtc);
5166         assert_vblank_disabled(crtc);
5167
5168         intel_disable_pipe(intel_crtc);
5169
5170         if (intel_crtc->config->dp_encoder_is_mst)
5171                 intel_ddi_set_vc_payload_alloc(crtc, false);
5172
5173         if (!intel_crtc->config->has_dsi_encoder)
5174                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5175
5176         if (INTEL_INFO(dev)->gen >= 9)
5177                 skylake_scaler_disable(intel_crtc);
5178         else
5179                 ironlake_pfit_disable(intel_crtc, false);
5180
5181         if (!intel_crtc->config->has_dsi_encoder)
5182                 intel_ddi_disable_pipe_clock(intel_crtc);
5183
5184         for_each_encoder_on_crtc(dev, crtc, encoder)
5185                 if (encoder->post_disable)
5186                         encoder->post_disable(encoder);
5187
5188         if (intel_crtc->config->has_pch_encoder) {
5189                 lpt_disable_pch_transcoder(dev_priv);
5190                 lpt_disable_iclkip(dev_priv);
5191                 intel_ddi_fdi_disable(crtc);
5192
5193                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5194                                                       true);
5195         }
5196
5197         intel_fbc_disable_crtc(intel_crtc);
5198 }
5199
5200 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5201 {
5202         struct drm_device *dev = crtc->base.dev;
5203         struct drm_i915_private *dev_priv = dev->dev_private;
5204         struct intel_crtc_state *pipe_config = crtc->config;
5205
5206         if (!pipe_config->gmch_pfit.control)
5207                 return;
5208
5209         /*
5210          * The panel fitter should only be adjusted whilst the pipe is disabled,
5211          * according to register description and PRM.
5212          */
5213         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5214         assert_pipe_disabled(dev_priv, crtc->pipe);
5215
5216         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5217         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5218
5219         /* Border color in case we don't scale up to the full screen. Black by
5220          * default, change to something else for debugging. */
5221         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5222 }
5223
5224 static enum intel_display_power_domain port_to_power_domain(enum port port)
5225 {
5226         switch (port) {
5227         case PORT_A:
5228                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5229         case PORT_B:
5230                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5231         case PORT_C:
5232                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5233         case PORT_D:
5234                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5235         case PORT_E:
5236                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5237         default:
5238                 MISSING_CASE(port);
5239                 return POWER_DOMAIN_PORT_OTHER;
5240         }
5241 }
5242
5243 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5244 {
5245         switch (port) {
5246         case PORT_A:
5247                 return POWER_DOMAIN_AUX_A;
5248         case PORT_B:
5249                 return POWER_DOMAIN_AUX_B;
5250         case PORT_C:
5251                 return POWER_DOMAIN_AUX_C;
5252         case PORT_D:
5253                 return POWER_DOMAIN_AUX_D;
5254         case PORT_E:
5255                 /* FIXME: Check VBT for actual wiring of PORT E */
5256                 return POWER_DOMAIN_AUX_D;
5257         default:
5258                 MISSING_CASE(port);
5259                 return POWER_DOMAIN_AUX_A;
5260         }
5261 }
5262
5263 enum intel_display_power_domain
5264 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5265 {
5266         struct drm_device *dev = intel_encoder->base.dev;
5267         struct intel_digital_port *intel_dig_port;
5268
5269         switch (intel_encoder->type) {
5270         case INTEL_OUTPUT_UNKNOWN:
5271                 /* Only DDI platforms should ever use this output type */
5272                 WARN_ON_ONCE(!HAS_DDI(dev));
5273         case INTEL_OUTPUT_DISPLAYPORT:
5274         case INTEL_OUTPUT_HDMI:
5275         case INTEL_OUTPUT_EDP:
5276                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5277                 return port_to_power_domain(intel_dig_port->port);
5278         case INTEL_OUTPUT_DP_MST:
5279                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5280                 return port_to_power_domain(intel_dig_port->port);
5281         case INTEL_OUTPUT_ANALOG:
5282                 return POWER_DOMAIN_PORT_CRT;
5283         case INTEL_OUTPUT_DSI:
5284                 return POWER_DOMAIN_PORT_DSI;
5285         default:
5286                 return POWER_DOMAIN_PORT_OTHER;
5287         }
5288 }
5289
5290 enum intel_display_power_domain
5291 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5292 {
5293         struct drm_device *dev = intel_encoder->base.dev;
5294         struct intel_digital_port *intel_dig_port;
5295
5296         switch (intel_encoder->type) {
5297         case INTEL_OUTPUT_UNKNOWN:
5298         case INTEL_OUTPUT_HDMI:
5299                 /*
5300                  * Only DDI platforms should ever use these output types.
5301                  * We can get here after the HDMI detect code has already set
5302                  * the type of the shared encoder. Since we can't be sure
5303                  * what's the status of the given connectors, play safe and
5304                  * run the DP detection too.
5305                  */
5306                 WARN_ON_ONCE(!HAS_DDI(dev));
5307         case INTEL_OUTPUT_DISPLAYPORT:
5308         case INTEL_OUTPUT_EDP:
5309                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5310                 return port_to_aux_power_domain(intel_dig_port->port);
5311         case INTEL_OUTPUT_DP_MST:
5312                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5313                 return port_to_aux_power_domain(intel_dig_port->port);
5314         default:
5315                 MISSING_CASE(intel_encoder->type);
5316                 return POWER_DOMAIN_AUX_A;
5317         }
5318 }
5319
5320 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5321 {
5322         struct drm_device *dev = crtc->dev;
5323         struct intel_encoder *intel_encoder;
5324         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5325         enum pipe pipe = intel_crtc->pipe;
5326         unsigned long mask;
5327         enum transcoder transcoder = intel_crtc->config->cpu_transcoder;
5328
5329         if (!crtc->state->active)
5330                 return 0;
5331
5332         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5333         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5334         if (intel_crtc->config->pch_pfit.enabled ||
5335             intel_crtc->config->pch_pfit.force_thru)
5336                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5337
5338         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5339                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5340
5341         return mask;
5342 }
5343
5344 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5345 {
5346         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5347         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5348         enum intel_display_power_domain domain;
5349         unsigned long domains, new_domains, old_domains;
5350
5351         old_domains = intel_crtc->enabled_power_domains;
5352         intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5353
5354         domains = new_domains & ~old_domains;
5355
5356         for_each_power_domain(domain, domains)
5357                 intel_display_power_get(dev_priv, domain);
5358
5359         return old_domains & ~new_domains;
5360 }
5361
5362 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5363                                       unsigned long domains)
5364 {
5365         enum intel_display_power_domain domain;
5366
5367         for_each_power_domain(domain, domains)
5368                 intel_display_power_put(dev_priv, domain);
5369 }
5370
5371 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5372 {
5373         struct drm_device *dev = state->dev;
5374         struct drm_i915_private *dev_priv = dev->dev_private;
5375         unsigned long put_domains[I915_MAX_PIPES] = {};
5376         struct drm_crtc_state *crtc_state;
5377         struct drm_crtc *crtc;
5378         int i;
5379
5380         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5381                 if (needs_modeset(crtc->state))
5382                         put_domains[to_intel_crtc(crtc)->pipe] =
5383                                 modeset_get_crtc_power_domains(crtc);
5384         }
5385
5386         if (dev_priv->display.modeset_commit_cdclk) {
5387                 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5388
5389                 if (cdclk != dev_priv->cdclk_freq &&
5390                     !WARN_ON(!state->allow_modeset))
5391                         dev_priv->display.modeset_commit_cdclk(state);
5392         }
5393
5394         for (i = 0; i < I915_MAX_PIPES; i++)
5395                 if (put_domains[i])
5396                         modeset_put_power_domains(dev_priv, put_domains[i]);
5397 }
5398
5399 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5400 {
5401         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5402
5403         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5404             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5405                 return max_cdclk_freq;
5406         else if (IS_CHERRYVIEW(dev_priv))
5407                 return max_cdclk_freq*95/100;
5408         else if (INTEL_INFO(dev_priv)->gen < 4)
5409                 return 2*max_cdclk_freq*90/100;
5410         else
5411                 return max_cdclk_freq*90/100;
5412 }
5413
5414 static void intel_update_max_cdclk(struct drm_device *dev)
5415 {
5416         struct drm_i915_private *dev_priv = dev->dev_private;
5417
5418         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5419                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5420
5421                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5422                         dev_priv->max_cdclk_freq = 675000;
5423                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5424                         dev_priv->max_cdclk_freq = 540000;
5425                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5426                         dev_priv->max_cdclk_freq = 450000;
5427                 else
5428                         dev_priv->max_cdclk_freq = 337500;
5429         } else if (IS_BROADWELL(dev))  {
5430                 /*
5431                  * FIXME with extra cooling we can allow
5432                  * 540 MHz for ULX and 675 Mhz for ULT.
5433                  * How can we know if extra cooling is
5434                  * available? PCI ID, VTB, something else?
5435                  */
5436                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5437                         dev_priv->max_cdclk_freq = 450000;
5438                 else if (IS_BDW_ULX(dev))
5439                         dev_priv->max_cdclk_freq = 450000;
5440                 else if (IS_BDW_ULT(dev))
5441                         dev_priv->max_cdclk_freq = 540000;
5442                 else
5443                         dev_priv->max_cdclk_freq = 675000;
5444         } else if (IS_CHERRYVIEW(dev)) {
5445                 dev_priv->max_cdclk_freq = 320000;
5446         } else if (IS_VALLEYVIEW(dev)) {
5447                 dev_priv->max_cdclk_freq = 400000;
5448         } else {
5449                 /* otherwise assume cdclk is fixed */
5450                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5451         }
5452
5453         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5454
5455         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5456                          dev_priv->max_cdclk_freq);
5457
5458         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5459                          dev_priv->max_dotclk_freq);
5460 }
5461
5462 static void intel_update_cdclk(struct drm_device *dev)
5463 {
5464         struct drm_i915_private *dev_priv = dev->dev_private;
5465
5466         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5467         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5468                          dev_priv->cdclk_freq);
5469
5470         /*
5471          * Program the gmbus_freq based on the cdclk frequency.
5472          * BSpec erroneously claims we should aim for 4MHz, but
5473          * in fact 1MHz is the correct frequency.
5474          */
5475         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5476                 /*
5477                  * Program the gmbus_freq based on the cdclk frequency.
5478                  * BSpec erroneously claims we should aim for 4MHz, but
5479                  * in fact 1MHz is the correct frequency.
5480                  */
5481                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5482         }
5483
5484         if (dev_priv->max_cdclk_freq == 0)
5485                 intel_update_max_cdclk(dev);
5486 }
5487
5488 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5489 {
5490         struct drm_i915_private *dev_priv = dev->dev_private;
5491         uint32_t divider;
5492         uint32_t ratio;
5493         uint32_t current_freq;
5494         int ret;
5495
5496         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5497         switch (frequency) {
5498         case 144000:
5499                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5500                 ratio = BXT_DE_PLL_RATIO(60);
5501                 break;
5502         case 288000:
5503                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5504                 ratio = BXT_DE_PLL_RATIO(60);
5505                 break;
5506         case 384000:
5507                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5508                 ratio = BXT_DE_PLL_RATIO(60);
5509                 break;
5510         case 576000:
5511                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5512                 ratio = BXT_DE_PLL_RATIO(60);
5513                 break;
5514         case 624000:
5515                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5516                 ratio = BXT_DE_PLL_RATIO(65);
5517                 break;
5518         case 19200:
5519                 /*
5520                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5521                  * to suppress GCC warning.
5522                  */
5523                 ratio = 0;
5524                 divider = 0;
5525                 break;
5526         default:
5527                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5528
5529                 return;
5530         }
5531
5532         mutex_lock(&dev_priv->rps.hw_lock);
5533         /* Inform power controller of upcoming frequency change */
5534         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5535                                       0x80000000);
5536         mutex_unlock(&dev_priv->rps.hw_lock);
5537
5538         if (ret) {
5539                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5540                           ret, frequency);
5541                 return;
5542         }
5543
5544         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5545         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5546         current_freq = current_freq * 500 + 1000;
5547
5548         /*
5549          * DE PLL has to be disabled when
5550          * - setting to 19.2MHz (bypass, PLL isn't used)
5551          * - before setting to 624MHz (PLL needs toggling)
5552          * - before setting to any frequency from 624MHz (PLL needs toggling)
5553          */
5554         if (frequency == 19200 || frequency == 624000 ||
5555             current_freq == 624000) {
5556                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5557                 /* Timeout 200us */
5558                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5559                              1))
5560                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5561         }
5562
5563         if (frequency != 19200) {
5564                 uint32_t val;
5565
5566                 val = I915_READ(BXT_DE_PLL_CTL);
5567                 val &= ~BXT_DE_PLL_RATIO_MASK;
5568                 val |= ratio;
5569                 I915_WRITE(BXT_DE_PLL_CTL, val);
5570
5571                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5572                 /* Timeout 200us */
5573                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5574                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5575
5576                 val = I915_READ(CDCLK_CTL);
5577                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5578                 val |= divider;
5579                 /*
5580                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5581                  * enable otherwise.
5582                  */
5583                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5584                 if (frequency >= 500000)
5585                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5586
5587                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5588                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5589                 val |= (frequency - 1000) / 500;
5590                 I915_WRITE(CDCLK_CTL, val);
5591         }
5592
5593         mutex_lock(&dev_priv->rps.hw_lock);
5594         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5595                                       DIV_ROUND_UP(frequency, 25000));
5596         mutex_unlock(&dev_priv->rps.hw_lock);
5597
5598         if (ret) {
5599                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5600                           ret, frequency);
5601                 return;
5602         }
5603
5604         intel_update_cdclk(dev);
5605 }
5606
5607 void broxton_init_cdclk(struct drm_device *dev)
5608 {
5609         struct drm_i915_private *dev_priv = dev->dev_private;
5610         uint32_t val;
5611
5612         /*
5613          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5614          * or else the reset will hang because there is no PCH to respond.
5615          * Move the handshake programming to initialization sequence.
5616          * Previously was left up to BIOS.
5617          */
5618         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5619         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5620         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5621
5622         /* Enable PG1 for cdclk */
5623         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5624
5625         /* check if cd clock is enabled */
5626         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5627                 DRM_DEBUG_KMS("Display already initialized\n");
5628                 return;
5629         }
5630
5631         /*
5632          * FIXME:
5633          * - The initial CDCLK needs to be read from VBT.
5634          *   Need to make this change after VBT has changes for BXT.
5635          * - check if setting the max (or any) cdclk freq is really necessary
5636          *   here, it belongs to modeset time
5637          */
5638         broxton_set_cdclk(dev, 624000);
5639
5640         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5641         POSTING_READ(DBUF_CTL);
5642
5643         udelay(10);
5644
5645         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5646                 DRM_ERROR("DBuf power enable timeout!\n");
5647 }
5648
5649 void broxton_uninit_cdclk(struct drm_device *dev)
5650 {
5651         struct drm_i915_private *dev_priv = dev->dev_private;
5652
5653         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5654         POSTING_READ(DBUF_CTL);
5655
5656         udelay(10);
5657
5658         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5659                 DRM_ERROR("DBuf power disable timeout!\n");
5660
5661         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5662         broxton_set_cdclk(dev, 19200);
5663
5664         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5665 }
5666
5667 static const struct skl_cdclk_entry {
5668         unsigned int freq;
5669         unsigned int vco;
5670 } skl_cdclk_frequencies[] = {
5671         { .freq = 308570, .vco = 8640 },
5672         { .freq = 337500, .vco = 8100 },
5673         { .freq = 432000, .vco = 8640 },
5674         { .freq = 450000, .vco = 8100 },
5675         { .freq = 540000, .vco = 8100 },
5676         { .freq = 617140, .vco = 8640 },
5677         { .freq = 675000, .vco = 8100 },
5678 };
5679
5680 static unsigned int skl_cdclk_decimal(unsigned int freq)
5681 {
5682         return (freq - 1000) / 500;
5683 }
5684
5685 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5686 {
5687         unsigned int i;
5688
5689         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5690                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5691
5692                 if (e->freq == freq)
5693                         return e->vco;
5694         }
5695
5696         return 8100;
5697 }
5698
5699 static void
5700 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5701 {
5702         unsigned int min_freq;
5703         u32 val;
5704
5705         /* select the minimum CDCLK before enabling DPLL 0 */
5706         val = I915_READ(CDCLK_CTL);
5707         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5708         val |= CDCLK_FREQ_337_308;
5709
5710         if (required_vco == 8640)
5711                 min_freq = 308570;
5712         else
5713                 min_freq = 337500;
5714
5715         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5716
5717         I915_WRITE(CDCLK_CTL, val);
5718         POSTING_READ(CDCLK_CTL);
5719
5720         /*
5721          * We always enable DPLL0 with the lowest link rate possible, but still
5722          * taking into account the VCO required to operate the eDP panel at the
5723          * desired frequency. The usual DP link rates operate with a VCO of
5724          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5725          * The modeset code is responsible for the selection of the exact link
5726          * rate later on, with the constraint of choosing a frequency that
5727          * works with required_vco.
5728          */
5729         val = I915_READ(DPLL_CTRL1);
5730
5731         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5732                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5733         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5734         if (required_vco == 8640)
5735                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5736                                             SKL_DPLL0);
5737         else
5738                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5739                                             SKL_DPLL0);
5740
5741         I915_WRITE(DPLL_CTRL1, val);
5742         POSTING_READ(DPLL_CTRL1);
5743
5744         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5745
5746         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5747                 DRM_ERROR("DPLL0 not locked\n");
5748 }
5749
5750 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5751 {
5752         int ret;
5753         u32 val;
5754
5755         /* inform PCU we want to change CDCLK */
5756         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5757         mutex_lock(&dev_priv->rps.hw_lock);
5758         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5759         mutex_unlock(&dev_priv->rps.hw_lock);
5760
5761         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5762 }
5763
5764 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5765 {
5766         unsigned int i;
5767
5768         for (i = 0; i < 15; i++) {
5769                 if (skl_cdclk_pcu_ready(dev_priv))
5770                         return true;
5771                 udelay(10);
5772         }
5773
5774         return false;
5775 }
5776
5777 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5778 {
5779         struct drm_device *dev = dev_priv->dev;
5780         u32 freq_select, pcu_ack;
5781
5782         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5783
5784         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5785                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5786                 return;
5787         }
5788
5789         /* set CDCLK_CTL */
5790         switch(freq) {
5791         case 450000:
5792         case 432000:
5793                 freq_select = CDCLK_FREQ_450_432;
5794                 pcu_ack = 1;
5795                 break;
5796         case 540000:
5797                 freq_select = CDCLK_FREQ_540;
5798                 pcu_ack = 2;
5799                 break;
5800         case 308570:
5801         case 337500:
5802         default:
5803                 freq_select = CDCLK_FREQ_337_308;
5804                 pcu_ack = 0;
5805                 break;
5806         case 617140:
5807         case 675000:
5808                 freq_select = CDCLK_FREQ_675_617;
5809                 pcu_ack = 3;
5810                 break;
5811         }
5812
5813         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5814         POSTING_READ(CDCLK_CTL);
5815
5816         /* inform PCU of the change */
5817         mutex_lock(&dev_priv->rps.hw_lock);
5818         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5819         mutex_unlock(&dev_priv->rps.hw_lock);
5820
5821         intel_update_cdclk(dev);
5822 }
5823
5824 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5825 {
5826         /* disable DBUF power */
5827         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5828         POSTING_READ(DBUF_CTL);
5829
5830         udelay(10);
5831
5832         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5833                 DRM_ERROR("DBuf power disable timeout\n");
5834
5835         /* disable DPLL0 */
5836         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5837         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5838                 DRM_ERROR("Couldn't disable DPLL0\n");
5839 }
5840
5841 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5842 {
5843         unsigned int required_vco;
5844
5845         /* DPLL0 not enabled (happens on early BIOS versions) */
5846         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5847                 /* enable DPLL0 */
5848                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5849                 skl_dpll0_enable(dev_priv, required_vco);
5850         }
5851
5852         /* set CDCLK to the frequency the BIOS chose */
5853         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5854
5855         /* enable DBUF power */
5856         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5857         POSTING_READ(DBUF_CTL);
5858
5859         udelay(10);
5860
5861         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5862                 DRM_ERROR("DBuf power enable timeout\n");
5863 }
5864
5865 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5866 {
5867         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5868         uint32_t cdctl = I915_READ(CDCLK_CTL);
5869         int freq = dev_priv->skl_boot_cdclk;
5870
5871         /*
5872          * check if the pre-os intialized the display
5873          * There is SWF18 scratchpad register defined which is set by the
5874          * pre-os which can be used by the OS drivers to check the status
5875          */
5876         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5877                 goto sanitize;
5878
5879         /* Is PLL enabled and locked ? */
5880         if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5881                 goto sanitize;
5882
5883         /* DPLL okay; verify the cdclock
5884          *
5885          * Noticed in some instances that the freq selection is correct but
5886          * decimal part is programmed wrong from BIOS where pre-os does not
5887          * enable display. Verify the same as well.
5888          */
5889         if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5890                 /* All well; nothing to sanitize */
5891                 return false;
5892 sanitize:
5893         /*
5894          * As of now initialize with max cdclk till
5895          * we get dynamic cdclk support
5896          * */
5897         dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5898         skl_init_cdclk(dev_priv);
5899
5900         /* we did have to sanitize */
5901         return true;
5902 }
5903
5904 /* Adjust CDclk dividers to allow high res or save power if possible */
5905 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5906 {
5907         struct drm_i915_private *dev_priv = dev->dev_private;
5908         u32 val, cmd;
5909
5910         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5911                                         != dev_priv->cdclk_freq);
5912
5913         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5914                 cmd = 2;
5915         else if (cdclk == 266667)
5916                 cmd = 1;
5917         else
5918                 cmd = 0;
5919
5920         mutex_lock(&dev_priv->rps.hw_lock);
5921         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5922         val &= ~DSPFREQGUAR_MASK;
5923         val |= (cmd << DSPFREQGUAR_SHIFT);
5924         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5925         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5926                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5927                      50)) {
5928                 DRM_ERROR("timed out waiting for CDclk change\n");
5929         }
5930         mutex_unlock(&dev_priv->rps.hw_lock);
5931
5932         mutex_lock(&dev_priv->sb_lock);
5933
5934         if (cdclk == 400000) {
5935                 u32 divider;
5936
5937                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5938
5939                 /* adjust cdclk divider */
5940                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5941                 val &= ~CCK_FREQUENCY_VALUES;
5942                 val |= divider;
5943                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5944
5945                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5946                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5947                              50))
5948                         DRM_ERROR("timed out waiting for CDclk change\n");
5949         }
5950
5951         /* adjust self-refresh exit latency value */
5952         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5953         val &= ~0x7f;
5954
5955         /*
5956          * For high bandwidth configs, we set a higher latency in the bunit
5957          * so that the core display fetch happens in time to avoid underruns.
5958          */
5959         if (cdclk == 400000)
5960                 val |= 4500 / 250; /* 4.5 usec */
5961         else
5962                 val |= 3000 / 250; /* 3.0 usec */
5963         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5964
5965         mutex_unlock(&dev_priv->sb_lock);
5966
5967         intel_update_cdclk(dev);
5968 }
5969
5970 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5971 {
5972         struct drm_i915_private *dev_priv = dev->dev_private;
5973         u32 val, cmd;
5974
5975         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5976                                                 != dev_priv->cdclk_freq);
5977
5978         switch (cdclk) {
5979         case 333333:
5980         case 320000:
5981         case 266667:
5982         case 200000:
5983                 break;
5984         default:
5985                 MISSING_CASE(cdclk);
5986                 return;
5987         }
5988
5989         /*
5990          * Specs are full of misinformation, but testing on actual
5991          * hardware has shown that we just need to write the desired
5992          * CCK divider into the Punit register.
5993          */
5994         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5995
5996         mutex_lock(&dev_priv->rps.hw_lock);
5997         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5998         val &= ~DSPFREQGUAR_MASK_CHV;
5999         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6000         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6001         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6002                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6003                      50)) {
6004                 DRM_ERROR("timed out waiting for CDclk change\n");
6005         }
6006         mutex_unlock(&dev_priv->rps.hw_lock);
6007
6008         intel_update_cdclk(dev);
6009 }
6010
6011 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6012                                  int max_pixclk)
6013 {
6014         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
6015         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6016
6017         /*
6018          * Really only a few cases to deal with, as only 4 CDclks are supported:
6019          *   200MHz
6020          *   267MHz
6021          *   320/333MHz (depends on HPLL freq)
6022          *   400MHz (VLV only)
6023          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6024          * of the lower bin and adjust if needed.
6025          *
6026          * We seem to get an unstable or solid color picture at 200MHz.
6027          * Not sure what's wrong. For now use 200MHz only when all pipes
6028          * are off.
6029          */
6030         if (!IS_CHERRYVIEW(dev_priv) &&
6031             max_pixclk > freq_320*limit/100)
6032                 return 400000;
6033         else if (max_pixclk > 266667*limit/100)
6034                 return freq_320;
6035         else if (max_pixclk > 0)
6036                 return 266667;
6037         else
6038                 return 200000;
6039 }
6040
6041 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
6042                               int max_pixclk)
6043 {
6044         /*
6045          * FIXME:
6046          * - remove the guardband, it's not needed on BXT
6047          * - set 19.2MHz bypass frequency if there are no active pipes
6048          */
6049         if (max_pixclk > 576000*9/10)
6050                 return 624000;
6051         else if (max_pixclk > 384000*9/10)
6052                 return 576000;
6053         else if (max_pixclk > 288000*9/10)
6054                 return 384000;
6055         else if (max_pixclk > 144000*9/10)
6056                 return 288000;
6057         else
6058                 return 144000;
6059 }
6060
6061 /* Compute the max pixel clock for new configuration. Uses atomic state if
6062  * that's non-NULL, look at current state otherwise. */
6063 static int intel_mode_max_pixclk(struct drm_device *dev,
6064                                  struct drm_atomic_state *state)
6065 {
6066         struct intel_crtc *intel_crtc;
6067         struct intel_crtc_state *crtc_state;
6068         int max_pixclk = 0;
6069
6070         for_each_intel_crtc(dev, intel_crtc) {
6071                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6072                 if (IS_ERR(crtc_state))
6073                         return PTR_ERR(crtc_state);
6074
6075                 if (!crtc_state->base.enable)
6076                         continue;
6077
6078                 max_pixclk = max(max_pixclk,
6079                                  crtc_state->base.adjusted_mode.crtc_clock);
6080         }
6081
6082         return max_pixclk;
6083 }
6084
6085 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6086 {
6087         struct drm_device *dev = state->dev;
6088         struct drm_i915_private *dev_priv = dev->dev_private;
6089         int max_pixclk = intel_mode_max_pixclk(dev, state);
6090
6091         if (max_pixclk < 0)
6092                 return max_pixclk;
6093
6094         to_intel_atomic_state(state)->cdclk =
6095                 valleyview_calc_cdclk(dev_priv, max_pixclk);
6096
6097         return 0;
6098 }
6099
6100 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6101 {
6102         struct drm_device *dev = state->dev;
6103         struct drm_i915_private *dev_priv = dev->dev_private;
6104         int max_pixclk = intel_mode_max_pixclk(dev, state);
6105
6106         if (max_pixclk < 0)
6107                 return max_pixclk;
6108
6109         to_intel_atomic_state(state)->cdclk =
6110                 broxton_calc_cdclk(dev_priv, max_pixclk);
6111
6112         return 0;
6113 }
6114
6115 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6116 {
6117         unsigned int credits, default_credits;
6118
6119         if (IS_CHERRYVIEW(dev_priv))
6120                 default_credits = PFI_CREDIT(12);
6121         else
6122                 default_credits = PFI_CREDIT(8);
6123
6124         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6125                 /* CHV suggested value is 31 or 63 */
6126                 if (IS_CHERRYVIEW(dev_priv))
6127                         credits = PFI_CREDIT_63;
6128                 else
6129                         credits = PFI_CREDIT(15);
6130         } else {
6131                 credits = default_credits;
6132         }
6133
6134         /*
6135          * WA - write default credits before re-programming
6136          * FIXME: should we also set the resend bit here?
6137          */
6138         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6139                    default_credits);
6140
6141         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6142                    credits | PFI_CREDIT_RESEND);
6143
6144         /*
6145          * FIXME is this guaranteed to clear
6146          * immediately or should we poll for it?
6147          */
6148         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6149 }
6150
6151 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6152 {
6153         struct drm_device *dev = old_state->dev;
6154         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6155         struct drm_i915_private *dev_priv = dev->dev_private;
6156
6157         /*
6158          * FIXME: We can end up here with all power domains off, yet
6159          * with a CDCLK frequency other than the minimum. To account
6160          * for this take the PIPE-A power domain, which covers the HW
6161          * blocks needed for the following programming. This can be
6162          * removed once it's guaranteed that we get here either with
6163          * the minimum CDCLK set, or the required power domains
6164          * enabled.
6165          */
6166         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6167
6168         if (IS_CHERRYVIEW(dev))
6169                 cherryview_set_cdclk(dev, req_cdclk);
6170         else
6171                 valleyview_set_cdclk(dev, req_cdclk);
6172
6173         vlv_program_pfi_credits(dev_priv);
6174
6175         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6176 }
6177
6178 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6179 {
6180         struct drm_device *dev = crtc->dev;
6181         struct drm_i915_private *dev_priv = to_i915(dev);
6182         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6183         struct intel_encoder *encoder;
6184         int pipe = intel_crtc->pipe;
6185
6186         if (WARN_ON(intel_crtc->active))
6187                 return;
6188
6189         if (intel_crtc->config->has_dp_encoder)
6190                 intel_dp_set_m_n(intel_crtc, M1_N1);
6191
6192         intel_set_pipe_timings(intel_crtc);
6193
6194         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6195                 struct drm_i915_private *dev_priv = dev->dev_private;
6196
6197                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6198                 I915_WRITE(CHV_CANVAS(pipe), 0);
6199         }
6200
6201         i9xx_set_pipeconf(intel_crtc);
6202
6203         intel_crtc->active = true;
6204
6205         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6206
6207         for_each_encoder_on_crtc(dev, crtc, encoder)
6208                 if (encoder->pre_pll_enable)
6209                         encoder->pre_pll_enable(encoder);
6210
6211         if (!intel_crtc->config->has_dsi_encoder) {
6212                 if (IS_CHERRYVIEW(dev)) {
6213                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6214                         chv_enable_pll(intel_crtc, intel_crtc->config);
6215                 } else {
6216                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6217                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6218                 }
6219         }
6220
6221         for_each_encoder_on_crtc(dev, crtc, encoder)
6222                 if (encoder->pre_enable)
6223                         encoder->pre_enable(encoder);
6224
6225         i9xx_pfit_enable(intel_crtc);
6226
6227         intel_crtc_load_lut(crtc);
6228
6229         intel_enable_pipe(intel_crtc);
6230
6231         assert_vblank_disabled(crtc);
6232         drm_crtc_vblank_on(crtc);
6233
6234         for_each_encoder_on_crtc(dev, crtc, encoder)
6235                 encoder->enable(encoder);
6236 }
6237
6238 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6239 {
6240         struct drm_device *dev = crtc->base.dev;
6241         struct drm_i915_private *dev_priv = dev->dev_private;
6242
6243         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6244         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6245 }
6246
6247 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6248 {
6249         struct drm_device *dev = crtc->dev;
6250         struct drm_i915_private *dev_priv = to_i915(dev);
6251         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6252         struct intel_encoder *encoder;
6253         int pipe = intel_crtc->pipe;
6254
6255         if (WARN_ON(intel_crtc->active))
6256                 return;
6257
6258         i9xx_set_pll_dividers(intel_crtc);
6259
6260         if (intel_crtc->config->has_dp_encoder)
6261                 intel_dp_set_m_n(intel_crtc, M1_N1);
6262
6263         intel_set_pipe_timings(intel_crtc);
6264
6265         i9xx_set_pipeconf(intel_crtc);
6266
6267         intel_crtc->active = true;
6268
6269         if (!IS_GEN2(dev))
6270                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6271
6272         for_each_encoder_on_crtc(dev, crtc, encoder)
6273                 if (encoder->pre_enable)
6274                         encoder->pre_enable(encoder);
6275
6276         i9xx_enable_pll(intel_crtc);
6277
6278         i9xx_pfit_enable(intel_crtc);
6279
6280         intel_crtc_load_lut(crtc);
6281
6282         intel_update_watermarks(crtc);
6283         intel_enable_pipe(intel_crtc);
6284
6285         assert_vblank_disabled(crtc);
6286         drm_crtc_vblank_on(crtc);
6287
6288         for_each_encoder_on_crtc(dev, crtc, encoder)
6289                 encoder->enable(encoder);
6290
6291         intel_fbc_enable(intel_crtc);
6292 }
6293
6294 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6295 {
6296         struct drm_device *dev = crtc->base.dev;
6297         struct drm_i915_private *dev_priv = dev->dev_private;
6298
6299         if (!crtc->config->gmch_pfit.control)
6300                 return;
6301
6302         assert_pipe_disabled(dev_priv, crtc->pipe);
6303
6304         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6305                          I915_READ(PFIT_CONTROL));
6306         I915_WRITE(PFIT_CONTROL, 0);
6307 }
6308
6309 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6310 {
6311         struct drm_device *dev = crtc->dev;
6312         struct drm_i915_private *dev_priv = dev->dev_private;
6313         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6314         struct intel_encoder *encoder;
6315         int pipe = intel_crtc->pipe;
6316
6317         /*
6318          * On gen2 planes are double buffered but the pipe isn't, so we must
6319          * wait for planes to fully turn off before disabling the pipe.
6320          * We also need to wait on all gmch platforms because of the
6321          * self-refresh mode constraint explained above.
6322          */
6323         intel_wait_for_vblank(dev, pipe);
6324
6325         for_each_encoder_on_crtc(dev, crtc, encoder)
6326                 encoder->disable(encoder);
6327
6328         drm_crtc_vblank_off(crtc);
6329         assert_vblank_disabled(crtc);
6330
6331         intel_disable_pipe(intel_crtc);
6332
6333         i9xx_pfit_disable(intel_crtc);
6334
6335         for_each_encoder_on_crtc(dev, crtc, encoder)
6336                 if (encoder->post_disable)
6337                         encoder->post_disable(encoder);
6338
6339         if (!intel_crtc->config->has_dsi_encoder) {
6340                 if (IS_CHERRYVIEW(dev))
6341                         chv_disable_pll(dev_priv, pipe);
6342                 else if (IS_VALLEYVIEW(dev))
6343                         vlv_disable_pll(dev_priv, pipe);
6344                 else
6345                         i9xx_disable_pll(intel_crtc);
6346         }
6347
6348         for_each_encoder_on_crtc(dev, crtc, encoder)
6349                 if (encoder->post_pll_disable)
6350                         encoder->post_pll_disable(encoder);
6351
6352         if (!IS_GEN2(dev))
6353                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6354
6355         intel_fbc_disable_crtc(intel_crtc);
6356 }
6357
6358 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6359 {
6360         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6361         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6362         enum intel_display_power_domain domain;
6363         unsigned long domains;
6364
6365         if (!intel_crtc->active)
6366                 return;
6367
6368         if (to_intel_plane_state(crtc->primary->state)->visible) {
6369                 WARN_ON(intel_crtc->unpin_work);
6370
6371                 intel_pre_disable_primary(crtc);
6372
6373                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6374                 to_intel_plane_state(crtc->primary->state)->visible = false;
6375         }
6376
6377         dev_priv->display.crtc_disable(crtc);
6378         intel_crtc->active = false;
6379         intel_update_watermarks(crtc);
6380         intel_disable_shared_dpll(intel_crtc);
6381
6382         domains = intel_crtc->enabled_power_domains;
6383         for_each_power_domain(domain, domains)
6384                 intel_display_power_put(dev_priv, domain);
6385         intel_crtc->enabled_power_domains = 0;
6386 }
6387
6388 /*
6389  * turn all crtc's off, but do not adjust state
6390  * This has to be paired with a call to intel_modeset_setup_hw_state.
6391  */
6392 int intel_display_suspend(struct drm_device *dev)
6393 {
6394         struct drm_mode_config *config = &dev->mode_config;
6395         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6396         struct drm_atomic_state *state;
6397         struct drm_crtc *crtc;
6398         unsigned crtc_mask = 0;
6399         int ret = 0;
6400
6401         if (WARN_ON(!ctx))
6402                 return 0;
6403
6404         lockdep_assert_held(&ctx->ww_ctx);
6405         state = drm_atomic_state_alloc(dev);
6406         if (WARN_ON(!state))
6407                 return -ENOMEM;
6408
6409         state->acquire_ctx = ctx;
6410         state->allow_modeset = true;
6411
6412         for_each_crtc(dev, crtc) {
6413                 struct drm_crtc_state *crtc_state =
6414                         drm_atomic_get_crtc_state(state, crtc);
6415
6416                 ret = PTR_ERR_OR_ZERO(crtc_state);
6417                 if (ret)
6418                         goto free;
6419
6420                 if (!crtc_state->active)
6421                         continue;
6422
6423                 crtc_state->active = false;
6424                 crtc_mask |= 1 << drm_crtc_index(crtc);
6425         }
6426
6427         if (crtc_mask) {
6428                 ret = drm_atomic_commit(state);
6429
6430                 if (!ret) {
6431                         for_each_crtc(dev, crtc)
6432                                 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6433                                         crtc->state->active = true;
6434
6435                         return ret;
6436                 }
6437         }
6438
6439 free:
6440         if (ret)
6441                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6442         drm_atomic_state_free(state);
6443         return ret;
6444 }
6445
6446 void intel_encoder_destroy(struct drm_encoder *encoder)
6447 {
6448         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6449
6450         drm_encoder_cleanup(encoder);
6451         kfree(intel_encoder);
6452 }
6453
6454 /* Cross check the actual hw state with our own modeset state tracking (and it's
6455  * internal consistency). */
6456 static void intel_connector_check_state(struct intel_connector *connector)
6457 {
6458         struct drm_crtc *crtc = connector->base.state->crtc;
6459
6460         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6461                       connector->base.base.id,
6462                       connector->base.name);
6463
6464         if (connector->get_hw_state(connector)) {
6465                 struct intel_encoder *encoder = connector->encoder;
6466                 struct drm_connector_state *conn_state = connector->base.state;
6467
6468                 I915_STATE_WARN(!crtc,
6469                          "connector enabled without attached crtc\n");
6470
6471                 if (!crtc)
6472                         return;
6473
6474                 I915_STATE_WARN(!crtc->state->active,
6475                       "connector is active, but attached crtc isn't\n");
6476
6477                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6478                         return;
6479
6480                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6481                         "atomic encoder doesn't match attached encoder\n");
6482
6483                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6484                         "attached encoder crtc differs from connector crtc\n");
6485         } else {
6486                 I915_STATE_WARN(crtc && crtc->state->active,
6487                         "attached crtc is active, but connector isn't\n");
6488                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6489                         "best encoder set without crtc!\n");
6490         }
6491 }
6492
6493 int intel_connector_init(struct intel_connector *connector)
6494 {
6495         drm_atomic_helper_connector_reset(&connector->base);
6496
6497         if (!connector->base.state)
6498                 return -ENOMEM;
6499
6500         return 0;
6501 }
6502
6503 struct intel_connector *intel_connector_alloc(void)
6504 {
6505         struct intel_connector *connector;
6506
6507         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6508         if (!connector)
6509                 return NULL;
6510
6511         if (intel_connector_init(connector) < 0) {
6512                 kfree(connector);
6513                 return NULL;
6514         }
6515
6516         return connector;
6517 }
6518
6519 /* Simple connector->get_hw_state implementation for encoders that support only
6520  * one connector and no cloning and hence the encoder state determines the state
6521  * of the connector. */
6522 bool intel_connector_get_hw_state(struct intel_connector *connector)
6523 {
6524         enum pipe pipe = 0;
6525         struct intel_encoder *encoder = connector->encoder;
6526
6527         return encoder->get_hw_state(encoder, &pipe);
6528 }
6529
6530 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6531 {
6532         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6533                 return crtc_state->fdi_lanes;
6534
6535         return 0;
6536 }
6537
6538 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6539                                      struct intel_crtc_state *pipe_config)
6540 {
6541         struct drm_atomic_state *state = pipe_config->base.state;
6542         struct intel_crtc *other_crtc;
6543         struct intel_crtc_state *other_crtc_state;
6544
6545         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6546                       pipe_name(pipe), pipe_config->fdi_lanes);
6547         if (pipe_config->fdi_lanes > 4) {
6548                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6549                               pipe_name(pipe), pipe_config->fdi_lanes);
6550                 return -EINVAL;
6551         }
6552
6553         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6554                 if (pipe_config->fdi_lanes > 2) {
6555                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6556                                       pipe_config->fdi_lanes);
6557                         return -EINVAL;
6558                 } else {
6559                         return 0;
6560                 }
6561         }
6562
6563         if (INTEL_INFO(dev)->num_pipes == 2)
6564                 return 0;
6565
6566         /* Ivybridge 3 pipe is really complicated */
6567         switch (pipe) {
6568         case PIPE_A:
6569                 return 0;
6570         case PIPE_B:
6571                 if (pipe_config->fdi_lanes <= 2)
6572                         return 0;
6573
6574                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6575                 other_crtc_state =
6576                         intel_atomic_get_crtc_state(state, other_crtc);
6577                 if (IS_ERR(other_crtc_state))
6578                         return PTR_ERR(other_crtc_state);
6579
6580                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6581                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6582                                       pipe_name(pipe), pipe_config->fdi_lanes);
6583                         return -EINVAL;
6584                 }
6585                 return 0;
6586         case PIPE_C:
6587                 if (pipe_config->fdi_lanes > 2) {
6588                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6589                                       pipe_name(pipe), pipe_config->fdi_lanes);
6590                         return -EINVAL;
6591                 }
6592
6593                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6594                 other_crtc_state =
6595                         intel_atomic_get_crtc_state(state, other_crtc);
6596                 if (IS_ERR(other_crtc_state))
6597                         return PTR_ERR(other_crtc_state);
6598
6599                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6600                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6601                         return -EINVAL;
6602                 }
6603                 return 0;
6604         default:
6605                 BUG();
6606         }
6607 }
6608
6609 #define RETRY 1
6610 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6611                                        struct intel_crtc_state *pipe_config)
6612 {
6613         struct drm_device *dev = intel_crtc->base.dev;
6614         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6615         int lane, link_bw, fdi_dotclock, ret;
6616         bool needs_recompute = false;
6617
6618 retry:
6619         /* FDI is a binary signal running at ~2.7GHz, encoding
6620          * each output octet as 10 bits. The actual frequency
6621          * is stored as a divider into a 100MHz clock, and the
6622          * mode pixel clock is stored in units of 1KHz.
6623          * Hence the bw of each lane in terms of the mode signal
6624          * is:
6625          */
6626         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6627
6628         fdi_dotclock = adjusted_mode->crtc_clock;
6629
6630         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6631                                            pipe_config->pipe_bpp);
6632
6633         pipe_config->fdi_lanes = lane;
6634
6635         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6636                                link_bw, &pipe_config->fdi_m_n);
6637
6638         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6639                                        intel_crtc->pipe, pipe_config);
6640         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6641                 pipe_config->pipe_bpp -= 2*3;
6642                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6643                               pipe_config->pipe_bpp);
6644                 needs_recompute = true;
6645                 pipe_config->bw_constrained = true;
6646
6647                 goto retry;
6648         }
6649
6650         if (needs_recompute)
6651                 return RETRY;
6652
6653         return ret;
6654 }
6655
6656 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6657                                      struct intel_crtc_state *pipe_config)
6658 {
6659         if (pipe_config->pipe_bpp > 24)
6660                 return false;
6661
6662         /* HSW can handle pixel rate up to cdclk? */
6663         if (IS_HASWELL(dev_priv->dev))
6664                 return true;
6665
6666         /*
6667          * We compare against max which means we must take
6668          * the increased cdclk requirement into account when
6669          * calculating the new cdclk.
6670          *
6671          * Should measure whether using a lower cdclk w/o IPS
6672          */
6673         return ilk_pipe_pixel_rate(pipe_config) <=
6674                 dev_priv->max_cdclk_freq * 95 / 100;
6675 }
6676
6677 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6678                                    struct intel_crtc_state *pipe_config)
6679 {
6680         struct drm_device *dev = crtc->base.dev;
6681         struct drm_i915_private *dev_priv = dev->dev_private;
6682
6683         pipe_config->ips_enabled = i915.enable_ips &&
6684                 hsw_crtc_supports_ips(crtc) &&
6685                 pipe_config_supports_ips(dev_priv, pipe_config);
6686 }
6687
6688 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6689 {
6690         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6691
6692         /* GDG double wide on either pipe, otherwise pipe A only */
6693         return INTEL_INFO(dev_priv)->gen < 4 &&
6694                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6695 }
6696
6697 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6698                                      struct intel_crtc_state *pipe_config)
6699 {
6700         struct drm_device *dev = crtc->base.dev;
6701         struct drm_i915_private *dev_priv = dev->dev_private;
6702         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6703
6704         /* FIXME should check pixel clock limits on all platforms */
6705         if (INTEL_INFO(dev)->gen < 4) {
6706                 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6707
6708                 /*
6709                  * Enable double wide mode when the dot clock
6710                  * is > 90% of the (display) core speed.
6711                  */
6712                 if (intel_crtc_supports_double_wide(crtc) &&
6713                     adjusted_mode->crtc_clock > clock_limit) {
6714                         clock_limit *= 2;
6715                         pipe_config->double_wide = true;
6716                 }
6717
6718                 if (adjusted_mode->crtc_clock > clock_limit) {
6719                         DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6720                                       adjusted_mode->crtc_clock, clock_limit,
6721                                       yesno(pipe_config->double_wide));
6722                         return -EINVAL;
6723                 }
6724         }
6725
6726         /*
6727          * Pipe horizontal size must be even in:
6728          * - DVO ganged mode
6729          * - LVDS dual channel mode
6730          * - Double wide pipe
6731          */
6732         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6733              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6734                 pipe_config->pipe_src_w &= ~1;
6735
6736         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6737          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6738          */
6739         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6740                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6741                 return -EINVAL;
6742
6743         if (HAS_IPS(dev))
6744                 hsw_compute_ips_config(crtc, pipe_config);
6745
6746         if (pipe_config->has_pch_encoder)
6747                 return ironlake_fdi_compute_config(crtc, pipe_config);
6748
6749         return 0;
6750 }
6751
6752 static int skylake_get_display_clock_speed(struct drm_device *dev)
6753 {
6754         struct drm_i915_private *dev_priv = to_i915(dev);
6755         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6756         uint32_t cdctl = I915_READ(CDCLK_CTL);
6757         uint32_t linkrate;
6758
6759         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6760                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6761
6762         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6763                 return 540000;
6764
6765         linkrate = (I915_READ(DPLL_CTRL1) &
6766                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6767
6768         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6769             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6770                 /* vco 8640 */
6771                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6772                 case CDCLK_FREQ_450_432:
6773                         return 432000;
6774                 case CDCLK_FREQ_337_308:
6775                         return 308570;
6776                 case CDCLK_FREQ_675_617:
6777                         return 617140;
6778                 default:
6779                         WARN(1, "Unknown cd freq selection\n");
6780                 }
6781         } else {
6782                 /* vco 8100 */
6783                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6784                 case CDCLK_FREQ_450_432:
6785                         return 450000;
6786                 case CDCLK_FREQ_337_308:
6787                         return 337500;
6788                 case CDCLK_FREQ_675_617:
6789                         return 675000;
6790                 default:
6791                         WARN(1, "Unknown cd freq selection\n");
6792                 }
6793         }
6794
6795         /* error case, do as if DPLL0 isn't enabled */
6796         return 24000;
6797 }
6798
6799 static int broxton_get_display_clock_speed(struct drm_device *dev)
6800 {
6801         struct drm_i915_private *dev_priv = to_i915(dev);
6802         uint32_t cdctl = I915_READ(CDCLK_CTL);
6803         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6804         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6805         int cdclk;
6806
6807         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6808                 return 19200;
6809
6810         cdclk = 19200 * pll_ratio / 2;
6811
6812         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6813         case BXT_CDCLK_CD2X_DIV_SEL_1:
6814                 return cdclk;  /* 576MHz or 624MHz */
6815         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6816                 return cdclk * 2 / 3; /* 384MHz */
6817         case BXT_CDCLK_CD2X_DIV_SEL_2:
6818                 return cdclk / 2; /* 288MHz */
6819         case BXT_CDCLK_CD2X_DIV_SEL_4:
6820                 return cdclk / 4; /* 144MHz */
6821         }
6822
6823         /* error case, do as if DE PLL isn't enabled */
6824         return 19200;
6825 }
6826
6827 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6828 {
6829         struct drm_i915_private *dev_priv = dev->dev_private;
6830         uint32_t lcpll = I915_READ(LCPLL_CTL);
6831         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6832
6833         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6834                 return 800000;
6835         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6836                 return 450000;
6837         else if (freq == LCPLL_CLK_FREQ_450)
6838                 return 450000;
6839         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6840                 return 540000;
6841         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6842                 return 337500;
6843         else
6844                 return 675000;
6845 }
6846
6847 static int haswell_get_display_clock_speed(struct drm_device *dev)
6848 {
6849         struct drm_i915_private *dev_priv = dev->dev_private;
6850         uint32_t lcpll = I915_READ(LCPLL_CTL);
6851         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6852
6853         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6854                 return 800000;
6855         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6856                 return 450000;
6857         else if (freq == LCPLL_CLK_FREQ_450)
6858                 return 450000;
6859         else if (IS_HSW_ULT(dev))
6860                 return 337500;
6861         else
6862                 return 540000;
6863 }
6864
6865 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6866 {
6867         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6868                                       CCK_DISPLAY_CLOCK_CONTROL);
6869 }
6870
6871 static int ilk_get_display_clock_speed(struct drm_device *dev)
6872 {
6873         return 450000;
6874 }
6875
6876 static int i945_get_display_clock_speed(struct drm_device *dev)
6877 {
6878         return 400000;
6879 }
6880
6881 static int i915_get_display_clock_speed(struct drm_device *dev)
6882 {
6883         return 333333;
6884 }
6885
6886 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6887 {
6888         return 200000;
6889 }
6890
6891 static int pnv_get_display_clock_speed(struct drm_device *dev)
6892 {
6893         u16 gcfgc = 0;
6894
6895         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6896
6897         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6898         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6899                 return 266667;
6900         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6901                 return 333333;
6902         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6903                 return 444444;
6904         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6905                 return 200000;
6906         default:
6907                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6908         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6909                 return 133333;
6910         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6911                 return 166667;
6912         }
6913 }
6914
6915 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6916 {
6917         u16 gcfgc = 0;
6918
6919         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6920
6921         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6922                 return 133333;
6923         else {
6924                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6925                 case GC_DISPLAY_CLOCK_333_MHZ:
6926                         return 333333;
6927                 default:
6928                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6929                         return 190000;
6930                 }
6931         }
6932 }
6933
6934 static int i865_get_display_clock_speed(struct drm_device *dev)
6935 {
6936         return 266667;
6937 }
6938
6939 static int i85x_get_display_clock_speed(struct drm_device *dev)
6940 {
6941         u16 hpllcc = 0;
6942
6943         /*
6944          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6945          * encoding is different :(
6946          * FIXME is this the right way to detect 852GM/852GMV?
6947          */
6948         if (dev->pdev->revision == 0x1)
6949                 return 133333;
6950
6951         pci_bus_read_config_word(dev->pdev->bus,
6952                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6953
6954         /* Assume that the hardware is in the high speed state.  This
6955          * should be the default.
6956          */
6957         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6958         case GC_CLOCK_133_200:
6959         case GC_CLOCK_133_200_2:
6960         case GC_CLOCK_100_200:
6961                 return 200000;
6962         case GC_CLOCK_166_250:
6963                 return 250000;
6964         case GC_CLOCK_100_133:
6965                 return 133333;
6966         case GC_CLOCK_133_266:
6967         case GC_CLOCK_133_266_2:
6968         case GC_CLOCK_166_266:
6969                 return 266667;
6970         }
6971
6972         /* Shouldn't happen */
6973         return 0;
6974 }
6975
6976 static int i830_get_display_clock_speed(struct drm_device *dev)
6977 {
6978         return 133333;
6979 }
6980
6981 static unsigned int intel_hpll_vco(struct drm_device *dev)
6982 {
6983         struct drm_i915_private *dev_priv = dev->dev_private;
6984         static const unsigned int blb_vco[8] = {
6985                 [0] = 3200000,
6986                 [1] = 4000000,
6987                 [2] = 5333333,
6988                 [3] = 4800000,
6989                 [4] = 6400000,
6990         };
6991         static const unsigned int pnv_vco[8] = {
6992                 [0] = 3200000,
6993                 [1] = 4000000,
6994                 [2] = 5333333,
6995                 [3] = 4800000,
6996                 [4] = 2666667,
6997         };
6998         static const unsigned int cl_vco[8] = {
6999                 [0] = 3200000,
7000                 [1] = 4000000,
7001                 [2] = 5333333,
7002                 [3] = 6400000,
7003                 [4] = 3333333,
7004                 [5] = 3566667,
7005                 [6] = 4266667,
7006         };
7007         static const unsigned int elk_vco[8] = {
7008                 [0] = 3200000,
7009                 [1] = 4000000,
7010                 [2] = 5333333,
7011                 [3] = 4800000,
7012         };
7013         static const unsigned int ctg_vco[8] = {
7014                 [0] = 3200000,
7015                 [1] = 4000000,
7016                 [2] = 5333333,
7017                 [3] = 6400000,
7018                 [4] = 2666667,
7019                 [5] = 4266667,
7020         };
7021         const unsigned int *vco_table;
7022         unsigned int vco;
7023         uint8_t tmp = 0;
7024
7025         /* FIXME other chipsets? */
7026         if (IS_GM45(dev))
7027                 vco_table = ctg_vco;
7028         else if (IS_G4X(dev))
7029                 vco_table = elk_vco;
7030         else if (IS_CRESTLINE(dev))
7031                 vco_table = cl_vco;
7032         else if (IS_PINEVIEW(dev))
7033                 vco_table = pnv_vco;
7034         else if (IS_G33(dev))
7035                 vco_table = blb_vco;
7036         else
7037                 return 0;
7038
7039         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7040
7041         vco = vco_table[tmp & 0x7];
7042         if (vco == 0)
7043                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7044         else
7045                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7046
7047         return vco;
7048 }
7049
7050 static int gm45_get_display_clock_speed(struct drm_device *dev)
7051 {
7052         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7053         uint16_t tmp = 0;
7054
7055         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7056
7057         cdclk_sel = (tmp >> 12) & 0x1;
7058
7059         switch (vco) {
7060         case 2666667:
7061         case 4000000:
7062         case 5333333:
7063                 return cdclk_sel ? 333333 : 222222;
7064         case 3200000:
7065                 return cdclk_sel ? 320000 : 228571;
7066         default:
7067                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7068                 return 222222;
7069         }
7070 }
7071
7072 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7073 {
7074         static const uint8_t div_3200[] = { 16, 10,  8 };
7075         static const uint8_t div_4000[] = { 20, 12, 10 };
7076         static const uint8_t div_5333[] = { 24, 16, 14 };
7077         const uint8_t *div_table;
7078         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7079         uint16_t tmp = 0;
7080
7081         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7082
7083         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7084
7085         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7086                 goto fail;
7087
7088         switch (vco) {
7089         case 3200000:
7090                 div_table = div_3200;
7091                 break;
7092         case 4000000:
7093                 div_table = div_4000;
7094                 break;
7095         case 5333333:
7096                 div_table = div_5333;
7097                 break;
7098         default:
7099                 goto fail;
7100         }
7101
7102         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7103
7104 fail:
7105         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7106         return 200000;
7107 }
7108
7109 static int g33_get_display_clock_speed(struct drm_device *dev)
7110 {
7111         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7112         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7113         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7114         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7115         const uint8_t *div_table;
7116         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7117         uint16_t tmp = 0;
7118
7119         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7120
7121         cdclk_sel = (tmp >> 4) & 0x7;
7122
7123         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7124                 goto fail;
7125
7126         switch (vco) {
7127         case 3200000:
7128                 div_table = div_3200;
7129                 break;
7130         case 4000000:
7131                 div_table = div_4000;
7132                 break;
7133         case 4800000:
7134                 div_table = div_4800;
7135                 break;
7136         case 5333333:
7137                 div_table = div_5333;
7138                 break;
7139         default:
7140                 goto fail;
7141         }
7142
7143         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7144
7145 fail:
7146         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7147         return 190476;
7148 }
7149
7150 static void
7151 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7152 {
7153         while (*num > DATA_LINK_M_N_MASK ||
7154                *den > DATA_LINK_M_N_MASK) {
7155                 *num >>= 1;
7156                 *den >>= 1;
7157         }
7158 }
7159
7160 static void compute_m_n(unsigned int m, unsigned int n,
7161                         uint32_t *ret_m, uint32_t *ret_n)
7162 {
7163         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7164         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7165         intel_reduce_m_n_ratio(ret_m, ret_n);
7166 }
7167
7168 void
7169 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7170                        int pixel_clock, int link_clock,
7171                        struct intel_link_m_n *m_n)
7172 {
7173         m_n->tu = 64;
7174
7175         compute_m_n(bits_per_pixel * pixel_clock,
7176                     link_clock * nlanes * 8,
7177                     &m_n->gmch_m, &m_n->gmch_n);
7178
7179         compute_m_n(pixel_clock, link_clock,
7180                     &m_n->link_m, &m_n->link_n);
7181 }
7182
7183 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7184 {
7185         if (i915.panel_use_ssc >= 0)
7186                 return i915.panel_use_ssc != 0;
7187         return dev_priv->vbt.lvds_use_ssc
7188                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7189 }
7190
7191 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7192                            int num_connectors)
7193 {
7194         struct drm_device *dev = crtc_state->base.crtc->dev;
7195         struct drm_i915_private *dev_priv = dev->dev_private;
7196         int refclk;
7197
7198         WARN_ON(!crtc_state->base.state);
7199
7200         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) {
7201                 refclk = 100000;
7202         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7203             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7204                 refclk = dev_priv->vbt.lvds_ssc_freq;
7205                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7206         } else if (!IS_GEN2(dev)) {
7207                 refclk = 96000;
7208         } else {
7209                 refclk = 48000;
7210         }
7211
7212         return refclk;
7213 }
7214
7215 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7216 {
7217         return (1 << dpll->n) << 16 | dpll->m2;
7218 }
7219
7220 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7221 {
7222         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7223 }
7224
7225 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7226                                      struct intel_crtc_state *crtc_state,
7227                                      intel_clock_t *reduced_clock)
7228 {
7229         struct drm_device *dev = crtc->base.dev;
7230         u32 fp, fp2 = 0;
7231
7232         if (IS_PINEVIEW(dev)) {
7233                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7234                 if (reduced_clock)
7235                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7236         } else {
7237                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7238                 if (reduced_clock)
7239                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7240         }
7241
7242         crtc_state->dpll_hw_state.fp0 = fp;
7243
7244         crtc->lowfreq_avail = false;
7245         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7246             reduced_clock) {
7247                 crtc_state->dpll_hw_state.fp1 = fp2;
7248                 crtc->lowfreq_avail = true;
7249         } else {
7250                 crtc_state->dpll_hw_state.fp1 = fp;
7251         }
7252 }
7253
7254 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7255                 pipe)
7256 {
7257         u32 reg_val;
7258
7259         /*
7260          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7261          * and set it to a reasonable value instead.
7262          */
7263         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7264         reg_val &= 0xffffff00;
7265         reg_val |= 0x00000030;
7266         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7267
7268         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7269         reg_val &= 0x8cffffff;
7270         reg_val = 0x8c000000;
7271         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7272
7273         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7274         reg_val &= 0xffffff00;
7275         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7276
7277         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7278         reg_val &= 0x00ffffff;
7279         reg_val |= 0xb0000000;
7280         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7281 }
7282
7283 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7284                                          struct intel_link_m_n *m_n)
7285 {
7286         struct drm_device *dev = crtc->base.dev;
7287         struct drm_i915_private *dev_priv = dev->dev_private;
7288         int pipe = crtc->pipe;
7289
7290         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7291         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7292         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7293         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7294 }
7295
7296 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7297                                          struct intel_link_m_n *m_n,
7298                                          struct intel_link_m_n *m2_n2)
7299 {
7300         struct drm_device *dev = crtc->base.dev;
7301         struct drm_i915_private *dev_priv = dev->dev_private;
7302         int pipe = crtc->pipe;
7303         enum transcoder transcoder = crtc->config->cpu_transcoder;
7304
7305         if (INTEL_INFO(dev)->gen >= 5) {
7306                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7307                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7308                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7309                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7310                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7311                  * for gen < 8) and if DRRS is supported (to make sure the
7312                  * registers are not unnecessarily accessed).
7313                  */
7314                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7315                         crtc->config->has_drrs) {
7316                         I915_WRITE(PIPE_DATA_M2(transcoder),
7317                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7318                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7319                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7320                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7321                 }
7322         } else {
7323                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7324                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7325                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7326                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7327         }
7328 }
7329
7330 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7331 {
7332         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7333
7334         if (m_n == M1_N1) {
7335                 dp_m_n = &crtc->config->dp_m_n;
7336                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7337         } else if (m_n == M2_N2) {
7338
7339                 /*
7340                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7341                  * needs to be programmed into M1_N1.
7342                  */
7343                 dp_m_n = &crtc->config->dp_m2_n2;
7344         } else {
7345                 DRM_ERROR("Unsupported divider value\n");
7346                 return;
7347         }
7348
7349         if (crtc->config->has_pch_encoder)
7350                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7351         else
7352                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7353 }
7354
7355 static void vlv_compute_dpll(struct intel_crtc *crtc,
7356                              struct intel_crtc_state *pipe_config)
7357 {
7358         u32 dpll, dpll_md;
7359
7360         /*
7361          * Enable DPIO clock input. We should never disable the reference
7362          * clock for pipe B, since VGA hotplug / manual detection depends
7363          * on it.
7364          */
7365         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7366                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7367         /* We should never disable this, set it here for state tracking */
7368         if (crtc->pipe == PIPE_B)
7369                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7370         dpll |= DPLL_VCO_ENABLE;
7371         pipe_config->dpll_hw_state.dpll = dpll;
7372
7373         dpll_md = (pipe_config->pixel_multiplier - 1)
7374                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7375         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7376 }
7377
7378 static void vlv_prepare_pll(struct intel_crtc *crtc,
7379                             const struct intel_crtc_state *pipe_config)
7380 {
7381         struct drm_device *dev = crtc->base.dev;
7382         struct drm_i915_private *dev_priv = dev->dev_private;
7383         int pipe = crtc->pipe;
7384         u32 mdiv;
7385         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7386         u32 coreclk, reg_val;
7387
7388         mutex_lock(&dev_priv->sb_lock);
7389
7390         bestn = pipe_config->dpll.n;
7391         bestm1 = pipe_config->dpll.m1;
7392         bestm2 = pipe_config->dpll.m2;
7393         bestp1 = pipe_config->dpll.p1;
7394         bestp2 = pipe_config->dpll.p2;
7395
7396         /* See eDP HDMI DPIO driver vbios notes doc */
7397
7398         /* PLL B needs special handling */
7399         if (pipe == PIPE_B)
7400                 vlv_pllb_recal_opamp(dev_priv, pipe);
7401
7402         /* Set up Tx target for periodic Rcomp update */
7403         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7404
7405         /* Disable target IRef on PLL */
7406         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7407         reg_val &= 0x00ffffff;
7408         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7409
7410         /* Disable fast lock */
7411         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7412
7413         /* Set idtafcrecal before PLL is enabled */
7414         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7415         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7416         mdiv |= ((bestn << DPIO_N_SHIFT));
7417         mdiv |= (1 << DPIO_K_SHIFT);
7418
7419         /*
7420          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7421          * but we don't support that).
7422          * Note: don't use the DAC post divider as it seems unstable.
7423          */
7424         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7425         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7426
7427         mdiv |= DPIO_ENABLE_CALIBRATION;
7428         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7429
7430         /* Set HBR and RBR LPF coefficients */
7431         if (pipe_config->port_clock == 162000 ||
7432             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7433             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7434                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7435                                  0x009f0003);
7436         else
7437                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7438                                  0x00d0000f);
7439
7440         if (pipe_config->has_dp_encoder) {
7441                 /* Use SSC source */
7442                 if (pipe == PIPE_A)
7443                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7444                                          0x0df40000);
7445                 else
7446                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7447                                          0x0df70000);
7448         } else { /* HDMI or VGA */
7449                 /* Use bend source */
7450                 if (pipe == PIPE_A)
7451                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7452                                          0x0df70000);
7453                 else
7454                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7455                                          0x0df40000);
7456         }
7457
7458         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7459         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7460         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7461             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7462                 coreclk |= 0x01000000;
7463         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7464
7465         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7466         mutex_unlock(&dev_priv->sb_lock);
7467 }
7468
7469 static void chv_compute_dpll(struct intel_crtc *crtc,
7470                              struct intel_crtc_state *pipe_config)
7471 {
7472         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7473                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7474                 DPLL_VCO_ENABLE;
7475         if (crtc->pipe != PIPE_A)
7476                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7477
7478         pipe_config->dpll_hw_state.dpll_md =
7479                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7480 }
7481
7482 static void chv_prepare_pll(struct intel_crtc *crtc,
7483                             const struct intel_crtc_state *pipe_config)
7484 {
7485         struct drm_device *dev = crtc->base.dev;
7486         struct drm_i915_private *dev_priv = dev->dev_private;
7487         int pipe = crtc->pipe;
7488         i915_reg_t dpll_reg = DPLL(crtc->pipe);
7489         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7490         u32 loopfilter, tribuf_calcntr;
7491         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7492         u32 dpio_val;
7493         int vco;
7494
7495         bestn = pipe_config->dpll.n;
7496         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7497         bestm1 = pipe_config->dpll.m1;
7498         bestm2 = pipe_config->dpll.m2 >> 22;
7499         bestp1 = pipe_config->dpll.p1;
7500         bestp2 = pipe_config->dpll.p2;
7501         vco = pipe_config->dpll.vco;
7502         dpio_val = 0;
7503         loopfilter = 0;
7504
7505         /*
7506          * Enable Refclk and SSC
7507          */
7508         I915_WRITE(dpll_reg,
7509                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7510
7511         mutex_lock(&dev_priv->sb_lock);
7512
7513         /* p1 and p2 divider */
7514         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7515                         5 << DPIO_CHV_S1_DIV_SHIFT |
7516                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7517                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7518                         1 << DPIO_CHV_K_DIV_SHIFT);
7519
7520         /* Feedback post-divider - m2 */
7521         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7522
7523         /* Feedback refclk divider - n and m1 */
7524         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7525                         DPIO_CHV_M1_DIV_BY_2 |
7526                         1 << DPIO_CHV_N_DIV_SHIFT);
7527
7528         /* M2 fraction division */
7529         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7530
7531         /* M2 fraction division enable */
7532         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7533         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7534         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7535         if (bestm2_frac)
7536                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7537         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7538
7539         /* Program digital lock detect threshold */
7540         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7541         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7542                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7543         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7544         if (!bestm2_frac)
7545                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7546         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7547
7548         /* Loop filter */
7549         if (vco == 5400000) {
7550                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7551                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7552                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7553                 tribuf_calcntr = 0x9;
7554         } else if (vco <= 6200000) {
7555                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7556                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7557                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7558                 tribuf_calcntr = 0x9;
7559         } else if (vco <= 6480000) {
7560                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7561                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7562                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7563                 tribuf_calcntr = 0x8;
7564         } else {
7565                 /* Not supported. Apply the same limits as in the max case */
7566                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7567                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7568                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7569                 tribuf_calcntr = 0;
7570         }
7571         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7572
7573         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7574         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7575         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7576         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7577
7578         /* AFC Recal */
7579         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7580                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7581                         DPIO_AFC_RECAL);
7582
7583         mutex_unlock(&dev_priv->sb_lock);
7584 }
7585
7586 /**
7587  * vlv_force_pll_on - forcibly enable just the PLL
7588  * @dev_priv: i915 private structure
7589  * @pipe: pipe PLL to enable
7590  * @dpll: PLL configuration
7591  *
7592  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7593  * in cases where we need the PLL enabled even when @pipe is not going to
7594  * be enabled.
7595  */
7596 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7597                       const struct dpll *dpll)
7598 {
7599         struct intel_crtc *crtc =
7600                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7601         struct intel_crtc_state pipe_config = {
7602                 .base.crtc = &crtc->base,
7603                 .pixel_multiplier = 1,
7604                 .dpll = *dpll,
7605         };
7606
7607         if (IS_CHERRYVIEW(dev)) {
7608                 chv_compute_dpll(crtc, &pipe_config);
7609                 chv_prepare_pll(crtc, &pipe_config);
7610                 chv_enable_pll(crtc, &pipe_config);
7611         } else {
7612                 vlv_compute_dpll(crtc, &pipe_config);
7613                 vlv_prepare_pll(crtc, &pipe_config);
7614                 vlv_enable_pll(crtc, &pipe_config);
7615         }
7616 }
7617
7618 /**
7619  * vlv_force_pll_off - forcibly disable just the PLL
7620  * @dev_priv: i915 private structure
7621  * @pipe: pipe PLL to disable
7622  *
7623  * Disable the PLL for @pipe. To be used in cases where we need
7624  * the PLL enabled even when @pipe is not going to be enabled.
7625  */
7626 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7627 {
7628         if (IS_CHERRYVIEW(dev))
7629                 chv_disable_pll(to_i915(dev), pipe);
7630         else
7631                 vlv_disable_pll(to_i915(dev), pipe);
7632 }
7633
7634 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7635                               struct intel_crtc_state *crtc_state,
7636                               intel_clock_t *reduced_clock,
7637                               int num_connectors)
7638 {
7639         struct drm_device *dev = crtc->base.dev;
7640         struct drm_i915_private *dev_priv = dev->dev_private;
7641         u32 dpll;
7642         bool is_sdvo;
7643         struct dpll *clock = &crtc_state->dpll;
7644
7645         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7646
7647         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7648                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7649
7650         dpll = DPLL_VGA_MODE_DIS;
7651
7652         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7653                 dpll |= DPLLB_MODE_LVDS;
7654         else
7655                 dpll |= DPLLB_MODE_DAC_SERIAL;
7656
7657         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7658                 dpll |= (crtc_state->pixel_multiplier - 1)
7659                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7660         }
7661
7662         if (is_sdvo)
7663                 dpll |= DPLL_SDVO_HIGH_SPEED;
7664
7665         if (crtc_state->has_dp_encoder)
7666                 dpll |= DPLL_SDVO_HIGH_SPEED;
7667
7668         /* compute bitmask from p1 value */
7669         if (IS_PINEVIEW(dev))
7670                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7671         else {
7672                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7673                 if (IS_G4X(dev) && reduced_clock)
7674                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7675         }
7676         switch (clock->p2) {
7677         case 5:
7678                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7679                 break;
7680         case 7:
7681                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7682                 break;
7683         case 10:
7684                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7685                 break;
7686         case 14:
7687                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7688                 break;
7689         }
7690         if (INTEL_INFO(dev)->gen >= 4)
7691                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7692
7693         if (crtc_state->sdvo_tv_clock)
7694                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7695         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7696                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7697                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7698         else
7699                 dpll |= PLL_REF_INPUT_DREFCLK;
7700
7701         dpll |= DPLL_VCO_ENABLE;
7702         crtc_state->dpll_hw_state.dpll = dpll;
7703
7704         if (INTEL_INFO(dev)->gen >= 4) {
7705                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7706                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7707                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7708         }
7709 }
7710
7711 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7712                               struct intel_crtc_state *crtc_state,
7713                               intel_clock_t *reduced_clock,
7714                               int num_connectors)
7715 {
7716         struct drm_device *dev = crtc->base.dev;
7717         struct drm_i915_private *dev_priv = dev->dev_private;
7718         u32 dpll;
7719         struct dpll *clock = &crtc_state->dpll;
7720
7721         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7722
7723         dpll = DPLL_VGA_MODE_DIS;
7724
7725         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7726                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7727         } else {
7728                 if (clock->p1 == 2)
7729                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7730                 else
7731                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7732                 if (clock->p2 == 4)
7733                         dpll |= PLL_P2_DIVIDE_BY_4;
7734         }
7735
7736         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7737                 dpll |= DPLL_DVO_2X_MODE;
7738
7739         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7740                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7741                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7742         else
7743                 dpll |= PLL_REF_INPUT_DREFCLK;
7744
7745         dpll |= DPLL_VCO_ENABLE;
7746         crtc_state->dpll_hw_state.dpll = dpll;
7747 }
7748
7749 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7750 {
7751         struct drm_device *dev = intel_crtc->base.dev;
7752         struct drm_i915_private *dev_priv = dev->dev_private;
7753         enum pipe pipe = intel_crtc->pipe;
7754         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7755         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7756         uint32_t crtc_vtotal, crtc_vblank_end;
7757         int vsyncshift = 0;
7758
7759         /* We need to be careful not to changed the adjusted mode, for otherwise
7760          * the hw state checker will get angry at the mismatch. */
7761         crtc_vtotal = adjusted_mode->crtc_vtotal;
7762         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7763
7764         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7765                 /* the chip adds 2 halflines automatically */
7766                 crtc_vtotal -= 1;
7767                 crtc_vblank_end -= 1;
7768
7769                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7770                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7771                 else
7772                         vsyncshift = adjusted_mode->crtc_hsync_start -
7773                                 adjusted_mode->crtc_htotal / 2;
7774                 if (vsyncshift < 0)
7775                         vsyncshift += adjusted_mode->crtc_htotal;
7776         }
7777
7778         if (INTEL_INFO(dev)->gen > 3)
7779                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7780
7781         I915_WRITE(HTOTAL(cpu_transcoder),
7782                    (adjusted_mode->crtc_hdisplay - 1) |
7783                    ((adjusted_mode->crtc_htotal - 1) << 16));
7784         I915_WRITE(HBLANK(cpu_transcoder),
7785                    (adjusted_mode->crtc_hblank_start - 1) |
7786                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7787         I915_WRITE(HSYNC(cpu_transcoder),
7788                    (adjusted_mode->crtc_hsync_start - 1) |
7789                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7790
7791         I915_WRITE(VTOTAL(cpu_transcoder),
7792                    (adjusted_mode->crtc_vdisplay - 1) |
7793                    ((crtc_vtotal - 1) << 16));
7794         I915_WRITE(VBLANK(cpu_transcoder),
7795                    (adjusted_mode->crtc_vblank_start - 1) |
7796                    ((crtc_vblank_end - 1) << 16));
7797         I915_WRITE(VSYNC(cpu_transcoder),
7798                    (adjusted_mode->crtc_vsync_start - 1) |
7799                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7800
7801         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7802          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7803          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7804          * bits. */
7805         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7806             (pipe == PIPE_B || pipe == PIPE_C))
7807                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7808
7809         /* pipesrc controls the size that is scaled from, which should
7810          * always be the user's requested size.
7811          */
7812         I915_WRITE(PIPESRC(pipe),
7813                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7814                    (intel_crtc->config->pipe_src_h - 1));
7815 }
7816
7817 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7818                                    struct intel_crtc_state *pipe_config)
7819 {
7820         struct drm_device *dev = crtc->base.dev;
7821         struct drm_i915_private *dev_priv = dev->dev_private;
7822         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7823         uint32_t tmp;
7824
7825         tmp = I915_READ(HTOTAL(cpu_transcoder));
7826         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7827         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7828         tmp = I915_READ(HBLANK(cpu_transcoder));
7829         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7830         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7831         tmp = I915_READ(HSYNC(cpu_transcoder));
7832         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7833         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7834
7835         tmp = I915_READ(VTOTAL(cpu_transcoder));
7836         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7837         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7838         tmp = I915_READ(VBLANK(cpu_transcoder));
7839         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7840         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7841         tmp = I915_READ(VSYNC(cpu_transcoder));
7842         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7843         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7844
7845         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7846                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7847                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7848                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7849         }
7850
7851         tmp = I915_READ(PIPESRC(crtc->pipe));
7852         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7853         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7854
7855         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7856         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7857 }
7858
7859 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7860                                  struct intel_crtc_state *pipe_config)
7861 {
7862         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7863         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7864         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7865         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7866
7867         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7868         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7869         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7870         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7871
7872         mode->flags = pipe_config->base.adjusted_mode.flags;
7873         mode->type = DRM_MODE_TYPE_DRIVER;
7874
7875         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7876         mode->flags |= pipe_config->base.adjusted_mode.flags;
7877
7878         mode->hsync = drm_mode_hsync(mode);
7879         mode->vrefresh = drm_mode_vrefresh(mode);
7880         drm_mode_set_name(mode);
7881 }
7882
7883 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7884 {
7885         struct drm_device *dev = intel_crtc->base.dev;
7886         struct drm_i915_private *dev_priv = dev->dev_private;
7887         uint32_t pipeconf;
7888
7889         pipeconf = 0;
7890
7891         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7892             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7893                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7894
7895         if (intel_crtc->config->double_wide)
7896                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7897
7898         /* only g4x and later have fancy bpc/dither controls */
7899         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7900                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7901                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7902                         pipeconf |= PIPECONF_DITHER_EN |
7903                                     PIPECONF_DITHER_TYPE_SP;
7904
7905                 switch (intel_crtc->config->pipe_bpp) {
7906                 case 18:
7907                         pipeconf |= PIPECONF_6BPC;
7908                         break;
7909                 case 24:
7910                         pipeconf |= PIPECONF_8BPC;
7911                         break;
7912                 case 30:
7913                         pipeconf |= PIPECONF_10BPC;
7914                         break;
7915                 default:
7916                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7917                         BUG();
7918                 }
7919         }
7920
7921         if (HAS_PIPE_CXSR(dev)) {
7922                 if (intel_crtc->lowfreq_avail) {
7923                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7924                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7925                 } else {
7926                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7927                 }
7928         }
7929
7930         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7931                 if (INTEL_INFO(dev)->gen < 4 ||
7932                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7933                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7934                 else
7935                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7936         } else
7937                 pipeconf |= PIPECONF_PROGRESSIVE;
7938
7939         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7940              intel_crtc->config->limited_color_range)
7941                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7942
7943         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7944         POSTING_READ(PIPECONF(intel_crtc->pipe));
7945 }
7946
7947 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7948                                    struct intel_crtc_state *crtc_state)
7949 {
7950         struct drm_device *dev = crtc->base.dev;
7951         struct drm_i915_private *dev_priv = dev->dev_private;
7952         int refclk, num_connectors = 0;
7953         intel_clock_t clock;
7954         bool ok;
7955         const intel_limit_t *limit;
7956         struct drm_atomic_state *state = crtc_state->base.state;
7957         struct drm_connector *connector;
7958         struct drm_connector_state *connector_state;
7959         int i;
7960
7961         memset(&crtc_state->dpll_hw_state, 0,
7962                sizeof(crtc_state->dpll_hw_state));
7963
7964         if (crtc_state->has_dsi_encoder)
7965                 return 0;
7966
7967         for_each_connector_in_state(state, connector, connector_state, i) {
7968                 if (connector_state->crtc == &crtc->base)
7969                         num_connectors++;
7970         }
7971
7972         if (!crtc_state->clock_set) {
7973                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7974
7975                 /*
7976                  * Returns a set of divisors for the desired target clock with
7977                  * the given refclk, or FALSE.  The returned values represent
7978                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7979                  * 2) / p1 / p2.
7980                  */
7981                 limit = intel_limit(crtc_state, refclk);
7982                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7983                                                  crtc_state->port_clock,
7984                                                  refclk, NULL, &clock);
7985                 if (!ok) {
7986                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7987                         return -EINVAL;
7988                 }
7989
7990                 /* Compat-code for transition, will disappear. */
7991                 crtc_state->dpll.n = clock.n;
7992                 crtc_state->dpll.m1 = clock.m1;
7993                 crtc_state->dpll.m2 = clock.m2;
7994                 crtc_state->dpll.p1 = clock.p1;
7995                 crtc_state->dpll.p2 = clock.p2;
7996         }
7997
7998         if (IS_GEN2(dev)) {
7999                 i8xx_compute_dpll(crtc, crtc_state, NULL,
8000                                   num_connectors);
8001         } else if (IS_CHERRYVIEW(dev)) {
8002                 chv_compute_dpll(crtc, crtc_state);
8003         } else if (IS_VALLEYVIEW(dev)) {
8004                 vlv_compute_dpll(crtc, crtc_state);
8005         } else {
8006                 i9xx_compute_dpll(crtc, crtc_state, NULL,
8007                                   num_connectors);
8008         }
8009
8010         return 0;
8011 }
8012
8013 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8014                                  struct intel_crtc_state *pipe_config)
8015 {
8016         struct drm_device *dev = crtc->base.dev;
8017         struct drm_i915_private *dev_priv = dev->dev_private;
8018         uint32_t tmp;
8019
8020         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8021                 return;
8022
8023         tmp = I915_READ(PFIT_CONTROL);
8024         if (!(tmp & PFIT_ENABLE))
8025                 return;
8026
8027         /* Check whether the pfit is attached to our pipe. */
8028         if (INTEL_INFO(dev)->gen < 4) {
8029                 if (crtc->pipe != PIPE_B)
8030                         return;
8031         } else {
8032                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8033                         return;
8034         }
8035
8036         pipe_config->gmch_pfit.control = tmp;
8037         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8038         if (INTEL_INFO(dev)->gen < 5)
8039                 pipe_config->gmch_pfit.lvds_border_bits =
8040                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
8041 }
8042
8043 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8044                                struct intel_crtc_state *pipe_config)
8045 {
8046         struct drm_device *dev = crtc->base.dev;
8047         struct drm_i915_private *dev_priv = dev->dev_private;
8048         int pipe = pipe_config->cpu_transcoder;
8049         intel_clock_t clock;
8050         u32 mdiv;
8051         int refclk = 100000;
8052
8053         /* In case of MIPI DPLL will not even be used */
8054         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8055                 return;
8056
8057         mutex_lock(&dev_priv->sb_lock);
8058         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8059         mutex_unlock(&dev_priv->sb_lock);
8060
8061         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8062         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8063         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8064         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8065         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8066
8067         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8068 }
8069
8070 static void
8071 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8072                               struct intel_initial_plane_config *plane_config)
8073 {
8074         struct drm_device *dev = crtc->base.dev;
8075         struct drm_i915_private *dev_priv = dev->dev_private;
8076         u32 val, base, offset;
8077         int pipe = crtc->pipe, plane = crtc->plane;
8078         int fourcc, pixel_format;
8079         unsigned int aligned_height;
8080         struct drm_framebuffer *fb;
8081         struct intel_framebuffer *intel_fb;
8082
8083         val = I915_READ(DSPCNTR(plane));
8084         if (!(val & DISPLAY_PLANE_ENABLE))
8085                 return;
8086
8087         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8088         if (!intel_fb) {
8089                 DRM_DEBUG_KMS("failed to alloc fb\n");
8090                 return;
8091         }
8092
8093         fb = &intel_fb->base;
8094
8095         if (INTEL_INFO(dev)->gen >= 4) {
8096                 if (val & DISPPLANE_TILED) {
8097                         plane_config->tiling = I915_TILING_X;
8098                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8099                 }
8100         }
8101
8102         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8103         fourcc = i9xx_format_to_fourcc(pixel_format);
8104         fb->pixel_format = fourcc;
8105         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8106
8107         if (INTEL_INFO(dev)->gen >= 4) {
8108                 if (plane_config->tiling)
8109                         offset = I915_READ(DSPTILEOFF(plane));
8110                 else
8111                         offset = I915_READ(DSPLINOFF(plane));
8112                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8113         } else {
8114                 base = I915_READ(DSPADDR(plane));
8115         }
8116         plane_config->base = base;
8117
8118         val = I915_READ(PIPESRC(pipe));
8119         fb->width = ((val >> 16) & 0xfff) + 1;
8120         fb->height = ((val >> 0) & 0xfff) + 1;
8121
8122         val = I915_READ(DSPSTRIDE(pipe));
8123         fb->pitches[0] = val & 0xffffffc0;
8124
8125         aligned_height = intel_fb_align_height(dev, fb->height,
8126                                                fb->pixel_format,
8127                                                fb->modifier[0]);
8128
8129         plane_config->size = fb->pitches[0] * aligned_height;
8130
8131         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8132                       pipe_name(pipe), plane, fb->width, fb->height,
8133                       fb->bits_per_pixel, base, fb->pitches[0],
8134                       plane_config->size);
8135
8136         plane_config->fb = intel_fb;
8137 }
8138
8139 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8140                                struct intel_crtc_state *pipe_config)
8141 {
8142         struct drm_device *dev = crtc->base.dev;
8143         struct drm_i915_private *dev_priv = dev->dev_private;
8144         int pipe = pipe_config->cpu_transcoder;
8145         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8146         intel_clock_t clock;
8147         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8148         int refclk = 100000;
8149
8150         mutex_lock(&dev_priv->sb_lock);
8151         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8152         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8153         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8154         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8155         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8156         mutex_unlock(&dev_priv->sb_lock);
8157
8158         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8159         clock.m2 = (pll_dw0 & 0xff) << 22;
8160         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8161                 clock.m2 |= pll_dw2 & 0x3fffff;
8162         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8163         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8164         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8165
8166         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8167 }
8168
8169 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8170                                  struct intel_crtc_state *pipe_config)
8171 {
8172         struct drm_device *dev = crtc->base.dev;
8173         struct drm_i915_private *dev_priv = dev->dev_private;
8174         uint32_t tmp;
8175
8176         if (!intel_display_power_is_enabled(dev_priv,
8177                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8178                 return false;
8179
8180         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8181         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8182
8183         tmp = I915_READ(PIPECONF(crtc->pipe));
8184         if (!(tmp & PIPECONF_ENABLE))
8185                 return false;
8186
8187         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8188                 switch (tmp & PIPECONF_BPC_MASK) {
8189                 case PIPECONF_6BPC:
8190                         pipe_config->pipe_bpp = 18;
8191                         break;
8192                 case PIPECONF_8BPC:
8193                         pipe_config->pipe_bpp = 24;
8194                         break;
8195                 case PIPECONF_10BPC:
8196                         pipe_config->pipe_bpp = 30;
8197                         break;
8198                 default:
8199                         break;
8200                 }
8201         }
8202
8203         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8204             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8205                 pipe_config->limited_color_range = true;
8206
8207         if (INTEL_INFO(dev)->gen < 4)
8208                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8209
8210         intel_get_pipe_timings(crtc, pipe_config);
8211
8212         i9xx_get_pfit_config(crtc, pipe_config);
8213
8214         if (INTEL_INFO(dev)->gen >= 4) {
8215                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8216                 pipe_config->pixel_multiplier =
8217                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8218                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8219                 pipe_config->dpll_hw_state.dpll_md = tmp;
8220         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8221                 tmp = I915_READ(DPLL(crtc->pipe));
8222                 pipe_config->pixel_multiplier =
8223                         ((tmp & SDVO_MULTIPLIER_MASK)
8224                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8225         } else {
8226                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8227                  * port and will be fixed up in the encoder->get_config
8228                  * function. */
8229                 pipe_config->pixel_multiplier = 1;
8230         }
8231         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8232         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8233                 /*
8234                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8235                  * on 830. Filter it out here so that we don't
8236                  * report errors due to that.
8237                  */
8238                 if (IS_I830(dev))
8239                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8240
8241                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8242                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8243         } else {
8244                 /* Mask out read-only status bits. */
8245                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8246                                                      DPLL_PORTC_READY_MASK |
8247                                                      DPLL_PORTB_READY_MASK);
8248         }
8249
8250         if (IS_CHERRYVIEW(dev))
8251                 chv_crtc_clock_get(crtc, pipe_config);
8252         else if (IS_VALLEYVIEW(dev))
8253                 vlv_crtc_clock_get(crtc, pipe_config);
8254         else
8255                 i9xx_crtc_clock_get(crtc, pipe_config);
8256
8257         /*
8258          * Normally the dotclock is filled in by the encoder .get_config()
8259          * but in case the pipe is enabled w/o any ports we need a sane
8260          * default.
8261          */
8262         pipe_config->base.adjusted_mode.crtc_clock =
8263                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8264
8265         return true;
8266 }
8267
8268 static void ironlake_init_pch_refclk(struct drm_device *dev)
8269 {
8270         struct drm_i915_private *dev_priv = dev->dev_private;
8271         struct intel_encoder *encoder;
8272         u32 val, final;
8273         bool has_lvds = false;
8274         bool has_cpu_edp = false;
8275         bool has_panel = false;
8276         bool has_ck505 = false;
8277         bool can_ssc = false;
8278
8279         /* We need to take the global config into account */
8280         for_each_intel_encoder(dev, encoder) {
8281                 switch (encoder->type) {
8282                 case INTEL_OUTPUT_LVDS:
8283                         has_panel = true;
8284                         has_lvds = true;
8285                         break;
8286                 case INTEL_OUTPUT_EDP:
8287                         has_panel = true;
8288                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8289                                 has_cpu_edp = true;
8290                         break;
8291                 default:
8292                         break;
8293                 }
8294         }
8295
8296         if (HAS_PCH_IBX(dev)) {
8297                 has_ck505 = dev_priv->vbt.display_clock_mode;
8298                 can_ssc = has_ck505;
8299         } else {
8300                 has_ck505 = false;
8301                 can_ssc = true;
8302         }
8303
8304         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8305                       has_panel, has_lvds, has_ck505);
8306
8307         /* Ironlake: try to setup display ref clock before DPLL
8308          * enabling. This is only under driver's control after
8309          * PCH B stepping, previous chipset stepping should be
8310          * ignoring this setting.
8311          */
8312         val = I915_READ(PCH_DREF_CONTROL);
8313
8314         /* As we must carefully and slowly disable/enable each source in turn,
8315          * compute the final state we want first and check if we need to
8316          * make any changes at all.
8317          */
8318         final = val;
8319         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8320         if (has_ck505)
8321                 final |= DREF_NONSPREAD_CK505_ENABLE;
8322         else
8323                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8324
8325         final &= ~DREF_SSC_SOURCE_MASK;
8326         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8327         final &= ~DREF_SSC1_ENABLE;
8328
8329         if (has_panel) {
8330                 final |= DREF_SSC_SOURCE_ENABLE;
8331
8332                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8333                         final |= DREF_SSC1_ENABLE;
8334
8335                 if (has_cpu_edp) {
8336                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8337                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8338                         else
8339                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8340                 } else
8341                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8342         } else {
8343                 final |= DREF_SSC_SOURCE_DISABLE;
8344                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8345         }
8346
8347         if (final == val)
8348                 return;
8349
8350         /* Always enable nonspread source */
8351         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8352
8353         if (has_ck505)
8354                 val |= DREF_NONSPREAD_CK505_ENABLE;
8355         else
8356                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8357
8358         if (has_panel) {
8359                 val &= ~DREF_SSC_SOURCE_MASK;
8360                 val |= DREF_SSC_SOURCE_ENABLE;
8361
8362                 /* SSC must be turned on before enabling the CPU output  */
8363                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8364                         DRM_DEBUG_KMS("Using SSC on panel\n");
8365                         val |= DREF_SSC1_ENABLE;
8366                 } else
8367                         val &= ~DREF_SSC1_ENABLE;
8368
8369                 /* Get SSC going before enabling the outputs */
8370                 I915_WRITE(PCH_DREF_CONTROL, val);
8371                 POSTING_READ(PCH_DREF_CONTROL);
8372                 udelay(200);
8373
8374                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8375
8376                 /* Enable CPU source on CPU attached eDP */
8377                 if (has_cpu_edp) {
8378                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8379                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8380                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8381                         } else
8382                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8383                 } else
8384                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8385
8386                 I915_WRITE(PCH_DREF_CONTROL, val);
8387                 POSTING_READ(PCH_DREF_CONTROL);
8388                 udelay(200);
8389         } else {
8390                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8391
8392                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8393
8394                 /* Turn off CPU output */
8395                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8396
8397                 I915_WRITE(PCH_DREF_CONTROL, val);
8398                 POSTING_READ(PCH_DREF_CONTROL);
8399                 udelay(200);
8400
8401                 /* Turn off the SSC source */
8402                 val &= ~DREF_SSC_SOURCE_MASK;
8403                 val |= DREF_SSC_SOURCE_DISABLE;
8404
8405                 /* Turn off SSC1 */
8406                 val &= ~DREF_SSC1_ENABLE;
8407
8408                 I915_WRITE(PCH_DREF_CONTROL, val);
8409                 POSTING_READ(PCH_DREF_CONTROL);
8410                 udelay(200);
8411         }
8412
8413         BUG_ON(val != final);
8414 }
8415
8416 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8417 {
8418         uint32_t tmp;
8419
8420         tmp = I915_READ(SOUTH_CHICKEN2);
8421         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8422         I915_WRITE(SOUTH_CHICKEN2, tmp);
8423
8424         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8425                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8426                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8427
8428         tmp = I915_READ(SOUTH_CHICKEN2);
8429         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8430         I915_WRITE(SOUTH_CHICKEN2, tmp);
8431
8432         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8433                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8434                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8435 }
8436
8437 /* WaMPhyProgramming:hsw */
8438 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8439 {
8440         uint32_t tmp;
8441
8442         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8443         tmp &= ~(0xFF << 24);
8444         tmp |= (0x12 << 24);
8445         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8446
8447         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8448         tmp |= (1 << 11);
8449         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8450
8451         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8452         tmp |= (1 << 11);
8453         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8454
8455         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8456         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8457         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8458
8459         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8460         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8461         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8462
8463         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8464         tmp &= ~(7 << 13);
8465         tmp |= (5 << 13);
8466         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8467
8468         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8469         tmp &= ~(7 << 13);
8470         tmp |= (5 << 13);
8471         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8472
8473         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8474         tmp &= ~0xFF;
8475         tmp |= 0x1C;
8476         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8477
8478         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8479         tmp &= ~0xFF;
8480         tmp |= 0x1C;
8481         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8482
8483         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8484         tmp &= ~(0xFF << 16);
8485         tmp |= (0x1C << 16);
8486         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8487
8488         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8489         tmp &= ~(0xFF << 16);
8490         tmp |= (0x1C << 16);
8491         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8492
8493         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8494         tmp |= (1 << 27);
8495         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8496
8497         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8498         tmp |= (1 << 27);
8499         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8500
8501         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8502         tmp &= ~(0xF << 28);
8503         tmp |= (4 << 28);
8504         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8505
8506         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8507         tmp &= ~(0xF << 28);
8508         tmp |= (4 << 28);
8509         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8510 }
8511
8512 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8513  * Programming" based on the parameters passed:
8514  * - Sequence to enable CLKOUT_DP
8515  * - Sequence to enable CLKOUT_DP without spread
8516  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8517  */
8518 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8519                                  bool with_fdi)
8520 {
8521         struct drm_i915_private *dev_priv = dev->dev_private;
8522         uint32_t reg, tmp;
8523
8524         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8525                 with_spread = true;
8526         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8527                 with_fdi = false;
8528
8529         mutex_lock(&dev_priv->sb_lock);
8530
8531         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8532         tmp &= ~SBI_SSCCTL_DISABLE;
8533         tmp |= SBI_SSCCTL_PATHALT;
8534         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8535
8536         udelay(24);
8537
8538         if (with_spread) {
8539                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8540                 tmp &= ~SBI_SSCCTL_PATHALT;
8541                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8542
8543                 if (with_fdi) {
8544                         lpt_reset_fdi_mphy(dev_priv);
8545                         lpt_program_fdi_mphy(dev_priv);
8546                 }
8547         }
8548
8549         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8550         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8551         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8552         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8553
8554         mutex_unlock(&dev_priv->sb_lock);
8555 }
8556
8557 /* Sequence to disable CLKOUT_DP */
8558 static void lpt_disable_clkout_dp(struct drm_device *dev)
8559 {
8560         struct drm_i915_private *dev_priv = dev->dev_private;
8561         uint32_t reg, tmp;
8562
8563         mutex_lock(&dev_priv->sb_lock);
8564
8565         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8566         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8567         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8568         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8569
8570         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8571         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8572                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8573                         tmp |= SBI_SSCCTL_PATHALT;
8574                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8575                         udelay(32);
8576                 }
8577                 tmp |= SBI_SSCCTL_DISABLE;
8578                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8579         }
8580
8581         mutex_unlock(&dev_priv->sb_lock);
8582 }
8583
8584 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8585
8586 static const uint16_t sscdivintphase[] = {
8587         [BEND_IDX( 50)] = 0x3B23,
8588         [BEND_IDX( 45)] = 0x3B23,
8589         [BEND_IDX( 40)] = 0x3C23,
8590         [BEND_IDX( 35)] = 0x3C23,
8591         [BEND_IDX( 30)] = 0x3D23,
8592         [BEND_IDX( 25)] = 0x3D23,
8593         [BEND_IDX( 20)] = 0x3E23,
8594         [BEND_IDX( 15)] = 0x3E23,
8595         [BEND_IDX( 10)] = 0x3F23,
8596         [BEND_IDX(  5)] = 0x3F23,
8597         [BEND_IDX(  0)] = 0x0025,
8598         [BEND_IDX( -5)] = 0x0025,
8599         [BEND_IDX(-10)] = 0x0125,
8600         [BEND_IDX(-15)] = 0x0125,
8601         [BEND_IDX(-20)] = 0x0225,
8602         [BEND_IDX(-25)] = 0x0225,
8603         [BEND_IDX(-30)] = 0x0325,
8604         [BEND_IDX(-35)] = 0x0325,
8605         [BEND_IDX(-40)] = 0x0425,
8606         [BEND_IDX(-45)] = 0x0425,
8607         [BEND_IDX(-50)] = 0x0525,
8608 };
8609
8610 /*
8611  * Bend CLKOUT_DP
8612  * steps -50 to 50 inclusive, in steps of 5
8613  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8614  * change in clock period = -(steps / 10) * 5.787 ps
8615  */
8616 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8617 {
8618         uint32_t tmp;
8619         int idx = BEND_IDX(steps);
8620
8621         if (WARN_ON(steps % 5 != 0))
8622                 return;
8623
8624         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8625                 return;
8626
8627         mutex_lock(&dev_priv->sb_lock);
8628
8629         if (steps % 10 != 0)
8630                 tmp = 0xAAAAAAAB;
8631         else
8632                 tmp = 0x00000000;
8633         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8634
8635         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8636         tmp &= 0xffff0000;
8637         tmp |= sscdivintphase[idx];
8638         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8639
8640         mutex_unlock(&dev_priv->sb_lock);
8641 }
8642
8643 #undef BEND_IDX
8644
8645 static void lpt_init_pch_refclk(struct drm_device *dev)
8646 {
8647         struct intel_encoder *encoder;
8648         bool has_vga = false;
8649
8650         for_each_intel_encoder(dev, encoder) {
8651                 switch (encoder->type) {
8652                 case INTEL_OUTPUT_ANALOG:
8653                         has_vga = true;
8654                         break;
8655                 default:
8656                         break;
8657                 }
8658         }
8659
8660         if (has_vga) {
8661                 lpt_bend_clkout_dp(to_i915(dev), 0);
8662                 lpt_enable_clkout_dp(dev, true, true);
8663         } else {
8664                 lpt_disable_clkout_dp(dev);
8665         }
8666 }
8667
8668 /*
8669  * Initialize reference clocks when the driver loads
8670  */
8671 void intel_init_pch_refclk(struct drm_device *dev)
8672 {
8673         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8674                 ironlake_init_pch_refclk(dev);
8675         else if (HAS_PCH_LPT(dev))
8676                 lpt_init_pch_refclk(dev);
8677 }
8678
8679 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8680 {
8681         struct drm_device *dev = crtc_state->base.crtc->dev;
8682         struct drm_i915_private *dev_priv = dev->dev_private;
8683         struct drm_atomic_state *state = crtc_state->base.state;
8684         struct drm_connector *connector;
8685         struct drm_connector_state *connector_state;
8686         struct intel_encoder *encoder;
8687         int num_connectors = 0, i;
8688         bool is_lvds = false;
8689
8690         for_each_connector_in_state(state, connector, connector_state, i) {
8691                 if (connector_state->crtc != crtc_state->base.crtc)
8692                         continue;
8693
8694                 encoder = to_intel_encoder(connector_state->best_encoder);
8695
8696                 switch (encoder->type) {
8697                 case INTEL_OUTPUT_LVDS:
8698                         is_lvds = true;
8699                         break;
8700                 default:
8701                         break;
8702                 }
8703                 num_connectors++;
8704         }
8705
8706         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8707                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8708                               dev_priv->vbt.lvds_ssc_freq);
8709                 return dev_priv->vbt.lvds_ssc_freq;
8710         }
8711
8712         return 120000;
8713 }
8714
8715 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8716 {
8717         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8718         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8719         int pipe = intel_crtc->pipe;
8720         uint32_t val;
8721
8722         val = 0;
8723
8724         switch (intel_crtc->config->pipe_bpp) {
8725         case 18:
8726                 val |= PIPECONF_6BPC;
8727                 break;
8728         case 24:
8729                 val |= PIPECONF_8BPC;
8730                 break;
8731         case 30:
8732                 val |= PIPECONF_10BPC;
8733                 break;
8734         case 36:
8735                 val |= PIPECONF_12BPC;
8736                 break;
8737         default:
8738                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8739                 BUG();
8740         }
8741
8742         if (intel_crtc->config->dither)
8743                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8744
8745         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8746                 val |= PIPECONF_INTERLACED_ILK;
8747         else
8748                 val |= PIPECONF_PROGRESSIVE;
8749
8750         if (intel_crtc->config->limited_color_range)
8751                 val |= PIPECONF_COLOR_RANGE_SELECT;
8752
8753         I915_WRITE(PIPECONF(pipe), val);
8754         POSTING_READ(PIPECONF(pipe));
8755 }
8756
8757 /*
8758  * Set up the pipe CSC unit.
8759  *
8760  * Currently only full range RGB to limited range RGB conversion
8761  * is supported, but eventually this should handle various
8762  * RGB<->YCbCr scenarios as well.
8763  */
8764 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8765 {
8766         struct drm_device *dev = crtc->dev;
8767         struct drm_i915_private *dev_priv = dev->dev_private;
8768         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8769         int pipe = intel_crtc->pipe;
8770         uint16_t coeff = 0x7800; /* 1.0 */
8771
8772         /*
8773          * TODO: Check what kind of values actually come out of the pipe
8774          * with these coeff/postoff values and adjust to get the best
8775          * accuracy. Perhaps we even need to take the bpc value into
8776          * consideration.
8777          */
8778
8779         if (intel_crtc->config->limited_color_range)
8780                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8781
8782         /*
8783          * GY/GU and RY/RU should be the other way around according
8784          * to BSpec, but reality doesn't agree. Just set them up in
8785          * a way that results in the correct picture.
8786          */
8787         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8788         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8789
8790         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8791         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8792
8793         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8794         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8795
8796         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8797         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8798         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8799
8800         if (INTEL_INFO(dev)->gen > 6) {
8801                 uint16_t postoff = 0;
8802
8803                 if (intel_crtc->config->limited_color_range)
8804                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8805
8806                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8807                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8808                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8809
8810                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8811         } else {
8812                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8813
8814                 if (intel_crtc->config->limited_color_range)
8815                         mode |= CSC_BLACK_SCREEN_OFFSET;
8816
8817                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8818         }
8819 }
8820
8821 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8822 {
8823         struct drm_device *dev = crtc->dev;
8824         struct drm_i915_private *dev_priv = dev->dev_private;
8825         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8826         enum pipe pipe = intel_crtc->pipe;
8827         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8828         uint32_t val;
8829
8830         val = 0;
8831
8832         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8833                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8834
8835         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8836                 val |= PIPECONF_INTERLACED_ILK;
8837         else
8838                 val |= PIPECONF_PROGRESSIVE;
8839
8840         I915_WRITE(PIPECONF(cpu_transcoder), val);
8841         POSTING_READ(PIPECONF(cpu_transcoder));
8842
8843         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8844         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8845
8846         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8847                 val = 0;
8848
8849                 switch (intel_crtc->config->pipe_bpp) {
8850                 case 18:
8851                         val |= PIPEMISC_DITHER_6_BPC;
8852                         break;
8853                 case 24:
8854                         val |= PIPEMISC_DITHER_8_BPC;
8855                         break;
8856                 case 30:
8857                         val |= PIPEMISC_DITHER_10_BPC;
8858                         break;
8859                 case 36:
8860                         val |= PIPEMISC_DITHER_12_BPC;
8861                         break;
8862                 default:
8863                         /* Case prevented by pipe_config_set_bpp. */
8864                         BUG();
8865                 }
8866
8867                 if (intel_crtc->config->dither)
8868                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8869
8870                 I915_WRITE(PIPEMISC(pipe), val);
8871         }
8872 }
8873
8874 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8875                                     struct intel_crtc_state *crtc_state,
8876                                     intel_clock_t *clock,
8877                                     bool *has_reduced_clock,
8878                                     intel_clock_t *reduced_clock)
8879 {
8880         struct drm_device *dev = crtc->dev;
8881         struct drm_i915_private *dev_priv = dev->dev_private;
8882         int refclk;
8883         const intel_limit_t *limit;
8884         bool ret;
8885
8886         refclk = ironlake_get_refclk(crtc_state);
8887
8888         /*
8889          * Returns a set of divisors for the desired target clock with the given
8890          * refclk, or FALSE.  The returned values represent the clock equation:
8891          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8892          */
8893         limit = intel_limit(crtc_state, refclk);
8894         ret = dev_priv->display.find_dpll(limit, crtc_state,
8895                                           crtc_state->port_clock,
8896                                           refclk, NULL, clock);
8897         if (!ret)
8898                 return false;
8899
8900         return true;
8901 }
8902
8903 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8904 {
8905         /*
8906          * Account for spread spectrum to avoid
8907          * oversubscribing the link. Max center spread
8908          * is 2.5%; use 5% for safety's sake.
8909          */
8910         u32 bps = target_clock * bpp * 21 / 20;
8911         return DIV_ROUND_UP(bps, link_bw * 8);
8912 }
8913
8914 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8915 {
8916         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8917 }
8918
8919 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8920                                       struct intel_crtc_state *crtc_state,
8921                                       u32 *fp,
8922                                       intel_clock_t *reduced_clock, u32 *fp2)
8923 {
8924         struct drm_crtc *crtc = &intel_crtc->base;
8925         struct drm_device *dev = crtc->dev;
8926         struct drm_i915_private *dev_priv = dev->dev_private;
8927         struct drm_atomic_state *state = crtc_state->base.state;
8928         struct drm_connector *connector;
8929         struct drm_connector_state *connector_state;
8930         struct intel_encoder *encoder;
8931         uint32_t dpll;
8932         int factor, num_connectors = 0, i;
8933         bool is_lvds = false, is_sdvo = false;
8934
8935         for_each_connector_in_state(state, connector, connector_state, i) {
8936                 if (connector_state->crtc != crtc_state->base.crtc)
8937                         continue;
8938
8939                 encoder = to_intel_encoder(connector_state->best_encoder);
8940
8941                 switch (encoder->type) {
8942                 case INTEL_OUTPUT_LVDS:
8943                         is_lvds = true;
8944                         break;
8945                 case INTEL_OUTPUT_SDVO:
8946                 case INTEL_OUTPUT_HDMI:
8947                         is_sdvo = true;
8948                         break;
8949                 default:
8950                         break;
8951                 }
8952
8953                 num_connectors++;
8954         }
8955
8956         /* Enable autotuning of the PLL clock (if permissible) */
8957         factor = 21;
8958         if (is_lvds) {
8959                 if ((intel_panel_use_ssc(dev_priv) &&
8960                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8961                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8962                         factor = 25;
8963         } else if (crtc_state->sdvo_tv_clock)
8964                 factor = 20;
8965
8966         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8967                 *fp |= FP_CB_TUNE;
8968
8969         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8970                 *fp2 |= FP_CB_TUNE;
8971
8972         dpll = 0;
8973
8974         if (is_lvds)
8975                 dpll |= DPLLB_MODE_LVDS;
8976         else
8977                 dpll |= DPLLB_MODE_DAC_SERIAL;
8978
8979         dpll |= (crtc_state->pixel_multiplier - 1)
8980                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8981
8982         if (is_sdvo)
8983                 dpll |= DPLL_SDVO_HIGH_SPEED;
8984         if (crtc_state->has_dp_encoder)
8985                 dpll |= DPLL_SDVO_HIGH_SPEED;
8986
8987         /* compute bitmask from p1 value */
8988         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8989         /* also FPA1 */
8990         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8991
8992         switch (crtc_state->dpll.p2) {
8993         case 5:
8994                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8995                 break;
8996         case 7:
8997                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8998                 break;
8999         case 10:
9000                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9001                 break;
9002         case 14:
9003                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9004                 break;
9005         }
9006
9007         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
9008                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9009         else
9010                 dpll |= PLL_REF_INPUT_DREFCLK;
9011
9012         return dpll | DPLL_VCO_ENABLE;
9013 }
9014
9015 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9016                                        struct intel_crtc_state *crtc_state)
9017 {
9018         struct drm_device *dev = crtc->base.dev;
9019         intel_clock_t clock, reduced_clock;
9020         u32 dpll = 0, fp = 0, fp2 = 0;
9021         bool ok, has_reduced_clock = false;
9022         bool is_lvds = false;
9023         struct intel_shared_dpll *pll;
9024
9025         memset(&crtc_state->dpll_hw_state, 0,
9026                sizeof(crtc_state->dpll_hw_state));
9027
9028         is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
9029
9030         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
9031              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
9032
9033         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
9034                                      &has_reduced_clock, &reduced_clock);
9035         if (!ok && !crtc_state->clock_set) {
9036                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9037                 return -EINVAL;
9038         }
9039         /* Compat-code for transition, will disappear. */
9040         if (!crtc_state->clock_set) {
9041                 crtc_state->dpll.n = clock.n;
9042                 crtc_state->dpll.m1 = clock.m1;
9043                 crtc_state->dpll.m2 = clock.m2;
9044                 crtc_state->dpll.p1 = clock.p1;
9045                 crtc_state->dpll.p2 = clock.p2;
9046         }
9047
9048         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9049         if (crtc_state->has_pch_encoder) {
9050                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9051                 if (has_reduced_clock)
9052                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
9053
9054                 dpll = ironlake_compute_dpll(crtc, crtc_state,
9055                                              &fp, &reduced_clock,
9056                                              has_reduced_clock ? &fp2 : NULL);
9057
9058                 crtc_state->dpll_hw_state.dpll = dpll;
9059                 crtc_state->dpll_hw_state.fp0 = fp;
9060                 if (has_reduced_clock)
9061                         crtc_state->dpll_hw_state.fp1 = fp2;
9062                 else
9063                         crtc_state->dpll_hw_state.fp1 = fp;
9064
9065                 pll = intel_get_shared_dpll(crtc, crtc_state);
9066                 if (pll == NULL) {
9067                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9068                                          pipe_name(crtc->pipe));
9069                         return -EINVAL;
9070                 }
9071         }
9072
9073         if (is_lvds && has_reduced_clock)
9074                 crtc->lowfreq_avail = true;
9075         else
9076                 crtc->lowfreq_avail = false;
9077
9078         return 0;
9079 }
9080
9081 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9082                                          struct intel_link_m_n *m_n)
9083 {
9084         struct drm_device *dev = crtc->base.dev;
9085         struct drm_i915_private *dev_priv = dev->dev_private;
9086         enum pipe pipe = crtc->pipe;
9087
9088         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9089         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9090         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9091                 & ~TU_SIZE_MASK;
9092         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9093         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9094                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9095 }
9096
9097 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9098                                          enum transcoder transcoder,
9099                                          struct intel_link_m_n *m_n,
9100                                          struct intel_link_m_n *m2_n2)
9101 {
9102         struct drm_device *dev = crtc->base.dev;
9103         struct drm_i915_private *dev_priv = dev->dev_private;
9104         enum pipe pipe = crtc->pipe;
9105
9106         if (INTEL_INFO(dev)->gen >= 5) {
9107                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9108                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9109                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9110                         & ~TU_SIZE_MASK;
9111                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9112                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9113                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9114                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9115                  * gen < 8) and if DRRS is supported (to make sure the
9116                  * registers are not unnecessarily read).
9117                  */
9118                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9119                         crtc->config->has_drrs) {
9120                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9121                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9122                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9123                                         & ~TU_SIZE_MASK;
9124                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9125                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9126                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9127                 }
9128         } else {
9129                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9130                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9131                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9132                         & ~TU_SIZE_MASK;
9133                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9134                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9135                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9136         }
9137 }
9138
9139 void intel_dp_get_m_n(struct intel_crtc *crtc,
9140                       struct intel_crtc_state *pipe_config)
9141 {
9142         if (pipe_config->has_pch_encoder)
9143                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9144         else
9145                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9146                                              &pipe_config->dp_m_n,
9147                                              &pipe_config->dp_m2_n2);
9148 }
9149
9150 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9151                                         struct intel_crtc_state *pipe_config)
9152 {
9153         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9154                                      &pipe_config->fdi_m_n, NULL);
9155 }
9156
9157 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9158                                     struct intel_crtc_state *pipe_config)
9159 {
9160         struct drm_device *dev = crtc->base.dev;
9161         struct drm_i915_private *dev_priv = dev->dev_private;
9162         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9163         uint32_t ps_ctrl = 0;
9164         int id = -1;
9165         int i;
9166
9167         /* find scaler attached to this pipe */
9168         for (i = 0; i < crtc->num_scalers; i++) {
9169                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9170                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9171                         id = i;
9172                         pipe_config->pch_pfit.enabled = true;
9173                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9174                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9175                         break;
9176                 }
9177         }
9178
9179         scaler_state->scaler_id = id;
9180         if (id >= 0) {
9181                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9182         } else {
9183                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9184         }
9185 }
9186
9187 static void
9188 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9189                                  struct intel_initial_plane_config *plane_config)
9190 {
9191         struct drm_device *dev = crtc->base.dev;
9192         struct drm_i915_private *dev_priv = dev->dev_private;
9193         u32 val, base, offset, stride_mult, tiling;
9194         int pipe = crtc->pipe;
9195         int fourcc, pixel_format;
9196         unsigned int aligned_height;
9197         struct drm_framebuffer *fb;
9198         struct intel_framebuffer *intel_fb;
9199
9200         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9201         if (!intel_fb) {
9202                 DRM_DEBUG_KMS("failed to alloc fb\n");
9203                 return;
9204         }
9205
9206         fb = &intel_fb->base;
9207
9208         val = I915_READ(PLANE_CTL(pipe, 0));
9209         if (!(val & PLANE_CTL_ENABLE))
9210                 goto error;
9211
9212         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9213         fourcc = skl_format_to_fourcc(pixel_format,
9214                                       val & PLANE_CTL_ORDER_RGBX,
9215                                       val & PLANE_CTL_ALPHA_MASK);
9216         fb->pixel_format = fourcc;
9217         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9218
9219         tiling = val & PLANE_CTL_TILED_MASK;
9220         switch (tiling) {
9221         case PLANE_CTL_TILED_LINEAR:
9222                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9223                 break;
9224         case PLANE_CTL_TILED_X:
9225                 plane_config->tiling = I915_TILING_X;
9226                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9227                 break;
9228         case PLANE_CTL_TILED_Y:
9229                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9230                 break;
9231         case PLANE_CTL_TILED_YF:
9232                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9233                 break;
9234         default:
9235                 MISSING_CASE(tiling);
9236                 goto error;
9237         }
9238
9239         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9240         plane_config->base = base;
9241
9242         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9243
9244         val = I915_READ(PLANE_SIZE(pipe, 0));
9245         fb->height = ((val >> 16) & 0xfff) + 1;
9246         fb->width = ((val >> 0) & 0x1fff) + 1;
9247
9248         val = I915_READ(PLANE_STRIDE(pipe, 0));
9249         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9250                                                 fb->pixel_format);
9251         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9252
9253         aligned_height = intel_fb_align_height(dev, fb->height,
9254                                                fb->pixel_format,
9255                                                fb->modifier[0]);
9256
9257         plane_config->size = fb->pitches[0] * aligned_height;
9258
9259         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9260                       pipe_name(pipe), fb->width, fb->height,
9261                       fb->bits_per_pixel, base, fb->pitches[0],
9262                       plane_config->size);
9263
9264         plane_config->fb = intel_fb;
9265         return;
9266
9267 error:
9268         kfree(fb);
9269 }
9270
9271 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9272                                      struct intel_crtc_state *pipe_config)
9273 {
9274         struct drm_device *dev = crtc->base.dev;
9275         struct drm_i915_private *dev_priv = dev->dev_private;
9276         uint32_t tmp;
9277
9278         tmp = I915_READ(PF_CTL(crtc->pipe));
9279
9280         if (tmp & PF_ENABLE) {
9281                 pipe_config->pch_pfit.enabled = true;
9282                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9283                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9284
9285                 /* We currently do not free assignements of panel fitters on
9286                  * ivb/hsw (since we don't use the higher upscaling modes which
9287                  * differentiates them) so just WARN about this case for now. */
9288                 if (IS_GEN7(dev)) {
9289                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9290                                 PF_PIPE_SEL_IVB(crtc->pipe));
9291                 }
9292         }
9293 }
9294
9295 static void
9296 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9297                                   struct intel_initial_plane_config *plane_config)
9298 {
9299         struct drm_device *dev = crtc->base.dev;
9300         struct drm_i915_private *dev_priv = dev->dev_private;
9301         u32 val, base, offset;
9302         int pipe = crtc->pipe;
9303         int fourcc, pixel_format;
9304         unsigned int aligned_height;
9305         struct drm_framebuffer *fb;
9306         struct intel_framebuffer *intel_fb;
9307
9308         val = I915_READ(DSPCNTR(pipe));
9309         if (!(val & DISPLAY_PLANE_ENABLE))
9310                 return;
9311
9312         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9313         if (!intel_fb) {
9314                 DRM_DEBUG_KMS("failed to alloc fb\n");
9315                 return;
9316         }
9317
9318         fb = &intel_fb->base;
9319
9320         if (INTEL_INFO(dev)->gen >= 4) {
9321                 if (val & DISPPLANE_TILED) {
9322                         plane_config->tiling = I915_TILING_X;
9323                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9324                 }
9325         }
9326
9327         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9328         fourcc = i9xx_format_to_fourcc(pixel_format);
9329         fb->pixel_format = fourcc;
9330         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9331
9332         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9333         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9334                 offset = I915_READ(DSPOFFSET(pipe));
9335         } else {
9336                 if (plane_config->tiling)
9337                         offset = I915_READ(DSPTILEOFF(pipe));
9338                 else
9339                         offset = I915_READ(DSPLINOFF(pipe));
9340         }
9341         plane_config->base = base;
9342
9343         val = I915_READ(PIPESRC(pipe));
9344         fb->width = ((val >> 16) & 0xfff) + 1;
9345         fb->height = ((val >> 0) & 0xfff) + 1;
9346
9347         val = I915_READ(DSPSTRIDE(pipe));
9348         fb->pitches[0] = val & 0xffffffc0;
9349
9350         aligned_height = intel_fb_align_height(dev, fb->height,
9351                                                fb->pixel_format,
9352                                                fb->modifier[0]);
9353
9354         plane_config->size = fb->pitches[0] * aligned_height;
9355
9356         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9357                       pipe_name(pipe), fb->width, fb->height,
9358                       fb->bits_per_pixel, base, fb->pitches[0],
9359                       plane_config->size);
9360
9361         plane_config->fb = intel_fb;
9362 }
9363
9364 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9365                                      struct intel_crtc_state *pipe_config)
9366 {
9367         struct drm_device *dev = crtc->base.dev;
9368         struct drm_i915_private *dev_priv = dev->dev_private;
9369         uint32_t tmp;
9370
9371         if (!intel_display_power_is_enabled(dev_priv,
9372                                             POWER_DOMAIN_PIPE(crtc->pipe)))
9373                 return false;
9374
9375         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9376         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9377
9378         tmp = I915_READ(PIPECONF(crtc->pipe));
9379         if (!(tmp & PIPECONF_ENABLE))
9380                 return false;
9381
9382         switch (tmp & PIPECONF_BPC_MASK) {
9383         case PIPECONF_6BPC:
9384                 pipe_config->pipe_bpp = 18;
9385                 break;
9386         case PIPECONF_8BPC:
9387                 pipe_config->pipe_bpp = 24;
9388                 break;
9389         case PIPECONF_10BPC:
9390                 pipe_config->pipe_bpp = 30;
9391                 break;
9392         case PIPECONF_12BPC:
9393                 pipe_config->pipe_bpp = 36;
9394                 break;
9395         default:
9396                 break;
9397         }
9398
9399         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9400                 pipe_config->limited_color_range = true;
9401
9402         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9403                 struct intel_shared_dpll *pll;
9404
9405                 pipe_config->has_pch_encoder = true;
9406
9407                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9408                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9409                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9410
9411                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9412
9413                 if (HAS_PCH_IBX(dev_priv->dev)) {
9414                         pipe_config->shared_dpll =
9415                                 (enum intel_dpll_id) crtc->pipe;
9416                 } else {
9417                         tmp = I915_READ(PCH_DPLL_SEL);
9418                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9419                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9420                         else
9421                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9422                 }
9423
9424                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9425
9426                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9427                                            &pipe_config->dpll_hw_state));
9428
9429                 tmp = pipe_config->dpll_hw_state.dpll;
9430                 pipe_config->pixel_multiplier =
9431                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9432                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9433
9434                 ironlake_pch_clock_get(crtc, pipe_config);
9435         } else {
9436                 pipe_config->pixel_multiplier = 1;
9437         }
9438
9439         intel_get_pipe_timings(crtc, pipe_config);
9440
9441         ironlake_get_pfit_config(crtc, pipe_config);
9442
9443         return true;
9444 }
9445
9446 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9447 {
9448         struct drm_device *dev = dev_priv->dev;
9449         struct intel_crtc *crtc;
9450
9451         for_each_intel_crtc(dev, crtc)
9452                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9453                      pipe_name(crtc->pipe));
9454
9455         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9456         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9457         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9458         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9459         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9460         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9461              "CPU PWM1 enabled\n");
9462         if (IS_HASWELL(dev))
9463                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9464                      "CPU PWM2 enabled\n");
9465         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9466              "PCH PWM1 enabled\n");
9467         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9468              "Utility pin enabled\n");
9469         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9470
9471         /*
9472          * In theory we can still leave IRQs enabled, as long as only the HPD
9473          * interrupts remain enabled. We used to check for that, but since it's
9474          * gen-specific and since we only disable LCPLL after we fully disable
9475          * the interrupts, the check below should be enough.
9476          */
9477         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9478 }
9479
9480 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9481 {
9482         struct drm_device *dev = dev_priv->dev;
9483
9484         if (IS_HASWELL(dev))
9485                 return I915_READ(D_COMP_HSW);
9486         else
9487                 return I915_READ(D_COMP_BDW);
9488 }
9489
9490 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9491 {
9492         struct drm_device *dev = dev_priv->dev;
9493
9494         if (IS_HASWELL(dev)) {
9495                 mutex_lock(&dev_priv->rps.hw_lock);
9496                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9497                                             val))
9498                         DRM_ERROR("Failed to write to D_COMP\n");
9499                 mutex_unlock(&dev_priv->rps.hw_lock);
9500         } else {
9501                 I915_WRITE(D_COMP_BDW, val);
9502                 POSTING_READ(D_COMP_BDW);
9503         }
9504 }
9505
9506 /*
9507  * This function implements pieces of two sequences from BSpec:
9508  * - Sequence for display software to disable LCPLL
9509  * - Sequence for display software to allow package C8+
9510  * The steps implemented here are just the steps that actually touch the LCPLL
9511  * register. Callers should take care of disabling all the display engine
9512  * functions, doing the mode unset, fixing interrupts, etc.
9513  */
9514 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9515                               bool switch_to_fclk, bool allow_power_down)
9516 {
9517         uint32_t val;
9518
9519         assert_can_disable_lcpll(dev_priv);
9520
9521         val = I915_READ(LCPLL_CTL);
9522
9523         if (switch_to_fclk) {
9524                 val |= LCPLL_CD_SOURCE_FCLK;
9525                 I915_WRITE(LCPLL_CTL, val);
9526
9527                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9528                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9529                         DRM_ERROR("Switching to FCLK failed\n");
9530
9531                 val = I915_READ(LCPLL_CTL);
9532         }
9533
9534         val |= LCPLL_PLL_DISABLE;
9535         I915_WRITE(LCPLL_CTL, val);
9536         POSTING_READ(LCPLL_CTL);
9537
9538         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9539                 DRM_ERROR("LCPLL still locked\n");
9540
9541         val = hsw_read_dcomp(dev_priv);
9542         val |= D_COMP_COMP_DISABLE;
9543         hsw_write_dcomp(dev_priv, val);
9544         ndelay(100);
9545
9546         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9547                      1))
9548                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9549
9550         if (allow_power_down) {
9551                 val = I915_READ(LCPLL_CTL);
9552                 val |= LCPLL_POWER_DOWN_ALLOW;
9553                 I915_WRITE(LCPLL_CTL, val);
9554                 POSTING_READ(LCPLL_CTL);
9555         }
9556 }
9557
9558 /*
9559  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9560  * source.
9561  */
9562 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9563 {
9564         uint32_t val;
9565
9566         val = I915_READ(LCPLL_CTL);
9567
9568         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9569                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9570                 return;
9571
9572         /*
9573          * Make sure we're not on PC8 state before disabling PC8, otherwise
9574          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9575          */
9576         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9577
9578         if (val & LCPLL_POWER_DOWN_ALLOW) {
9579                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9580                 I915_WRITE(LCPLL_CTL, val);
9581                 POSTING_READ(LCPLL_CTL);
9582         }
9583
9584         val = hsw_read_dcomp(dev_priv);
9585         val |= D_COMP_COMP_FORCE;
9586         val &= ~D_COMP_COMP_DISABLE;
9587         hsw_write_dcomp(dev_priv, val);
9588
9589         val = I915_READ(LCPLL_CTL);
9590         val &= ~LCPLL_PLL_DISABLE;
9591         I915_WRITE(LCPLL_CTL, val);
9592
9593         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9594                 DRM_ERROR("LCPLL not locked yet\n");
9595
9596         if (val & LCPLL_CD_SOURCE_FCLK) {
9597                 val = I915_READ(LCPLL_CTL);
9598                 val &= ~LCPLL_CD_SOURCE_FCLK;
9599                 I915_WRITE(LCPLL_CTL, val);
9600
9601                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9602                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9603                         DRM_ERROR("Switching back to LCPLL failed\n");
9604         }
9605
9606         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9607         intel_update_cdclk(dev_priv->dev);
9608 }
9609
9610 /*
9611  * Package states C8 and deeper are really deep PC states that can only be
9612  * reached when all the devices on the system allow it, so even if the graphics
9613  * device allows PC8+, it doesn't mean the system will actually get to these
9614  * states. Our driver only allows PC8+ when going into runtime PM.
9615  *
9616  * The requirements for PC8+ are that all the outputs are disabled, the power
9617  * well is disabled and most interrupts are disabled, and these are also
9618  * requirements for runtime PM. When these conditions are met, we manually do
9619  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9620  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9621  * hang the machine.
9622  *
9623  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9624  * the state of some registers, so when we come back from PC8+ we need to
9625  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9626  * need to take care of the registers kept by RC6. Notice that this happens even
9627  * if we don't put the device in PCI D3 state (which is what currently happens
9628  * because of the runtime PM support).
9629  *
9630  * For more, read "Display Sequences for Package C8" on the hardware
9631  * documentation.
9632  */
9633 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9634 {
9635         struct drm_device *dev = dev_priv->dev;
9636         uint32_t val;
9637
9638         DRM_DEBUG_KMS("Enabling package C8+\n");
9639
9640         if (HAS_PCH_LPT_LP(dev)) {
9641                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9642                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9643                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9644         }
9645
9646         lpt_disable_clkout_dp(dev);
9647         hsw_disable_lcpll(dev_priv, true, true);
9648 }
9649
9650 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9651 {
9652         struct drm_device *dev = dev_priv->dev;
9653         uint32_t val;
9654
9655         DRM_DEBUG_KMS("Disabling package C8+\n");
9656
9657         hsw_restore_lcpll(dev_priv);
9658         lpt_init_pch_refclk(dev);
9659
9660         if (HAS_PCH_LPT_LP(dev)) {
9661                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9662                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9663                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9664         }
9665
9666         intel_prepare_ddi(dev);
9667 }
9668
9669 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9670 {
9671         struct drm_device *dev = old_state->dev;
9672         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9673
9674         broxton_set_cdclk(dev, req_cdclk);
9675 }
9676
9677 /* compute the max rate for new configuration */
9678 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9679 {
9680         struct intel_crtc *intel_crtc;
9681         struct intel_crtc_state *crtc_state;
9682         int max_pixel_rate = 0;
9683
9684         for_each_intel_crtc(state->dev, intel_crtc) {
9685                 int pixel_rate;
9686
9687                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9688                 if (IS_ERR(crtc_state))
9689                         return PTR_ERR(crtc_state);
9690
9691                 if (!crtc_state->base.enable)
9692                         continue;
9693
9694                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9695
9696                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9697                 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9698                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9699
9700                 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9701         }
9702
9703         return max_pixel_rate;
9704 }
9705
9706 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9707 {
9708         struct drm_i915_private *dev_priv = dev->dev_private;
9709         uint32_t val, data;
9710         int ret;
9711
9712         if (WARN((I915_READ(LCPLL_CTL) &
9713                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9714                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9715                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9716                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9717                  "trying to change cdclk frequency with cdclk not enabled\n"))
9718                 return;
9719
9720         mutex_lock(&dev_priv->rps.hw_lock);
9721         ret = sandybridge_pcode_write(dev_priv,
9722                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9723         mutex_unlock(&dev_priv->rps.hw_lock);
9724         if (ret) {
9725                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9726                 return;
9727         }
9728
9729         val = I915_READ(LCPLL_CTL);
9730         val |= LCPLL_CD_SOURCE_FCLK;
9731         I915_WRITE(LCPLL_CTL, val);
9732
9733         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9734                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9735                 DRM_ERROR("Switching to FCLK failed\n");
9736
9737         val = I915_READ(LCPLL_CTL);
9738         val &= ~LCPLL_CLK_FREQ_MASK;
9739
9740         switch (cdclk) {
9741         case 450000:
9742                 val |= LCPLL_CLK_FREQ_450;
9743                 data = 0;
9744                 break;
9745         case 540000:
9746                 val |= LCPLL_CLK_FREQ_54O_BDW;
9747                 data = 1;
9748                 break;
9749         case 337500:
9750                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9751                 data = 2;
9752                 break;
9753         case 675000:
9754                 val |= LCPLL_CLK_FREQ_675_BDW;
9755                 data = 3;
9756                 break;
9757         default:
9758                 WARN(1, "invalid cdclk frequency\n");
9759                 return;
9760         }
9761
9762         I915_WRITE(LCPLL_CTL, val);
9763
9764         val = I915_READ(LCPLL_CTL);
9765         val &= ~LCPLL_CD_SOURCE_FCLK;
9766         I915_WRITE(LCPLL_CTL, val);
9767
9768         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9769                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9770                 DRM_ERROR("Switching back to LCPLL failed\n");
9771
9772         mutex_lock(&dev_priv->rps.hw_lock);
9773         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9774         mutex_unlock(&dev_priv->rps.hw_lock);
9775
9776         intel_update_cdclk(dev);
9777
9778         WARN(cdclk != dev_priv->cdclk_freq,
9779              "cdclk requested %d kHz but got %d kHz\n",
9780              cdclk, dev_priv->cdclk_freq);
9781 }
9782
9783 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9784 {
9785         struct drm_i915_private *dev_priv = to_i915(state->dev);
9786         int max_pixclk = ilk_max_pixel_rate(state);
9787         int cdclk;
9788
9789         /*
9790          * FIXME should also account for plane ratio
9791          * once 64bpp pixel formats are supported.
9792          */
9793         if (max_pixclk > 540000)
9794                 cdclk = 675000;
9795         else if (max_pixclk > 450000)
9796                 cdclk = 540000;
9797         else if (max_pixclk > 337500)
9798                 cdclk = 450000;
9799         else
9800                 cdclk = 337500;
9801
9802         if (cdclk > dev_priv->max_cdclk_freq) {
9803                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9804                               cdclk, dev_priv->max_cdclk_freq);
9805                 return -EINVAL;
9806         }
9807
9808         to_intel_atomic_state(state)->cdclk = cdclk;
9809
9810         return 0;
9811 }
9812
9813 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9814 {
9815         struct drm_device *dev = old_state->dev;
9816         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9817
9818         broadwell_set_cdclk(dev, req_cdclk);
9819 }
9820
9821 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9822                                       struct intel_crtc_state *crtc_state)
9823 {
9824         if (!intel_ddi_pll_select(crtc, crtc_state))
9825                 return -EINVAL;
9826
9827         crtc->lowfreq_avail = false;
9828
9829         return 0;
9830 }
9831
9832 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9833                                 enum port port,
9834                                 struct intel_crtc_state *pipe_config)
9835 {
9836         switch (port) {
9837         case PORT_A:
9838                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9839                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9840                 break;
9841         case PORT_B:
9842                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9843                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9844                 break;
9845         case PORT_C:
9846                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9847                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9848                 break;
9849         default:
9850                 DRM_ERROR("Incorrect port type\n");
9851         }
9852 }
9853
9854 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9855                                 enum port port,
9856                                 struct intel_crtc_state *pipe_config)
9857 {
9858         u32 temp, dpll_ctl1;
9859
9860         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9861         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9862
9863         switch (pipe_config->ddi_pll_sel) {
9864         case SKL_DPLL0:
9865                 /*
9866                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9867                  * of the shared DPLL framework and thus needs to be read out
9868                  * separately
9869                  */
9870                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9871                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9872                 break;
9873         case SKL_DPLL1:
9874                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9875                 break;
9876         case SKL_DPLL2:
9877                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9878                 break;
9879         case SKL_DPLL3:
9880                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9881                 break;
9882         }
9883 }
9884
9885 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9886                                 enum port port,
9887                                 struct intel_crtc_state *pipe_config)
9888 {
9889         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9890
9891         switch (pipe_config->ddi_pll_sel) {
9892         case PORT_CLK_SEL_WRPLL1:
9893                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9894                 break;
9895         case PORT_CLK_SEL_WRPLL2:
9896                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9897                 break;
9898         case PORT_CLK_SEL_SPLL:
9899                 pipe_config->shared_dpll = DPLL_ID_SPLL;
9900                 break;
9901         }
9902 }
9903
9904 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9905                                        struct intel_crtc_state *pipe_config)
9906 {
9907         struct drm_device *dev = crtc->base.dev;
9908         struct drm_i915_private *dev_priv = dev->dev_private;
9909         struct intel_shared_dpll *pll;
9910         enum port port;
9911         uint32_t tmp;
9912
9913         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9914
9915         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9916
9917         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9918                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9919         else if (IS_BROXTON(dev))
9920                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9921         else
9922                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9923
9924         if (pipe_config->shared_dpll >= 0) {
9925                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9926
9927                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9928                                            &pipe_config->dpll_hw_state));
9929         }
9930
9931         /*
9932          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9933          * DDI E. So just check whether this pipe is wired to DDI E and whether
9934          * the PCH transcoder is on.
9935          */
9936         if (INTEL_INFO(dev)->gen < 9 &&
9937             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9938                 pipe_config->has_pch_encoder = true;
9939
9940                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9941                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9942                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9943
9944                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9945         }
9946 }
9947
9948 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9949                                     struct intel_crtc_state *pipe_config)
9950 {
9951         struct drm_device *dev = crtc->base.dev;
9952         struct drm_i915_private *dev_priv = dev->dev_private;
9953         enum intel_display_power_domain pfit_domain;
9954         uint32_t tmp;
9955
9956         if (!intel_display_power_is_enabled(dev_priv,
9957                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9958                 return false;
9959
9960         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9961         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9962
9963         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9964         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9965                 enum pipe trans_edp_pipe;
9966                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9967                 default:
9968                         WARN(1, "unknown pipe linked to edp transcoder\n");
9969                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9970                 case TRANS_DDI_EDP_INPUT_A_ON:
9971                         trans_edp_pipe = PIPE_A;
9972                         break;
9973                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9974                         trans_edp_pipe = PIPE_B;
9975                         break;
9976                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9977                         trans_edp_pipe = PIPE_C;
9978                         break;
9979                 }
9980
9981                 if (trans_edp_pipe == crtc->pipe)
9982                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9983         }
9984
9985         if (!intel_display_power_is_enabled(dev_priv,
9986                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9987                 return false;
9988
9989         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9990         if (!(tmp & PIPECONF_ENABLE))
9991                 return false;
9992
9993         haswell_get_ddi_port_state(crtc, pipe_config);
9994
9995         intel_get_pipe_timings(crtc, pipe_config);
9996
9997         if (INTEL_INFO(dev)->gen >= 9) {
9998                 skl_init_scalers(dev, crtc, pipe_config);
9999         }
10000
10001         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10002
10003         if (INTEL_INFO(dev)->gen >= 9) {
10004                 pipe_config->scaler_state.scaler_id = -1;
10005                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10006         }
10007
10008         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
10009                 if (INTEL_INFO(dev)->gen >= 9)
10010                         skylake_get_pfit_config(crtc, pipe_config);
10011                 else
10012                         ironlake_get_pfit_config(crtc, pipe_config);
10013         }
10014
10015         if (IS_HASWELL(dev))
10016                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10017                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10018
10019         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
10020                 pipe_config->pixel_multiplier =
10021                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10022         } else {
10023                 pipe_config->pixel_multiplier = 1;
10024         }
10025
10026         return true;
10027 }
10028
10029 static void i845_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
10030 {
10031         struct drm_device *dev = crtc->dev;
10032         struct drm_i915_private *dev_priv = dev->dev_private;
10033         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10034         uint32_t cntl = 0, size = 0;
10035
10036         if (on) {
10037                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
10038                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
10039                 unsigned int stride = roundup_pow_of_two(width) * 4;
10040
10041                 switch (stride) {
10042                 default:
10043                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10044                                   width, stride);
10045                         stride = 256;
10046                         /* fallthrough */
10047                 case 256:
10048                 case 512:
10049                 case 1024:
10050                 case 2048:
10051                         break;
10052                 }
10053
10054                 cntl |= CURSOR_ENABLE |
10055                         CURSOR_GAMMA_ENABLE |
10056                         CURSOR_FORMAT_ARGB |
10057                         CURSOR_STRIDE(stride);
10058
10059                 size = (height << 12) | width;
10060         }
10061
10062         if (intel_crtc->cursor_cntl != 0 &&
10063             (intel_crtc->cursor_base != base ||
10064              intel_crtc->cursor_size != size ||
10065              intel_crtc->cursor_cntl != cntl)) {
10066                 /* On these chipsets we can only modify the base/size/stride
10067                  * whilst the cursor is disabled.
10068                  */
10069                 I915_WRITE(CURCNTR(PIPE_A), 0);
10070                 POSTING_READ(CURCNTR(PIPE_A));
10071                 intel_crtc->cursor_cntl = 0;
10072         }
10073
10074         if (intel_crtc->cursor_base != base) {
10075                 I915_WRITE(CURBASE(PIPE_A), base);
10076                 intel_crtc->cursor_base = base;
10077         }
10078
10079         if (intel_crtc->cursor_size != size) {
10080                 I915_WRITE(CURSIZE, size);
10081                 intel_crtc->cursor_size = size;
10082         }
10083
10084         if (intel_crtc->cursor_cntl != cntl) {
10085                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10086                 POSTING_READ(CURCNTR(PIPE_A));
10087                 intel_crtc->cursor_cntl = cntl;
10088         }
10089 }
10090
10091 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
10092 {
10093         struct drm_device *dev = crtc->dev;
10094         struct drm_i915_private *dev_priv = dev->dev_private;
10095         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10096         int pipe = intel_crtc->pipe;
10097         uint32_t cntl = 0;
10098
10099         if (on) {
10100                 cntl = MCURSOR_GAMMA_ENABLE;
10101                 switch (intel_crtc->base.cursor->state->crtc_w) {
10102                         case 64:
10103                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10104                                 break;
10105                         case 128:
10106                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10107                                 break;
10108                         case 256:
10109                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10110                                 break;
10111                         default:
10112                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
10113                                 return;
10114                 }
10115                 cntl |= pipe << 28; /* Connect to correct pipe */
10116
10117                 if (HAS_DDI(dev))
10118                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10119         }
10120
10121         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10122                 cntl |= CURSOR_ROTATE_180;
10123
10124         if (intel_crtc->cursor_cntl != cntl) {
10125                 I915_WRITE(CURCNTR(pipe), cntl);
10126                 POSTING_READ(CURCNTR(pipe));
10127                 intel_crtc->cursor_cntl = cntl;
10128         }
10129
10130         /* and commit changes on next vblank */
10131         I915_WRITE(CURBASE(pipe), base);
10132         POSTING_READ(CURBASE(pipe));
10133
10134         intel_crtc->cursor_base = base;
10135 }
10136
10137 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10138 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10139                                      bool on)
10140 {
10141         struct drm_device *dev = crtc->dev;
10142         struct drm_i915_private *dev_priv = dev->dev_private;
10143         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10144         int pipe = intel_crtc->pipe;
10145         struct drm_plane_state *cursor_state = crtc->cursor->state;
10146         int x = cursor_state->crtc_x;
10147         int y = cursor_state->crtc_y;
10148         u32 base = 0, pos = 0;
10149
10150         base = intel_crtc->cursor_addr;
10151
10152         if (x >= intel_crtc->config->pipe_src_w)
10153                 on = false;
10154
10155         if (y >= intel_crtc->config->pipe_src_h)
10156                 on = false;
10157
10158         if (x < 0) {
10159                 if (x + cursor_state->crtc_w <= 0)
10160                         on = false;
10161
10162                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10163                 x = -x;
10164         }
10165         pos |= x << CURSOR_X_SHIFT;
10166
10167         if (y < 0) {
10168                 if (y + cursor_state->crtc_h <= 0)
10169                         on = false;
10170
10171                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10172                 y = -y;
10173         }
10174         pos |= y << CURSOR_Y_SHIFT;
10175
10176         I915_WRITE(CURPOS(pipe), pos);
10177
10178         /* ILK+ do this automagically */
10179         if (HAS_GMCH_DISPLAY(dev) &&
10180             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10181                 base += (cursor_state->crtc_h *
10182                          cursor_state->crtc_w - 1) * 4;
10183         }
10184
10185         if (IS_845G(dev) || IS_I865G(dev))
10186                 i845_update_cursor(crtc, base, on);
10187         else
10188                 i9xx_update_cursor(crtc, base, on);
10189 }
10190
10191 static bool cursor_size_ok(struct drm_device *dev,
10192                            uint32_t width, uint32_t height)
10193 {
10194         if (width == 0 || height == 0)
10195                 return false;
10196
10197         /*
10198          * 845g/865g are special in that they are only limited by
10199          * the width of their cursors, the height is arbitrary up to
10200          * the precision of the register. Everything else requires
10201          * square cursors, limited to a few power-of-two sizes.
10202          */
10203         if (IS_845G(dev) || IS_I865G(dev)) {
10204                 if ((width & 63) != 0)
10205                         return false;
10206
10207                 if (width > (IS_845G(dev) ? 64 : 512))
10208                         return false;
10209
10210                 if (height > 1023)
10211                         return false;
10212         } else {
10213                 switch (width | height) {
10214                 case 256:
10215                 case 128:
10216                         if (IS_GEN2(dev))
10217                                 return false;
10218                 case 64:
10219                         break;
10220                 default:
10221                         return false;
10222                 }
10223         }
10224
10225         return true;
10226 }
10227
10228 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10229                                  u16 *blue, uint32_t start, uint32_t size)
10230 {
10231         int end = (start + size > 256) ? 256 : start + size, i;
10232         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10233
10234         for (i = start; i < end; i++) {
10235                 intel_crtc->lut_r[i] = red[i] >> 8;
10236                 intel_crtc->lut_g[i] = green[i] >> 8;
10237                 intel_crtc->lut_b[i] = blue[i] >> 8;
10238         }
10239
10240         intel_crtc_load_lut(crtc);
10241 }
10242
10243 /* VESA 640x480x72Hz mode to set on the pipe */
10244 static struct drm_display_mode load_detect_mode = {
10245         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10246                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10247 };
10248
10249 struct drm_framebuffer *
10250 __intel_framebuffer_create(struct drm_device *dev,
10251                            struct drm_mode_fb_cmd2 *mode_cmd,
10252                            struct drm_i915_gem_object *obj)
10253 {
10254         struct intel_framebuffer *intel_fb;
10255         int ret;
10256
10257         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10258         if (!intel_fb)
10259                 return ERR_PTR(-ENOMEM);
10260
10261         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10262         if (ret)
10263                 goto err;
10264
10265         return &intel_fb->base;
10266
10267 err:
10268         kfree(intel_fb);
10269         return ERR_PTR(ret);
10270 }
10271
10272 static struct drm_framebuffer *
10273 intel_framebuffer_create(struct drm_device *dev,
10274                          struct drm_mode_fb_cmd2 *mode_cmd,
10275                          struct drm_i915_gem_object *obj)
10276 {
10277         struct drm_framebuffer *fb;
10278         int ret;
10279
10280         ret = i915_mutex_lock_interruptible(dev);
10281         if (ret)
10282                 return ERR_PTR(ret);
10283         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10284         mutex_unlock(&dev->struct_mutex);
10285
10286         return fb;
10287 }
10288
10289 static u32
10290 intel_framebuffer_pitch_for_width(int width, int bpp)
10291 {
10292         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10293         return ALIGN(pitch, 64);
10294 }
10295
10296 static u32
10297 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10298 {
10299         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10300         return PAGE_ALIGN(pitch * mode->vdisplay);
10301 }
10302
10303 static struct drm_framebuffer *
10304 intel_framebuffer_create_for_mode(struct drm_device *dev,
10305                                   struct drm_display_mode *mode,
10306                                   int depth, int bpp)
10307 {
10308         struct drm_framebuffer *fb;
10309         struct drm_i915_gem_object *obj;
10310         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10311
10312         obj = i915_gem_alloc_object(dev,
10313                                     intel_framebuffer_size_for_mode(mode, bpp));
10314         if (obj == NULL)
10315                 return ERR_PTR(-ENOMEM);
10316
10317         mode_cmd.width = mode->hdisplay;
10318         mode_cmd.height = mode->vdisplay;
10319         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10320                                                                 bpp);
10321         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10322
10323         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10324         if (IS_ERR(fb))
10325                 drm_gem_object_unreference_unlocked(&obj->base);
10326
10327         return fb;
10328 }
10329
10330 static struct drm_framebuffer *
10331 mode_fits_in_fbdev(struct drm_device *dev,
10332                    struct drm_display_mode *mode)
10333 {
10334 #ifdef CONFIG_DRM_FBDEV_EMULATION
10335         struct drm_i915_private *dev_priv = dev->dev_private;
10336         struct drm_i915_gem_object *obj;
10337         struct drm_framebuffer *fb;
10338
10339         if (!dev_priv->fbdev)
10340                 return NULL;
10341
10342         if (!dev_priv->fbdev->fb)
10343                 return NULL;
10344
10345         obj = dev_priv->fbdev->fb->obj;
10346         BUG_ON(!obj);
10347
10348         fb = &dev_priv->fbdev->fb->base;
10349         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10350                                                                fb->bits_per_pixel))
10351                 return NULL;
10352
10353         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10354                 return NULL;
10355
10356         return fb;
10357 #else
10358         return NULL;
10359 #endif
10360 }
10361
10362 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10363                                            struct drm_crtc *crtc,
10364                                            struct drm_display_mode *mode,
10365                                            struct drm_framebuffer *fb,
10366                                            int x, int y)
10367 {
10368         struct drm_plane_state *plane_state;
10369         int hdisplay, vdisplay;
10370         int ret;
10371
10372         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10373         if (IS_ERR(plane_state))
10374                 return PTR_ERR(plane_state);
10375
10376         if (mode)
10377                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10378         else
10379                 hdisplay = vdisplay = 0;
10380
10381         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10382         if (ret)
10383                 return ret;
10384         drm_atomic_set_fb_for_plane(plane_state, fb);
10385         plane_state->crtc_x = 0;
10386         plane_state->crtc_y = 0;
10387         plane_state->crtc_w = hdisplay;
10388         plane_state->crtc_h = vdisplay;
10389         plane_state->src_x = x << 16;
10390         plane_state->src_y = y << 16;
10391         plane_state->src_w = hdisplay << 16;
10392         plane_state->src_h = vdisplay << 16;
10393
10394         return 0;
10395 }
10396
10397 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10398                                 struct drm_display_mode *mode,
10399                                 struct intel_load_detect_pipe *old,
10400                                 struct drm_modeset_acquire_ctx *ctx)
10401 {
10402         struct intel_crtc *intel_crtc;
10403         struct intel_encoder *intel_encoder =
10404                 intel_attached_encoder(connector);
10405         struct drm_crtc *possible_crtc;
10406         struct drm_encoder *encoder = &intel_encoder->base;
10407         struct drm_crtc *crtc = NULL;
10408         struct drm_device *dev = encoder->dev;
10409         struct drm_framebuffer *fb;
10410         struct drm_mode_config *config = &dev->mode_config;
10411         struct drm_atomic_state *state = NULL;
10412         struct drm_connector_state *connector_state;
10413         struct intel_crtc_state *crtc_state;
10414         int ret, i = -1;
10415
10416         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10417                       connector->base.id, connector->name,
10418                       encoder->base.id, encoder->name);
10419
10420 retry:
10421         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10422         if (ret)
10423                 goto fail;
10424
10425         /*
10426          * Algorithm gets a little messy:
10427          *
10428          *   - if the connector already has an assigned crtc, use it (but make
10429          *     sure it's on first)
10430          *
10431          *   - try to find the first unused crtc that can drive this connector,
10432          *     and use that if we find one
10433          */
10434
10435         /* See if we already have a CRTC for this connector */
10436         if (encoder->crtc) {
10437                 crtc = encoder->crtc;
10438
10439                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10440                 if (ret)
10441                         goto fail;
10442                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10443                 if (ret)
10444                         goto fail;
10445
10446                 old->dpms_mode = connector->dpms;
10447                 old->load_detect_temp = false;
10448
10449                 /* Make sure the crtc and connector are running */
10450                 if (connector->dpms != DRM_MODE_DPMS_ON)
10451                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10452
10453                 return true;
10454         }
10455
10456         /* Find an unused one (if possible) */
10457         for_each_crtc(dev, possible_crtc) {
10458                 i++;
10459                 if (!(encoder->possible_crtcs & (1 << i)))
10460                         continue;
10461                 if (possible_crtc->state->enable)
10462                         continue;
10463
10464                 crtc = possible_crtc;
10465                 break;
10466         }
10467
10468         /*
10469          * If we didn't find an unused CRTC, don't use any.
10470          */
10471         if (!crtc) {
10472                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10473                 goto fail;
10474         }
10475
10476         ret = drm_modeset_lock(&crtc->mutex, ctx);
10477         if (ret)
10478                 goto fail;
10479         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10480         if (ret)
10481                 goto fail;
10482
10483         intel_crtc = to_intel_crtc(crtc);
10484         old->dpms_mode = connector->dpms;
10485         old->load_detect_temp = true;
10486         old->release_fb = NULL;
10487
10488         state = drm_atomic_state_alloc(dev);
10489         if (!state)
10490                 return false;
10491
10492         state->acquire_ctx = ctx;
10493
10494         connector_state = drm_atomic_get_connector_state(state, connector);
10495         if (IS_ERR(connector_state)) {
10496                 ret = PTR_ERR(connector_state);
10497                 goto fail;
10498         }
10499
10500         connector_state->crtc = crtc;
10501         connector_state->best_encoder = &intel_encoder->base;
10502
10503         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10504         if (IS_ERR(crtc_state)) {
10505                 ret = PTR_ERR(crtc_state);
10506                 goto fail;
10507         }
10508
10509         crtc_state->base.active = crtc_state->base.enable = true;
10510
10511         if (!mode)
10512                 mode = &load_detect_mode;
10513
10514         /* We need a framebuffer large enough to accommodate all accesses
10515          * that the plane may generate whilst we perform load detection.
10516          * We can not rely on the fbcon either being present (we get called
10517          * during its initialisation to detect all boot displays, or it may
10518          * not even exist) or that it is large enough to satisfy the
10519          * requested mode.
10520          */
10521         fb = mode_fits_in_fbdev(dev, mode);
10522         if (fb == NULL) {
10523                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10524                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10525                 old->release_fb = fb;
10526         } else
10527                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10528         if (IS_ERR(fb)) {
10529                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10530                 goto fail;
10531         }
10532
10533         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10534         if (ret)
10535                 goto fail;
10536
10537         drm_mode_copy(&crtc_state->base.mode, mode);
10538
10539         if (drm_atomic_commit(state)) {
10540                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10541                 if (old->release_fb)
10542                         old->release_fb->funcs->destroy(old->release_fb);
10543                 goto fail;
10544         }
10545         crtc->primary->crtc = crtc;
10546
10547         /* let the connector get through one full cycle before testing */
10548         intel_wait_for_vblank(dev, intel_crtc->pipe);
10549         return true;
10550
10551 fail:
10552         drm_atomic_state_free(state);
10553         state = NULL;
10554
10555         if (ret == -EDEADLK) {
10556                 drm_modeset_backoff(ctx);
10557                 goto retry;
10558         }
10559
10560         return false;
10561 }
10562
10563 void intel_release_load_detect_pipe(struct drm_connector *connector,
10564                                     struct intel_load_detect_pipe *old,
10565                                     struct drm_modeset_acquire_ctx *ctx)
10566 {
10567         struct drm_device *dev = connector->dev;
10568         struct intel_encoder *intel_encoder =
10569                 intel_attached_encoder(connector);
10570         struct drm_encoder *encoder = &intel_encoder->base;
10571         struct drm_crtc *crtc = encoder->crtc;
10572         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10573         struct drm_atomic_state *state;
10574         struct drm_connector_state *connector_state;
10575         struct intel_crtc_state *crtc_state;
10576         int ret;
10577
10578         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10579                       connector->base.id, connector->name,
10580                       encoder->base.id, encoder->name);
10581
10582         if (old->load_detect_temp) {
10583                 state = drm_atomic_state_alloc(dev);
10584                 if (!state)
10585                         goto fail;
10586
10587                 state->acquire_ctx = ctx;
10588
10589                 connector_state = drm_atomic_get_connector_state(state, connector);
10590                 if (IS_ERR(connector_state))
10591                         goto fail;
10592
10593                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10594                 if (IS_ERR(crtc_state))
10595                         goto fail;
10596
10597                 connector_state->best_encoder = NULL;
10598                 connector_state->crtc = NULL;
10599
10600                 crtc_state->base.enable = crtc_state->base.active = false;
10601
10602                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10603                                                       0, 0);
10604                 if (ret)
10605                         goto fail;
10606
10607                 ret = drm_atomic_commit(state);
10608                 if (ret)
10609                         goto fail;
10610
10611                 if (old->release_fb) {
10612                         drm_framebuffer_unregister_private(old->release_fb);
10613                         drm_framebuffer_unreference(old->release_fb);
10614                 }
10615
10616                 return;
10617         }
10618
10619         /* Switch crtc and encoder back off if necessary */
10620         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10621                 connector->funcs->dpms(connector, old->dpms_mode);
10622
10623         return;
10624 fail:
10625         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10626         drm_atomic_state_free(state);
10627 }
10628
10629 static int i9xx_pll_refclk(struct drm_device *dev,
10630                            const struct intel_crtc_state *pipe_config)
10631 {
10632         struct drm_i915_private *dev_priv = dev->dev_private;
10633         u32 dpll = pipe_config->dpll_hw_state.dpll;
10634
10635         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10636                 return dev_priv->vbt.lvds_ssc_freq;
10637         else if (HAS_PCH_SPLIT(dev))
10638                 return 120000;
10639         else if (!IS_GEN2(dev))
10640                 return 96000;
10641         else
10642                 return 48000;
10643 }
10644
10645 /* Returns the clock of the currently programmed mode of the given pipe. */
10646 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10647                                 struct intel_crtc_state *pipe_config)
10648 {
10649         struct drm_device *dev = crtc->base.dev;
10650         struct drm_i915_private *dev_priv = dev->dev_private;
10651         int pipe = pipe_config->cpu_transcoder;
10652         u32 dpll = pipe_config->dpll_hw_state.dpll;
10653         u32 fp;
10654         intel_clock_t clock;
10655         int port_clock;
10656         int refclk = i9xx_pll_refclk(dev, pipe_config);
10657
10658         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10659                 fp = pipe_config->dpll_hw_state.fp0;
10660         else
10661                 fp = pipe_config->dpll_hw_state.fp1;
10662
10663         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10664         if (IS_PINEVIEW(dev)) {
10665                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10666                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10667         } else {
10668                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10669                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10670         }
10671
10672         if (!IS_GEN2(dev)) {
10673                 if (IS_PINEVIEW(dev))
10674                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10675                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10676                 else
10677                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10678                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10679
10680                 switch (dpll & DPLL_MODE_MASK) {
10681                 case DPLLB_MODE_DAC_SERIAL:
10682                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10683                                 5 : 10;
10684                         break;
10685                 case DPLLB_MODE_LVDS:
10686                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10687                                 7 : 14;
10688                         break;
10689                 default:
10690                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10691                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10692                         return;
10693                 }
10694
10695                 if (IS_PINEVIEW(dev))
10696                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10697                 else
10698                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10699         } else {
10700                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10701                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10702
10703                 if (is_lvds) {
10704                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10705                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10706
10707                         if (lvds & LVDS_CLKB_POWER_UP)
10708                                 clock.p2 = 7;
10709                         else
10710                                 clock.p2 = 14;
10711                 } else {
10712                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10713                                 clock.p1 = 2;
10714                         else {
10715                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10716                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10717                         }
10718                         if (dpll & PLL_P2_DIVIDE_BY_4)
10719                                 clock.p2 = 4;
10720                         else
10721                                 clock.p2 = 2;
10722                 }
10723
10724                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10725         }
10726
10727         /*
10728          * This value includes pixel_multiplier. We will use
10729          * port_clock to compute adjusted_mode.crtc_clock in the
10730          * encoder's get_config() function.
10731          */
10732         pipe_config->port_clock = port_clock;
10733 }
10734
10735 int intel_dotclock_calculate(int link_freq,
10736                              const struct intel_link_m_n *m_n)
10737 {
10738         /*
10739          * The calculation for the data clock is:
10740          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10741          * But we want to avoid losing precison if possible, so:
10742          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10743          *
10744          * and the link clock is simpler:
10745          * link_clock = (m * link_clock) / n
10746          */
10747
10748         if (!m_n->link_n)
10749                 return 0;
10750
10751         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10752 }
10753
10754 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10755                                    struct intel_crtc_state *pipe_config)
10756 {
10757         struct drm_device *dev = crtc->base.dev;
10758
10759         /* read out port_clock from the DPLL */
10760         i9xx_crtc_clock_get(crtc, pipe_config);
10761
10762         /*
10763          * This value does not include pixel_multiplier.
10764          * We will check that port_clock and adjusted_mode.crtc_clock
10765          * agree once we know their relationship in the encoder's
10766          * get_config() function.
10767          */
10768         pipe_config->base.adjusted_mode.crtc_clock =
10769                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10770                                          &pipe_config->fdi_m_n);
10771 }
10772
10773 /** Returns the currently programmed mode of the given pipe. */
10774 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10775                                              struct drm_crtc *crtc)
10776 {
10777         struct drm_i915_private *dev_priv = dev->dev_private;
10778         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10779         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10780         struct drm_display_mode *mode;
10781         struct intel_crtc_state pipe_config;
10782         int htot = I915_READ(HTOTAL(cpu_transcoder));
10783         int hsync = I915_READ(HSYNC(cpu_transcoder));
10784         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10785         int vsync = I915_READ(VSYNC(cpu_transcoder));
10786         enum pipe pipe = intel_crtc->pipe;
10787
10788         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10789         if (!mode)
10790                 return NULL;
10791
10792         /*
10793          * Construct a pipe_config sufficient for getting the clock info
10794          * back out of crtc_clock_get.
10795          *
10796          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10797          * to use a real value here instead.
10798          */
10799         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10800         pipe_config.pixel_multiplier = 1;
10801         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10802         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10803         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10804         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10805
10806         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10807         mode->hdisplay = (htot & 0xffff) + 1;
10808         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10809         mode->hsync_start = (hsync & 0xffff) + 1;
10810         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10811         mode->vdisplay = (vtot & 0xffff) + 1;
10812         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10813         mode->vsync_start = (vsync & 0xffff) + 1;
10814         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10815
10816         drm_mode_set_name(mode);
10817
10818         return mode;
10819 }
10820
10821 void intel_mark_busy(struct drm_device *dev)
10822 {
10823         struct drm_i915_private *dev_priv = dev->dev_private;
10824
10825         if (dev_priv->mm.busy)
10826                 return;
10827
10828         intel_runtime_pm_get(dev_priv);
10829         i915_update_gfx_val(dev_priv);
10830         if (INTEL_INFO(dev)->gen >= 6)
10831                 gen6_rps_busy(dev_priv);
10832         dev_priv->mm.busy = true;
10833 }
10834
10835 void intel_mark_idle(struct drm_device *dev)
10836 {
10837         struct drm_i915_private *dev_priv = dev->dev_private;
10838
10839         if (!dev_priv->mm.busy)
10840                 return;
10841
10842         dev_priv->mm.busy = false;
10843
10844         if (INTEL_INFO(dev)->gen >= 6)
10845                 gen6_rps_idle(dev->dev_private);
10846
10847         intel_runtime_pm_put(dev_priv);
10848 }
10849
10850 static void intel_crtc_destroy(struct drm_crtc *crtc)
10851 {
10852         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10853         struct drm_device *dev = crtc->dev;
10854         struct intel_unpin_work *work;
10855
10856         spin_lock_irq(&dev->event_lock);
10857         work = intel_crtc->unpin_work;
10858         intel_crtc->unpin_work = NULL;
10859         spin_unlock_irq(&dev->event_lock);
10860
10861         if (work) {
10862                 cancel_work_sync(&work->work);
10863                 kfree(work);
10864         }
10865
10866         drm_crtc_cleanup(crtc);
10867
10868         kfree(intel_crtc);
10869 }
10870
10871 static void intel_unpin_work_fn(struct work_struct *__work)
10872 {
10873         struct intel_unpin_work *work =
10874                 container_of(__work, struct intel_unpin_work, work);
10875         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10876         struct drm_device *dev = crtc->base.dev;
10877         struct drm_plane *primary = crtc->base.primary;
10878
10879         mutex_lock(&dev->struct_mutex);
10880         intel_unpin_fb_obj(work->old_fb, primary->state);
10881         drm_gem_object_unreference(&work->pending_flip_obj->base);
10882
10883         if (work->flip_queued_req)
10884                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10885         mutex_unlock(&dev->struct_mutex);
10886
10887         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10888         drm_framebuffer_unreference(work->old_fb);
10889
10890         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10891         atomic_dec(&crtc->unpin_work_count);
10892
10893         kfree(work);
10894 }
10895
10896 static void do_intel_finish_page_flip(struct drm_device *dev,
10897                                       struct drm_crtc *crtc)
10898 {
10899         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10900         struct intel_unpin_work *work;
10901         unsigned long flags;
10902
10903         /* Ignore early vblank irqs */
10904         if (intel_crtc == NULL)
10905                 return;
10906
10907         /*
10908          * This is called both by irq handlers and the reset code (to complete
10909          * lost pageflips) so needs the full irqsave spinlocks.
10910          */
10911         spin_lock_irqsave(&dev->event_lock, flags);
10912         work = intel_crtc->unpin_work;
10913
10914         /* Ensure we don't miss a work->pending update ... */
10915         smp_rmb();
10916
10917         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10918                 spin_unlock_irqrestore(&dev->event_lock, flags);
10919                 return;
10920         }
10921
10922         page_flip_completed(intel_crtc);
10923
10924         spin_unlock_irqrestore(&dev->event_lock, flags);
10925 }
10926
10927 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10928 {
10929         struct drm_i915_private *dev_priv = dev->dev_private;
10930         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10931
10932         do_intel_finish_page_flip(dev, crtc);
10933 }
10934
10935 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10936 {
10937         struct drm_i915_private *dev_priv = dev->dev_private;
10938         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10939
10940         do_intel_finish_page_flip(dev, crtc);
10941 }
10942
10943 /* Is 'a' after or equal to 'b'? */
10944 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10945 {
10946         return !((a - b) & 0x80000000);
10947 }
10948
10949 static bool page_flip_finished(struct intel_crtc *crtc)
10950 {
10951         struct drm_device *dev = crtc->base.dev;
10952         struct drm_i915_private *dev_priv = dev->dev_private;
10953
10954         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10955             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10956                 return true;
10957
10958         /*
10959          * The relevant registers doen't exist on pre-ctg.
10960          * As the flip done interrupt doesn't trigger for mmio
10961          * flips on gmch platforms, a flip count check isn't
10962          * really needed there. But since ctg has the registers,
10963          * include it in the check anyway.
10964          */
10965         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10966                 return true;
10967
10968         /*
10969          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10970          * used the same base address. In that case the mmio flip might
10971          * have completed, but the CS hasn't even executed the flip yet.
10972          *
10973          * A flip count check isn't enough as the CS might have updated
10974          * the base address just after start of vblank, but before we
10975          * managed to process the interrupt. This means we'd complete the
10976          * CS flip too soon.
10977          *
10978          * Combining both checks should get us a good enough result. It may
10979          * still happen that the CS flip has been executed, but has not
10980          * yet actually completed. But in case the base address is the same
10981          * anyway, we don't really care.
10982          */
10983         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10984                 crtc->unpin_work->gtt_offset &&
10985                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10986                                     crtc->unpin_work->flip_count);
10987 }
10988
10989 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10990 {
10991         struct drm_i915_private *dev_priv = dev->dev_private;
10992         struct intel_crtc *intel_crtc =
10993                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10994         unsigned long flags;
10995
10996
10997         /*
10998          * This is called both by irq handlers and the reset code (to complete
10999          * lost pageflips) so needs the full irqsave spinlocks.
11000          *
11001          * NB: An MMIO update of the plane base pointer will also
11002          * generate a page-flip completion irq, i.e. every modeset
11003          * is also accompanied by a spurious intel_prepare_page_flip().
11004          */
11005         spin_lock_irqsave(&dev->event_lock, flags);
11006         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
11007                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
11008         spin_unlock_irqrestore(&dev->event_lock, flags);
11009 }
11010
11011 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
11012 {
11013         /* Ensure that the work item is consistent when activating it ... */
11014         smp_wmb();
11015         atomic_set(&work->pending, INTEL_FLIP_PENDING);
11016         /* and that it is marked active as soon as the irq could fire. */
11017         smp_wmb();
11018 }
11019
11020 static int intel_gen2_queue_flip(struct drm_device *dev,
11021                                  struct drm_crtc *crtc,
11022                                  struct drm_framebuffer *fb,
11023                                  struct drm_i915_gem_object *obj,
11024                                  struct drm_i915_gem_request *req,
11025                                  uint32_t flags)
11026 {
11027         struct intel_engine_cs *ring = req->ring;
11028         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11029         u32 flip_mask;
11030         int ret;
11031
11032         ret = intel_ring_begin(req, 6);
11033         if (ret)
11034                 return ret;
11035
11036         /* Can't queue multiple flips, so wait for the previous
11037          * one to finish before executing the next.
11038          */
11039         if (intel_crtc->plane)
11040                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11041         else
11042                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11043         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11044         intel_ring_emit(ring, MI_NOOP);
11045         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11046                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11047         intel_ring_emit(ring, fb->pitches[0]);
11048         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11049         intel_ring_emit(ring, 0); /* aux display base address, unused */
11050
11051         intel_mark_page_flip_active(intel_crtc->unpin_work);
11052         return 0;
11053 }
11054
11055 static int intel_gen3_queue_flip(struct drm_device *dev,
11056                                  struct drm_crtc *crtc,
11057                                  struct drm_framebuffer *fb,
11058                                  struct drm_i915_gem_object *obj,
11059                                  struct drm_i915_gem_request *req,
11060                                  uint32_t flags)
11061 {
11062         struct intel_engine_cs *ring = req->ring;
11063         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11064         u32 flip_mask;
11065         int ret;
11066
11067         ret = intel_ring_begin(req, 6);
11068         if (ret)
11069                 return ret;
11070
11071         if (intel_crtc->plane)
11072                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11073         else
11074                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11075         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11076         intel_ring_emit(ring, MI_NOOP);
11077         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11078                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11079         intel_ring_emit(ring, fb->pitches[0]);
11080         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11081         intel_ring_emit(ring, MI_NOOP);
11082
11083         intel_mark_page_flip_active(intel_crtc->unpin_work);
11084         return 0;
11085 }
11086
11087 static int intel_gen4_queue_flip(struct drm_device *dev,
11088                                  struct drm_crtc *crtc,
11089                                  struct drm_framebuffer *fb,
11090                                  struct drm_i915_gem_object *obj,
11091                                  struct drm_i915_gem_request *req,
11092                                  uint32_t flags)
11093 {
11094         struct intel_engine_cs *ring = req->ring;
11095         struct drm_i915_private *dev_priv = dev->dev_private;
11096         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11097         uint32_t pf, pipesrc;
11098         int ret;
11099
11100         ret = intel_ring_begin(req, 4);
11101         if (ret)
11102                 return ret;
11103
11104         /* i965+ uses the linear or tiled offsets from the
11105          * Display Registers (which do not change across a page-flip)
11106          * so we need only reprogram the base address.
11107          */
11108         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11109                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11110         intel_ring_emit(ring, fb->pitches[0]);
11111         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11112                         obj->tiling_mode);
11113
11114         /* XXX Enabling the panel-fitter across page-flip is so far
11115          * untested on non-native modes, so ignore it for now.
11116          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11117          */
11118         pf = 0;
11119         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11120         intel_ring_emit(ring, pf | pipesrc);
11121
11122         intel_mark_page_flip_active(intel_crtc->unpin_work);
11123         return 0;
11124 }
11125
11126 static int intel_gen6_queue_flip(struct drm_device *dev,
11127                                  struct drm_crtc *crtc,
11128                                  struct drm_framebuffer *fb,
11129                                  struct drm_i915_gem_object *obj,
11130                                  struct drm_i915_gem_request *req,
11131                                  uint32_t flags)
11132 {
11133         struct intel_engine_cs *ring = req->ring;
11134         struct drm_i915_private *dev_priv = dev->dev_private;
11135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11136         uint32_t pf, pipesrc;
11137         int ret;
11138
11139         ret = intel_ring_begin(req, 4);
11140         if (ret)
11141                 return ret;
11142
11143         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11144                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11145         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11146         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11147
11148         /* Contrary to the suggestions in the documentation,
11149          * "Enable Panel Fitter" does not seem to be required when page
11150          * flipping with a non-native mode, and worse causes a normal
11151          * modeset to fail.
11152          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11153          */
11154         pf = 0;
11155         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11156         intel_ring_emit(ring, pf | pipesrc);
11157
11158         intel_mark_page_flip_active(intel_crtc->unpin_work);
11159         return 0;
11160 }
11161
11162 static int intel_gen7_queue_flip(struct drm_device *dev,
11163                                  struct drm_crtc *crtc,
11164                                  struct drm_framebuffer *fb,
11165                                  struct drm_i915_gem_object *obj,
11166                                  struct drm_i915_gem_request *req,
11167                                  uint32_t flags)
11168 {
11169         struct intel_engine_cs *ring = req->ring;
11170         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11171         uint32_t plane_bit = 0;
11172         int len, ret;
11173
11174         switch (intel_crtc->plane) {
11175         case PLANE_A:
11176                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11177                 break;
11178         case PLANE_B:
11179                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11180                 break;
11181         case PLANE_C:
11182                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11183                 break;
11184         default:
11185                 WARN_ONCE(1, "unknown plane in flip command\n");
11186                 return -ENODEV;
11187         }
11188
11189         len = 4;
11190         if (ring->id == RCS) {
11191                 len += 6;
11192                 /*
11193                  * On Gen 8, SRM is now taking an extra dword to accommodate
11194                  * 48bits addresses, and we need a NOOP for the batch size to
11195                  * stay even.
11196                  */
11197                 if (IS_GEN8(dev))
11198                         len += 2;
11199         }
11200
11201         /*
11202          * BSpec MI_DISPLAY_FLIP for IVB:
11203          * "The full packet must be contained within the same cache line."
11204          *
11205          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11206          * cacheline, if we ever start emitting more commands before
11207          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11208          * then do the cacheline alignment, and finally emit the
11209          * MI_DISPLAY_FLIP.
11210          */
11211         ret = intel_ring_cacheline_align(req);
11212         if (ret)
11213                 return ret;
11214
11215         ret = intel_ring_begin(req, len);
11216         if (ret)
11217                 return ret;
11218
11219         /* Unmask the flip-done completion message. Note that the bspec says that
11220          * we should do this for both the BCS and RCS, and that we must not unmask
11221          * more than one flip event at any time (or ensure that one flip message
11222          * can be sent by waiting for flip-done prior to queueing new flips).
11223          * Experimentation says that BCS works despite DERRMR masking all
11224          * flip-done completion events and that unmasking all planes at once
11225          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11226          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11227          */
11228         if (ring->id == RCS) {
11229                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11230                 intel_ring_emit_reg(ring, DERRMR);
11231                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11232                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11233                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11234                 if (IS_GEN8(dev))
11235                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11236                                               MI_SRM_LRM_GLOBAL_GTT);
11237                 else
11238                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11239                                               MI_SRM_LRM_GLOBAL_GTT);
11240                 intel_ring_emit_reg(ring, DERRMR);
11241                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11242                 if (IS_GEN8(dev)) {
11243                         intel_ring_emit(ring, 0);
11244                         intel_ring_emit(ring, MI_NOOP);
11245                 }
11246         }
11247
11248         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11249         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11250         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11251         intel_ring_emit(ring, (MI_NOOP));
11252
11253         intel_mark_page_flip_active(intel_crtc->unpin_work);
11254         return 0;
11255 }
11256
11257 static bool use_mmio_flip(struct intel_engine_cs *ring,
11258                           struct drm_i915_gem_object *obj)
11259 {
11260         /*
11261          * This is not being used for older platforms, because
11262          * non-availability of flip done interrupt forces us to use
11263          * CS flips. Older platforms derive flip done using some clever
11264          * tricks involving the flip_pending status bits and vblank irqs.
11265          * So using MMIO flips there would disrupt this mechanism.
11266          */
11267
11268         if (ring == NULL)
11269                 return true;
11270
11271         if (INTEL_INFO(ring->dev)->gen < 5)
11272                 return false;
11273
11274         if (i915.use_mmio_flip < 0)
11275                 return false;
11276         else if (i915.use_mmio_flip > 0)
11277                 return true;
11278         else if (i915.enable_execlists)
11279                 return true;
11280         else if (obj->base.dma_buf &&
11281                  !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11282                                                        false))
11283                 return true;
11284         else
11285                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11286 }
11287
11288 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11289                              unsigned int rotation,
11290                              struct intel_unpin_work *work)
11291 {
11292         struct drm_device *dev = intel_crtc->base.dev;
11293         struct drm_i915_private *dev_priv = dev->dev_private;
11294         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11295         const enum pipe pipe = intel_crtc->pipe;
11296         u32 ctl, stride, tile_height;
11297
11298         ctl = I915_READ(PLANE_CTL(pipe, 0));
11299         ctl &= ~PLANE_CTL_TILED_MASK;
11300         switch (fb->modifier[0]) {
11301         case DRM_FORMAT_MOD_NONE:
11302                 break;
11303         case I915_FORMAT_MOD_X_TILED:
11304                 ctl |= PLANE_CTL_TILED_X;
11305                 break;
11306         case I915_FORMAT_MOD_Y_TILED:
11307                 ctl |= PLANE_CTL_TILED_Y;
11308                 break;
11309         case I915_FORMAT_MOD_Yf_TILED:
11310                 ctl |= PLANE_CTL_TILED_YF;
11311                 break;
11312         default:
11313                 MISSING_CASE(fb->modifier[0]);
11314         }
11315
11316         /*
11317          * The stride is either expressed as a multiple of 64 bytes chunks for
11318          * linear buffers or in number of tiles for tiled buffers.
11319          */
11320         if (intel_rotation_90_or_270(rotation)) {
11321                 /* stride = Surface height in tiles */
11322                 tile_height = intel_tile_height(dev, fb->pixel_format,
11323                                                 fb->modifier[0], 0);
11324                 stride = DIV_ROUND_UP(fb->height, tile_height);
11325         } else {
11326                 stride = fb->pitches[0] /
11327                                 intel_fb_stride_alignment(dev, fb->modifier[0],
11328                                                           fb->pixel_format);
11329         }
11330
11331         /*
11332          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11333          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11334          */
11335         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11336         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11337
11338         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11339         POSTING_READ(PLANE_SURF(pipe, 0));
11340 }
11341
11342 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11343                              struct intel_unpin_work *work)
11344 {
11345         struct drm_device *dev = intel_crtc->base.dev;
11346         struct drm_i915_private *dev_priv = dev->dev_private;
11347         struct intel_framebuffer *intel_fb =
11348                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11349         struct drm_i915_gem_object *obj = intel_fb->obj;
11350         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11351         u32 dspcntr;
11352
11353         dspcntr = I915_READ(reg);
11354
11355         if (obj->tiling_mode != I915_TILING_NONE)
11356                 dspcntr |= DISPPLANE_TILED;
11357         else
11358                 dspcntr &= ~DISPPLANE_TILED;
11359
11360         I915_WRITE(reg, dspcntr);
11361
11362         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11363         POSTING_READ(DSPSURF(intel_crtc->plane));
11364 }
11365
11366 /*
11367  * XXX: This is the temporary way to update the plane registers until we get
11368  * around to using the usual plane update functions for MMIO flips
11369  */
11370 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11371 {
11372         struct intel_crtc *crtc = mmio_flip->crtc;
11373         struct intel_unpin_work *work;
11374
11375         spin_lock_irq(&crtc->base.dev->event_lock);
11376         work = crtc->unpin_work;
11377         spin_unlock_irq(&crtc->base.dev->event_lock);
11378         if (work == NULL)
11379                 return;
11380
11381         intel_mark_page_flip_active(work);
11382
11383         intel_pipe_update_start(crtc);
11384
11385         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11386                 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11387         else
11388                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11389                 ilk_do_mmio_flip(crtc, work);
11390
11391         intel_pipe_update_end(crtc);
11392 }
11393
11394 static void intel_mmio_flip_work_func(struct work_struct *work)
11395 {
11396         struct intel_mmio_flip *mmio_flip =
11397                 container_of(work, struct intel_mmio_flip, work);
11398         struct intel_framebuffer *intel_fb =
11399                 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11400         struct drm_i915_gem_object *obj = intel_fb->obj;
11401
11402         if (mmio_flip->req) {
11403                 WARN_ON(__i915_wait_request(mmio_flip->req,
11404                                             mmio_flip->crtc->reset_counter,
11405                                             false, NULL,
11406                                             &mmio_flip->i915->rps.mmioflips));
11407                 i915_gem_request_unreference__unlocked(mmio_flip->req);
11408         }
11409
11410         /* For framebuffer backed by dmabuf, wait for fence */
11411         if (obj->base.dma_buf)
11412                 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11413                                                             false, false,
11414                                                             MAX_SCHEDULE_TIMEOUT) < 0);
11415
11416         intel_do_mmio_flip(mmio_flip);
11417         kfree(mmio_flip);
11418 }
11419
11420 static int intel_queue_mmio_flip(struct drm_device *dev,
11421                                  struct drm_crtc *crtc,
11422                                  struct drm_i915_gem_object *obj)
11423 {
11424         struct intel_mmio_flip *mmio_flip;
11425
11426         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11427         if (mmio_flip == NULL)
11428                 return -ENOMEM;
11429
11430         mmio_flip->i915 = to_i915(dev);
11431         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11432         mmio_flip->crtc = to_intel_crtc(crtc);
11433         mmio_flip->rotation = crtc->primary->state->rotation;
11434
11435         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11436         schedule_work(&mmio_flip->work);
11437
11438         return 0;
11439 }
11440
11441 static int intel_default_queue_flip(struct drm_device *dev,
11442                                     struct drm_crtc *crtc,
11443                                     struct drm_framebuffer *fb,
11444                                     struct drm_i915_gem_object *obj,
11445                                     struct drm_i915_gem_request *req,
11446                                     uint32_t flags)
11447 {
11448         return -ENODEV;
11449 }
11450
11451 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11452                                          struct drm_crtc *crtc)
11453 {
11454         struct drm_i915_private *dev_priv = dev->dev_private;
11455         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11456         struct intel_unpin_work *work = intel_crtc->unpin_work;
11457         u32 addr;
11458
11459         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11460                 return true;
11461
11462         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11463                 return false;
11464
11465         if (!work->enable_stall_check)
11466                 return false;
11467
11468         if (work->flip_ready_vblank == 0) {
11469                 if (work->flip_queued_req &&
11470                     !i915_gem_request_completed(work->flip_queued_req, true))
11471                         return false;
11472
11473                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11474         }
11475
11476         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11477                 return false;
11478
11479         /* Potential stall - if we see that the flip has happened,
11480          * assume a missed interrupt. */
11481         if (INTEL_INFO(dev)->gen >= 4)
11482                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11483         else
11484                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11485
11486         /* There is a potential issue here with a false positive after a flip
11487          * to the same address. We could address this by checking for a
11488          * non-incrementing frame counter.
11489          */
11490         return addr == work->gtt_offset;
11491 }
11492
11493 void intel_check_page_flip(struct drm_device *dev, int pipe)
11494 {
11495         struct drm_i915_private *dev_priv = dev->dev_private;
11496         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11497         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11498         struct intel_unpin_work *work;
11499
11500         WARN_ON(!in_interrupt());
11501
11502         if (crtc == NULL)
11503                 return;
11504
11505         spin_lock(&dev->event_lock);
11506         work = intel_crtc->unpin_work;
11507         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11508                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11509                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11510                 page_flip_completed(intel_crtc);
11511                 work = NULL;
11512         }
11513         if (work != NULL &&
11514             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11515                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11516         spin_unlock(&dev->event_lock);
11517 }
11518
11519 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11520                                 struct drm_framebuffer *fb,
11521                                 struct drm_pending_vblank_event *event,
11522                                 uint32_t page_flip_flags)
11523 {
11524         struct drm_device *dev = crtc->dev;
11525         struct drm_i915_private *dev_priv = dev->dev_private;
11526         struct drm_framebuffer *old_fb = crtc->primary->fb;
11527         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11528         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11529         struct drm_plane *primary = crtc->primary;
11530         enum pipe pipe = intel_crtc->pipe;
11531         struct intel_unpin_work *work;
11532         struct intel_engine_cs *ring;
11533         bool mmio_flip;
11534         struct drm_i915_gem_request *request = NULL;
11535         int ret;
11536
11537         /*
11538          * drm_mode_page_flip_ioctl() should already catch this, but double
11539          * check to be safe.  In the future we may enable pageflipping from
11540          * a disabled primary plane.
11541          */
11542         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11543                 return -EBUSY;
11544
11545         /* Can't change pixel format via MI display flips. */
11546         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11547                 return -EINVAL;
11548
11549         /*
11550          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11551          * Note that pitch changes could also affect these register.
11552          */
11553         if (INTEL_INFO(dev)->gen > 3 &&
11554             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11555              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11556                 return -EINVAL;
11557
11558         if (i915_terminally_wedged(&dev_priv->gpu_error))
11559                 goto out_hang;
11560
11561         work = kzalloc(sizeof(*work), GFP_KERNEL);
11562         if (work == NULL)
11563                 return -ENOMEM;
11564
11565         work->event = event;
11566         work->crtc = crtc;
11567         work->old_fb = old_fb;
11568         INIT_WORK(&work->work, intel_unpin_work_fn);
11569
11570         ret = drm_crtc_vblank_get(crtc);
11571         if (ret)
11572                 goto free_work;
11573
11574         /* We borrow the event spin lock for protecting unpin_work */
11575         spin_lock_irq(&dev->event_lock);
11576         if (intel_crtc->unpin_work) {
11577                 /* Before declaring the flip queue wedged, check if
11578                  * the hardware completed the operation behind our backs.
11579                  */
11580                 if (__intel_pageflip_stall_check(dev, crtc)) {
11581                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11582                         page_flip_completed(intel_crtc);
11583                 } else {
11584                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11585                         spin_unlock_irq(&dev->event_lock);
11586
11587                         drm_crtc_vblank_put(crtc);
11588                         kfree(work);
11589                         return -EBUSY;
11590                 }
11591         }
11592         intel_crtc->unpin_work = work;
11593         spin_unlock_irq(&dev->event_lock);
11594
11595         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11596                 flush_workqueue(dev_priv->wq);
11597
11598         /* Reference the objects for the scheduled work. */
11599         drm_framebuffer_reference(work->old_fb);
11600         drm_gem_object_reference(&obj->base);
11601
11602         crtc->primary->fb = fb;
11603         update_state_fb(crtc->primary);
11604
11605         work->pending_flip_obj = obj;
11606
11607         ret = i915_mutex_lock_interruptible(dev);
11608         if (ret)
11609                 goto cleanup;
11610
11611         atomic_inc(&intel_crtc->unpin_work_count);
11612         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11613
11614         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11615                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11616
11617         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11618                 ring = &dev_priv->ring[BCS];
11619                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11620                         /* vlv: DISPLAY_FLIP fails to change tiling */
11621                         ring = NULL;
11622         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11623                 ring = &dev_priv->ring[BCS];
11624         } else if (INTEL_INFO(dev)->gen >= 7) {
11625                 ring = i915_gem_request_get_ring(obj->last_write_req);
11626                 if (ring == NULL || ring->id != RCS)
11627                         ring = &dev_priv->ring[BCS];
11628         } else {
11629                 ring = &dev_priv->ring[RCS];
11630         }
11631
11632         mmio_flip = use_mmio_flip(ring, obj);
11633
11634         /* When using CS flips, we want to emit semaphores between rings.
11635          * However, when using mmio flips we will create a task to do the
11636          * synchronisation, so all we want here is to pin the framebuffer
11637          * into the display plane and skip any waits.
11638          */
11639         if (!mmio_flip) {
11640                 ret = i915_gem_object_sync(obj, ring, &request);
11641                 if (ret)
11642                         goto cleanup_pending;
11643         }
11644
11645         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11646                                          crtc->primary->state);
11647         if (ret)
11648                 goto cleanup_pending;
11649
11650         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11651                                                   obj, 0);
11652         work->gtt_offset += intel_crtc->dspaddr_offset;
11653
11654         if (mmio_flip) {
11655                 ret = intel_queue_mmio_flip(dev, crtc, obj);
11656                 if (ret)
11657                         goto cleanup_unpin;
11658
11659                 i915_gem_request_assign(&work->flip_queued_req,
11660                                         obj->last_write_req);
11661         } else {
11662                 if (!request) {
11663                         ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11664                         if (ret)
11665                                 goto cleanup_unpin;
11666                 }
11667
11668                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11669                                                    page_flip_flags);
11670                 if (ret)
11671                         goto cleanup_unpin;
11672
11673                 i915_gem_request_assign(&work->flip_queued_req, request);
11674         }
11675
11676         if (request)
11677                 i915_add_request_no_flush(request);
11678
11679         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11680         work->enable_stall_check = true;
11681
11682         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11683                           to_intel_plane(primary)->frontbuffer_bit);
11684         mutex_unlock(&dev->struct_mutex);
11685
11686         intel_fbc_deactivate(intel_crtc);
11687         intel_frontbuffer_flip_prepare(dev,
11688                                        to_intel_plane(primary)->frontbuffer_bit);
11689
11690         trace_i915_flip_request(intel_crtc->plane, obj);
11691
11692         return 0;
11693
11694 cleanup_unpin:
11695         intel_unpin_fb_obj(fb, crtc->primary->state);
11696 cleanup_pending:
11697         if (request)
11698                 i915_gem_request_cancel(request);
11699         atomic_dec(&intel_crtc->unpin_work_count);
11700         mutex_unlock(&dev->struct_mutex);
11701 cleanup:
11702         crtc->primary->fb = old_fb;
11703         update_state_fb(crtc->primary);
11704
11705         drm_gem_object_unreference_unlocked(&obj->base);
11706         drm_framebuffer_unreference(work->old_fb);
11707
11708         spin_lock_irq(&dev->event_lock);
11709         intel_crtc->unpin_work = NULL;
11710         spin_unlock_irq(&dev->event_lock);
11711
11712         drm_crtc_vblank_put(crtc);
11713 free_work:
11714         kfree(work);
11715
11716         if (ret == -EIO) {
11717                 struct drm_atomic_state *state;
11718                 struct drm_plane_state *plane_state;
11719
11720 out_hang:
11721                 state = drm_atomic_state_alloc(dev);
11722                 if (!state)
11723                         return -ENOMEM;
11724                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11725
11726 retry:
11727                 plane_state = drm_atomic_get_plane_state(state, primary);
11728                 ret = PTR_ERR_OR_ZERO(plane_state);
11729                 if (!ret) {
11730                         drm_atomic_set_fb_for_plane(plane_state, fb);
11731
11732                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11733                         if (!ret)
11734                                 ret = drm_atomic_commit(state);
11735                 }
11736
11737                 if (ret == -EDEADLK) {
11738                         drm_modeset_backoff(state->acquire_ctx);
11739                         drm_atomic_state_clear(state);
11740                         goto retry;
11741                 }
11742
11743                 if (ret)
11744                         drm_atomic_state_free(state);
11745
11746                 if (ret == 0 && event) {
11747                         spin_lock_irq(&dev->event_lock);
11748                         drm_send_vblank_event(dev, pipe, event);
11749                         spin_unlock_irq(&dev->event_lock);
11750                 }
11751         }
11752         return ret;
11753 }
11754
11755
11756 /**
11757  * intel_wm_need_update - Check whether watermarks need updating
11758  * @plane: drm plane
11759  * @state: new plane state
11760  *
11761  * Check current plane state versus the new one to determine whether
11762  * watermarks need to be recalculated.
11763  *
11764  * Returns true or false.
11765  */
11766 static bool intel_wm_need_update(struct drm_plane *plane,
11767                                  struct drm_plane_state *state)
11768 {
11769         struct intel_plane_state *new = to_intel_plane_state(state);
11770         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11771
11772         /* Update watermarks on tiling or size changes. */
11773         if (new->visible != cur->visible)
11774                 return true;
11775
11776         if (!cur->base.fb || !new->base.fb)
11777                 return false;
11778
11779         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11780             cur->base.rotation != new->base.rotation ||
11781             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11782             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11783             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11784             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11785                 return true;
11786
11787         return false;
11788 }
11789
11790 static bool needs_scaling(struct intel_plane_state *state)
11791 {
11792         int src_w = drm_rect_width(&state->src) >> 16;
11793         int src_h = drm_rect_height(&state->src) >> 16;
11794         int dst_w = drm_rect_width(&state->dst);
11795         int dst_h = drm_rect_height(&state->dst);
11796
11797         return (src_w != dst_w || src_h != dst_h);
11798 }
11799
11800 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11801                                     struct drm_plane_state *plane_state)
11802 {
11803         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11804         struct drm_crtc *crtc = crtc_state->crtc;
11805         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11806         struct drm_plane *plane = plane_state->plane;
11807         struct drm_device *dev = crtc->dev;
11808         struct drm_i915_private *dev_priv = dev->dev_private;
11809         struct intel_plane_state *old_plane_state =
11810                 to_intel_plane_state(plane->state);
11811         int idx = intel_crtc->base.base.id, ret;
11812         int i = drm_plane_index(plane);
11813         bool mode_changed = needs_modeset(crtc_state);
11814         bool was_crtc_enabled = crtc->state->active;
11815         bool is_crtc_enabled = crtc_state->active;
11816         bool turn_off, turn_on, visible, was_visible;
11817         struct drm_framebuffer *fb = plane_state->fb;
11818
11819         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11820             plane->type != DRM_PLANE_TYPE_CURSOR) {
11821                 ret = skl_update_scaler_plane(
11822                         to_intel_crtc_state(crtc_state),
11823                         to_intel_plane_state(plane_state));
11824                 if (ret)
11825                         return ret;
11826         }
11827
11828         was_visible = old_plane_state->visible;
11829         visible = to_intel_plane_state(plane_state)->visible;
11830
11831         if (!was_crtc_enabled && WARN_ON(was_visible))
11832                 was_visible = false;
11833
11834         if (!is_crtc_enabled && WARN_ON(visible))
11835                 visible = false;
11836
11837         if (!was_visible && !visible)
11838                 return 0;
11839
11840         turn_off = was_visible && (!visible || mode_changed);
11841         turn_on = visible && (!was_visible || mode_changed);
11842
11843         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11844                          plane->base.id, fb ? fb->base.id : -1);
11845
11846         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11847                          plane->base.id, was_visible, visible,
11848                          turn_off, turn_on, mode_changed);
11849
11850         if (turn_on || turn_off) {
11851                 pipe_config->wm_changed = true;
11852
11853                 /* must disable cxsr around plane enable/disable */
11854                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11855                         if (is_crtc_enabled)
11856                                 intel_crtc->atomic.wait_vblank = true;
11857                         pipe_config->disable_cxsr = true;
11858                 }
11859         } else if (intel_wm_need_update(plane, plane_state)) {
11860                 pipe_config->wm_changed = true;
11861         }
11862
11863         if (visible || was_visible)
11864                 intel_crtc->atomic.fb_bits |=
11865                         to_intel_plane(plane)->frontbuffer_bit;
11866
11867         switch (plane->type) {
11868         case DRM_PLANE_TYPE_PRIMARY:
11869                 intel_crtc->atomic.pre_disable_primary = turn_off;
11870                 intel_crtc->atomic.post_enable_primary = turn_on;
11871
11872                 if (turn_off) {
11873                         /*
11874                          * FIXME: Actually if we will still have any other
11875                          * plane enabled on the pipe we could let IPS enabled
11876                          * still, but for now lets consider that when we make
11877                          * primary invisible by setting DSPCNTR to 0 on
11878                          * update_primary_plane function IPS needs to be
11879                          * disable.
11880                          */
11881                         intel_crtc->atomic.disable_ips = true;
11882
11883                         intel_crtc->atomic.disable_fbc = true;
11884                 }
11885
11886                 /*
11887                  * FBC does not work on some platforms for rotated
11888                  * planes, so disable it when rotation is not 0 and
11889                  * update it when rotation is set back to 0.
11890                  *
11891                  * FIXME: This is redundant with the fbc update done in
11892                  * the primary plane enable function except that that
11893                  * one is done too late. We eventually need to unify
11894                  * this.
11895                  */
11896
11897                 if (visible &&
11898                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11899                     dev_priv->fbc.crtc == intel_crtc &&
11900                     plane_state->rotation != BIT(DRM_ROTATE_0))
11901                         intel_crtc->atomic.disable_fbc = true;
11902
11903                 /*
11904                  * BDW signals flip done immediately if the plane
11905                  * is disabled, even if the plane enable is already
11906                  * armed to occur at the next vblank :(
11907                  */
11908                 if (turn_on && IS_BROADWELL(dev))
11909                         intel_crtc->atomic.wait_vblank = true;
11910
11911                 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11912                 break;
11913         case DRM_PLANE_TYPE_CURSOR:
11914                 break;
11915         case DRM_PLANE_TYPE_OVERLAY:
11916                 /*
11917                  * WaCxSRDisabledForSpriteScaling:ivb
11918                  *
11919                  * cstate->update_wm was already set above, so this flag will
11920                  * take effect when we commit and program watermarks.
11921                  */
11922                 if (IS_IVYBRIDGE(dev) &&
11923                     needs_scaling(to_intel_plane_state(plane_state)) &&
11924                     !needs_scaling(old_plane_state)) {
11925                         to_intel_crtc_state(crtc_state)->disable_lp_wm = true;
11926                 } else if (turn_off && !mode_changed) {
11927                         intel_crtc->atomic.wait_vblank = true;
11928                         intel_crtc->atomic.update_sprite_watermarks |=
11929                                 1 << i;
11930                 }
11931
11932                 break;
11933         }
11934         return 0;
11935 }
11936
11937 static bool encoders_cloneable(const struct intel_encoder *a,
11938                                const struct intel_encoder *b)
11939 {
11940         /* masks could be asymmetric, so check both ways */
11941         return a == b || (a->cloneable & (1 << b->type) &&
11942                           b->cloneable & (1 << a->type));
11943 }
11944
11945 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11946                                          struct intel_crtc *crtc,
11947                                          struct intel_encoder *encoder)
11948 {
11949         struct intel_encoder *source_encoder;
11950         struct drm_connector *connector;
11951         struct drm_connector_state *connector_state;
11952         int i;
11953
11954         for_each_connector_in_state(state, connector, connector_state, i) {
11955                 if (connector_state->crtc != &crtc->base)
11956                         continue;
11957
11958                 source_encoder =
11959                         to_intel_encoder(connector_state->best_encoder);
11960                 if (!encoders_cloneable(encoder, source_encoder))
11961                         return false;
11962         }
11963
11964         return true;
11965 }
11966
11967 static bool check_encoder_cloning(struct drm_atomic_state *state,
11968                                   struct intel_crtc *crtc)
11969 {
11970         struct intel_encoder *encoder;
11971         struct drm_connector *connector;
11972         struct drm_connector_state *connector_state;
11973         int i;
11974
11975         for_each_connector_in_state(state, connector, connector_state, i) {
11976                 if (connector_state->crtc != &crtc->base)
11977                         continue;
11978
11979                 encoder = to_intel_encoder(connector_state->best_encoder);
11980                 if (!check_single_encoder_cloning(state, crtc, encoder))
11981                         return false;
11982         }
11983
11984         return true;
11985 }
11986
11987 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11988                                    struct drm_crtc_state *crtc_state)
11989 {
11990         struct drm_device *dev = crtc->dev;
11991         struct drm_i915_private *dev_priv = dev->dev_private;
11992         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11993         struct intel_crtc_state *pipe_config =
11994                 to_intel_crtc_state(crtc_state);
11995         struct drm_atomic_state *state = crtc_state->state;
11996         int ret;
11997         bool mode_changed = needs_modeset(crtc_state);
11998
11999         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
12000                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12001                 return -EINVAL;
12002         }
12003
12004         if (mode_changed && !crtc_state->active)
12005                 pipe_config->wm_changed = true;
12006
12007         if (mode_changed && crtc_state->enable &&
12008             dev_priv->display.crtc_compute_clock &&
12009             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
12010                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12011                                                            pipe_config);
12012                 if (ret)
12013                         return ret;
12014         }
12015
12016         ret = 0;
12017         if (dev_priv->display.compute_pipe_wm) {
12018                 ret = dev_priv->display.compute_pipe_wm(intel_crtc, state);
12019                 if (ret)
12020                         return ret;
12021         }
12022
12023         if (INTEL_INFO(dev)->gen >= 9) {
12024                 if (mode_changed)
12025                         ret = skl_update_scaler_crtc(pipe_config);
12026
12027                 if (!ret)
12028                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
12029                                                          pipe_config);
12030         }
12031
12032         return ret;
12033 }
12034
12035 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12036         .mode_set_base_atomic = intel_pipe_set_base_atomic,
12037         .load_lut = intel_crtc_load_lut,
12038         .atomic_begin = intel_begin_crtc_commit,
12039         .atomic_flush = intel_finish_crtc_commit,
12040         .atomic_check = intel_crtc_atomic_check,
12041 };
12042
12043 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12044 {
12045         struct intel_connector *connector;
12046
12047         for_each_intel_connector(dev, connector) {
12048                 if (connector->base.encoder) {
12049                         connector->base.state->best_encoder =
12050                                 connector->base.encoder;
12051                         connector->base.state->crtc =
12052                                 connector->base.encoder->crtc;
12053                 } else {
12054                         connector->base.state->best_encoder = NULL;
12055                         connector->base.state->crtc = NULL;
12056                 }
12057         }
12058 }
12059
12060 static void
12061 connected_sink_compute_bpp(struct intel_connector *connector,
12062                            struct intel_crtc_state *pipe_config)
12063 {
12064         int bpp = pipe_config->pipe_bpp;
12065
12066         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12067                 connector->base.base.id,
12068                 connector->base.name);
12069
12070         /* Don't use an invalid EDID bpc value */
12071         if (connector->base.display_info.bpc &&
12072             connector->base.display_info.bpc * 3 < bpp) {
12073                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12074                               bpp, connector->base.display_info.bpc*3);
12075                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12076         }
12077
12078         /* Clamp bpp to 8 on screens without EDID 1.4 */
12079         if (connector->base.display_info.bpc == 0 && bpp > 24) {
12080                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12081                               bpp);
12082                 pipe_config->pipe_bpp = 24;
12083         }
12084 }
12085
12086 static int
12087 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12088                           struct intel_crtc_state *pipe_config)
12089 {
12090         struct drm_device *dev = crtc->base.dev;
12091         struct drm_atomic_state *state;
12092         struct drm_connector *connector;
12093         struct drm_connector_state *connector_state;
12094         int bpp, i;
12095
12096         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12097                 bpp = 10*3;
12098         else if (INTEL_INFO(dev)->gen >= 5)
12099                 bpp = 12*3;
12100         else
12101                 bpp = 8*3;
12102
12103
12104         pipe_config->pipe_bpp = bpp;
12105
12106         state = pipe_config->base.state;
12107
12108         /* Clamp display bpp to EDID value */
12109         for_each_connector_in_state(state, connector, connector_state, i) {
12110                 if (connector_state->crtc != &crtc->base)
12111                         continue;
12112
12113                 connected_sink_compute_bpp(to_intel_connector(connector),
12114                                            pipe_config);
12115         }
12116
12117         return bpp;
12118 }
12119
12120 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12121 {
12122         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12123                         "type: 0x%x flags: 0x%x\n",
12124                 mode->crtc_clock,
12125                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12126                 mode->crtc_hsync_end, mode->crtc_htotal,
12127                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12128                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12129 }
12130
12131 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12132                                    struct intel_crtc_state *pipe_config,
12133                                    const char *context)
12134 {
12135         struct drm_device *dev = crtc->base.dev;
12136         struct drm_plane *plane;
12137         struct intel_plane *intel_plane;
12138         struct intel_plane_state *state;
12139         struct drm_framebuffer *fb;
12140
12141         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12142                       context, pipe_config, pipe_name(crtc->pipe));
12143
12144         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12145         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12146                       pipe_config->pipe_bpp, pipe_config->dither);
12147         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12148                       pipe_config->has_pch_encoder,
12149                       pipe_config->fdi_lanes,
12150                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12151                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12152                       pipe_config->fdi_m_n.tu);
12153         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12154                       pipe_config->has_dp_encoder,
12155                       pipe_config->lane_count,
12156                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12157                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12158                       pipe_config->dp_m_n.tu);
12159
12160         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12161                       pipe_config->has_dp_encoder,
12162                       pipe_config->lane_count,
12163                       pipe_config->dp_m2_n2.gmch_m,
12164                       pipe_config->dp_m2_n2.gmch_n,
12165                       pipe_config->dp_m2_n2.link_m,
12166                       pipe_config->dp_m2_n2.link_n,
12167                       pipe_config->dp_m2_n2.tu);
12168
12169         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12170                       pipe_config->has_audio,
12171                       pipe_config->has_infoframe);
12172
12173         DRM_DEBUG_KMS("requested mode:\n");
12174         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12175         DRM_DEBUG_KMS("adjusted mode:\n");
12176         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12177         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12178         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12179         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12180                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12181         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12182                       crtc->num_scalers,
12183                       pipe_config->scaler_state.scaler_users,
12184                       pipe_config->scaler_state.scaler_id);
12185         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12186                       pipe_config->gmch_pfit.control,
12187                       pipe_config->gmch_pfit.pgm_ratios,
12188                       pipe_config->gmch_pfit.lvds_border_bits);
12189         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12190                       pipe_config->pch_pfit.pos,
12191                       pipe_config->pch_pfit.size,
12192                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12193         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12194         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12195
12196         if (IS_BROXTON(dev)) {
12197                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12198                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12199                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12200                               pipe_config->ddi_pll_sel,
12201                               pipe_config->dpll_hw_state.ebb0,
12202                               pipe_config->dpll_hw_state.ebb4,
12203                               pipe_config->dpll_hw_state.pll0,
12204                               pipe_config->dpll_hw_state.pll1,
12205                               pipe_config->dpll_hw_state.pll2,
12206                               pipe_config->dpll_hw_state.pll3,
12207                               pipe_config->dpll_hw_state.pll6,
12208                               pipe_config->dpll_hw_state.pll8,
12209                               pipe_config->dpll_hw_state.pll9,
12210                               pipe_config->dpll_hw_state.pll10,
12211                               pipe_config->dpll_hw_state.pcsdw12);
12212         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12213                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12214                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12215                               pipe_config->ddi_pll_sel,
12216                               pipe_config->dpll_hw_state.ctrl1,
12217                               pipe_config->dpll_hw_state.cfgcr1,
12218                               pipe_config->dpll_hw_state.cfgcr2);
12219         } else if (HAS_DDI(dev)) {
12220                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12221                               pipe_config->ddi_pll_sel,
12222                               pipe_config->dpll_hw_state.wrpll,
12223                               pipe_config->dpll_hw_state.spll);
12224         } else {
12225                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12226                               "fp0: 0x%x, fp1: 0x%x\n",
12227                               pipe_config->dpll_hw_state.dpll,
12228                               pipe_config->dpll_hw_state.dpll_md,
12229                               pipe_config->dpll_hw_state.fp0,
12230                               pipe_config->dpll_hw_state.fp1);
12231         }
12232
12233         DRM_DEBUG_KMS("planes on this crtc\n");
12234         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12235                 intel_plane = to_intel_plane(plane);
12236                 if (intel_plane->pipe != crtc->pipe)
12237                         continue;
12238
12239                 state = to_intel_plane_state(plane->state);
12240                 fb = state->base.fb;
12241                 if (!fb) {
12242                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12243                                 "disabled, scaler_id = %d\n",
12244                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12245                                 plane->base.id, intel_plane->pipe,
12246                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12247                                 drm_plane_index(plane), state->scaler_id);
12248                         continue;
12249                 }
12250
12251                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12252                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12253                         plane->base.id, intel_plane->pipe,
12254                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12255                         drm_plane_index(plane));
12256                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12257                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12258                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12259                         state->scaler_id,
12260                         state->src.x1 >> 16, state->src.y1 >> 16,
12261                         drm_rect_width(&state->src) >> 16,
12262                         drm_rect_height(&state->src) >> 16,
12263                         state->dst.x1, state->dst.y1,
12264                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12265         }
12266 }
12267
12268 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12269 {
12270         struct drm_device *dev = state->dev;
12271         struct drm_connector *connector;
12272         unsigned int used_ports = 0;
12273
12274         /*
12275          * Walk the connector list instead of the encoder
12276          * list to detect the problem on ddi platforms
12277          * where there's just one encoder per digital port.
12278          */
12279         drm_for_each_connector(connector, dev) {
12280                 struct drm_connector_state *connector_state;
12281                 struct intel_encoder *encoder;
12282
12283                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12284                 if (!connector_state)
12285                         connector_state = connector->state;
12286
12287                 if (!connector_state->best_encoder)
12288                         continue;
12289
12290                 encoder = to_intel_encoder(connector_state->best_encoder);
12291
12292                 WARN_ON(!connector_state->crtc);
12293
12294                 switch (encoder->type) {
12295                         unsigned int port_mask;
12296                 case INTEL_OUTPUT_UNKNOWN:
12297                         if (WARN_ON(!HAS_DDI(dev)))
12298                                 break;
12299                 case INTEL_OUTPUT_DISPLAYPORT:
12300                 case INTEL_OUTPUT_HDMI:
12301                 case INTEL_OUTPUT_EDP:
12302                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12303
12304                         /* the same port mustn't appear more than once */
12305                         if (used_ports & port_mask)
12306                                 return false;
12307
12308                         used_ports |= port_mask;
12309                 default:
12310                         break;
12311                 }
12312         }
12313
12314         return true;
12315 }
12316
12317 static void
12318 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12319 {
12320         struct drm_crtc_state tmp_state;
12321         struct intel_crtc_scaler_state scaler_state;
12322         struct intel_dpll_hw_state dpll_hw_state;
12323         enum intel_dpll_id shared_dpll;
12324         uint32_t ddi_pll_sel;
12325         bool force_thru;
12326
12327         /* FIXME: before the switch to atomic started, a new pipe_config was
12328          * kzalloc'd. Code that depends on any field being zero should be
12329          * fixed, so that the crtc_state can be safely duplicated. For now,
12330          * only fields that are know to not cause problems are preserved. */
12331
12332         tmp_state = crtc_state->base;
12333         scaler_state = crtc_state->scaler_state;
12334         shared_dpll = crtc_state->shared_dpll;
12335         dpll_hw_state = crtc_state->dpll_hw_state;
12336         ddi_pll_sel = crtc_state->ddi_pll_sel;
12337         force_thru = crtc_state->pch_pfit.force_thru;
12338
12339         memset(crtc_state, 0, sizeof *crtc_state);
12340
12341         crtc_state->base = tmp_state;
12342         crtc_state->scaler_state = scaler_state;
12343         crtc_state->shared_dpll = shared_dpll;
12344         crtc_state->dpll_hw_state = dpll_hw_state;
12345         crtc_state->ddi_pll_sel = ddi_pll_sel;
12346         crtc_state->pch_pfit.force_thru = force_thru;
12347 }
12348
12349 static int
12350 intel_modeset_pipe_config(struct drm_crtc *crtc,
12351                           struct intel_crtc_state *pipe_config)
12352 {
12353         struct drm_atomic_state *state = pipe_config->base.state;
12354         struct intel_encoder *encoder;
12355         struct drm_connector *connector;
12356         struct drm_connector_state *connector_state;
12357         int base_bpp, ret = -EINVAL;
12358         int i;
12359         bool retry = true;
12360
12361         clear_intel_crtc_state(pipe_config);
12362
12363         pipe_config->cpu_transcoder =
12364                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12365
12366         /*
12367          * Sanitize sync polarity flags based on requested ones. If neither
12368          * positive or negative polarity is requested, treat this as meaning
12369          * negative polarity.
12370          */
12371         if (!(pipe_config->base.adjusted_mode.flags &
12372               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12373                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12374
12375         if (!(pipe_config->base.adjusted_mode.flags &
12376               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12377                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12378
12379         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12380                                              pipe_config);
12381         if (base_bpp < 0)
12382                 goto fail;
12383
12384         /*
12385          * Determine the real pipe dimensions. Note that stereo modes can
12386          * increase the actual pipe size due to the frame doubling and
12387          * insertion of additional space for blanks between the frame. This
12388          * is stored in the crtc timings. We use the requested mode to do this
12389          * computation to clearly distinguish it from the adjusted mode, which
12390          * can be changed by the connectors in the below retry loop.
12391          */
12392         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12393                                &pipe_config->pipe_src_w,
12394                                &pipe_config->pipe_src_h);
12395
12396 encoder_retry:
12397         /* Ensure the port clock defaults are reset when retrying. */
12398         pipe_config->port_clock = 0;
12399         pipe_config->pixel_multiplier = 1;
12400
12401         /* Fill in default crtc timings, allow encoders to overwrite them. */
12402         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12403                               CRTC_STEREO_DOUBLE);
12404
12405         /* Pass our mode to the connectors and the CRTC to give them a chance to
12406          * adjust it according to limitations or connector properties, and also
12407          * a chance to reject the mode entirely.
12408          */
12409         for_each_connector_in_state(state, connector, connector_state, i) {
12410                 if (connector_state->crtc != crtc)
12411                         continue;
12412
12413                 encoder = to_intel_encoder(connector_state->best_encoder);
12414
12415                 if (!(encoder->compute_config(encoder, pipe_config))) {
12416                         DRM_DEBUG_KMS("Encoder config failure\n");
12417                         goto fail;
12418                 }
12419         }
12420
12421         /* Set default port clock if not overwritten by the encoder. Needs to be
12422          * done afterwards in case the encoder adjusts the mode. */
12423         if (!pipe_config->port_clock)
12424                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12425                         * pipe_config->pixel_multiplier;
12426
12427         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12428         if (ret < 0) {
12429                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12430                 goto fail;
12431         }
12432
12433         if (ret == RETRY) {
12434                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12435                         ret = -EINVAL;
12436                         goto fail;
12437                 }
12438
12439                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12440                 retry = false;
12441                 goto encoder_retry;
12442         }
12443
12444         /* Dithering seems to not pass-through bits correctly when it should, so
12445          * only enable it on 6bpc panels. */
12446         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12447         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12448                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12449
12450 fail:
12451         return ret;
12452 }
12453
12454 static void
12455 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12456 {
12457         struct drm_crtc *crtc;
12458         struct drm_crtc_state *crtc_state;
12459         int i;
12460
12461         /* Double check state. */
12462         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12463                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12464
12465                 /* Update hwmode for vblank functions */
12466                 if (crtc->state->active)
12467                         crtc->hwmode = crtc->state->adjusted_mode;
12468                 else
12469                         crtc->hwmode.crtc_clock = 0;
12470
12471                 /*
12472                  * Update legacy state to satisfy fbc code. This can
12473                  * be removed when fbc uses the atomic state.
12474                  */
12475                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12476                         struct drm_plane_state *plane_state = crtc->primary->state;
12477
12478                         crtc->primary->fb = plane_state->fb;
12479                         crtc->x = plane_state->src_x >> 16;
12480                         crtc->y = plane_state->src_y >> 16;
12481                 }
12482         }
12483 }
12484
12485 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12486 {
12487         int diff;
12488
12489         if (clock1 == clock2)
12490                 return true;
12491
12492         if (!clock1 || !clock2)
12493                 return false;
12494
12495         diff = abs(clock1 - clock2);
12496
12497         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12498                 return true;
12499
12500         return false;
12501 }
12502
12503 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12504         list_for_each_entry((intel_crtc), \
12505                             &(dev)->mode_config.crtc_list, \
12506                             base.head) \
12507                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12508
12509 static bool
12510 intel_compare_m_n(unsigned int m, unsigned int n,
12511                   unsigned int m2, unsigned int n2,
12512                   bool exact)
12513 {
12514         if (m == m2 && n == n2)
12515                 return true;
12516
12517         if (exact || !m || !n || !m2 || !n2)
12518                 return false;
12519
12520         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12521
12522         if (m > m2) {
12523                 while (m > m2) {
12524                         m2 <<= 1;
12525                         n2 <<= 1;
12526                 }
12527         } else if (m < m2) {
12528                 while (m < m2) {
12529                         m <<= 1;
12530                         n <<= 1;
12531                 }
12532         }
12533
12534         return m == m2 && n == n2;
12535 }
12536
12537 static bool
12538 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12539                        struct intel_link_m_n *m2_n2,
12540                        bool adjust)
12541 {
12542         if (m_n->tu == m2_n2->tu &&
12543             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12544                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12545             intel_compare_m_n(m_n->link_m, m_n->link_n,
12546                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12547                 if (adjust)
12548                         *m2_n2 = *m_n;
12549
12550                 return true;
12551         }
12552
12553         return false;
12554 }
12555
12556 static bool
12557 intel_pipe_config_compare(struct drm_device *dev,
12558                           struct intel_crtc_state *current_config,
12559                           struct intel_crtc_state *pipe_config,
12560                           bool adjust)
12561 {
12562         bool ret = true;
12563
12564 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12565         do { \
12566                 if (!adjust) \
12567                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12568                 else \
12569                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12570         } while (0)
12571
12572 #define PIPE_CONF_CHECK_X(name) \
12573         if (current_config->name != pipe_config->name) { \
12574                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12575                           "(expected 0x%08x, found 0x%08x)\n", \
12576                           current_config->name, \
12577                           pipe_config->name); \
12578                 ret = false; \
12579         }
12580
12581 #define PIPE_CONF_CHECK_I(name) \
12582         if (current_config->name != pipe_config->name) { \
12583                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12584                           "(expected %i, found %i)\n", \
12585                           current_config->name, \
12586                           pipe_config->name); \
12587                 ret = false; \
12588         }
12589
12590 #define PIPE_CONF_CHECK_M_N(name) \
12591         if (!intel_compare_link_m_n(&current_config->name, \
12592                                     &pipe_config->name,\
12593                                     adjust)) { \
12594                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12595                           "(expected tu %i gmch %i/%i link %i/%i, " \
12596                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12597                           current_config->name.tu, \
12598                           current_config->name.gmch_m, \
12599                           current_config->name.gmch_n, \
12600                           current_config->name.link_m, \
12601                           current_config->name.link_n, \
12602                           pipe_config->name.tu, \
12603                           pipe_config->name.gmch_m, \
12604                           pipe_config->name.gmch_n, \
12605                           pipe_config->name.link_m, \
12606                           pipe_config->name.link_n); \
12607                 ret = false; \
12608         }
12609
12610 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12611         if (!intel_compare_link_m_n(&current_config->name, \
12612                                     &pipe_config->name, adjust) && \
12613             !intel_compare_link_m_n(&current_config->alt_name, \
12614                                     &pipe_config->name, adjust)) { \
12615                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12616                           "(expected tu %i gmch %i/%i link %i/%i, " \
12617                           "or tu %i gmch %i/%i link %i/%i, " \
12618                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12619                           current_config->name.tu, \
12620                           current_config->name.gmch_m, \
12621                           current_config->name.gmch_n, \
12622                           current_config->name.link_m, \
12623                           current_config->name.link_n, \
12624                           current_config->alt_name.tu, \
12625                           current_config->alt_name.gmch_m, \
12626                           current_config->alt_name.gmch_n, \
12627                           current_config->alt_name.link_m, \
12628                           current_config->alt_name.link_n, \
12629                           pipe_config->name.tu, \
12630                           pipe_config->name.gmch_m, \
12631                           pipe_config->name.gmch_n, \
12632                           pipe_config->name.link_m, \
12633                           pipe_config->name.link_n); \
12634                 ret = false; \
12635         }
12636
12637 /* This is required for BDW+ where there is only one set of registers for
12638  * switching between high and low RR.
12639  * This macro can be used whenever a comparison has to be made between one
12640  * hw state and multiple sw state variables.
12641  */
12642 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12643         if ((current_config->name != pipe_config->name) && \
12644                 (current_config->alt_name != pipe_config->name)) { \
12645                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12646                                   "(expected %i or %i, found %i)\n", \
12647                                   current_config->name, \
12648                                   current_config->alt_name, \
12649                                   pipe_config->name); \
12650                         ret = false; \
12651         }
12652
12653 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12654         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12655                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12656                           "(expected %i, found %i)\n", \
12657                           current_config->name & (mask), \
12658                           pipe_config->name & (mask)); \
12659                 ret = false; \
12660         }
12661
12662 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12663         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12664                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12665                           "(expected %i, found %i)\n", \
12666                           current_config->name, \
12667                           pipe_config->name); \
12668                 ret = false; \
12669         }
12670
12671 #define PIPE_CONF_QUIRK(quirk)  \
12672         ((current_config->quirks | pipe_config->quirks) & (quirk))
12673
12674         PIPE_CONF_CHECK_I(cpu_transcoder);
12675
12676         PIPE_CONF_CHECK_I(has_pch_encoder);
12677         PIPE_CONF_CHECK_I(fdi_lanes);
12678         PIPE_CONF_CHECK_M_N(fdi_m_n);
12679
12680         PIPE_CONF_CHECK_I(has_dp_encoder);
12681         PIPE_CONF_CHECK_I(lane_count);
12682
12683         if (INTEL_INFO(dev)->gen < 8) {
12684                 PIPE_CONF_CHECK_M_N(dp_m_n);
12685
12686                 if (current_config->has_drrs)
12687                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12688         } else
12689                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12690
12691         PIPE_CONF_CHECK_I(has_dsi_encoder);
12692
12693         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12694         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12695         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12696         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12697         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12698         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12699
12700         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12701         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12702         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12703         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12704         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12705         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12706
12707         PIPE_CONF_CHECK_I(pixel_multiplier);
12708         PIPE_CONF_CHECK_I(has_hdmi_sink);
12709         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12710             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12711                 PIPE_CONF_CHECK_I(limited_color_range);
12712         PIPE_CONF_CHECK_I(has_infoframe);
12713
12714         PIPE_CONF_CHECK_I(has_audio);
12715
12716         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12717                               DRM_MODE_FLAG_INTERLACE);
12718
12719         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12720                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12721                                       DRM_MODE_FLAG_PHSYNC);
12722                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12723                                       DRM_MODE_FLAG_NHSYNC);
12724                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12725                                       DRM_MODE_FLAG_PVSYNC);
12726                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12727                                       DRM_MODE_FLAG_NVSYNC);
12728         }
12729
12730         PIPE_CONF_CHECK_X(gmch_pfit.control);
12731         /* pfit ratios are autocomputed by the hw on gen4+ */
12732         if (INTEL_INFO(dev)->gen < 4)
12733                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12734         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12735
12736         if (!adjust) {
12737                 PIPE_CONF_CHECK_I(pipe_src_w);
12738                 PIPE_CONF_CHECK_I(pipe_src_h);
12739
12740                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12741                 if (current_config->pch_pfit.enabled) {
12742                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12743                         PIPE_CONF_CHECK_X(pch_pfit.size);
12744                 }
12745
12746                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12747         }
12748
12749         /* BDW+ don't expose a synchronous way to read the state */
12750         if (IS_HASWELL(dev))
12751                 PIPE_CONF_CHECK_I(ips_enabled);
12752
12753         PIPE_CONF_CHECK_I(double_wide);
12754
12755         PIPE_CONF_CHECK_X(ddi_pll_sel);
12756
12757         PIPE_CONF_CHECK_I(shared_dpll);
12758         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12759         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12760         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12761         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12762         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12763         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12764         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12765         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12766         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12767
12768         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12769                 PIPE_CONF_CHECK_I(pipe_bpp);
12770
12771         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12772         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12773
12774 #undef PIPE_CONF_CHECK_X
12775 #undef PIPE_CONF_CHECK_I
12776 #undef PIPE_CONF_CHECK_I_ALT
12777 #undef PIPE_CONF_CHECK_FLAGS
12778 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12779 #undef PIPE_CONF_QUIRK
12780 #undef INTEL_ERR_OR_DBG_KMS
12781
12782         return ret;
12783 }
12784
12785 static void check_wm_state(struct drm_device *dev)
12786 {
12787         struct drm_i915_private *dev_priv = dev->dev_private;
12788         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12789         struct intel_crtc *intel_crtc;
12790         int plane;
12791
12792         if (INTEL_INFO(dev)->gen < 9)
12793                 return;
12794
12795         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12796         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12797
12798         for_each_intel_crtc(dev, intel_crtc) {
12799                 struct skl_ddb_entry *hw_entry, *sw_entry;
12800                 const enum pipe pipe = intel_crtc->pipe;
12801
12802                 if (!intel_crtc->active)
12803                         continue;
12804
12805                 /* planes */
12806                 for_each_plane(dev_priv, pipe, plane) {
12807                         hw_entry = &hw_ddb.plane[pipe][plane];
12808                         sw_entry = &sw_ddb->plane[pipe][plane];
12809
12810                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12811                                 continue;
12812
12813                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12814                                   "(expected (%u,%u), found (%u,%u))\n",
12815                                   pipe_name(pipe), plane + 1,
12816                                   sw_entry->start, sw_entry->end,
12817                                   hw_entry->start, hw_entry->end);
12818                 }
12819
12820                 /* cursor */
12821                 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12822                 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12823
12824                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12825                         continue;
12826
12827                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12828                           "(expected (%u,%u), found (%u,%u))\n",
12829                           pipe_name(pipe),
12830                           sw_entry->start, sw_entry->end,
12831                           hw_entry->start, hw_entry->end);
12832         }
12833 }
12834
12835 static void
12836 check_connector_state(struct drm_device *dev,
12837                       struct drm_atomic_state *old_state)
12838 {
12839         struct drm_connector_state *old_conn_state;
12840         struct drm_connector *connector;
12841         int i;
12842
12843         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12844                 struct drm_encoder *encoder = connector->encoder;
12845                 struct drm_connector_state *state = connector->state;
12846
12847                 /* This also checks the encoder/connector hw state with the
12848                  * ->get_hw_state callbacks. */
12849                 intel_connector_check_state(to_intel_connector(connector));
12850
12851                 I915_STATE_WARN(state->best_encoder != encoder,
12852                      "connector's atomic encoder doesn't match legacy encoder\n");
12853         }
12854 }
12855
12856 static void
12857 check_encoder_state(struct drm_device *dev)
12858 {
12859         struct intel_encoder *encoder;
12860         struct intel_connector *connector;
12861
12862         for_each_intel_encoder(dev, encoder) {
12863                 bool enabled = false;
12864                 enum pipe pipe;
12865
12866                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12867                               encoder->base.base.id,
12868                               encoder->base.name);
12869
12870                 for_each_intel_connector(dev, connector) {
12871                         if (connector->base.state->best_encoder != &encoder->base)
12872                                 continue;
12873                         enabled = true;
12874
12875                         I915_STATE_WARN(connector->base.state->crtc !=
12876                                         encoder->base.crtc,
12877                              "connector's crtc doesn't match encoder crtc\n");
12878                 }
12879
12880                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12881                      "encoder's enabled state mismatch "
12882                      "(expected %i, found %i)\n",
12883                      !!encoder->base.crtc, enabled);
12884
12885                 if (!encoder->base.crtc) {
12886                         bool active;
12887
12888                         active = encoder->get_hw_state(encoder, &pipe);
12889                         I915_STATE_WARN(active,
12890                              "encoder detached but still enabled on pipe %c.\n",
12891                              pipe_name(pipe));
12892                 }
12893         }
12894 }
12895
12896 static void
12897 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12898 {
12899         struct drm_i915_private *dev_priv = dev->dev_private;
12900         struct intel_encoder *encoder;
12901         struct drm_crtc_state *old_crtc_state;
12902         struct drm_crtc *crtc;
12903         int i;
12904
12905         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12906                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12907                 struct intel_crtc_state *pipe_config, *sw_config;
12908                 bool active;
12909
12910                 if (!needs_modeset(crtc->state) &&
12911                     !to_intel_crtc_state(crtc->state)->update_pipe)
12912                         continue;
12913
12914                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12915                 pipe_config = to_intel_crtc_state(old_crtc_state);
12916                 memset(pipe_config, 0, sizeof(*pipe_config));
12917                 pipe_config->base.crtc = crtc;
12918                 pipe_config->base.state = old_state;
12919
12920                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12921                               crtc->base.id);
12922
12923                 active = dev_priv->display.get_pipe_config(intel_crtc,
12924                                                            pipe_config);
12925
12926                 /* hw state is inconsistent with the pipe quirk */
12927                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12928                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12929                         active = crtc->state->active;
12930
12931                 I915_STATE_WARN(crtc->state->active != active,
12932                      "crtc active state doesn't match with hw state "
12933                      "(expected %i, found %i)\n", crtc->state->active, active);
12934
12935                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12936                      "transitional active state does not match atomic hw state "
12937                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12938
12939                 for_each_encoder_on_crtc(dev, crtc, encoder) {
12940                         enum pipe pipe;
12941
12942                         active = encoder->get_hw_state(encoder, &pipe);
12943                         I915_STATE_WARN(active != crtc->state->active,
12944                                 "[ENCODER:%i] active %i with crtc active %i\n",
12945                                 encoder->base.base.id, active, crtc->state->active);
12946
12947                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12948                                         "Encoder connected to wrong pipe %c\n",
12949                                         pipe_name(pipe));
12950
12951                         if (active)
12952                                 encoder->get_config(encoder, pipe_config);
12953                 }
12954
12955                 if (!crtc->state->active)
12956                         continue;
12957
12958                 sw_config = to_intel_crtc_state(crtc->state);
12959                 if (!intel_pipe_config_compare(dev, sw_config,
12960                                                pipe_config, false)) {
12961                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12962                         intel_dump_pipe_config(intel_crtc, pipe_config,
12963                                                "[hw state]");
12964                         intel_dump_pipe_config(intel_crtc, sw_config,
12965                                                "[sw state]");
12966                 }
12967         }
12968 }
12969
12970 static void
12971 check_shared_dpll_state(struct drm_device *dev)
12972 {
12973         struct drm_i915_private *dev_priv = dev->dev_private;
12974         struct intel_crtc *crtc;
12975         struct intel_dpll_hw_state dpll_hw_state;
12976         int i;
12977
12978         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12979                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12980                 int enabled_crtcs = 0, active_crtcs = 0;
12981                 bool active;
12982
12983                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12984
12985                 DRM_DEBUG_KMS("%s\n", pll->name);
12986
12987                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12988
12989                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12990                      "more active pll users than references: %i vs %i\n",
12991                      pll->active, hweight32(pll->config.crtc_mask));
12992                 I915_STATE_WARN(pll->active && !pll->on,
12993                      "pll in active use but not on in sw tracking\n");
12994                 I915_STATE_WARN(pll->on && !pll->active,
12995                      "pll in on but not on in use in sw tracking\n");
12996                 I915_STATE_WARN(pll->on != active,
12997                      "pll on state mismatch (expected %i, found %i)\n",
12998                      pll->on, active);
12999
13000                 for_each_intel_crtc(dev, crtc) {
13001                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
13002                                 enabled_crtcs++;
13003                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13004                                 active_crtcs++;
13005                 }
13006                 I915_STATE_WARN(pll->active != active_crtcs,
13007                      "pll active crtcs mismatch (expected %i, found %i)\n",
13008                      pll->active, active_crtcs);
13009                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
13010                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
13011                      hweight32(pll->config.crtc_mask), enabled_crtcs);
13012
13013                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
13014                                        sizeof(dpll_hw_state)),
13015                      "pll hw state mismatch\n");
13016         }
13017 }
13018
13019 static void
13020 intel_modeset_check_state(struct drm_device *dev,
13021                           struct drm_atomic_state *old_state)
13022 {
13023         check_wm_state(dev);
13024         check_connector_state(dev, old_state);
13025         check_encoder_state(dev);
13026         check_crtc_state(dev, old_state);
13027         check_shared_dpll_state(dev);
13028 }
13029
13030 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
13031                                      int dotclock)
13032 {
13033         /*
13034          * FDI already provided one idea for the dotclock.
13035          * Yell if the encoder disagrees.
13036          */
13037         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
13038              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13039              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
13040 }
13041
13042 static void update_scanline_offset(struct intel_crtc *crtc)
13043 {
13044         struct drm_device *dev = crtc->base.dev;
13045
13046         /*
13047          * The scanline counter increments at the leading edge of hsync.
13048          *
13049          * On most platforms it starts counting from vtotal-1 on the
13050          * first active line. That means the scanline counter value is
13051          * always one less than what we would expect. Ie. just after
13052          * start of vblank, which also occurs at start of hsync (on the
13053          * last active line), the scanline counter will read vblank_start-1.
13054          *
13055          * On gen2 the scanline counter starts counting from 1 instead
13056          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13057          * to keep the value positive), instead of adding one.
13058          *
13059          * On HSW+ the behaviour of the scanline counter depends on the output
13060          * type. For DP ports it behaves like most other platforms, but on HDMI
13061          * there's an extra 1 line difference. So we need to add two instead of
13062          * one to the value.
13063          */
13064         if (IS_GEN2(dev)) {
13065                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13066                 int vtotal;
13067
13068                 vtotal = adjusted_mode->crtc_vtotal;
13069                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13070                         vtotal /= 2;
13071
13072                 crtc->scanline_offset = vtotal - 1;
13073         } else if (HAS_DDI(dev) &&
13074                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13075                 crtc->scanline_offset = 2;
13076         } else
13077                 crtc->scanline_offset = 1;
13078 }
13079
13080 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13081 {
13082         struct drm_device *dev = state->dev;
13083         struct drm_i915_private *dev_priv = to_i915(dev);
13084         struct intel_shared_dpll_config *shared_dpll = NULL;
13085         struct intel_crtc *intel_crtc;
13086         struct intel_crtc_state *intel_crtc_state;
13087         struct drm_crtc *crtc;
13088         struct drm_crtc_state *crtc_state;
13089         int i;
13090
13091         if (!dev_priv->display.crtc_compute_clock)
13092                 return;
13093
13094         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13095                 int dpll;
13096
13097                 intel_crtc = to_intel_crtc(crtc);
13098                 intel_crtc_state = to_intel_crtc_state(crtc_state);
13099                 dpll = intel_crtc_state->shared_dpll;
13100
13101                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
13102                         continue;
13103
13104                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
13105
13106                 if (!shared_dpll)
13107                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13108
13109                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
13110         }
13111 }
13112
13113 /*
13114  * This implements the workaround described in the "notes" section of the mode
13115  * set sequence documentation. When going from no pipes or single pipe to
13116  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13117  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13118  */
13119 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13120 {
13121         struct drm_crtc_state *crtc_state;
13122         struct intel_crtc *intel_crtc;
13123         struct drm_crtc *crtc;
13124         struct intel_crtc_state *first_crtc_state = NULL;
13125         struct intel_crtc_state *other_crtc_state = NULL;
13126         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13127         int i;
13128
13129         /* look at all crtc's that are going to be enabled in during modeset */
13130         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13131                 intel_crtc = to_intel_crtc(crtc);
13132
13133                 if (!crtc_state->active || !needs_modeset(crtc_state))
13134                         continue;
13135
13136                 if (first_crtc_state) {
13137                         other_crtc_state = to_intel_crtc_state(crtc_state);
13138                         break;
13139                 } else {
13140                         first_crtc_state = to_intel_crtc_state(crtc_state);
13141                         first_pipe = intel_crtc->pipe;
13142                 }
13143         }
13144
13145         /* No workaround needed? */
13146         if (!first_crtc_state)
13147                 return 0;
13148
13149         /* w/a possibly needed, check how many crtc's are already enabled. */
13150         for_each_intel_crtc(state->dev, intel_crtc) {
13151                 struct intel_crtc_state *pipe_config;
13152
13153                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13154                 if (IS_ERR(pipe_config))
13155                         return PTR_ERR(pipe_config);
13156
13157                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13158
13159                 if (!pipe_config->base.active ||
13160                     needs_modeset(&pipe_config->base))
13161                         continue;
13162
13163                 /* 2 or more enabled crtcs means no need for w/a */
13164                 if (enabled_pipe != INVALID_PIPE)
13165                         return 0;
13166
13167                 enabled_pipe = intel_crtc->pipe;
13168         }
13169
13170         if (enabled_pipe != INVALID_PIPE)
13171                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13172         else if (other_crtc_state)
13173                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13174
13175         return 0;
13176 }
13177
13178 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13179 {
13180         struct drm_crtc *crtc;
13181         struct drm_crtc_state *crtc_state;
13182         int ret = 0;
13183
13184         /* add all active pipes to the state */
13185         for_each_crtc(state->dev, crtc) {
13186                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13187                 if (IS_ERR(crtc_state))
13188                         return PTR_ERR(crtc_state);
13189
13190                 if (!crtc_state->active || needs_modeset(crtc_state))
13191                         continue;
13192
13193                 crtc_state->mode_changed = true;
13194
13195                 ret = drm_atomic_add_affected_connectors(state, crtc);
13196                 if (ret)
13197                         break;
13198
13199                 ret = drm_atomic_add_affected_planes(state, crtc);
13200                 if (ret)
13201                         break;
13202         }
13203
13204         return ret;
13205 }
13206
13207 static int intel_modeset_checks(struct drm_atomic_state *state)
13208 {
13209         struct drm_device *dev = state->dev;
13210         struct drm_i915_private *dev_priv = dev->dev_private;
13211         int ret;
13212
13213         if (!check_digital_port_conflicts(state)) {
13214                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13215                 return -EINVAL;
13216         }
13217
13218         /*
13219          * See if the config requires any additional preparation, e.g.
13220          * to adjust global state with pipes off.  We need to do this
13221          * here so we can get the modeset_pipe updated config for the new
13222          * mode set on this crtc.  For other crtcs we need to use the
13223          * adjusted_mode bits in the crtc directly.
13224          */
13225         if (dev_priv->display.modeset_calc_cdclk) {
13226                 unsigned int cdclk;
13227
13228                 ret = dev_priv->display.modeset_calc_cdclk(state);
13229
13230                 cdclk = to_intel_atomic_state(state)->cdclk;
13231                 if (!ret && cdclk != dev_priv->cdclk_freq)
13232                         ret = intel_modeset_all_pipes(state);
13233
13234                 if (ret < 0)
13235                         return ret;
13236         } else
13237                 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13238
13239         intel_modeset_clear_plls(state);
13240
13241         if (IS_HASWELL(dev))
13242                 return haswell_mode_set_planes_workaround(state);
13243
13244         return 0;
13245 }
13246
13247 /*
13248  * Handle calculation of various watermark data at the end of the atomic check
13249  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13250  * handlers to ensure that all derived state has been updated.
13251  */
13252 static void calc_watermark_data(struct drm_atomic_state *state)
13253 {
13254         struct drm_device *dev = state->dev;
13255         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13256         struct drm_crtc *crtc;
13257         struct drm_crtc_state *cstate;
13258         struct drm_plane *plane;
13259         struct drm_plane_state *pstate;
13260
13261         /*
13262          * Calculate watermark configuration details now that derived
13263          * plane/crtc state is all properly updated.
13264          */
13265         drm_for_each_crtc(crtc, dev) {
13266                 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13267                         crtc->state;
13268
13269                 if (cstate->active)
13270                         intel_state->wm_config.num_pipes_active++;
13271         }
13272         drm_for_each_legacy_plane(plane, dev) {
13273                 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13274                         plane->state;
13275
13276                 if (!to_intel_plane_state(pstate)->visible)
13277                         continue;
13278
13279                 intel_state->wm_config.sprites_enabled = true;
13280                 if (pstate->crtc_w != pstate->src_w >> 16 ||
13281                     pstate->crtc_h != pstate->src_h >> 16)
13282                         intel_state->wm_config.sprites_scaled = true;
13283         }
13284 }
13285
13286 /**
13287  * intel_atomic_check - validate state object
13288  * @dev: drm device
13289  * @state: state to validate
13290  */
13291 static int intel_atomic_check(struct drm_device *dev,
13292                               struct drm_atomic_state *state)
13293 {
13294         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13295         struct drm_crtc *crtc;
13296         struct drm_crtc_state *crtc_state;
13297         int ret, i;
13298         bool any_ms = false;
13299
13300         ret = drm_atomic_helper_check_modeset(dev, state);
13301         if (ret)
13302                 return ret;
13303
13304         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13305                 struct intel_crtc_state *pipe_config =
13306                         to_intel_crtc_state(crtc_state);
13307
13308                 memset(&to_intel_crtc(crtc)->atomic, 0,
13309                        sizeof(struct intel_crtc_atomic_commit));
13310
13311                 /* Catch I915_MODE_FLAG_INHERITED */
13312                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13313                         crtc_state->mode_changed = true;
13314
13315                 if (!crtc_state->enable) {
13316                         if (needs_modeset(crtc_state))
13317                                 any_ms = true;
13318                         continue;
13319                 }
13320
13321                 if (!needs_modeset(crtc_state))
13322                         continue;
13323
13324                 /* FIXME: For only active_changed we shouldn't need to do any
13325                  * state recomputation at all. */
13326
13327                 ret = drm_atomic_add_affected_connectors(state, crtc);
13328                 if (ret)
13329                         return ret;
13330
13331                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13332                 if (ret)
13333                         return ret;
13334
13335                 if (i915.fastboot &&
13336                     intel_pipe_config_compare(state->dev,
13337                                         to_intel_crtc_state(crtc->state),
13338                                         pipe_config, true)) {
13339                         crtc_state->mode_changed = false;
13340                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13341                 }
13342
13343                 if (needs_modeset(crtc_state)) {
13344                         any_ms = true;
13345
13346                         ret = drm_atomic_add_affected_planes(state, crtc);
13347                         if (ret)
13348                                 return ret;
13349                 }
13350
13351                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13352                                        needs_modeset(crtc_state) ?
13353                                        "[modeset]" : "[fastset]");
13354         }
13355
13356         if (any_ms) {
13357                 ret = intel_modeset_checks(state);
13358
13359                 if (ret)
13360                         return ret;
13361         } else
13362                 intel_state->cdclk = to_i915(state->dev)->cdclk_freq;
13363
13364         ret = drm_atomic_helper_check_planes(state->dev, state);
13365         if (ret)
13366                 return ret;
13367
13368         calc_watermark_data(state);
13369
13370         return 0;
13371 }
13372
13373 static int intel_atomic_prepare_commit(struct drm_device *dev,
13374                                        struct drm_atomic_state *state,
13375                                        bool async)
13376 {
13377         struct drm_i915_private *dev_priv = dev->dev_private;
13378         struct drm_plane_state *plane_state;
13379         struct drm_crtc_state *crtc_state;
13380         struct drm_plane *plane;
13381         struct drm_crtc *crtc;
13382         int i, ret;
13383
13384         if (async) {
13385                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13386                 return -EINVAL;
13387         }
13388
13389         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13390                 ret = intel_crtc_wait_for_pending_flips(crtc);
13391                 if (ret)
13392                         return ret;
13393
13394                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13395                         flush_workqueue(dev_priv->wq);
13396         }
13397
13398         ret = mutex_lock_interruptible(&dev->struct_mutex);
13399         if (ret)
13400                 return ret;
13401
13402         ret = drm_atomic_helper_prepare_planes(dev, state);
13403         if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13404                 u32 reset_counter;
13405
13406                 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13407                 mutex_unlock(&dev->struct_mutex);
13408
13409                 for_each_plane_in_state(state, plane, plane_state, i) {
13410                         struct intel_plane_state *intel_plane_state =
13411                                 to_intel_plane_state(plane_state);
13412
13413                         if (!intel_plane_state->wait_req)
13414                                 continue;
13415
13416                         ret = __i915_wait_request(intel_plane_state->wait_req,
13417                                                   reset_counter, true,
13418                                                   NULL, NULL);
13419
13420                         /* Swallow -EIO errors to allow updates during hw lockup. */
13421                         if (ret == -EIO)
13422                                 ret = 0;
13423
13424                         if (ret)
13425                                 break;
13426                 }
13427
13428                 if (!ret)
13429                         return 0;
13430
13431                 mutex_lock(&dev->struct_mutex);
13432                 drm_atomic_helper_cleanup_planes(dev, state);
13433         }
13434
13435         mutex_unlock(&dev->struct_mutex);
13436         return ret;
13437 }
13438
13439 /**
13440  * intel_atomic_commit - commit validated state object
13441  * @dev: DRM device
13442  * @state: the top-level driver state object
13443  * @async: asynchronous commit
13444  *
13445  * This function commits a top-level state object that has been validated
13446  * with drm_atomic_helper_check().
13447  *
13448  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13449  * we can only handle plane-related operations and do not yet support
13450  * asynchronous commit.
13451  *
13452  * RETURNS
13453  * Zero for success or -errno.
13454  */
13455 static int intel_atomic_commit(struct drm_device *dev,
13456                                struct drm_atomic_state *state,
13457                                bool async)
13458 {
13459         struct drm_i915_private *dev_priv = dev->dev_private;
13460         struct drm_crtc_state *crtc_state;
13461         struct drm_crtc *crtc;
13462         int ret = 0;
13463         int i;
13464         bool any_ms = false;
13465
13466         ret = intel_atomic_prepare_commit(dev, state, async);
13467         if (ret) {
13468                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13469                 return ret;
13470         }
13471
13472         drm_atomic_helper_swap_state(dev, state);
13473         dev_priv->wm.config = to_intel_atomic_state(state)->wm_config;
13474
13475         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13476                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13477
13478                 if (!needs_modeset(crtc->state))
13479                         continue;
13480
13481                 any_ms = true;
13482                 intel_pre_plane_update(intel_crtc);
13483
13484                 if (crtc_state->active) {
13485                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13486                         dev_priv->display.crtc_disable(crtc);
13487                         intel_crtc->active = false;
13488                         intel_disable_shared_dpll(intel_crtc);
13489
13490                         /*
13491                          * Underruns don't always raise
13492                          * interrupts, so check manually.
13493                          */
13494                         intel_check_cpu_fifo_underruns(dev_priv);
13495                         intel_check_pch_fifo_underruns(dev_priv);
13496
13497                         if (!crtc->state->active)
13498                                 intel_update_watermarks(crtc);
13499                 }
13500         }
13501
13502         /* Only after disabling all output pipelines that will be changed can we
13503          * update the the output configuration. */
13504         intel_modeset_update_crtc_state(state);
13505
13506         if (any_ms) {
13507                 intel_shared_dpll_commit(state);
13508
13509                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13510                 modeset_update_crtc_power_domains(state);
13511         }
13512
13513         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13514         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13515                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13516                 bool modeset = needs_modeset(crtc->state);
13517                 bool update_pipe = !modeset &&
13518                         to_intel_crtc_state(crtc->state)->update_pipe;
13519                 unsigned long put_domains = 0;
13520
13521                 if (modeset)
13522                         intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13523
13524                 if (modeset && crtc->state->active) {
13525                         update_scanline_offset(to_intel_crtc(crtc));
13526                         dev_priv->display.crtc_enable(crtc);
13527                 }
13528
13529                 if (update_pipe) {
13530                         put_domains = modeset_get_crtc_power_domains(crtc);
13531
13532                         /* make sure intel_modeset_check_state runs */
13533                         any_ms = true;
13534                 }
13535
13536                 if (!modeset)
13537                         intel_pre_plane_update(intel_crtc);
13538
13539                 if (crtc->state->active &&
13540                     (crtc->state->planes_changed || update_pipe))
13541                         drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13542
13543                 if (put_domains)
13544                         modeset_put_power_domains(dev_priv, put_domains);
13545
13546                 intel_post_plane_update(intel_crtc);
13547
13548                 if (modeset)
13549                         intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13550         }
13551
13552         /* FIXME: add subpixel order */
13553
13554         drm_atomic_helper_wait_for_vblanks(dev, state);
13555
13556         mutex_lock(&dev->struct_mutex);
13557         drm_atomic_helper_cleanup_planes(dev, state);
13558         mutex_unlock(&dev->struct_mutex);
13559
13560         if (any_ms)
13561                 intel_modeset_check_state(dev, state);
13562
13563         drm_atomic_state_free(state);
13564
13565         return 0;
13566 }
13567
13568 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13569 {
13570         struct drm_device *dev = crtc->dev;
13571         struct drm_atomic_state *state;
13572         struct drm_crtc_state *crtc_state;
13573         int ret;
13574
13575         state = drm_atomic_state_alloc(dev);
13576         if (!state) {
13577                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13578                               crtc->base.id);
13579                 return;
13580         }
13581
13582         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13583
13584 retry:
13585         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13586         ret = PTR_ERR_OR_ZERO(crtc_state);
13587         if (!ret) {
13588                 if (!crtc_state->active)
13589                         goto out;
13590
13591                 crtc_state->mode_changed = true;
13592                 ret = drm_atomic_commit(state);
13593         }
13594
13595         if (ret == -EDEADLK) {
13596                 drm_atomic_state_clear(state);
13597                 drm_modeset_backoff(state->acquire_ctx);
13598                 goto retry;
13599         }
13600
13601         if (ret)
13602 out:
13603                 drm_atomic_state_free(state);
13604 }
13605
13606 #undef for_each_intel_crtc_masked
13607
13608 static const struct drm_crtc_funcs intel_crtc_funcs = {
13609         .gamma_set = intel_crtc_gamma_set,
13610         .set_config = drm_atomic_helper_set_config,
13611         .destroy = intel_crtc_destroy,
13612         .page_flip = intel_crtc_page_flip,
13613         .atomic_duplicate_state = intel_crtc_duplicate_state,
13614         .atomic_destroy_state = intel_crtc_destroy_state,
13615 };
13616
13617 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13618                                       struct intel_shared_dpll *pll,
13619                                       struct intel_dpll_hw_state *hw_state)
13620 {
13621         uint32_t val;
13622
13623         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13624                 return false;
13625
13626         val = I915_READ(PCH_DPLL(pll->id));
13627         hw_state->dpll = val;
13628         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13629         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13630
13631         return val & DPLL_VCO_ENABLE;
13632 }
13633
13634 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13635                                   struct intel_shared_dpll *pll)
13636 {
13637         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13638         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13639 }
13640
13641 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13642                                 struct intel_shared_dpll *pll)
13643 {
13644         /* PCH refclock must be enabled first */
13645         ibx_assert_pch_refclk_enabled(dev_priv);
13646
13647         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13648
13649         /* Wait for the clocks to stabilize. */
13650         POSTING_READ(PCH_DPLL(pll->id));
13651         udelay(150);
13652
13653         /* The pixel multiplier can only be updated once the
13654          * DPLL is enabled and the clocks are stable.
13655          *
13656          * So write it again.
13657          */
13658         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13659         POSTING_READ(PCH_DPLL(pll->id));
13660         udelay(200);
13661 }
13662
13663 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13664                                  struct intel_shared_dpll *pll)
13665 {
13666         struct drm_device *dev = dev_priv->dev;
13667         struct intel_crtc *crtc;
13668
13669         /* Make sure no transcoder isn't still depending on us. */
13670         for_each_intel_crtc(dev, crtc) {
13671                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13672                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13673         }
13674
13675         I915_WRITE(PCH_DPLL(pll->id), 0);
13676         POSTING_READ(PCH_DPLL(pll->id));
13677         udelay(200);
13678 }
13679
13680 static char *ibx_pch_dpll_names[] = {
13681         "PCH DPLL A",
13682         "PCH DPLL B",
13683 };
13684
13685 static void ibx_pch_dpll_init(struct drm_device *dev)
13686 {
13687         struct drm_i915_private *dev_priv = dev->dev_private;
13688         int i;
13689
13690         dev_priv->num_shared_dpll = 2;
13691
13692         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13693                 dev_priv->shared_dplls[i].id = i;
13694                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13695                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13696                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13697                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13698                 dev_priv->shared_dplls[i].get_hw_state =
13699                         ibx_pch_dpll_get_hw_state;
13700         }
13701 }
13702
13703 static void intel_shared_dpll_init(struct drm_device *dev)
13704 {
13705         struct drm_i915_private *dev_priv = dev->dev_private;
13706
13707         if (HAS_DDI(dev))
13708                 intel_ddi_pll_init(dev);
13709         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13710                 ibx_pch_dpll_init(dev);
13711         else
13712                 dev_priv->num_shared_dpll = 0;
13713
13714         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13715 }
13716
13717 /**
13718  * intel_prepare_plane_fb - Prepare fb for usage on plane
13719  * @plane: drm plane to prepare for
13720  * @fb: framebuffer to prepare for presentation
13721  *
13722  * Prepares a framebuffer for usage on a display plane.  Generally this
13723  * involves pinning the underlying object and updating the frontbuffer tracking
13724  * bits.  Some older platforms need special physical address handling for
13725  * cursor planes.
13726  *
13727  * Must be called with struct_mutex held.
13728  *
13729  * Returns 0 on success, negative error code on failure.
13730  */
13731 int
13732 intel_prepare_plane_fb(struct drm_plane *plane,
13733                        const struct drm_plane_state *new_state)
13734 {
13735         struct drm_device *dev = plane->dev;
13736         struct drm_framebuffer *fb = new_state->fb;
13737         struct intel_plane *intel_plane = to_intel_plane(plane);
13738         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13739         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13740         int ret = 0;
13741
13742         if (!obj && !old_obj)
13743                 return 0;
13744
13745         if (old_obj) {
13746                 struct drm_crtc_state *crtc_state =
13747                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13748
13749                 /* Big Hammer, we also need to ensure that any pending
13750                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13751                  * current scanout is retired before unpinning the old
13752                  * framebuffer. Note that we rely on userspace rendering
13753                  * into the buffer attached to the pipe they are waiting
13754                  * on. If not, userspace generates a GPU hang with IPEHR
13755                  * point to the MI_WAIT_FOR_EVENT.
13756                  *
13757                  * This should only fail upon a hung GPU, in which case we
13758                  * can safely continue.
13759                  */
13760                 if (needs_modeset(crtc_state))
13761                         ret = i915_gem_object_wait_rendering(old_obj, true);
13762
13763                 /* Swallow -EIO errors to allow updates during hw lockup. */
13764                 if (ret && ret != -EIO)
13765                         return ret;
13766         }
13767
13768         /* For framebuffer backed by dmabuf, wait for fence */
13769         if (obj && obj->base.dma_buf) {
13770                 long lret;
13771
13772                 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13773                                                            false, true,
13774                                                            MAX_SCHEDULE_TIMEOUT);
13775                 if (lret == -ERESTARTSYS)
13776                         return lret;
13777
13778                 WARN(lret < 0, "waiting returns %li\n", lret);
13779         }
13780
13781         if (!obj) {
13782                 ret = 0;
13783         } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13784             INTEL_INFO(dev)->cursor_needs_physical) {
13785                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13786                 ret = i915_gem_object_attach_phys(obj, align);
13787                 if (ret)
13788                         DRM_DEBUG_KMS("failed to attach phys object\n");
13789         } else {
13790                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state);
13791         }
13792
13793         if (ret == 0) {
13794                 if (obj) {
13795                         struct intel_plane_state *plane_state =
13796                                 to_intel_plane_state(new_state);
13797
13798                         i915_gem_request_assign(&plane_state->wait_req,
13799                                                 obj->last_write_req);
13800                 }
13801
13802                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13803         }
13804
13805         return ret;
13806 }
13807
13808 /**
13809  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13810  * @plane: drm plane to clean up for
13811  * @fb: old framebuffer that was on plane
13812  *
13813  * Cleans up a framebuffer that has just been removed from a plane.
13814  *
13815  * Must be called with struct_mutex held.
13816  */
13817 void
13818 intel_cleanup_plane_fb(struct drm_plane *plane,
13819                        const struct drm_plane_state *old_state)
13820 {
13821         struct drm_device *dev = plane->dev;
13822         struct intel_plane *intel_plane = to_intel_plane(plane);
13823         struct intel_plane_state *old_intel_state;
13824         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13825         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13826
13827         old_intel_state = to_intel_plane_state(old_state);
13828
13829         if (!obj && !old_obj)
13830                 return;
13831
13832         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13833             !INTEL_INFO(dev)->cursor_needs_physical))
13834                 intel_unpin_fb_obj(old_state->fb, old_state);
13835
13836         /* prepare_fb aborted? */
13837         if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13838             (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13839                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13840
13841         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13842
13843 }
13844
13845 int
13846 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13847 {
13848         int max_scale;
13849         struct drm_device *dev;
13850         struct drm_i915_private *dev_priv;
13851         int crtc_clock, cdclk;
13852
13853         if (!intel_crtc || !crtc_state)
13854                 return DRM_PLANE_HELPER_NO_SCALING;
13855
13856         dev = intel_crtc->base.dev;
13857         dev_priv = dev->dev_private;
13858         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13859         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13860
13861         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13862                 return DRM_PLANE_HELPER_NO_SCALING;
13863
13864         /*
13865          * skl max scale is lower of:
13866          *    close to 3 but not 3, -1 is for that purpose
13867          *            or
13868          *    cdclk/crtc_clock
13869          */
13870         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13871
13872         return max_scale;
13873 }
13874
13875 static int
13876 intel_check_primary_plane(struct drm_plane *plane,
13877                           struct intel_crtc_state *crtc_state,
13878                           struct intel_plane_state *state)
13879 {
13880         struct drm_crtc *crtc = state->base.crtc;
13881         struct drm_framebuffer *fb = state->base.fb;
13882         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13883         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13884         bool can_position = false;
13885
13886         /* use scaler when colorkey is not required */
13887         if (INTEL_INFO(plane->dev)->gen >= 9 &&
13888             state->ckey.flags == I915_SET_COLORKEY_NONE) {
13889                 min_scale = 1;
13890                 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13891                 can_position = true;
13892         }
13893
13894         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13895                                              &state->dst, &state->clip,
13896                                              min_scale, max_scale,
13897                                              can_position, true,
13898                                              &state->visible);
13899 }
13900
13901 static void
13902 intel_commit_primary_plane(struct drm_plane *plane,
13903                            struct intel_plane_state *state)
13904 {
13905         struct drm_crtc *crtc = state->base.crtc;
13906         struct drm_framebuffer *fb = state->base.fb;
13907         struct drm_device *dev = plane->dev;
13908         struct drm_i915_private *dev_priv = dev->dev_private;
13909
13910         crtc = crtc ? crtc : plane->crtc;
13911
13912         dev_priv->display.update_primary_plane(crtc, fb,
13913                                                state->src.x1 >> 16,
13914                                                state->src.y1 >> 16);
13915 }
13916
13917 static void
13918 intel_disable_primary_plane(struct drm_plane *plane,
13919                             struct drm_crtc *crtc)
13920 {
13921         struct drm_device *dev = plane->dev;
13922         struct drm_i915_private *dev_priv = dev->dev_private;
13923
13924         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13925 }
13926
13927 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13928                                     struct drm_crtc_state *old_crtc_state)
13929 {
13930         struct drm_device *dev = crtc->dev;
13931         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13932         struct intel_crtc_state *old_intel_state =
13933                 to_intel_crtc_state(old_crtc_state);
13934         bool modeset = needs_modeset(crtc->state);
13935
13936         /* Perform vblank evasion around commit operation */
13937         intel_pipe_update_start(intel_crtc);
13938
13939         if (modeset)
13940                 return;
13941
13942         if (to_intel_crtc_state(crtc->state)->update_pipe)
13943                 intel_update_pipe_config(intel_crtc, old_intel_state);
13944         else if (INTEL_INFO(dev)->gen >= 9)
13945                 skl_detach_scalers(intel_crtc);
13946 }
13947
13948 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13949                                      struct drm_crtc_state *old_crtc_state)
13950 {
13951         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13952
13953         intel_pipe_update_end(intel_crtc);
13954 }
13955
13956 /**
13957  * intel_plane_destroy - destroy a plane
13958  * @plane: plane to destroy
13959  *
13960  * Common destruction function for all types of planes (primary, cursor,
13961  * sprite).
13962  */
13963 void intel_plane_destroy(struct drm_plane *plane)
13964 {
13965         struct intel_plane *intel_plane = to_intel_plane(plane);
13966         drm_plane_cleanup(plane);
13967         kfree(intel_plane);
13968 }
13969
13970 const struct drm_plane_funcs intel_plane_funcs = {
13971         .update_plane = drm_atomic_helper_update_plane,
13972         .disable_plane = drm_atomic_helper_disable_plane,
13973         .destroy = intel_plane_destroy,
13974         .set_property = drm_atomic_helper_plane_set_property,
13975         .atomic_get_property = intel_plane_atomic_get_property,
13976         .atomic_set_property = intel_plane_atomic_set_property,
13977         .atomic_duplicate_state = intel_plane_duplicate_state,
13978         .atomic_destroy_state = intel_plane_destroy_state,
13979
13980 };
13981
13982 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13983                                                     int pipe)
13984 {
13985         struct intel_plane *primary;
13986         struct intel_plane_state *state;
13987         const uint32_t *intel_primary_formats;
13988         unsigned int num_formats;
13989
13990         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13991         if (primary == NULL)
13992                 return NULL;
13993
13994         state = intel_create_plane_state(&primary->base);
13995         if (!state) {
13996                 kfree(primary);
13997                 return NULL;
13998         }
13999         primary->base.state = &state->base;
14000
14001         primary->can_scale = false;
14002         primary->max_downscale = 1;
14003         if (INTEL_INFO(dev)->gen >= 9) {
14004                 primary->can_scale = true;
14005                 state->scaler_id = -1;
14006         }
14007         primary->pipe = pipe;
14008         primary->plane = pipe;
14009         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14010         primary->check_plane = intel_check_primary_plane;
14011         primary->commit_plane = intel_commit_primary_plane;
14012         primary->disable_plane = intel_disable_primary_plane;
14013         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14014                 primary->plane = !pipe;
14015
14016         if (INTEL_INFO(dev)->gen >= 9) {
14017                 intel_primary_formats = skl_primary_formats;
14018                 num_formats = ARRAY_SIZE(skl_primary_formats);
14019         } else if (INTEL_INFO(dev)->gen >= 4) {
14020                 intel_primary_formats = i965_primary_formats;
14021                 num_formats = ARRAY_SIZE(i965_primary_formats);
14022         } else {
14023                 intel_primary_formats = i8xx_primary_formats;
14024                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14025         }
14026
14027         drm_universal_plane_init(dev, &primary->base, 0,
14028                                  &intel_plane_funcs,
14029                                  intel_primary_formats, num_formats,
14030                                  DRM_PLANE_TYPE_PRIMARY, NULL);
14031
14032         if (INTEL_INFO(dev)->gen >= 4)
14033                 intel_create_rotation_property(dev, primary);
14034
14035         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14036
14037         return &primary->base;
14038 }
14039
14040 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14041 {
14042         if (!dev->mode_config.rotation_property) {
14043                 unsigned long flags = BIT(DRM_ROTATE_0) |
14044                         BIT(DRM_ROTATE_180);
14045
14046                 if (INTEL_INFO(dev)->gen >= 9)
14047                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14048
14049                 dev->mode_config.rotation_property =
14050                         drm_mode_create_rotation_property(dev, flags);
14051         }
14052         if (dev->mode_config.rotation_property)
14053                 drm_object_attach_property(&plane->base.base,
14054                                 dev->mode_config.rotation_property,
14055                                 plane->base.state->rotation);
14056 }
14057
14058 static int
14059 intel_check_cursor_plane(struct drm_plane *plane,
14060                          struct intel_crtc_state *crtc_state,
14061                          struct intel_plane_state *state)
14062 {
14063         struct drm_crtc *crtc = crtc_state->base.crtc;
14064         struct drm_framebuffer *fb = state->base.fb;
14065         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14066         enum pipe pipe = to_intel_plane(plane)->pipe;
14067         unsigned stride;
14068         int ret;
14069
14070         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14071                                             &state->dst, &state->clip,
14072                                             DRM_PLANE_HELPER_NO_SCALING,
14073                                             DRM_PLANE_HELPER_NO_SCALING,
14074                                             true, true, &state->visible);
14075         if (ret)
14076                 return ret;
14077
14078         /* if we want to turn off the cursor ignore width and height */
14079         if (!obj)
14080                 return 0;
14081
14082         /* Check for which cursor types we support */
14083         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14084                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14085                           state->base.crtc_w, state->base.crtc_h);
14086                 return -EINVAL;
14087         }
14088
14089         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14090         if (obj->base.size < stride * state->base.crtc_h) {
14091                 DRM_DEBUG_KMS("buffer is too small\n");
14092                 return -ENOMEM;
14093         }
14094
14095         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14096                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14097                 return -EINVAL;
14098         }
14099
14100         /*
14101          * There's something wrong with the cursor on CHV pipe C.
14102          * If it straddles the left edge of the screen then
14103          * moving it away from the edge or disabling it often
14104          * results in a pipe underrun, and often that can lead to
14105          * dead pipe (constant underrun reported, and it scans
14106          * out just a solid color). To recover from that, the
14107          * display power well must be turned off and on again.
14108          * Refuse the put the cursor into that compromised position.
14109          */
14110         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14111             state->visible && state->base.crtc_x < 0) {
14112                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14113                 return -EINVAL;
14114         }
14115
14116         return 0;
14117 }
14118
14119 static void
14120 intel_disable_cursor_plane(struct drm_plane *plane,
14121                            struct drm_crtc *crtc)
14122 {
14123         intel_crtc_update_cursor(crtc, false);
14124 }
14125
14126 static void
14127 intel_commit_cursor_plane(struct drm_plane *plane,
14128                           struct intel_plane_state *state)
14129 {
14130         struct drm_crtc *crtc = state->base.crtc;
14131         struct drm_device *dev = plane->dev;
14132         struct intel_crtc *intel_crtc;
14133         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14134         uint32_t addr;
14135
14136         crtc = crtc ? crtc : plane->crtc;
14137         intel_crtc = to_intel_crtc(crtc);
14138
14139         if (!obj)
14140                 addr = 0;
14141         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14142                 addr = i915_gem_obj_ggtt_offset(obj);
14143         else
14144                 addr = obj->phys_handle->busaddr;
14145
14146         intel_crtc->cursor_addr = addr;
14147
14148         if (crtc->state->active)
14149                 intel_crtc_update_cursor(crtc, state->visible);
14150 }
14151
14152 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14153                                                    int pipe)
14154 {
14155         struct intel_plane *cursor;
14156         struct intel_plane_state *state;
14157
14158         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14159         if (cursor == NULL)
14160                 return NULL;
14161
14162         state = intel_create_plane_state(&cursor->base);
14163         if (!state) {
14164                 kfree(cursor);
14165                 return NULL;
14166         }
14167         cursor->base.state = &state->base;
14168
14169         cursor->can_scale = false;
14170         cursor->max_downscale = 1;
14171         cursor->pipe = pipe;
14172         cursor->plane = pipe;
14173         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14174         cursor->check_plane = intel_check_cursor_plane;
14175         cursor->commit_plane = intel_commit_cursor_plane;
14176         cursor->disable_plane = intel_disable_cursor_plane;
14177
14178         drm_universal_plane_init(dev, &cursor->base, 0,
14179                                  &intel_plane_funcs,
14180                                  intel_cursor_formats,
14181                                  ARRAY_SIZE(intel_cursor_formats),
14182                                  DRM_PLANE_TYPE_CURSOR, NULL);
14183
14184         if (INTEL_INFO(dev)->gen >= 4) {
14185                 if (!dev->mode_config.rotation_property)
14186                         dev->mode_config.rotation_property =
14187                                 drm_mode_create_rotation_property(dev,
14188                                                         BIT(DRM_ROTATE_0) |
14189                                                         BIT(DRM_ROTATE_180));
14190                 if (dev->mode_config.rotation_property)
14191                         drm_object_attach_property(&cursor->base.base,
14192                                 dev->mode_config.rotation_property,
14193                                 state->base.rotation);
14194         }
14195
14196         if (INTEL_INFO(dev)->gen >=9)
14197                 state->scaler_id = -1;
14198
14199         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14200
14201         return &cursor->base;
14202 }
14203
14204 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14205         struct intel_crtc_state *crtc_state)
14206 {
14207         int i;
14208         struct intel_scaler *intel_scaler;
14209         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14210
14211         for (i = 0; i < intel_crtc->num_scalers; i++) {
14212                 intel_scaler = &scaler_state->scalers[i];
14213                 intel_scaler->in_use = 0;
14214                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14215         }
14216
14217         scaler_state->scaler_id = -1;
14218 }
14219
14220 static void intel_crtc_init(struct drm_device *dev, int pipe)
14221 {
14222         struct drm_i915_private *dev_priv = dev->dev_private;
14223         struct intel_crtc *intel_crtc;
14224         struct intel_crtc_state *crtc_state = NULL;
14225         struct drm_plane *primary = NULL;
14226         struct drm_plane *cursor = NULL;
14227         int i, ret;
14228
14229         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14230         if (intel_crtc == NULL)
14231                 return;
14232
14233         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14234         if (!crtc_state)
14235                 goto fail;
14236         intel_crtc->config = crtc_state;
14237         intel_crtc->base.state = &crtc_state->base;
14238         crtc_state->base.crtc = &intel_crtc->base;
14239
14240         /* initialize shared scalers */
14241         if (INTEL_INFO(dev)->gen >= 9) {
14242                 if (pipe == PIPE_C)
14243                         intel_crtc->num_scalers = 1;
14244                 else
14245                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14246
14247                 skl_init_scalers(dev, intel_crtc, crtc_state);
14248         }
14249
14250         primary = intel_primary_plane_create(dev, pipe);
14251         if (!primary)
14252                 goto fail;
14253
14254         cursor = intel_cursor_plane_create(dev, pipe);
14255         if (!cursor)
14256                 goto fail;
14257
14258         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14259                                         cursor, &intel_crtc_funcs, NULL);
14260         if (ret)
14261                 goto fail;
14262
14263         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
14264         for (i = 0; i < 256; i++) {
14265                 intel_crtc->lut_r[i] = i;
14266                 intel_crtc->lut_g[i] = i;
14267                 intel_crtc->lut_b[i] = i;
14268         }
14269
14270         /*
14271          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14272          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14273          */
14274         intel_crtc->pipe = pipe;
14275         intel_crtc->plane = pipe;
14276         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14277                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14278                 intel_crtc->plane = !pipe;
14279         }
14280
14281         intel_crtc->cursor_base = ~0;
14282         intel_crtc->cursor_cntl = ~0;
14283         intel_crtc->cursor_size = ~0;
14284
14285         intel_crtc->wm.cxsr_allowed = true;
14286
14287         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14288                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14289         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14290         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14291
14292         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14293
14294         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14295         return;
14296
14297 fail:
14298         if (primary)
14299                 drm_plane_cleanup(primary);
14300         if (cursor)
14301                 drm_plane_cleanup(cursor);
14302         kfree(crtc_state);
14303         kfree(intel_crtc);
14304 }
14305
14306 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14307 {
14308         struct drm_encoder *encoder = connector->base.encoder;
14309         struct drm_device *dev = connector->base.dev;
14310
14311         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14312
14313         if (!encoder || WARN_ON(!encoder->crtc))
14314                 return INVALID_PIPE;
14315
14316         return to_intel_crtc(encoder->crtc)->pipe;
14317 }
14318
14319 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14320                                 struct drm_file *file)
14321 {
14322         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14323         struct drm_crtc *drmmode_crtc;
14324         struct intel_crtc *crtc;
14325
14326         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14327
14328         if (!drmmode_crtc) {
14329                 DRM_ERROR("no such CRTC id\n");
14330                 return -ENOENT;
14331         }
14332
14333         crtc = to_intel_crtc(drmmode_crtc);
14334         pipe_from_crtc_id->pipe = crtc->pipe;
14335
14336         return 0;
14337 }
14338
14339 static int intel_encoder_clones(struct intel_encoder *encoder)
14340 {
14341         struct drm_device *dev = encoder->base.dev;
14342         struct intel_encoder *source_encoder;
14343         int index_mask = 0;
14344         int entry = 0;
14345
14346         for_each_intel_encoder(dev, source_encoder) {
14347                 if (encoders_cloneable(encoder, source_encoder))
14348                         index_mask |= (1 << entry);
14349
14350                 entry++;
14351         }
14352
14353         return index_mask;
14354 }
14355
14356 static bool has_edp_a(struct drm_device *dev)
14357 {
14358         struct drm_i915_private *dev_priv = dev->dev_private;
14359
14360         if (!IS_MOBILE(dev))
14361                 return false;
14362
14363         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14364                 return false;
14365
14366         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14367                 return false;
14368
14369         return true;
14370 }
14371
14372 static bool intel_crt_present(struct drm_device *dev)
14373 {
14374         struct drm_i915_private *dev_priv = dev->dev_private;
14375
14376         if (INTEL_INFO(dev)->gen >= 9)
14377                 return false;
14378
14379         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14380                 return false;
14381
14382         if (IS_CHERRYVIEW(dev))
14383                 return false;
14384
14385         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14386                 return false;
14387
14388         /* DDI E can't be used if DDI A requires 4 lanes */
14389         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14390                 return false;
14391
14392         if (!dev_priv->vbt.int_crt_support)
14393                 return false;
14394
14395         return true;
14396 }
14397
14398 static void intel_setup_outputs(struct drm_device *dev)
14399 {
14400         struct drm_i915_private *dev_priv = dev->dev_private;
14401         struct intel_encoder *encoder;
14402         bool dpd_is_edp = false;
14403
14404         intel_lvds_init(dev);
14405
14406         if (intel_crt_present(dev))
14407                 intel_crt_init(dev);
14408
14409         if (IS_BROXTON(dev)) {
14410                 /*
14411                  * FIXME: Broxton doesn't support port detection via the
14412                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14413                  * detect the ports.
14414                  */
14415                 intel_ddi_init(dev, PORT_A);
14416                 intel_ddi_init(dev, PORT_B);
14417                 intel_ddi_init(dev, PORT_C);
14418         } else if (HAS_DDI(dev)) {
14419                 int found;
14420
14421                 /*
14422                  * Haswell uses DDI functions to detect digital outputs.
14423                  * On SKL pre-D0 the strap isn't connected, so we assume
14424                  * it's there.
14425                  */
14426                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14427                 /* WaIgnoreDDIAStrap: skl */
14428                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14429                         intel_ddi_init(dev, PORT_A);
14430
14431                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14432                  * register */
14433                 found = I915_READ(SFUSE_STRAP);
14434
14435                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14436                         intel_ddi_init(dev, PORT_B);
14437                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14438                         intel_ddi_init(dev, PORT_C);
14439                 if (found & SFUSE_STRAP_DDID_DETECTED)
14440                         intel_ddi_init(dev, PORT_D);
14441                 /*
14442                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14443                  */
14444                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14445                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14446                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14447                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14448                         intel_ddi_init(dev, PORT_E);
14449
14450         } else if (HAS_PCH_SPLIT(dev)) {
14451                 int found;
14452                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14453
14454                 if (has_edp_a(dev))
14455                         intel_dp_init(dev, DP_A, PORT_A);
14456
14457                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14458                         /* PCH SDVOB multiplex with HDMIB */
14459                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14460                         if (!found)
14461                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14462                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14463                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14464                 }
14465
14466                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14467                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14468
14469                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14470                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14471
14472                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14473                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14474
14475                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14476                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14477         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14478                 /*
14479                  * The DP_DETECTED bit is the latched state of the DDC
14480                  * SDA pin at boot. However since eDP doesn't require DDC
14481                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14482                  * eDP ports may have been muxed to an alternate function.
14483                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14484                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14485                  * detect eDP ports.
14486                  */
14487                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14488                     !intel_dp_is_edp(dev, PORT_B))
14489                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14490                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14491                     intel_dp_is_edp(dev, PORT_B))
14492                         intel_dp_init(dev, VLV_DP_B, PORT_B);
14493
14494                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14495                     !intel_dp_is_edp(dev, PORT_C))
14496                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14497                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14498                     intel_dp_is_edp(dev, PORT_C))
14499                         intel_dp_init(dev, VLV_DP_C, PORT_C);
14500
14501                 if (IS_CHERRYVIEW(dev)) {
14502                         /* eDP not supported on port D, so don't check VBT */
14503                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14504                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14505                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
14506                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14507                 }
14508
14509                 intel_dsi_init(dev);
14510         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14511                 bool found = false;
14512
14513                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14514                         DRM_DEBUG_KMS("probing SDVOB\n");
14515                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14516                         if (!found && IS_G4X(dev)) {
14517                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14518                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14519                         }
14520
14521                         if (!found && IS_G4X(dev))
14522                                 intel_dp_init(dev, DP_B, PORT_B);
14523                 }
14524
14525                 /* Before G4X SDVOC doesn't have its own detect register */
14526
14527                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14528                         DRM_DEBUG_KMS("probing SDVOC\n");
14529                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14530                 }
14531
14532                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14533
14534                         if (IS_G4X(dev)) {
14535                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14536                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14537                         }
14538                         if (IS_G4X(dev))
14539                                 intel_dp_init(dev, DP_C, PORT_C);
14540                 }
14541
14542                 if (IS_G4X(dev) &&
14543                     (I915_READ(DP_D) & DP_DETECTED))
14544                         intel_dp_init(dev, DP_D, PORT_D);
14545         } else if (IS_GEN2(dev))
14546                 intel_dvo_init(dev);
14547
14548         if (SUPPORTS_TV(dev))
14549                 intel_tv_init(dev);
14550
14551         intel_psr_init(dev);
14552
14553         for_each_intel_encoder(dev, encoder) {
14554                 encoder->base.possible_crtcs = encoder->crtc_mask;
14555                 encoder->base.possible_clones =
14556                         intel_encoder_clones(encoder);
14557         }
14558
14559         intel_init_pch_refclk(dev);
14560
14561         drm_helper_move_panel_connectors_to_head(dev);
14562 }
14563
14564 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14565 {
14566         struct drm_device *dev = fb->dev;
14567         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14568
14569         drm_framebuffer_cleanup(fb);
14570         mutex_lock(&dev->struct_mutex);
14571         WARN_ON(!intel_fb->obj->framebuffer_references--);
14572         drm_gem_object_unreference(&intel_fb->obj->base);
14573         mutex_unlock(&dev->struct_mutex);
14574         kfree(intel_fb);
14575 }
14576
14577 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14578                                                 struct drm_file *file,
14579                                                 unsigned int *handle)
14580 {
14581         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14582         struct drm_i915_gem_object *obj = intel_fb->obj;
14583
14584         if (obj->userptr.mm) {
14585                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14586                 return -EINVAL;
14587         }
14588
14589         return drm_gem_handle_create(file, &obj->base, handle);
14590 }
14591
14592 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14593                                         struct drm_file *file,
14594                                         unsigned flags, unsigned color,
14595                                         struct drm_clip_rect *clips,
14596                                         unsigned num_clips)
14597 {
14598         struct drm_device *dev = fb->dev;
14599         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14600         struct drm_i915_gem_object *obj = intel_fb->obj;
14601
14602         mutex_lock(&dev->struct_mutex);
14603         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14604         mutex_unlock(&dev->struct_mutex);
14605
14606         return 0;
14607 }
14608
14609 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14610         .destroy = intel_user_framebuffer_destroy,
14611         .create_handle = intel_user_framebuffer_create_handle,
14612         .dirty = intel_user_framebuffer_dirty,
14613 };
14614
14615 static
14616 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14617                          uint32_t pixel_format)
14618 {
14619         u32 gen = INTEL_INFO(dev)->gen;
14620
14621         if (gen >= 9) {
14622                 /* "The stride in bytes must not exceed the of the size of 8K
14623                  *  pixels and 32K bytes."
14624                  */
14625                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14626         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14627                 return 32*1024;
14628         } else if (gen >= 4) {
14629                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14630                         return 16*1024;
14631                 else
14632                         return 32*1024;
14633         } else if (gen >= 3) {
14634                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14635                         return 8*1024;
14636                 else
14637                         return 16*1024;
14638         } else {
14639                 /* XXX DSPC is limited to 4k tiled */
14640                 return 8*1024;
14641         }
14642 }
14643
14644 static int intel_framebuffer_init(struct drm_device *dev,
14645                                   struct intel_framebuffer *intel_fb,
14646                                   struct drm_mode_fb_cmd2 *mode_cmd,
14647                                   struct drm_i915_gem_object *obj)
14648 {
14649         unsigned int aligned_height;
14650         int ret;
14651         u32 pitch_limit, stride_alignment;
14652
14653         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14654
14655         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14656                 /* Enforce that fb modifier and tiling mode match, but only for
14657                  * X-tiled. This is needed for FBC. */
14658                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14659                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14660                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14661                         return -EINVAL;
14662                 }
14663         } else {
14664                 if (obj->tiling_mode == I915_TILING_X)
14665                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14666                 else if (obj->tiling_mode == I915_TILING_Y) {
14667                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14668                         return -EINVAL;
14669                 }
14670         }
14671
14672         /* Passed in modifier sanity checking. */
14673         switch (mode_cmd->modifier[0]) {
14674         case I915_FORMAT_MOD_Y_TILED:
14675         case I915_FORMAT_MOD_Yf_TILED:
14676                 if (INTEL_INFO(dev)->gen < 9) {
14677                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14678                                   mode_cmd->modifier[0]);
14679                         return -EINVAL;
14680                 }
14681         case DRM_FORMAT_MOD_NONE:
14682         case I915_FORMAT_MOD_X_TILED:
14683                 break;
14684         default:
14685                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14686                           mode_cmd->modifier[0]);
14687                 return -EINVAL;
14688         }
14689
14690         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14691                                                      mode_cmd->pixel_format);
14692         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14693                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14694                           mode_cmd->pitches[0], stride_alignment);
14695                 return -EINVAL;
14696         }
14697
14698         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14699                                            mode_cmd->pixel_format);
14700         if (mode_cmd->pitches[0] > pitch_limit) {
14701                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14702                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14703                           "tiled" : "linear",
14704                           mode_cmd->pitches[0], pitch_limit);
14705                 return -EINVAL;
14706         }
14707
14708         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14709             mode_cmd->pitches[0] != obj->stride) {
14710                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14711                           mode_cmd->pitches[0], obj->stride);
14712                 return -EINVAL;
14713         }
14714
14715         /* Reject formats not supported by any plane early. */
14716         switch (mode_cmd->pixel_format) {
14717         case DRM_FORMAT_C8:
14718         case DRM_FORMAT_RGB565:
14719         case DRM_FORMAT_XRGB8888:
14720         case DRM_FORMAT_ARGB8888:
14721                 break;
14722         case DRM_FORMAT_XRGB1555:
14723                 if (INTEL_INFO(dev)->gen > 3) {
14724                         DRM_DEBUG("unsupported pixel format: %s\n",
14725                                   drm_get_format_name(mode_cmd->pixel_format));
14726                         return -EINVAL;
14727                 }
14728                 break;
14729         case DRM_FORMAT_ABGR8888:
14730                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14731                     INTEL_INFO(dev)->gen < 9) {
14732                         DRM_DEBUG("unsupported pixel format: %s\n",
14733                                   drm_get_format_name(mode_cmd->pixel_format));
14734                         return -EINVAL;
14735                 }
14736                 break;
14737         case DRM_FORMAT_XBGR8888:
14738         case DRM_FORMAT_XRGB2101010:
14739         case DRM_FORMAT_XBGR2101010:
14740                 if (INTEL_INFO(dev)->gen < 4) {
14741                         DRM_DEBUG("unsupported pixel format: %s\n",
14742                                   drm_get_format_name(mode_cmd->pixel_format));
14743                         return -EINVAL;
14744                 }
14745                 break;
14746         case DRM_FORMAT_ABGR2101010:
14747                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14748                         DRM_DEBUG("unsupported pixel format: %s\n",
14749                                   drm_get_format_name(mode_cmd->pixel_format));
14750                         return -EINVAL;
14751                 }
14752                 break;
14753         case DRM_FORMAT_YUYV:
14754         case DRM_FORMAT_UYVY:
14755         case DRM_FORMAT_YVYU:
14756         case DRM_FORMAT_VYUY:
14757                 if (INTEL_INFO(dev)->gen < 5) {
14758                         DRM_DEBUG("unsupported pixel format: %s\n",
14759                                   drm_get_format_name(mode_cmd->pixel_format));
14760                         return -EINVAL;
14761                 }
14762                 break;
14763         default:
14764                 DRM_DEBUG("unsupported pixel format: %s\n",
14765                           drm_get_format_name(mode_cmd->pixel_format));
14766                 return -EINVAL;
14767         }
14768
14769         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14770         if (mode_cmd->offsets[0] != 0)
14771                 return -EINVAL;
14772
14773         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14774                                                mode_cmd->pixel_format,
14775                                                mode_cmd->modifier[0]);
14776         /* FIXME drm helper for size checks (especially planar formats)? */
14777         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14778                 return -EINVAL;
14779
14780         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14781         intel_fb->obj = obj;
14782         intel_fb->obj->framebuffer_references++;
14783
14784         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14785         if (ret) {
14786                 DRM_ERROR("framebuffer init failed %d\n", ret);
14787                 return ret;
14788         }
14789
14790         return 0;
14791 }
14792
14793 static struct drm_framebuffer *
14794 intel_user_framebuffer_create(struct drm_device *dev,
14795                               struct drm_file *filp,
14796                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14797 {
14798         struct drm_framebuffer *fb;
14799         struct drm_i915_gem_object *obj;
14800         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14801
14802         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14803                                                 mode_cmd.handles[0]));
14804         if (&obj->base == NULL)
14805                 return ERR_PTR(-ENOENT);
14806
14807         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14808         if (IS_ERR(fb))
14809                 drm_gem_object_unreference_unlocked(&obj->base);
14810
14811         return fb;
14812 }
14813
14814 #ifndef CONFIG_DRM_FBDEV_EMULATION
14815 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14816 {
14817 }
14818 #endif
14819
14820 static const struct drm_mode_config_funcs intel_mode_funcs = {
14821         .fb_create = intel_user_framebuffer_create,
14822         .output_poll_changed = intel_fbdev_output_poll_changed,
14823         .atomic_check = intel_atomic_check,
14824         .atomic_commit = intel_atomic_commit,
14825         .atomic_state_alloc = intel_atomic_state_alloc,
14826         .atomic_state_clear = intel_atomic_state_clear,
14827 };
14828
14829 /* Set up chip specific display functions */
14830 static void intel_init_display(struct drm_device *dev)
14831 {
14832         struct drm_i915_private *dev_priv = dev->dev_private;
14833
14834         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14835                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14836         else if (IS_CHERRYVIEW(dev))
14837                 dev_priv->display.find_dpll = chv_find_best_dpll;
14838         else if (IS_VALLEYVIEW(dev))
14839                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14840         else if (IS_PINEVIEW(dev))
14841                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14842         else
14843                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14844
14845         if (INTEL_INFO(dev)->gen >= 9) {
14846                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14847                 dev_priv->display.get_initial_plane_config =
14848                         skylake_get_initial_plane_config;
14849                 dev_priv->display.crtc_compute_clock =
14850                         haswell_crtc_compute_clock;
14851                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14852                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14853                 dev_priv->display.update_primary_plane =
14854                         skylake_update_primary_plane;
14855         } else if (HAS_DDI(dev)) {
14856                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14857                 dev_priv->display.get_initial_plane_config =
14858                         ironlake_get_initial_plane_config;
14859                 dev_priv->display.crtc_compute_clock =
14860                         haswell_crtc_compute_clock;
14861                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14862                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14863                 dev_priv->display.update_primary_plane =
14864                         ironlake_update_primary_plane;
14865         } else if (HAS_PCH_SPLIT(dev)) {
14866                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14867                 dev_priv->display.get_initial_plane_config =
14868                         ironlake_get_initial_plane_config;
14869                 dev_priv->display.crtc_compute_clock =
14870                         ironlake_crtc_compute_clock;
14871                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14872                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14873                 dev_priv->display.update_primary_plane =
14874                         ironlake_update_primary_plane;
14875         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14876                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14877                 dev_priv->display.get_initial_plane_config =
14878                         i9xx_get_initial_plane_config;
14879                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14880                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14881                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14882                 dev_priv->display.update_primary_plane =
14883                         i9xx_update_primary_plane;
14884         } else {
14885                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14886                 dev_priv->display.get_initial_plane_config =
14887                         i9xx_get_initial_plane_config;
14888                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14889                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14890                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14891                 dev_priv->display.update_primary_plane =
14892                         i9xx_update_primary_plane;
14893         }
14894
14895         /* Returns the core display clock speed */
14896         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14897                 dev_priv->display.get_display_clock_speed =
14898                         skylake_get_display_clock_speed;
14899         else if (IS_BROXTON(dev))
14900                 dev_priv->display.get_display_clock_speed =
14901                         broxton_get_display_clock_speed;
14902         else if (IS_BROADWELL(dev))
14903                 dev_priv->display.get_display_clock_speed =
14904                         broadwell_get_display_clock_speed;
14905         else if (IS_HASWELL(dev))
14906                 dev_priv->display.get_display_clock_speed =
14907                         haswell_get_display_clock_speed;
14908         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
14909                 dev_priv->display.get_display_clock_speed =
14910                         valleyview_get_display_clock_speed;
14911         else if (IS_GEN5(dev))
14912                 dev_priv->display.get_display_clock_speed =
14913                         ilk_get_display_clock_speed;
14914         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14915                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14916                 dev_priv->display.get_display_clock_speed =
14917                         i945_get_display_clock_speed;
14918         else if (IS_GM45(dev))
14919                 dev_priv->display.get_display_clock_speed =
14920                         gm45_get_display_clock_speed;
14921         else if (IS_CRESTLINE(dev))
14922                 dev_priv->display.get_display_clock_speed =
14923                         i965gm_get_display_clock_speed;
14924         else if (IS_PINEVIEW(dev))
14925                 dev_priv->display.get_display_clock_speed =
14926                         pnv_get_display_clock_speed;
14927         else if (IS_G33(dev) || IS_G4X(dev))
14928                 dev_priv->display.get_display_clock_speed =
14929                         g33_get_display_clock_speed;
14930         else if (IS_I915G(dev))
14931                 dev_priv->display.get_display_clock_speed =
14932                         i915_get_display_clock_speed;
14933         else if (IS_I945GM(dev) || IS_845G(dev))
14934                 dev_priv->display.get_display_clock_speed =
14935                         i9xx_misc_get_display_clock_speed;
14936         else if (IS_I915GM(dev))
14937                 dev_priv->display.get_display_clock_speed =
14938                         i915gm_get_display_clock_speed;
14939         else if (IS_I865G(dev))
14940                 dev_priv->display.get_display_clock_speed =
14941                         i865_get_display_clock_speed;
14942         else if (IS_I85X(dev))
14943                 dev_priv->display.get_display_clock_speed =
14944                         i85x_get_display_clock_speed;
14945         else { /* 830 */
14946                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14947                 dev_priv->display.get_display_clock_speed =
14948                         i830_get_display_clock_speed;
14949         }
14950
14951         if (IS_GEN5(dev)) {
14952                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14953         } else if (IS_GEN6(dev)) {
14954                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14955         } else if (IS_IVYBRIDGE(dev)) {
14956                 /* FIXME: detect B0+ stepping and use auto training */
14957                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14958         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14959                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14960                 if (IS_BROADWELL(dev)) {
14961                         dev_priv->display.modeset_commit_cdclk =
14962                                 broadwell_modeset_commit_cdclk;
14963                         dev_priv->display.modeset_calc_cdclk =
14964                                 broadwell_modeset_calc_cdclk;
14965                 }
14966         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14967                 dev_priv->display.modeset_commit_cdclk =
14968                         valleyview_modeset_commit_cdclk;
14969                 dev_priv->display.modeset_calc_cdclk =
14970                         valleyview_modeset_calc_cdclk;
14971         } else if (IS_BROXTON(dev)) {
14972                 dev_priv->display.modeset_commit_cdclk =
14973                         broxton_modeset_commit_cdclk;
14974                 dev_priv->display.modeset_calc_cdclk =
14975                         broxton_modeset_calc_cdclk;
14976         }
14977
14978         switch (INTEL_INFO(dev)->gen) {
14979         case 2:
14980                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14981                 break;
14982
14983         case 3:
14984                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14985                 break;
14986
14987         case 4:
14988         case 5:
14989                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14990                 break;
14991
14992         case 6:
14993                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14994                 break;
14995         case 7:
14996         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14997                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14998                 break;
14999         case 9:
15000                 /* Drop through - unsupported since execlist only. */
15001         default:
15002                 /* Default just returns -ENODEV to indicate unsupported */
15003                 dev_priv->display.queue_flip = intel_default_queue_flip;
15004         }
15005
15006         mutex_init(&dev_priv->pps_mutex);
15007 }
15008
15009 /*
15010  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15011  * resume, or other times.  This quirk makes sure that's the case for
15012  * affected systems.
15013  */
15014 static void quirk_pipea_force(struct drm_device *dev)
15015 {
15016         struct drm_i915_private *dev_priv = dev->dev_private;
15017
15018         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15019         DRM_INFO("applying pipe a force quirk\n");
15020 }
15021
15022 static void quirk_pipeb_force(struct drm_device *dev)
15023 {
15024         struct drm_i915_private *dev_priv = dev->dev_private;
15025
15026         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15027         DRM_INFO("applying pipe b force quirk\n");
15028 }
15029
15030 /*
15031  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15032  */
15033 static void quirk_ssc_force_disable(struct drm_device *dev)
15034 {
15035         struct drm_i915_private *dev_priv = dev->dev_private;
15036         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15037         DRM_INFO("applying lvds SSC disable quirk\n");
15038 }
15039
15040 /*
15041  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15042  * brightness value
15043  */
15044 static void quirk_invert_brightness(struct drm_device *dev)
15045 {
15046         struct drm_i915_private *dev_priv = dev->dev_private;
15047         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15048         DRM_INFO("applying inverted panel brightness quirk\n");
15049 }
15050
15051 /* Some VBT's incorrectly indicate no backlight is present */
15052 static void quirk_backlight_present(struct drm_device *dev)
15053 {
15054         struct drm_i915_private *dev_priv = dev->dev_private;
15055         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15056         DRM_INFO("applying backlight present quirk\n");
15057 }
15058
15059 struct intel_quirk {
15060         int device;
15061         int subsystem_vendor;
15062         int subsystem_device;
15063         void (*hook)(struct drm_device *dev);
15064 };
15065
15066 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15067 struct intel_dmi_quirk {
15068         void (*hook)(struct drm_device *dev);
15069         const struct dmi_system_id (*dmi_id_list)[];
15070 };
15071
15072 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15073 {
15074         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15075         return 1;
15076 }
15077
15078 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15079         {
15080                 .dmi_id_list = &(const struct dmi_system_id[]) {
15081                         {
15082                                 .callback = intel_dmi_reverse_brightness,
15083                                 .ident = "NCR Corporation",
15084                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15085                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
15086                                 },
15087                         },
15088                         { }  /* terminating entry */
15089                 },
15090                 .hook = quirk_invert_brightness,
15091         },
15092 };
15093
15094 static struct intel_quirk intel_quirks[] = {
15095         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15096         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15097
15098         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15099         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15100
15101         /* 830 needs to leave pipe A & dpll A up */
15102         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15103
15104         /* 830 needs to leave pipe B & dpll B up */
15105         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15106
15107         /* Lenovo U160 cannot use SSC on LVDS */
15108         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15109
15110         /* Sony Vaio Y cannot use SSC on LVDS */
15111         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15112
15113         /* Acer Aspire 5734Z must invert backlight brightness */
15114         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15115
15116         /* Acer/eMachines G725 */
15117         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15118
15119         /* Acer/eMachines e725 */
15120         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15121
15122         /* Acer/Packard Bell NCL20 */
15123         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15124
15125         /* Acer Aspire 4736Z */
15126         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15127
15128         /* Acer Aspire 5336 */
15129         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15130
15131         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15132         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15133
15134         /* Acer C720 Chromebook (Core i3 4005U) */
15135         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15136
15137         /* Apple Macbook 2,1 (Core 2 T7400) */
15138         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15139
15140         /* Apple Macbook 4,1 */
15141         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15142
15143         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15144         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15145
15146         /* HP Chromebook 14 (Celeron 2955U) */
15147         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15148
15149         /* Dell Chromebook 11 */
15150         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15151
15152         /* Dell Chromebook 11 (2015 version) */
15153         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15154 };
15155
15156 static void intel_init_quirks(struct drm_device *dev)
15157 {
15158         struct pci_dev *d = dev->pdev;
15159         int i;
15160
15161         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15162                 struct intel_quirk *q = &intel_quirks[i];
15163
15164                 if (d->device == q->device &&
15165                     (d->subsystem_vendor == q->subsystem_vendor ||
15166                      q->subsystem_vendor == PCI_ANY_ID) &&
15167                     (d->subsystem_device == q->subsystem_device ||
15168                      q->subsystem_device == PCI_ANY_ID))
15169                         q->hook(dev);
15170         }
15171         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15172                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15173                         intel_dmi_quirks[i].hook(dev);
15174         }
15175 }
15176
15177 /* Disable the VGA plane that we never use */
15178 static void i915_disable_vga(struct drm_device *dev)
15179 {
15180         struct drm_i915_private *dev_priv = dev->dev_private;
15181         u8 sr1;
15182         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15183
15184         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15185         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15186         outb(SR01, VGA_SR_INDEX);
15187         sr1 = inb(VGA_SR_DATA);
15188         outb(sr1 | 1<<5, VGA_SR_DATA);
15189         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15190         udelay(300);
15191
15192         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15193         POSTING_READ(vga_reg);
15194 }
15195
15196 void intel_modeset_init_hw(struct drm_device *dev)
15197 {
15198         intel_update_cdclk(dev);
15199         intel_prepare_ddi(dev);
15200         intel_init_clock_gating(dev);
15201         intel_enable_gt_powersave(dev);
15202 }
15203
15204 void intel_modeset_init(struct drm_device *dev)
15205 {
15206         struct drm_i915_private *dev_priv = dev->dev_private;
15207         int sprite, ret;
15208         enum pipe pipe;
15209         struct intel_crtc *crtc;
15210
15211         drm_mode_config_init(dev);
15212
15213         dev->mode_config.min_width = 0;
15214         dev->mode_config.min_height = 0;
15215
15216         dev->mode_config.preferred_depth = 24;
15217         dev->mode_config.prefer_shadow = 1;
15218
15219         dev->mode_config.allow_fb_modifiers = true;
15220
15221         dev->mode_config.funcs = &intel_mode_funcs;
15222
15223         intel_init_quirks(dev);
15224
15225         intel_init_pm(dev);
15226
15227         if (INTEL_INFO(dev)->num_pipes == 0)
15228                 return;
15229
15230         /*
15231          * There may be no VBT; and if the BIOS enabled SSC we can
15232          * just keep using it to avoid unnecessary flicker.  Whereas if the
15233          * BIOS isn't using it, don't assume it will work even if the VBT
15234          * indicates as much.
15235          */
15236         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15237                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15238                                             DREF_SSC1_ENABLE);
15239
15240                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15241                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15242                                      bios_lvds_use_ssc ? "en" : "dis",
15243                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15244                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15245                 }
15246         }
15247
15248         intel_init_display(dev);
15249         intel_init_audio(dev);
15250
15251         if (IS_GEN2(dev)) {
15252                 dev->mode_config.max_width = 2048;
15253                 dev->mode_config.max_height = 2048;
15254         } else if (IS_GEN3(dev)) {
15255                 dev->mode_config.max_width = 4096;
15256                 dev->mode_config.max_height = 4096;
15257         } else {
15258                 dev->mode_config.max_width = 8192;
15259                 dev->mode_config.max_height = 8192;
15260         }
15261
15262         if (IS_845G(dev) || IS_I865G(dev)) {
15263                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15264                 dev->mode_config.cursor_height = 1023;
15265         } else if (IS_GEN2(dev)) {
15266                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15267                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15268         } else {
15269                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15270                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15271         }
15272
15273         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
15274
15275         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15276                       INTEL_INFO(dev)->num_pipes,
15277                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15278
15279         for_each_pipe(dev_priv, pipe) {
15280                 intel_crtc_init(dev, pipe);
15281                 for_each_sprite(dev_priv, pipe, sprite) {
15282                         ret = intel_plane_init(dev, pipe, sprite);
15283                         if (ret)
15284                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15285                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15286                 }
15287         }
15288
15289         intel_update_czclk(dev_priv);
15290         intel_update_cdclk(dev);
15291
15292         intel_shared_dpll_init(dev);
15293
15294         /* Just disable it once at startup */
15295         i915_disable_vga(dev);
15296         intel_setup_outputs(dev);
15297
15298         drm_modeset_lock_all(dev);
15299         intel_modeset_setup_hw_state(dev);
15300         drm_modeset_unlock_all(dev);
15301
15302         for_each_intel_crtc(dev, crtc) {
15303                 struct intel_initial_plane_config plane_config = {};
15304
15305                 if (!crtc->active)
15306                         continue;
15307
15308                 /*
15309                  * Note that reserving the BIOS fb up front prevents us
15310                  * from stuffing other stolen allocations like the ring
15311                  * on top.  This prevents some ugliness at boot time, and
15312                  * can even allow for smooth boot transitions if the BIOS
15313                  * fb is large enough for the active pipe configuration.
15314                  */
15315                 dev_priv->display.get_initial_plane_config(crtc,
15316                                                            &plane_config);
15317
15318                 /*
15319                  * If the fb is shared between multiple heads, we'll
15320                  * just get the first one.
15321                  */
15322                 intel_find_initial_plane_obj(crtc, &plane_config);
15323         }
15324 }
15325
15326 static void intel_enable_pipe_a(struct drm_device *dev)
15327 {
15328         struct intel_connector *connector;
15329         struct drm_connector *crt = NULL;
15330         struct intel_load_detect_pipe load_detect_temp;
15331         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15332
15333         /* We can't just switch on the pipe A, we need to set things up with a
15334          * proper mode and output configuration. As a gross hack, enable pipe A
15335          * by enabling the load detect pipe once. */
15336         for_each_intel_connector(dev, connector) {
15337                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15338                         crt = &connector->base;
15339                         break;
15340                 }
15341         }
15342
15343         if (!crt)
15344                 return;
15345
15346         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15347                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15348 }
15349
15350 static bool
15351 intel_check_plane_mapping(struct intel_crtc *crtc)
15352 {
15353         struct drm_device *dev = crtc->base.dev;
15354         struct drm_i915_private *dev_priv = dev->dev_private;
15355         u32 val;
15356
15357         if (INTEL_INFO(dev)->num_pipes == 1)
15358                 return true;
15359
15360         val = I915_READ(DSPCNTR(!crtc->plane));
15361
15362         if ((val & DISPLAY_PLANE_ENABLE) &&
15363             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15364                 return false;
15365
15366         return true;
15367 }
15368
15369 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15370 {
15371         struct drm_device *dev = crtc->base.dev;
15372         struct intel_encoder *encoder;
15373
15374         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15375                 return true;
15376
15377         return false;
15378 }
15379
15380 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15381 {
15382         struct drm_device *dev = crtc->base.dev;
15383         struct drm_i915_private *dev_priv = dev->dev_private;
15384         i915_reg_t reg = PIPECONF(crtc->config->cpu_transcoder);
15385
15386         /* Clear any frame start delays used for debugging left by the BIOS */
15387         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15388
15389         /* restore vblank interrupts to correct state */
15390         drm_crtc_vblank_reset(&crtc->base);
15391         if (crtc->active) {
15392                 struct intel_plane *plane;
15393
15394                 drm_crtc_vblank_on(&crtc->base);
15395
15396                 /* Disable everything but the primary plane */
15397                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15398                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15399                                 continue;
15400
15401                         plane->disable_plane(&plane->base, &crtc->base);
15402                 }
15403         }
15404
15405         /* We need to sanitize the plane -> pipe mapping first because this will
15406          * disable the crtc (and hence change the state) if it is wrong. Note
15407          * that gen4+ has a fixed plane -> pipe mapping.  */
15408         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15409                 bool plane;
15410
15411                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15412                               crtc->base.base.id);
15413
15414                 /* Pipe has the wrong plane attached and the plane is active.
15415                  * Temporarily change the plane mapping and disable everything
15416                  * ...  */
15417                 plane = crtc->plane;
15418                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15419                 crtc->plane = !plane;
15420                 intel_crtc_disable_noatomic(&crtc->base);
15421                 crtc->plane = plane;
15422         }
15423
15424         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15425             crtc->pipe == PIPE_A && !crtc->active) {
15426                 /* BIOS forgot to enable pipe A, this mostly happens after
15427                  * resume. Force-enable the pipe to fix this, the update_dpms
15428                  * call below we restore the pipe to the right state, but leave
15429                  * the required bits on. */
15430                 intel_enable_pipe_a(dev);
15431         }
15432
15433         /* Adjust the state of the output pipe according to whether we
15434          * have active connectors/encoders. */
15435         if (!intel_crtc_has_encoders(crtc))
15436                 intel_crtc_disable_noatomic(&crtc->base);
15437
15438         if (crtc->active != crtc->base.state->active) {
15439                 struct intel_encoder *encoder;
15440
15441                 /* This can happen either due to bugs in the get_hw_state
15442                  * functions or because of calls to intel_crtc_disable_noatomic,
15443                  * or because the pipe is force-enabled due to the
15444                  * pipe A quirk. */
15445                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15446                               crtc->base.base.id,
15447                               crtc->base.state->enable ? "enabled" : "disabled",
15448                               crtc->active ? "enabled" : "disabled");
15449
15450                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15451                 crtc->base.state->active = crtc->active;
15452                 crtc->base.enabled = crtc->active;
15453                 crtc->base.state->connector_mask = 0;
15454
15455                 /* Because we only establish the connector -> encoder ->
15456                  * crtc links if something is active, this means the
15457                  * crtc is now deactivated. Break the links. connector
15458                  * -> encoder links are only establish when things are
15459                  *  actually up, hence no need to break them. */
15460                 WARN_ON(crtc->active);
15461
15462                 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15463                         encoder->base.crtc = NULL;
15464         }
15465
15466         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15467                 /*
15468                  * We start out with underrun reporting disabled to avoid races.
15469                  * For correct bookkeeping mark this on active crtcs.
15470                  *
15471                  * Also on gmch platforms we dont have any hardware bits to
15472                  * disable the underrun reporting. Which means we need to start
15473                  * out with underrun reporting disabled also on inactive pipes,
15474                  * since otherwise we'll complain about the garbage we read when
15475                  * e.g. coming up after runtime pm.
15476                  *
15477                  * No protection against concurrent access is required - at
15478                  * worst a fifo underrun happens which also sets this to false.
15479                  */
15480                 crtc->cpu_fifo_underrun_disabled = true;
15481                 crtc->pch_fifo_underrun_disabled = true;
15482         }
15483 }
15484
15485 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15486 {
15487         struct intel_connector *connector;
15488         struct drm_device *dev = encoder->base.dev;
15489         bool active = false;
15490
15491         /* We need to check both for a crtc link (meaning that the
15492          * encoder is active and trying to read from a pipe) and the
15493          * pipe itself being active. */
15494         bool has_active_crtc = encoder->base.crtc &&
15495                 to_intel_crtc(encoder->base.crtc)->active;
15496
15497         for_each_intel_connector(dev, connector) {
15498                 if (connector->base.encoder != &encoder->base)
15499                         continue;
15500
15501                 active = true;
15502                 break;
15503         }
15504
15505         if (active && !has_active_crtc) {
15506                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15507                               encoder->base.base.id,
15508                               encoder->base.name);
15509
15510                 /* Connector is active, but has no active pipe. This is
15511                  * fallout from our resume register restoring. Disable
15512                  * the encoder manually again. */
15513                 if (encoder->base.crtc) {
15514                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15515                                       encoder->base.base.id,
15516                                       encoder->base.name);
15517                         encoder->disable(encoder);
15518                         if (encoder->post_disable)
15519                                 encoder->post_disable(encoder);
15520                 }
15521                 encoder->base.crtc = NULL;
15522
15523                 /* Inconsistent output/port/pipe state happens presumably due to
15524                  * a bug in one of the get_hw_state functions. Or someplace else
15525                  * in our code, like the register restore mess on resume. Clamp
15526                  * things to off as a safer default. */
15527                 for_each_intel_connector(dev, connector) {
15528                         if (connector->encoder != encoder)
15529                                 continue;
15530                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15531                         connector->base.encoder = NULL;
15532                 }
15533         }
15534         /* Enabled encoders without active connectors will be fixed in
15535          * the crtc fixup. */
15536 }
15537
15538 void i915_redisable_vga_power_on(struct drm_device *dev)
15539 {
15540         struct drm_i915_private *dev_priv = dev->dev_private;
15541         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15542
15543         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15544                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15545                 i915_disable_vga(dev);
15546         }
15547 }
15548
15549 void i915_redisable_vga(struct drm_device *dev)
15550 {
15551         struct drm_i915_private *dev_priv = dev->dev_private;
15552
15553         /* This function can be called both from intel_modeset_setup_hw_state or
15554          * at a very early point in our resume sequence, where the power well
15555          * structures are not yet restored. Since this function is at a very
15556          * paranoid "someone might have enabled VGA while we were not looking"
15557          * level, just check if the power well is enabled instead of trying to
15558          * follow the "don't touch the power well if we don't need it" policy
15559          * the rest of the driver uses. */
15560         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15561                 return;
15562
15563         i915_redisable_vga_power_on(dev);
15564 }
15565
15566 static bool primary_get_hw_state(struct intel_plane *plane)
15567 {
15568         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15569
15570         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15571 }
15572
15573 /* FIXME read out full plane state for all planes */
15574 static void readout_plane_state(struct intel_crtc *crtc)
15575 {
15576         struct drm_plane *primary = crtc->base.primary;
15577         struct intel_plane_state *plane_state =
15578                 to_intel_plane_state(primary->state);
15579
15580         plane_state->visible = crtc->active &&
15581                 primary_get_hw_state(to_intel_plane(primary));
15582
15583         if (plane_state->visible)
15584                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15585 }
15586
15587 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15588 {
15589         struct drm_i915_private *dev_priv = dev->dev_private;
15590         enum pipe pipe;
15591         struct intel_crtc *crtc;
15592         struct intel_encoder *encoder;
15593         struct intel_connector *connector;
15594         int i;
15595
15596         for_each_intel_crtc(dev, crtc) {
15597                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15598                 memset(crtc->config, 0, sizeof(*crtc->config));
15599                 crtc->config->base.crtc = &crtc->base;
15600
15601                 crtc->active = dev_priv->display.get_pipe_config(crtc,
15602                                                                  crtc->config);
15603
15604                 crtc->base.state->active = crtc->active;
15605                 crtc->base.enabled = crtc->active;
15606
15607                 readout_plane_state(crtc);
15608
15609                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15610                               crtc->base.base.id,
15611                               crtc->active ? "enabled" : "disabled");
15612         }
15613
15614         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15615                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15616
15617                 pll->on = pll->get_hw_state(dev_priv, pll,
15618                                             &pll->config.hw_state);
15619                 pll->active = 0;
15620                 pll->config.crtc_mask = 0;
15621                 for_each_intel_crtc(dev, crtc) {
15622                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15623                                 pll->active++;
15624                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15625                         }
15626                 }
15627
15628                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15629                               pll->name, pll->config.crtc_mask, pll->on);
15630
15631                 if (pll->config.crtc_mask)
15632                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15633         }
15634
15635         for_each_intel_encoder(dev, encoder) {
15636                 pipe = 0;
15637
15638                 if (encoder->get_hw_state(encoder, &pipe)) {
15639                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15640                         encoder->base.crtc = &crtc->base;
15641                         encoder->get_config(encoder, crtc->config);
15642                 } else {
15643                         encoder->base.crtc = NULL;
15644                 }
15645
15646                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15647                               encoder->base.base.id,
15648                               encoder->base.name,
15649                               encoder->base.crtc ? "enabled" : "disabled",
15650                               pipe_name(pipe));
15651         }
15652
15653         for_each_intel_connector(dev, connector) {
15654                 if (connector->get_hw_state(connector)) {
15655                         connector->base.dpms = DRM_MODE_DPMS_ON;
15656
15657                         encoder = connector->encoder;
15658                         connector->base.encoder = &encoder->base;
15659
15660                         if (encoder->base.crtc &&
15661                             encoder->base.crtc->state->active) {
15662                                 /*
15663                                  * This has to be done during hardware readout
15664                                  * because anything calling .crtc_disable may
15665                                  * rely on the connector_mask being accurate.
15666                                  */
15667                                 encoder->base.crtc->state->connector_mask |=
15668                                         1 << drm_connector_index(&connector->base);
15669                         }
15670
15671                 } else {
15672                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15673                         connector->base.encoder = NULL;
15674                 }
15675                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15676                               connector->base.base.id,
15677                               connector->base.name,
15678                               connector->base.encoder ? "enabled" : "disabled");
15679         }
15680
15681         for_each_intel_crtc(dev, crtc) {
15682                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15683
15684                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15685                 if (crtc->base.state->active) {
15686                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15687                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15688                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15689
15690                         /*
15691                          * The initial mode needs to be set in order to keep
15692                          * the atomic core happy. It wants a valid mode if the
15693                          * crtc's enabled, so we do the above call.
15694                          *
15695                          * At this point some state updated by the connectors
15696                          * in their ->detect() callback has not run yet, so
15697                          * no recalculation can be done yet.
15698                          *
15699                          * Even if we could do a recalculation and modeset
15700                          * right now it would cause a double modeset if
15701                          * fbdev or userspace chooses a different initial mode.
15702                          *
15703                          * If that happens, someone indicated they wanted a
15704                          * mode change, which means it's safe to do a full
15705                          * recalculation.
15706                          */
15707                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15708
15709                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15710                         update_scanline_offset(crtc);
15711                 }
15712         }
15713 }
15714
15715 /* Scan out the current hw modeset state,
15716  * and sanitizes it to the current state
15717  */
15718 static void
15719 intel_modeset_setup_hw_state(struct drm_device *dev)
15720 {
15721         struct drm_i915_private *dev_priv = dev->dev_private;
15722         enum pipe pipe;
15723         struct intel_crtc *crtc;
15724         struct intel_encoder *encoder;
15725         int i;
15726
15727         intel_modeset_readout_hw_state(dev);
15728
15729         /* HW state is read out, now we need to sanitize this mess. */
15730         for_each_intel_encoder(dev, encoder) {
15731                 intel_sanitize_encoder(encoder);
15732         }
15733
15734         for_each_pipe(dev_priv, pipe) {
15735                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15736                 intel_sanitize_crtc(crtc);
15737                 intel_dump_pipe_config(crtc, crtc->config,
15738                                        "[setup_hw_state]");
15739         }
15740
15741         intel_modeset_update_connector_atomic_state(dev);
15742
15743         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15744                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15745
15746                 if (!pll->on || pll->active)
15747                         continue;
15748
15749                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15750
15751                 pll->disable(dev_priv, pll);
15752                 pll->on = false;
15753         }
15754
15755         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15756                 vlv_wm_get_hw_state(dev);
15757         else if (IS_GEN9(dev))
15758                 skl_wm_get_hw_state(dev);
15759         else if (HAS_PCH_SPLIT(dev))
15760                 ilk_wm_get_hw_state(dev);
15761
15762         for_each_intel_crtc(dev, crtc) {
15763                 unsigned long put_domains;
15764
15765                 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15766                 if (WARN_ON(put_domains))
15767                         modeset_put_power_domains(dev_priv, put_domains);
15768         }
15769         intel_display_set_init_power(dev_priv, false);
15770 }
15771
15772 void intel_display_resume(struct drm_device *dev)
15773 {
15774         struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15775         struct intel_connector *conn;
15776         struct intel_plane *plane;
15777         struct drm_crtc *crtc;
15778         int ret;
15779
15780         if (!state)
15781                 return;
15782
15783         state->acquire_ctx = dev->mode_config.acquire_ctx;
15784
15785         /* preserve complete old state, including dpll */
15786         intel_atomic_get_shared_dpll_state(state);
15787
15788         for_each_crtc(dev, crtc) {
15789                 struct drm_crtc_state *crtc_state =
15790                         drm_atomic_get_crtc_state(state, crtc);
15791
15792                 ret = PTR_ERR_OR_ZERO(crtc_state);
15793                 if (ret)
15794                         goto err;
15795
15796                 /* force a restore */
15797                 crtc_state->mode_changed = true;
15798         }
15799
15800         for_each_intel_plane(dev, plane) {
15801                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15802                 if (ret)
15803                         goto err;
15804         }
15805
15806         for_each_intel_connector(dev, conn) {
15807                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15808                 if (ret)
15809                         goto err;
15810         }
15811
15812         intel_modeset_setup_hw_state(dev);
15813
15814         i915_redisable_vga(dev);
15815         ret = drm_atomic_commit(state);
15816         if (!ret)
15817                 return;
15818
15819 err:
15820         DRM_ERROR("Restoring old state failed with %i\n", ret);
15821         drm_atomic_state_free(state);
15822 }
15823
15824 void intel_modeset_gem_init(struct drm_device *dev)
15825 {
15826         struct drm_crtc *c;
15827         struct drm_i915_gem_object *obj;
15828         int ret;
15829
15830         mutex_lock(&dev->struct_mutex);
15831         intel_init_gt_powersave(dev);
15832         mutex_unlock(&dev->struct_mutex);
15833
15834         intel_modeset_init_hw(dev);
15835
15836         intel_setup_overlay(dev);
15837
15838         /*
15839          * Make sure any fbs we allocated at startup are properly
15840          * pinned & fenced.  When we do the allocation it's too early
15841          * for this.
15842          */
15843         for_each_crtc(dev, c) {
15844                 obj = intel_fb_obj(c->primary->fb);
15845                 if (obj == NULL)
15846                         continue;
15847
15848                 mutex_lock(&dev->struct_mutex);
15849                 ret = intel_pin_and_fence_fb_obj(c->primary,
15850                                                  c->primary->fb,
15851                                                  c->primary->state);
15852                 mutex_unlock(&dev->struct_mutex);
15853                 if (ret) {
15854                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15855                                   to_intel_crtc(c)->pipe);
15856                         drm_framebuffer_unreference(c->primary->fb);
15857                         c->primary->fb = NULL;
15858                         c->primary->crtc = c->primary->state->crtc = NULL;
15859                         update_state_fb(c->primary);
15860                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15861                 }
15862         }
15863
15864         intel_backlight_register(dev);
15865 }
15866
15867 void intel_connector_unregister(struct intel_connector *intel_connector)
15868 {
15869         struct drm_connector *connector = &intel_connector->base;
15870
15871         intel_panel_destroy_backlight(connector);
15872         drm_connector_unregister(connector);
15873 }
15874
15875 void intel_modeset_cleanup(struct drm_device *dev)
15876 {
15877         struct drm_i915_private *dev_priv = dev->dev_private;
15878         struct intel_connector *connector;
15879
15880         intel_disable_gt_powersave(dev);
15881
15882         intel_backlight_unregister(dev);
15883
15884         /*
15885          * Interrupts and polling as the first thing to avoid creating havoc.
15886          * Too much stuff here (turning of connectors, ...) would
15887          * experience fancy races otherwise.
15888          */
15889         intel_irq_uninstall(dev_priv);
15890
15891         /*
15892          * Due to the hpd irq storm handling the hotplug work can re-arm the
15893          * poll handlers. Hence disable polling after hpd handling is shut down.
15894          */
15895         drm_kms_helper_poll_fini(dev);
15896
15897         intel_unregister_dsm_handler();
15898
15899         intel_fbc_disable(dev_priv);
15900
15901         /* flush any delayed tasks or pending work */
15902         flush_scheduled_work();
15903
15904         /* destroy the backlight and sysfs files before encoders/connectors */
15905         for_each_intel_connector(dev, connector)
15906                 connector->unregister(connector);
15907
15908         drm_mode_config_cleanup(dev);
15909
15910         intel_cleanup_overlay(dev);
15911
15912         mutex_lock(&dev->struct_mutex);
15913         intel_cleanup_gt_powersave(dev);
15914         mutex_unlock(&dev->struct_mutex);
15915
15916         intel_teardown_gmbus(dev);
15917 }
15918
15919 /*
15920  * Return which encoder is currently attached for connector.
15921  */
15922 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15923 {
15924         return &intel_attached_encoder(connector)->base;
15925 }
15926
15927 void intel_connector_attach_encoder(struct intel_connector *connector,
15928                                     struct intel_encoder *encoder)
15929 {
15930         connector->encoder = encoder;
15931         drm_mode_connector_attach_encoder(&connector->base,
15932                                           &encoder->base);
15933 }
15934
15935 /*
15936  * set vga decode state - true == enable VGA decode
15937  */
15938 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15939 {
15940         struct drm_i915_private *dev_priv = dev->dev_private;
15941         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15942         u16 gmch_ctrl;
15943
15944         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15945                 DRM_ERROR("failed to read control word\n");
15946                 return -EIO;
15947         }
15948
15949         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15950                 return 0;
15951
15952         if (state)
15953                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15954         else
15955                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15956
15957         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15958                 DRM_ERROR("failed to write control word\n");
15959                 return -EIO;
15960         }
15961
15962         return 0;
15963 }
15964
15965 struct intel_display_error_state {
15966
15967         u32 power_well_driver;
15968
15969         int num_transcoders;
15970
15971         struct intel_cursor_error_state {
15972                 u32 control;
15973                 u32 position;
15974                 u32 base;
15975                 u32 size;
15976         } cursor[I915_MAX_PIPES];
15977
15978         struct intel_pipe_error_state {
15979                 bool power_domain_on;
15980                 u32 source;
15981                 u32 stat;
15982         } pipe[I915_MAX_PIPES];
15983
15984         struct intel_plane_error_state {
15985                 u32 control;
15986                 u32 stride;
15987                 u32 size;
15988                 u32 pos;
15989                 u32 addr;
15990                 u32 surface;
15991                 u32 tile_offset;
15992         } plane[I915_MAX_PIPES];
15993
15994         struct intel_transcoder_error_state {
15995                 bool power_domain_on;
15996                 enum transcoder cpu_transcoder;
15997
15998                 u32 conf;
15999
16000                 u32 htotal;
16001                 u32 hblank;
16002                 u32 hsync;
16003                 u32 vtotal;
16004                 u32 vblank;
16005                 u32 vsync;
16006         } transcoder[4];
16007 };
16008
16009 struct intel_display_error_state *
16010 intel_display_capture_error_state(struct drm_device *dev)
16011 {
16012         struct drm_i915_private *dev_priv = dev->dev_private;
16013         struct intel_display_error_state *error;
16014         int transcoders[] = {
16015                 TRANSCODER_A,
16016                 TRANSCODER_B,
16017                 TRANSCODER_C,
16018                 TRANSCODER_EDP,
16019         };
16020         int i;
16021
16022         if (INTEL_INFO(dev)->num_pipes == 0)
16023                 return NULL;
16024
16025         error = kzalloc(sizeof(*error), GFP_ATOMIC);
16026         if (error == NULL)
16027                 return NULL;
16028
16029         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16030                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16031
16032         for_each_pipe(dev_priv, i) {
16033                 error->pipe[i].power_domain_on =
16034                         __intel_display_power_is_enabled(dev_priv,
16035                                                          POWER_DOMAIN_PIPE(i));
16036                 if (!error->pipe[i].power_domain_on)
16037                         continue;
16038
16039                 error->cursor[i].control = I915_READ(CURCNTR(i));
16040                 error->cursor[i].position = I915_READ(CURPOS(i));
16041                 error->cursor[i].base = I915_READ(CURBASE(i));
16042
16043                 error->plane[i].control = I915_READ(DSPCNTR(i));
16044                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16045                 if (INTEL_INFO(dev)->gen <= 3) {
16046                         error->plane[i].size = I915_READ(DSPSIZE(i));
16047                         error->plane[i].pos = I915_READ(DSPPOS(i));
16048                 }
16049                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16050                         error->plane[i].addr = I915_READ(DSPADDR(i));
16051                 if (INTEL_INFO(dev)->gen >= 4) {
16052                         error->plane[i].surface = I915_READ(DSPSURF(i));
16053                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16054                 }
16055
16056                 error->pipe[i].source = I915_READ(PIPESRC(i));
16057
16058                 if (HAS_GMCH_DISPLAY(dev))
16059                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
16060         }
16061
16062         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16063         if (HAS_DDI(dev_priv->dev))
16064                 error->num_transcoders++; /* Account for eDP. */
16065
16066         for (i = 0; i < error->num_transcoders; i++) {
16067                 enum transcoder cpu_transcoder = transcoders[i];
16068
16069                 error->transcoder[i].power_domain_on =
16070                         __intel_display_power_is_enabled(dev_priv,
16071                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16072                 if (!error->transcoder[i].power_domain_on)
16073                         continue;
16074
16075                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16076
16077                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16078                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16079                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16080                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16081                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16082                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16083                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16084         }
16085
16086         return error;
16087 }
16088
16089 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16090
16091 void
16092 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16093                                 struct drm_device *dev,
16094                                 struct intel_display_error_state *error)
16095 {
16096         struct drm_i915_private *dev_priv = dev->dev_private;
16097         int i;
16098
16099         if (!error)
16100                 return;
16101
16102         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16103         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16104                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16105                            error->power_well_driver);
16106         for_each_pipe(dev_priv, i) {
16107                 err_printf(m, "Pipe [%d]:\n", i);
16108                 err_printf(m, "  Power: %s\n",
16109                            error->pipe[i].power_domain_on ? "on" : "off");
16110                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16111                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16112
16113                 err_printf(m, "Plane [%d]:\n", i);
16114                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16115                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16116                 if (INTEL_INFO(dev)->gen <= 3) {
16117                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16118                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16119                 }
16120                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16121                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16122                 if (INTEL_INFO(dev)->gen >= 4) {
16123                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16124                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16125                 }
16126
16127                 err_printf(m, "Cursor [%d]:\n", i);
16128                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16129                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16130                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16131         }
16132
16133         for (i = 0; i < error->num_transcoders; i++) {
16134                 err_printf(m, "CPU transcoder: %c\n",
16135                            transcoder_name(error->transcoder[i].cpu_transcoder));
16136                 err_printf(m, "  Power: %s\n",
16137                            error->transcoder[i].power_domain_on ? "on" : "off");
16138                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16139                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16140                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16141                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16142                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16143                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16144                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16145         }
16146 }
16147
16148 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
16149 {
16150         struct intel_crtc *crtc;
16151
16152         for_each_intel_crtc(dev, crtc) {
16153                 struct intel_unpin_work *work;
16154
16155                 spin_lock_irq(&dev->event_lock);
16156
16157                 work = crtc->unpin_work;
16158
16159                 if (work && work->event &&
16160                     work->event->base.file_priv == file) {
16161                         kfree(work->event);
16162                         work->event = NULL;
16163                 }
16164
16165                 spin_unlock_irq(&dev->event_lock);
16166         }
16167 }