Merge remote-tracking branch 'spi/topic/zynqmp' into spi-next
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47 #include <linux/reservation.h>
48 #include <linux/dma-buf.h>
49
50 /* Primary plane formats for gen <= 3 */
51 static const uint32_t i8xx_primary_formats[] = {
52         DRM_FORMAT_C8,
53         DRM_FORMAT_RGB565,
54         DRM_FORMAT_XRGB1555,
55         DRM_FORMAT_XRGB8888,
56 };
57
58 /* Primary plane formats for gen >= 4 */
59 static const uint32_t i965_primary_formats[] = {
60         DRM_FORMAT_C8,
61         DRM_FORMAT_RGB565,
62         DRM_FORMAT_XRGB8888,
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_XRGB2101010,
65         DRM_FORMAT_XBGR2101010,
66 };
67
68 static const uint32_t skl_primary_formats[] = {
69         DRM_FORMAT_C8,
70         DRM_FORMAT_RGB565,
71         DRM_FORMAT_XRGB8888,
72         DRM_FORMAT_XBGR8888,
73         DRM_FORMAT_ARGB8888,
74         DRM_FORMAT_ABGR8888,
75         DRM_FORMAT_XRGB2101010,
76         DRM_FORMAT_XBGR2101010,
77         DRM_FORMAT_YUYV,
78         DRM_FORMAT_YVYU,
79         DRM_FORMAT_UYVY,
80         DRM_FORMAT_VYUY,
81 };
82
83 /* Cursor formats */
84 static const uint32_t intel_cursor_formats[] = {
85         DRM_FORMAT_ARGB8888,
86 };
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89                                 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91                                    struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94                                   struct intel_framebuffer *ifb,
95                                   struct drm_mode_fb_cmd2 *mode_cmd,
96                                   struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100                                          struct intel_link_m_n *m_n,
101                                          struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106                             const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112         struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114                            int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119 static void intel_pre_disable_primary(struct drm_crtc *crtc);
120
121 typedef struct {
122         int     min, max;
123 } intel_range_t;
124
125 typedef struct {
126         int     dot_limit;
127         int     p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
133         intel_p2_t          p2;
134 };
135
136 /* returns HPLL frequency in kHz */
137 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138 {
139         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
141         /* Obtain SKU information */
142         mutex_lock(&dev_priv->sb_lock);
143         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144                 CCK_FUSE_HPLL_FREQ_MASK;
145         mutex_unlock(&dev_priv->sb_lock);
146
147         return vco_freq[hpll_freq] * 1000;
148 }
149
150 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
151                                   const char *name, u32 reg)
152 {
153         u32 val;
154         int divider;
155
156         if (dev_priv->hpll_freq == 0)
157                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
158
159         mutex_lock(&dev_priv->sb_lock);
160         val = vlv_cck_read(dev_priv, reg);
161         mutex_unlock(&dev_priv->sb_lock);
162
163         divider = val & CCK_FREQUENCY_VALUES;
164
165         WARN((val & CCK_FREQUENCY_STATUS) !=
166              (divider << CCK_FREQUENCY_STATUS_SHIFT),
167              "%s change in progress\n", name);
168
169         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
170 }
171
172 int
173 intel_pch_rawclk(struct drm_device *dev)
174 {
175         struct drm_i915_private *dev_priv = dev->dev_private;
176
177         WARN_ON(!HAS_PCH_SPLIT(dev));
178
179         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
180 }
181
182 /* hrawclock is 1/4 the FSB frequency */
183 int intel_hrawclk(struct drm_device *dev)
184 {
185         struct drm_i915_private *dev_priv = dev->dev_private;
186         uint32_t clkcfg;
187
188         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
189         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
190                 return 200;
191
192         clkcfg = I915_READ(CLKCFG);
193         switch (clkcfg & CLKCFG_FSB_MASK) {
194         case CLKCFG_FSB_400:
195                 return 100;
196         case CLKCFG_FSB_533:
197                 return 133;
198         case CLKCFG_FSB_667:
199                 return 166;
200         case CLKCFG_FSB_800:
201                 return 200;
202         case CLKCFG_FSB_1067:
203                 return 266;
204         case CLKCFG_FSB_1333:
205                 return 333;
206         /* these two are just a guess; one of them might be right */
207         case CLKCFG_FSB_1600:
208         case CLKCFG_FSB_1600_ALT:
209                 return 400;
210         default:
211                 return 133;
212         }
213 }
214
215 static void intel_update_czclk(struct drm_i915_private *dev_priv)
216 {
217         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
218                 return;
219
220         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
221                                                       CCK_CZ_CLOCK_CONTROL);
222
223         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
224 }
225
226 static inline u32 /* units of 100MHz */
227 intel_fdi_link_freq(struct drm_device *dev)
228 {
229         if (IS_GEN5(dev)) {
230                 struct drm_i915_private *dev_priv = dev->dev_private;
231                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
232         } else
233                 return 27;
234 }
235
236 static const intel_limit_t intel_limits_i8xx_dac = {
237         .dot = { .min = 25000, .max = 350000 },
238         .vco = { .min = 908000, .max = 1512000 },
239         .n = { .min = 2, .max = 16 },
240         .m = { .min = 96, .max = 140 },
241         .m1 = { .min = 18, .max = 26 },
242         .m2 = { .min = 6, .max = 16 },
243         .p = { .min = 4, .max = 128 },
244         .p1 = { .min = 2, .max = 33 },
245         .p2 = { .dot_limit = 165000,
246                 .p2_slow = 4, .p2_fast = 2 },
247 };
248
249 static const intel_limit_t intel_limits_i8xx_dvo = {
250         .dot = { .min = 25000, .max = 350000 },
251         .vco = { .min = 908000, .max = 1512000 },
252         .n = { .min = 2, .max = 16 },
253         .m = { .min = 96, .max = 140 },
254         .m1 = { .min = 18, .max = 26 },
255         .m2 = { .min = 6, .max = 16 },
256         .p = { .min = 4, .max = 128 },
257         .p1 = { .min = 2, .max = 33 },
258         .p2 = { .dot_limit = 165000,
259                 .p2_slow = 4, .p2_fast = 4 },
260 };
261
262 static const intel_limit_t intel_limits_i8xx_lvds = {
263         .dot = { .min = 25000, .max = 350000 },
264         .vco = { .min = 908000, .max = 1512000 },
265         .n = { .min = 2, .max = 16 },
266         .m = { .min = 96, .max = 140 },
267         .m1 = { .min = 18, .max = 26 },
268         .m2 = { .min = 6, .max = 16 },
269         .p = { .min = 4, .max = 128 },
270         .p1 = { .min = 1, .max = 6 },
271         .p2 = { .dot_limit = 165000,
272                 .p2_slow = 14, .p2_fast = 7 },
273 };
274
275 static const intel_limit_t intel_limits_i9xx_sdvo = {
276         .dot = { .min = 20000, .max = 400000 },
277         .vco = { .min = 1400000, .max = 2800000 },
278         .n = { .min = 1, .max = 6 },
279         .m = { .min = 70, .max = 120 },
280         .m1 = { .min = 8, .max = 18 },
281         .m2 = { .min = 3, .max = 7 },
282         .p = { .min = 5, .max = 80 },
283         .p1 = { .min = 1, .max = 8 },
284         .p2 = { .dot_limit = 200000,
285                 .p2_slow = 10, .p2_fast = 5 },
286 };
287
288 static const intel_limit_t intel_limits_i9xx_lvds = {
289         .dot = { .min = 20000, .max = 400000 },
290         .vco = { .min = 1400000, .max = 2800000 },
291         .n = { .min = 1, .max = 6 },
292         .m = { .min = 70, .max = 120 },
293         .m1 = { .min = 8, .max = 18 },
294         .m2 = { .min = 3, .max = 7 },
295         .p = { .min = 7, .max = 98 },
296         .p1 = { .min = 1, .max = 8 },
297         .p2 = { .dot_limit = 112000,
298                 .p2_slow = 14, .p2_fast = 7 },
299 };
300
301
302 static const intel_limit_t intel_limits_g4x_sdvo = {
303         .dot = { .min = 25000, .max = 270000 },
304         .vco = { .min = 1750000, .max = 3500000},
305         .n = { .min = 1, .max = 4 },
306         .m = { .min = 104, .max = 138 },
307         .m1 = { .min = 17, .max = 23 },
308         .m2 = { .min = 5, .max = 11 },
309         .p = { .min = 10, .max = 30 },
310         .p1 = { .min = 1, .max = 3},
311         .p2 = { .dot_limit = 270000,
312                 .p2_slow = 10,
313                 .p2_fast = 10
314         },
315 };
316
317 static const intel_limit_t intel_limits_g4x_hdmi = {
318         .dot = { .min = 22000, .max = 400000 },
319         .vco = { .min = 1750000, .max = 3500000},
320         .n = { .min = 1, .max = 4 },
321         .m = { .min = 104, .max = 138 },
322         .m1 = { .min = 16, .max = 23 },
323         .m2 = { .min = 5, .max = 11 },
324         .p = { .min = 5, .max = 80 },
325         .p1 = { .min = 1, .max = 8},
326         .p2 = { .dot_limit = 165000,
327                 .p2_slow = 10, .p2_fast = 5 },
328 };
329
330 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
331         .dot = { .min = 20000, .max = 115000 },
332         .vco = { .min = 1750000, .max = 3500000 },
333         .n = { .min = 1, .max = 3 },
334         .m = { .min = 104, .max = 138 },
335         .m1 = { .min = 17, .max = 23 },
336         .m2 = { .min = 5, .max = 11 },
337         .p = { .min = 28, .max = 112 },
338         .p1 = { .min = 2, .max = 8 },
339         .p2 = { .dot_limit = 0,
340                 .p2_slow = 14, .p2_fast = 14
341         },
342 };
343
344 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
345         .dot = { .min = 80000, .max = 224000 },
346         .vco = { .min = 1750000, .max = 3500000 },
347         .n = { .min = 1, .max = 3 },
348         .m = { .min = 104, .max = 138 },
349         .m1 = { .min = 17, .max = 23 },
350         .m2 = { .min = 5, .max = 11 },
351         .p = { .min = 14, .max = 42 },
352         .p1 = { .min = 2, .max = 6 },
353         .p2 = { .dot_limit = 0,
354                 .p2_slow = 7, .p2_fast = 7
355         },
356 };
357
358 static const intel_limit_t intel_limits_pineview_sdvo = {
359         .dot = { .min = 20000, .max = 400000},
360         .vco = { .min = 1700000, .max = 3500000 },
361         /* Pineview's Ncounter is a ring counter */
362         .n = { .min = 3, .max = 6 },
363         .m = { .min = 2, .max = 256 },
364         /* Pineview only has one combined m divider, which we treat as m2. */
365         .m1 = { .min = 0, .max = 0 },
366         .m2 = { .min = 0, .max = 254 },
367         .p = { .min = 5, .max = 80 },
368         .p1 = { .min = 1, .max = 8 },
369         .p2 = { .dot_limit = 200000,
370                 .p2_slow = 10, .p2_fast = 5 },
371 };
372
373 static const intel_limit_t intel_limits_pineview_lvds = {
374         .dot = { .min = 20000, .max = 400000 },
375         .vco = { .min = 1700000, .max = 3500000 },
376         .n = { .min = 3, .max = 6 },
377         .m = { .min = 2, .max = 256 },
378         .m1 = { .min = 0, .max = 0 },
379         .m2 = { .min = 0, .max = 254 },
380         .p = { .min = 7, .max = 112 },
381         .p1 = { .min = 1, .max = 8 },
382         .p2 = { .dot_limit = 112000,
383                 .p2_slow = 14, .p2_fast = 14 },
384 };
385
386 /* Ironlake / Sandybridge
387  *
388  * We calculate clock using (register_value + 2) for N/M1/M2, so here
389  * the range value for them is (actual_value - 2).
390  */
391 static const intel_limit_t intel_limits_ironlake_dac = {
392         .dot = { .min = 25000, .max = 350000 },
393         .vco = { .min = 1760000, .max = 3510000 },
394         .n = { .min = 1, .max = 5 },
395         .m = { .min = 79, .max = 127 },
396         .m1 = { .min = 12, .max = 22 },
397         .m2 = { .min = 5, .max = 9 },
398         .p = { .min = 5, .max = 80 },
399         .p1 = { .min = 1, .max = 8 },
400         .p2 = { .dot_limit = 225000,
401                 .p2_slow = 10, .p2_fast = 5 },
402 };
403
404 static const intel_limit_t intel_limits_ironlake_single_lvds = {
405         .dot = { .min = 25000, .max = 350000 },
406         .vco = { .min = 1760000, .max = 3510000 },
407         .n = { .min = 1, .max = 3 },
408         .m = { .min = 79, .max = 118 },
409         .m1 = { .min = 12, .max = 22 },
410         .m2 = { .min = 5, .max = 9 },
411         .p = { .min = 28, .max = 112 },
412         .p1 = { .min = 2, .max = 8 },
413         .p2 = { .dot_limit = 225000,
414                 .p2_slow = 14, .p2_fast = 14 },
415 };
416
417 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
418         .dot = { .min = 25000, .max = 350000 },
419         .vco = { .min = 1760000, .max = 3510000 },
420         .n = { .min = 1, .max = 3 },
421         .m = { .min = 79, .max = 127 },
422         .m1 = { .min = 12, .max = 22 },
423         .m2 = { .min = 5, .max = 9 },
424         .p = { .min = 14, .max = 56 },
425         .p1 = { .min = 2, .max = 8 },
426         .p2 = { .dot_limit = 225000,
427                 .p2_slow = 7, .p2_fast = 7 },
428 };
429
430 /* LVDS 100mhz refclk limits. */
431 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
432         .dot = { .min = 25000, .max = 350000 },
433         .vco = { .min = 1760000, .max = 3510000 },
434         .n = { .min = 1, .max = 2 },
435         .m = { .min = 79, .max = 126 },
436         .m1 = { .min = 12, .max = 22 },
437         .m2 = { .min = 5, .max = 9 },
438         .p = { .min = 28, .max = 112 },
439         .p1 = { .min = 2, .max = 8 },
440         .p2 = { .dot_limit = 225000,
441                 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
445         .dot = { .min = 25000, .max = 350000 },
446         .vco = { .min = 1760000, .max = 3510000 },
447         .n = { .min = 1, .max = 3 },
448         .m = { .min = 79, .max = 126 },
449         .m1 = { .min = 12, .max = 22 },
450         .m2 = { .min = 5, .max = 9 },
451         .p = { .min = 14, .max = 42 },
452         .p1 = { .min = 2, .max = 6 },
453         .p2 = { .dot_limit = 225000,
454                 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 static const intel_limit_t intel_limits_vlv = {
458          /*
459           * These are the data rate limits (measured in fast clocks)
460           * since those are the strictest limits we have. The fast
461           * clock and actual rate limits are more relaxed, so checking
462           * them would make no difference.
463           */
464         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
465         .vco = { .min = 4000000, .max = 6000000 },
466         .n = { .min = 1, .max = 7 },
467         .m1 = { .min = 2, .max = 3 },
468         .m2 = { .min = 11, .max = 156 },
469         .p1 = { .min = 2, .max = 3 },
470         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
471 };
472
473 static const intel_limit_t intel_limits_chv = {
474         /*
475          * These are the data rate limits (measured in fast clocks)
476          * since those are the strictest limits we have.  The fast
477          * clock and actual rate limits are more relaxed, so checking
478          * them would make no difference.
479          */
480         .dot = { .min = 25000 * 5, .max = 540000 * 5},
481         .vco = { .min = 4800000, .max = 6480000 },
482         .n = { .min = 1, .max = 1 },
483         .m1 = { .min = 2, .max = 2 },
484         .m2 = { .min = 24 << 22, .max = 175 << 22 },
485         .p1 = { .min = 2, .max = 4 },
486         .p2 = { .p2_slow = 1, .p2_fast = 14 },
487 };
488
489 static const intel_limit_t intel_limits_bxt = {
490         /* FIXME: find real dot limits */
491         .dot = { .min = 0, .max = INT_MAX },
492         .vco = { .min = 4800000, .max = 6700000 },
493         .n = { .min = 1, .max = 1 },
494         .m1 = { .min = 2, .max = 2 },
495         /* FIXME: find real m2 limits */
496         .m2 = { .min = 2 << 22, .max = 255 << 22 },
497         .p1 = { .min = 2, .max = 4 },
498         .p2 = { .p2_slow = 1, .p2_fast = 20 },
499 };
500
501 static bool
502 needs_modeset(struct drm_crtc_state *state)
503 {
504         return drm_atomic_crtc_needs_modeset(state);
505 }
506
507 /**
508  * Returns whether any output on the specified pipe is of the specified type
509  */
510 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
511 {
512         struct drm_device *dev = crtc->base.dev;
513         struct intel_encoder *encoder;
514
515         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
516                 if (encoder->type == type)
517                         return true;
518
519         return false;
520 }
521
522 /**
523  * Returns whether any output on the specified pipe will have the specified
524  * type after a staged modeset is complete, i.e., the same as
525  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
526  * encoder->crtc.
527  */
528 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
529                                       int type)
530 {
531         struct drm_atomic_state *state = crtc_state->base.state;
532         struct drm_connector *connector;
533         struct drm_connector_state *connector_state;
534         struct intel_encoder *encoder;
535         int i, num_connectors = 0;
536
537         for_each_connector_in_state(state, connector, connector_state, i) {
538                 if (connector_state->crtc != crtc_state->base.crtc)
539                         continue;
540
541                 num_connectors++;
542
543                 encoder = to_intel_encoder(connector_state->best_encoder);
544                 if (encoder->type == type)
545                         return true;
546         }
547
548         WARN_ON(num_connectors == 0);
549
550         return false;
551 }
552
553 static const intel_limit_t *
554 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
555 {
556         struct drm_device *dev = crtc_state->base.crtc->dev;
557         const intel_limit_t *limit;
558
559         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
560                 if (intel_is_dual_link_lvds(dev)) {
561                         if (refclk == 100000)
562                                 limit = &intel_limits_ironlake_dual_lvds_100m;
563                         else
564                                 limit = &intel_limits_ironlake_dual_lvds;
565                 } else {
566                         if (refclk == 100000)
567                                 limit = &intel_limits_ironlake_single_lvds_100m;
568                         else
569                                 limit = &intel_limits_ironlake_single_lvds;
570                 }
571         } else
572                 limit = &intel_limits_ironlake_dac;
573
574         return limit;
575 }
576
577 static const intel_limit_t *
578 intel_g4x_limit(struct intel_crtc_state *crtc_state)
579 {
580         struct drm_device *dev = crtc_state->base.crtc->dev;
581         const intel_limit_t *limit;
582
583         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
584                 if (intel_is_dual_link_lvds(dev))
585                         limit = &intel_limits_g4x_dual_channel_lvds;
586                 else
587                         limit = &intel_limits_g4x_single_channel_lvds;
588         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
589                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
590                 limit = &intel_limits_g4x_hdmi;
591         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
592                 limit = &intel_limits_g4x_sdvo;
593         } else /* The option is for other outputs */
594                 limit = &intel_limits_i9xx_sdvo;
595
596         return limit;
597 }
598
599 static const intel_limit_t *
600 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
601 {
602         struct drm_device *dev = crtc_state->base.crtc->dev;
603         const intel_limit_t *limit;
604
605         if (IS_BROXTON(dev))
606                 limit = &intel_limits_bxt;
607         else if (HAS_PCH_SPLIT(dev))
608                 limit = intel_ironlake_limit(crtc_state, refclk);
609         else if (IS_G4X(dev)) {
610                 limit = intel_g4x_limit(crtc_state);
611         } else if (IS_PINEVIEW(dev)) {
612                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
613                         limit = &intel_limits_pineview_lvds;
614                 else
615                         limit = &intel_limits_pineview_sdvo;
616         } else if (IS_CHERRYVIEW(dev)) {
617                 limit = &intel_limits_chv;
618         } else if (IS_VALLEYVIEW(dev)) {
619                 limit = &intel_limits_vlv;
620         } else if (!IS_GEN2(dev)) {
621                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
622                         limit = &intel_limits_i9xx_lvds;
623                 else
624                         limit = &intel_limits_i9xx_sdvo;
625         } else {
626                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
627                         limit = &intel_limits_i8xx_lvds;
628                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
629                         limit = &intel_limits_i8xx_dvo;
630                 else
631                         limit = &intel_limits_i8xx_dac;
632         }
633         return limit;
634 }
635
636 /*
637  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
638  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
639  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
640  * The helpers' return value is the rate of the clock that is fed to the
641  * display engine's pipe which can be the above fast dot clock rate or a
642  * divided-down version of it.
643  */
644 /* m1 is reserved as 0 in Pineview, n is a ring counter */
645 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
646 {
647         clock->m = clock->m2 + 2;
648         clock->p = clock->p1 * clock->p2;
649         if (WARN_ON(clock->n == 0 || clock->p == 0))
650                 return 0;
651         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
652         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
653
654         return clock->dot;
655 }
656
657 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
658 {
659         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
660 }
661
662 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
663 {
664         clock->m = i9xx_dpll_compute_m(clock);
665         clock->p = clock->p1 * clock->p2;
666         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
667                 return 0;
668         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
669         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
670
671         return clock->dot;
672 }
673
674 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
675 {
676         clock->m = clock->m1 * clock->m2;
677         clock->p = clock->p1 * clock->p2;
678         if (WARN_ON(clock->n == 0 || clock->p == 0))
679                 return 0;
680         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
681         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
682
683         return clock->dot / 5;
684 }
685
686 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
687 {
688         clock->m = clock->m1 * clock->m2;
689         clock->p = clock->p1 * clock->p2;
690         if (WARN_ON(clock->n == 0 || clock->p == 0))
691                 return 0;
692         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
693                         clock->n << 22);
694         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
695
696         return clock->dot / 5;
697 }
698
699 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
700 /**
701  * Returns whether the given set of divisors are valid for a given refclk with
702  * the given connectors.
703  */
704
705 static bool intel_PLL_is_valid(struct drm_device *dev,
706                                const intel_limit_t *limit,
707                                const intel_clock_t *clock)
708 {
709         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
710                 INTELPllInvalid("n out of range\n");
711         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
712                 INTELPllInvalid("p1 out of range\n");
713         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
714                 INTELPllInvalid("m2 out of range\n");
715         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
716                 INTELPllInvalid("m1 out of range\n");
717
718         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
719             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
720                 if (clock->m1 <= clock->m2)
721                         INTELPllInvalid("m1 <= m2\n");
722
723         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
724                 if (clock->p < limit->p.min || limit->p.max < clock->p)
725                         INTELPllInvalid("p out of range\n");
726                 if (clock->m < limit->m.min || limit->m.max < clock->m)
727                         INTELPllInvalid("m out of range\n");
728         }
729
730         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
731                 INTELPllInvalid("vco out of range\n");
732         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
733          * connector, etc., rather than just a single range.
734          */
735         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
736                 INTELPllInvalid("dot out of range\n");
737
738         return true;
739 }
740
741 static int
742 i9xx_select_p2_div(const intel_limit_t *limit,
743                    const struct intel_crtc_state *crtc_state,
744                    int target)
745 {
746         struct drm_device *dev = crtc_state->base.crtc->dev;
747
748         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
749                 /*
750                  * For LVDS just rely on its current settings for dual-channel.
751                  * We haven't figured out how to reliably set up different
752                  * single/dual channel state, if we even can.
753                  */
754                 if (intel_is_dual_link_lvds(dev))
755                         return limit->p2.p2_fast;
756                 else
757                         return limit->p2.p2_slow;
758         } else {
759                 if (target < limit->p2.dot_limit)
760                         return limit->p2.p2_slow;
761                 else
762                         return limit->p2.p2_fast;
763         }
764 }
765
766 static bool
767 i9xx_find_best_dpll(const intel_limit_t *limit,
768                     struct intel_crtc_state *crtc_state,
769                     int target, int refclk, intel_clock_t *match_clock,
770                     intel_clock_t *best_clock)
771 {
772         struct drm_device *dev = crtc_state->base.crtc->dev;
773         intel_clock_t clock;
774         int err = target;
775
776         memset(best_clock, 0, sizeof(*best_clock));
777
778         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779
780         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
781              clock.m1++) {
782                 for (clock.m2 = limit->m2.min;
783                      clock.m2 <= limit->m2.max; clock.m2++) {
784                         if (clock.m2 >= clock.m1)
785                                 break;
786                         for (clock.n = limit->n.min;
787                              clock.n <= limit->n.max; clock.n++) {
788                                 for (clock.p1 = limit->p1.min;
789                                         clock.p1 <= limit->p1.max; clock.p1++) {
790                                         int this_err;
791
792                                         i9xx_calc_dpll_params(refclk, &clock);
793                                         if (!intel_PLL_is_valid(dev, limit,
794                                                                 &clock))
795                                                 continue;
796                                         if (match_clock &&
797                                             clock.p != match_clock->p)
798                                                 continue;
799
800                                         this_err = abs(clock.dot - target);
801                                         if (this_err < err) {
802                                                 *best_clock = clock;
803                                                 err = this_err;
804                                         }
805                                 }
806                         }
807                 }
808         }
809
810         return (err != target);
811 }
812
813 static bool
814 pnv_find_best_dpll(const intel_limit_t *limit,
815                    struct intel_crtc_state *crtc_state,
816                    int target, int refclk, intel_clock_t *match_clock,
817                    intel_clock_t *best_clock)
818 {
819         struct drm_device *dev = crtc_state->base.crtc->dev;
820         intel_clock_t clock;
821         int err = target;
822
823         memset(best_clock, 0, sizeof(*best_clock));
824
825         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
826
827         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
828              clock.m1++) {
829                 for (clock.m2 = limit->m2.min;
830                      clock.m2 <= limit->m2.max; clock.m2++) {
831                         for (clock.n = limit->n.min;
832                              clock.n <= limit->n.max; clock.n++) {
833                                 for (clock.p1 = limit->p1.min;
834                                         clock.p1 <= limit->p1.max; clock.p1++) {
835                                         int this_err;
836
837                                         pnv_calc_dpll_params(refclk, &clock);
838                                         if (!intel_PLL_is_valid(dev, limit,
839                                                                 &clock))
840                                                 continue;
841                                         if (match_clock &&
842                                             clock.p != match_clock->p)
843                                                 continue;
844
845                                         this_err = abs(clock.dot - target);
846                                         if (this_err < err) {
847                                                 *best_clock = clock;
848                                                 err = this_err;
849                                         }
850                                 }
851                         }
852                 }
853         }
854
855         return (err != target);
856 }
857
858 static bool
859 g4x_find_best_dpll(const intel_limit_t *limit,
860                    struct intel_crtc_state *crtc_state,
861                    int target, int refclk, intel_clock_t *match_clock,
862                    intel_clock_t *best_clock)
863 {
864         struct drm_device *dev = crtc_state->base.crtc->dev;
865         intel_clock_t clock;
866         int max_n;
867         bool found = false;
868         /* approximately equals target * 0.00585 */
869         int err_most = (target >> 8) + (target >> 9);
870
871         memset(best_clock, 0, sizeof(*best_clock));
872
873         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
874
875         max_n = limit->n.max;
876         /* based on hardware requirement, prefer smaller n to precision */
877         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
878                 /* based on hardware requirement, prefere larger m1,m2 */
879                 for (clock.m1 = limit->m1.max;
880                      clock.m1 >= limit->m1.min; clock.m1--) {
881                         for (clock.m2 = limit->m2.max;
882                              clock.m2 >= limit->m2.min; clock.m2--) {
883                                 for (clock.p1 = limit->p1.max;
884                                      clock.p1 >= limit->p1.min; clock.p1--) {
885                                         int this_err;
886
887                                         i9xx_calc_dpll_params(refclk, &clock);
888                                         if (!intel_PLL_is_valid(dev, limit,
889                                                                 &clock))
890                                                 continue;
891
892                                         this_err = abs(clock.dot - target);
893                                         if (this_err < err_most) {
894                                                 *best_clock = clock;
895                                                 err_most = this_err;
896                                                 max_n = clock.n;
897                                                 found = true;
898                                         }
899                                 }
900                         }
901                 }
902         }
903         return found;
904 }
905
906 /*
907  * Check if the calculated PLL configuration is more optimal compared to the
908  * best configuration and error found so far. Return the calculated error.
909  */
910 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
911                                const intel_clock_t *calculated_clock,
912                                const intel_clock_t *best_clock,
913                                unsigned int best_error_ppm,
914                                unsigned int *error_ppm)
915 {
916         /*
917          * For CHV ignore the error and consider only the P value.
918          * Prefer a bigger P value based on HW requirements.
919          */
920         if (IS_CHERRYVIEW(dev)) {
921                 *error_ppm = 0;
922
923                 return calculated_clock->p > best_clock->p;
924         }
925
926         if (WARN_ON_ONCE(!target_freq))
927                 return false;
928
929         *error_ppm = div_u64(1000000ULL *
930                                 abs(target_freq - calculated_clock->dot),
931                              target_freq);
932         /*
933          * Prefer a better P value over a better (smaller) error if the error
934          * is small. Ensure this preference for future configurations too by
935          * setting the error to 0.
936          */
937         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
938                 *error_ppm = 0;
939
940                 return true;
941         }
942
943         return *error_ppm + 10 < best_error_ppm;
944 }
945
946 static bool
947 vlv_find_best_dpll(const intel_limit_t *limit,
948                    struct intel_crtc_state *crtc_state,
949                    int target, int refclk, intel_clock_t *match_clock,
950                    intel_clock_t *best_clock)
951 {
952         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
953         struct drm_device *dev = crtc->base.dev;
954         intel_clock_t clock;
955         unsigned int bestppm = 1000000;
956         /* min update 19.2 MHz */
957         int max_n = min(limit->n.max, refclk / 19200);
958         bool found = false;
959
960         target *= 5; /* fast clock */
961
962         memset(best_clock, 0, sizeof(*best_clock));
963
964         /* based on hardware requirement, prefer smaller n to precision */
965         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
966                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
967                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
968                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
969                                 clock.p = clock.p1 * clock.p2;
970                                 /* based on hardware requirement, prefer bigger m1,m2 values */
971                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
972                                         unsigned int ppm;
973
974                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
975                                                                      refclk * clock.m1);
976
977                                         vlv_calc_dpll_params(refclk, &clock);
978
979                                         if (!intel_PLL_is_valid(dev, limit,
980                                                                 &clock))
981                                                 continue;
982
983                                         if (!vlv_PLL_is_optimal(dev, target,
984                                                                 &clock,
985                                                                 best_clock,
986                                                                 bestppm, &ppm))
987                                                 continue;
988
989                                         *best_clock = clock;
990                                         bestppm = ppm;
991                                         found = true;
992                                 }
993                         }
994                 }
995         }
996
997         return found;
998 }
999
1000 static bool
1001 chv_find_best_dpll(const intel_limit_t *limit,
1002                    struct intel_crtc_state *crtc_state,
1003                    int target, int refclk, intel_clock_t *match_clock,
1004                    intel_clock_t *best_clock)
1005 {
1006         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1007         struct drm_device *dev = crtc->base.dev;
1008         unsigned int best_error_ppm;
1009         intel_clock_t clock;
1010         uint64_t m2;
1011         int found = false;
1012
1013         memset(best_clock, 0, sizeof(*best_clock));
1014         best_error_ppm = 1000000;
1015
1016         /*
1017          * Based on hardware doc, the n always set to 1, and m1 always
1018          * set to 2.  If requires to support 200Mhz refclk, we need to
1019          * revisit this because n may not 1 anymore.
1020          */
1021         clock.n = 1, clock.m1 = 2;
1022         target *= 5;    /* fast clock */
1023
1024         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1025                 for (clock.p2 = limit->p2.p2_fast;
1026                                 clock.p2 >= limit->p2.p2_slow;
1027                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1028                         unsigned int error_ppm;
1029
1030                         clock.p = clock.p1 * clock.p2;
1031
1032                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1033                                         clock.n) << 22, refclk * clock.m1);
1034
1035                         if (m2 > INT_MAX/clock.m1)
1036                                 continue;
1037
1038                         clock.m2 = m2;
1039
1040                         chv_calc_dpll_params(refclk, &clock);
1041
1042                         if (!intel_PLL_is_valid(dev, limit, &clock))
1043                                 continue;
1044
1045                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1046                                                 best_error_ppm, &error_ppm))
1047                                 continue;
1048
1049                         *best_clock = clock;
1050                         best_error_ppm = error_ppm;
1051                         found = true;
1052                 }
1053         }
1054
1055         return found;
1056 }
1057
1058 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1059                         intel_clock_t *best_clock)
1060 {
1061         int refclk = i9xx_get_refclk(crtc_state, 0);
1062
1063         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1064                                   target_clock, refclk, NULL, best_clock);
1065 }
1066
1067 bool intel_crtc_active(struct drm_crtc *crtc)
1068 {
1069         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1070
1071         /* Be paranoid as we can arrive here with only partial
1072          * state retrieved from the hardware during setup.
1073          *
1074          * We can ditch the adjusted_mode.crtc_clock check as soon
1075          * as Haswell has gained clock readout/fastboot support.
1076          *
1077          * We can ditch the crtc->primary->fb check as soon as we can
1078          * properly reconstruct framebuffers.
1079          *
1080          * FIXME: The intel_crtc->active here should be switched to
1081          * crtc->state->active once we have proper CRTC states wired up
1082          * for atomic.
1083          */
1084         return intel_crtc->active && crtc->primary->state->fb &&
1085                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1086 }
1087
1088 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1089                                              enum pipe pipe)
1090 {
1091         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1092         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1093
1094         return intel_crtc->config->cpu_transcoder;
1095 }
1096
1097 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1098 {
1099         struct drm_i915_private *dev_priv = dev->dev_private;
1100         i915_reg_t reg = PIPEDSL(pipe);
1101         u32 line1, line2;
1102         u32 line_mask;
1103
1104         if (IS_GEN2(dev))
1105                 line_mask = DSL_LINEMASK_GEN2;
1106         else
1107                 line_mask = DSL_LINEMASK_GEN3;
1108
1109         line1 = I915_READ(reg) & line_mask;
1110         msleep(5);
1111         line2 = I915_READ(reg) & line_mask;
1112
1113         return line1 == line2;
1114 }
1115
1116 /*
1117  * intel_wait_for_pipe_off - wait for pipe to turn off
1118  * @crtc: crtc whose pipe to wait for
1119  *
1120  * After disabling a pipe, we can't wait for vblank in the usual way,
1121  * spinning on the vblank interrupt status bit, since we won't actually
1122  * see an interrupt when the pipe is disabled.
1123  *
1124  * On Gen4 and above:
1125  *   wait for the pipe register state bit to turn off
1126  *
1127  * Otherwise:
1128  *   wait for the display line value to settle (it usually
1129  *   ends up stopping at the start of the next frame).
1130  *
1131  */
1132 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1133 {
1134         struct drm_device *dev = crtc->base.dev;
1135         struct drm_i915_private *dev_priv = dev->dev_private;
1136         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1137         enum pipe pipe = crtc->pipe;
1138
1139         if (INTEL_INFO(dev)->gen >= 4) {
1140                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1141
1142                 /* Wait for the Pipe State to go off */
1143                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1144                              100))
1145                         WARN(1, "pipe_off wait timed out\n");
1146         } else {
1147                 /* Wait for the display line to settle */
1148                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1149                         WARN(1, "pipe_off wait timed out\n");
1150         }
1151 }
1152
1153 /* Only for pre-ILK configs */
1154 void assert_pll(struct drm_i915_private *dev_priv,
1155                 enum pipe pipe, bool state)
1156 {
1157         u32 val;
1158         bool cur_state;
1159
1160         val = I915_READ(DPLL(pipe));
1161         cur_state = !!(val & DPLL_VCO_ENABLE);
1162         I915_STATE_WARN(cur_state != state,
1163              "PLL state assertion failure (expected %s, current %s)\n",
1164                         onoff(state), onoff(cur_state));
1165 }
1166
1167 /* XXX: the dsi pll is shared between MIPI DSI ports */
1168 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1169 {
1170         u32 val;
1171         bool cur_state;
1172
1173         mutex_lock(&dev_priv->sb_lock);
1174         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1175         mutex_unlock(&dev_priv->sb_lock);
1176
1177         cur_state = val & DSI_PLL_VCO_EN;
1178         I915_STATE_WARN(cur_state != state,
1179              "DSI PLL state assertion failure (expected %s, current %s)\n",
1180                         onoff(state), onoff(cur_state));
1181 }
1182 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1183 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1184
1185 struct intel_shared_dpll *
1186 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1187 {
1188         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1189
1190         if (crtc->config->shared_dpll < 0)
1191                 return NULL;
1192
1193         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1194 }
1195
1196 /* For ILK+ */
1197 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1198                         struct intel_shared_dpll *pll,
1199                         bool state)
1200 {
1201         bool cur_state;
1202         struct intel_dpll_hw_state hw_state;
1203
1204         if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
1205                 return;
1206
1207         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1208         I915_STATE_WARN(cur_state != state,
1209              "%s assertion failure (expected %s, current %s)\n",
1210                         pll->name, onoff(state), onoff(cur_state));
1211 }
1212
1213 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1214                           enum pipe pipe, bool state)
1215 {
1216         bool cur_state;
1217         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1218                                                                       pipe);
1219
1220         if (HAS_DDI(dev_priv->dev)) {
1221                 /* DDI does not have a specific FDI_TX register */
1222                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1223                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1224         } else {
1225                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1226                 cur_state = !!(val & FDI_TX_ENABLE);
1227         }
1228         I915_STATE_WARN(cur_state != state,
1229              "FDI TX state assertion failure (expected %s, current %s)\n",
1230                         onoff(state), onoff(cur_state));
1231 }
1232 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1233 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1234
1235 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1236                           enum pipe pipe, bool state)
1237 {
1238         u32 val;
1239         bool cur_state;
1240
1241         val = I915_READ(FDI_RX_CTL(pipe));
1242         cur_state = !!(val & FDI_RX_ENABLE);
1243         I915_STATE_WARN(cur_state != state,
1244              "FDI RX state assertion failure (expected %s, current %s)\n",
1245                         onoff(state), onoff(cur_state));
1246 }
1247 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1248 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1249
1250 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1251                                       enum pipe pipe)
1252 {
1253         u32 val;
1254
1255         /* ILK FDI PLL is always enabled */
1256         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1257                 return;
1258
1259         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1260         if (HAS_DDI(dev_priv->dev))
1261                 return;
1262
1263         val = I915_READ(FDI_TX_CTL(pipe));
1264         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1265 }
1266
1267 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1268                        enum pipe pipe, bool state)
1269 {
1270         u32 val;
1271         bool cur_state;
1272
1273         val = I915_READ(FDI_RX_CTL(pipe));
1274         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1275         I915_STATE_WARN(cur_state != state,
1276              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1277                         onoff(state), onoff(cur_state));
1278 }
1279
1280 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1281                            enum pipe pipe)
1282 {
1283         struct drm_device *dev = dev_priv->dev;
1284         i915_reg_t pp_reg;
1285         u32 val;
1286         enum pipe panel_pipe = PIPE_A;
1287         bool locked = true;
1288
1289         if (WARN_ON(HAS_DDI(dev)))
1290                 return;
1291
1292         if (HAS_PCH_SPLIT(dev)) {
1293                 u32 port_sel;
1294
1295                 pp_reg = PCH_PP_CONTROL;
1296                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1297
1298                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1299                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1300                         panel_pipe = PIPE_B;
1301                 /* XXX: else fix for eDP */
1302         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1303                 /* presumably write lock depends on pipe, not port select */
1304                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1305                 panel_pipe = pipe;
1306         } else {
1307                 pp_reg = PP_CONTROL;
1308                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1309                         panel_pipe = PIPE_B;
1310         }
1311
1312         val = I915_READ(pp_reg);
1313         if (!(val & PANEL_POWER_ON) ||
1314             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1315                 locked = false;
1316
1317         I915_STATE_WARN(panel_pipe == pipe && locked,
1318              "panel assertion failure, pipe %c regs locked\n",
1319              pipe_name(pipe));
1320 }
1321
1322 static void assert_cursor(struct drm_i915_private *dev_priv,
1323                           enum pipe pipe, bool state)
1324 {
1325         struct drm_device *dev = dev_priv->dev;
1326         bool cur_state;
1327
1328         if (IS_845G(dev) || IS_I865G(dev))
1329                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1330         else
1331                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1332
1333         I915_STATE_WARN(cur_state != state,
1334              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1335                         pipe_name(pipe), onoff(state), onoff(cur_state));
1336 }
1337 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1338 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1339
1340 void assert_pipe(struct drm_i915_private *dev_priv,
1341                  enum pipe pipe, bool state)
1342 {
1343         bool cur_state;
1344         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1345                                                                       pipe);
1346         enum intel_display_power_domain power_domain;
1347
1348         /* if we need the pipe quirk it must be always on */
1349         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1350             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1351                 state = true;
1352
1353         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1354         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1355                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1356                 cur_state = !!(val & PIPECONF_ENABLE);
1357
1358                 intel_display_power_put(dev_priv, power_domain);
1359         } else {
1360                 cur_state = false;
1361         }
1362
1363         I915_STATE_WARN(cur_state != state,
1364              "pipe %c assertion failure (expected %s, current %s)\n",
1365                         pipe_name(pipe), onoff(state), onoff(cur_state));
1366 }
1367
1368 static void assert_plane(struct drm_i915_private *dev_priv,
1369                          enum plane plane, bool state)
1370 {
1371         u32 val;
1372         bool cur_state;
1373
1374         val = I915_READ(DSPCNTR(plane));
1375         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1376         I915_STATE_WARN(cur_state != state,
1377              "plane %c assertion failure (expected %s, current %s)\n",
1378                         plane_name(plane), onoff(state), onoff(cur_state));
1379 }
1380
1381 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1382 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1383
1384 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1385                                    enum pipe pipe)
1386 {
1387         struct drm_device *dev = dev_priv->dev;
1388         int i;
1389
1390         /* Primary planes are fixed to pipes on gen4+ */
1391         if (INTEL_INFO(dev)->gen >= 4) {
1392                 u32 val = I915_READ(DSPCNTR(pipe));
1393                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1394                      "plane %c assertion failure, should be disabled but not\n",
1395                      plane_name(pipe));
1396                 return;
1397         }
1398
1399         /* Need to check both planes against the pipe */
1400         for_each_pipe(dev_priv, i) {
1401                 u32 val = I915_READ(DSPCNTR(i));
1402                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1403                         DISPPLANE_SEL_PIPE_SHIFT;
1404                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1405                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1406                      plane_name(i), pipe_name(pipe));
1407         }
1408 }
1409
1410 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1411                                     enum pipe pipe)
1412 {
1413         struct drm_device *dev = dev_priv->dev;
1414         int sprite;
1415
1416         if (INTEL_INFO(dev)->gen >= 9) {
1417                 for_each_sprite(dev_priv, pipe, sprite) {
1418                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1419                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1420                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1421                              sprite, pipe_name(pipe));
1422                 }
1423         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1424                 for_each_sprite(dev_priv, pipe, sprite) {
1425                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1426                         I915_STATE_WARN(val & SP_ENABLE,
1427                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1428                              sprite_name(pipe, sprite), pipe_name(pipe));
1429                 }
1430         } else if (INTEL_INFO(dev)->gen >= 7) {
1431                 u32 val = I915_READ(SPRCTL(pipe));
1432                 I915_STATE_WARN(val & SPRITE_ENABLE,
1433                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1434                      plane_name(pipe), pipe_name(pipe));
1435         } else if (INTEL_INFO(dev)->gen >= 5) {
1436                 u32 val = I915_READ(DVSCNTR(pipe));
1437                 I915_STATE_WARN(val & DVS_ENABLE,
1438                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1439                      plane_name(pipe), pipe_name(pipe));
1440         }
1441 }
1442
1443 static void assert_vblank_disabled(struct drm_crtc *crtc)
1444 {
1445         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1446                 drm_crtc_vblank_put(crtc);
1447 }
1448
1449 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1450 {
1451         u32 val;
1452         bool enabled;
1453
1454         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1455
1456         val = I915_READ(PCH_DREF_CONTROL);
1457         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1458                             DREF_SUPERSPREAD_SOURCE_MASK));
1459         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1460 }
1461
1462 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1463                                            enum pipe pipe)
1464 {
1465         u32 val;
1466         bool enabled;
1467
1468         val = I915_READ(PCH_TRANSCONF(pipe));
1469         enabled = !!(val & TRANS_ENABLE);
1470         I915_STATE_WARN(enabled,
1471              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1472              pipe_name(pipe));
1473 }
1474
1475 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1476                             enum pipe pipe, u32 port_sel, u32 val)
1477 {
1478         if ((val & DP_PORT_EN) == 0)
1479                 return false;
1480
1481         if (HAS_PCH_CPT(dev_priv->dev)) {
1482                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1483                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1484                         return false;
1485         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1486                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1487                         return false;
1488         } else {
1489                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1490                         return false;
1491         }
1492         return true;
1493 }
1494
1495 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1496                               enum pipe pipe, u32 val)
1497 {
1498         if ((val & SDVO_ENABLE) == 0)
1499                 return false;
1500
1501         if (HAS_PCH_CPT(dev_priv->dev)) {
1502                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1503                         return false;
1504         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1505                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1506                         return false;
1507         } else {
1508                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1509                         return false;
1510         }
1511         return true;
1512 }
1513
1514 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1515                               enum pipe pipe, u32 val)
1516 {
1517         if ((val & LVDS_PORT_EN) == 0)
1518                 return false;
1519
1520         if (HAS_PCH_CPT(dev_priv->dev)) {
1521                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1522                         return false;
1523         } else {
1524                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1525                         return false;
1526         }
1527         return true;
1528 }
1529
1530 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1531                               enum pipe pipe, u32 val)
1532 {
1533         if ((val & ADPA_DAC_ENABLE) == 0)
1534                 return false;
1535         if (HAS_PCH_CPT(dev_priv->dev)) {
1536                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1537                         return false;
1538         } else {
1539                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1540                         return false;
1541         }
1542         return true;
1543 }
1544
1545 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1546                                    enum pipe pipe, i915_reg_t reg,
1547                                    u32 port_sel)
1548 {
1549         u32 val = I915_READ(reg);
1550         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1551              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1552              i915_mmio_reg_offset(reg), pipe_name(pipe));
1553
1554         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1555              && (val & DP_PIPEB_SELECT),
1556              "IBX PCH dp port still using transcoder B\n");
1557 }
1558
1559 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1560                                      enum pipe pipe, i915_reg_t reg)
1561 {
1562         u32 val = I915_READ(reg);
1563         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1564              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1565              i915_mmio_reg_offset(reg), pipe_name(pipe));
1566
1567         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1568              && (val & SDVO_PIPE_B_SELECT),
1569              "IBX PCH hdmi port still using transcoder B\n");
1570 }
1571
1572 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1573                                       enum pipe pipe)
1574 {
1575         u32 val;
1576
1577         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1578         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1579         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1580
1581         val = I915_READ(PCH_ADPA);
1582         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1583              "PCH VGA enabled on transcoder %c, should be disabled\n",
1584              pipe_name(pipe));
1585
1586         val = I915_READ(PCH_LVDS);
1587         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1588              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1589              pipe_name(pipe));
1590
1591         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1592         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1593         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1594 }
1595
1596 static void vlv_enable_pll(struct intel_crtc *crtc,
1597                            const struct intel_crtc_state *pipe_config)
1598 {
1599         struct drm_device *dev = crtc->base.dev;
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         i915_reg_t reg = DPLL(crtc->pipe);
1602         u32 dpll = pipe_config->dpll_hw_state.dpll;
1603
1604         assert_pipe_disabled(dev_priv, crtc->pipe);
1605
1606         /* PLL is protected by panel, make sure we can write it */
1607         if (IS_MOBILE(dev_priv->dev))
1608                 assert_panel_unlocked(dev_priv, crtc->pipe);
1609
1610         I915_WRITE(reg, dpll);
1611         POSTING_READ(reg);
1612         udelay(150);
1613
1614         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1615                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1616
1617         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1618         POSTING_READ(DPLL_MD(crtc->pipe));
1619
1620         /* We do this three times for luck */
1621         I915_WRITE(reg, dpll);
1622         POSTING_READ(reg);
1623         udelay(150); /* wait for warmup */
1624         I915_WRITE(reg, dpll);
1625         POSTING_READ(reg);
1626         udelay(150); /* wait for warmup */
1627         I915_WRITE(reg, dpll);
1628         POSTING_READ(reg);
1629         udelay(150); /* wait for warmup */
1630 }
1631
1632 static void chv_enable_pll(struct intel_crtc *crtc,
1633                            const struct intel_crtc_state *pipe_config)
1634 {
1635         struct drm_device *dev = crtc->base.dev;
1636         struct drm_i915_private *dev_priv = dev->dev_private;
1637         int pipe = crtc->pipe;
1638         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1639         u32 tmp;
1640
1641         assert_pipe_disabled(dev_priv, crtc->pipe);
1642
1643         mutex_lock(&dev_priv->sb_lock);
1644
1645         /* Enable back the 10bit clock to display controller */
1646         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1647         tmp |= DPIO_DCLKP_EN;
1648         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1649
1650         mutex_unlock(&dev_priv->sb_lock);
1651
1652         /*
1653          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1654          */
1655         udelay(1);
1656
1657         /* Enable PLL */
1658         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1659
1660         /* Check PLL is locked */
1661         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1662                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1663
1664         /* not sure when this should be written */
1665         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1666         POSTING_READ(DPLL_MD(pipe));
1667 }
1668
1669 static int intel_num_dvo_pipes(struct drm_device *dev)
1670 {
1671         struct intel_crtc *crtc;
1672         int count = 0;
1673
1674         for_each_intel_crtc(dev, crtc)
1675                 count += crtc->base.state->active &&
1676                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1677
1678         return count;
1679 }
1680
1681 static void i9xx_enable_pll(struct intel_crtc *crtc)
1682 {
1683         struct drm_device *dev = crtc->base.dev;
1684         struct drm_i915_private *dev_priv = dev->dev_private;
1685         i915_reg_t reg = DPLL(crtc->pipe);
1686         u32 dpll = crtc->config->dpll_hw_state.dpll;
1687
1688         assert_pipe_disabled(dev_priv, crtc->pipe);
1689
1690         /* No really, not for ILK+ */
1691         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1692
1693         /* PLL is protected by panel, make sure we can write it */
1694         if (IS_MOBILE(dev) && !IS_I830(dev))
1695                 assert_panel_unlocked(dev_priv, crtc->pipe);
1696
1697         /* Enable DVO 2x clock on both PLLs if necessary */
1698         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1699                 /*
1700                  * It appears to be important that we don't enable this
1701                  * for the current pipe before otherwise configuring the
1702                  * PLL. No idea how this should be handled if multiple
1703                  * DVO outputs are enabled simultaneosly.
1704                  */
1705                 dpll |= DPLL_DVO_2X_MODE;
1706                 I915_WRITE(DPLL(!crtc->pipe),
1707                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1708         }
1709
1710         /*
1711          * Apparently we need to have VGA mode enabled prior to changing
1712          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1713          * dividers, even though the register value does change.
1714          */
1715         I915_WRITE(reg, 0);
1716
1717         I915_WRITE(reg, dpll);
1718
1719         /* Wait for the clocks to stabilize. */
1720         POSTING_READ(reg);
1721         udelay(150);
1722
1723         if (INTEL_INFO(dev)->gen >= 4) {
1724                 I915_WRITE(DPLL_MD(crtc->pipe),
1725                            crtc->config->dpll_hw_state.dpll_md);
1726         } else {
1727                 /* The pixel multiplier can only be updated once the
1728                  * DPLL is enabled and the clocks are stable.
1729                  *
1730                  * So write it again.
1731                  */
1732                 I915_WRITE(reg, dpll);
1733         }
1734
1735         /* We do this three times for luck */
1736         I915_WRITE(reg, dpll);
1737         POSTING_READ(reg);
1738         udelay(150); /* wait for warmup */
1739         I915_WRITE(reg, dpll);
1740         POSTING_READ(reg);
1741         udelay(150); /* wait for warmup */
1742         I915_WRITE(reg, dpll);
1743         POSTING_READ(reg);
1744         udelay(150); /* wait for warmup */
1745 }
1746
1747 /**
1748  * i9xx_disable_pll - disable a PLL
1749  * @dev_priv: i915 private structure
1750  * @pipe: pipe PLL to disable
1751  *
1752  * Disable the PLL for @pipe, making sure the pipe is off first.
1753  *
1754  * Note!  This is for pre-ILK only.
1755  */
1756 static void i9xx_disable_pll(struct intel_crtc *crtc)
1757 {
1758         struct drm_device *dev = crtc->base.dev;
1759         struct drm_i915_private *dev_priv = dev->dev_private;
1760         enum pipe pipe = crtc->pipe;
1761
1762         /* Disable DVO 2x clock on both PLLs if necessary */
1763         if (IS_I830(dev) &&
1764             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1765             !intel_num_dvo_pipes(dev)) {
1766                 I915_WRITE(DPLL(PIPE_B),
1767                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1768                 I915_WRITE(DPLL(PIPE_A),
1769                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1770         }
1771
1772         /* Don't disable pipe or pipe PLLs if needed */
1773         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1774             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1775                 return;
1776
1777         /* Make sure the pipe isn't still relying on us */
1778         assert_pipe_disabled(dev_priv, pipe);
1779
1780         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1781         POSTING_READ(DPLL(pipe));
1782 }
1783
1784 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1785 {
1786         u32 val;
1787
1788         /* Make sure the pipe isn't still relying on us */
1789         assert_pipe_disabled(dev_priv, pipe);
1790
1791         /*
1792          * Leave integrated clock source and reference clock enabled for pipe B.
1793          * The latter is needed for VGA hotplug / manual detection.
1794          */
1795         val = DPLL_VGA_MODE_DIS;
1796         if (pipe == PIPE_B)
1797                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1798         I915_WRITE(DPLL(pipe), val);
1799         POSTING_READ(DPLL(pipe));
1800
1801 }
1802
1803 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1804 {
1805         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1806         u32 val;
1807
1808         /* Make sure the pipe isn't still relying on us */
1809         assert_pipe_disabled(dev_priv, pipe);
1810
1811         /* Set PLL en = 0 */
1812         val = DPLL_SSC_REF_CLK_CHV |
1813                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1814         if (pipe != PIPE_A)
1815                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1816         I915_WRITE(DPLL(pipe), val);
1817         POSTING_READ(DPLL(pipe));
1818
1819         mutex_lock(&dev_priv->sb_lock);
1820
1821         /* Disable 10bit clock to display controller */
1822         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1823         val &= ~DPIO_DCLKP_EN;
1824         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1825
1826         mutex_unlock(&dev_priv->sb_lock);
1827 }
1828
1829 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1830                          struct intel_digital_port *dport,
1831                          unsigned int expected_mask)
1832 {
1833         u32 port_mask;
1834         i915_reg_t dpll_reg;
1835
1836         switch (dport->port) {
1837         case PORT_B:
1838                 port_mask = DPLL_PORTB_READY_MASK;
1839                 dpll_reg = DPLL(0);
1840                 break;
1841         case PORT_C:
1842                 port_mask = DPLL_PORTC_READY_MASK;
1843                 dpll_reg = DPLL(0);
1844                 expected_mask <<= 4;
1845                 break;
1846         case PORT_D:
1847                 port_mask = DPLL_PORTD_READY_MASK;
1848                 dpll_reg = DPIO_PHY_STATUS;
1849                 break;
1850         default:
1851                 BUG();
1852         }
1853
1854         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1855                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1856                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1857 }
1858
1859 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1860 {
1861         struct drm_device *dev = crtc->base.dev;
1862         struct drm_i915_private *dev_priv = dev->dev_private;
1863         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1864
1865         if (WARN_ON(pll == NULL))
1866                 return;
1867
1868         WARN_ON(!pll->config.crtc_mask);
1869         if (pll->active == 0) {
1870                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1871                 WARN_ON(pll->on);
1872                 assert_shared_dpll_disabled(dev_priv, pll);
1873
1874                 pll->mode_set(dev_priv, pll);
1875         }
1876 }
1877
1878 /**
1879  * intel_enable_shared_dpll - enable PCH PLL
1880  * @dev_priv: i915 private structure
1881  * @pipe: pipe PLL to enable
1882  *
1883  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1884  * drives the transcoder clock.
1885  */
1886 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1887 {
1888         struct drm_device *dev = crtc->base.dev;
1889         struct drm_i915_private *dev_priv = dev->dev_private;
1890         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1891
1892         if (WARN_ON(pll == NULL))
1893                 return;
1894
1895         if (WARN_ON(pll->config.crtc_mask == 0))
1896                 return;
1897
1898         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1899                       pll->name, pll->active, pll->on,
1900                       crtc->base.base.id);
1901
1902         if (pll->active++) {
1903                 WARN_ON(!pll->on);
1904                 assert_shared_dpll_enabled(dev_priv, pll);
1905                 return;
1906         }
1907         WARN_ON(pll->on);
1908
1909         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1910
1911         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1912         pll->enable(dev_priv, pll);
1913         pll->on = true;
1914 }
1915
1916 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1917 {
1918         struct drm_device *dev = crtc->base.dev;
1919         struct drm_i915_private *dev_priv = dev->dev_private;
1920         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1921
1922         /* PCH only available on ILK+ */
1923         if (INTEL_INFO(dev)->gen < 5)
1924                 return;
1925
1926         if (pll == NULL)
1927                 return;
1928
1929         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1930                 return;
1931
1932         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1933                       pll->name, pll->active, pll->on,
1934                       crtc->base.base.id);
1935
1936         if (WARN_ON(pll->active == 0)) {
1937                 assert_shared_dpll_disabled(dev_priv, pll);
1938                 return;
1939         }
1940
1941         assert_shared_dpll_enabled(dev_priv, pll);
1942         WARN_ON(!pll->on);
1943         if (--pll->active)
1944                 return;
1945
1946         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1947         pll->disable(dev_priv, pll);
1948         pll->on = false;
1949
1950         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1951 }
1952
1953 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1954                                            enum pipe pipe)
1955 {
1956         struct drm_device *dev = dev_priv->dev;
1957         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1958         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1959         i915_reg_t reg;
1960         uint32_t val, pipeconf_val;
1961
1962         /* PCH only available on ILK+ */
1963         BUG_ON(!HAS_PCH_SPLIT(dev));
1964
1965         /* Make sure PCH DPLL is enabled */
1966         assert_shared_dpll_enabled(dev_priv,
1967                                    intel_crtc_to_shared_dpll(intel_crtc));
1968
1969         /* FDI must be feeding us bits for PCH ports */
1970         assert_fdi_tx_enabled(dev_priv, pipe);
1971         assert_fdi_rx_enabled(dev_priv, pipe);
1972
1973         if (HAS_PCH_CPT(dev)) {
1974                 /* Workaround: Set the timing override bit before enabling the
1975                  * pch transcoder. */
1976                 reg = TRANS_CHICKEN2(pipe);
1977                 val = I915_READ(reg);
1978                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1979                 I915_WRITE(reg, val);
1980         }
1981
1982         reg = PCH_TRANSCONF(pipe);
1983         val = I915_READ(reg);
1984         pipeconf_val = I915_READ(PIPECONF(pipe));
1985
1986         if (HAS_PCH_IBX(dev_priv->dev)) {
1987                 /*
1988                  * Make the BPC in transcoder be consistent with
1989                  * that in pipeconf reg. For HDMI we must use 8bpc
1990                  * here for both 8bpc and 12bpc.
1991                  */
1992                 val &= ~PIPECONF_BPC_MASK;
1993                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1994                         val |= PIPECONF_8BPC;
1995                 else
1996                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1997         }
1998
1999         val &= ~TRANS_INTERLACE_MASK;
2000         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2001                 if (HAS_PCH_IBX(dev_priv->dev) &&
2002                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2003                         val |= TRANS_LEGACY_INTERLACED_ILK;
2004                 else
2005                         val |= TRANS_INTERLACED;
2006         else
2007                 val |= TRANS_PROGRESSIVE;
2008
2009         I915_WRITE(reg, val | TRANS_ENABLE);
2010         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2011                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2012 }
2013
2014 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2015                                       enum transcoder cpu_transcoder)
2016 {
2017         u32 val, pipeconf_val;
2018
2019         /* PCH only available on ILK+ */
2020         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2021
2022         /* FDI must be feeding us bits for PCH ports */
2023         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2024         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2025
2026         /* Workaround: set timing override bit. */
2027         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2028         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2029         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2030
2031         val = TRANS_ENABLE;
2032         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2033
2034         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2035             PIPECONF_INTERLACED_ILK)
2036                 val |= TRANS_INTERLACED;
2037         else
2038                 val |= TRANS_PROGRESSIVE;
2039
2040         I915_WRITE(LPT_TRANSCONF, val);
2041         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2042                 DRM_ERROR("Failed to enable PCH transcoder\n");
2043 }
2044
2045 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2046                                             enum pipe pipe)
2047 {
2048         struct drm_device *dev = dev_priv->dev;
2049         i915_reg_t reg;
2050         uint32_t val;
2051
2052         /* FDI relies on the transcoder */
2053         assert_fdi_tx_disabled(dev_priv, pipe);
2054         assert_fdi_rx_disabled(dev_priv, pipe);
2055
2056         /* Ports must be off as well */
2057         assert_pch_ports_disabled(dev_priv, pipe);
2058
2059         reg = PCH_TRANSCONF(pipe);
2060         val = I915_READ(reg);
2061         val &= ~TRANS_ENABLE;
2062         I915_WRITE(reg, val);
2063         /* wait for PCH transcoder off, transcoder state */
2064         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2065                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2066
2067         if (HAS_PCH_CPT(dev)) {
2068                 /* Workaround: Clear the timing override chicken bit again. */
2069                 reg = TRANS_CHICKEN2(pipe);
2070                 val = I915_READ(reg);
2071                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2072                 I915_WRITE(reg, val);
2073         }
2074 }
2075
2076 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2077 {
2078         u32 val;
2079
2080         val = I915_READ(LPT_TRANSCONF);
2081         val &= ~TRANS_ENABLE;
2082         I915_WRITE(LPT_TRANSCONF, val);
2083         /* wait for PCH transcoder off, transcoder state */
2084         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2085                 DRM_ERROR("Failed to disable PCH transcoder\n");
2086
2087         /* Workaround: clear timing override bit. */
2088         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2089         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2090         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2091 }
2092
2093 /**
2094  * intel_enable_pipe - enable a pipe, asserting requirements
2095  * @crtc: crtc responsible for the pipe
2096  *
2097  * Enable @crtc's pipe, making sure that various hardware specific requirements
2098  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2099  */
2100 static void intel_enable_pipe(struct intel_crtc *crtc)
2101 {
2102         struct drm_device *dev = crtc->base.dev;
2103         struct drm_i915_private *dev_priv = dev->dev_private;
2104         enum pipe pipe = crtc->pipe;
2105         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2106         enum pipe pch_transcoder;
2107         i915_reg_t reg;
2108         u32 val;
2109
2110         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2111
2112         assert_planes_disabled(dev_priv, pipe);
2113         assert_cursor_disabled(dev_priv, pipe);
2114         assert_sprites_disabled(dev_priv, pipe);
2115
2116         if (HAS_PCH_LPT(dev_priv->dev))
2117                 pch_transcoder = TRANSCODER_A;
2118         else
2119                 pch_transcoder = pipe;
2120
2121         /*
2122          * A pipe without a PLL won't actually be able to drive bits from
2123          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2124          * need the check.
2125          */
2126         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2127                 if (crtc->config->has_dsi_encoder)
2128                         assert_dsi_pll_enabled(dev_priv);
2129                 else
2130                         assert_pll_enabled(dev_priv, pipe);
2131         else {
2132                 if (crtc->config->has_pch_encoder) {
2133                         /* if driving the PCH, we need FDI enabled */
2134                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2135                         assert_fdi_tx_pll_enabled(dev_priv,
2136                                                   (enum pipe) cpu_transcoder);
2137                 }
2138                 /* FIXME: assert CPU port conditions for SNB+ */
2139         }
2140
2141         reg = PIPECONF(cpu_transcoder);
2142         val = I915_READ(reg);
2143         if (val & PIPECONF_ENABLE) {
2144                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2145                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2146                 return;
2147         }
2148
2149         I915_WRITE(reg, val | PIPECONF_ENABLE);
2150         POSTING_READ(reg);
2151
2152         /*
2153          * Until the pipe starts DSL will read as 0, which would cause
2154          * an apparent vblank timestamp jump, which messes up also the
2155          * frame count when it's derived from the timestamps. So let's
2156          * wait for the pipe to start properly before we call
2157          * drm_crtc_vblank_on()
2158          */
2159         if (dev->max_vblank_count == 0 &&
2160             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2161                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2162 }
2163
2164 /**
2165  * intel_disable_pipe - disable a pipe, asserting requirements
2166  * @crtc: crtc whose pipes is to be disabled
2167  *
2168  * Disable the pipe of @crtc, making sure that various hardware
2169  * specific requirements are met, if applicable, e.g. plane
2170  * disabled, panel fitter off, etc.
2171  *
2172  * Will wait until the pipe has shut down before returning.
2173  */
2174 static void intel_disable_pipe(struct intel_crtc *crtc)
2175 {
2176         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2177         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2178         enum pipe pipe = crtc->pipe;
2179         i915_reg_t reg;
2180         u32 val;
2181
2182         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2183
2184         /*
2185          * Make sure planes won't keep trying to pump pixels to us,
2186          * or we might hang the display.
2187          */
2188         assert_planes_disabled(dev_priv, pipe);
2189         assert_cursor_disabled(dev_priv, pipe);
2190         assert_sprites_disabled(dev_priv, pipe);
2191
2192         reg = PIPECONF(cpu_transcoder);
2193         val = I915_READ(reg);
2194         if ((val & PIPECONF_ENABLE) == 0)
2195                 return;
2196
2197         /*
2198          * Double wide has implications for planes
2199          * so best keep it disabled when not needed.
2200          */
2201         if (crtc->config->double_wide)
2202                 val &= ~PIPECONF_DOUBLE_WIDE;
2203
2204         /* Don't disable pipe or pipe PLLs if needed */
2205         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2206             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2207                 val &= ~PIPECONF_ENABLE;
2208
2209         I915_WRITE(reg, val);
2210         if ((val & PIPECONF_ENABLE) == 0)
2211                 intel_wait_for_pipe_off(crtc);
2212 }
2213
2214 static bool need_vtd_wa(struct drm_device *dev)
2215 {
2216 #ifdef CONFIG_INTEL_IOMMU
2217         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2218                 return true;
2219 #endif
2220         return false;
2221 }
2222
2223 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2224 {
2225         return IS_GEN2(dev_priv) ? 2048 : 4096;
2226 }
2227
2228 static unsigned int intel_tile_width(const struct drm_i915_private *dev_priv,
2229                                      uint64_t fb_modifier, unsigned int cpp)
2230 {
2231         switch (fb_modifier) {
2232         case DRM_FORMAT_MOD_NONE:
2233                 return cpp;
2234         case I915_FORMAT_MOD_X_TILED:
2235                 if (IS_GEN2(dev_priv))
2236                         return 128;
2237                 else
2238                         return 512;
2239         case I915_FORMAT_MOD_Y_TILED:
2240                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2241                         return 128;
2242                 else
2243                         return 512;
2244         case I915_FORMAT_MOD_Yf_TILED:
2245                 switch (cpp) {
2246                 case 1:
2247                         return 64;
2248                 case 2:
2249                 case 4:
2250                         return 128;
2251                 case 8:
2252                 case 16:
2253                         return 256;
2254                 default:
2255                         MISSING_CASE(cpp);
2256                         return cpp;
2257                 }
2258                 break;
2259         default:
2260                 MISSING_CASE(fb_modifier);
2261                 return cpp;
2262         }
2263 }
2264
2265 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2266                                uint64_t fb_modifier, unsigned int cpp)
2267 {
2268         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2269                 return 1;
2270         else
2271                 return intel_tile_size(dev_priv) /
2272                         intel_tile_width(dev_priv, fb_modifier, cpp);
2273 }
2274
2275 unsigned int
2276 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2277                       uint32_t pixel_format, uint64_t fb_modifier)
2278 {
2279         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2280         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2281
2282         return ALIGN(height, tile_height);
2283 }
2284
2285 static void
2286 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2287                         const struct drm_plane_state *plane_state)
2288 {
2289         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2290         struct intel_rotation_info *info = &view->params.rotated;
2291         unsigned int tile_size, tile_width, tile_height, cpp;
2292
2293         *view = i915_ggtt_view_normal;
2294
2295         if (!plane_state)
2296                 return;
2297
2298         if (!intel_rotation_90_or_270(plane_state->rotation))
2299                 return;
2300
2301         *view = i915_ggtt_view_rotated;
2302
2303         info->height = fb->height;
2304         info->pixel_format = fb->pixel_format;
2305         info->pitch = fb->pitches[0];
2306         info->uv_offset = fb->offsets[1];
2307         info->fb_modifier = fb->modifier[0];
2308
2309         tile_size = intel_tile_size(dev_priv);
2310
2311         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2312         tile_width = intel_tile_width(dev_priv, fb->modifier[0], cpp);
2313         tile_height = tile_size / tile_width;
2314
2315         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_width);
2316         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2317         info->size = info->width_pages * info->height_pages * tile_size;
2318
2319         if (info->pixel_format == DRM_FORMAT_NV12) {
2320                 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2321                 tile_width = intel_tile_width(dev_priv, fb->modifier[1], cpp);
2322                 tile_height = tile_size / tile_width;
2323
2324                 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[1], tile_width);
2325                 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2, tile_height);
2326                 info->size_uv = info->width_pages_uv * info->height_pages_uv * tile_size;
2327         }
2328 }
2329
2330 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2331 {
2332         if (INTEL_INFO(dev_priv)->gen >= 9)
2333                 return 256 * 1024;
2334         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2335                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2336                 return 128 * 1024;
2337         else if (INTEL_INFO(dev_priv)->gen >= 4)
2338                 return 4 * 1024;
2339         else
2340                 return 0;
2341 }
2342
2343 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2344                                          uint64_t fb_modifier)
2345 {
2346         switch (fb_modifier) {
2347         case DRM_FORMAT_MOD_NONE:
2348                 return intel_linear_alignment(dev_priv);
2349         case I915_FORMAT_MOD_X_TILED:
2350                 if (INTEL_INFO(dev_priv)->gen >= 9)
2351                         return 256 * 1024;
2352                 return 0;
2353         case I915_FORMAT_MOD_Y_TILED:
2354         case I915_FORMAT_MOD_Yf_TILED:
2355                 return 1 * 1024 * 1024;
2356         default:
2357                 MISSING_CASE(fb_modifier);
2358                 return 0;
2359         }
2360 }
2361
2362 int
2363 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2364                            struct drm_framebuffer *fb,
2365                            const struct drm_plane_state *plane_state)
2366 {
2367         struct drm_device *dev = fb->dev;
2368         struct drm_i915_private *dev_priv = dev->dev_private;
2369         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2370         struct i915_ggtt_view view;
2371         u32 alignment;
2372         int ret;
2373
2374         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2375
2376         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2377
2378         intel_fill_fb_ggtt_view(&view, fb, plane_state);
2379
2380         /* Note that the w/a also requires 64 PTE of padding following the
2381          * bo. We currently fill all unused PTE with the shadow page and so
2382          * we should always have valid PTE following the scanout preventing
2383          * the VT-d warning.
2384          */
2385         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2386                 alignment = 256 * 1024;
2387
2388         /*
2389          * Global gtt pte registers are special registers which actually forward
2390          * writes to a chunk of system memory. Which means that there is no risk
2391          * that the register values disappear as soon as we call
2392          * intel_runtime_pm_put(), so it is correct to wrap only the
2393          * pin/unpin/fence and not more.
2394          */
2395         intel_runtime_pm_get(dev_priv);
2396
2397         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2398                                                    &view);
2399         if (ret)
2400                 goto err_pm;
2401
2402         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2403          * fence, whereas 965+ only requires a fence if using
2404          * framebuffer compression.  For simplicity, we always install
2405          * a fence as the cost is not that onerous.
2406          */
2407         if (view.type == I915_GGTT_VIEW_NORMAL) {
2408                 ret = i915_gem_object_get_fence(obj);
2409                 if (ret == -EDEADLK) {
2410                         /*
2411                          * -EDEADLK means there are no free fences
2412                          * no pending flips.
2413                          *
2414                          * This is propagated to atomic, but it uses
2415                          * -EDEADLK to force a locking recovery, so
2416                          * change the returned error to -EBUSY.
2417                          */
2418                         ret = -EBUSY;
2419                         goto err_unpin;
2420                 } else if (ret)
2421                         goto err_unpin;
2422
2423                 i915_gem_object_pin_fence(obj);
2424         }
2425
2426         intel_runtime_pm_put(dev_priv);
2427         return 0;
2428
2429 err_unpin:
2430         i915_gem_object_unpin_from_display_plane(obj, &view);
2431 err_pm:
2432         intel_runtime_pm_put(dev_priv);
2433         return ret;
2434 }
2435
2436 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2437                                const struct drm_plane_state *plane_state)
2438 {
2439         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2440         struct i915_ggtt_view view;
2441
2442         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2443
2444         intel_fill_fb_ggtt_view(&view, fb, plane_state);
2445
2446         if (view.type == I915_GGTT_VIEW_NORMAL)
2447                 i915_gem_object_unpin_fence(obj);
2448
2449         i915_gem_object_unpin_from_display_plane(obj, &view);
2450 }
2451
2452 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2453  * is assumed to be a power-of-two. */
2454 u32 intel_compute_tile_offset(struct drm_i915_private *dev_priv,
2455                               int *x, int *y,
2456                               uint64_t fb_modifier,
2457                               unsigned int cpp,
2458                               unsigned int pitch)
2459 {
2460         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2461                 unsigned int tile_size, tile_width, tile_height;
2462                 unsigned int tile_rows, tiles;
2463
2464                 tile_size = intel_tile_size(dev_priv);
2465                 tile_width = intel_tile_width(dev_priv, fb_modifier, cpp);
2466                 tile_height = tile_size / tile_width;
2467
2468                 tile_rows = *y / tile_height;
2469                 *y %= tile_height;
2470
2471                 tiles = *x / (tile_width/cpp);
2472                 *x %= tile_width/cpp;
2473
2474                 return tile_rows * pitch * tile_height + tiles * tile_size;
2475         } else {
2476                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2477                 unsigned int offset;
2478
2479                 offset = *y * pitch + *x * cpp;
2480                 *y = (offset & alignment) / pitch;
2481                 *x = ((offset & alignment) - *y * pitch) / cpp;
2482                 return offset & ~alignment;
2483         }
2484 }
2485
2486 static int i9xx_format_to_fourcc(int format)
2487 {
2488         switch (format) {
2489         case DISPPLANE_8BPP:
2490                 return DRM_FORMAT_C8;
2491         case DISPPLANE_BGRX555:
2492                 return DRM_FORMAT_XRGB1555;
2493         case DISPPLANE_BGRX565:
2494                 return DRM_FORMAT_RGB565;
2495         default:
2496         case DISPPLANE_BGRX888:
2497                 return DRM_FORMAT_XRGB8888;
2498         case DISPPLANE_RGBX888:
2499                 return DRM_FORMAT_XBGR8888;
2500         case DISPPLANE_BGRX101010:
2501                 return DRM_FORMAT_XRGB2101010;
2502         case DISPPLANE_RGBX101010:
2503                 return DRM_FORMAT_XBGR2101010;
2504         }
2505 }
2506
2507 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2508 {
2509         switch (format) {
2510         case PLANE_CTL_FORMAT_RGB_565:
2511                 return DRM_FORMAT_RGB565;
2512         default:
2513         case PLANE_CTL_FORMAT_XRGB_8888:
2514                 if (rgb_order) {
2515                         if (alpha)
2516                                 return DRM_FORMAT_ABGR8888;
2517                         else
2518                                 return DRM_FORMAT_XBGR8888;
2519                 } else {
2520                         if (alpha)
2521                                 return DRM_FORMAT_ARGB8888;
2522                         else
2523                                 return DRM_FORMAT_XRGB8888;
2524                 }
2525         case PLANE_CTL_FORMAT_XRGB_2101010:
2526                 if (rgb_order)
2527                         return DRM_FORMAT_XBGR2101010;
2528                 else
2529                         return DRM_FORMAT_XRGB2101010;
2530         }
2531 }
2532
2533 static bool
2534 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2535                               struct intel_initial_plane_config *plane_config)
2536 {
2537         struct drm_device *dev = crtc->base.dev;
2538         struct drm_i915_private *dev_priv = to_i915(dev);
2539         struct drm_i915_gem_object *obj = NULL;
2540         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2541         struct drm_framebuffer *fb = &plane_config->fb->base;
2542         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2543         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2544                                     PAGE_SIZE);
2545
2546         size_aligned -= base_aligned;
2547
2548         if (plane_config->size == 0)
2549                 return false;
2550
2551         /* If the FB is too big, just don't use it since fbdev is not very
2552          * important and we should probably use that space with FBC or other
2553          * features. */
2554         if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2555                 return false;
2556
2557         mutex_lock(&dev->struct_mutex);
2558
2559         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2560                                                              base_aligned,
2561                                                              base_aligned,
2562                                                              size_aligned);
2563         if (!obj) {
2564                 mutex_unlock(&dev->struct_mutex);
2565                 return false;
2566         }
2567
2568         obj->tiling_mode = plane_config->tiling;
2569         if (obj->tiling_mode == I915_TILING_X)
2570                 obj->stride = fb->pitches[0];
2571
2572         mode_cmd.pixel_format = fb->pixel_format;
2573         mode_cmd.width = fb->width;
2574         mode_cmd.height = fb->height;
2575         mode_cmd.pitches[0] = fb->pitches[0];
2576         mode_cmd.modifier[0] = fb->modifier[0];
2577         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2578
2579         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2580                                    &mode_cmd, obj)) {
2581                 DRM_DEBUG_KMS("intel fb init failed\n");
2582                 goto out_unref_obj;
2583         }
2584
2585         mutex_unlock(&dev->struct_mutex);
2586
2587         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2588         return true;
2589
2590 out_unref_obj:
2591         drm_gem_object_unreference(&obj->base);
2592         mutex_unlock(&dev->struct_mutex);
2593         return false;
2594 }
2595
2596 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2597 static void
2598 update_state_fb(struct drm_plane *plane)
2599 {
2600         if (plane->fb == plane->state->fb)
2601                 return;
2602
2603         if (plane->state->fb)
2604                 drm_framebuffer_unreference(plane->state->fb);
2605         plane->state->fb = plane->fb;
2606         if (plane->state->fb)
2607                 drm_framebuffer_reference(plane->state->fb);
2608 }
2609
2610 static void
2611 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2612                              struct intel_initial_plane_config *plane_config)
2613 {
2614         struct drm_device *dev = intel_crtc->base.dev;
2615         struct drm_i915_private *dev_priv = dev->dev_private;
2616         struct drm_crtc *c;
2617         struct intel_crtc *i;
2618         struct drm_i915_gem_object *obj;
2619         struct drm_plane *primary = intel_crtc->base.primary;
2620         struct drm_plane_state *plane_state = primary->state;
2621         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2622         struct intel_plane *intel_plane = to_intel_plane(primary);
2623         struct intel_plane_state *intel_state =
2624                 to_intel_plane_state(plane_state);
2625         struct drm_framebuffer *fb;
2626
2627         if (!plane_config->fb)
2628                 return;
2629
2630         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2631                 fb = &plane_config->fb->base;
2632                 goto valid_fb;
2633         }
2634
2635         kfree(plane_config->fb);
2636
2637         /*
2638          * Failed to alloc the obj, check to see if we should share
2639          * an fb with another CRTC instead
2640          */
2641         for_each_crtc(dev, c) {
2642                 i = to_intel_crtc(c);
2643
2644                 if (c == &intel_crtc->base)
2645                         continue;
2646
2647                 if (!i->active)
2648                         continue;
2649
2650                 fb = c->primary->fb;
2651                 if (!fb)
2652                         continue;
2653
2654                 obj = intel_fb_obj(fb);
2655                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2656                         drm_framebuffer_reference(fb);
2657                         goto valid_fb;
2658                 }
2659         }
2660
2661         /*
2662          * We've failed to reconstruct the BIOS FB.  Current display state
2663          * indicates that the primary plane is visible, but has a NULL FB,
2664          * which will lead to problems later if we don't fix it up.  The
2665          * simplest solution is to just disable the primary plane now and
2666          * pretend the BIOS never had it enabled.
2667          */
2668         to_intel_plane_state(plane_state)->visible = false;
2669         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2670         intel_pre_disable_primary(&intel_crtc->base);
2671         intel_plane->disable_plane(primary, &intel_crtc->base);
2672
2673         return;
2674
2675 valid_fb:
2676         plane_state->src_x = 0;
2677         plane_state->src_y = 0;
2678         plane_state->src_w = fb->width << 16;
2679         plane_state->src_h = fb->height << 16;
2680
2681         plane_state->crtc_x = 0;
2682         plane_state->crtc_y = 0;
2683         plane_state->crtc_w = fb->width;
2684         plane_state->crtc_h = fb->height;
2685
2686         intel_state->src.x1 = plane_state->src_x;
2687         intel_state->src.y1 = plane_state->src_y;
2688         intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2689         intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2690         intel_state->dst.x1 = plane_state->crtc_x;
2691         intel_state->dst.y1 = plane_state->crtc_y;
2692         intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2693         intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2694
2695         obj = intel_fb_obj(fb);
2696         if (obj->tiling_mode != I915_TILING_NONE)
2697                 dev_priv->preserve_bios_swizzle = true;
2698
2699         drm_framebuffer_reference(fb);
2700         primary->fb = primary->state->fb = fb;
2701         primary->crtc = primary->state->crtc = &intel_crtc->base;
2702         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2703         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2704 }
2705
2706 static void i9xx_update_primary_plane(struct drm_plane *primary,
2707                                       const struct intel_crtc_state *crtc_state,
2708                                       const struct intel_plane_state *plane_state)
2709 {
2710         struct drm_device *dev = primary->dev;
2711         struct drm_i915_private *dev_priv = dev->dev_private;
2712         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2713         struct drm_framebuffer *fb = plane_state->base.fb;
2714         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2715         int plane = intel_crtc->plane;
2716         u32 linear_offset;
2717         u32 dspcntr;
2718         i915_reg_t reg = DSPCNTR(plane);
2719         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2720         int x = plane_state->src.x1 >> 16;
2721         int y = plane_state->src.y1 >> 16;
2722
2723         dspcntr = DISPPLANE_GAMMA_ENABLE;
2724
2725         dspcntr |= DISPLAY_PLANE_ENABLE;
2726
2727         if (INTEL_INFO(dev)->gen < 4) {
2728                 if (intel_crtc->pipe == PIPE_B)
2729                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2730
2731                 /* pipesrc and dspsize control the size that is scaled from,
2732                  * which should always be the user's requested size.
2733                  */
2734                 I915_WRITE(DSPSIZE(plane),
2735                            ((crtc_state->pipe_src_h - 1) << 16) |
2736                            (crtc_state->pipe_src_w - 1));
2737                 I915_WRITE(DSPPOS(plane), 0);
2738         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2739                 I915_WRITE(PRIMSIZE(plane),
2740                            ((crtc_state->pipe_src_h - 1) << 16) |
2741                            (crtc_state->pipe_src_w - 1));
2742                 I915_WRITE(PRIMPOS(plane), 0);
2743                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2744         }
2745
2746         switch (fb->pixel_format) {
2747         case DRM_FORMAT_C8:
2748                 dspcntr |= DISPPLANE_8BPP;
2749                 break;
2750         case DRM_FORMAT_XRGB1555:
2751                 dspcntr |= DISPPLANE_BGRX555;
2752                 break;
2753         case DRM_FORMAT_RGB565:
2754                 dspcntr |= DISPPLANE_BGRX565;
2755                 break;
2756         case DRM_FORMAT_XRGB8888:
2757                 dspcntr |= DISPPLANE_BGRX888;
2758                 break;
2759         case DRM_FORMAT_XBGR8888:
2760                 dspcntr |= DISPPLANE_RGBX888;
2761                 break;
2762         case DRM_FORMAT_XRGB2101010:
2763                 dspcntr |= DISPPLANE_BGRX101010;
2764                 break;
2765         case DRM_FORMAT_XBGR2101010:
2766                 dspcntr |= DISPPLANE_RGBX101010;
2767                 break;
2768         default:
2769                 BUG();
2770         }
2771
2772         if (INTEL_INFO(dev)->gen >= 4 &&
2773             obj->tiling_mode != I915_TILING_NONE)
2774                 dspcntr |= DISPPLANE_TILED;
2775
2776         if (IS_G4X(dev))
2777                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2778
2779         linear_offset = y * fb->pitches[0] + x * cpp;
2780
2781         if (INTEL_INFO(dev)->gen >= 4) {
2782                 intel_crtc->dspaddr_offset =
2783                         intel_compute_tile_offset(dev_priv, &x, &y,
2784                                                   fb->modifier[0], cpp,
2785                                                   fb->pitches[0]);
2786                 linear_offset -= intel_crtc->dspaddr_offset;
2787         } else {
2788                 intel_crtc->dspaddr_offset = linear_offset;
2789         }
2790
2791         if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
2792                 dspcntr |= DISPPLANE_ROTATE_180;
2793
2794                 x += (crtc_state->pipe_src_w - 1);
2795                 y += (crtc_state->pipe_src_h - 1);
2796
2797                 /* Finding the last pixel of the last line of the display
2798                 data and adding to linear_offset*/
2799                 linear_offset +=
2800                         (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2801                         (crtc_state->pipe_src_w - 1) * cpp;
2802         }
2803
2804         intel_crtc->adjusted_x = x;
2805         intel_crtc->adjusted_y = y;
2806
2807         I915_WRITE(reg, dspcntr);
2808
2809         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2810         if (INTEL_INFO(dev)->gen >= 4) {
2811                 I915_WRITE(DSPSURF(plane),
2812                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2813                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2814                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2815         } else
2816                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2817         POSTING_READ(reg);
2818 }
2819
2820 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2821                                        struct drm_crtc *crtc)
2822 {
2823         struct drm_device *dev = crtc->dev;
2824         struct drm_i915_private *dev_priv = dev->dev_private;
2825         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2826         int plane = intel_crtc->plane;
2827
2828         I915_WRITE(DSPCNTR(plane), 0);
2829         if (INTEL_INFO(dev_priv)->gen >= 4)
2830                 I915_WRITE(DSPSURF(plane), 0);
2831         else
2832                 I915_WRITE(DSPADDR(plane), 0);
2833         POSTING_READ(DSPCNTR(plane));
2834 }
2835
2836 static void ironlake_update_primary_plane(struct drm_plane *primary,
2837                                           const struct intel_crtc_state *crtc_state,
2838                                           const struct intel_plane_state *plane_state)
2839 {
2840         struct drm_device *dev = primary->dev;
2841         struct drm_i915_private *dev_priv = dev->dev_private;
2842         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2843         struct drm_framebuffer *fb = plane_state->base.fb;
2844         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2845         int plane = intel_crtc->plane;
2846         u32 linear_offset;
2847         u32 dspcntr;
2848         i915_reg_t reg = DSPCNTR(plane);
2849         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2850         int x = plane_state->src.x1 >> 16;
2851         int y = plane_state->src.y1 >> 16;
2852
2853         dspcntr = DISPPLANE_GAMMA_ENABLE;
2854         dspcntr |= DISPLAY_PLANE_ENABLE;
2855
2856         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2857                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2858
2859         switch (fb->pixel_format) {
2860         case DRM_FORMAT_C8:
2861                 dspcntr |= DISPPLANE_8BPP;
2862                 break;
2863         case DRM_FORMAT_RGB565:
2864                 dspcntr |= DISPPLANE_BGRX565;
2865                 break;
2866         case DRM_FORMAT_XRGB8888:
2867                 dspcntr |= DISPPLANE_BGRX888;
2868                 break;
2869         case DRM_FORMAT_XBGR8888:
2870                 dspcntr |= DISPPLANE_RGBX888;
2871                 break;
2872         case DRM_FORMAT_XRGB2101010:
2873                 dspcntr |= DISPPLANE_BGRX101010;
2874                 break;
2875         case DRM_FORMAT_XBGR2101010:
2876                 dspcntr |= DISPPLANE_RGBX101010;
2877                 break;
2878         default:
2879                 BUG();
2880         }
2881
2882         if (obj->tiling_mode != I915_TILING_NONE)
2883                 dspcntr |= DISPPLANE_TILED;
2884
2885         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2886                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2887
2888         linear_offset = y * fb->pitches[0] + x * cpp;
2889         intel_crtc->dspaddr_offset =
2890                 intel_compute_tile_offset(dev_priv, &x, &y,
2891                                           fb->modifier[0], cpp,
2892                                           fb->pitches[0]);
2893         linear_offset -= intel_crtc->dspaddr_offset;
2894         if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
2895                 dspcntr |= DISPPLANE_ROTATE_180;
2896
2897                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2898                         x += (crtc_state->pipe_src_w - 1);
2899                         y += (crtc_state->pipe_src_h - 1);
2900
2901                         /* Finding the last pixel of the last line of the display
2902                         data and adding to linear_offset*/
2903                         linear_offset +=
2904                                 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2905                                 (crtc_state->pipe_src_w - 1) * cpp;
2906                 }
2907         }
2908
2909         intel_crtc->adjusted_x = x;
2910         intel_crtc->adjusted_y = y;
2911
2912         I915_WRITE(reg, dspcntr);
2913
2914         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2915         I915_WRITE(DSPSURF(plane),
2916                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2917         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2918                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2919         } else {
2920                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2921                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2922         }
2923         POSTING_READ(reg);
2924 }
2925
2926 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2927                               uint64_t fb_modifier, uint32_t pixel_format)
2928 {
2929         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2930                 return 64;
2931         } else {
2932                 int cpp = drm_format_plane_cpp(pixel_format, 0);
2933
2934                 return intel_tile_width(dev_priv, fb_modifier, cpp);
2935         }
2936 }
2937
2938 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2939                            struct drm_i915_gem_object *obj,
2940                            unsigned int plane)
2941 {
2942         struct i915_ggtt_view view;
2943         struct i915_vma *vma;
2944         u64 offset;
2945
2946         intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2947                                 intel_plane->base.state);
2948
2949         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2950         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2951                 view.type))
2952                 return -1;
2953
2954         offset = vma->node.start;
2955
2956         if (plane == 1) {
2957                 offset += vma->ggtt_view.params.rotated.uv_start_page *
2958                           PAGE_SIZE;
2959         }
2960
2961         WARN_ON(upper_32_bits(offset));
2962
2963         return lower_32_bits(offset);
2964 }
2965
2966 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2967 {
2968         struct drm_device *dev = intel_crtc->base.dev;
2969         struct drm_i915_private *dev_priv = dev->dev_private;
2970
2971         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2972         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2973         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2974 }
2975
2976 /*
2977  * This function detaches (aka. unbinds) unused scalers in hardware
2978  */
2979 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2980 {
2981         struct intel_crtc_scaler_state *scaler_state;
2982         int i;
2983
2984         scaler_state = &intel_crtc->config->scaler_state;
2985
2986         /* loop through and disable scalers that aren't in use */
2987         for (i = 0; i < intel_crtc->num_scalers; i++) {
2988                 if (!scaler_state->scalers[i].in_use)
2989                         skl_detach_scaler(intel_crtc, i);
2990         }
2991 }
2992
2993 u32 skl_plane_ctl_format(uint32_t pixel_format)
2994 {
2995         switch (pixel_format) {
2996         case DRM_FORMAT_C8:
2997                 return PLANE_CTL_FORMAT_INDEXED;
2998         case DRM_FORMAT_RGB565:
2999                 return PLANE_CTL_FORMAT_RGB_565;
3000         case DRM_FORMAT_XBGR8888:
3001                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3002         case DRM_FORMAT_XRGB8888:
3003                 return PLANE_CTL_FORMAT_XRGB_8888;
3004         /*
3005          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3006          * to be already pre-multiplied. We need to add a knob (or a different
3007          * DRM_FORMAT) for user-space to configure that.
3008          */
3009         case DRM_FORMAT_ABGR8888:
3010                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3011                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3012         case DRM_FORMAT_ARGB8888:
3013                 return PLANE_CTL_FORMAT_XRGB_8888 |
3014                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3015         case DRM_FORMAT_XRGB2101010:
3016                 return PLANE_CTL_FORMAT_XRGB_2101010;
3017         case DRM_FORMAT_XBGR2101010:
3018                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3019         case DRM_FORMAT_YUYV:
3020                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3021         case DRM_FORMAT_YVYU:
3022                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3023         case DRM_FORMAT_UYVY:
3024                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3025         case DRM_FORMAT_VYUY:
3026                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3027         default:
3028                 MISSING_CASE(pixel_format);
3029         }
3030
3031         return 0;
3032 }
3033
3034 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3035 {
3036         switch (fb_modifier) {
3037         case DRM_FORMAT_MOD_NONE:
3038                 break;
3039         case I915_FORMAT_MOD_X_TILED:
3040                 return PLANE_CTL_TILED_X;
3041         case I915_FORMAT_MOD_Y_TILED:
3042                 return PLANE_CTL_TILED_Y;
3043         case I915_FORMAT_MOD_Yf_TILED:
3044                 return PLANE_CTL_TILED_YF;
3045         default:
3046                 MISSING_CASE(fb_modifier);
3047         }
3048
3049         return 0;
3050 }
3051
3052 u32 skl_plane_ctl_rotation(unsigned int rotation)
3053 {
3054         switch (rotation) {
3055         case BIT(DRM_ROTATE_0):
3056                 break;
3057         /*
3058          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3059          * while i915 HW rotation is clockwise, thats why this swapping.
3060          */
3061         case BIT(DRM_ROTATE_90):
3062                 return PLANE_CTL_ROTATE_270;
3063         case BIT(DRM_ROTATE_180):
3064                 return PLANE_CTL_ROTATE_180;
3065         case BIT(DRM_ROTATE_270):
3066                 return PLANE_CTL_ROTATE_90;
3067         default:
3068                 MISSING_CASE(rotation);
3069         }
3070
3071         return 0;
3072 }
3073
3074 static void skylake_update_primary_plane(struct drm_plane *plane,
3075                                          const struct intel_crtc_state *crtc_state,
3076                                          const struct intel_plane_state *plane_state)
3077 {
3078         struct drm_device *dev = plane->dev;
3079         struct drm_i915_private *dev_priv = dev->dev_private;
3080         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3081         struct drm_framebuffer *fb = plane_state->base.fb;
3082         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3083         int pipe = intel_crtc->pipe;
3084         u32 plane_ctl, stride_div, stride;
3085         u32 tile_height, plane_offset, plane_size;
3086         unsigned int rotation = plane_state->base.rotation;
3087         int x_offset, y_offset;
3088         u32 surf_addr;
3089         int scaler_id = plane_state->scaler_id;
3090         int src_x = plane_state->src.x1 >> 16;
3091         int src_y = plane_state->src.y1 >> 16;
3092         int src_w = drm_rect_width(&plane_state->src) >> 16;
3093         int src_h = drm_rect_height(&plane_state->src) >> 16;
3094         int dst_x = plane_state->dst.x1;
3095         int dst_y = plane_state->dst.y1;
3096         int dst_w = drm_rect_width(&plane_state->dst);
3097         int dst_h = drm_rect_height(&plane_state->dst);
3098
3099         plane_ctl = PLANE_CTL_ENABLE |
3100                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3101                     PLANE_CTL_PIPE_CSC_ENABLE;
3102
3103         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3104         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3105         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3106         plane_ctl |= skl_plane_ctl_rotation(rotation);
3107
3108         stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3109                                                fb->pixel_format);
3110         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3111
3112         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3113
3114         if (intel_rotation_90_or_270(rotation)) {
3115                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3116
3117                 /* stride = Surface height in tiles */
3118                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3119                 stride = DIV_ROUND_UP(fb->height, tile_height);
3120                 x_offset = stride * tile_height - src_y - src_h;
3121                 y_offset = src_x;
3122                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3123         } else {
3124                 stride = fb->pitches[0] / stride_div;
3125                 x_offset = src_x;
3126                 y_offset = src_y;
3127                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3128         }
3129         plane_offset = y_offset << 16 | x_offset;
3130
3131         intel_crtc->adjusted_x = x_offset;
3132         intel_crtc->adjusted_y = y_offset;
3133
3134         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3135         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3136         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3137         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3138
3139         if (scaler_id >= 0) {
3140                 uint32_t ps_ctrl = 0;
3141
3142                 WARN_ON(!dst_w || !dst_h);
3143                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3144                         crtc_state->scaler_state.scalers[scaler_id].mode;
3145                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3146                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3147                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3148                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3149                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3150         } else {
3151                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3152         }
3153
3154         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3155
3156         POSTING_READ(PLANE_SURF(pipe, 0));
3157 }
3158
3159 static void skylake_disable_primary_plane(struct drm_plane *primary,
3160                                           struct drm_crtc *crtc)
3161 {
3162         struct drm_device *dev = crtc->dev;
3163         struct drm_i915_private *dev_priv = dev->dev_private;
3164         int pipe = to_intel_crtc(crtc)->pipe;
3165
3166         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3167         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3168         POSTING_READ(PLANE_SURF(pipe, 0));
3169 }
3170
3171 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3172 static int
3173 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3174                            int x, int y, enum mode_set_atomic state)
3175 {
3176         /* Support for kgdboc is disabled, this needs a major rework. */
3177         DRM_ERROR("legacy panic handler not supported any more.\n");
3178
3179         return -ENODEV;
3180 }
3181
3182 static void intel_complete_page_flips(struct drm_device *dev)
3183 {
3184         struct drm_crtc *crtc;
3185
3186         for_each_crtc(dev, crtc) {
3187                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3188                 enum plane plane = intel_crtc->plane;
3189
3190                 intel_prepare_page_flip(dev, plane);
3191                 intel_finish_page_flip_plane(dev, plane);
3192         }
3193 }
3194
3195 static void intel_update_primary_planes(struct drm_device *dev)
3196 {
3197         struct drm_crtc *crtc;
3198
3199         for_each_crtc(dev, crtc) {
3200                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3201                 struct intel_plane_state *plane_state;
3202
3203                 drm_modeset_lock_crtc(crtc, &plane->base);
3204                 plane_state = to_intel_plane_state(plane->base.state);
3205
3206                 if (plane_state->visible)
3207                         plane->update_plane(&plane->base,
3208                                             to_intel_crtc_state(crtc->state),
3209                                             plane_state);
3210
3211                 drm_modeset_unlock_crtc(crtc);
3212         }
3213 }
3214
3215 void intel_prepare_reset(struct drm_device *dev)
3216 {
3217         /* no reset support for gen2 */
3218         if (IS_GEN2(dev))
3219                 return;
3220
3221         /* reset doesn't touch the display */
3222         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3223                 return;
3224
3225         drm_modeset_lock_all(dev);
3226         /*
3227          * Disabling the crtcs gracefully seems nicer. Also the
3228          * g33 docs say we should at least disable all the planes.
3229          */
3230         intel_display_suspend(dev);
3231 }
3232
3233 void intel_finish_reset(struct drm_device *dev)
3234 {
3235         struct drm_i915_private *dev_priv = to_i915(dev);
3236
3237         /*
3238          * Flips in the rings will be nuked by the reset,
3239          * so complete all pending flips so that user space
3240          * will get its events and not get stuck.
3241          */
3242         intel_complete_page_flips(dev);
3243
3244         /* no reset support for gen2 */
3245         if (IS_GEN2(dev))
3246                 return;
3247
3248         /* reset doesn't touch the display */
3249         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3250                 /*
3251                  * Flips in the rings have been nuked by the reset,
3252                  * so update the base address of all primary
3253                  * planes to the the last fb to make sure we're
3254                  * showing the correct fb after a reset.
3255                  *
3256                  * FIXME: Atomic will make this obsolete since we won't schedule
3257                  * CS-based flips (which might get lost in gpu resets) any more.
3258                  */
3259                 intel_update_primary_planes(dev);
3260                 return;
3261         }
3262
3263         /*
3264          * The display has been reset as well,
3265          * so need a full re-initialization.
3266          */
3267         intel_runtime_pm_disable_interrupts(dev_priv);
3268         intel_runtime_pm_enable_interrupts(dev_priv);
3269
3270         intel_modeset_init_hw(dev);
3271
3272         spin_lock_irq(&dev_priv->irq_lock);
3273         if (dev_priv->display.hpd_irq_setup)
3274                 dev_priv->display.hpd_irq_setup(dev);
3275         spin_unlock_irq(&dev_priv->irq_lock);
3276
3277         intel_display_resume(dev);
3278
3279         intel_hpd_init(dev_priv);
3280
3281         drm_modeset_unlock_all(dev);
3282 }
3283
3284 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3285 {
3286         struct drm_device *dev = crtc->dev;
3287         struct drm_i915_private *dev_priv = dev->dev_private;
3288         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3289         bool pending;
3290
3291         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3292             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3293                 return false;
3294
3295         spin_lock_irq(&dev->event_lock);
3296         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3297         spin_unlock_irq(&dev->event_lock);
3298
3299         return pending;
3300 }
3301
3302 static void intel_update_pipe_config(struct intel_crtc *crtc,
3303                                      struct intel_crtc_state *old_crtc_state)
3304 {
3305         struct drm_device *dev = crtc->base.dev;
3306         struct drm_i915_private *dev_priv = dev->dev_private;
3307         struct intel_crtc_state *pipe_config =
3308                 to_intel_crtc_state(crtc->base.state);
3309
3310         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3311         crtc->base.mode = crtc->base.state->mode;
3312
3313         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3314                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3315                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3316
3317         if (HAS_DDI(dev))
3318                 intel_set_pipe_csc(&crtc->base);
3319
3320         /*
3321          * Update pipe size and adjust fitter if needed: the reason for this is
3322          * that in compute_mode_changes we check the native mode (not the pfit
3323          * mode) to see if we can flip rather than do a full mode set. In the
3324          * fastboot case, we'll flip, but if we don't update the pipesrc and
3325          * pfit state, we'll end up with a big fb scanned out into the wrong
3326          * sized surface.
3327          */
3328
3329         I915_WRITE(PIPESRC(crtc->pipe),
3330                    ((pipe_config->pipe_src_w - 1) << 16) |
3331                    (pipe_config->pipe_src_h - 1));
3332
3333         /* on skylake this is done by detaching scalers */
3334         if (INTEL_INFO(dev)->gen >= 9) {
3335                 skl_detach_scalers(crtc);
3336
3337                 if (pipe_config->pch_pfit.enabled)
3338                         skylake_pfit_enable(crtc);
3339         } else if (HAS_PCH_SPLIT(dev)) {
3340                 if (pipe_config->pch_pfit.enabled)
3341                         ironlake_pfit_enable(crtc);
3342                 else if (old_crtc_state->pch_pfit.enabled)
3343                         ironlake_pfit_disable(crtc, true);
3344         }
3345 }
3346
3347 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3348 {
3349         struct drm_device *dev = crtc->dev;
3350         struct drm_i915_private *dev_priv = dev->dev_private;
3351         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3352         int pipe = intel_crtc->pipe;
3353         i915_reg_t reg;
3354         u32 temp;
3355
3356         /* enable normal train */
3357         reg = FDI_TX_CTL(pipe);
3358         temp = I915_READ(reg);
3359         if (IS_IVYBRIDGE(dev)) {
3360                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3361                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3362         } else {
3363                 temp &= ~FDI_LINK_TRAIN_NONE;
3364                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3365         }
3366         I915_WRITE(reg, temp);
3367
3368         reg = FDI_RX_CTL(pipe);
3369         temp = I915_READ(reg);
3370         if (HAS_PCH_CPT(dev)) {
3371                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3372                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3373         } else {
3374                 temp &= ~FDI_LINK_TRAIN_NONE;
3375                 temp |= FDI_LINK_TRAIN_NONE;
3376         }
3377         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3378
3379         /* wait one idle pattern time */
3380         POSTING_READ(reg);
3381         udelay(1000);
3382
3383         /* IVB wants error correction enabled */
3384         if (IS_IVYBRIDGE(dev))
3385                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3386                            FDI_FE_ERRC_ENABLE);
3387 }
3388
3389 /* The FDI link training functions for ILK/Ibexpeak. */
3390 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3391 {
3392         struct drm_device *dev = crtc->dev;
3393         struct drm_i915_private *dev_priv = dev->dev_private;
3394         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3395         int pipe = intel_crtc->pipe;
3396         i915_reg_t reg;
3397         u32 temp, tries;
3398
3399         /* FDI needs bits from pipe first */
3400         assert_pipe_enabled(dev_priv, pipe);
3401
3402         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3403            for train result */
3404         reg = FDI_RX_IMR(pipe);
3405         temp = I915_READ(reg);
3406         temp &= ~FDI_RX_SYMBOL_LOCK;
3407         temp &= ~FDI_RX_BIT_LOCK;
3408         I915_WRITE(reg, temp);
3409         I915_READ(reg);
3410         udelay(150);
3411
3412         /* enable CPU FDI TX and PCH FDI RX */
3413         reg = FDI_TX_CTL(pipe);
3414         temp = I915_READ(reg);
3415         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3416         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3417         temp &= ~FDI_LINK_TRAIN_NONE;
3418         temp |= FDI_LINK_TRAIN_PATTERN_1;
3419         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3420
3421         reg = FDI_RX_CTL(pipe);
3422         temp = I915_READ(reg);
3423         temp &= ~FDI_LINK_TRAIN_NONE;
3424         temp |= FDI_LINK_TRAIN_PATTERN_1;
3425         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3426
3427         POSTING_READ(reg);
3428         udelay(150);
3429
3430         /* Ironlake workaround, enable clock pointer after FDI enable*/
3431         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3432         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3433                    FDI_RX_PHASE_SYNC_POINTER_EN);
3434
3435         reg = FDI_RX_IIR(pipe);
3436         for (tries = 0; tries < 5; tries++) {
3437                 temp = I915_READ(reg);
3438                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3439
3440                 if ((temp & FDI_RX_BIT_LOCK)) {
3441                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3442                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3443                         break;
3444                 }
3445         }
3446         if (tries == 5)
3447                 DRM_ERROR("FDI train 1 fail!\n");
3448
3449         /* Train 2 */
3450         reg = FDI_TX_CTL(pipe);
3451         temp = I915_READ(reg);
3452         temp &= ~FDI_LINK_TRAIN_NONE;
3453         temp |= FDI_LINK_TRAIN_PATTERN_2;
3454         I915_WRITE(reg, temp);
3455
3456         reg = FDI_RX_CTL(pipe);
3457         temp = I915_READ(reg);
3458         temp &= ~FDI_LINK_TRAIN_NONE;
3459         temp |= FDI_LINK_TRAIN_PATTERN_2;
3460         I915_WRITE(reg, temp);
3461
3462         POSTING_READ(reg);
3463         udelay(150);
3464
3465         reg = FDI_RX_IIR(pipe);
3466         for (tries = 0; tries < 5; tries++) {
3467                 temp = I915_READ(reg);
3468                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3469
3470                 if (temp & FDI_RX_SYMBOL_LOCK) {
3471                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3472                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3473                         break;
3474                 }
3475         }
3476         if (tries == 5)
3477                 DRM_ERROR("FDI train 2 fail!\n");
3478
3479         DRM_DEBUG_KMS("FDI train done\n");
3480
3481 }
3482
3483 static const int snb_b_fdi_train_param[] = {
3484         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3485         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3486         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3487         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3488 };
3489
3490 /* The FDI link training functions for SNB/Cougarpoint. */
3491 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3492 {
3493         struct drm_device *dev = crtc->dev;
3494         struct drm_i915_private *dev_priv = dev->dev_private;
3495         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3496         int pipe = intel_crtc->pipe;
3497         i915_reg_t reg;
3498         u32 temp, i, retry;
3499
3500         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3501            for train result */
3502         reg = FDI_RX_IMR(pipe);
3503         temp = I915_READ(reg);
3504         temp &= ~FDI_RX_SYMBOL_LOCK;
3505         temp &= ~FDI_RX_BIT_LOCK;
3506         I915_WRITE(reg, temp);
3507
3508         POSTING_READ(reg);
3509         udelay(150);
3510
3511         /* enable CPU FDI TX and PCH FDI RX */
3512         reg = FDI_TX_CTL(pipe);
3513         temp = I915_READ(reg);
3514         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3515         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3516         temp &= ~FDI_LINK_TRAIN_NONE;
3517         temp |= FDI_LINK_TRAIN_PATTERN_1;
3518         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3519         /* SNB-B */
3520         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3521         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3522
3523         I915_WRITE(FDI_RX_MISC(pipe),
3524                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3525
3526         reg = FDI_RX_CTL(pipe);
3527         temp = I915_READ(reg);
3528         if (HAS_PCH_CPT(dev)) {
3529                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3530                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3531         } else {
3532                 temp &= ~FDI_LINK_TRAIN_NONE;
3533                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3534         }
3535         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3536
3537         POSTING_READ(reg);
3538         udelay(150);
3539
3540         for (i = 0; i < 4; i++) {
3541                 reg = FDI_TX_CTL(pipe);
3542                 temp = I915_READ(reg);
3543                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3544                 temp |= snb_b_fdi_train_param[i];
3545                 I915_WRITE(reg, temp);
3546
3547                 POSTING_READ(reg);
3548                 udelay(500);
3549
3550                 for (retry = 0; retry < 5; retry++) {
3551                         reg = FDI_RX_IIR(pipe);
3552                         temp = I915_READ(reg);
3553                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3554                         if (temp & FDI_RX_BIT_LOCK) {
3555                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3556                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3557                                 break;
3558                         }
3559                         udelay(50);
3560                 }
3561                 if (retry < 5)
3562                         break;
3563         }
3564         if (i == 4)
3565                 DRM_ERROR("FDI train 1 fail!\n");
3566
3567         /* Train 2 */
3568         reg = FDI_TX_CTL(pipe);
3569         temp = I915_READ(reg);
3570         temp &= ~FDI_LINK_TRAIN_NONE;
3571         temp |= FDI_LINK_TRAIN_PATTERN_2;
3572         if (IS_GEN6(dev)) {
3573                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3574                 /* SNB-B */
3575                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3576         }
3577         I915_WRITE(reg, temp);
3578
3579         reg = FDI_RX_CTL(pipe);
3580         temp = I915_READ(reg);
3581         if (HAS_PCH_CPT(dev)) {
3582                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3583                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3584         } else {
3585                 temp &= ~FDI_LINK_TRAIN_NONE;
3586                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3587         }
3588         I915_WRITE(reg, temp);
3589
3590         POSTING_READ(reg);
3591         udelay(150);
3592
3593         for (i = 0; i < 4; i++) {
3594                 reg = FDI_TX_CTL(pipe);
3595                 temp = I915_READ(reg);
3596                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3597                 temp |= snb_b_fdi_train_param[i];
3598                 I915_WRITE(reg, temp);
3599
3600                 POSTING_READ(reg);
3601                 udelay(500);
3602
3603                 for (retry = 0; retry < 5; retry++) {
3604                         reg = FDI_RX_IIR(pipe);
3605                         temp = I915_READ(reg);
3606                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3607                         if (temp & FDI_RX_SYMBOL_LOCK) {
3608                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3609                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3610                                 break;
3611                         }
3612                         udelay(50);
3613                 }
3614                 if (retry < 5)
3615                         break;
3616         }
3617         if (i == 4)
3618                 DRM_ERROR("FDI train 2 fail!\n");
3619
3620         DRM_DEBUG_KMS("FDI train done.\n");
3621 }
3622
3623 /* Manual link training for Ivy Bridge A0 parts */
3624 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3625 {
3626         struct drm_device *dev = crtc->dev;
3627         struct drm_i915_private *dev_priv = dev->dev_private;
3628         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3629         int pipe = intel_crtc->pipe;
3630         i915_reg_t reg;
3631         u32 temp, i, j;
3632
3633         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3634            for train result */
3635         reg = FDI_RX_IMR(pipe);
3636         temp = I915_READ(reg);
3637         temp &= ~FDI_RX_SYMBOL_LOCK;
3638         temp &= ~FDI_RX_BIT_LOCK;
3639         I915_WRITE(reg, temp);
3640
3641         POSTING_READ(reg);
3642         udelay(150);
3643
3644         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3645                       I915_READ(FDI_RX_IIR(pipe)));
3646
3647         /* Try each vswing and preemphasis setting twice before moving on */
3648         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3649                 /* disable first in case we need to retry */
3650                 reg = FDI_TX_CTL(pipe);
3651                 temp = I915_READ(reg);
3652                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3653                 temp &= ~FDI_TX_ENABLE;
3654                 I915_WRITE(reg, temp);
3655
3656                 reg = FDI_RX_CTL(pipe);
3657                 temp = I915_READ(reg);
3658                 temp &= ~FDI_LINK_TRAIN_AUTO;
3659                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3660                 temp &= ~FDI_RX_ENABLE;
3661                 I915_WRITE(reg, temp);
3662
3663                 /* enable CPU FDI TX and PCH FDI RX */
3664                 reg = FDI_TX_CTL(pipe);
3665                 temp = I915_READ(reg);
3666                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3667                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3668                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3669                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3670                 temp |= snb_b_fdi_train_param[j/2];
3671                 temp |= FDI_COMPOSITE_SYNC;
3672                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3673
3674                 I915_WRITE(FDI_RX_MISC(pipe),
3675                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3676
3677                 reg = FDI_RX_CTL(pipe);
3678                 temp = I915_READ(reg);
3679                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3680                 temp |= FDI_COMPOSITE_SYNC;
3681                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3682
3683                 POSTING_READ(reg);
3684                 udelay(1); /* should be 0.5us */
3685
3686                 for (i = 0; i < 4; i++) {
3687                         reg = FDI_RX_IIR(pipe);
3688                         temp = I915_READ(reg);
3689                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3690
3691                         if (temp & FDI_RX_BIT_LOCK ||
3692                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3693                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3694                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3695                                               i);
3696                                 break;
3697                         }
3698                         udelay(1); /* should be 0.5us */
3699                 }
3700                 if (i == 4) {
3701                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3702                         continue;
3703                 }
3704
3705                 /* Train 2 */
3706                 reg = FDI_TX_CTL(pipe);
3707                 temp = I915_READ(reg);
3708                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3709                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3710                 I915_WRITE(reg, temp);
3711
3712                 reg = FDI_RX_CTL(pipe);
3713                 temp = I915_READ(reg);
3714                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3715                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3716                 I915_WRITE(reg, temp);
3717
3718                 POSTING_READ(reg);
3719                 udelay(2); /* should be 1.5us */
3720
3721                 for (i = 0; i < 4; i++) {
3722                         reg = FDI_RX_IIR(pipe);
3723                         temp = I915_READ(reg);
3724                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3725
3726                         if (temp & FDI_RX_SYMBOL_LOCK ||
3727                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3728                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3729                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3730                                               i);
3731                                 goto train_done;
3732                         }
3733                         udelay(2); /* should be 1.5us */
3734                 }
3735                 if (i == 4)
3736                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3737         }
3738
3739 train_done:
3740         DRM_DEBUG_KMS("FDI train done.\n");
3741 }
3742
3743 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3744 {
3745         struct drm_device *dev = intel_crtc->base.dev;
3746         struct drm_i915_private *dev_priv = dev->dev_private;
3747         int pipe = intel_crtc->pipe;
3748         i915_reg_t reg;
3749         u32 temp;
3750
3751         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3752         reg = FDI_RX_CTL(pipe);
3753         temp = I915_READ(reg);
3754         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3755         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3756         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3757         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3758
3759         POSTING_READ(reg);
3760         udelay(200);
3761
3762         /* Switch from Rawclk to PCDclk */
3763         temp = I915_READ(reg);
3764         I915_WRITE(reg, temp | FDI_PCDCLK);
3765
3766         POSTING_READ(reg);
3767         udelay(200);
3768
3769         /* Enable CPU FDI TX PLL, always on for Ironlake */
3770         reg = FDI_TX_CTL(pipe);
3771         temp = I915_READ(reg);
3772         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3773                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3774
3775                 POSTING_READ(reg);
3776                 udelay(100);
3777         }
3778 }
3779
3780 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3781 {
3782         struct drm_device *dev = intel_crtc->base.dev;
3783         struct drm_i915_private *dev_priv = dev->dev_private;
3784         int pipe = intel_crtc->pipe;
3785         i915_reg_t reg;
3786         u32 temp;
3787
3788         /* Switch from PCDclk to Rawclk */
3789         reg = FDI_RX_CTL(pipe);
3790         temp = I915_READ(reg);
3791         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3792
3793         /* Disable CPU FDI TX PLL */
3794         reg = FDI_TX_CTL(pipe);
3795         temp = I915_READ(reg);
3796         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3797
3798         POSTING_READ(reg);
3799         udelay(100);
3800
3801         reg = FDI_RX_CTL(pipe);
3802         temp = I915_READ(reg);
3803         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3804
3805         /* Wait for the clocks to turn off. */
3806         POSTING_READ(reg);
3807         udelay(100);
3808 }
3809
3810 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3811 {
3812         struct drm_device *dev = crtc->dev;
3813         struct drm_i915_private *dev_priv = dev->dev_private;
3814         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3815         int pipe = intel_crtc->pipe;
3816         i915_reg_t reg;
3817         u32 temp;
3818
3819         /* disable CPU FDI tx and PCH FDI rx */
3820         reg = FDI_TX_CTL(pipe);
3821         temp = I915_READ(reg);
3822         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3823         POSTING_READ(reg);
3824
3825         reg = FDI_RX_CTL(pipe);
3826         temp = I915_READ(reg);
3827         temp &= ~(0x7 << 16);
3828         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3829         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3830
3831         POSTING_READ(reg);
3832         udelay(100);
3833
3834         /* Ironlake workaround, disable clock pointer after downing FDI */
3835         if (HAS_PCH_IBX(dev))
3836                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3837
3838         /* still set train pattern 1 */
3839         reg = FDI_TX_CTL(pipe);
3840         temp = I915_READ(reg);
3841         temp &= ~FDI_LINK_TRAIN_NONE;
3842         temp |= FDI_LINK_TRAIN_PATTERN_1;
3843         I915_WRITE(reg, temp);
3844
3845         reg = FDI_RX_CTL(pipe);
3846         temp = I915_READ(reg);
3847         if (HAS_PCH_CPT(dev)) {
3848                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3849                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3850         } else {
3851                 temp &= ~FDI_LINK_TRAIN_NONE;
3852                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3853         }
3854         /* BPC in FDI rx is consistent with that in PIPECONF */
3855         temp &= ~(0x07 << 16);
3856         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3857         I915_WRITE(reg, temp);
3858
3859         POSTING_READ(reg);
3860         udelay(100);
3861 }
3862
3863 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3864 {
3865         struct intel_crtc *crtc;
3866
3867         /* Note that we don't need to be called with mode_config.lock here
3868          * as our list of CRTC objects is static for the lifetime of the
3869          * device and so cannot disappear as we iterate. Similarly, we can
3870          * happily treat the predicates as racy, atomic checks as userspace
3871          * cannot claim and pin a new fb without at least acquring the
3872          * struct_mutex and so serialising with us.
3873          */
3874         for_each_intel_crtc(dev, crtc) {
3875                 if (atomic_read(&crtc->unpin_work_count) == 0)
3876                         continue;
3877
3878                 if (crtc->unpin_work)
3879                         intel_wait_for_vblank(dev, crtc->pipe);
3880
3881                 return true;
3882         }
3883
3884         return false;
3885 }
3886
3887 static void page_flip_completed(struct intel_crtc *intel_crtc)
3888 {
3889         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3890         struct intel_unpin_work *work = intel_crtc->unpin_work;
3891
3892         /* ensure that the unpin work is consistent wrt ->pending. */
3893         smp_rmb();
3894         intel_crtc->unpin_work = NULL;
3895
3896         if (work->event)
3897                 drm_send_vblank_event(intel_crtc->base.dev,
3898                                       intel_crtc->pipe,
3899                                       work->event);
3900
3901         drm_crtc_vblank_put(&intel_crtc->base);
3902
3903         wake_up_all(&dev_priv->pending_flip_queue);
3904         queue_work(dev_priv->wq, &work->work);
3905
3906         trace_i915_flip_complete(intel_crtc->plane,
3907                                  work->pending_flip_obj);
3908 }
3909
3910 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3911 {
3912         struct drm_device *dev = crtc->dev;
3913         struct drm_i915_private *dev_priv = dev->dev_private;
3914         long ret;
3915
3916         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3917
3918         ret = wait_event_interruptible_timeout(
3919                                         dev_priv->pending_flip_queue,
3920                                         !intel_crtc_has_pending_flip(crtc),
3921                                         60*HZ);
3922
3923         if (ret < 0)
3924                 return ret;
3925
3926         if (ret == 0) {
3927                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3928
3929                 spin_lock_irq(&dev->event_lock);
3930                 if (intel_crtc->unpin_work) {
3931                         WARN_ONCE(1, "Removing stuck page flip\n");
3932                         page_flip_completed(intel_crtc);
3933                 }
3934                 spin_unlock_irq(&dev->event_lock);
3935         }
3936
3937         return 0;
3938 }
3939
3940 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3941 {
3942         u32 temp;
3943
3944         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3945
3946         mutex_lock(&dev_priv->sb_lock);
3947
3948         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3949         temp |= SBI_SSCCTL_DISABLE;
3950         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3951
3952         mutex_unlock(&dev_priv->sb_lock);
3953 }
3954
3955 /* Program iCLKIP clock to the desired frequency */
3956 static void lpt_program_iclkip(struct drm_crtc *crtc)
3957 {
3958         struct drm_device *dev = crtc->dev;
3959         struct drm_i915_private *dev_priv = dev->dev_private;
3960         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3961         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3962         u32 temp;
3963
3964         lpt_disable_iclkip(dev_priv);
3965
3966         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3967         if (clock == 20000) {
3968                 auxdiv = 1;
3969                 divsel = 0x41;
3970                 phaseinc = 0x20;
3971         } else {
3972                 /* The iCLK virtual clock root frequency is in MHz,
3973                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3974                  * divisors, it is necessary to divide one by another, so we
3975                  * convert the virtual clock precision to KHz here for higher
3976                  * precision.
3977                  */
3978                 u32 iclk_virtual_root_freq = 172800 * 1000;
3979                 u32 iclk_pi_range = 64;
3980                 u32 desired_divisor, msb_divisor_value, pi_value;
3981
3982                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, clock);
3983                 msb_divisor_value = desired_divisor / iclk_pi_range;
3984                 pi_value = desired_divisor % iclk_pi_range;
3985
3986                 auxdiv = 0;
3987                 divsel = msb_divisor_value - 2;
3988                 phaseinc = pi_value;
3989         }
3990
3991         /* This should not happen with any sane values */
3992         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3993                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3994         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3995                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3996
3997         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3998                         clock,
3999                         auxdiv,
4000                         divsel,
4001                         phasedir,
4002                         phaseinc);
4003
4004         mutex_lock(&dev_priv->sb_lock);
4005
4006         /* Program SSCDIVINTPHASE6 */
4007         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4008         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4009         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4010         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4011         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4012         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4013         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4014         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4015
4016         /* Program SSCAUXDIV */
4017         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4018         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4019         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4020         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4021
4022         /* Enable modulator and associated divider */
4023         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4024         temp &= ~SBI_SSCCTL_DISABLE;
4025         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4026
4027         mutex_unlock(&dev_priv->sb_lock);
4028
4029         /* Wait for initialization time */
4030         udelay(24);
4031
4032         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4033 }
4034
4035 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4036                                                 enum pipe pch_transcoder)
4037 {
4038         struct drm_device *dev = crtc->base.dev;
4039         struct drm_i915_private *dev_priv = dev->dev_private;
4040         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4041
4042         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4043                    I915_READ(HTOTAL(cpu_transcoder)));
4044         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4045                    I915_READ(HBLANK(cpu_transcoder)));
4046         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4047                    I915_READ(HSYNC(cpu_transcoder)));
4048
4049         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4050                    I915_READ(VTOTAL(cpu_transcoder)));
4051         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4052                    I915_READ(VBLANK(cpu_transcoder)));
4053         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4054                    I915_READ(VSYNC(cpu_transcoder)));
4055         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4056                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4057 }
4058
4059 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4060 {
4061         struct drm_i915_private *dev_priv = dev->dev_private;
4062         uint32_t temp;
4063
4064         temp = I915_READ(SOUTH_CHICKEN1);
4065         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4066                 return;
4067
4068         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4069         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4070
4071         temp &= ~FDI_BC_BIFURCATION_SELECT;
4072         if (enable)
4073                 temp |= FDI_BC_BIFURCATION_SELECT;
4074
4075         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4076         I915_WRITE(SOUTH_CHICKEN1, temp);
4077         POSTING_READ(SOUTH_CHICKEN1);
4078 }
4079
4080 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4081 {
4082         struct drm_device *dev = intel_crtc->base.dev;
4083
4084         switch (intel_crtc->pipe) {
4085         case PIPE_A:
4086                 break;
4087         case PIPE_B:
4088                 if (intel_crtc->config->fdi_lanes > 2)
4089                         cpt_set_fdi_bc_bifurcation(dev, false);
4090                 else
4091                         cpt_set_fdi_bc_bifurcation(dev, true);
4092
4093                 break;
4094         case PIPE_C:
4095                 cpt_set_fdi_bc_bifurcation(dev, true);
4096
4097                 break;
4098         default:
4099                 BUG();
4100         }
4101 }
4102
4103 /* Return which DP Port should be selected for Transcoder DP control */
4104 static enum port
4105 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4106 {
4107         struct drm_device *dev = crtc->dev;
4108         struct intel_encoder *encoder;
4109
4110         for_each_encoder_on_crtc(dev, crtc, encoder) {
4111                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4112                     encoder->type == INTEL_OUTPUT_EDP)
4113                         return enc_to_dig_port(&encoder->base)->port;
4114         }
4115
4116         return -1;
4117 }
4118
4119 /*
4120  * Enable PCH resources required for PCH ports:
4121  *   - PCH PLLs
4122  *   - FDI training & RX/TX
4123  *   - update transcoder timings
4124  *   - DP transcoding bits
4125  *   - transcoder
4126  */
4127 static void ironlake_pch_enable(struct drm_crtc *crtc)
4128 {
4129         struct drm_device *dev = crtc->dev;
4130         struct drm_i915_private *dev_priv = dev->dev_private;
4131         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4132         int pipe = intel_crtc->pipe;
4133         u32 temp;
4134
4135         assert_pch_transcoder_disabled(dev_priv, pipe);
4136
4137         if (IS_IVYBRIDGE(dev))
4138                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4139
4140         /* Write the TU size bits before fdi link training, so that error
4141          * detection works. */
4142         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4143                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4144
4145         /*
4146          * Sometimes spurious CPU pipe underruns happen during FDI
4147          * training, at least with VGA+HDMI cloning. Suppress them.
4148          */
4149         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4150
4151         /* For PCH output, training FDI link */
4152         dev_priv->display.fdi_link_train(crtc);
4153
4154         /* We need to program the right clock selection before writing the pixel
4155          * mutliplier into the DPLL. */
4156         if (HAS_PCH_CPT(dev)) {
4157                 u32 sel;
4158
4159                 temp = I915_READ(PCH_DPLL_SEL);
4160                 temp |= TRANS_DPLL_ENABLE(pipe);
4161                 sel = TRANS_DPLLB_SEL(pipe);
4162                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4163                         temp |= sel;
4164                 else
4165                         temp &= ~sel;
4166                 I915_WRITE(PCH_DPLL_SEL, temp);
4167         }
4168
4169         /* XXX: pch pll's can be enabled any time before we enable the PCH
4170          * transcoder, and we actually should do this to not upset any PCH
4171          * transcoder that already use the clock when we share it.
4172          *
4173          * Note that enable_shared_dpll tries to do the right thing, but
4174          * get_shared_dpll unconditionally resets the pll - we need that to have
4175          * the right LVDS enable sequence. */
4176         intel_enable_shared_dpll(intel_crtc);
4177
4178         /* set transcoder timing, panel must allow it */
4179         assert_panel_unlocked(dev_priv, pipe);
4180         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4181
4182         intel_fdi_normal_train(crtc);
4183
4184         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4185
4186         /* For PCH DP, enable TRANS_DP_CTL */
4187         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4188                 const struct drm_display_mode *adjusted_mode =
4189                         &intel_crtc->config->base.adjusted_mode;
4190                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4191                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4192                 temp = I915_READ(reg);
4193                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4194                           TRANS_DP_SYNC_MASK |
4195                           TRANS_DP_BPC_MASK);
4196                 temp |= TRANS_DP_OUTPUT_ENABLE;
4197                 temp |= bpc << 9; /* same format but at 11:9 */
4198
4199                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4200                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4201                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4202                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4203
4204                 switch (intel_trans_dp_port_sel(crtc)) {
4205                 case PORT_B:
4206                         temp |= TRANS_DP_PORT_SEL_B;
4207                         break;
4208                 case PORT_C:
4209                         temp |= TRANS_DP_PORT_SEL_C;
4210                         break;
4211                 case PORT_D:
4212                         temp |= TRANS_DP_PORT_SEL_D;
4213                         break;
4214                 default:
4215                         BUG();
4216                 }
4217
4218                 I915_WRITE(reg, temp);
4219         }
4220
4221         ironlake_enable_pch_transcoder(dev_priv, pipe);
4222 }
4223
4224 static void lpt_pch_enable(struct drm_crtc *crtc)
4225 {
4226         struct drm_device *dev = crtc->dev;
4227         struct drm_i915_private *dev_priv = dev->dev_private;
4228         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4229         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4230
4231         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4232
4233         lpt_program_iclkip(crtc);
4234
4235         /* Set transcoder timing. */
4236         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4237
4238         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4239 }
4240
4241 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4242                                                 struct intel_crtc_state *crtc_state)
4243 {
4244         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4245         struct intel_shared_dpll *pll;
4246         struct intel_shared_dpll_config *shared_dpll;
4247         enum intel_dpll_id i;
4248         int max = dev_priv->num_shared_dpll;
4249
4250         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4251
4252         if (HAS_PCH_IBX(dev_priv->dev)) {
4253                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4254                 i = (enum intel_dpll_id) crtc->pipe;
4255                 pll = &dev_priv->shared_dplls[i];
4256
4257                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4258                               crtc->base.base.id, pll->name);
4259
4260                 WARN_ON(shared_dpll[i].crtc_mask);
4261
4262                 goto found;
4263         }
4264
4265         if (IS_BROXTON(dev_priv->dev)) {
4266                 /* PLL is attached to port in bxt */
4267                 struct intel_encoder *encoder;
4268                 struct intel_digital_port *intel_dig_port;
4269
4270                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4271                 if (WARN_ON(!encoder))
4272                         return NULL;
4273
4274                 intel_dig_port = enc_to_dig_port(&encoder->base);
4275                 /* 1:1 mapping between ports and PLLs */
4276                 i = (enum intel_dpll_id)intel_dig_port->port;
4277                 pll = &dev_priv->shared_dplls[i];
4278                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4279                         crtc->base.base.id, pll->name);
4280                 WARN_ON(shared_dpll[i].crtc_mask);
4281
4282                 goto found;
4283         } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4284                 /* Do not consider SPLL */
4285                 max = 2;
4286
4287         for (i = 0; i < max; i++) {
4288                 pll = &dev_priv->shared_dplls[i];
4289
4290                 /* Only want to check enabled timings first */
4291                 if (shared_dpll[i].crtc_mask == 0)
4292                         continue;
4293
4294                 if (memcmp(&crtc_state->dpll_hw_state,
4295                            &shared_dpll[i].hw_state,
4296                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4297                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4298                                       crtc->base.base.id, pll->name,
4299                                       shared_dpll[i].crtc_mask,
4300                                       pll->active);
4301                         goto found;
4302                 }
4303         }
4304
4305         /* Ok no matching timings, maybe there's a free one? */
4306         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4307                 pll = &dev_priv->shared_dplls[i];
4308                 if (shared_dpll[i].crtc_mask == 0) {
4309                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4310                                       crtc->base.base.id, pll->name);
4311                         goto found;
4312                 }
4313         }
4314
4315         return NULL;
4316
4317 found:
4318         if (shared_dpll[i].crtc_mask == 0)
4319                 shared_dpll[i].hw_state =
4320                         crtc_state->dpll_hw_state;
4321
4322         crtc_state->shared_dpll = i;
4323         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4324                          pipe_name(crtc->pipe));
4325
4326         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4327
4328         return pll;
4329 }
4330
4331 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4332 {
4333         struct drm_i915_private *dev_priv = to_i915(state->dev);
4334         struct intel_shared_dpll_config *shared_dpll;
4335         struct intel_shared_dpll *pll;
4336         enum intel_dpll_id i;
4337
4338         if (!to_intel_atomic_state(state)->dpll_set)
4339                 return;
4340
4341         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4342         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4343                 pll = &dev_priv->shared_dplls[i];
4344                 pll->config = shared_dpll[i];
4345         }
4346 }
4347
4348 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4349 {
4350         struct drm_i915_private *dev_priv = dev->dev_private;
4351         i915_reg_t dslreg = PIPEDSL(pipe);
4352         u32 temp;
4353
4354         temp = I915_READ(dslreg);
4355         udelay(500);
4356         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4357                 if (wait_for(I915_READ(dslreg) != temp, 5))
4358                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4359         }
4360 }
4361
4362 static int
4363 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4364                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4365                   int src_w, int src_h, int dst_w, int dst_h)
4366 {
4367         struct intel_crtc_scaler_state *scaler_state =
4368                 &crtc_state->scaler_state;
4369         struct intel_crtc *intel_crtc =
4370                 to_intel_crtc(crtc_state->base.crtc);
4371         int need_scaling;
4372
4373         need_scaling = intel_rotation_90_or_270(rotation) ?
4374                 (src_h != dst_w || src_w != dst_h):
4375                 (src_w != dst_w || src_h != dst_h);
4376
4377         /*
4378          * if plane is being disabled or scaler is no more required or force detach
4379          *  - free scaler binded to this plane/crtc
4380          *  - in order to do this, update crtc->scaler_usage
4381          *
4382          * Here scaler state in crtc_state is set free so that
4383          * scaler can be assigned to other user. Actual register
4384          * update to free the scaler is done in plane/panel-fit programming.
4385          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4386          */
4387         if (force_detach || !need_scaling) {
4388                 if (*scaler_id >= 0) {
4389                         scaler_state->scaler_users &= ~(1 << scaler_user);
4390                         scaler_state->scalers[*scaler_id].in_use = 0;
4391
4392                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4393                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4394                                 intel_crtc->pipe, scaler_user, *scaler_id,
4395                                 scaler_state->scaler_users);
4396                         *scaler_id = -1;
4397                 }
4398                 return 0;
4399         }
4400
4401         /* range checks */
4402         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4403                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4404
4405                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4406                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4407                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4408                         "size is out of scaler range\n",
4409                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4410                 return -EINVAL;
4411         }
4412
4413         /* mark this plane as a scaler user in crtc_state */
4414         scaler_state->scaler_users |= (1 << scaler_user);
4415         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4416                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4417                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4418                 scaler_state->scaler_users);
4419
4420         return 0;
4421 }
4422
4423 /**
4424  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4425  *
4426  * @state: crtc's scaler state
4427  *
4428  * Return
4429  *     0 - scaler_usage updated successfully
4430  *    error - requested scaling cannot be supported or other error condition
4431  */
4432 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4433 {
4434         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4435         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4436
4437         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4438                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4439
4440         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4441                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4442                 state->pipe_src_w, state->pipe_src_h,
4443                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4444 }
4445
4446 /**
4447  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4448  *
4449  * @state: crtc's scaler state
4450  * @plane_state: atomic plane state to update
4451  *
4452  * Return
4453  *     0 - scaler_usage updated successfully
4454  *    error - requested scaling cannot be supported or other error condition
4455  */
4456 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4457                                    struct intel_plane_state *plane_state)
4458 {
4459
4460         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4461         struct intel_plane *intel_plane =
4462                 to_intel_plane(plane_state->base.plane);
4463         struct drm_framebuffer *fb = plane_state->base.fb;
4464         int ret;
4465
4466         bool force_detach = !fb || !plane_state->visible;
4467
4468         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4469                       intel_plane->base.base.id, intel_crtc->pipe,
4470                       drm_plane_index(&intel_plane->base));
4471
4472         ret = skl_update_scaler(crtc_state, force_detach,
4473                                 drm_plane_index(&intel_plane->base),
4474                                 &plane_state->scaler_id,
4475                                 plane_state->base.rotation,
4476                                 drm_rect_width(&plane_state->src) >> 16,
4477                                 drm_rect_height(&plane_state->src) >> 16,
4478                                 drm_rect_width(&plane_state->dst),
4479                                 drm_rect_height(&plane_state->dst));
4480
4481         if (ret || plane_state->scaler_id < 0)
4482                 return ret;
4483
4484         /* check colorkey */
4485         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4486                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4487                               intel_plane->base.base.id);
4488                 return -EINVAL;
4489         }
4490
4491         /* Check src format */
4492         switch (fb->pixel_format) {
4493         case DRM_FORMAT_RGB565:
4494         case DRM_FORMAT_XBGR8888:
4495         case DRM_FORMAT_XRGB8888:
4496         case DRM_FORMAT_ABGR8888:
4497         case DRM_FORMAT_ARGB8888:
4498         case DRM_FORMAT_XRGB2101010:
4499         case DRM_FORMAT_XBGR2101010:
4500         case DRM_FORMAT_YUYV:
4501         case DRM_FORMAT_YVYU:
4502         case DRM_FORMAT_UYVY:
4503         case DRM_FORMAT_VYUY:
4504                 break;
4505         default:
4506                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4507                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4508                 return -EINVAL;
4509         }
4510
4511         return 0;
4512 }
4513
4514 static void skylake_scaler_disable(struct intel_crtc *crtc)
4515 {
4516         int i;
4517
4518         for (i = 0; i < crtc->num_scalers; i++)
4519                 skl_detach_scaler(crtc, i);
4520 }
4521
4522 static void skylake_pfit_enable(struct intel_crtc *crtc)
4523 {
4524         struct drm_device *dev = crtc->base.dev;
4525         struct drm_i915_private *dev_priv = dev->dev_private;
4526         int pipe = crtc->pipe;
4527         struct intel_crtc_scaler_state *scaler_state =
4528                 &crtc->config->scaler_state;
4529
4530         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4531
4532         if (crtc->config->pch_pfit.enabled) {
4533                 int id;
4534
4535                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4536                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4537                         return;
4538                 }
4539
4540                 id = scaler_state->scaler_id;
4541                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4542                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4543                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4544                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4545
4546                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4547         }
4548 }
4549
4550 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4551 {
4552         struct drm_device *dev = crtc->base.dev;
4553         struct drm_i915_private *dev_priv = dev->dev_private;
4554         int pipe = crtc->pipe;
4555
4556         if (crtc->config->pch_pfit.enabled) {
4557                 /* Force use of hard-coded filter coefficients
4558                  * as some pre-programmed values are broken,
4559                  * e.g. x201.
4560                  */
4561                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4562                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4563                                                  PF_PIPE_SEL_IVB(pipe));
4564                 else
4565                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4566                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4567                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4568         }
4569 }
4570
4571 void hsw_enable_ips(struct intel_crtc *crtc)
4572 {
4573         struct drm_device *dev = crtc->base.dev;
4574         struct drm_i915_private *dev_priv = dev->dev_private;
4575
4576         if (!crtc->config->ips_enabled)
4577                 return;
4578
4579         /* We can only enable IPS after we enable a plane and wait for a vblank */
4580         intel_wait_for_vblank(dev, crtc->pipe);
4581
4582         assert_plane_enabled(dev_priv, crtc->plane);
4583         if (IS_BROADWELL(dev)) {
4584                 mutex_lock(&dev_priv->rps.hw_lock);
4585                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4586                 mutex_unlock(&dev_priv->rps.hw_lock);
4587                 /* Quoting Art Runyan: "its not safe to expect any particular
4588                  * value in IPS_CTL bit 31 after enabling IPS through the
4589                  * mailbox." Moreover, the mailbox may return a bogus state,
4590                  * so we need to just enable it and continue on.
4591                  */
4592         } else {
4593                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4594                 /* The bit only becomes 1 in the next vblank, so this wait here
4595                  * is essentially intel_wait_for_vblank. If we don't have this
4596                  * and don't wait for vblanks until the end of crtc_enable, then
4597                  * the HW state readout code will complain that the expected
4598                  * IPS_CTL value is not the one we read. */
4599                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4600                         DRM_ERROR("Timed out waiting for IPS enable\n");
4601         }
4602 }
4603
4604 void hsw_disable_ips(struct intel_crtc *crtc)
4605 {
4606         struct drm_device *dev = crtc->base.dev;
4607         struct drm_i915_private *dev_priv = dev->dev_private;
4608
4609         if (!crtc->config->ips_enabled)
4610                 return;
4611
4612         assert_plane_enabled(dev_priv, crtc->plane);
4613         if (IS_BROADWELL(dev)) {
4614                 mutex_lock(&dev_priv->rps.hw_lock);
4615                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4616                 mutex_unlock(&dev_priv->rps.hw_lock);
4617                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4618                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4619                         DRM_ERROR("Timed out waiting for IPS disable\n");
4620         } else {
4621                 I915_WRITE(IPS_CTL, 0);
4622                 POSTING_READ(IPS_CTL);
4623         }
4624
4625         /* We need to wait for a vblank before we can disable the plane. */
4626         intel_wait_for_vblank(dev, crtc->pipe);
4627 }
4628
4629 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4630 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4631 {
4632         struct drm_device *dev = crtc->dev;
4633         struct drm_i915_private *dev_priv = dev->dev_private;
4634         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4635         enum pipe pipe = intel_crtc->pipe;
4636         int i;
4637         bool reenable_ips = false;
4638
4639         /* The clocks have to be on to load the palette. */
4640         if (!crtc->state->active)
4641                 return;
4642
4643         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4644                 if (intel_crtc->config->has_dsi_encoder)
4645                         assert_dsi_pll_enabled(dev_priv);
4646                 else
4647                         assert_pll_enabled(dev_priv, pipe);
4648         }
4649
4650         /* Workaround : Do not read or write the pipe palette/gamma data while
4651          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4652          */
4653         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4654             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4655              GAMMA_MODE_MODE_SPLIT)) {
4656                 hsw_disable_ips(intel_crtc);
4657                 reenable_ips = true;
4658         }
4659
4660         for (i = 0; i < 256; i++) {
4661                 i915_reg_t palreg;
4662
4663                 if (HAS_GMCH_DISPLAY(dev))
4664                         palreg = PALETTE(pipe, i);
4665                 else
4666                         palreg = LGC_PALETTE(pipe, i);
4667
4668                 I915_WRITE(palreg,
4669                            (intel_crtc->lut_r[i] << 16) |
4670                            (intel_crtc->lut_g[i] << 8) |
4671                            intel_crtc->lut_b[i]);
4672         }
4673
4674         if (reenable_ips)
4675                 hsw_enable_ips(intel_crtc);
4676 }
4677
4678 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4679 {
4680         if (intel_crtc->overlay) {
4681                 struct drm_device *dev = intel_crtc->base.dev;
4682                 struct drm_i915_private *dev_priv = dev->dev_private;
4683
4684                 mutex_lock(&dev->struct_mutex);
4685                 dev_priv->mm.interruptible = false;
4686                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4687                 dev_priv->mm.interruptible = true;
4688                 mutex_unlock(&dev->struct_mutex);
4689         }
4690
4691         /* Let userspace switch the overlay on again. In most cases userspace
4692          * has to recompute where to put it anyway.
4693          */
4694 }
4695
4696 /**
4697  * intel_post_enable_primary - Perform operations after enabling primary plane
4698  * @crtc: the CRTC whose primary plane was just enabled
4699  *
4700  * Performs potentially sleeping operations that must be done after the primary
4701  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4702  * called due to an explicit primary plane update, or due to an implicit
4703  * re-enable that is caused when a sprite plane is updated to no longer
4704  * completely hide the primary plane.
4705  */
4706 static void
4707 intel_post_enable_primary(struct drm_crtc *crtc)
4708 {
4709         struct drm_device *dev = crtc->dev;
4710         struct drm_i915_private *dev_priv = dev->dev_private;
4711         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4712         int pipe = intel_crtc->pipe;
4713
4714         /*
4715          * FIXME IPS should be fine as long as one plane is
4716          * enabled, but in practice it seems to have problems
4717          * when going from primary only to sprite only and vice
4718          * versa.
4719          */
4720         hsw_enable_ips(intel_crtc);
4721
4722         /*
4723          * Gen2 reports pipe underruns whenever all planes are disabled.
4724          * So don't enable underrun reporting before at least some planes
4725          * are enabled.
4726          * FIXME: Need to fix the logic to work when we turn off all planes
4727          * but leave the pipe running.
4728          */
4729         if (IS_GEN2(dev))
4730                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4731
4732         /* Underruns don't always raise interrupts, so check manually. */
4733         intel_check_cpu_fifo_underruns(dev_priv);
4734         intel_check_pch_fifo_underruns(dev_priv);
4735 }
4736
4737 /**
4738  * intel_pre_disable_primary - Perform operations before disabling primary plane
4739  * @crtc: the CRTC whose primary plane is to be disabled
4740  *
4741  * Performs potentially sleeping operations that must be done before the
4742  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4743  * be called due to an explicit primary plane update, or due to an implicit
4744  * disable that is caused when a sprite plane completely hides the primary
4745  * plane.
4746  */
4747 static void
4748 intel_pre_disable_primary(struct drm_crtc *crtc)
4749 {
4750         struct drm_device *dev = crtc->dev;
4751         struct drm_i915_private *dev_priv = dev->dev_private;
4752         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4753         int pipe = intel_crtc->pipe;
4754
4755         /*
4756          * Gen2 reports pipe underruns whenever all planes are disabled.
4757          * So diasble underrun reporting before all the planes get disabled.
4758          * FIXME: Need to fix the logic to work when we turn off all planes
4759          * but leave the pipe running.
4760          */
4761         if (IS_GEN2(dev))
4762                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4763
4764         /*
4765          * Vblank time updates from the shadow to live plane control register
4766          * are blocked if the memory self-refresh mode is active at that
4767          * moment. So to make sure the plane gets truly disabled, disable
4768          * first the self-refresh mode. The self-refresh enable bit in turn
4769          * will be checked/applied by the HW only at the next frame start
4770          * event which is after the vblank start event, so we need to have a
4771          * wait-for-vblank between disabling the plane and the pipe.
4772          */
4773         if (HAS_GMCH_DISPLAY(dev)) {
4774                 intel_set_memory_cxsr(dev_priv, false);
4775                 dev_priv->wm.vlv.cxsr = false;
4776                 intel_wait_for_vblank(dev, pipe);
4777         }
4778
4779         /*
4780          * FIXME IPS should be fine as long as one plane is
4781          * enabled, but in practice it seems to have problems
4782          * when going from primary only to sprite only and vice
4783          * versa.
4784          */
4785         hsw_disable_ips(intel_crtc);
4786 }
4787
4788 static void intel_post_plane_update(struct intel_crtc *crtc)
4789 {
4790         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4791         struct intel_crtc_state *pipe_config =
4792                 to_intel_crtc_state(crtc->base.state);
4793         struct drm_device *dev = crtc->base.dev;
4794
4795         intel_frontbuffer_flip(dev, atomic->fb_bits);
4796
4797         crtc->wm.cxsr_allowed = true;
4798
4799         if (pipe_config->wm_changed && pipe_config->base.active)
4800                 intel_update_watermarks(&crtc->base);
4801
4802         if (atomic->update_fbc)
4803                 intel_fbc_post_update(crtc);
4804
4805         if (atomic->post_enable_primary)
4806                 intel_post_enable_primary(&crtc->base);
4807
4808         memset(atomic, 0, sizeof(*atomic));
4809 }
4810
4811 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4812 {
4813         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4814         struct drm_device *dev = crtc->base.dev;
4815         struct drm_i915_private *dev_priv = dev->dev_private;
4816         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4817         struct intel_crtc_state *pipe_config =
4818                 to_intel_crtc_state(crtc->base.state);
4819         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4820         struct drm_plane *primary = crtc->base.primary;
4821         struct drm_plane_state *old_pri_state =
4822                 drm_atomic_get_existing_plane_state(old_state, primary);
4823         bool modeset = needs_modeset(&pipe_config->base);
4824
4825         if (atomic->update_fbc)
4826                 intel_fbc_pre_update(crtc);
4827
4828         if (old_pri_state) {
4829                 struct intel_plane_state *primary_state =
4830                         to_intel_plane_state(primary->state);
4831                 struct intel_plane_state *old_primary_state =
4832                         to_intel_plane_state(old_pri_state);
4833
4834                 if (old_primary_state->visible &&
4835                     (modeset || !primary_state->visible))
4836                         intel_pre_disable_primary(&crtc->base);
4837         }
4838
4839         if (pipe_config->disable_cxsr) {
4840                 crtc->wm.cxsr_allowed = false;
4841
4842                 if (old_crtc_state->base.active)
4843                         intel_set_memory_cxsr(dev_priv, false);
4844         }
4845
4846         if (!needs_modeset(&pipe_config->base) && pipe_config->wm_changed)
4847                 intel_update_watermarks(&crtc->base);
4848 }
4849
4850 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4851 {
4852         struct drm_device *dev = crtc->dev;
4853         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4854         struct drm_plane *p;
4855         int pipe = intel_crtc->pipe;
4856
4857         intel_crtc_dpms_overlay_disable(intel_crtc);
4858
4859         drm_for_each_plane_mask(p, dev, plane_mask)
4860                 to_intel_plane(p)->disable_plane(p, crtc);
4861
4862         /*
4863          * FIXME: Once we grow proper nuclear flip support out of this we need
4864          * to compute the mask of flip planes precisely. For the time being
4865          * consider this a flip to a NULL plane.
4866          */
4867         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4868 }
4869
4870 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4871 {
4872         struct drm_device *dev = crtc->dev;
4873         struct drm_i915_private *dev_priv = dev->dev_private;
4874         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4875         struct intel_encoder *encoder;
4876         int pipe = intel_crtc->pipe;
4877
4878         if (WARN_ON(intel_crtc->active))
4879                 return;
4880
4881         if (intel_crtc->config->has_pch_encoder)
4882                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4883
4884         if (intel_crtc->config->has_pch_encoder)
4885                 intel_prepare_shared_dpll(intel_crtc);
4886
4887         if (intel_crtc->config->has_dp_encoder)
4888                 intel_dp_set_m_n(intel_crtc, M1_N1);
4889
4890         intel_set_pipe_timings(intel_crtc);
4891
4892         if (intel_crtc->config->has_pch_encoder) {
4893                 intel_cpu_transcoder_set_m_n(intel_crtc,
4894                                      &intel_crtc->config->fdi_m_n, NULL);
4895         }
4896
4897         ironlake_set_pipeconf(crtc);
4898
4899         intel_crtc->active = true;
4900
4901         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4902
4903         for_each_encoder_on_crtc(dev, crtc, encoder)
4904                 if (encoder->pre_enable)
4905                         encoder->pre_enable(encoder);
4906
4907         if (intel_crtc->config->has_pch_encoder) {
4908                 /* Note: FDI PLL enabling _must_ be done before we enable the
4909                  * cpu pipes, hence this is separate from all the other fdi/pch
4910                  * enabling. */
4911                 ironlake_fdi_pll_enable(intel_crtc);
4912         } else {
4913                 assert_fdi_tx_disabled(dev_priv, pipe);
4914                 assert_fdi_rx_disabled(dev_priv, pipe);
4915         }
4916
4917         ironlake_pfit_enable(intel_crtc);
4918
4919         /*
4920          * On ILK+ LUT must be loaded before the pipe is running but with
4921          * clocks enabled
4922          */
4923         intel_crtc_load_lut(crtc);
4924
4925         intel_update_watermarks(crtc);
4926         intel_enable_pipe(intel_crtc);
4927
4928         if (intel_crtc->config->has_pch_encoder)
4929                 ironlake_pch_enable(crtc);
4930
4931         assert_vblank_disabled(crtc);
4932         drm_crtc_vblank_on(crtc);
4933
4934         for_each_encoder_on_crtc(dev, crtc, encoder)
4935                 encoder->enable(encoder);
4936
4937         if (HAS_PCH_CPT(dev))
4938                 cpt_verify_modeset(dev, intel_crtc->pipe);
4939
4940         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4941         if (intel_crtc->config->has_pch_encoder)
4942                 intel_wait_for_vblank(dev, pipe);
4943         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4944 }
4945
4946 /* IPS only exists on ULT machines and is tied to pipe A. */
4947 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4948 {
4949         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4950 }
4951
4952 static void haswell_crtc_enable(struct drm_crtc *crtc)
4953 {
4954         struct drm_device *dev = crtc->dev;
4955         struct drm_i915_private *dev_priv = dev->dev_private;
4956         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4957         struct intel_encoder *encoder;
4958         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4959         struct intel_crtc_state *pipe_config =
4960                 to_intel_crtc_state(crtc->state);
4961
4962         if (WARN_ON(intel_crtc->active))
4963                 return;
4964
4965         if (intel_crtc->config->has_pch_encoder)
4966                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4967                                                       false);
4968
4969         if (intel_crtc_to_shared_dpll(intel_crtc))
4970                 intel_enable_shared_dpll(intel_crtc);
4971
4972         if (intel_crtc->config->has_dp_encoder)
4973                 intel_dp_set_m_n(intel_crtc, M1_N1);
4974
4975         intel_set_pipe_timings(intel_crtc);
4976
4977         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4978                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4979                            intel_crtc->config->pixel_multiplier - 1);
4980         }
4981
4982         if (intel_crtc->config->has_pch_encoder) {
4983                 intel_cpu_transcoder_set_m_n(intel_crtc,
4984                                      &intel_crtc->config->fdi_m_n, NULL);
4985         }
4986
4987         haswell_set_pipeconf(crtc);
4988
4989         intel_set_pipe_csc(crtc);
4990
4991         intel_crtc->active = true;
4992
4993         if (intel_crtc->config->has_pch_encoder)
4994                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4995         else
4996                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4997
4998         for_each_encoder_on_crtc(dev, crtc, encoder) {
4999                 if (encoder->pre_enable)
5000                         encoder->pre_enable(encoder);
5001         }
5002
5003         if (intel_crtc->config->has_pch_encoder)
5004                 dev_priv->display.fdi_link_train(crtc);
5005
5006         if (!intel_crtc->config->has_dsi_encoder)
5007                 intel_ddi_enable_pipe_clock(intel_crtc);
5008
5009         if (INTEL_INFO(dev)->gen >= 9)
5010                 skylake_pfit_enable(intel_crtc);
5011         else
5012                 ironlake_pfit_enable(intel_crtc);
5013
5014         /*
5015          * On ILK+ LUT must be loaded before the pipe is running but with
5016          * clocks enabled
5017          */
5018         intel_crtc_load_lut(crtc);
5019
5020         intel_ddi_set_pipe_settings(crtc);
5021         if (!intel_crtc->config->has_dsi_encoder)
5022                 intel_ddi_enable_transcoder_func(crtc);
5023
5024         intel_update_watermarks(crtc);
5025         intel_enable_pipe(intel_crtc);
5026
5027         if (intel_crtc->config->has_pch_encoder)
5028                 lpt_pch_enable(crtc);
5029
5030         if (intel_crtc->config->dp_encoder_is_mst)
5031                 intel_ddi_set_vc_payload_alloc(crtc, true);
5032
5033         assert_vblank_disabled(crtc);
5034         drm_crtc_vblank_on(crtc);
5035
5036         for_each_encoder_on_crtc(dev, crtc, encoder) {
5037                 encoder->enable(encoder);
5038                 intel_opregion_notify_encoder(encoder, true);
5039         }
5040
5041         if (intel_crtc->config->has_pch_encoder) {
5042                 intel_wait_for_vblank(dev, pipe);
5043                 intel_wait_for_vblank(dev, pipe);
5044                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5045                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5046                                                       true);
5047         }
5048
5049         /* If we change the relative order between pipe/planes enabling, we need
5050          * to change the workaround. */
5051         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5052         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5053                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5054                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5055         }
5056 }
5057
5058 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5059 {
5060         struct drm_device *dev = crtc->base.dev;
5061         struct drm_i915_private *dev_priv = dev->dev_private;
5062         int pipe = crtc->pipe;
5063
5064         /* To avoid upsetting the power well on haswell only disable the pfit if
5065          * it's in use. The hw state code will make sure we get this right. */
5066         if (force || crtc->config->pch_pfit.enabled) {
5067                 I915_WRITE(PF_CTL(pipe), 0);
5068                 I915_WRITE(PF_WIN_POS(pipe), 0);
5069                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5070         }
5071 }
5072
5073 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5074 {
5075         struct drm_device *dev = crtc->dev;
5076         struct drm_i915_private *dev_priv = dev->dev_private;
5077         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5078         struct intel_encoder *encoder;
5079         int pipe = intel_crtc->pipe;
5080
5081         if (intel_crtc->config->has_pch_encoder)
5082                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5083
5084         for_each_encoder_on_crtc(dev, crtc, encoder)
5085                 encoder->disable(encoder);
5086
5087         drm_crtc_vblank_off(crtc);
5088         assert_vblank_disabled(crtc);
5089
5090         /*
5091          * Sometimes spurious CPU pipe underruns happen when the
5092          * pipe is already disabled, but FDI RX/TX is still enabled.
5093          * Happens at least with VGA+HDMI cloning. Suppress them.
5094          */
5095         if (intel_crtc->config->has_pch_encoder)
5096                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5097
5098         intel_disable_pipe(intel_crtc);
5099
5100         ironlake_pfit_disable(intel_crtc, false);
5101
5102         if (intel_crtc->config->has_pch_encoder) {
5103                 ironlake_fdi_disable(crtc);
5104                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5105         }
5106
5107         for_each_encoder_on_crtc(dev, crtc, encoder)
5108                 if (encoder->post_disable)
5109                         encoder->post_disable(encoder);
5110
5111         if (intel_crtc->config->has_pch_encoder) {
5112                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5113
5114                 if (HAS_PCH_CPT(dev)) {
5115                         i915_reg_t reg;
5116                         u32 temp;
5117
5118                         /* disable TRANS_DP_CTL */
5119                         reg = TRANS_DP_CTL(pipe);
5120                         temp = I915_READ(reg);
5121                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5122                                   TRANS_DP_PORT_SEL_MASK);
5123                         temp |= TRANS_DP_PORT_SEL_NONE;
5124                         I915_WRITE(reg, temp);
5125
5126                         /* disable DPLL_SEL */
5127                         temp = I915_READ(PCH_DPLL_SEL);
5128                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5129                         I915_WRITE(PCH_DPLL_SEL, temp);
5130                 }
5131
5132                 ironlake_fdi_pll_disable(intel_crtc);
5133         }
5134
5135         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5136 }
5137
5138 static void haswell_crtc_disable(struct drm_crtc *crtc)
5139 {
5140         struct drm_device *dev = crtc->dev;
5141         struct drm_i915_private *dev_priv = dev->dev_private;
5142         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5143         struct intel_encoder *encoder;
5144         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5145
5146         if (intel_crtc->config->has_pch_encoder)
5147                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5148                                                       false);
5149
5150         for_each_encoder_on_crtc(dev, crtc, encoder) {
5151                 intel_opregion_notify_encoder(encoder, false);
5152                 encoder->disable(encoder);
5153         }
5154
5155         drm_crtc_vblank_off(crtc);
5156         assert_vblank_disabled(crtc);
5157
5158         intel_disable_pipe(intel_crtc);
5159
5160         if (intel_crtc->config->dp_encoder_is_mst)
5161                 intel_ddi_set_vc_payload_alloc(crtc, false);
5162
5163         if (!intel_crtc->config->has_dsi_encoder)
5164                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5165
5166         if (INTEL_INFO(dev)->gen >= 9)
5167                 skylake_scaler_disable(intel_crtc);
5168         else
5169                 ironlake_pfit_disable(intel_crtc, false);
5170
5171         if (!intel_crtc->config->has_dsi_encoder)
5172                 intel_ddi_disable_pipe_clock(intel_crtc);
5173
5174         for_each_encoder_on_crtc(dev, crtc, encoder)
5175                 if (encoder->post_disable)
5176                         encoder->post_disable(encoder);
5177
5178         if (intel_crtc->config->has_pch_encoder) {
5179                 lpt_disable_pch_transcoder(dev_priv);
5180                 lpt_disable_iclkip(dev_priv);
5181                 intel_ddi_fdi_disable(crtc);
5182
5183                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5184                                                       true);
5185         }
5186 }
5187
5188 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5189 {
5190         struct drm_device *dev = crtc->base.dev;
5191         struct drm_i915_private *dev_priv = dev->dev_private;
5192         struct intel_crtc_state *pipe_config = crtc->config;
5193
5194         if (!pipe_config->gmch_pfit.control)
5195                 return;
5196
5197         /*
5198          * The panel fitter should only be adjusted whilst the pipe is disabled,
5199          * according to register description and PRM.
5200          */
5201         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5202         assert_pipe_disabled(dev_priv, crtc->pipe);
5203
5204         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5205         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5206
5207         /* Border color in case we don't scale up to the full screen. Black by
5208          * default, change to something else for debugging. */
5209         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5210 }
5211
5212 static enum intel_display_power_domain port_to_power_domain(enum port port)
5213 {
5214         switch (port) {
5215         case PORT_A:
5216                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5217         case PORT_B:
5218                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5219         case PORT_C:
5220                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5221         case PORT_D:
5222                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5223         case PORT_E:
5224                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5225         default:
5226                 MISSING_CASE(port);
5227                 return POWER_DOMAIN_PORT_OTHER;
5228         }
5229 }
5230
5231 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5232 {
5233         switch (port) {
5234         case PORT_A:
5235                 return POWER_DOMAIN_AUX_A;
5236         case PORT_B:
5237                 return POWER_DOMAIN_AUX_B;
5238         case PORT_C:
5239                 return POWER_DOMAIN_AUX_C;
5240         case PORT_D:
5241                 return POWER_DOMAIN_AUX_D;
5242         case PORT_E:
5243                 /* FIXME: Check VBT for actual wiring of PORT E */
5244                 return POWER_DOMAIN_AUX_D;
5245         default:
5246                 MISSING_CASE(port);
5247                 return POWER_DOMAIN_AUX_A;
5248         }
5249 }
5250
5251 enum intel_display_power_domain
5252 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5253 {
5254         struct drm_device *dev = intel_encoder->base.dev;
5255         struct intel_digital_port *intel_dig_port;
5256
5257         switch (intel_encoder->type) {
5258         case INTEL_OUTPUT_UNKNOWN:
5259                 /* Only DDI platforms should ever use this output type */
5260                 WARN_ON_ONCE(!HAS_DDI(dev));
5261         case INTEL_OUTPUT_DISPLAYPORT:
5262         case INTEL_OUTPUT_HDMI:
5263         case INTEL_OUTPUT_EDP:
5264                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5265                 return port_to_power_domain(intel_dig_port->port);
5266         case INTEL_OUTPUT_DP_MST:
5267                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5268                 return port_to_power_domain(intel_dig_port->port);
5269         case INTEL_OUTPUT_ANALOG:
5270                 return POWER_DOMAIN_PORT_CRT;
5271         case INTEL_OUTPUT_DSI:
5272                 return POWER_DOMAIN_PORT_DSI;
5273         default:
5274                 return POWER_DOMAIN_PORT_OTHER;
5275         }
5276 }
5277
5278 enum intel_display_power_domain
5279 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5280 {
5281         struct drm_device *dev = intel_encoder->base.dev;
5282         struct intel_digital_port *intel_dig_port;
5283
5284         switch (intel_encoder->type) {
5285         case INTEL_OUTPUT_UNKNOWN:
5286         case INTEL_OUTPUT_HDMI:
5287                 /*
5288                  * Only DDI platforms should ever use these output types.
5289                  * We can get here after the HDMI detect code has already set
5290                  * the type of the shared encoder. Since we can't be sure
5291                  * what's the status of the given connectors, play safe and
5292                  * run the DP detection too.
5293                  */
5294                 WARN_ON_ONCE(!HAS_DDI(dev));
5295         case INTEL_OUTPUT_DISPLAYPORT:
5296         case INTEL_OUTPUT_EDP:
5297                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5298                 return port_to_aux_power_domain(intel_dig_port->port);
5299         case INTEL_OUTPUT_DP_MST:
5300                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5301                 return port_to_aux_power_domain(intel_dig_port->port);
5302         default:
5303                 MISSING_CASE(intel_encoder->type);
5304                 return POWER_DOMAIN_AUX_A;
5305         }
5306 }
5307
5308 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5309                                             struct intel_crtc_state *crtc_state)
5310 {
5311         struct drm_device *dev = crtc->dev;
5312         struct drm_encoder *encoder;
5313         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5314         enum pipe pipe = intel_crtc->pipe;
5315         unsigned long mask;
5316         enum transcoder transcoder = crtc_state->cpu_transcoder;
5317
5318         if (!crtc_state->base.active)
5319                 return 0;
5320
5321         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5322         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5323         if (crtc_state->pch_pfit.enabled ||
5324             crtc_state->pch_pfit.force_thru)
5325                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5326
5327         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5328                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5329
5330                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5331         }
5332
5333         return mask;
5334 }
5335
5336 static unsigned long
5337 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5338                                struct intel_crtc_state *crtc_state)
5339 {
5340         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5341         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5342         enum intel_display_power_domain domain;
5343         unsigned long domains, new_domains, old_domains;
5344
5345         old_domains = intel_crtc->enabled_power_domains;
5346         intel_crtc->enabled_power_domains = new_domains =
5347                 get_crtc_power_domains(crtc, crtc_state);
5348
5349         domains = new_domains & ~old_domains;
5350
5351         for_each_power_domain(domain, domains)
5352                 intel_display_power_get(dev_priv, domain);
5353
5354         return old_domains & ~new_domains;
5355 }
5356
5357 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5358                                       unsigned long domains)
5359 {
5360         enum intel_display_power_domain domain;
5361
5362         for_each_power_domain(domain, domains)
5363                 intel_display_power_put(dev_priv, domain);
5364 }
5365
5366 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5367 {
5368         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5369
5370         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5371             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5372                 return max_cdclk_freq;
5373         else if (IS_CHERRYVIEW(dev_priv))
5374                 return max_cdclk_freq*95/100;
5375         else if (INTEL_INFO(dev_priv)->gen < 4)
5376                 return 2*max_cdclk_freq*90/100;
5377         else
5378                 return max_cdclk_freq*90/100;
5379 }
5380
5381 static void intel_update_max_cdclk(struct drm_device *dev)
5382 {
5383         struct drm_i915_private *dev_priv = dev->dev_private;
5384
5385         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5386                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5387
5388                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5389                         dev_priv->max_cdclk_freq = 675000;
5390                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5391                         dev_priv->max_cdclk_freq = 540000;
5392                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5393                         dev_priv->max_cdclk_freq = 450000;
5394                 else
5395                         dev_priv->max_cdclk_freq = 337500;
5396         } else if (IS_BROADWELL(dev))  {
5397                 /*
5398                  * FIXME with extra cooling we can allow
5399                  * 540 MHz for ULX and 675 Mhz for ULT.
5400                  * How can we know if extra cooling is
5401                  * available? PCI ID, VTB, something else?
5402                  */
5403                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5404                         dev_priv->max_cdclk_freq = 450000;
5405                 else if (IS_BDW_ULX(dev))
5406                         dev_priv->max_cdclk_freq = 450000;
5407                 else if (IS_BDW_ULT(dev))
5408                         dev_priv->max_cdclk_freq = 540000;
5409                 else
5410                         dev_priv->max_cdclk_freq = 675000;
5411         } else if (IS_CHERRYVIEW(dev)) {
5412                 dev_priv->max_cdclk_freq = 320000;
5413         } else if (IS_VALLEYVIEW(dev)) {
5414                 dev_priv->max_cdclk_freq = 400000;
5415         } else {
5416                 /* otherwise assume cdclk is fixed */
5417                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5418         }
5419
5420         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5421
5422         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5423                          dev_priv->max_cdclk_freq);
5424
5425         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5426                          dev_priv->max_dotclk_freq);
5427 }
5428
5429 static void intel_update_cdclk(struct drm_device *dev)
5430 {
5431         struct drm_i915_private *dev_priv = dev->dev_private;
5432
5433         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5434         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5435                          dev_priv->cdclk_freq);
5436
5437         /*
5438          * Program the gmbus_freq based on the cdclk frequency.
5439          * BSpec erroneously claims we should aim for 4MHz, but
5440          * in fact 1MHz is the correct frequency.
5441          */
5442         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5443                 /*
5444                  * Program the gmbus_freq based on the cdclk frequency.
5445                  * BSpec erroneously claims we should aim for 4MHz, but
5446                  * in fact 1MHz is the correct frequency.
5447                  */
5448                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5449         }
5450
5451         if (dev_priv->max_cdclk_freq == 0)
5452                 intel_update_max_cdclk(dev);
5453 }
5454
5455 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5456 {
5457         struct drm_i915_private *dev_priv = dev->dev_private;
5458         uint32_t divider;
5459         uint32_t ratio;
5460         uint32_t current_freq;
5461         int ret;
5462
5463         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5464         switch (frequency) {
5465         case 144000:
5466                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5467                 ratio = BXT_DE_PLL_RATIO(60);
5468                 break;
5469         case 288000:
5470                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5471                 ratio = BXT_DE_PLL_RATIO(60);
5472                 break;
5473         case 384000:
5474                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5475                 ratio = BXT_DE_PLL_RATIO(60);
5476                 break;
5477         case 576000:
5478                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5479                 ratio = BXT_DE_PLL_RATIO(60);
5480                 break;
5481         case 624000:
5482                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5483                 ratio = BXT_DE_PLL_RATIO(65);
5484                 break;
5485         case 19200:
5486                 /*
5487                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5488                  * to suppress GCC warning.
5489                  */
5490                 ratio = 0;
5491                 divider = 0;
5492                 break;
5493         default:
5494                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5495
5496                 return;
5497         }
5498
5499         mutex_lock(&dev_priv->rps.hw_lock);
5500         /* Inform power controller of upcoming frequency change */
5501         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5502                                       0x80000000);
5503         mutex_unlock(&dev_priv->rps.hw_lock);
5504
5505         if (ret) {
5506                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5507                           ret, frequency);
5508                 return;
5509         }
5510
5511         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5512         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5513         current_freq = current_freq * 500 + 1000;
5514
5515         /*
5516          * DE PLL has to be disabled when
5517          * - setting to 19.2MHz (bypass, PLL isn't used)
5518          * - before setting to 624MHz (PLL needs toggling)
5519          * - before setting to any frequency from 624MHz (PLL needs toggling)
5520          */
5521         if (frequency == 19200 || frequency == 624000 ||
5522             current_freq == 624000) {
5523                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5524                 /* Timeout 200us */
5525                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5526                              1))
5527                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5528         }
5529
5530         if (frequency != 19200) {
5531                 uint32_t val;
5532
5533                 val = I915_READ(BXT_DE_PLL_CTL);
5534                 val &= ~BXT_DE_PLL_RATIO_MASK;
5535                 val |= ratio;
5536                 I915_WRITE(BXT_DE_PLL_CTL, val);
5537
5538                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5539                 /* Timeout 200us */
5540                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5541                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5542
5543                 val = I915_READ(CDCLK_CTL);
5544                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5545                 val |= divider;
5546                 /*
5547                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5548                  * enable otherwise.
5549                  */
5550                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5551                 if (frequency >= 500000)
5552                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5553
5554                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5555                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5556                 val |= (frequency - 1000) / 500;
5557                 I915_WRITE(CDCLK_CTL, val);
5558         }
5559
5560         mutex_lock(&dev_priv->rps.hw_lock);
5561         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5562                                       DIV_ROUND_UP(frequency, 25000));
5563         mutex_unlock(&dev_priv->rps.hw_lock);
5564
5565         if (ret) {
5566                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5567                           ret, frequency);
5568                 return;
5569         }
5570
5571         intel_update_cdclk(dev);
5572 }
5573
5574 void broxton_init_cdclk(struct drm_device *dev)
5575 {
5576         struct drm_i915_private *dev_priv = dev->dev_private;
5577         uint32_t val;
5578
5579         /*
5580          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5581          * or else the reset will hang because there is no PCH to respond.
5582          * Move the handshake programming to initialization sequence.
5583          * Previously was left up to BIOS.
5584          */
5585         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5586         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5587         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5588
5589         /* Enable PG1 for cdclk */
5590         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5591
5592         /* check if cd clock is enabled */
5593         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5594                 DRM_DEBUG_KMS("Display already initialized\n");
5595                 return;
5596         }
5597
5598         /*
5599          * FIXME:
5600          * - The initial CDCLK needs to be read from VBT.
5601          *   Need to make this change after VBT has changes for BXT.
5602          * - check if setting the max (or any) cdclk freq is really necessary
5603          *   here, it belongs to modeset time
5604          */
5605         broxton_set_cdclk(dev, 624000);
5606
5607         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5608         POSTING_READ(DBUF_CTL);
5609
5610         udelay(10);
5611
5612         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5613                 DRM_ERROR("DBuf power enable timeout!\n");
5614 }
5615
5616 void broxton_uninit_cdclk(struct drm_device *dev)
5617 {
5618         struct drm_i915_private *dev_priv = dev->dev_private;
5619
5620         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5621         POSTING_READ(DBUF_CTL);
5622
5623         udelay(10);
5624
5625         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5626                 DRM_ERROR("DBuf power disable timeout!\n");
5627
5628         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5629         broxton_set_cdclk(dev, 19200);
5630
5631         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5632 }
5633
5634 static const struct skl_cdclk_entry {
5635         unsigned int freq;
5636         unsigned int vco;
5637 } skl_cdclk_frequencies[] = {
5638         { .freq = 308570, .vco = 8640 },
5639         { .freq = 337500, .vco = 8100 },
5640         { .freq = 432000, .vco = 8640 },
5641         { .freq = 450000, .vco = 8100 },
5642         { .freq = 540000, .vco = 8100 },
5643         { .freq = 617140, .vco = 8640 },
5644         { .freq = 675000, .vco = 8100 },
5645 };
5646
5647 static unsigned int skl_cdclk_decimal(unsigned int freq)
5648 {
5649         return (freq - 1000) / 500;
5650 }
5651
5652 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5653 {
5654         unsigned int i;
5655
5656         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5657                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5658
5659                 if (e->freq == freq)
5660                         return e->vco;
5661         }
5662
5663         return 8100;
5664 }
5665
5666 static void
5667 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5668 {
5669         unsigned int min_freq;
5670         u32 val;
5671
5672         /* select the minimum CDCLK before enabling DPLL 0 */
5673         val = I915_READ(CDCLK_CTL);
5674         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5675         val |= CDCLK_FREQ_337_308;
5676
5677         if (required_vco == 8640)
5678                 min_freq = 308570;
5679         else
5680                 min_freq = 337500;
5681
5682         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5683
5684         I915_WRITE(CDCLK_CTL, val);
5685         POSTING_READ(CDCLK_CTL);
5686
5687         /*
5688          * We always enable DPLL0 with the lowest link rate possible, but still
5689          * taking into account the VCO required to operate the eDP panel at the
5690          * desired frequency. The usual DP link rates operate with a VCO of
5691          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5692          * The modeset code is responsible for the selection of the exact link
5693          * rate later on, with the constraint of choosing a frequency that
5694          * works with required_vco.
5695          */
5696         val = I915_READ(DPLL_CTRL1);
5697
5698         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5699                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5700         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5701         if (required_vco == 8640)
5702                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5703                                             SKL_DPLL0);
5704         else
5705                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5706                                             SKL_DPLL0);
5707
5708         I915_WRITE(DPLL_CTRL1, val);
5709         POSTING_READ(DPLL_CTRL1);
5710
5711         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5712
5713         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5714                 DRM_ERROR("DPLL0 not locked\n");
5715 }
5716
5717 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5718 {
5719         int ret;
5720         u32 val;
5721
5722         /* inform PCU we want to change CDCLK */
5723         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5724         mutex_lock(&dev_priv->rps.hw_lock);
5725         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5726         mutex_unlock(&dev_priv->rps.hw_lock);
5727
5728         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5729 }
5730
5731 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5732 {
5733         unsigned int i;
5734
5735         for (i = 0; i < 15; i++) {
5736                 if (skl_cdclk_pcu_ready(dev_priv))
5737                         return true;
5738                 udelay(10);
5739         }
5740
5741         return false;
5742 }
5743
5744 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5745 {
5746         struct drm_device *dev = dev_priv->dev;
5747         u32 freq_select, pcu_ack;
5748
5749         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5750
5751         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5752                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5753                 return;
5754         }
5755
5756         /* set CDCLK_CTL */
5757         switch(freq) {
5758         case 450000:
5759         case 432000:
5760                 freq_select = CDCLK_FREQ_450_432;
5761                 pcu_ack = 1;
5762                 break;
5763         case 540000:
5764                 freq_select = CDCLK_FREQ_540;
5765                 pcu_ack = 2;
5766                 break;
5767         case 308570:
5768         case 337500:
5769         default:
5770                 freq_select = CDCLK_FREQ_337_308;
5771                 pcu_ack = 0;
5772                 break;
5773         case 617140:
5774         case 675000:
5775                 freq_select = CDCLK_FREQ_675_617;
5776                 pcu_ack = 3;
5777                 break;
5778         }
5779
5780         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5781         POSTING_READ(CDCLK_CTL);
5782
5783         /* inform PCU of the change */
5784         mutex_lock(&dev_priv->rps.hw_lock);
5785         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5786         mutex_unlock(&dev_priv->rps.hw_lock);
5787
5788         intel_update_cdclk(dev);
5789 }
5790
5791 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5792 {
5793         /* disable DBUF power */
5794         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5795         POSTING_READ(DBUF_CTL);
5796
5797         udelay(10);
5798
5799         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5800                 DRM_ERROR("DBuf power disable timeout\n");
5801
5802         /* disable DPLL0 */
5803         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5804         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5805                 DRM_ERROR("Couldn't disable DPLL0\n");
5806 }
5807
5808 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5809 {
5810         unsigned int required_vco;
5811
5812         /* DPLL0 not enabled (happens on early BIOS versions) */
5813         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5814                 /* enable DPLL0 */
5815                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5816                 skl_dpll0_enable(dev_priv, required_vco);
5817         }
5818
5819         /* set CDCLK to the frequency the BIOS chose */
5820         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5821
5822         /* enable DBUF power */
5823         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5824         POSTING_READ(DBUF_CTL);
5825
5826         udelay(10);
5827
5828         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5829                 DRM_ERROR("DBuf power enable timeout\n");
5830 }
5831
5832 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5833 {
5834         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5835         uint32_t cdctl = I915_READ(CDCLK_CTL);
5836         int freq = dev_priv->skl_boot_cdclk;
5837
5838         /*
5839          * check if the pre-os intialized the display
5840          * There is SWF18 scratchpad register defined which is set by the
5841          * pre-os which can be used by the OS drivers to check the status
5842          */
5843         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5844                 goto sanitize;
5845
5846         /* Is PLL enabled and locked ? */
5847         if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5848                 goto sanitize;
5849
5850         /* DPLL okay; verify the cdclock
5851          *
5852          * Noticed in some instances that the freq selection is correct but
5853          * decimal part is programmed wrong from BIOS where pre-os does not
5854          * enable display. Verify the same as well.
5855          */
5856         if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5857                 /* All well; nothing to sanitize */
5858                 return false;
5859 sanitize:
5860         /*
5861          * As of now initialize with max cdclk till
5862          * we get dynamic cdclk support
5863          * */
5864         dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5865         skl_init_cdclk(dev_priv);
5866
5867         /* we did have to sanitize */
5868         return true;
5869 }
5870
5871 /* Adjust CDclk dividers to allow high res or save power if possible */
5872 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5873 {
5874         struct drm_i915_private *dev_priv = dev->dev_private;
5875         u32 val, cmd;
5876
5877         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5878                                         != dev_priv->cdclk_freq);
5879
5880         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5881                 cmd = 2;
5882         else if (cdclk == 266667)
5883                 cmd = 1;
5884         else
5885                 cmd = 0;
5886
5887         mutex_lock(&dev_priv->rps.hw_lock);
5888         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5889         val &= ~DSPFREQGUAR_MASK;
5890         val |= (cmd << DSPFREQGUAR_SHIFT);
5891         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5892         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5893                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5894                      50)) {
5895                 DRM_ERROR("timed out waiting for CDclk change\n");
5896         }
5897         mutex_unlock(&dev_priv->rps.hw_lock);
5898
5899         mutex_lock(&dev_priv->sb_lock);
5900
5901         if (cdclk == 400000) {
5902                 u32 divider;
5903
5904                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5905
5906                 /* adjust cdclk divider */
5907                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5908                 val &= ~CCK_FREQUENCY_VALUES;
5909                 val |= divider;
5910                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5911
5912                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5913                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5914                              50))
5915                         DRM_ERROR("timed out waiting for CDclk change\n");
5916         }
5917
5918         /* adjust self-refresh exit latency value */
5919         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5920         val &= ~0x7f;
5921
5922         /*
5923          * For high bandwidth configs, we set a higher latency in the bunit
5924          * so that the core display fetch happens in time to avoid underruns.
5925          */
5926         if (cdclk == 400000)
5927                 val |= 4500 / 250; /* 4.5 usec */
5928         else
5929                 val |= 3000 / 250; /* 3.0 usec */
5930         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5931
5932         mutex_unlock(&dev_priv->sb_lock);
5933
5934         intel_update_cdclk(dev);
5935 }
5936
5937 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5938 {
5939         struct drm_i915_private *dev_priv = dev->dev_private;
5940         u32 val, cmd;
5941
5942         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5943                                                 != dev_priv->cdclk_freq);
5944
5945         switch (cdclk) {
5946         case 333333:
5947         case 320000:
5948         case 266667:
5949         case 200000:
5950                 break;
5951         default:
5952                 MISSING_CASE(cdclk);
5953                 return;
5954         }
5955
5956         /*
5957          * Specs are full of misinformation, but testing on actual
5958          * hardware has shown that we just need to write the desired
5959          * CCK divider into the Punit register.
5960          */
5961         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5962
5963         mutex_lock(&dev_priv->rps.hw_lock);
5964         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5965         val &= ~DSPFREQGUAR_MASK_CHV;
5966         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5967         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5968         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5969                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5970                      50)) {
5971                 DRM_ERROR("timed out waiting for CDclk change\n");
5972         }
5973         mutex_unlock(&dev_priv->rps.hw_lock);
5974
5975         intel_update_cdclk(dev);
5976 }
5977
5978 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5979                                  int max_pixclk)
5980 {
5981         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5982         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5983
5984         /*
5985          * Really only a few cases to deal with, as only 4 CDclks are supported:
5986          *   200MHz
5987          *   267MHz
5988          *   320/333MHz (depends on HPLL freq)
5989          *   400MHz (VLV only)
5990          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5991          * of the lower bin and adjust if needed.
5992          *
5993          * We seem to get an unstable or solid color picture at 200MHz.
5994          * Not sure what's wrong. For now use 200MHz only when all pipes
5995          * are off.
5996          */
5997         if (!IS_CHERRYVIEW(dev_priv) &&
5998             max_pixclk > freq_320*limit/100)
5999                 return 400000;
6000         else if (max_pixclk > 266667*limit/100)
6001                 return freq_320;
6002         else if (max_pixclk > 0)
6003                 return 266667;
6004         else
6005                 return 200000;
6006 }
6007
6008 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
6009                               int max_pixclk)
6010 {
6011         /*
6012          * FIXME:
6013          * - remove the guardband, it's not needed on BXT
6014          * - set 19.2MHz bypass frequency if there are no active pipes
6015          */
6016         if (max_pixclk > 576000*9/10)
6017                 return 624000;
6018         else if (max_pixclk > 384000*9/10)
6019                 return 576000;
6020         else if (max_pixclk > 288000*9/10)
6021                 return 384000;
6022         else if (max_pixclk > 144000*9/10)
6023                 return 288000;
6024         else
6025                 return 144000;
6026 }
6027
6028 /* Compute the max pixel clock for new configuration. */
6029 static int intel_mode_max_pixclk(struct drm_device *dev,
6030                                  struct drm_atomic_state *state)
6031 {
6032         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6033         struct drm_i915_private *dev_priv = dev->dev_private;
6034         struct drm_crtc *crtc;
6035         struct drm_crtc_state *crtc_state;
6036         unsigned max_pixclk = 0, i;
6037         enum pipe pipe;
6038
6039         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6040                sizeof(intel_state->min_pixclk));
6041
6042         for_each_crtc_in_state(state, crtc, crtc_state, i) {
6043                 int pixclk = 0;
6044
6045                 if (crtc_state->enable)
6046                         pixclk = crtc_state->adjusted_mode.crtc_clock;
6047
6048                 intel_state->min_pixclk[i] = pixclk;
6049         }
6050
6051         for_each_pipe(dev_priv, pipe)
6052                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6053
6054         return max_pixclk;
6055 }
6056
6057 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6058 {
6059         struct drm_device *dev = state->dev;
6060         struct drm_i915_private *dev_priv = dev->dev_private;
6061         int max_pixclk = intel_mode_max_pixclk(dev, state);
6062         struct intel_atomic_state *intel_state =
6063                 to_intel_atomic_state(state);
6064
6065         if (max_pixclk < 0)
6066                 return max_pixclk;
6067
6068         intel_state->cdclk = intel_state->dev_cdclk =
6069                 valleyview_calc_cdclk(dev_priv, max_pixclk);
6070
6071         if (!intel_state->active_crtcs)
6072                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6073
6074         return 0;
6075 }
6076
6077 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6078 {
6079         struct drm_device *dev = state->dev;
6080         struct drm_i915_private *dev_priv = dev->dev_private;
6081         int max_pixclk = intel_mode_max_pixclk(dev, state);
6082         struct intel_atomic_state *intel_state =
6083                 to_intel_atomic_state(state);
6084
6085         if (max_pixclk < 0)
6086                 return max_pixclk;
6087
6088         intel_state->cdclk = intel_state->dev_cdclk =
6089                 broxton_calc_cdclk(dev_priv, max_pixclk);
6090
6091         if (!intel_state->active_crtcs)
6092                 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
6093
6094         return 0;
6095 }
6096
6097 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6098 {
6099         unsigned int credits, default_credits;
6100
6101         if (IS_CHERRYVIEW(dev_priv))
6102                 default_credits = PFI_CREDIT(12);
6103         else
6104                 default_credits = PFI_CREDIT(8);
6105
6106         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6107                 /* CHV suggested value is 31 or 63 */
6108                 if (IS_CHERRYVIEW(dev_priv))
6109                         credits = PFI_CREDIT_63;
6110                 else
6111                         credits = PFI_CREDIT(15);
6112         } else {
6113                 credits = default_credits;
6114         }
6115
6116         /*
6117          * WA - write default credits before re-programming
6118          * FIXME: should we also set the resend bit here?
6119          */
6120         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6121                    default_credits);
6122
6123         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6124                    credits | PFI_CREDIT_RESEND);
6125
6126         /*
6127          * FIXME is this guaranteed to clear
6128          * immediately or should we poll for it?
6129          */
6130         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6131 }
6132
6133 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6134 {
6135         struct drm_device *dev = old_state->dev;
6136         struct drm_i915_private *dev_priv = dev->dev_private;
6137         struct intel_atomic_state *old_intel_state =
6138                 to_intel_atomic_state(old_state);
6139         unsigned req_cdclk = old_intel_state->dev_cdclk;
6140
6141         /*
6142          * FIXME: We can end up here with all power domains off, yet
6143          * with a CDCLK frequency other than the minimum. To account
6144          * for this take the PIPE-A power domain, which covers the HW
6145          * blocks needed for the following programming. This can be
6146          * removed once it's guaranteed that we get here either with
6147          * the minimum CDCLK set, or the required power domains
6148          * enabled.
6149          */
6150         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6151
6152         if (IS_CHERRYVIEW(dev))
6153                 cherryview_set_cdclk(dev, req_cdclk);
6154         else
6155                 valleyview_set_cdclk(dev, req_cdclk);
6156
6157         vlv_program_pfi_credits(dev_priv);
6158
6159         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6160 }
6161
6162 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6163 {
6164         struct drm_device *dev = crtc->dev;
6165         struct drm_i915_private *dev_priv = to_i915(dev);
6166         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6167         struct intel_encoder *encoder;
6168         int pipe = intel_crtc->pipe;
6169
6170         if (WARN_ON(intel_crtc->active))
6171                 return;
6172
6173         if (intel_crtc->config->has_dp_encoder)
6174                 intel_dp_set_m_n(intel_crtc, M1_N1);
6175
6176         intel_set_pipe_timings(intel_crtc);
6177
6178         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6179                 struct drm_i915_private *dev_priv = dev->dev_private;
6180
6181                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6182                 I915_WRITE(CHV_CANVAS(pipe), 0);
6183         }
6184
6185         i9xx_set_pipeconf(intel_crtc);
6186
6187         intel_crtc->active = true;
6188
6189         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6190
6191         for_each_encoder_on_crtc(dev, crtc, encoder)
6192                 if (encoder->pre_pll_enable)
6193                         encoder->pre_pll_enable(encoder);
6194
6195         if (!intel_crtc->config->has_dsi_encoder) {
6196                 if (IS_CHERRYVIEW(dev)) {
6197                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6198                         chv_enable_pll(intel_crtc, intel_crtc->config);
6199                 } else {
6200                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6201                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6202                 }
6203         }
6204
6205         for_each_encoder_on_crtc(dev, crtc, encoder)
6206                 if (encoder->pre_enable)
6207                         encoder->pre_enable(encoder);
6208
6209         i9xx_pfit_enable(intel_crtc);
6210
6211         intel_crtc_load_lut(crtc);
6212
6213         intel_enable_pipe(intel_crtc);
6214
6215         assert_vblank_disabled(crtc);
6216         drm_crtc_vblank_on(crtc);
6217
6218         for_each_encoder_on_crtc(dev, crtc, encoder)
6219                 encoder->enable(encoder);
6220 }
6221
6222 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6223 {
6224         struct drm_device *dev = crtc->base.dev;
6225         struct drm_i915_private *dev_priv = dev->dev_private;
6226
6227         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6228         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6229 }
6230
6231 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6232 {
6233         struct drm_device *dev = crtc->dev;
6234         struct drm_i915_private *dev_priv = to_i915(dev);
6235         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6236         struct intel_encoder *encoder;
6237         int pipe = intel_crtc->pipe;
6238
6239         if (WARN_ON(intel_crtc->active))
6240                 return;
6241
6242         i9xx_set_pll_dividers(intel_crtc);
6243
6244         if (intel_crtc->config->has_dp_encoder)
6245                 intel_dp_set_m_n(intel_crtc, M1_N1);
6246
6247         intel_set_pipe_timings(intel_crtc);
6248
6249         i9xx_set_pipeconf(intel_crtc);
6250
6251         intel_crtc->active = true;
6252
6253         if (!IS_GEN2(dev))
6254                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6255
6256         for_each_encoder_on_crtc(dev, crtc, encoder)
6257                 if (encoder->pre_enable)
6258                         encoder->pre_enable(encoder);
6259
6260         i9xx_enable_pll(intel_crtc);
6261
6262         i9xx_pfit_enable(intel_crtc);
6263
6264         intel_crtc_load_lut(crtc);
6265
6266         intel_update_watermarks(crtc);
6267         intel_enable_pipe(intel_crtc);
6268
6269         assert_vblank_disabled(crtc);
6270         drm_crtc_vblank_on(crtc);
6271
6272         for_each_encoder_on_crtc(dev, crtc, encoder)
6273                 encoder->enable(encoder);
6274 }
6275
6276 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6277 {
6278         struct drm_device *dev = crtc->base.dev;
6279         struct drm_i915_private *dev_priv = dev->dev_private;
6280
6281         if (!crtc->config->gmch_pfit.control)
6282                 return;
6283
6284         assert_pipe_disabled(dev_priv, crtc->pipe);
6285
6286         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6287                          I915_READ(PFIT_CONTROL));
6288         I915_WRITE(PFIT_CONTROL, 0);
6289 }
6290
6291 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6292 {
6293         struct drm_device *dev = crtc->dev;
6294         struct drm_i915_private *dev_priv = dev->dev_private;
6295         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6296         struct intel_encoder *encoder;
6297         int pipe = intel_crtc->pipe;
6298
6299         /*
6300          * On gen2 planes are double buffered but the pipe isn't, so we must
6301          * wait for planes to fully turn off before disabling the pipe.
6302          * We also need to wait on all gmch platforms because of the
6303          * self-refresh mode constraint explained above.
6304          */
6305         intel_wait_for_vblank(dev, pipe);
6306
6307         for_each_encoder_on_crtc(dev, crtc, encoder)
6308                 encoder->disable(encoder);
6309
6310         drm_crtc_vblank_off(crtc);
6311         assert_vblank_disabled(crtc);
6312
6313         intel_disable_pipe(intel_crtc);
6314
6315         i9xx_pfit_disable(intel_crtc);
6316
6317         for_each_encoder_on_crtc(dev, crtc, encoder)
6318                 if (encoder->post_disable)
6319                         encoder->post_disable(encoder);
6320
6321         if (!intel_crtc->config->has_dsi_encoder) {
6322                 if (IS_CHERRYVIEW(dev))
6323                         chv_disable_pll(dev_priv, pipe);
6324                 else if (IS_VALLEYVIEW(dev))
6325                         vlv_disable_pll(dev_priv, pipe);
6326                 else
6327                         i9xx_disable_pll(intel_crtc);
6328         }
6329
6330         for_each_encoder_on_crtc(dev, crtc, encoder)
6331                 if (encoder->post_pll_disable)
6332                         encoder->post_pll_disable(encoder);
6333
6334         if (!IS_GEN2(dev))
6335                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6336 }
6337
6338 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6339 {
6340         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6341         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6342         enum intel_display_power_domain domain;
6343         unsigned long domains;
6344
6345         if (!intel_crtc->active)
6346                 return;
6347
6348         if (to_intel_plane_state(crtc->primary->state)->visible) {
6349                 WARN_ON(intel_crtc->unpin_work);
6350
6351                 intel_pre_disable_primary(crtc);
6352
6353                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6354                 to_intel_plane_state(crtc->primary->state)->visible = false;
6355         }
6356
6357         dev_priv->display.crtc_disable(crtc);
6358         intel_crtc->active = false;
6359         intel_fbc_disable(intel_crtc);
6360         intel_update_watermarks(crtc);
6361         intel_disable_shared_dpll(intel_crtc);
6362
6363         domains = intel_crtc->enabled_power_domains;
6364         for_each_power_domain(domain, domains)
6365                 intel_display_power_put(dev_priv, domain);
6366         intel_crtc->enabled_power_domains = 0;
6367
6368         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6369         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6370 }
6371
6372 /*
6373  * turn all crtc's off, but do not adjust state
6374  * This has to be paired with a call to intel_modeset_setup_hw_state.
6375  */
6376 int intel_display_suspend(struct drm_device *dev)
6377 {
6378         struct drm_i915_private *dev_priv = to_i915(dev);
6379         struct drm_atomic_state *state;
6380         int ret;
6381
6382         state = drm_atomic_helper_suspend(dev);
6383         ret = PTR_ERR_OR_ZERO(state);
6384         if (ret)
6385                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6386         else
6387                 dev_priv->modeset_restore_state = state;
6388         return ret;
6389 }
6390
6391 void intel_encoder_destroy(struct drm_encoder *encoder)
6392 {
6393         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6394
6395         drm_encoder_cleanup(encoder);
6396         kfree(intel_encoder);
6397 }
6398
6399 /* Cross check the actual hw state with our own modeset state tracking (and it's
6400  * internal consistency). */
6401 static void intel_connector_check_state(struct intel_connector *connector)
6402 {
6403         struct drm_crtc *crtc = connector->base.state->crtc;
6404
6405         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6406                       connector->base.base.id,
6407                       connector->base.name);
6408
6409         if (connector->get_hw_state(connector)) {
6410                 struct intel_encoder *encoder = connector->encoder;
6411                 struct drm_connector_state *conn_state = connector->base.state;
6412
6413                 I915_STATE_WARN(!crtc,
6414                          "connector enabled without attached crtc\n");
6415
6416                 if (!crtc)
6417                         return;
6418
6419                 I915_STATE_WARN(!crtc->state->active,
6420                       "connector is active, but attached crtc isn't\n");
6421
6422                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6423                         return;
6424
6425                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6426                         "atomic encoder doesn't match attached encoder\n");
6427
6428                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6429                         "attached encoder crtc differs from connector crtc\n");
6430         } else {
6431                 I915_STATE_WARN(crtc && crtc->state->active,
6432                         "attached crtc is active, but connector isn't\n");
6433                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6434                         "best encoder set without crtc!\n");
6435         }
6436 }
6437
6438 int intel_connector_init(struct intel_connector *connector)
6439 {
6440         drm_atomic_helper_connector_reset(&connector->base);
6441
6442         if (!connector->base.state)
6443                 return -ENOMEM;
6444
6445         return 0;
6446 }
6447
6448 struct intel_connector *intel_connector_alloc(void)
6449 {
6450         struct intel_connector *connector;
6451
6452         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6453         if (!connector)
6454                 return NULL;
6455
6456         if (intel_connector_init(connector) < 0) {
6457                 kfree(connector);
6458                 return NULL;
6459         }
6460
6461         return connector;
6462 }
6463
6464 /* Simple connector->get_hw_state implementation for encoders that support only
6465  * one connector and no cloning and hence the encoder state determines the state
6466  * of the connector. */
6467 bool intel_connector_get_hw_state(struct intel_connector *connector)
6468 {
6469         enum pipe pipe = 0;
6470         struct intel_encoder *encoder = connector->encoder;
6471
6472         return encoder->get_hw_state(encoder, &pipe);
6473 }
6474
6475 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6476 {
6477         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6478                 return crtc_state->fdi_lanes;
6479
6480         return 0;
6481 }
6482
6483 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6484                                      struct intel_crtc_state *pipe_config)
6485 {
6486         struct drm_atomic_state *state = pipe_config->base.state;
6487         struct intel_crtc *other_crtc;
6488         struct intel_crtc_state *other_crtc_state;
6489
6490         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6491                       pipe_name(pipe), pipe_config->fdi_lanes);
6492         if (pipe_config->fdi_lanes > 4) {
6493                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6494                               pipe_name(pipe), pipe_config->fdi_lanes);
6495                 return -EINVAL;
6496         }
6497
6498         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6499                 if (pipe_config->fdi_lanes > 2) {
6500                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6501                                       pipe_config->fdi_lanes);
6502                         return -EINVAL;
6503                 } else {
6504                         return 0;
6505                 }
6506         }
6507
6508         if (INTEL_INFO(dev)->num_pipes == 2)
6509                 return 0;
6510
6511         /* Ivybridge 3 pipe is really complicated */
6512         switch (pipe) {
6513         case PIPE_A:
6514                 return 0;
6515         case PIPE_B:
6516                 if (pipe_config->fdi_lanes <= 2)
6517                         return 0;
6518
6519                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6520                 other_crtc_state =
6521                         intel_atomic_get_crtc_state(state, other_crtc);
6522                 if (IS_ERR(other_crtc_state))
6523                         return PTR_ERR(other_crtc_state);
6524
6525                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6526                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6527                                       pipe_name(pipe), pipe_config->fdi_lanes);
6528                         return -EINVAL;
6529                 }
6530                 return 0;
6531         case PIPE_C:
6532                 if (pipe_config->fdi_lanes > 2) {
6533                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6534                                       pipe_name(pipe), pipe_config->fdi_lanes);
6535                         return -EINVAL;
6536                 }
6537
6538                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6539                 other_crtc_state =
6540                         intel_atomic_get_crtc_state(state, other_crtc);
6541                 if (IS_ERR(other_crtc_state))
6542                         return PTR_ERR(other_crtc_state);
6543
6544                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6545                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6546                         return -EINVAL;
6547                 }
6548                 return 0;
6549         default:
6550                 BUG();
6551         }
6552 }
6553
6554 #define RETRY 1
6555 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6556                                        struct intel_crtc_state *pipe_config)
6557 {
6558         struct drm_device *dev = intel_crtc->base.dev;
6559         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6560         int lane, link_bw, fdi_dotclock, ret;
6561         bool needs_recompute = false;
6562
6563 retry:
6564         /* FDI is a binary signal running at ~2.7GHz, encoding
6565          * each output octet as 10 bits. The actual frequency
6566          * is stored as a divider into a 100MHz clock, and the
6567          * mode pixel clock is stored in units of 1KHz.
6568          * Hence the bw of each lane in terms of the mode signal
6569          * is:
6570          */
6571         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6572
6573         fdi_dotclock = adjusted_mode->crtc_clock;
6574
6575         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6576                                            pipe_config->pipe_bpp);
6577
6578         pipe_config->fdi_lanes = lane;
6579
6580         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6581                                link_bw, &pipe_config->fdi_m_n);
6582
6583         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6584                                        intel_crtc->pipe, pipe_config);
6585         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6586                 pipe_config->pipe_bpp -= 2*3;
6587                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6588                               pipe_config->pipe_bpp);
6589                 needs_recompute = true;
6590                 pipe_config->bw_constrained = true;
6591
6592                 goto retry;
6593         }
6594
6595         if (needs_recompute)
6596                 return RETRY;
6597
6598         return ret;
6599 }
6600
6601 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6602                                      struct intel_crtc_state *pipe_config)
6603 {
6604         if (pipe_config->pipe_bpp > 24)
6605                 return false;
6606
6607         /* HSW can handle pixel rate up to cdclk? */
6608         if (IS_HASWELL(dev_priv->dev))
6609                 return true;
6610
6611         /*
6612          * We compare against max which means we must take
6613          * the increased cdclk requirement into account when
6614          * calculating the new cdclk.
6615          *
6616          * Should measure whether using a lower cdclk w/o IPS
6617          */
6618         return ilk_pipe_pixel_rate(pipe_config) <=
6619                 dev_priv->max_cdclk_freq * 95 / 100;
6620 }
6621
6622 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6623                                    struct intel_crtc_state *pipe_config)
6624 {
6625         struct drm_device *dev = crtc->base.dev;
6626         struct drm_i915_private *dev_priv = dev->dev_private;
6627
6628         pipe_config->ips_enabled = i915.enable_ips &&
6629                 hsw_crtc_supports_ips(crtc) &&
6630                 pipe_config_supports_ips(dev_priv, pipe_config);
6631 }
6632
6633 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6634 {
6635         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6636
6637         /* GDG double wide on either pipe, otherwise pipe A only */
6638         return INTEL_INFO(dev_priv)->gen < 4 &&
6639                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6640 }
6641
6642 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6643                                      struct intel_crtc_state *pipe_config)
6644 {
6645         struct drm_device *dev = crtc->base.dev;
6646         struct drm_i915_private *dev_priv = dev->dev_private;
6647         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6648
6649         /* FIXME should check pixel clock limits on all platforms */
6650         if (INTEL_INFO(dev)->gen < 4) {
6651                 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6652
6653                 /*
6654                  * Enable double wide mode when the dot clock
6655                  * is > 90% of the (display) core speed.
6656                  */
6657                 if (intel_crtc_supports_double_wide(crtc) &&
6658                     adjusted_mode->crtc_clock > clock_limit) {
6659                         clock_limit *= 2;
6660                         pipe_config->double_wide = true;
6661                 }
6662
6663                 if (adjusted_mode->crtc_clock > clock_limit) {
6664                         DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6665                                       adjusted_mode->crtc_clock, clock_limit,
6666                                       yesno(pipe_config->double_wide));
6667                         return -EINVAL;
6668                 }
6669         }
6670
6671         /*
6672          * Pipe horizontal size must be even in:
6673          * - DVO ganged mode
6674          * - LVDS dual channel mode
6675          * - Double wide pipe
6676          */
6677         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6678              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6679                 pipe_config->pipe_src_w &= ~1;
6680
6681         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6682          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6683          */
6684         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6685                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6686                 return -EINVAL;
6687
6688         if (HAS_IPS(dev))
6689                 hsw_compute_ips_config(crtc, pipe_config);
6690
6691         if (pipe_config->has_pch_encoder)
6692                 return ironlake_fdi_compute_config(crtc, pipe_config);
6693
6694         return 0;
6695 }
6696
6697 static int skylake_get_display_clock_speed(struct drm_device *dev)
6698 {
6699         struct drm_i915_private *dev_priv = to_i915(dev);
6700         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6701         uint32_t cdctl = I915_READ(CDCLK_CTL);
6702         uint32_t linkrate;
6703
6704         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6705                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6706
6707         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6708                 return 540000;
6709
6710         linkrate = (I915_READ(DPLL_CTRL1) &
6711                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6712
6713         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6714             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6715                 /* vco 8640 */
6716                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6717                 case CDCLK_FREQ_450_432:
6718                         return 432000;
6719                 case CDCLK_FREQ_337_308:
6720                         return 308570;
6721                 case CDCLK_FREQ_675_617:
6722                         return 617140;
6723                 default:
6724                         WARN(1, "Unknown cd freq selection\n");
6725                 }
6726         } else {
6727                 /* vco 8100 */
6728                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6729                 case CDCLK_FREQ_450_432:
6730                         return 450000;
6731                 case CDCLK_FREQ_337_308:
6732                         return 337500;
6733                 case CDCLK_FREQ_675_617:
6734                         return 675000;
6735                 default:
6736                         WARN(1, "Unknown cd freq selection\n");
6737                 }
6738         }
6739
6740         /* error case, do as if DPLL0 isn't enabled */
6741         return 24000;
6742 }
6743
6744 static int broxton_get_display_clock_speed(struct drm_device *dev)
6745 {
6746         struct drm_i915_private *dev_priv = to_i915(dev);
6747         uint32_t cdctl = I915_READ(CDCLK_CTL);
6748         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6749         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6750         int cdclk;
6751
6752         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6753                 return 19200;
6754
6755         cdclk = 19200 * pll_ratio / 2;
6756
6757         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6758         case BXT_CDCLK_CD2X_DIV_SEL_1:
6759                 return cdclk;  /* 576MHz or 624MHz */
6760         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6761                 return cdclk * 2 / 3; /* 384MHz */
6762         case BXT_CDCLK_CD2X_DIV_SEL_2:
6763                 return cdclk / 2; /* 288MHz */
6764         case BXT_CDCLK_CD2X_DIV_SEL_4:
6765                 return cdclk / 4; /* 144MHz */
6766         }
6767
6768         /* error case, do as if DE PLL isn't enabled */
6769         return 19200;
6770 }
6771
6772 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6773 {
6774         struct drm_i915_private *dev_priv = dev->dev_private;
6775         uint32_t lcpll = I915_READ(LCPLL_CTL);
6776         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6777
6778         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6779                 return 800000;
6780         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6781                 return 450000;
6782         else if (freq == LCPLL_CLK_FREQ_450)
6783                 return 450000;
6784         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6785                 return 540000;
6786         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6787                 return 337500;
6788         else
6789                 return 675000;
6790 }
6791
6792 static int haswell_get_display_clock_speed(struct drm_device *dev)
6793 {
6794         struct drm_i915_private *dev_priv = dev->dev_private;
6795         uint32_t lcpll = I915_READ(LCPLL_CTL);
6796         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6797
6798         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6799                 return 800000;
6800         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6801                 return 450000;
6802         else if (freq == LCPLL_CLK_FREQ_450)
6803                 return 450000;
6804         else if (IS_HSW_ULT(dev))
6805                 return 337500;
6806         else
6807                 return 540000;
6808 }
6809
6810 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6811 {
6812         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6813                                       CCK_DISPLAY_CLOCK_CONTROL);
6814 }
6815
6816 static int ilk_get_display_clock_speed(struct drm_device *dev)
6817 {
6818         return 450000;
6819 }
6820
6821 static int i945_get_display_clock_speed(struct drm_device *dev)
6822 {
6823         return 400000;
6824 }
6825
6826 static int i915_get_display_clock_speed(struct drm_device *dev)
6827 {
6828         return 333333;
6829 }
6830
6831 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6832 {
6833         return 200000;
6834 }
6835
6836 static int pnv_get_display_clock_speed(struct drm_device *dev)
6837 {
6838         u16 gcfgc = 0;
6839
6840         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6841
6842         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6843         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6844                 return 266667;
6845         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6846                 return 333333;
6847         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6848                 return 444444;
6849         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6850                 return 200000;
6851         default:
6852                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6853         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6854                 return 133333;
6855         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6856                 return 166667;
6857         }
6858 }
6859
6860 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6861 {
6862         u16 gcfgc = 0;
6863
6864         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6865
6866         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6867                 return 133333;
6868         else {
6869                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6870                 case GC_DISPLAY_CLOCK_333_MHZ:
6871                         return 333333;
6872                 default:
6873                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6874                         return 190000;
6875                 }
6876         }
6877 }
6878
6879 static int i865_get_display_clock_speed(struct drm_device *dev)
6880 {
6881         return 266667;
6882 }
6883
6884 static int i85x_get_display_clock_speed(struct drm_device *dev)
6885 {
6886         u16 hpllcc = 0;
6887
6888         /*
6889          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6890          * encoding is different :(
6891          * FIXME is this the right way to detect 852GM/852GMV?
6892          */
6893         if (dev->pdev->revision == 0x1)
6894                 return 133333;
6895
6896         pci_bus_read_config_word(dev->pdev->bus,
6897                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6898
6899         /* Assume that the hardware is in the high speed state.  This
6900          * should be the default.
6901          */
6902         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6903         case GC_CLOCK_133_200:
6904         case GC_CLOCK_133_200_2:
6905         case GC_CLOCK_100_200:
6906                 return 200000;
6907         case GC_CLOCK_166_250:
6908                 return 250000;
6909         case GC_CLOCK_100_133:
6910                 return 133333;
6911         case GC_CLOCK_133_266:
6912         case GC_CLOCK_133_266_2:
6913         case GC_CLOCK_166_266:
6914                 return 266667;
6915         }
6916
6917         /* Shouldn't happen */
6918         return 0;
6919 }
6920
6921 static int i830_get_display_clock_speed(struct drm_device *dev)
6922 {
6923         return 133333;
6924 }
6925
6926 static unsigned int intel_hpll_vco(struct drm_device *dev)
6927 {
6928         struct drm_i915_private *dev_priv = dev->dev_private;
6929         static const unsigned int blb_vco[8] = {
6930                 [0] = 3200000,
6931                 [1] = 4000000,
6932                 [2] = 5333333,
6933                 [3] = 4800000,
6934                 [4] = 6400000,
6935         };
6936         static const unsigned int pnv_vco[8] = {
6937                 [0] = 3200000,
6938                 [1] = 4000000,
6939                 [2] = 5333333,
6940                 [3] = 4800000,
6941                 [4] = 2666667,
6942         };
6943         static const unsigned int cl_vco[8] = {
6944                 [0] = 3200000,
6945                 [1] = 4000000,
6946                 [2] = 5333333,
6947                 [3] = 6400000,
6948                 [4] = 3333333,
6949                 [5] = 3566667,
6950                 [6] = 4266667,
6951         };
6952         static const unsigned int elk_vco[8] = {
6953                 [0] = 3200000,
6954                 [1] = 4000000,
6955                 [2] = 5333333,
6956                 [3] = 4800000,
6957         };
6958         static const unsigned int ctg_vco[8] = {
6959                 [0] = 3200000,
6960                 [1] = 4000000,
6961                 [2] = 5333333,
6962                 [3] = 6400000,
6963                 [4] = 2666667,
6964                 [5] = 4266667,
6965         };
6966         const unsigned int *vco_table;
6967         unsigned int vco;
6968         uint8_t tmp = 0;
6969
6970         /* FIXME other chipsets? */
6971         if (IS_GM45(dev))
6972                 vco_table = ctg_vco;
6973         else if (IS_G4X(dev))
6974                 vco_table = elk_vco;
6975         else if (IS_CRESTLINE(dev))
6976                 vco_table = cl_vco;
6977         else if (IS_PINEVIEW(dev))
6978                 vco_table = pnv_vco;
6979         else if (IS_G33(dev))
6980                 vco_table = blb_vco;
6981         else
6982                 return 0;
6983
6984         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6985
6986         vco = vco_table[tmp & 0x7];
6987         if (vco == 0)
6988                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6989         else
6990                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6991
6992         return vco;
6993 }
6994
6995 static int gm45_get_display_clock_speed(struct drm_device *dev)
6996 {
6997         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6998         uint16_t tmp = 0;
6999
7000         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7001
7002         cdclk_sel = (tmp >> 12) & 0x1;
7003
7004         switch (vco) {
7005         case 2666667:
7006         case 4000000:
7007         case 5333333:
7008                 return cdclk_sel ? 333333 : 222222;
7009         case 3200000:
7010                 return cdclk_sel ? 320000 : 228571;
7011         default:
7012                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7013                 return 222222;
7014         }
7015 }
7016
7017 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7018 {
7019         static const uint8_t div_3200[] = { 16, 10,  8 };
7020         static const uint8_t div_4000[] = { 20, 12, 10 };
7021         static const uint8_t div_5333[] = { 24, 16, 14 };
7022         const uint8_t *div_table;
7023         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7024         uint16_t tmp = 0;
7025
7026         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7027
7028         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7029
7030         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7031                 goto fail;
7032
7033         switch (vco) {
7034         case 3200000:
7035                 div_table = div_3200;
7036                 break;
7037         case 4000000:
7038                 div_table = div_4000;
7039                 break;
7040         case 5333333:
7041                 div_table = div_5333;
7042                 break;
7043         default:
7044                 goto fail;
7045         }
7046
7047         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7048
7049 fail:
7050         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7051         return 200000;
7052 }
7053
7054 static int g33_get_display_clock_speed(struct drm_device *dev)
7055 {
7056         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7057         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7058         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7059         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7060         const uint8_t *div_table;
7061         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7062         uint16_t tmp = 0;
7063
7064         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7065
7066         cdclk_sel = (tmp >> 4) & 0x7;
7067
7068         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7069                 goto fail;
7070
7071         switch (vco) {
7072         case 3200000:
7073                 div_table = div_3200;
7074                 break;
7075         case 4000000:
7076                 div_table = div_4000;
7077                 break;
7078         case 4800000:
7079                 div_table = div_4800;
7080                 break;
7081         case 5333333:
7082                 div_table = div_5333;
7083                 break;
7084         default:
7085                 goto fail;
7086         }
7087
7088         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7089
7090 fail:
7091         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7092         return 190476;
7093 }
7094
7095 static void
7096 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7097 {
7098         while (*num > DATA_LINK_M_N_MASK ||
7099                *den > DATA_LINK_M_N_MASK) {
7100                 *num >>= 1;
7101                 *den >>= 1;
7102         }
7103 }
7104
7105 static void compute_m_n(unsigned int m, unsigned int n,
7106                         uint32_t *ret_m, uint32_t *ret_n)
7107 {
7108         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7109         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7110         intel_reduce_m_n_ratio(ret_m, ret_n);
7111 }
7112
7113 void
7114 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7115                        int pixel_clock, int link_clock,
7116                        struct intel_link_m_n *m_n)
7117 {
7118         m_n->tu = 64;
7119
7120         compute_m_n(bits_per_pixel * pixel_clock,
7121                     link_clock * nlanes * 8,
7122                     &m_n->gmch_m, &m_n->gmch_n);
7123
7124         compute_m_n(pixel_clock, link_clock,
7125                     &m_n->link_m, &m_n->link_n);
7126 }
7127
7128 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7129 {
7130         if (i915.panel_use_ssc >= 0)
7131                 return i915.panel_use_ssc != 0;
7132         return dev_priv->vbt.lvds_use_ssc
7133                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7134 }
7135
7136 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7137                            int num_connectors)
7138 {
7139         struct drm_device *dev = crtc_state->base.crtc->dev;
7140         struct drm_i915_private *dev_priv = dev->dev_private;
7141         int refclk;
7142
7143         WARN_ON(!crtc_state->base.state);
7144
7145         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) {
7146                 refclk = 100000;
7147         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7148             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7149                 refclk = dev_priv->vbt.lvds_ssc_freq;
7150                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7151         } else if (!IS_GEN2(dev)) {
7152                 refclk = 96000;
7153         } else {
7154                 refclk = 48000;
7155         }
7156
7157         return refclk;
7158 }
7159
7160 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7161 {
7162         return (1 << dpll->n) << 16 | dpll->m2;
7163 }
7164
7165 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7166 {
7167         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7168 }
7169
7170 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7171                                      struct intel_crtc_state *crtc_state,
7172                                      intel_clock_t *reduced_clock)
7173 {
7174         struct drm_device *dev = crtc->base.dev;
7175         u32 fp, fp2 = 0;
7176
7177         if (IS_PINEVIEW(dev)) {
7178                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7179                 if (reduced_clock)
7180                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7181         } else {
7182                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7183                 if (reduced_clock)
7184                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7185         }
7186
7187         crtc_state->dpll_hw_state.fp0 = fp;
7188
7189         crtc->lowfreq_avail = false;
7190         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7191             reduced_clock) {
7192                 crtc_state->dpll_hw_state.fp1 = fp2;
7193                 crtc->lowfreq_avail = true;
7194         } else {
7195                 crtc_state->dpll_hw_state.fp1 = fp;
7196         }
7197 }
7198
7199 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7200                 pipe)
7201 {
7202         u32 reg_val;
7203
7204         /*
7205          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7206          * and set it to a reasonable value instead.
7207          */
7208         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7209         reg_val &= 0xffffff00;
7210         reg_val |= 0x00000030;
7211         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7212
7213         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7214         reg_val &= 0x8cffffff;
7215         reg_val = 0x8c000000;
7216         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7217
7218         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7219         reg_val &= 0xffffff00;
7220         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7221
7222         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7223         reg_val &= 0x00ffffff;
7224         reg_val |= 0xb0000000;
7225         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7226 }
7227
7228 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7229                                          struct intel_link_m_n *m_n)
7230 {
7231         struct drm_device *dev = crtc->base.dev;
7232         struct drm_i915_private *dev_priv = dev->dev_private;
7233         int pipe = crtc->pipe;
7234
7235         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7236         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7237         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7238         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7239 }
7240
7241 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7242                                          struct intel_link_m_n *m_n,
7243                                          struct intel_link_m_n *m2_n2)
7244 {
7245         struct drm_device *dev = crtc->base.dev;
7246         struct drm_i915_private *dev_priv = dev->dev_private;
7247         int pipe = crtc->pipe;
7248         enum transcoder transcoder = crtc->config->cpu_transcoder;
7249
7250         if (INTEL_INFO(dev)->gen >= 5) {
7251                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7252                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7253                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7254                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7255                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7256                  * for gen < 8) and if DRRS is supported (to make sure the
7257                  * registers are not unnecessarily accessed).
7258                  */
7259                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7260                         crtc->config->has_drrs) {
7261                         I915_WRITE(PIPE_DATA_M2(transcoder),
7262                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7263                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7264                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7265                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7266                 }
7267         } else {
7268                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7269                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7270                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7271                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7272         }
7273 }
7274
7275 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7276 {
7277         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7278
7279         if (m_n == M1_N1) {
7280                 dp_m_n = &crtc->config->dp_m_n;
7281                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7282         } else if (m_n == M2_N2) {
7283
7284                 /*
7285                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7286                  * needs to be programmed into M1_N1.
7287                  */
7288                 dp_m_n = &crtc->config->dp_m2_n2;
7289         } else {
7290                 DRM_ERROR("Unsupported divider value\n");
7291                 return;
7292         }
7293
7294         if (crtc->config->has_pch_encoder)
7295                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7296         else
7297                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7298 }
7299
7300 static void vlv_compute_dpll(struct intel_crtc *crtc,
7301                              struct intel_crtc_state *pipe_config)
7302 {
7303         u32 dpll, dpll_md;
7304
7305         /*
7306          * Enable DPIO clock input. We should never disable the reference
7307          * clock for pipe B, since VGA hotplug / manual detection depends
7308          * on it.
7309          */
7310         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7311                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7312         /* We should never disable this, set it here for state tracking */
7313         if (crtc->pipe == PIPE_B)
7314                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7315         dpll |= DPLL_VCO_ENABLE;
7316         pipe_config->dpll_hw_state.dpll = dpll;
7317
7318         dpll_md = (pipe_config->pixel_multiplier - 1)
7319                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7320         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7321 }
7322
7323 static void vlv_prepare_pll(struct intel_crtc *crtc,
7324                             const struct intel_crtc_state *pipe_config)
7325 {
7326         struct drm_device *dev = crtc->base.dev;
7327         struct drm_i915_private *dev_priv = dev->dev_private;
7328         int pipe = crtc->pipe;
7329         u32 mdiv;
7330         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7331         u32 coreclk, reg_val;
7332
7333         mutex_lock(&dev_priv->sb_lock);
7334
7335         bestn = pipe_config->dpll.n;
7336         bestm1 = pipe_config->dpll.m1;
7337         bestm2 = pipe_config->dpll.m2;
7338         bestp1 = pipe_config->dpll.p1;
7339         bestp2 = pipe_config->dpll.p2;
7340
7341         /* See eDP HDMI DPIO driver vbios notes doc */
7342
7343         /* PLL B needs special handling */
7344         if (pipe == PIPE_B)
7345                 vlv_pllb_recal_opamp(dev_priv, pipe);
7346
7347         /* Set up Tx target for periodic Rcomp update */
7348         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7349
7350         /* Disable target IRef on PLL */
7351         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7352         reg_val &= 0x00ffffff;
7353         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7354
7355         /* Disable fast lock */
7356         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7357
7358         /* Set idtafcrecal before PLL is enabled */
7359         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7360         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7361         mdiv |= ((bestn << DPIO_N_SHIFT));
7362         mdiv |= (1 << DPIO_K_SHIFT);
7363
7364         /*
7365          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7366          * but we don't support that).
7367          * Note: don't use the DAC post divider as it seems unstable.
7368          */
7369         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7370         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7371
7372         mdiv |= DPIO_ENABLE_CALIBRATION;
7373         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7374
7375         /* Set HBR and RBR LPF coefficients */
7376         if (pipe_config->port_clock == 162000 ||
7377             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7378             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7379                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7380                                  0x009f0003);
7381         else
7382                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7383                                  0x00d0000f);
7384
7385         if (pipe_config->has_dp_encoder) {
7386                 /* Use SSC source */
7387                 if (pipe == PIPE_A)
7388                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7389                                          0x0df40000);
7390                 else
7391                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7392                                          0x0df70000);
7393         } else { /* HDMI or VGA */
7394                 /* Use bend source */
7395                 if (pipe == PIPE_A)
7396                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7397                                          0x0df70000);
7398                 else
7399                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7400                                          0x0df40000);
7401         }
7402
7403         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7404         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7405         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7406             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7407                 coreclk |= 0x01000000;
7408         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7409
7410         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7411         mutex_unlock(&dev_priv->sb_lock);
7412 }
7413
7414 static void chv_compute_dpll(struct intel_crtc *crtc,
7415                              struct intel_crtc_state *pipe_config)
7416 {
7417         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7418                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7419                 DPLL_VCO_ENABLE;
7420         if (crtc->pipe != PIPE_A)
7421                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7422
7423         pipe_config->dpll_hw_state.dpll_md =
7424                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7425 }
7426
7427 static void chv_prepare_pll(struct intel_crtc *crtc,
7428                             const struct intel_crtc_state *pipe_config)
7429 {
7430         struct drm_device *dev = crtc->base.dev;
7431         struct drm_i915_private *dev_priv = dev->dev_private;
7432         int pipe = crtc->pipe;
7433         i915_reg_t dpll_reg = DPLL(crtc->pipe);
7434         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7435         u32 loopfilter, tribuf_calcntr;
7436         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7437         u32 dpio_val;
7438         int vco;
7439
7440         bestn = pipe_config->dpll.n;
7441         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7442         bestm1 = pipe_config->dpll.m1;
7443         bestm2 = pipe_config->dpll.m2 >> 22;
7444         bestp1 = pipe_config->dpll.p1;
7445         bestp2 = pipe_config->dpll.p2;
7446         vco = pipe_config->dpll.vco;
7447         dpio_val = 0;
7448         loopfilter = 0;
7449
7450         /*
7451          * Enable Refclk and SSC
7452          */
7453         I915_WRITE(dpll_reg,
7454                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7455
7456         mutex_lock(&dev_priv->sb_lock);
7457
7458         /* p1 and p2 divider */
7459         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7460                         5 << DPIO_CHV_S1_DIV_SHIFT |
7461                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7462                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7463                         1 << DPIO_CHV_K_DIV_SHIFT);
7464
7465         /* Feedback post-divider - m2 */
7466         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7467
7468         /* Feedback refclk divider - n and m1 */
7469         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7470                         DPIO_CHV_M1_DIV_BY_2 |
7471                         1 << DPIO_CHV_N_DIV_SHIFT);
7472
7473         /* M2 fraction division */
7474         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7475
7476         /* M2 fraction division enable */
7477         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7478         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7479         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7480         if (bestm2_frac)
7481                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7482         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7483
7484         /* Program digital lock detect threshold */
7485         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7486         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7487                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7488         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7489         if (!bestm2_frac)
7490                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7491         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7492
7493         /* Loop filter */
7494         if (vco == 5400000) {
7495                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7496                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7497                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7498                 tribuf_calcntr = 0x9;
7499         } else if (vco <= 6200000) {
7500                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7501                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7502                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7503                 tribuf_calcntr = 0x9;
7504         } else if (vco <= 6480000) {
7505                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7506                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7507                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7508                 tribuf_calcntr = 0x8;
7509         } else {
7510                 /* Not supported. Apply the same limits as in the max case */
7511                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7512                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7513                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7514                 tribuf_calcntr = 0;
7515         }
7516         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7517
7518         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7519         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7520         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7521         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7522
7523         /* AFC Recal */
7524         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7525                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7526                         DPIO_AFC_RECAL);
7527
7528         mutex_unlock(&dev_priv->sb_lock);
7529 }
7530
7531 /**
7532  * vlv_force_pll_on - forcibly enable just the PLL
7533  * @dev_priv: i915 private structure
7534  * @pipe: pipe PLL to enable
7535  * @dpll: PLL configuration
7536  *
7537  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7538  * in cases where we need the PLL enabled even when @pipe is not going to
7539  * be enabled.
7540  */
7541 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7542                      const struct dpll *dpll)
7543 {
7544         struct intel_crtc *crtc =
7545                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7546         struct intel_crtc_state *pipe_config;
7547
7548         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7549         if (!pipe_config)
7550                 return -ENOMEM;
7551
7552         pipe_config->base.crtc = &crtc->base;
7553         pipe_config->pixel_multiplier = 1;
7554         pipe_config->dpll = *dpll;
7555
7556         if (IS_CHERRYVIEW(dev)) {
7557                 chv_compute_dpll(crtc, pipe_config);
7558                 chv_prepare_pll(crtc, pipe_config);
7559                 chv_enable_pll(crtc, pipe_config);
7560         } else {
7561                 vlv_compute_dpll(crtc, pipe_config);
7562                 vlv_prepare_pll(crtc, pipe_config);
7563                 vlv_enable_pll(crtc, pipe_config);
7564         }
7565
7566         kfree(pipe_config);
7567
7568         return 0;
7569 }
7570
7571 /**
7572  * vlv_force_pll_off - forcibly disable just the PLL
7573  * @dev_priv: i915 private structure
7574  * @pipe: pipe PLL to disable
7575  *
7576  * Disable the PLL for @pipe. To be used in cases where we need
7577  * the PLL enabled even when @pipe is not going to be enabled.
7578  */
7579 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7580 {
7581         if (IS_CHERRYVIEW(dev))
7582                 chv_disable_pll(to_i915(dev), pipe);
7583         else
7584                 vlv_disable_pll(to_i915(dev), pipe);
7585 }
7586
7587 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7588                               struct intel_crtc_state *crtc_state,
7589                               intel_clock_t *reduced_clock,
7590                               int num_connectors)
7591 {
7592         struct drm_device *dev = crtc->base.dev;
7593         struct drm_i915_private *dev_priv = dev->dev_private;
7594         u32 dpll;
7595         bool is_sdvo;
7596         struct dpll *clock = &crtc_state->dpll;
7597
7598         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7599
7600         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7601                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7602
7603         dpll = DPLL_VGA_MODE_DIS;
7604
7605         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7606                 dpll |= DPLLB_MODE_LVDS;
7607         else
7608                 dpll |= DPLLB_MODE_DAC_SERIAL;
7609
7610         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7611                 dpll |= (crtc_state->pixel_multiplier - 1)
7612                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7613         }
7614
7615         if (is_sdvo)
7616                 dpll |= DPLL_SDVO_HIGH_SPEED;
7617
7618         if (crtc_state->has_dp_encoder)
7619                 dpll |= DPLL_SDVO_HIGH_SPEED;
7620
7621         /* compute bitmask from p1 value */
7622         if (IS_PINEVIEW(dev))
7623                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7624         else {
7625                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7626                 if (IS_G4X(dev) && reduced_clock)
7627                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7628         }
7629         switch (clock->p2) {
7630         case 5:
7631                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7632                 break;
7633         case 7:
7634                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7635                 break;
7636         case 10:
7637                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7638                 break;
7639         case 14:
7640                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7641                 break;
7642         }
7643         if (INTEL_INFO(dev)->gen >= 4)
7644                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7645
7646         if (crtc_state->sdvo_tv_clock)
7647                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7648         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7649                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7650                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7651         else
7652                 dpll |= PLL_REF_INPUT_DREFCLK;
7653
7654         dpll |= DPLL_VCO_ENABLE;
7655         crtc_state->dpll_hw_state.dpll = dpll;
7656
7657         if (INTEL_INFO(dev)->gen >= 4) {
7658                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7659                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7660                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7661         }
7662 }
7663
7664 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7665                               struct intel_crtc_state *crtc_state,
7666                               intel_clock_t *reduced_clock,
7667                               int num_connectors)
7668 {
7669         struct drm_device *dev = crtc->base.dev;
7670         struct drm_i915_private *dev_priv = dev->dev_private;
7671         u32 dpll;
7672         struct dpll *clock = &crtc_state->dpll;
7673
7674         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7675
7676         dpll = DPLL_VGA_MODE_DIS;
7677
7678         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7679                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7680         } else {
7681                 if (clock->p1 == 2)
7682                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7683                 else
7684                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7685                 if (clock->p2 == 4)
7686                         dpll |= PLL_P2_DIVIDE_BY_4;
7687         }
7688
7689         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7690                 dpll |= DPLL_DVO_2X_MODE;
7691
7692         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7693                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7694                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7695         else
7696                 dpll |= PLL_REF_INPUT_DREFCLK;
7697
7698         dpll |= DPLL_VCO_ENABLE;
7699         crtc_state->dpll_hw_state.dpll = dpll;
7700 }
7701
7702 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7703 {
7704         struct drm_device *dev = intel_crtc->base.dev;
7705         struct drm_i915_private *dev_priv = dev->dev_private;
7706         enum pipe pipe = intel_crtc->pipe;
7707         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7708         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7709         uint32_t crtc_vtotal, crtc_vblank_end;
7710         int vsyncshift = 0;
7711
7712         /* We need to be careful not to changed the adjusted mode, for otherwise
7713          * the hw state checker will get angry at the mismatch. */
7714         crtc_vtotal = adjusted_mode->crtc_vtotal;
7715         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7716
7717         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7718                 /* the chip adds 2 halflines automatically */
7719                 crtc_vtotal -= 1;
7720                 crtc_vblank_end -= 1;
7721
7722                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7723                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7724                 else
7725                         vsyncshift = adjusted_mode->crtc_hsync_start -
7726                                 adjusted_mode->crtc_htotal / 2;
7727                 if (vsyncshift < 0)
7728                         vsyncshift += adjusted_mode->crtc_htotal;
7729         }
7730
7731         if (INTEL_INFO(dev)->gen > 3)
7732                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7733
7734         I915_WRITE(HTOTAL(cpu_transcoder),
7735                    (adjusted_mode->crtc_hdisplay - 1) |
7736                    ((adjusted_mode->crtc_htotal - 1) << 16));
7737         I915_WRITE(HBLANK(cpu_transcoder),
7738                    (adjusted_mode->crtc_hblank_start - 1) |
7739                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7740         I915_WRITE(HSYNC(cpu_transcoder),
7741                    (adjusted_mode->crtc_hsync_start - 1) |
7742                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7743
7744         I915_WRITE(VTOTAL(cpu_transcoder),
7745                    (adjusted_mode->crtc_vdisplay - 1) |
7746                    ((crtc_vtotal - 1) << 16));
7747         I915_WRITE(VBLANK(cpu_transcoder),
7748                    (adjusted_mode->crtc_vblank_start - 1) |
7749                    ((crtc_vblank_end - 1) << 16));
7750         I915_WRITE(VSYNC(cpu_transcoder),
7751                    (adjusted_mode->crtc_vsync_start - 1) |
7752                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7753
7754         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7755          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7756          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7757          * bits. */
7758         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7759             (pipe == PIPE_B || pipe == PIPE_C))
7760                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7761
7762         /* pipesrc controls the size that is scaled from, which should
7763          * always be the user's requested size.
7764          */
7765         I915_WRITE(PIPESRC(pipe),
7766                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7767                    (intel_crtc->config->pipe_src_h - 1));
7768 }
7769
7770 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7771                                    struct intel_crtc_state *pipe_config)
7772 {
7773         struct drm_device *dev = crtc->base.dev;
7774         struct drm_i915_private *dev_priv = dev->dev_private;
7775         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7776         uint32_t tmp;
7777
7778         tmp = I915_READ(HTOTAL(cpu_transcoder));
7779         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7780         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7781         tmp = I915_READ(HBLANK(cpu_transcoder));
7782         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7783         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7784         tmp = I915_READ(HSYNC(cpu_transcoder));
7785         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7786         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7787
7788         tmp = I915_READ(VTOTAL(cpu_transcoder));
7789         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7790         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7791         tmp = I915_READ(VBLANK(cpu_transcoder));
7792         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7793         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7794         tmp = I915_READ(VSYNC(cpu_transcoder));
7795         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7796         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7797
7798         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7799                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7800                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7801                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7802         }
7803
7804         tmp = I915_READ(PIPESRC(crtc->pipe));
7805         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7806         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7807
7808         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7809         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7810 }
7811
7812 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7813                                  struct intel_crtc_state *pipe_config)
7814 {
7815         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7816         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7817         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7818         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7819
7820         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7821         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7822         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7823         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7824
7825         mode->flags = pipe_config->base.adjusted_mode.flags;
7826         mode->type = DRM_MODE_TYPE_DRIVER;
7827
7828         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7829         mode->flags |= pipe_config->base.adjusted_mode.flags;
7830
7831         mode->hsync = drm_mode_hsync(mode);
7832         mode->vrefresh = drm_mode_vrefresh(mode);
7833         drm_mode_set_name(mode);
7834 }
7835
7836 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7837 {
7838         struct drm_device *dev = intel_crtc->base.dev;
7839         struct drm_i915_private *dev_priv = dev->dev_private;
7840         uint32_t pipeconf;
7841
7842         pipeconf = 0;
7843
7844         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7845             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7846                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7847
7848         if (intel_crtc->config->double_wide)
7849                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7850
7851         /* only g4x and later have fancy bpc/dither controls */
7852         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7853                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7854                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7855                         pipeconf |= PIPECONF_DITHER_EN |
7856                                     PIPECONF_DITHER_TYPE_SP;
7857
7858                 switch (intel_crtc->config->pipe_bpp) {
7859                 case 18:
7860                         pipeconf |= PIPECONF_6BPC;
7861                         break;
7862                 case 24:
7863                         pipeconf |= PIPECONF_8BPC;
7864                         break;
7865                 case 30:
7866                         pipeconf |= PIPECONF_10BPC;
7867                         break;
7868                 default:
7869                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7870                         BUG();
7871                 }
7872         }
7873
7874         if (HAS_PIPE_CXSR(dev)) {
7875                 if (intel_crtc->lowfreq_avail) {
7876                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7877                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7878                 } else {
7879                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7880                 }
7881         }
7882
7883         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7884                 if (INTEL_INFO(dev)->gen < 4 ||
7885                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7886                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7887                 else
7888                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7889         } else
7890                 pipeconf |= PIPECONF_PROGRESSIVE;
7891
7892         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7893              intel_crtc->config->limited_color_range)
7894                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7895
7896         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7897         POSTING_READ(PIPECONF(intel_crtc->pipe));
7898 }
7899
7900 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7901                                    struct intel_crtc_state *crtc_state)
7902 {
7903         struct drm_device *dev = crtc->base.dev;
7904         struct drm_i915_private *dev_priv = dev->dev_private;
7905         int refclk, num_connectors = 0;
7906         intel_clock_t clock;
7907         bool ok;
7908         const intel_limit_t *limit;
7909         struct drm_atomic_state *state = crtc_state->base.state;
7910         struct drm_connector *connector;
7911         struct drm_connector_state *connector_state;
7912         int i;
7913
7914         memset(&crtc_state->dpll_hw_state, 0,
7915                sizeof(crtc_state->dpll_hw_state));
7916
7917         if (crtc_state->has_dsi_encoder)
7918                 return 0;
7919
7920         for_each_connector_in_state(state, connector, connector_state, i) {
7921                 if (connector_state->crtc == &crtc->base)
7922                         num_connectors++;
7923         }
7924
7925         if (!crtc_state->clock_set) {
7926                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7927
7928                 /*
7929                  * Returns a set of divisors for the desired target clock with
7930                  * the given refclk, or FALSE.  The returned values represent
7931                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7932                  * 2) / p1 / p2.
7933                  */
7934                 limit = intel_limit(crtc_state, refclk);
7935                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7936                                                  crtc_state->port_clock,
7937                                                  refclk, NULL, &clock);
7938                 if (!ok) {
7939                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7940                         return -EINVAL;
7941                 }
7942
7943                 /* Compat-code for transition, will disappear. */
7944                 crtc_state->dpll.n = clock.n;
7945                 crtc_state->dpll.m1 = clock.m1;
7946                 crtc_state->dpll.m2 = clock.m2;
7947                 crtc_state->dpll.p1 = clock.p1;
7948                 crtc_state->dpll.p2 = clock.p2;
7949         }
7950
7951         if (IS_GEN2(dev)) {
7952                 i8xx_compute_dpll(crtc, crtc_state, NULL,
7953                                   num_connectors);
7954         } else if (IS_CHERRYVIEW(dev)) {
7955                 chv_compute_dpll(crtc, crtc_state);
7956         } else if (IS_VALLEYVIEW(dev)) {
7957                 vlv_compute_dpll(crtc, crtc_state);
7958         } else {
7959                 i9xx_compute_dpll(crtc, crtc_state, NULL,
7960                                   num_connectors);
7961         }
7962
7963         return 0;
7964 }
7965
7966 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7967                                  struct intel_crtc_state *pipe_config)
7968 {
7969         struct drm_device *dev = crtc->base.dev;
7970         struct drm_i915_private *dev_priv = dev->dev_private;
7971         uint32_t tmp;
7972
7973         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7974                 return;
7975
7976         tmp = I915_READ(PFIT_CONTROL);
7977         if (!(tmp & PFIT_ENABLE))
7978                 return;
7979
7980         /* Check whether the pfit is attached to our pipe. */
7981         if (INTEL_INFO(dev)->gen < 4) {
7982                 if (crtc->pipe != PIPE_B)
7983                         return;
7984         } else {
7985                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7986                         return;
7987         }
7988
7989         pipe_config->gmch_pfit.control = tmp;
7990         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7991 }
7992
7993 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7994                                struct intel_crtc_state *pipe_config)
7995 {
7996         struct drm_device *dev = crtc->base.dev;
7997         struct drm_i915_private *dev_priv = dev->dev_private;
7998         int pipe = pipe_config->cpu_transcoder;
7999         intel_clock_t clock;
8000         u32 mdiv;
8001         int refclk = 100000;
8002
8003         /* In case of MIPI DPLL will not even be used */
8004         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8005                 return;
8006
8007         mutex_lock(&dev_priv->sb_lock);
8008         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8009         mutex_unlock(&dev_priv->sb_lock);
8010
8011         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8012         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8013         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8014         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8015         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8016
8017         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8018 }
8019
8020 static void
8021 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8022                               struct intel_initial_plane_config *plane_config)
8023 {
8024         struct drm_device *dev = crtc->base.dev;
8025         struct drm_i915_private *dev_priv = dev->dev_private;
8026         u32 val, base, offset;
8027         int pipe = crtc->pipe, plane = crtc->plane;
8028         int fourcc, pixel_format;
8029         unsigned int aligned_height;
8030         struct drm_framebuffer *fb;
8031         struct intel_framebuffer *intel_fb;
8032
8033         val = I915_READ(DSPCNTR(plane));
8034         if (!(val & DISPLAY_PLANE_ENABLE))
8035                 return;
8036
8037         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8038         if (!intel_fb) {
8039                 DRM_DEBUG_KMS("failed to alloc fb\n");
8040                 return;
8041         }
8042
8043         fb = &intel_fb->base;
8044
8045         if (INTEL_INFO(dev)->gen >= 4) {
8046                 if (val & DISPPLANE_TILED) {
8047                         plane_config->tiling = I915_TILING_X;
8048                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8049                 }
8050         }
8051
8052         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8053         fourcc = i9xx_format_to_fourcc(pixel_format);
8054         fb->pixel_format = fourcc;
8055         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8056
8057         if (INTEL_INFO(dev)->gen >= 4) {
8058                 if (plane_config->tiling)
8059                         offset = I915_READ(DSPTILEOFF(plane));
8060                 else
8061                         offset = I915_READ(DSPLINOFF(plane));
8062                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8063         } else {
8064                 base = I915_READ(DSPADDR(plane));
8065         }
8066         plane_config->base = base;
8067
8068         val = I915_READ(PIPESRC(pipe));
8069         fb->width = ((val >> 16) & 0xfff) + 1;
8070         fb->height = ((val >> 0) & 0xfff) + 1;
8071
8072         val = I915_READ(DSPSTRIDE(pipe));
8073         fb->pitches[0] = val & 0xffffffc0;
8074
8075         aligned_height = intel_fb_align_height(dev, fb->height,
8076                                                fb->pixel_format,
8077                                                fb->modifier[0]);
8078
8079         plane_config->size = fb->pitches[0] * aligned_height;
8080
8081         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8082                       pipe_name(pipe), plane, fb->width, fb->height,
8083                       fb->bits_per_pixel, base, fb->pitches[0],
8084                       plane_config->size);
8085
8086         plane_config->fb = intel_fb;
8087 }
8088
8089 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8090                                struct intel_crtc_state *pipe_config)
8091 {
8092         struct drm_device *dev = crtc->base.dev;
8093         struct drm_i915_private *dev_priv = dev->dev_private;
8094         int pipe = pipe_config->cpu_transcoder;
8095         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8096         intel_clock_t clock;
8097         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8098         int refclk = 100000;
8099
8100         mutex_lock(&dev_priv->sb_lock);
8101         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8102         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8103         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8104         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8105         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8106         mutex_unlock(&dev_priv->sb_lock);
8107
8108         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8109         clock.m2 = (pll_dw0 & 0xff) << 22;
8110         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8111                 clock.m2 |= pll_dw2 & 0x3fffff;
8112         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8113         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8114         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8115
8116         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8117 }
8118
8119 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8120                                  struct intel_crtc_state *pipe_config)
8121 {
8122         struct drm_device *dev = crtc->base.dev;
8123         struct drm_i915_private *dev_priv = dev->dev_private;
8124         enum intel_display_power_domain power_domain;
8125         uint32_t tmp;
8126         bool ret;
8127
8128         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8129         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8130                 return false;
8131
8132         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8133         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8134
8135         ret = false;
8136
8137         tmp = I915_READ(PIPECONF(crtc->pipe));
8138         if (!(tmp & PIPECONF_ENABLE))
8139                 goto out;
8140
8141         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8142                 switch (tmp & PIPECONF_BPC_MASK) {
8143                 case PIPECONF_6BPC:
8144                         pipe_config->pipe_bpp = 18;
8145                         break;
8146                 case PIPECONF_8BPC:
8147                         pipe_config->pipe_bpp = 24;
8148                         break;
8149                 case PIPECONF_10BPC:
8150                         pipe_config->pipe_bpp = 30;
8151                         break;
8152                 default:
8153                         break;
8154                 }
8155         }
8156
8157         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8158             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8159                 pipe_config->limited_color_range = true;
8160
8161         if (INTEL_INFO(dev)->gen < 4)
8162                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8163
8164         intel_get_pipe_timings(crtc, pipe_config);
8165
8166         i9xx_get_pfit_config(crtc, pipe_config);
8167
8168         if (INTEL_INFO(dev)->gen >= 4) {
8169                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8170                 pipe_config->pixel_multiplier =
8171                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8172                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8173                 pipe_config->dpll_hw_state.dpll_md = tmp;
8174         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8175                 tmp = I915_READ(DPLL(crtc->pipe));
8176                 pipe_config->pixel_multiplier =
8177                         ((tmp & SDVO_MULTIPLIER_MASK)
8178                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8179         } else {
8180                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8181                  * port and will be fixed up in the encoder->get_config
8182                  * function. */
8183                 pipe_config->pixel_multiplier = 1;
8184         }
8185         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8186         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8187                 /*
8188                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8189                  * on 830. Filter it out here so that we don't
8190                  * report errors due to that.
8191                  */
8192                 if (IS_I830(dev))
8193                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8194
8195                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8196                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8197         } else {
8198                 /* Mask out read-only status bits. */
8199                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8200                                                      DPLL_PORTC_READY_MASK |
8201                                                      DPLL_PORTB_READY_MASK);
8202         }
8203
8204         if (IS_CHERRYVIEW(dev))
8205                 chv_crtc_clock_get(crtc, pipe_config);
8206         else if (IS_VALLEYVIEW(dev))
8207                 vlv_crtc_clock_get(crtc, pipe_config);
8208         else
8209                 i9xx_crtc_clock_get(crtc, pipe_config);
8210
8211         /*
8212          * Normally the dotclock is filled in by the encoder .get_config()
8213          * but in case the pipe is enabled w/o any ports we need a sane
8214          * default.
8215          */
8216         pipe_config->base.adjusted_mode.crtc_clock =
8217                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8218
8219         ret = true;
8220
8221 out:
8222         intel_display_power_put(dev_priv, power_domain);
8223
8224         return ret;
8225 }
8226
8227 static void ironlake_init_pch_refclk(struct drm_device *dev)
8228 {
8229         struct drm_i915_private *dev_priv = dev->dev_private;
8230         struct intel_encoder *encoder;
8231         u32 val, final;
8232         bool has_lvds = false;
8233         bool has_cpu_edp = false;
8234         bool has_panel = false;
8235         bool has_ck505 = false;
8236         bool can_ssc = false;
8237
8238         /* We need to take the global config into account */
8239         for_each_intel_encoder(dev, encoder) {
8240                 switch (encoder->type) {
8241                 case INTEL_OUTPUT_LVDS:
8242                         has_panel = true;
8243                         has_lvds = true;
8244                         break;
8245                 case INTEL_OUTPUT_EDP:
8246                         has_panel = true;
8247                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8248                                 has_cpu_edp = true;
8249                         break;
8250                 default:
8251                         break;
8252                 }
8253         }
8254
8255         if (HAS_PCH_IBX(dev)) {
8256                 has_ck505 = dev_priv->vbt.display_clock_mode;
8257                 can_ssc = has_ck505;
8258         } else {
8259                 has_ck505 = false;
8260                 can_ssc = true;
8261         }
8262
8263         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8264                       has_panel, has_lvds, has_ck505);
8265
8266         /* Ironlake: try to setup display ref clock before DPLL
8267          * enabling. This is only under driver's control after
8268          * PCH B stepping, previous chipset stepping should be
8269          * ignoring this setting.
8270          */
8271         val = I915_READ(PCH_DREF_CONTROL);
8272
8273         /* As we must carefully and slowly disable/enable each source in turn,
8274          * compute the final state we want first and check if we need to
8275          * make any changes at all.
8276          */
8277         final = val;
8278         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8279         if (has_ck505)
8280                 final |= DREF_NONSPREAD_CK505_ENABLE;
8281         else
8282                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8283
8284         final &= ~DREF_SSC_SOURCE_MASK;
8285         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8286         final &= ~DREF_SSC1_ENABLE;
8287
8288         if (has_panel) {
8289                 final |= DREF_SSC_SOURCE_ENABLE;
8290
8291                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8292                         final |= DREF_SSC1_ENABLE;
8293
8294                 if (has_cpu_edp) {
8295                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8296                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8297                         else
8298                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8299                 } else
8300                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8301         } else {
8302                 final |= DREF_SSC_SOURCE_DISABLE;
8303                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8304         }
8305
8306         if (final == val)
8307                 return;
8308
8309         /* Always enable nonspread source */
8310         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8311
8312         if (has_ck505)
8313                 val |= DREF_NONSPREAD_CK505_ENABLE;
8314         else
8315                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8316
8317         if (has_panel) {
8318                 val &= ~DREF_SSC_SOURCE_MASK;
8319                 val |= DREF_SSC_SOURCE_ENABLE;
8320
8321                 /* SSC must be turned on before enabling the CPU output  */
8322                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8323                         DRM_DEBUG_KMS("Using SSC on panel\n");
8324                         val |= DREF_SSC1_ENABLE;
8325                 } else
8326                         val &= ~DREF_SSC1_ENABLE;
8327
8328                 /* Get SSC going before enabling the outputs */
8329                 I915_WRITE(PCH_DREF_CONTROL, val);
8330                 POSTING_READ(PCH_DREF_CONTROL);
8331                 udelay(200);
8332
8333                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8334
8335                 /* Enable CPU source on CPU attached eDP */
8336                 if (has_cpu_edp) {
8337                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8338                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8339                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8340                         } else
8341                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8342                 } else
8343                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8344
8345                 I915_WRITE(PCH_DREF_CONTROL, val);
8346                 POSTING_READ(PCH_DREF_CONTROL);
8347                 udelay(200);
8348         } else {
8349                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8350
8351                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8352
8353                 /* Turn off CPU output */
8354                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8355
8356                 I915_WRITE(PCH_DREF_CONTROL, val);
8357                 POSTING_READ(PCH_DREF_CONTROL);
8358                 udelay(200);
8359
8360                 /* Turn off the SSC source */
8361                 val &= ~DREF_SSC_SOURCE_MASK;
8362                 val |= DREF_SSC_SOURCE_DISABLE;
8363
8364                 /* Turn off SSC1 */
8365                 val &= ~DREF_SSC1_ENABLE;
8366
8367                 I915_WRITE(PCH_DREF_CONTROL, val);
8368                 POSTING_READ(PCH_DREF_CONTROL);
8369                 udelay(200);
8370         }
8371
8372         BUG_ON(val != final);
8373 }
8374
8375 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8376 {
8377         uint32_t tmp;
8378
8379         tmp = I915_READ(SOUTH_CHICKEN2);
8380         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8381         I915_WRITE(SOUTH_CHICKEN2, tmp);
8382
8383         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8384                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8385                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8386
8387         tmp = I915_READ(SOUTH_CHICKEN2);
8388         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8389         I915_WRITE(SOUTH_CHICKEN2, tmp);
8390
8391         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8392                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8393                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8394 }
8395
8396 /* WaMPhyProgramming:hsw */
8397 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8398 {
8399         uint32_t tmp;
8400
8401         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8402         tmp &= ~(0xFF << 24);
8403         tmp |= (0x12 << 24);
8404         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8405
8406         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8407         tmp |= (1 << 11);
8408         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8409
8410         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8411         tmp |= (1 << 11);
8412         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8413
8414         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8415         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8416         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8417
8418         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8419         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8420         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8421
8422         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8423         tmp &= ~(7 << 13);
8424         tmp |= (5 << 13);
8425         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8426
8427         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8428         tmp &= ~(7 << 13);
8429         tmp |= (5 << 13);
8430         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8431
8432         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8433         tmp &= ~0xFF;
8434         tmp |= 0x1C;
8435         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8436
8437         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8438         tmp &= ~0xFF;
8439         tmp |= 0x1C;
8440         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8441
8442         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8443         tmp &= ~(0xFF << 16);
8444         tmp |= (0x1C << 16);
8445         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8446
8447         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8448         tmp &= ~(0xFF << 16);
8449         tmp |= (0x1C << 16);
8450         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8451
8452         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8453         tmp |= (1 << 27);
8454         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8455
8456         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8457         tmp |= (1 << 27);
8458         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8459
8460         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8461         tmp &= ~(0xF << 28);
8462         tmp |= (4 << 28);
8463         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8464
8465         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8466         tmp &= ~(0xF << 28);
8467         tmp |= (4 << 28);
8468         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8469 }
8470
8471 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8472  * Programming" based on the parameters passed:
8473  * - Sequence to enable CLKOUT_DP
8474  * - Sequence to enable CLKOUT_DP without spread
8475  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8476  */
8477 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8478                                  bool with_fdi)
8479 {
8480         struct drm_i915_private *dev_priv = dev->dev_private;
8481         uint32_t reg, tmp;
8482
8483         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8484                 with_spread = true;
8485         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8486                 with_fdi = false;
8487
8488         mutex_lock(&dev_priv->sb_lock);
8489
8490         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8491         tmp &= ~SBI_SSCCTL_DISABLE;
8492         tmp |= SBI_SSCCTL_PATHALT;
8493         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8494
8495         udelay(24);
8496
8497         if (with_spread) {
8498                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8499                 tmp &= ~SBI_SSCCTL_PATHALT;
8500                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8501
8502                 if (with_fdi) {
8503                         lpt_reset_fdi_mphy(dev_priv);
8504                         lpt_program_fdi_mphy(dev_priv);
8505                 }
8506         }
8507
8508         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8509         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8510         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8511         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8512
8513         mutex_unlock(&dev_priv->sb_lock);
8514 }
8515
8516 /* Sequence to disable CLKOUT_DP */
8517 static void lpt_disable_clkout_dp(struct drm_device *dev)
8518 {
8519         struct drm_i915_private *dev_priv = dev->dev_private;
8520         uint32_t reg, tmp;
8521
8522         mutex_lock(&dev_priv->sb_lock);
8523
8524         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8525         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8526         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8527         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8528
8529         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8530         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8531                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8532                         tmp |= SBI_SSCCTL_PATHALT;
8533                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8534                         udelay(32);
8535                 }
8536                 tmp |= SBI_SSCCTL_DISABLE;
8537                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8538         }
8539
8540         mutex_unlock(&dev_priv->sb_lock);
8541 }
8542
8543 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8544
8545 static const uint16_t sscdivintphase[] = {
8546         [BEND_IDX( 50)] = 0x3B23,
8547         [BEND_IDX( 45)] = 0x3B23,
8548         [BEND_IDX( 40)] = 0x3C23,
8549         [BEND_IDX( 35)] = 0x3C23,
8550         [BEND_IDX( 30)] = 0x3D23,
8551         [BEND_IDX( 25)] = 0x3D23,
8552         [BEND_IDX( 20)] = 0x3E23,
8553         [BEND_IDX( 15)] = 0x3E23,
8554         [BEND_IDX( 10)] = 0x3F23,
8555         [BEND_IDX(  5)] = 0x3F23,
8556         [BEND_IDX(  0)] = 0x0025,
8557         [BEND_IDX( -5)] = 0x0025,
8558         [BEND_IDX(-10)] = 0x0125,
8559         [BEND_IDX(-15)] = 0x0125,
8560         [BEND_IDX(-20)] = 0x0225,
8561         [BEND_IDX(-25)] = 0x0225,
8562         [BEND_IDX(-30)] = 0x0325,
8563         [BEND_IDX(-35)] = 0x0325,
8564         [BEND_IDX(-40)] = 0x0425,
8565         [BEND_IDX(-45)] = 0x0425,
8566         [BEND_IDX(-50)] = 0x0525,
8567 };
8568
8569 /*
8570  * Bend CLKOUT_DP
8571  * steps -50 to 50 inclusive, in steps of 5
8572  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8573  * change in clock period = -(steps / 10) * 5.787 ps
8574  */
8575 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8576 {
8577         uint32_t tmp;
8578         int idx = BEND_IDX(steps);
8579
8580         if (WARN_ON(steps % 5 != 0))
8581                 return;
8582
8583         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8584                 return;
8585
8586         mutex_lock(&dev_priv->sb_lock);
8587
8588         if (steps % 10 != 0)
8589                 tmp = 0xAAAAAAAB;
8590         else
8591                 tmp = 0x00000000;
8592         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8593
8594         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8595         tmp &= 0xffff0000;
8596         tmp |= sscdivintphase[idx];
8597         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8598
8599         mutex_unlock(&dev_priv->sb_lock);
8600 }
8601
8602 #undef BEND_IDX
8603
8604 static void lpt_init_pch_refclk(struct drm_device *dev)
8605 {
8606         struct intel_encoder *encoder;
8607         bool has_vga = false;
8608
8609         for_each_intel_encoder(dev, encoder) {
8610                 switch (encoder->type) {
8611                 case INTEL_OUTPUT_ANALOG:
8612                         has_vga = true;
8613                         break;
8614                 default:
8615                         break;
8616                 }
8617         }
8618
8619         if (has_vga) {
8620                 lpt_bend_clkout_dp(to_i915(dev), 0);
8621                 lpt_enable_clkout_dp(dev, true, true);
8622         } else {
8623                 lpt_disable_clkout_dp(dev);
8624         }
8625 }
8626
8627 /*
8628  * Initialize reference clocks when the driver loads
8629  */
8630 void intel_init_pch_refclk(struct drm_device *dev)
8631 {
8632         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8633                 ironlake_init_pch_refclk(dev);
8634         else if (HAS_PCH_LPT(dev))
8635                 lpt_init_pch_refclk(dev);
8636 }
8637
8638 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8639 {
8640         struct drm_device *dev = crtc_state->base.crtc->dev;
8641         struct drm_i915_private *dev_priv = dev->dev_private;
8642         struct drm_atomic_state *state = crtc_state->base.state;
8643         struct drm_connector *connector;
8644         struct drm_connector_state *connector_state;
8645         struct intel_encoder *encoder;
8646         int num_connectors = 0, i;
8647         bool is_lvds = false;
8648
8649         for_each_connector_in_state(state, connector, connector_state, i) {
8650                 if (connector_state->crtc != crtc_state->base.crtc)
8651                         continue;
8652
8653                 encoder = to_intel_encoder(connector_state->best_encoder);
8654
8655                 switch (encoder->type) {
8656                 case INTEL_OUTPUT_LVDS:
8657                         is_lvds = true;
8658                         break;
8659                 default:
8660                         break;
8661                 }
8662                 num_connectors++;
8663         }
8664
8665         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8666                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8667                               dev_priv->vbt.lvds_ssc_freq);
8668                 return dev_priv->vbt.lvds_ssc_freq;
8669         }
8670
8671         return 120000;
8672 }
8673
8674 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8675 {
8676         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8677         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8678         int pipe = intel_crtc->pipe;
8679         uint32_t val;
8680
8681         val = 0;
8682
8683         switch (intel_crtc->config->pipe_bpp) {
8684         case 18:
8685                 val |= PIPECONF_6BPC;
8686                 break;
8687         case 24:
8688                 val |= PIPECONF_8BPC;
8689                 break;
8690         case 30:
8691                 val |= PIPECONF_10BPC;
8692                 break;
8693         case 36:
8694                 val |= PIPECONF_12BPC;
8695                 break;
8696         default:
8697                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8698                 BUG();
8699         }
8700
8701         if (intel_crtc->config->dither)
8702                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8703
8704         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8705                 val |= PIPECONF_INTERLACED_ILK;
8706         else
8707                 val |= PIPECONF_PROGRESSIVE;
8708
8709         if (intel_crtc->config->limited_color_range)
8710                 val |= PIPECONF_COLOR_RANGE_SELECT;
8711
8712         I915_WRITE(PIPECONF(pipe), val);
8713         POSTING_READ(PIPECONF(pipe));
8714 }
8715
8716 /*
8717  * Set up the pipe CSC unit.
8718  *
8719  * Currently only full range RGB to limited range RGB conversion
8720  * is supported, but eventually this should handle various
8721  * RGB<->YCbCr scenarios as well.
8722  */
8723 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8724 {
8725         struct drm_device *dev = crtc->dev;
8726         struct drm_i915_private *dev_priv = dev->dev_private;
8727         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8728         int pipe = intel_crtc->pipe;
8729         uint16_t coeff = 0x7800; /* 1.0 */
8730
8731         /*
8732          * TODO: Check what kind of values actually come out of the pipe
8733          * with these coeff/postoff values and adjust to get the best
8734          * accuracy. Perhaps we even need to take the bpc value into
8735          * consideration.
8736          */
8737
8738         if (intel_crtc->config->limited_color_range)
8739                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8740
8741         /*
8742          * GY/GU and RY/RU should be the other way around according
8743          * to BSpec, but reality doesn't agree. Just set them up in
8744          * a way that results in the correct picture.
8745          */
8746         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8747         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8748
8749         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8750         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8751
8752         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8753         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8754
8755         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8756         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8757         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8758
8759         if (INTEL_INFO(dev)->gen > 6) {
8760                 uint16_t postoff = 0;
8761
8762                 if (intel_crtc->config->limited_color_range)
8763                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8764
8765                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8766                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8767                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8768
8769                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8770         } else {
8771                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8772
8773                 if (intel_crtc->config->limited_color_range)
8774                         mode |= CSC_BLACK_SCREEN_OFFSET;
8775
8776                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8777         }
8778 }
8779
8780 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8781 {
8782         struct drm_device *dev = crtc->dev;
8783         struct drm_i915_private *dev_priv = dev->dev_private;
8784         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8785         enum pipe pipe = intel_crtc->pipe;
8786         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8787         uint32_t val;
8788
8789         val = 0;
8790
8791         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8792                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8793
8794         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8795                 val |= PIPECONF_INTERLACED_ILK;
8796         else
8797                 val |= PIPECONF_PROGRESSIVE;
8798
8799         I915_WRITE(PIPECONF(cpu_transcoder), val);
8800         POSTING_READ(PIPECONF(cpu_transcoder));
8801
8802         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8803         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8804
8805         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8806                 val = 0;
8807
8808                 switch (intel_crtc->config->pipe_bpp) {
8809                 case 18:
8810                         val |= PIPEMISC_DITHER_6_BPC;
8811                         break;
8812                 case 24:
8813                         val |= PIPEMISC_DITHER_8_BPC;
8814                         break;
8815                 case 30:
8816                         val |= PIPEMISC_DITHER_10_BPC;
8817                         break;
8818                 case 36:
8819                         val |= PIPEMISC_DITHER_12_BPC;
8820                         break;
8821                 default:
8822                         /* Case prevented by pipe_config_set_bpp. */
8823                         BUG();
8824                 }
8825
8826                 if (intel_crtc->config->dither)
8827                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8828
8829                 I915_WRITE(PIPEMISC(pipe), val);
8830         }
8831 }
8832
8833 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8834                                     struct intel_crtc_state *crtc_state,
8835                                     intel_clock_t *clock,
8836                                     bool *has_reduced_clock,
8837                                     intel_clock_t *reduced_clock)
8838 {
8839         struct drm_device *dev = crtc->dev;
8840         struct drm_i915_private *dev_priv = dev->dev_private;
8841         int refclk;
8842         const intel_limit_t *limit;
8843         bool ret;
8844
8845         refclk = ironlake_get_refclk(crtc_state);
8846
8847         /*
8848          * Returns a set of divisors for the desired target clock with the given
8849          * refclk, or FALSE.  The returned values represent the clock equation:
8850          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8851          */
8852         limit = intel_limit(crtc_state, refclk);
8853         ret = dev_priv->display.find_dpll(limit, crtc_state,
8854                                           crtc_state->port_clock,
8855                                           refclk, NULL, clock);
8856         if (!ret)
8857                 return false;
8858
8859         return true;
8860 }
8861
8862 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8863 {
8864         /*
8865          * Account for spread spectrum to avoid
8866          * oversubscribing the link. Max center spread
8867          * is 2.5%; use 5% for safety's sake.
8868          */
8869         u32 bps = target_clock * bpp * 21 / 20;
8870         return DIV_ROUND_UP(bps, link_bw * 8);
8871 }
8872
8873 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8874 {
8875         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8876 }
8877
8878 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8879                                       struct intel_crtc_state *crtc_state,
8880                                       u32 *fp,
8881                                       intel_clock_t *reduced_clock, u32 *fp2)
8882 {
8883         struct drm_crtc *crtc = &intel_crtc->base;
8884         struct drm_device *dev = crtc->dev;
8885         struct drm_i915_private *dev_priv = dev->dev_private;
8886         struct drm_atomic_state *state = crtc_state->base.state;
8887         struct drm_connector *connector;
8888         struct drm_connector_state *connector_state;
8889         struct intel_encoder *encoder;
8890         uint32_t dpll;
8891         int factor, num_connectors = 0, i;
8892         bool is_lvds = false, is_sdvo = false;
8893
8894         for_each_connector_in_state(state, connector, connector_state, i) {
8895                 if (connector_state->crtc != crtc_state->base.crtc)
8896                         continue;
8897
8898                 encoder = to_intel_encoder(connector_state->best_encoder);
8899
8900                 switch (encoder->type) {
8901                 case INTEL_OUTPUT_LVDS:
8902                         is_lvds = true;
8903                         break;
8904                 case INTEL_OUTPUT_SDVO:
8905                 case INTEL_OUTPUT_HDMI:
8906                         is_sdvo = true;
8907                         break;
8908                 default:
8909                         break;
8910                 }
8911
8912                 num_connectors++;
8913         }
8914
8915         /* Enable autotuning of the PLL clock (if permissible) */
8916         factor = 21;
8917         if (is_lvds) {
8918                 if ((intel_panel_use_ssc(dev_priv) &&
8919                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8920                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8921                         factor = 25;
8922         } else if (crtc_state->sdvo_tv_clock)
8923                 factor = 20;
8924
8925         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8926                 *fp |= FP_CB_TUNE;
8927
8928         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8929                 *fp2 |= FP_CB_TUNE;
8930
8931         dpll = 0;
8932
8933         if (is_lvds)
8934                 dpll |= DPLLB_MODE_LVDS;
8935         else
8936                 dpll |= DPLLB_MODE_DAC_SERIAL;
8937
8938         dpll |= (crtc_state->pixel_multiplier - 1)
8939                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8940
8941         if (is_sdvo)
8942                 dpll |= DPLL_SDVO_HIGH_SPEED;
8943         if (crtc_state->has_dp_encoder)
8944                 dpll |= DPLL_SDVO_HIGH_SPEED;
8945
8946         /* compute bitmask from p1 value */
8947         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8948         /* also FPA1 */
8949         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8950
8951         switch (crtc_state->dpll.p2) {
8952         case 5:
8953                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8954                 break;
8955         case 7:
8956                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8957                 break;
8958         case 10:
8959                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8960                 break;
8961         case 14:
8962                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8963                 break;
8964         }
8965
8966         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8967                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8968         else
8969                 dpll |= PLL_REF_INPUT_DREFCLK;
8970
8971         return dpll | DPLL_VCO_ENABLE;
8972 }
8973
8974 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8975                                        struct intel_crtc_state *crtc_state)
8976 {
8977         struct drm_device *dev = crtc->base.dev;
8978         intel_clock_t clock, reduced_clock;
8979         u32 dpll = 0, fp = 0, fp2 = 0;
8980         bool ok, has_reduced_clock = false;
8981         bool is_lvds = false;
8982         struct intel_shared_dpll *pll;
8983
8984         memset(&crtc_state->dpll_hw_state, 0,
8985                sizeof(crtc_state->dpll_hw_state));
8986
8987         is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8988
8989         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8990              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8991
8992         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8993                                      &has_reduced_clock, &reduced_clock);
8994         if (!ok && !crtc_state->clock_set) {
8995                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8996                 return -EINVAL;
8997         }
8998         /* Compat-code for transition, will disappear. */
8999         if (!crtc_state->clock_set) {
9000                 crtc_state->dpll.n = clock.n;
9001                 crtc_state->dpll.m1 = clock.m1;
9002                 crtc_state->dpll.m2 = clock.m2;
9003                 crtc_state->dpll.p1 = clock.p1;
9004                 crtc_state->dpll.p2 = clock.p2;
9005         }
9006
9007         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9008         if (crtc_state->has_pch_encoder) {
9009                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9010                 if (has_reduced_clock)
9011                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
9012
9013                 dpll = ironlake_compute_dpll(crtc, crtc_state,
9014                                              &fp, &reduced_clock,
9015                                              has_reduced_clock ? &fp2 : NULL);
9016
9017                 crtc_state->dpll_hw_state.dpll = dpll;
9018                 crtc_state->dpll_hw_state.fp0 = fp;
9019                 if (has_reduced_clock)
9020                         crtc_state->dpll_hw_state.fp1 = fp2;
9021                 else
9022                         crtc_state->dpll_hw_state.fp1 = fp;
9023
9024                 pll = intel_get_shared_dpll(crtc, crtc_state);
9025                 if (pll == NULL) {
9026                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9027                                          pipe_name(crtc->pipe));
9028                         return -EINVAL;
9029                 }
9030         }
9031
9032         if (is_lvds && has_reduced_clock)
9033                 crtc->lowfreq_avail = true;
9034         else
9035                 crtc->lowfreq_avail = false;
9036
9037         return 0;
9038 }
9039
9040 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9041                                          struct intel_link_m_n *m_n)
9042 {
9043         struct drm_device *dev = crtc->base.dev;
9044         struct drm_i915_private *dev_priv = dev->dev_private;
9045         enum pipe pipe = crtc->pipe;
9046
9047         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9048         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9049         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9050                 & ~TU_SIZE_MASK;
9051         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9052         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9053                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9054 }
9055
9056 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9057                                          enum transcoder transcoder,
9058                                          struct intel_link_m_n *m_n,
9059                                          struct intel_link_m_n *m2_n2)
9060 {
9061         struct drm_device *dev = crtc->base.dev;
9062         struct drm_i915_private *dev_priv = dev->dev_private;
9063         enum pipe pipe = crtc->pipe;
9064
9065         if (INTEL_INFO(dev)->gen >= 5) {
9066                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9067                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9068                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9069                         & ~TU_SIZE_MASK;
9070                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9071                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9072                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9073                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9074                  * gen < 8) and if DRRS is supported (to make sure the
9075                  * registers are not unnecessarily read).
9076                  */
9077                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9078                         crtc->config->has_drrs) {
9079                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9080                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9081                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9082                                         & ~TU_SIZE_MASK;
9083                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9084                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9085                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9086                 }
9087         } else {
9088                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9089                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9090                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9091                         & ~TU_SIZE_MASK;
9092                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9093                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9094                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9095         }
9096 }
9097
9098 void intel_dp_get_m_n(struct intel_crtc *crtc,
9099                       struct intel_crtc_state *pipe_config)
9100 {
9101         if (pipe_config->has_pch_encoder)
9102                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9103         else
9104                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9105                                              &pipe_config->dp_m_n,
9106                                              &pipe_config->dp_m2_n2);
9107 }
9108
9109 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9110                                         struct intel_crtc_state *pipe_config)
9111 {
9112         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9113                                      &pipe_config->fdi_m_n, NULL);
9114 }
9115
9116 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9117                                     struct intel_crtc_state *pipe_config)
9118 {
9119         struct drm_device *dev = crtc->base.dev;
9120         struct drm_i915_private *dev_priv = dev->dev_private;
9121         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9122         uint32_t ps_ctrl = 0;
9123         int id = -1;
9124         int i;
9125
9126         /* find scaler attached to this pipe */
9127         for (i = 0; i < crtc->num_scalers; i++) {
9128                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9129                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9130                         id = i;
9131                         pipe_config->pch_pfit.enabled = true;
9132                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9133                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9134                         break;
9135                 }
9136         }
9137
9138         scaler_state->scaler_id = id;
9139         if (id >= 0) {
9140                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9141         } else {
9142                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9143         }
9144 }
9145
9146 static void
9147 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9148                                  struct intel_initial_plane_config *plane_config)
9149 {
9150         struct drm_device *dev = crtc->base.dev;
9151         struct drm_i915_private *dev_priv = dev->dev_private;
9152         u32 val, base, offset, stride_mult, tiling;
9153         int pipe = crtc->pipe;
9154         int fourcc, pixel_format;
9155         unsigned int aligned_height;
9156         struct drm_framebuffer *fb;
9157         struct intel_framebuffer *intel_fb;
9158
9159         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9160         if (!intel_fb) {
9161                 DRM_DEBUG_KMS("failed to alloc fb\n");
9162                 return;
9163         }
9164
9165         fb = &intel_fb->base;
9166
9167         val = I915_READ(PLANE_CTL(pipe, 0));
9168         if (!(val & PLANE_CTL_ENABLE))
9169                 goto error;
9170
9171         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9172         fourcc = skl_format_to_fourcc(pixel_format,
9173                                       val & PLANE_CTL_ORDER_RGBX,
9174                                       val & PLANE_CTL_ALPHA_MASK);
9175         fb->pixel_format = fourcc;
9176         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9177
9178         tiling = val & PLANE_CTL_TILED_MASK;
9179         switch (tiling) {
9180         case PLANE_CTL_TILED_LINEAR:
9181                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9182                 break;
9183         case PLANE_CTL_TILED_X:
9184                 plane_config->tiling = I915_TILING_X;
9185                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9186                 break;
9187         case PLANE_CTL_TILED_Y:
9188                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9189                 break;
9190         case PLANE_CTL_TILED_YF:
9191                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9192                 break;
9193         default:
9194                 MISSING_CASE(tiling);
9195                 goto error;
9196         }
9197
9198         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9199         plane_config->base = base;
9200
9201         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9202
9203         val = I915_READ(PLANE_SIZE(pipe, 0));
9204         fb->height = ((val >> 16) & 0xfff) + 1;
9205         fb->width = ((val >> 0) & 0x1fff) + 1;
9206
9207         val = I915_READ(PLANE_STRIDE(pipe, 0));
9208         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9209                                                 fb->pixel_format);
9210         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9211
9212         aligned_height = intel_fb_align_height(dev, fb->height,
9213                                                fb->pixel_format,
9214                                                fb->modifier[0]);
9215
9216         plane_config->size = fb->pitches[0] * aligned_height;
9217
9218         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9219                       pipe_name(pipe), fb->width, fb->height,
9220                       fb->bits_per_pixel, base, fb->pitches[0],
9221                       plane_config->size);
9222
9223         plane_config->fb = intel_fb;
9224         return;
9225
9226 error:
9227         kfree(fb);
9228 }
9229
9230 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9231                                      struct intel_crtc_state *pipe_config)
9232 {
9233         struct drm_device *dev = crtc->base.dev;
9234         struct drm_i915_private *dev_priv = dev->dev_private;
9235         uint32_t tmp;
9236
9237         tmp = I915_READ(PF_CTL(crtc->pipe));
9238
9239         if (tmp & PF_ENABLE) {
9240                 pipe_config->pch_pfit.enabled = true;
9241                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9242                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9243
9244                 /* We currently do not free assignements of panel fitters on
9245                  * ivb/hsw (since we don't use the higher upscaling modes which
9246                  * differentiates them) so just WARN about this case for now. */
9247                 if (IS_GEN7(dev)) {
9248                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9249                                 PF_PIPE_SEL_IVB(crtc->pipe));
9250                 }
9251         }
9252 }
9253
9254 static void
9255 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9256                                   struct intel_initial_plane_config *plane_config)
9257 {
9258         struct drm_device *dev = crtc->base.dev;
9259         struct drm_i915_private *dev_priv = dev->dev_private;
9260         u32 val, base, offset;
9261         int pipe = crtc->pipe;
9262         int fourcc, pixel_format;
9263         unsigned int aligned_height;
9264         struct drm_framebuffer *fb;
9265         struct intel_framebuffer *intel_fb;
9266
9267         val = I915_READ(DSPCNTR(pipe));
9268         if (!(val & DISPLAY_PLANE_ENABLE))
9269                 return;
9270
9271         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9272         if (!intel_fb) {
9273                 DRM_DEBUG_KMS("failed to alloc fb\n");
9274                 return;
9275         }
9276
9277         fb = &intel_fb->base;
9278
9279         if (INTEL_INFO(dev)->gen >= 4) {
9280                 if (val & DISPPLANE_TILED) {
9281                         plane_config->tiling = I915_TILING_X;
9282                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9283                 }
9284         }
9285
9286         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9287         fourcc = i9xx_format_to_fourcc(pixel_format);
9288         fb->pixel_format = fourcc;
9289         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9290
9291         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9292         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9293                 offset = I915_READ(DSPOFFSET(pipe));
9294         } else {
9295                 if (plane_config->tiling)
9296                         offset = I915_READ(DSPTILEOFF(pipe));
9297                 else
9298                         offset = I915_READ(DSPLINOFF(pipe));
9299         }
9300         plane_config->base = base;
9301
9302         val = I915_READ(PIPESRC(pipe));
9303         fb->width = ((val >> 16) & 0xfff) + 1;
9304         fb->height = ((val >> 0) & 0xfff) + 1;
9305
9306         val = I915_READ(DSPSTRIDE(pipe));
9307         fb->pitches[0] = val & 0xffffffc0;
9308
9309         aligned_height = intel_fb_align_height(dev, fb->height,
9310                                                fb->pixel_format,
9311                                                fb->modifier[0]);
9312
9313         plane_config->size = fb->pitches[0] * aligned_height;
9314
9315         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9316                       pipe_name(pipe), fb->width, fb->height,
9317                       fb->bits_per_pixel, base, fb->pitches[0],
9318                       plane_config->size);
9319
9320         plane_config->fb = intel_fb;
9321 }
9322
9323 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9324                                      struct intel_crtc_state *pipe_config)
9325 {
9326         struct drm_device *dev = crtc->base.dev;
9327         struct drm_i915_private *dev_priv = dev->dev_private;
9328         enum intel_display_power_domain power_domain;
9329         uint32_t tmp;
9330         bool ret;
9331
9332         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9333         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9334                 return false;
9335
9336         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9337         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9338
9339         ret = false;
9340         tmp = I915_READ(PIPECONF(crtc->pipe));
9341         if (!(tmp & PIPECONF_ENABLE))
9342                 goto out;
9343
9344         switch (tmp & PIPECONF_BPC_MASK) {
9345         case PIPECONF_6BPC:
9346                 pipe_config->pipe_bpp = 18;
9347                 break;
9348         case PIPECONF_8BPC:
9349                 pipe_config->pipe_bpp = 24;
9350                 break;
9351         case PIPECONF_10BPC:
9352                 pipe_config->pipe_bpp = 30;
9353                 break;
9354         case PIPECONF_12BPC:
9355                 pipe_config->pipe_bpp = 36;
9356                 break;
9357         default:
9358                 break;
9359         }
9360
9361         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9362                 pipe_config->limited_color_range = true;
9363
9364         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9365                 struct intel_shared_dpll *pll;
9366
9367                 pipe_config->has_pch_encoder = true;
9368
9369                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9370                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9371                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9372
9373                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9374
9375                 if (HAS_PCH_IBX(dev_priv->dev)) {
9376                         pipe_config->shared_dpll =
9377                                 (enum intel_dpll_id) crtc->pipe;
9378                 } else {
9379                         tmp = I915_READ(PCH_DPLL_SEL);
9380                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9381                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9382                         else
9383                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9384                 }
9385
9386                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9387
9388                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9389                                            &pipe_config->dpll_hw_state));
9390
9391                 tmp = pipe_config->dpll_hw_state.dpll;
9392                 pipe_config->pixel_multiplier =
9393                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9394                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9395
9396                 ironlake_pch_clock_get(crtc, pipe_config);
9397         } else {
9398                 pipe_config->pixel_multiplier = 1;
9399         }
9400
9401         intel_get_pipe_timings(crtc, pipe_config);
9402
9403         ironlake_get_pfit_config(crtc, pipe_config);
9404
9405         ret = true;
9406
9407 out:
9408         intel_display_power_put(dev_priv, power_domain);
9409
9410         return ret;
9411 }
9412
9413 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9414 {
9415         struct drm_device *dev = dev_priv->dev;
9416         struct intel_crtc *crtc;
9417
9418         for_each_intel_crtc(dev, crtc)
9419                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9420                      pipe_name(crtc->pipe));
9421
9422         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9423         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9424         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9425         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9426         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9427         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9428              "CPU PWM1 enabled\n");
9429         if (IS_HASWELL(dev))
9430                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9431                      "CPU PWM2 enabled\n");
9432         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9433              "PCH PWM1 enabled\n");
9434         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9435              "Utility pin enabled\n");
9436         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9437
9438         /*
9439          * In theory we can still leave IRQs enabled, as long as only the HPD
9440          * interrupts remain enabled. We used to check for that, but since it's
9441          * gen-specific and since we only disable LCPLL after we fully disable
9442          * the interrupts, the check below should be enough.
9443          */
9444         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9445 }
9446
9447 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9448 {
9449         struct drm_device *dev = dev_priv->dev;
9450
9451         if (IS_HASWELL(dev))
9452                 return I915_READ(D_COMP_HSW);
9453         else
9454                 return I915_READ(D_COMP_BDW);
9455 }
9456
9457 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9458 {
9459         struct drm_device *dev = dev_priv->dev;
9460
9461         if (IS_HASWELL(dev)) {
9462                 mutex_lock(&dev_priv->rps.hw_lock);
9463                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9464                                             val))
9465                         DRM_ERROR("Failed to write to D_COMP\n");
9466                 mutex_unlock(&dev_priv->rps.hw_lock);
9467         } else {
9468                 I915_WRITE(D_COMP_BDW, val);
9469                 POSTING_READ(D_COMP_BDW);
9470         }
9471 }
9472
9473 /*
9474  * This function implements pieces of two sequences from BSpec:
9475  * - Sequence for display software to disable LCPLL
9476  * - Sequence for display software to allow package C8+
9477  * The steps implemented here are just the steps that actually touch the LCPLL
9478  * register. Callers should take care of disabling all the display engine
9479  * functions, doing the mode unset, fixing interrupts, etc.
9480  */
9481 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9482                               bool switch_to_fclk, bool allow_power_down)
9483 {
9484         uint32_t val;
9485
9486         assert_can_disable_lcpll(dev_priv);
9487
9488         val = I915_READ(LCPLL_CTL);
9489
9490         if (switch_to_fclk) {
9491                 val |= LCPLL_CD_SOURCE_FCLK;
9492                 I915_WRITE(LCPLL_CTL, val);
9493
9494                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9495                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9496                         DRM_ERROR("Switching to FCLK failed\n");
9497
9498                 val = I915_READ(LCPLL_CTL);
9499         }
9500
9501         val |= LCPLL_PLL_DISABLE;
9502         I915_WRITE(LCPLL_CTL, val);
9503         POSTING_READ(LCPLL_CTL);
9504
9505         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9506                 DRM_ERROR("LCPLL still locked\n");
9507
9508         val = hsw_read_dcomp(dev_priv);
9509         val |= D_COMP_COMP_DISABLE;
9510         hsw_write_dcomp(dev_priv, val);
9511         ndelay(100);
9512
9513         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9514                      1))
9515                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9516
9517         if (allow_power_down) {
9518                 val = I915_READ(LCPLL_CTL);
9519                 val |= LCPLL_POWER_DOWN_ALLOW;
9520                 I915_WRITE(LCPLL_CTL, val);
9521                 POSTING_READ(LCPLL_CTL);
9522         }
9523 }
9524
9525 /*
9526  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9527  * source.
9528  */
9529 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9530 {
9531         uint32_t val;
9532
9533         val = I915_READ(LCPLL_CTL);
9534
9535         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9536                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9537                 return;
9538
9539         /*
9540          * Make sure we're not on PC8 state before disabling PC8, otherwise
9541          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9542          */
9543         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9544
9545         if (val & LCPLL_POWER_DOWN_ALLOW) {
9546                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9547                 I915_WRITE(LCPLL_CTL, val);
9548                 POSTING_READ(LCPLL_CTL);
9549         }
9550
9551         val = hsw_read_dcomp(dev_priv);
9552         val |= D_COMP_COMP_FORCE;
9553         val &= ~D_COMP_COMP_DISABLE;
9554         hsw_write_dcomp(dev_priv, val);
9555
9556         val = I915_READ(LCPLL_CTL);
9557         val &= ~LCPLL_PLL_DISABLE;
9558         I915_WRITE(LCPLL_CTL, val);
9559
9560         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9561                 DRM_ERROR("LCPLL not locked yet\n");
9562
9563         if (val & LCPLL_CD_SOURCE_FCLK) {
9564                 val = I915_READ(LCPLL_CTL);
9565                 val &= ~LCPLL_CD_SOURCE_FCLK;
9566                 I915_WRITE(LCPLL_CTL, val);
9567
9568                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9569                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9570                         DRM_ERROR("Switching back to LCPLL failed\n");
9571         }
9572
9573         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9574         intel_update_cdclk(dev_priv->dev);
9575 }
9576
9577 /*
9578  * Package states C8 and deeper are really deep PC states that can only be
9579  * reached when all the devices on the system allow it, so even if the graphics
9580  * device allows PC8+, it doesn't mean the system will actually get to these
9581  * states. Our driver only allows PC8+ when going into runtime PM.
9582  *
9583  * The requirements for PC8+ are that all the outputs are disabled, the power
9584  * well is disabled and most interrupts are disabled, and these are also
9585  * requirements for runtime PM. When these conditions are met, we manually do
9586  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9587  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9588  * hang the machine.
9589  *
9590  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9591  * the state of some registers, so when we come back from PC8+ we need to
9592  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9593  * need to take care of the registers kept by RC6. Notice that this happens even
9594  * if we don't put the device in PCI D3 state (which is what currently happens
9595  * because of the runtime PM support).
9596  *
9597  * For more, read "Display Sequences for Package C8" on the hardware
9598  * documentation.
9599  */
9600 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9601 {
9602         struct drm_device *dev = dev_priv->dev;
9603         uint32_t val;
9604
9605         DRM_DEBUG_KMS("Enabling package C8+\n");
9606
9607         if (HAS_PCH_LPT_LP(dev)) {
9608                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9609                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9610                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9611         }
9612
9613         lpt_disable_clkout_dp(dev);
9614         hsw_disable_lcpll(dev_priv, true, true);
9615 }
9616
9617 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9618 {
9619         struct drm_device *dev = dev_priv->dev;
9620         uint32_t val;
9621
9622         DRM_DEBUG_KMS("Disabling package C8+\n");
9623
9624         hsw_restore_lcpll(dev_priv);
9625         lpt_init_pch_refclk(dev);
9626
9627         if (HAS_PCH_LPT_LP(dev)) {
9628                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9629                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9630                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9631         }
9632 }
9633
9634 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9635 {
9636         struct drm_device *dev = old_state->dev;
9637         struct intel_atomic_state *old_intel_state =
9638                 to_intel_atomic_state(old_state);
9639         unsigned int req_cdclk = old_intel_state->dev_cdclk;
9640
9641         broxton_set_cdclk(dev, req_cdclk);
9642 }
9643
9644 /* compute the max rate for new configuration */
9645 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9646 {
9647         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9648         struct drm_i915_private *dev_priv = state->dev->dev_private;
9649         struct drm_crtc *crtc;
9650         struct drm_crtc_state *cstate;
9651         struct intel_crtc_state *crtc_state;
9652         unsigned max_pixel_rate = 0, i;
9653         enum pipe pipe;
9654
9655         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9656                sizeof(intel_state->min_pixclk));
9657
9658         for_each_crtc_in_state(state, crtc, cstate, i) {
9659                 int pixel_rate;
9660
9661                 crtc_state = to_intel_crtc_state(cstate);
9662                 if (!crtc_state->base.enable) {
9663                         intel_state->min_pixclk[i] = 0;
9664                         continue;
9665                 }
9666
9667                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9668
9669                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9670                 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9671                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9672
9673                 intel_state->min_pixclk[i] = pixel_rate;
9674         }
9675
9676         for_each_pipe(dev_priv, pipe)
9677                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9678
9679         return max_pixel_rate;
9680 }
9681
9682 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9683 {
9684         struct drm_i915_private *dev_priv = dev->dev_private;
9685         uint32_t val, data;
9686         int ret;
9687
9688         if (WARN((I915_READ(LCPLL_CTL) &
9689                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9690                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9691                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9692                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9693                  "trying to change cdclk frequency with cdclk not enabled\n"))
9694                 return;
9695
9696         mutex_lock(&dev_priv->rps.hw_lock);
9697         ret = sandybridge_pcode_write(dev_priv,
9698                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9699         mutex_unlock(&dev_priv->rps.hw_lock);
9700         if (ret) {
9701                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9702                 return;
9703         }
9704
9705         val = I915_READ(LCPLL_CTL);
9706         val |= LCPLL_CD_SOURCE_FCLK;
9707         I915_WRITE(LCPLL_CTL, val);
9708
9709         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9710                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9711                 DRM_ERROR("Switching to FCLK failed\n");
9712
9713         val = I915_READ(LCPLL_CTL);
9714         val &= ~LCPLL_CLK_FREQ_MASK;
9715
9716         switch (cdclk) {
9717         case 450000:
9718                 val |= LCPLL_CLK_FREQ_450;
9719                 data = 0;
9720                 break;
9721         case 540000:
9722                 val |= LCPLL_CLK_FREQ_54O_BDW;
9723                 data = 1;
9724                 break;
9725         case 337500:
9726                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9727                 data = 2;
9728                 break;
9729         case 675000:
9730                 val |= LCPLL_CLK_FREQ_675_BDW;
9731                 data = 3;
9732                 break;
9733         default:
9734                 WARN(1, "invalid cdclk frequency\n");
9735                 return;
9736         }
9737
9738         I915_WRITE(LCPLL_CTL, val);
9739
9740         val = I915_READ(LCPLL_CTL);
9741         val &= ~LCPLL_CD_SOURCE_FCLK;
9742         I915_WRITE(LCPLL_CTL, val);
9743
9744         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9745                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9746                 DRM_ERROR("Switching back to LCPLL failed\n");
9747
9748         mutex_lock(&dev_priv->rps.hw_lock);
9749         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9750         mutex_unlock(&dev_priv->rps.hw_lock);
9751
9752         I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9753
9754         intel_update_cdclk(dev);
9755
9756         WARN(cdclk != dev_priv->cdclk_freq,
9757              "cdclk requested %d kHz but got %d kHz\n",
9758              cdclk, dev_priv->cdclk_freq);
9759 }
9760
9761 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9762 {
9763         struct drm_i915_private *dev_priv = to_i915(state->dev);
9764         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9765         int max_pixclk = ilk_max_pixel_rate(state);
9766         int cdclk;
9767
9768         /*
9769          * FIXME should also account for plane ratio
9770          * once 64bpp pixel formats are supported.
9771          */
9772         if (max_pixclk > 540000)
9773                 cdclk = 675000;
9774         else if (max_pixclk > 450000)
9775                 cdclk = 540000;
9776         else if (max_pixclk > 337500)
9777                 cdclk = 450000;
9778         else
9779                 cdclk = 337500;
9780
9781         if (cdclk > dev_priv->max_cdclk_freq) {
9782                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9783                               cdclk, dev_priv->max_cdclk_freq);
9784                 return -EINVAL;
9785         }
9786
9787         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9788         if (!intel_state->active_crtcs)
9789                 intel_state->dev_cdclk = 337500;
9790
9791         return 0;
9792 }
9793
9794 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9795 {
9796         struct drm_device *dev = old_state->dev;
9797         struct intel_atomic_state *old_intel_state =
9798                 to_intel_atomic_state(old_state);
9799         unsigned req_cdclk = old_intel_state->dev_cdclk;
9800
9801         broadwell_set_cdclk(dev, req_cdclk);
9802 }
9803
9804 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9805                                       struct intel_crtc_state *crtc_state)
9806 {
9807         struct intel_encoder *intel_encoder =
9808                 intel_ddi_get_crtc_new_encoder(crtc_state);
9809
9810         if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9811                 if (!intel_ddi_pll_select(crtc, crtc_state))
9812                         return -EINVAL;
9813         }
9814
9815         crtc->lowfreq_avail = false;
9816
9817         return 0;
9818 }
9819
9820 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9821                                 enum port port,
9822                                 struct intel_crtc_state *pipe_config)
9823 {
9824         switch (port) {
9825         case PORT_A:
9826                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9827                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9828                 break;
9829         case PORT_B:
9830                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9831                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9832                 break;
9833         case PORT_C:
9834                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9835                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9836                 break;
9837         default:
9838                 DRM_ERROR("Incorrect port type\n");
9839         }
9840 }
9841
9842 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9843                                 enum port port,
9844                                 struct intel_crtc_state *pipe_config)
9845 {
9846         u32 temp, dpll_ctl1;
9847
9848         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9849         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9850
9851         switch (pipe_config->ddi_pll_sel) {
9852         case SKL_DPLL0:
9853                 /*
9854                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9855                  * of the shared DPLL framework and thus needs to be read out
9856                  * separately
9857                  */
9858                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9859                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9860                 break;
9861         case SKL_DPLL1:
9862                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9863                 break;
9864         case SKL_DPLL2:
9865                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9866                 break;
9867         case SKL_DPLL3:
9868                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9869                 break;
9870         }
9871 }
9872
9873 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9874                                 enum port port,
9875                                 struct intel_crtc_state *pipe_config)
9876 {
9877         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9878
9879         switch (pipe_config->ddi_pll_sel) {
9880         case PORT_CLK_SEL_WRPLL1:
9881                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9882                 break;
9883         case PORT_CLK_SEL_WRPLL2:
9884                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9885                 break;
9886         case PORT_CLK_SEL_SPLL:
9887                 pipe_config->shared_dpll = DPLL_ID_SPLL;
9888                 break;
9889         }
9890 }
9891
9892 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9893                                        struct intel_crtc_state *pipe_config)
9894 {
9895         struct drm_device *dev = crtc->base.dev;
9896         struct drm_i915_private *dev_priv = dev->dev_private;
9897         struct intel_shared_dpll *pll;
9898         enum port port;
9899         uint32_t tmp;
9900
9901         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9902
9903         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9904
9905         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9906                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9907         else if (IS_BROXTON(dev))
9908                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9909         else
9910                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9911
9912         if (pipe_config->shared_dpll >= 0) {
9913                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9914
9915                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9916                                            &pipe_config->dpll_hw_state));
9917         }
9918
9919         /*
9920          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9921          * DDI E. So just check whether this pipe is wired to DDI E and whether
9922          * the PCH transcoder is on.
9923          */
9924         if (INTEL_INFO(dev)->gen < 9 &&
9925             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9926                 pipe_config->has_pch_encoder = true;
9927
9928                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9929                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9930                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9931
9932                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9933         }
9934 }
9935
9936 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9937                                     struct intel_crtc_state *pipe_config)
9938 {
9939         struct drm_device *dev = crtc->base.dev;
9940         struct drm_i915_private *dev_priv = dev->dev_private;
9941         enum intel_display_power_domain power_domain;
9942         unsigned long power_domain_mask;
9943         uint32_t tmp;
9944         bool ret;
9945
9946         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9947         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9948                 return false;
9949         power_domain_mask = BIT(power_domain);
9950
9951         ret = false;
9952
9953         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9954         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9955
9956         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9957         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9958                 enum pipe trans_edp_pipe;
9959                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9960                 default:
9961                         WARN(1, "unknown pipe linked to edp transcoder\n");
9962                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9963                 case TRANS_DDI_EDP_INPUT_A_ON:
9964                         trans_edp_pipe = PIPE_A;
9965                         break;
9966                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9967                         trans_edp_pipe = PIPE_B;
9968                         break;
9969                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9970                         trans_edp_pipe = PIPE_C;
9971                         break;
9972                 }
9973
9974                 if (trans_edp_pipe == crtc->pipe)
9975                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9976         }
9977
9978         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9979         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9980                 goto out;
9981         power_domain_mask |= BIT(power_domain);
9982
9983         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9984         if (!(tmp & PIPECONF_ENABLE))
9985                 goto out;
9986
9987         haswell_get_ddi_port_state(crtc, pipe_config);
9988
9989         intel_get_pipe_timings(crtc, pipe_config);
9990
9991         if (INTEL_INFO(dev)->gen >= 9) {
9992                 skl_init_scalers(dev, crtc, pipe_config);
9993         }
9994
9995         if (INTEL_INFO(dev)->gen >= 9) {
9996                 pipe_config->scaler_state.scaler_id = -1;
9997                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9998         }
9999
10000         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10001         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10002                 power_domain_mask |= BIT(power_domain);
10003                 if (INTEL_INFO(dev)->gen >= 9)
10004                         skylake_get_pfit_config(crtc, pipe_config);
10005                 else
10006                         ironlake_get_pfit_config(crtc, pipe_config);
10007         }
10008
10009         if (IS_HASWELL(dev))
10010                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10011                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10012
10013         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
10014                 pipe_config->pixel_multiplier =
10015                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10016         } else {
10017                 pipe_config->pixel_multiplier = 1;
10018         }
10019
10020         ret = true;
10021
10022 out:
10023         for_each_power_domain(power_domain, power_domain_mask)
10024                 intel_display_power_put(dev_priv, power_domain);
10025
10026         return ret;
10027 }
10028
10029 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10030                                const struct intel_plane_state *plane_state)
10031 {
10032         struct drm_device *dev = crtc->dev;
10033         struct drm_i915_private *dev_priv = dev->dev_private;
10034         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10035         uint32_t cntl = 0, size = 0;
10036
10037         if (plane_state && plane_state->visible) {
10038                 unsigned int width = plane_state->base.crtc_w;
10039                 unsigned int height = plane_state->base.crtc_h;
10040                 unsigned int stride = roundup_pow_of_two(width) * 4;
10041
10042                 switch (stride) {
10043                 default:
10044                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10045                                   width, stride);
10046                         stride = 256;
10047                         /* fallthrough */
10048                 case 256:
10049                 case 512:
10050                 case 1024:
10051                 case 2048:
10052                         break;
10053                 }
10054
10055                 cntl |= CURSOR_ENABLE |
10056                         CURSOR_GAMMA_ENABLE |
10057                         CURSOR_FORMAT_ARGB |
10058                         CURSOR_STRIDE(stride);
10059
10060                 size = (height << 12) | width;
10061         }
10062
10063         if (intel_crtc->cursor_cntl != 0 &&
10064             (intel_crtc->cursor_base != base ||
10065              intel_crtc->cursor_size != size ||
10066              intel_crtc->cursor_cntl != cntl)) {
10067                 /* On these chipsets we can only modify the base/size/stride
10068                  * whilst the cursor is disabled.
10069                  */
10070                 I915_WRITE(CURCNTR(PIPE_A), 0);
10071                 POSTING_READ(CURCNTR(PIPE_A));
10072                 intel_crtc->cursor_cntl = 0;
10073         }
10074
10075         if (intel_crtc->cursor_base != base) {
10076                 I915_WRITE(CURBASE(PIPE_A), base);
10077                 intel_crtc->cursor_base = base;
10078         }
10079
10080         if (intel_crtc->cursor_size != size) {
10081                 I915_WRITE(CURSIZE, size);
10082                 intel_crtc->cursor_size = size;
10083         }
10084
10085         if (intel_crtc->cursor_cntl != cntl) {
10086                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10087                 POSTING_READ(CURCNTR(PIPE_A));
10088                 intel_crtc->cursor_cntl = cntl;
10089         }
10090 }
10091
10092 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10093                                const struct intel_plane_state *plane_state)
10094 {
10095         struct drm_device *dev = crtc->dev;
10096         struct drm_i915_private *dev_priv = dev->dev_private;
10097         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10098         int pipe = intel_crtc->pipe;
10099         uint32_t cntl = 0;
10100
10101         if (plane_state && plane_state->visible) {
10102                 cntl = MCURSOR_GAMMA_ENABLE;
10103                 switch (plane_state->base.crtc_w) {
10104                         case 64:
10105                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10106                                 break;
10107                         case 128:
10108                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10109                                 break;
10110                         case 256:
10111                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10112                                 break;
10113                         default:
10114                                 MISSING_CASE(plane_state->base.crtc_w);
10115                                 return;
10116                 }
10117                 cntl |= pipe << 28; /* Connect to correct pipe */
10118
10119                 if (HAS_DDI(dev))
10120                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10121
10122                 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10123                         cntl |= CURSOR_ROTATE_180;
10124         }
10125
10126         if (intel_crtc->cursor_cntl != cntl) {
10127                 I915_WRITE(CURCNTR(pipe), cntl);
10128                 POSTING_READ(CURCNTR(pipe));
10129                 intel_crtc->cursor_cntl = cntl;
10130         }
10131
10132         /* and commit changes on next vblank */
10133         I915_WRITE(CURBASE(pipe), base);
10134         POSTING_READ(CURBASE(pipe));
10135
10136         intel_crtc->cursor_base = base;
10137 }
10138
10139 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10140 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10141                                      const struct intel_plane_state *plane_state)
10142 {
10143         struct drm_device *dev = crtc->dev;
10144         struct drm_i915_private *dev_priv = dev->dev_private;
10145         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10146         int pipe = intel_crtc->pipe;
10147         u32 base = intel_crtc->cursor_addr;
10148         u32 pos = 0;
10149
10150         if (plane_state) {
10151                 int x = plane_state->base.crtc_x;
10152                 int y = plane_state->base.crtc_y;
10153
10154                 if (x < 0) {
10155                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10156                         x = -x;
10157                 }
10158                 pos |= x << CURSOR_X_SHIFT;
10159
10160                 if (y < 0) {
10161                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10162                         y = -y;
10163                 }
10164                 pos |= y << CURSOR_Y_SHIFT;
10165
10166                 /* ILK+ do this automagically */
10167                 if (HAS_GMCH_DISPLAY(dev) &&
10168                     plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10169                         base += (plane_state->base.crtc_h *
10170                                  plane_state->base.crtc_w - 1) * 4;
10171                 }
10172         }
10173
10174         I915_WRITE(CURPOS(pipe), pos);
10175
10176         if (IS_845G(dev) || IS_I865G(dev))
10177                 i845_update_cursor(crtc, base, plane_state);
10178         else
10179                 i9xx_update_cursor(crtc, base, plane_state);
10180 }
10181
10182 static bool cursor_size_ok(struct drm_device *dev,
10183                            uint32_t width, uint32_t height)
10184 {
10185         if (width == 0 || height == 0)
10186                 return false;
10187
10188         /*
10189          * 845g/865g are special in that they are only limited by
10190          * the width of their cursors, the height is arbitrary up to
10191          * the precision of the register. Everything else requires
10192          * square cursors, limited to a few power-of-two sizes.
10193          */
10194         if (IS_845G(dev) || IS_I865G(dev)) {
10195                 if ((width & 63) != 0)
10196                         return false;
10197
10198                 if (width > (IS_845G(dev) ? 64 : 512))
10199                         return false;
10200
10201                 if (height > 1023)
10202                         return false;
10203         } else {
10204                 switch (width | height) {
10205                 case 256:
10206                 case 128:
10207                         if (IS_GEN2(dev))
10208                                 return false;
10209                 case 64:
10210                         break;
10211                 default:
10212                         return false;
10213                 }
10214         }
10215
10216         return true;
10217 }
10218
10219 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10220                                  u16 *blue, uint32_t start, uint32_t size)
10221 {
10222         int end = (start + size > 256) ? 256 : start + size, i;
10223         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10224
10225         for (i = start; i < end; i++) {
10226                 intel_crtc->lut_r[i] = red[i] >> 8;
10227                 intel_crtc->lut_g[i] = green[i] >> 8;
10228                 intel_crtc->lut_b[i] = blue[i] >> 8;
10229         }
10230
10231         intel_crtc_load_lut(crtc);
10232 }
10233
10234 /* VESA 640x480x72Hz mode to set on the pipe */
10235 static struct drm_display_mode load_detect_mode = {
10236         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10237                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10238 };
10239
10240 struct drm_framebuffer *
10241 __intel_framebuffer_create(struct drm_device *dev,
10242                            struct drm_mode_fb_cmd2 *mode_cmd,
10243                            struct drm_i915_gem_object *obj)
10244 {
10245         struct intel_framebuffer *intel_fb;
10246         int ret;
10247
10248         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10249         if (!intel_fb)
10250                 return ERR_PTR(-ENOMEM);
10251
10252         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10253         if (ret)
10254                 goto err;
10255
10256         return &intel_fb->base;
10257
10258 err:
10259         kfree(intel_fb);
10260         return ERR_PTR(ret);
10261 }
10262
10263 static struct drm_framebuffer *
10264 intel_framebuffer_create(struct drm_device *dev,
10265                          struct drm_mode_fb_cmd2 *mode_cmd,
10266                          struct drm_i915_gem_object *obj)
10267 {
10268         struct drm_framebuffer *fb;
10269         int ret;
10270
10271         ret = i915_mutex_lock_interruptible(dev);
10272         if (ret)
10273                 return ERR_PTR(ret);
10274         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10275         mutex_unlock(&dev->struct_mutex);
10276
10277         return fb;
10278 }
10279
10280 static u32
10281 intel_framebuffer_pitch_for_width(int width, int bpp)
10282 {
10283         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10284         return ALIGN(pitch, 64);
10285 }
10286
10287 static u32
10288 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10289 {
10290         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10291         return PAGE_ALIGN(pitch * mode->vdisplay);
10292 }
10293
10294 static struct drm_framebuffer *
10295 intel_framebuffer_create_for_mode(struct drm_device *dev,
10296                                   struct drm_display_mode *mode,
10297                                   int depth, int bpp)
10298 {
10299         struct drm_framebuffer *fb;
10300         struct drm_i915_gem_object *obj;
10301         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10302
10303         obj = i915_gem_alloc_object(dev,
10304                                     intel_framebuffer_size_for_mode(mode, bpp));
10305         if (obj == NULL)
10306                 return ERR_PTR(-ENOMEM);
10307
10308         mode_cmd.width = mode->hdisplay;
10309         mode_cmd.height = mode->vdisplay;
10310         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10311                                                                 bpp);
10312         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10313
10314         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10315         if (IS_ERR(fb))
10316                 drm_gem_object_unreference_unlocked(&obj->base);
10317
10318         return fb;
10319 }
10320
10321 static struct drm_framebuffer *
10322 mode_fits_in_fbdev(struct drm_device *dev,
10323                    struct drm_display_mode *mode)
10324 {
10325 #ifdef CONFIG_DRM_FBDEV_EMULATION
10326         struct drm_i915_private *dev_priv = dev->dev_private;
10327         struct drm_i915_gem_object *obj;
10328         struct drm_framebuffer *fb;
10329
10330         if (!dev_priv->fbdev)
10331                 return NULL;
10332
10333         if (!dev_priv->fbdev->fb)
10334                 return NULL;
10335
10336         obj = dev_priv->fbdev->fb->obj;
10337         BUG_ON(!obj);
10338
10339         fb = &dev_priv->fbdev->fb->base;
10340         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10341                                                                fb->bits_per_pixel))
10342                 return NULL;
10343
10344         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10345                 return NULL;
10346
10347         drm_framebuffer_reference(fb);
10348         return fb;
10349 #else
10350         return NULL;
10351 #endif
10352 }
10353
10354 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10355                                            struct drm_crtc *crtc,
10356                                            struct drm_display_mode *mode,
10357                                            struct drm_framebuffer *fb,
10358                                            int x, int y)
10359 {
10360         struct drm_plane_state *plane_state;
10361         int hdisplay, vdisplay;
10362         int ret;
10363
10364         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10365         if (IS_ERR(plane_state))
10366                 return PTR_ERR(plane_state);
10367
10368         if (mode)
10369                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10370         else
10371                 hdisplay = vdisplay = 0;
10372
10373         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10374         if (ret)
10375                 return ret;
10376         drm_atomic_set_fb_for_plane(plane_state, fb);
10377         plane_state->crtc_x = 0;
10378         plane_state->crtc_y = 0;
10379         plane_state->crtc_w = hdisplay;
10380         plane_state->crtc_h = vdisplay;
10381         plane_state->src_x = x << 16;
10382         plane_state->src_y = y << 16;
10383         plane_state->src_w = hdisplay << 16;
10384         plane_state->src_h = vdisplay << 16;
10385
10386         return 0;
10387 }
10388
10389 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10390                                 struct drm_display_mode *mode,
10391                                 struct intel_load_detect_pipe *old,
10392                                 struct drm_modeset_acquire_ctx *ctx)
10393 {
10394         struct intel_crtc *intel_crtc;
10395         struct intel_encoder *intel_encoder =
10396                 intel_attached_encoder(connector);
10397         struct drm_crtc *possible_crtc;
10398         struct drm_encoder *encoder = &intel_encoder->base;
10399         struct drm_crtc *crtc = NULL;
10400         struct drm_device *dev = encoder->dev;
10401         struct drm_framebuffer *fb;
10402         struct drm_mode_config *config = &dev->mode_config;
10403         struct drm_atomic_state *state = NULL, *restore_state = NULL;
10404         struct drm_connector_state *connector_state;
10405         struct intel_crtc_state *crtc_state;
10406         int ret, i = -1;
10407
10408         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10409                       connector->base.id, connector->name,
10410                       encoder->base.id, encoder->name);
10411
10412         old->restore_state = NULL;
10413
10414 retry:
10415         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10416         if (ret)
10417                 goto fail;
10418
10419         /*
10420          * Algorithm gets a little messy:
10421          *
10422          *   - if the connector already has an assigned crtc, use it (but make
10423          *     sure it's on first)
10424          *
10425          *   - try to find the first unused crtc that can drive this connector,
10426          *     and use that if we find one
10427          */
10428
10429         /* See if we already have a CRTC for this connector */
10430         if (connector->state->crtc) {
10431                 crtc = connector->state->crtc;
10432
10433                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10434                 if (ret)
10435                         goto fail;
10436
10437                 /* Make sure the crtc and connector are running */
10438                 goto found;
10439         }
10440
10441         /* Find an unused one (if possible) */
10442         for_each_crtc(dev, possible_crtc) {
10443                 i++;
10444                 if (!(encoder->possible_crtcs & (1 << i)))
10445                         continue;
10446
10447                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10448                 if (ret)
10449                         goto fail;
10450
10451                 if (possible_crtc->state->enable) {
10452                         drm_modeset_unlock(&possible_crtc->mutex);
10453                         continue;
10454                 }
10455
10456                 crtc = possible_crtc;
10457                 break;
10458         }
10459
10460         /*
10461          * If we didn't find an unused CRTC, don't use any.
10462          */
10463         if (!crtc) {
10464                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10465                 goto fail;
10466         }
10467
10468 found:
10469         intel_crtc = to_intel_crtc(crtc);
10470
10471         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10472         if (ret)
10473                 goto fail;
10474
10475         state = drm_atomic_state_alloc(dev);
10476         restore_state = drm_atomic_state_alloc(dev);
10477         if (!state || !restore_state) {
10478                 ret = -ENOMEM;
10479                 goto fail;
10480         }
10481
10482         state->acquire_ctx = ctx;
10483         restore_state->acquire_ctx = ctx;
10484
10485         connector_state = drm_atomic_get_connector_state(state, connector);
10486         if (IS_ERR(connector_state)) {
10487                 ret = PTR_ERR(connector_state);
10488                 goto fail;
10489         }
10490
10491         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10492         if (ret)
10493                 goto fail;
10494
10495         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10496         if (IS_ERR(crtc_state)) {
10497                 ret = PTR_ERR(crtc_state);
10498                 goto fail;
10499         }
10500
10501         crtc_state->base.active = crtc_state->base.enable = true;
10502
10503         if (!mode)
10504                 mode = &load_detect_mode;
10505
10506         /* We need a framebuffer large enough to accommodate all accesses
10507          * that the plane may generate whilst we perform load detection.
10508          * We can not rely on the fbcon either being present (we get called
10509          * during its initialisation to detect all boot displays, or it may
10510          * not even exist) or that it is large enough to satisfy the
10511          * requested mode.
10512          */
10513         fb = mode_fits_in_fbdev(dev, mode);
10514         if (fb == NULL) {
10515                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10516                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10517         } else
10518                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10519         if (IS_ERR(fb)) {
10520                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10521                 goto fail;
10522         }
10523
10524         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10525         if (ret)
10526                 goto fail;
10527
10528         drm_framebuffer_unreference(fb);
10529
10530         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10531         if (ret)
10532                 goto fail;
10533
10534         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10535         if (!ret)
10536                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10537         if (!ret)
10538                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10539         if (ret) {
10540                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10541                 goto fail;
10542         }
10543
10544         ret = drm_atomic_commit(state);
10545         if (ret) {
10546                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10547                 goto fail;
10548         }
10549
10550         old->restore_state = restore_state;
10551
10552         /* let the connector get through one full cycle before testing */
10553         intel_wait_for_vblank(dev, intel_crtc->pipe);
10554         return true;
10555
10556 fail:
10557         drm_atomic_state_free(state);
10558         drm_atomic_state_free(restore_state);
10559         restore_state = state = NULL;
10560
10561         if (ret == -EDEADLK) {
10562                 drm_modeset_backoff(ctx);
10563                 goto retry;
10564         }
10565
10566         return false;
10567 }
10568
10569 void intel_release_load_detect_pipe(struct drm_connector *connector,
10570                                     struct intel_load_detect_pipe *old,
10571                                     struct drm_modeset_acquire_ctx *ctx)
10572 {
10573         struct intel_encoder *intel_encoder =
10574                 intel_attached_encoder(connector);
10575         struct drm_encoder *encoder = &intel_encoder->base;
10576         struct drm_atomic_state *state = old->restore_state;
10577         int ret;
10578
10579         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10580                       connector->base.id, connector->name,
10581                       encoder->base.id, encoder->name);
10582
10583         if (!state)
10584                 return;
10585
10586         ret = drm_atomic_commit(state);
10587         if (ret) {
10588                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10589                 drm_atomic_state_free(state);
10590         }
10591 }
10592
10593 static int i9xx_pll_refclk(struct drm_device *dev,
10594                            const struct intel_crtc_state *pipe_config)
10595 {
10596         struct drm_i915_private *dev_priv = dev->dev_private;
10597         u32 dpll = pipe_config->dpll_hw_state.dpll;
10598
10599         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10600                 return dev_priv->vbt.lvds_ssc_freq;
10601         else if (HAS_PCH_SPLIT(dev))
10602                 return 120000;
10603         else if (!IS_GEN2(dev))
10604                 return 96000;
10605         else
10606                 return 48000;
10607 }
10608
10609 /* Returns the clock of the currently programmed mode of the given pipe. */
10610 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10611                                 struct intel_crtc_state *pipe_config)
10612 {
10613         struct drm_device *dev = crtc->base.dev;
10614         struct drm_i915_private *dev_priv = dev->dev_private;
10615         int pipe = pipe_config->cpu_transcoder;
10616         u32 dpll = pipe_config->dpll_hw_state.dpll;
10617         u32 fp;
10618         intel_clock_t clock;
10619         int port_clock;
10620         int refclk = i9xx_pll_refclk(dev, pipe_config);
10621
10622         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10623                 fp = pipe_config->dpll_hw_state.fp0;
10624         else
10625                 fp = pipe_config->dpll_hw_state.fp1;
10626
10627         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10628         if (IS_PINEVIEW(dev)) {
10629                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10630                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10631         } else {
10632                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10633                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10634         }
10635
10636         if (!IS_GEN2(dev)) {
10637                 if (IS_PINEVIEW(dev))
10638                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10639                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10640                 else
10641                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10642                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10643
10644                 switch (dpll & DPLL_MODE_MASK) {
10645                 case DPLLB_MODE_DAC_SERIAL:
10646                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10647                                 5 : 10;
10648                         break;
10649                 case DPLLB_MODE_LVDS:
10650                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10651                                 7 : 14;
10652                         break;
10653                 default:
10654                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10655                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10656                         return;
10657                 }
10658
10659                 if (IS_PINEVIEW(dev))
10660                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10661                 else
10662                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10663         } else {
10664                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10665                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10666
10667                 if (is_lvds) {
10668                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10669                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10670
10671                         if (lvds & LVDS_CLKB_POWER_UP)
10672                                 clock.p2 = 7;
10673                         else
10674                                 clock.p2 = 14;
10675                 } else {
10676                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10677                                 clock.p1 = 2;
10678                         else {
10679                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10680                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10681                         }
10682                         if (dpll & PLL_P2_DIVIDE_BY_4)
10683                                 clock.p2 = 4;
10684                         else
10685                                 clock.p2 = 2;
10686                 }
10687
10688                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10689         }
10690
10691         /*
10692          * This value includes pixel_multiplier. We will use
10693          * port_clock to compute adjusted_mode.crtc_clock in the
10694          * encoder's get_config() function.
10695          */
10696         pipe_config->port_clock = port_clock;
10697 }
10698
10699 int intel_dotclock_calculate(int link_freq,
10700                              const struct intel_link_m_n *m_n)
10701 {
10702         /*
10703          * The calculation for the data clock is:
10704          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10705          * But we want to avoid losing precison if possible, so:
10706          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10707          *
10708          * and the link clock is simpler:
10709          * link_clock = (m * link_clock) / n
10710          */
10711
10712         if (!m_n->link_n)
10713                 return 0;
10714
10715         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10716 }
10717
10718 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10719                                    struct intel_crtc_state *pipe_config)
10720 {
10721         struct drm_device *dev = crtc->base.dev;
10722
10723         /* read out port_clock from the DPLL */
10724         i9xx_crtc_clock_get(crtc, pipe_config);
10725
10726         /*
10727          * This value does not include pixel_multiplier.
10728          * We will check that port_clock and adjusted_mode.crtc_clock
10729          * agree once we know their relationship in the encoder's
10730          * get_config() function.
10731          */
10732         pipe_config->base.adjusted_mode.crtc_clock =
10733                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10734                                          &pipe_config->fdi_m_n);
10735 }
10736
10737 /** Returns the currently programmed mode of the given pipe. */
10738 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10739                                              struct drm_crtc *crtc)
10740 {
10741         struct drm_i915_private *dev_priv = dev->dev_private;
10742         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10743         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10744         struct drm_display_mode *mode;
10745         struct intel_crtc_state *pipe_config;
10746         int htot = I915_READ(HTOTAL(cpu_transcoder));
10747         int hsync = I915_READ(HSYNC(cpu_transcoder));
10748         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10749         int vsync = I915_READ(VSYNC(cpu_transcoder));
10750         enum pipe pipe = intel_crtc->pipe;
10751
10752         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10753         if (!mode)
10754                 return NULL;
10755
10756         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10757         if (!pipe_config) {
10758                 kfree(mode);
10759                 return NULL;
10760         }
10761
10762         /*
10763          * Construct a pipe_config sufficient for getting the clock info
10764          * back out of crtc_clock_get.
10765          *
10766          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10767          * to use a real value here instead.
10768          */
10769         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10770         pipe_config->pixel_multiplier = 1;
10771         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10772         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10773         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10774         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10775
10776         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10777         mode->hdisplay = (htot & 0xffff) + 1;
10778         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10779         mode->hsync_start = (hsync & 0xffff) + 1;
10780         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10781         mode->vdisplay = (vtot & 0xffff) + 1;
10782         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10783         mode->vsync_start = (vsync & 0xffff) + 1;
10784         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10785
10786         drm_mode_set_name(mode);
10787
10788         kfree(pipe_config);
10789
10790         return mode;
10791 }
10792
10793 void intel_mark_busy(struct drm_device *dev)
10794 {
10795         struct drm_i915_private *dev_priv = dev->dev_private;
10796
10797         if (dev_priv->mm.busy)
10798                 return;
10799
10800         intel_runtime_pm_get(dev_priv);
10801         i915_update_gfx_val(dev_priv);
10802         if (INTEL_INFO(dev)->gen >= 6)
10803                 gen6_rps_busy(dev_priv);
10804         dev_priv->mm.busy = true;
10805 }
10806
10807 void intel_mark_idle(struct drm_device *dev)
10808 {
10809         struct drm_i915_private *dev_priv = dev->dev_private;
10810
10811         if (!dev_priv->mm.busy)
10812                 return;
10813
10814         dev_priv->mm.busy = false;
10815
10816         if (INTEL_INFO(dev)->gen >= 6)
10817                 gen6_rps_idle(dev->dev_private);
10818
10819         intel_runtime_pm_put(dev_priv);
10820 }
10821
10822 static void intel_crtc_destroy(struct drm_crtc *crtc)
10823 {
10824         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10825         struct drm_device *dev = crtc->dev;
10826         struct intel_unpin_work *work;
10827
10828         spin_lock_irq(&dev->event_lock);
10829         work = intel_crtc->unpin_work;
10830         intel_crtc->unpin_work = NULL;
10831         spin_unlock_irq(&dev->event_lock);
10832
10833         if (work) {
10834                 cancel_work_sync(&work->work);
10835                 kfree(work);
10836         }
10837
10838         drm_crtc_cleanup(crtc);
10839
10840         kfree(intel_crtc);
10841 }
10842
10843 static void intel_unpin_work_fn(struct work_struct *__work)
10844 {
10845         struct intel_unpin_work *work =
10846                 container_of(__work, struct intel_unpin_work, work);
10847         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10848         struct drm_device *dev = crtc->base.dev;
10849         struct drm_plane *primary = crtc->base.primary;
10850
10851         mutex_lock(&dev->struct_mutex);
10852         intel_unpin_fb_obj(work->old_fb, primary->state);
10853         drm_gem_object_unreference(&work->pending_flip_obj->base);
10854
10855         if (work->flip_queued_req)
10856                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10857         mutex_unlock(&dev->struct_mutex);
10858
10859         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10860         intel_fbc_post_update(crtc);
10861         drm_framebuffer_unreference(work->old_fb);
10862
10863         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10864         atomic_dec(&crtc->unpin_work_count);
10865
10866         kfree(work);
10867 }
10868
10869 static void do_intel_finish_page_flip(struct drm_device *dev,
10870                                       struct drm_crtc *crtc)
10871 {
10872         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10873         struct intel_unpin_work *work;
10874         unsigned long flags;
10875
10876         /* Ignore early vblank irqs */
10877         if (intel_crtc == NULL)
10878                 return;
10879
10880         /*
10881          * This is called both by irq handlers and the reset code (to complete
10882          * lost pageflips) so needs the full irqsave spinlocks.
10883          */
10884         spin_lock_irqsave(&dev->event_lock, flags);
10885         work = intel_crtc->unpin_work;
10886
10887         /* Ensure we don't miss a work->pending update ... */
10888         smp_rmb();
10889
10890         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10891                 spin_unlock_irqrestore(&dev->event_lock, flags);
10892                 return;
10893         }
10894
10895         page_flip_completed(intel_crtc);
10896
10897         spin_unlock_irqrestore(&dev->event_lock, flags);
10898 }
10899
10900 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10901 {
10902         struct drm_i915_private *dev_priv = dev->dev_private;
10903         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10904
10905         do_intel_finish_page_flip(dev, crtc);
10906 }
10907
10908 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10909 {
10910         struct drm_i915_private *dev_priv = dev->dev_private;
10911         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10912
10913         do_intel_finish_page_flip(dev, crtc);
10914 }
10915
10916 /* Is 'a' after or equal to 'b'? */
10917 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10918 {
10919         return !((a - b) & 0x80000000);
10920 }
10921
10922 static bool page_flip_finished(struct intel_crtc *crtc)
10923 {
10924         struct drm_device *dev = crtc->base.dev;
10925         struct drm_i915_private *dev_priv = dev->dev_private;
10926
10927         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10928             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10929                 return true;
10930
10931         /*
10932          * The relevant registers doen't exist on pre-ctg.
10933          * As the flip done interrupt doesn't trigger for mmio
10934          * flips on gmch platforms, a flip count check isn't
10935          * really needed there. But since ctg has the registers,
10936          * include it in the check anyway.
10937          */
10938         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10939                 return true;
10940
10941         /*
10942          * BDW signals flip done immediately if the plane
10943          * is disabled, even if the plane enable is already
10944          * armed to occur at the next vblank :(
10945          */
10946
10947         /*
10948          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10949          * used the same base address. In that case the mmio flip might
10950          * have completed, but the CS hasn't even executed the flip yet.
10951          *
10952          * A flip count check isn't enough as the CS might have updated
10953          * the base address just after start of vblank, but before we
10954          * managed to process the interrupt. This means we'd complete the
10955          * CS flip too soon.
10956          *
10957          * Combining both checks should get us a good enough result. It may
10958          * still happen that the CS flip has been executed, but has not
10959          * yet actually completed. But in case the base address is the same
10960          * anyway, we don't really care.
10961          */
10962         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10963                 crtc->unpin_work->gtt_offset &&
10964                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10965                                     crtc->unpin_work->flip_count);
10966 }
10967
10968 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10969 {
10970         struct drm_i915_private *dev_priv = dev->dev_private;
10971         struct intel_crtc *intel_crtc =
10972                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10973         unsigned long flags;
10974
10975
10976         /*
10977          * This is called both by irq handlers and the reset code (to complete
10978          * lost pageflips) so needs the full irqsave spinlocks.
10979          *
10980          * NB: An MMIO update of the plane base pointer will also
10981          * generate a page-flip completion irq, i.e. every modeset
10982          * is also accompanied by a spurious intel_prepare_page_flip().
10983          */
10984         spin_lock_irqsave(&dev->event_lock, flags);
10985         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10986                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10987         spin_unlock_irqrestore(&dev->event_lock, flags);
10988 }
10989
10990 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10991 {
10992         /* Ensure that the work item is consistent when activating it ... */
10993         smp_wmb();
10994         atomic_set(&work->pending, INTEL_FLIP_PENDING);
10995         /* and that it is marked active as soon as the irq could fire. */
10996         smp_wmb();
10997 }
10998
10999 static int intel_gen2_queue_flip(struct drm_device *dev,
11000                                  struct drm_crtc *crtc,
11001                                  struct drm_framebuffer *fb,
11002                                  struct drm_i915_gem_object *obj,
11003                                  struct drm_i915_gem_request *req,
11004                                  uint32_t flags)
11005 {
11006         struct intel_engine_cs *ring = req->ring;
11007         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11008         u32 flip_mask;
11009         int ret;
11010
11011         ret = intel_ring_begin(req, 6);
11012         if (ret)
11013                 return ret;
11014
11015         /* Can't queue multiple flips, so wait for the previous
11016          * one to finish before executing the next.
11017          */
11018         if (intel_crtc->plane)
11019                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11020         else
11021                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11022         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11023         intel_ring_emit(ring, MI_NOOP);
11024         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11025                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11026         intel_ring_emit(ring, fb->pitches[0]);
11027         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11028         intel_ring_emit(ring, 0); /* aux display base address, unused */
11029
11030         intel_mark_page_flip_active(intel_crtc->unpin_work);
11031         return 0;
11032 }
11033
11034 static int intel_gen3_queue_flip(struct drm_device *dev,
11035                                  struct drm_crtc *crtc,
11036                                  struct drm_framebuffer *fb,
11037                                  struct drm_i915_gem_object *obj,
11038                                  struct drm_i915_gem_request *req,
11039                                  uint32_t flags)
11040 {
11041         struct intel_engine_cs *ring = req->ring;
11042         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11043         u32 flip_mask;
11044         int ret;
11045
11046         ret = intel_ring_begin(req, 6);
11047         if (ret)
11048                 return ret;
11049
11050         if (intel_crtc->plane)
11051                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11052         else
11053                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11054         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11055         intel_ring_emit(ring, MI_NOOP);
11056         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11057                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11058         intel_ring_emit(ring, fb->pitches[0]);
11059         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11060         intel_ring_emit(ring, MI_NOOP);
11061
11062         intel_mark_page_flip_active(intel_crtc->unpin_work);
11063         return 0;
11064 }
11065
11066 static int intel_gen4_queue_flip(struct drm_device *dev,
11067                                  struct drm_crtc *crtc,
11068                                  struct drm_framebuffer *fb,
11069                                  struct drm_i915_gem_object *obj,
11070                                  struct drm_i915_gem_request *req,
11071                                  uint32_t flags)
11072 {
11073         struct intel_engine_cs *ring = req->ring;
11074         struct drm_i915_private *dev_priv = dev->dev_private;
11075         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11076         uint32_t pf, pipesrc;
11077         int ret;
11078
11079         ret = intel_ring_begin(req, 4);
11080         if (ret)
11081                 return ret;
11082
11083         /* i965+ uses the linear or tiled offsets from the
11084          * Display Registers (which do not change across a page-flip)
11085          * so we need only reprogram the base address.
11086          */
11087         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11088                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11089         intel_ring_emit(ring, fb->pitches[0]);
11090         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11091                         obj->tiling_mode);
11092
11093         /* XXX Enabling the panel-fitter across page-flip is so far
11094          * untested on non-native modes, so ignore it for now.
11095          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11096          */
11097         pf = 0;
11098         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11099         intel_ring_emit(ring, pf | pipesrc);
11100
11101         intel_mark_page_flip_active(intel_crtc->unpin_work);
11102         return 0;
11103 }
11104
11105 static int intel_gen6_queue_flip(struct drm_device *dev,
11106                                  struct drm_crtc *crtc,
11107                                  struct drm_framebuffer *fb,
11108                                  struct drm_i915_gem_object *obj,
11109                                  struct drm_i915_gem_request *req,
11110                                  uint32_t flags)
11111 {
11112         struct intel_engine_cs *ring = req->ring;
11113         struct drm_i915_private *dev_priv = dev->dev_private;
11114         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11115         uint32_t pf, pipesrc;
11116         int ret;
11117
11118         ret = intel_ring_begin(req, 4);
11119         if (ret)
11120                 return ret;
11121
11122         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11123                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11124         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11125         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11126
11127         /* Contrary to the suggestions in the documentation,
11128          * "Enable Panel Fitter" does not seem to be required when page
11129          * flipping with a non-native mode, and worse causes a normal
11130          * modeset to fail.
11131          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11132          */
11133         pf = 0;
11134         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11135         intel_ring_emit(ring, pf | pipesrc);
11136
11137         intel_mark_page_flip_active(intel_crtc->unpin_work);
11138         return 0;
11139 }
11140
11141 static int intel_gen7_queue_flip(struct drm_device *dev,
11142                                  struct drm_crtc *crtc,
11143                                  struct drm_framebuffer *fb,
11144                                  struct drm_i915_gem_object *obj,
11145                                  struct drm_i915_gem_request *req,
11146                                  uint32_t flags)
11147 {
11148         struct intel_engine_cs *ring = req->ring;
11149         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11150         uint32_t plane_bit = 0;
11151         int len, ret;
11152
11153         switch (intel_crtc->plane) {
11154         case PLANE_A:
11155                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11156                 break;
11157         case PLANE_B:
11158                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11159                 break;
11160         case PLANE_C:
11161                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11162                 break;
11163         default:
11164                 WARN_ONCE(1, "unknown plane in flip command\n");
11165                 return -ENODEV;
11166         }
11167
11168         len = 4;
11169         if (ring->id == RCS) {
11170                 len += 6;
11171                 /*
11172                  * On Gen 8, SRM is now taking an extra dword to accommodate
11173                  * 48bits addresses, and we need a NOOP for the batch size to
11174                  * stay even.
11175                  */
11176                 if (IS_GEN8(dev))
11177                         len += 2;
11178         }
11179
11180         /*
11181          * BSpec MI_DISPLAY_FLIP for IVB:
11182          * "The full packet must be contained within the same cache line."
11183          *
11184          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11185          * cacheline, if we ever start emitting more commands before
11186          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11187          * then do the cacheline alignment, and finally emit the
11188          * MI_DISPLAY_FLIP.
11189          */
11190         ret = intel_ring_cacheline_align(req);
11191         if (ret)
11192                 return ret;
11193
11194         ret = intel_ring_begin(req, len);
11195         if (ret)
11196                 return ret;
11197
11198         /* Unmask the flip-done completion message. Note that the bspec says that
11199          * we should do this for both the BCS and RCS, and that we must not unmask
11200          * more than one flip event at any time (or ensure that one flip message
11201          * can be sent by waiting for flip-done prior to queueing new flips).
11202          * Experimentation says that BCS works despite DERRMR masking all
11203          * flip-done completion events and that unmasking all planes at once
11204          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11205          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11206          */
11207         if (ring->id == RCS) {
11208                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11209                 intel_ring_emit_reg(ring, DERRMR);
11210                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11211                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11212                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11213                 if (IS_GEN8(dev))
11214                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11215                                               MI_SRM_LRM_GLOBAL_GTT);
11216                 else
11217                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11218                                               MI_SRM_LRM_GLOBAL_GTT);
11219                 intel_ring_emit_reg(ring, DERRMR);
11220                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11221                 if (IS_GEN8(dev)) {
11222                         intel_ring_emit(ring, 0);
11223                         intel_ring_emit(ring, MI_NOOP);
11224                 }
11225         }
11226
11227         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11228         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11229         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11230         intel_ring_emit(ring, (MI_NOOP));
11231
11232         intel_mark_page_flip_active(intel_crtc->unpin_work);
11233         return 0;
11234 }
11235
11236 static bool use_mmio_flip(struct intel_engine_cs *ring,
11237                           struct drm_i915_gem_object *obj)
11238 {
11239         /*
11240          * This is not being used for older platforms, because
11241          * non-availability of flip done interrupt forces us to use
11242          * CS flips. Older platforms derive flip done using some clever
11243          * tricks involving the flip_pending status bits and vblank irqs.
11244          * So using MMIO flips there would disrupt this mechanism.
11245          */
11246
11247         if (ring == NULL)
11248                 return true;
11249
11250         if (INTEL_INFO(ring->dev)->gen < 5)
11251                 return false;
11252
11253         if (i915.use_mmio_flip < 0)
11254                 return false;
11255         else if (i915.use_mmio_flip > 0)
11256                 return true;
11257         else if (i915.enable_execlists)
11258                 return true;
11259         else if (obj->base.dma_buf &&
11260                  !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11261                                                        false))
11262                 return true;
11263         else
11264                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11265 }
11266
11267 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11268                              unsigned int rotation,
11269                              struct intel_unpin_work *work)
11270 {
11271         struct drm_device *dev = intel_crtc->base.dev;
11272         struct drm_i915_private *dev_priv = dev->dev_private;
11273         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11274         const enum pipe pipe = intel_crtc->pipe;
11275         u32 ctl, stride, tile_height;
11276
11277         ctl = I915_READ(PLANE_CTL(pipe, 0));
11278         ctl &= ~PLANE_CTL_TILED_MASK;
11279         switch (fb->modifier[0]) {
11280         case DRM_FORMAT_MOD_NONE:
11281                 break;
11282         case I915_FORMAT_MOD_X_TILED:
11283                 ctl |= PLANE_CTL_TILED_X;
11284                 break;
11285         case I915_FORMAT_MOD_Y_TILED:
11286                 ctl |= PLANE_CTL_TILED_Y;
11287                 break;
11288         case I915_FORMAT_MOD_Yf_TILED:
11289                 ctl |= PLANE_CTL_TILED_YF;
11290                 break;
11291         default:
11292                 MISSING_CASE(fb->modifier[0]);
11293         }
11294
11295         /*
11296          * The stride is either expressed as a multiple of 64 bytes chunks for
11297          * linear buffers or in number of tiles for tiled buffers.
11298          */
11299         if (intel_rotation_90_or_270(rotation)) {
11300                 /* stride = Surface height in tiles */
11301                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11302                 stride = DIV_ROUND_UP(fb->height, tile_height);
11303         } else {
11304                 stride = fb->pitches[0] /
11305                         intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11306                                                   fb->pixel_format);
11307         }
11308
11309         /*
11310          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11311          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11312          */
11313         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11314         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11315
11316         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11317         POSTING_READ(PLANE_SURF(pipe, 0));
11318 }
11319
11320 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11321                              struct intel_unpin_work *work)
11322 {
11323         struct drm_device *dev = intel_crtc->base.dev;
11324         struct drm_i915_private *dev_priv = dev->dev_private;
11325         struct intel_framebuffer *intel_fb =
11326                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11327         struct drm_i915_gem_object *obj = intel_fb->obj;
11328         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11329         u32 dspcntr;
11330
11331         dspcntr = I915_READ(reg);
11332
11333         if (obj->tiling_mode != I915_TILING_NONE)
11334                 dspcntr |= DISPPLANE_TILED;
11335         else
11336                 dspcntr &= ~DISPPLANE_TILED;
11337
11338         I915_WRITE(reg, dspcntr);
11339
11340         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11341         POSTING_READ(DSPSURF(intel_crtc->plane));
11342 }
11343
11344 /*
11345  * XXX: This is the temporary way to update the plane registers until we get
11346  * around to using the usual plane update functions for MMIO flips
11347  */
11348 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11349 {
11350         struct intel_crtc *crtc = mmio_flip->crtc;
11351         struct intel_unpin_work *work;
11352
11353         spin_lock_irq(&crtc->base.dev->event_lock);
11354         work = crtc->unpin_work;
11355         spin_unlock_irq(&crtc->base.dev->event_lock);
11356         if (work == NULL)
11357                 return;
11358
11359         intel_mark_page_flip_active(work);
11360
11361         intel_pipe_update_start(crtc);
11362
11363         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11364                 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11365         else
11366                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11367                 ilk_do_mmio_flip(crtc, work);
11368
11369         intel_pipe_update_end(crtc);
11370 }
11371
11372 static void intel_mmio_flip_work_func(struct work_struct *work)
11373 {
11374         struct intel_mmio_flip *mmio_flip =
11375                 container_of(work, struct intel_mmio_flip, work);
11376         struct intel_framebuffer *intel_fb =
11377                 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11378         struct drm_i915_gem_object *obj = intel_fb->obj;
11379
11380         if (mmio_flip->req) {
11381                 WARN_ON(__i915_wait_request(mmio_flip->req,
11382                                             mmio_flip->crtc->reset_counter,
11383                                             false, NULL,
11384                                             &mmio_flip->i915->rps.mmioflips));
11385                 i915_gem_request_unreference__unlocked(mmio_flip->req);
11386         }
11387
11388         /* For framebuffer backed by dmabuf, wait for fence */
11389         if (obj->base.dma_buf)
11390                 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11391                                                             false, false,
11392                                                             MAX_SCHEDULE_TIMEOUT) < 0);
11393
11394         intel_do_mmio_flip(mmio_flip);
11395         kfree(mmio_flip);
11396 }
11397
11398 static int intel_queue_mmio_flip(struct drm_device *dev,
11399                                  struct drm_crtc *crtc,
11400                                  struct drm_i915_gem_object *obj)
11401 {
11402         struct intel_mmio_flip *mmio_flip;
11403
11404         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11405         if (mmio_flip == NULL)
11406                 return -ENOMEM;
11407
11408         mmio_flip->i915 = to_i915(dev);
11409         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11410         mmio_flip->crtc = to_intel_crtc(crtc);
11411         mmio_flip->rotation = crtc->primary->state->rotation;
11412
11413         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11414         schedule_work(&mmio_flip->work);
11415
11416         return 0;
11417 }
11418
11419 static int intel_default_queue_flip(struct drm_device *dev,
11420                                     struct drm_crtc *crtc,
11421                                     struct drm_framebuffer *fb,
11422                                     struct drm_i915_gem_object *obj,
11423                                     struct drm_i915_gem_request *req,
11424                                     uint32_t flags)
11425 {
11426         return -ENODEV;
11427 }
11428
11429 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11430                                          struct drm_crtc *crtc)
11431 {
11432         struct drm_i915_private *dev_priv = dev->dev_private;
11433         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11434         struct intel_unpin_work *work = intel_crtc->unpin_work;
11435         u32 addr;
11436
11437         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11438                 return true;
11439
11440         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11441                 return false;
11442
11443         if (!work->enable_stall_check)
11444                 return false;
11445
11446         if (work->flip_ready_vblank == 0) {
11447                 if (work->flip_queued_req &&
11448                     !i915_gem_request_completed(work->flip_queued_req, true))
11449                         return false;
11450
11451                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11452         }
11453
11454         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11455                 return false;
11456
11457         /* Potential stall - if we see that the flip has happened,
11458          * assume a missed interrupt. */
11459         if (INTEL_INFO(dev)->gen >= 4)
11460                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11461         else
11462                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11463
11464         /* There is a potential issue here with a false positive after a flip
11465          * to the same address. We could address this by checking for a
11466          * non-incrementing frame counter.
11467          */
11468         return addr == work->gtt_offset;
11469 }
11470
11471 void intel_check_page_flip(struct drm_device *dev, int pipe)
11472 {
11473         struct drm_i915_private *dev_priv = dev->dev_private;
11474         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11475         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11476         struct intel_unpin_work *work;
11477
11478         WARN_ON(!in_interrupt());
11479
11480         if (crtc == NULL)
11481                 return;
11482
11483         spin_lock(&dev->event_lock);
11484         work = intel_crtc->unpin_work;
11485         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11486                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11487                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11488                 page_flip_completed(intel_crtc);
11489                 work = NULL;
11490         }
11491         if (work != NULL &&
11492             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11493                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11494         spin_unlock(&dev->event_lock);
11495 }
11496
11497 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11498                                 struct drm_framebuffer *fb,
11499                                 struct drm_pending_vblank_event *event,
11500                                 uint32_t page_flip_flags)
11501 {
11502         struct drm_device *dev = crtc->dev;
11503         struct drm_i915_private *dev_priv = dev->dev_private;
11504         struct drm_framebuffer *old_fb = crtc->primary->fb;
11505         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11506         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11507         struct drm_plane *primary = crtc->primary;
11508         enum pipe pipe = intel_crtc->pipe;
11509         struct intel_unpin_work *work;
11510         struct intel_engine_cs *ring;
11511         bool mmio_flip;
11512         struct drm_i915_gem_request *request = NULL;
11513         int ret;
11514
11515         /*
11516          * drm_mode_page_flip_ioctl() should already catch this, but double
11517          * check to be safe.  In the future we may enable pageflipping from
11518          * a disabled primary plane.
11519          */
11520         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11521                 return -EBUSY;
11522
11523         /* Can't change pixel format via MI display flips. */
11524         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11525                 return -EINVAL;
11526
11527         /*
11528          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11529          * Note that pitch changes could also affect these register.
11530          */
11531         if (INTEL_INFO(dev)->gen > 3 &&
11532             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11533              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11534                 return -EINVAL;
11535
11536         if (i915_terminally_wedged(&dev_priv->gpu_error))
11537                 goto out_hang;
11538
11539         work = kzalloc(sizeof(*work), GFP_KERNEL);
11540         if (work == NULL)
11541                 return -ENOMEM;
11542
11543         work->event = event;
11544         work->crtc = crtc;
11545         work->old_fb = old_fb;
11546         INIT_WORK(&work->work, intel_unpin_work_fn);
11547
11548         ret = drm_crtc_vblank_get(crtc);
11549         if (ret)
11550                 goto free_work;
11551
11552         /* We borrow the event spin lock for protecting unpin_work */
11553         spin_lock_irq(&dev->event_lock);
11554         if (intel_crtc->unpin_work) {
11555                 /* Before declaring the flip queue wedged, check if
11556                  * the hardware completed the operation behind our backs.
11557                  */
11558                 if (__intel_pageflip_stall_check(dev, crtc)) {
11559                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11560                         page_flip_completed(intel_crtc);
11561                 } else {
11562                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11563                         spin_unlock_irq(&dev->event_lock);
11564
11565                         drm_crtc_vblank_put(crtc);
11566                         kfree(work);
11567                         return -EBUSY;
11568                 }
11569         }
11570         intel_crtc->unpin_work = work;
11571         spin_unlock_irq(&dev->event_lock);
11572
11573         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11574                 flush_workqueue(dev_priv->wq);
11575
11576         /* Reference the objects for the scheduled work. */
11577         drm_framebuffer_reference(work->old_fb);
11578         drm_gem_object_reference(&obj->base);
11579
11580         crtc->primary->fb = fb;
11581         update_state_fb(crtc->primary);
11582         intel_fbc_pre_update(intel_crtc);
11583
11584         work->pending_flip_obj = obj;
11585
11586         ret = i915_mutex_lock_interruptible(dev);
11587         if (ret)
11588                 goto cleanup;
11589
11590         atomic_inc(&intel_crtc->unpin_work_count);
11591         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11592
11593         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11594                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11595
11596         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11597                 ring = &dev_priv->ring[BCS];
11598                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11599                         /* vlv: DISPLAY_FLIP fails to change tiling */
11600                         ring = NULL;
11601         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11602                 ring = &dev_priv->ring[BCS];
11603         } else if (INTEL_INFO(dev)->gen >= 7) {
11604                 ring = i915_gem_request_get_ring(obj->last_write_req);
11605                 if (ring == NULL || ring->id != RCS)
11606                         ring = &dev_priv->ring[BCS];
11607         } else {
11608                 ring = &dev_priv->ring[RCS];
11609         }
11610
11611         mmio_flip = use_mmio_flip(ring, obj);
11612
11613         /* When using CS flips, we want to emit semaphores between rings.
11614          * However, when using mmio flips we will create a task to do the
11615          * synchronisation, so all we want here is to pin the framebuffer
11616          * into the display plane and skip any waits.
11617          */
11618         if (!mmio_flip) {
11619                 ret = i915_gem_object_sync(obj, ring, &request);
11620                 if (ret)
11621                         goto cleanup_pending;
11622         }
11623
11624         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11625                                          crtc->primary->state);
11626         if (ret)
11627                 goto cleanup_pending;
11628
11629         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11630                                                   obj, 0);
11631         work->gtt_offset += intel_crtc->dspaddr_offset;
11632
11633         if (mmio_flip) {
11634                 ret = intel_queue_mmio_flip(dev, crtc, obj);
11635                 if (ret)
11636                         goto cleanup_unpin;
11637
11638                 i915_gem_request_assign(&work->flip_queued_req,
11639                                         obj->last_write_req);
11640         } else {
11641                 if (!request) {
11642                         request = i915_gem_request_alloc(ring, NULL);
11643                         if (IS_ERR(request)) {
11644                                 ret = PTR_ERR(request);
11645                                 goto cleanup_unpin;
11646                         }
11647                 }
11648
11649                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11650                                                    page_flip_flags);
11651                 if (ret)
11652                         goto cleanup_unpin;
11653
11654                 i915_gem_request_assign(&work->flip_queued_req, request);
11655         }
11656
11657         if (request)
11658                 i915_add_request_no_flush(request);
11659
11660         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11661         work->enable_stall_check = true;
11662
11663         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11664                           to_intel_plane(primary)->frontbuffer_bit);
11665         mutex_unlock(&dev->struct_mutex);
11666
11667         intel_frontbuffer_flip_prepare(dev,
11668                                        to_intel_plane(primary)->frontbuffer_bit);
11669
11670         trace_i915_flip_request(intel_crtc->plane, obj);
11671
11672         return 0;
11673
11674 cleanup_unpin:
11675         intel_unpin_fb_obj(fb, crtc->primary->state);
11676 cleanup_pending:
11677         if (!IS_ERR_OR_NULL(request))
11678                 i915_gem_request_cancel(request);
11679         atomic_dec(&intel_crtc->unpin_work_count);
11680         mutex_unlock(&dev->struct_mutex);
11681 cleanup:
11682         crtc->primary->fb = old_fb;
11683         update_state_fb(crtc->primary);
11684
11685         drm_gem_object_unreference_unlocked(&obj->base);
11686         drm_framebuffer_unreference(work->old_fb);
11687
11688         spin_lock_irq(&dev->event_lock);
11689         intel_crtc->unpin_work = NULL;
11690         spin_unlock_irq(&dev->event_lock);
11691
11692         drm_crtc_vblank_put(crtc);
11693 free_work:
11694         kfree(work);
11695
11696         if (ret == -EIO) {
11697                 struct drm_atomic_state *state;
11698                 struct drm_plane_state *plane_state;
11699
11700 out_hang:
11701                 state = drm_atomic_state_alloc(dev);
11702                 if (!state)
11703                         return -ENOMEM;
11704                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11705
11706 retry:
11707                 plane_state = drm_atomic_get_plane_state(state, primary);
11708                 ret = PTR_ERR_OR_ZERO(plane_state);
11709                 if (!ret) {
11710                         drm_atomic_set_fb_for_plane(plane_state, fb);
11711
11712                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11713                         if (!ret)
11714                                 ret = drm_atomic_commit(state);
11715                 }
11716
11717                 if (ret == -EDEADLK) {
11718                         drm_modeset_backoff(state->acquire_ctx);
11719                         drm_atomic_state_clear(state);
11720                         goto retry;
11721                 }
11722
11723                 if (ret)
11724                         drm_atomic_state_free(state);
11725
11726                 if (ret == 0 && event) {
11727                         spin_lock_irq(&dev->event_lock);
11728                         drm_send_vblank_event(dev, pipe, event);
11729                         spin_unlock_irq(&dev->event_lock);
11730                 }
11731         }
11732         return ret;
11733 }
11734
11735
11736 /**
11737  * intel_wm_need_update - Check whether watermarks need updating
11738  * @plane: drm plane
11739  * @state: new plane state
11740  *
11741  * Check current plane state versus the new one to determine whether
11742  * watermarks need to be recalculated.
11743  *
11744  * Returns true or false.
11745  */
11746 static bool intel_wm_need_update(struct drm_plane *plane,
11747                                  struct drm_plane_state *state)
11748 {
11749         struct intel_plane_state *new = to_intel_plane_state(state);
11750         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11751
11752         /* Update watermarks on tiling or size changes. */
11753         if (new->visible != cur->visible)
11754                 return true;
11755
11756         if (!cur->base.fb || !new->base.fb)
11757                 return false;
11758
11759         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11760             cur->base.rotation != new->base.rotation ||
11761             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11762             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11763             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11764             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11765                 return true;
11766
11767         return false;
11768 }
11769
11770 static bool needs_scaling(struct intel_plane_state *state)
11771 {
11772         int src_w = drm_rect_width(&state->src) >> 16;
11773         int src_h = drm_rect_height(&state->src) >> 16;
11774         int dst_w = drm_rect_width(&state->dst);
11775         int dst_h = drm_rect_height(&state->dst);
11776
11777         return (src_w != dst_w || src_h != dst_h);
11778 }
11779
11780 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11781                                     struct drm_plane_state *plane_state)
11782 {
11783         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11784         struct drm_crtc *crtc = crtc_state->crtc;
11785         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11786         struct drm_plane *plane = plane_state->plane;
11787         struct drm_device *dev = crtc->dev;
11788         struct intel_plane_state *old_plane_state =
11789                 to_intel_plane_state(plane->state);
11790         int idx = intel_crtc->base.base.id, ret;
11791         bool mode_changed = needs_modeset(crtc_state);
11792         bool was_crtc_enabled = crtc->state->active;
11793         bool is_crtc_enabled = crtc_state->active;
11794         bool turn_off, turn_on, visible, was_visible;
11795         struct drm_framebuffer *fb = plane_state->fb;
11796
11797         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11798             plane->type != DRM_PLANE_TYPE_CURSOR) {
11799                 ret = skl_update_scaler_plane(
11800                         to_intel_crtc_state(crtc_state),
11801                         to_intel_plane_state(plane_state));
11802                 if (ret)
11803                         return ret;
11804         }
11805
11806         was_visible = old_plane_state->visible;
11807         visible = to_intel_plane_state(plane_state)->visible;
11808
11809         if (!was_crtc_enabled && WARN_ON(was_visible))
11810                 was_visible = false;
11811
11812         /*
11813          * Visibility is calculated as if the crtc was on, but
11814          * after scaler setup everything depends on it being off
11815          * when the crtc isn't active.
11816          */
11817         if (!is_crtc_enabled)
11818                 to_intel_plane_state(plane_state)->visible = visible = false;
11819
11820         if (!was_visible && !visible)
11821                 return 0;
11822
11823         if (fb != old_plane_state->base.fb)
11824                 pipe_config->fb_changed = true;
11825
11826         turn_off = was_visible && (!visible || mode_changed);
11827         turn_on = visible && (!was_visible || mode_changed);
11828
11829         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11830                          plane->base.id, fb ? fb->base.id : -1);
11831
11832         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11833                          plane->base.id, was_visible, visible,
11834                          turn_off, turn_on, mode_changed);
11835
11836         if (turn_on || turn_off) {
11837                 pipe_config->wm_changed = true;
11838
11839                 /* must disable cxsr around plane enable/disable */
11840                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11841                         pipe_config->disable_cxsr = true;
11842         } else if (intel_wm_need_update(plane, plane_state)) {
11843                 pipe_config->wm_changed = true;
11844         }
11845
11846         if (visible || was_visible)
11847                 intel_crtc->atomic.fb_bits |=
11848                         to_intel_plane(plane)->frontbuffer_bit;
11849
11850         switch (plane->type) {
11851         case DRM_PLANE_TYPE_PRIMARY:
11852                 intel_crtc->atomic.post_enable_primary = turn_on;
11853                 intel_crtc->atomic.update_fbc = true;
11854
11855                 break;
11856         case DRM_PLANE_TYPE_CURSOR:
11857                 break;
11858         case DRM_PLANE_TYPE_OVERLAY:
11859                 /*
11860                  * WaCxSRDisabledForSpriteScaling:ivb
11861                  *
11862                  * cstate->update_wm was already set above, so this flag will
11863                  * take effect when we commit and program watermarks.
11864                  */
11865                 if (IS_IVYBRIDGE(dev) &&
11866                     needs_scaling(to_intel_plane_state(plane_state)) &&
11867                     !needs_scaling(old_plane_state))
11868                         pipe_config->disable_lp_wm = true;
11869
11870                 break;
11871         }
11872         return 0;
11873 }
11874
11875 static bool encoders_cloneable(const struct intel_encoder *a,
11876                                const struct intel_encoder *b)
11877 {
11878         /* masks could be asymmetric, so check both ways */
11879         return a == b || (a->cloneable & (1 << b->type) &&
11880                           b->cloneable & (1 << a->type));
11881 }
11882
11883 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11884                                          struct intel_crtc *crtc,
11885                                          struct intel_encoder *encoder)
11886 {
11887         struct intel_encoder *source_encoder;
11888         struct drm_connector *connector;
11889         struct drm_connector_state *connector_state;
11890         int i;
11891
11892         for_each_connector_in_state(state, connector, connector_state, i) {
11893                 if (connector_state->crtc != &crtc->base)
11894                         continue;
11895
11896                 source_encoder =
11897                         to_intel_encoder(connector_state->best_encoder);
11898                 if (!encoders_cloneable(encoder, source_encoder))
11899                         return false;
11900         }
11901
11902         return true;
11903 }
11904
11905 static bool check_encoder_cloning(struct drm_atomic_state *state,
11906                                   struct intel_crtc *crtc)
11907 {
11908         struct intel_encoder *encoder;
11909         struct drm_connector *connector;
11910         struct drm_connector_state *connector_state;
11911         int i;
11912
11913         for_each_connector_in_state(state, connector, connector_state, i) {
11914                 if (connector_state->crtc != &crtc->base)
11915                         continue;
11916
11917                 encoder = to_intel_encoder(connector_state->best_encoder);
11918                 if (!check_single_encoder_cloning(state, crtc, encoder))
11919                         return false;
11920         }
11921
11922         return true;
11923 }
11924
11925 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11926                                    struct drm_crtc_state *crtc_state)
11927 {
11928         struct drm_device *dev = crtc->dev;
11929         struct drm_i915_private *dev_priv = dev->dev_private;
11930         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11931         struct intel_crtc_state *pipe_config =
11932                 to_intel_crtc_state(crtc_state);
11933         struct drm_atomic_state *state = crtc_state->state;
11934         int ret;
11935         bool mode_changed = needs_modeset(crtc_state);
11936
11937         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11938                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11939                 return -EINVAL;
11940         }
11941
11942         if (mode_changed && !crtc_state->active)
11943                 pipe_config->wm_changed = true;
11944
11945         if (mode_changed && crtc_state->enable &&
11946             dev_priv->display.crtc_compute_clock &&
11947             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11948                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11949                                                            pipe_config);
11950                 if (ret)
11951                         return ret;
11952         }
11953
11954         ret = 0;
11955         if (dev_priv->display.compute_pipe_wm) {
11956                 ret = dev_priv->display.compute_pipe_wm(intel_crtc, state);
11957                 if (ret)
11958                         return ret;
11959         }
11960
11961         if (INTEL_INFO(dev)->gen >= 9) {
11962                 if (mode_changed)
11963                         ret = skl_update_scaler_crtc(pipe_config);
11964
11965                 if (!ret)
11966                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
11967                                                          pipe_config);
11968         }
11969
11970         return ret;
11971 }
11972
11973 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11974         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11975         .load_lut = intel_crtc_load_lut,
11976         .atomic_begin = intel_begin_crtc_commit,
11977         .atomic_flush = intel_finish_crtc_commit,
11978         .atomic_check = intel_crtc_atomic_check,
11979 };
11980
11981 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11982 {
11983         struct intel_connector *connector;
11984
11985         for_each_intel_connector(dev, connector) {
11986                 if (connector->base.encoder) {
11987                         connector->base.state->best_encoder =
11988                                 connector->base.encoder;
11989                         connector->base.state->crtc =
11990                                 connector->base.encoder->crtc;
11991                 } else {
11992                         connector->base.state->best_encoder = NULL;
11993                         connector->base.state->crtc = NULL;
11994                 }
11995         }
11996 }
11997
11998 static void
11999 connected_sink_compute_bpp(struct intel_connector *connector,
12000                            struct intel_crtc_state *pipe_config)
12001 {
12002         int bpp = pipe_config->pipe_bpp;
12003
12004         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12005                 connector->base.base.id,
12006                 connector->base.name);
12007
12008         /* Don't use an invalid EDID bpc value */
12009         if (connector->base.display_info.bpc &&
12010             connector->base.display_info.bpc * 3 < bpp) {
12011                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12012                               bpp, connector->base.display_info.bpc*3);
12013                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12014         }
12015
12016         /* Clamp bpp to default limit on screens without EDID 1.4 */
12017         if (connector->base.display_info.bpc == 0) {
12018                 int type = connector->base.connector_type;
12019                 int clamp_bpp = 24;
12020
12021                 /* Fall back to 18 bpp when DP sink capability is unknown. */
12022                 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12023                     type == DRM_MODE_CONNECTOR_eDP)
12024                         clamp_bpp = 18;
12025
12026                 if (bpp > clamp_bpp) {
12027                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12028                                       bpp, clamp_bpp);
12029                         pipe_config->pipe_bpp = clamp_bpp;
12030                 }
12031         }
12032 }
12033
12034 static int
12035 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12036                           struct intel_crtc_state *pipe_config)
12037 {
12038         struct drm_device *dev = crtc->base.dev;
12039         struct drm_atomic_state *state;
12040         struct drm_connector *connector;
12041         struct drm_connector_state *connector_state;
12042         int bpp, i;
12043
12044         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12045                 bpp = 10*3;
12046         else if (INTEL_INFO(dev)->gen >= 5)
12047                 bpp = 12*3;
12048         else
12049                 bpp = 8*3;
12050
12051
12052         pipe_config->pipe_bpp = bpp;
12053
12054         state = pipe_config->base.state;
12055
12056         /* Clamp display bpp to EDID value */
12057         for_each_connector_in_state(state, connector, connector_state, i) {
12058                 if (connector_state->crtc != &crtc->base)
12059                         continue;
12060
12061                 connected_sink_compute_bpp(to_intel_connector(connector),
12062                                            pipe_config);
12063         }
12064
12065         return bpp;
12066 }
12067
12068 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12069 {
12070         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12071                         "type: 0x%x flags: 0x%x\n",
12072                 mode->crtc_clock,
12073                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12074                 mode->crtc_hsync_end, mode->crtc_htotal,
12075                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12076                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12077 }
12078
12079 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12080                                    struct intel_crtc_state *pipe_config,
12081                                    const char *context)
12082 {
12083         struct drm_device *dev = crtc->base.dev;
12084         struct drm_plane *plane;
12085         struct intel_plane *intel_plane;
12086         struct intel_plane_state *state;
12087         struct drm_framebuffer *fb;
12088
12089         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12090                       context, pipe_config, pipe_name(crtc->pipe));
12091
12092         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12093         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12094                       pipe_config->pipe_bpp, pipe_config->dither);
12095         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12096                       pipe_config->has_pch_encoder,
12097                       pipe_config->fdi_lanes,
12098                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12099                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12100                       pipe_config->fdi_m_n.tu);
12101         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12102                       pipe_config->has_dp_encoder,
12103                       pipe_config->lane_count,
12104                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12105                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12106                       pipe_config->dp_m_n.tu);
12107
12108         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12109                       pipe_config->has_dp_encoder,
12110                       pipe_config->lane_count,
12111                       pipe_config->dp_m2_n2.gmch_m,
12112                       pipe_config->dp_m2_n2.gmch_n,
12113                       pipe_config->dp_m2_n2.link_m,
12114                       pipe_config->dp_m2_n2.link_n,
12115                       pipe_config->dp_m2_n2.tu);
12116
12117         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12118                       pipe_config->has_audio,
12119                       pipe_config->has_infoframe);
12120
12121         DRM_DEBUG_KMS("requested mode:\n");
12122         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12123         DRM_DEBUG_KMS("adjusted mode:\n");
12124         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12125         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12126         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12127         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12128                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12129         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12130                       crtc->num_scalers,
12131                       pipe_config->scaler_state.scaler_users,
12132                       pipe_config->scaler_state.scaler_id);
12133         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12134                       pipe_config->gmch_pfit.control,
12135                       pipe_config->gmch_pfit.pgm_ratios,
12136                       pipe_config->gmch_pfit.lvds_border_bits);
12137         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12138                       pipe_config->pch_pfit.pos,
12139                       pipe_config->pch_pfit.size,
12140                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12141         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12142         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12143
12144         if (IS_BROXTON(dev)) {
12145                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12146                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12147                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12148                               pipe_config->ddi_pll_sel,
12149                               pipe_config->dpll_hw_state.ebb0,
12150                               pipe_config->dpll_hw_state.ebb4,
12151                               pipe_config->dpll_hw_state.pll0,
12152                               pipe_config->dpll_hw_state.pll1,
12153                               pipe_config->dpll_hw_state.pll2,
12154                               pipe_config->dpll_hw_state.pll3,
12155                               pipe_config->dpll_hw_state.pll6,
12156                               pipe_config->dpll_hw_state.pll8,
12157                               pipe_config->dpll_hw_state.pll9,
12158                               pipe_config->dpll_hw_state.pll10,
12159                               pipe_config->dpll_hw_state.pcsdw12);
12160         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12161                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12162                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12163                               pipe_config->ddi_pll_sel,
12164                               pipe_config->dpll_hw_state.ctrl1,
12165                               pipe_config->dpll_hw_state.cfgcr1,
12166                               pipe_config->dpll_hw_state.cfgcr2);
12167         } else if (HAS_DDI(dev)) {
12168                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12169                               pipe_config->ddi_pll_sel,
12170                               pipe_config->dpll_hw_state.wrpll,
12171                               pipe_config->dpll_hw_state.spll);
12172         } else {
12173                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12174                               "fp0: 0x%x, fp1: 0x%x\n",
12175                               pipe_config->dpll_hw_state.dpll,
12176                               pipe_config->dpll_hw_state.dpll_md,
12177                               pipe_config->dpll_hw_state.fp0,
12178                               pipe_config->dpll_hw_state.fp1);
12179         }
12180
12181         DRM_DEBUG_KMS("planes on this crtc\n");
12182         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12183                 intel_plane = to_intel_plane(plane);
12184                 if (intel_plane->pipe != crtc->pipe)
12185                         continue;
12186
12187                 state = to_intel_plane_state(plane->state);
12188                 fb = state->base.fb;
12189                 if (!fb) {
12190                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12191                                 "disabled, scaler_id = %d\n",
12192                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12193                                 plane->base.id, intel_plane->pipe,
12194                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12195                                 drm_plane_index(plane), state->scaler_id);
12196                         continue;
12197                 }
12198
12199                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12200                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12201                         plane->base.id, intel_plane->pipe,
12202                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12203                         drm_plane_index(plane));
12204                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12205                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12206                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12207                         state->scaler_id,
12208                         state->src.x1 >> 16, state->src.y1 >> 16,
12209                         drm_rect_width(&state->src) >> 16,
12210                         drm_rect_height(&state->src) >> 16,
12211                         state->dst.x1, state->dst.y1,
12212                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12213         }
12214 }
12215
12216 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12217 {
12218         struct drm_device *dev = state->dev;
12219         struct drm_connector *connector;
12220         unsigned int used_ports = 0;
12221
12222         /*
12223          * Walk the connector list instead of the encoder
12224          * list to detect the problem on ddi platforms
12225          * where there's just one encoder per digital port.
12226          */
12227         drm_for_each_connector(connector, dev) {
12228                 struct drm_connector_state *connector_state;
12229                 struct intel_encoder *encoder;
12230
12231                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12232                 if (!connector_state)
12233                         connector_state = connector->state;
12234
12235                 if (!connector_state->best_encoder)
12236                         continue;
12237
12238                 encoder = to_intel_encoder(connector_state->best_encoder);
12239
12240                 WARN_ON(!connector_state->crtc);
12241
12242                 switch (encoder->type) {
12243                         unsigned int port_mask;
12244                 case INTEL_OUTPUT_UNKNOWN:
12245                         if (WARN_ON(!HAS_DDI(dev)))
12246                                 break;
12247                 case INTEL_OUTPUT_DISPLAYPORT:
12248                 case INTEL_OUTPUT_HDMI:
12249                 case INTEL_OUTPUT_EDP:
12250                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12251
12252                         /* the same port mustn't appear more than once */
12253                         if (used_ports & port_mask)
12254                                 return false;
12255
12256                         used_ports |= port_mask;
12257                 default:
12258                         break;
12259                 }
12260         }
12261
12262         return true;
12263 }
12264
12265 static void
12266 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12267 {
12268         struct drm_crtc_state tmp_state;
12269         struct intel_crtc_scaler_state scaler_state;
12270         struct intel_dpll_hw_state dpll_hw_state;
12271         enum intel_dpll_id shared_dpll;
12272         uint32_t ddi_pll_sel;
12273         bool force_thru;
12274
12275         /* FIXME: before the switch to atomic started, a new pipe_config was
12276          * kzalloc'd. Code that depends on any field being zero should be
12277          * fixed, so that the crtc_state can be safely duplicated. For now,
12278          * only fields that are know to not cause problems are preserved. */
12279
12280         tmp_state = crtc_state->base;
12281         scaler_state = crtc_state->scaler_state;
12282         shared_dpll = crtc_state->shared_dpll;
12283         dpll_hw_state = crtc_state->dpll_hw_state;
12284         ddi_pll_sel = crtc_state->ddi_pll_sel;
12285         force_thru = crtc_state->pch_pfit.force_thru;
12286
12287         memset(crtc_state, 0, sizeof *crtc_state);
12288
12289         crtc_state->base = tmp_state;
12290         crtc_state->scaler_state = scaler_state;
12291         crtc_state->shared_dpll = shared_dpll;
12292         crtc_state->dpll_hw_state = dpll_hw_state;
12293         crtc_state->ddi_pll_sel = ddi_pll_sel;
12294         crtc_state->pch_pfit.force_thru = force_thru;
12295 }
12296
12297 static int
12298 intel_modeset_pipe_config(struct drm_crtc *crtc,
12299                           struct intel_crtc_state *pipe_config)
12300 {
12301         struct drm_atomic_state *state = pipe_config->base.state;
12302         struct intel_encoder *encoder;
12303         struct drm_connector *connector;
12304         struct drm_connector_state *connector_state;
12305         int base_bpp, ret = -EINVAL;
12306         int i;
12307         bool retry = true;
12308
12309         clear_intel_crtc_state(pipe_config);
12310
12311         pipe_config->cpu_transcoder =
12312                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12313
12314         /*
12315          * Sanitize sync polarity flags based on requested ones. If neither
12316          * positive or negative polarity is requested, treat this as meaning
12317          * negative polarity.
12318          */
12319         if (!(pipe_config->base.adjusted_mode.flags &
12320               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12321                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12322
12323         if (!(pipe_config->base.adjusted_mode.flags &
12324               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12325                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12326
12327         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12328                                              pipe_config);
12329         if (base_bpp < 0)
12330                 goto fail;
12331
12332         /*
12333          * Determine the real pipe dimensions. Note that stereo modes can
12334          * increase the actual pipe size due to the frame doubling and
12335          * insertion of additional space for blanks between the frame. This
12336          * is stored in the crtc timings. We use the requested mode to do this
12337          * computation to clearly distinguish it from the adjusted mode, which
12338          * can be changed by the connectors in the below retry loop.
12339          */
12340         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12341                                &pipe_config->pipe_src_w,
12342                                &pipe_config->pipe_src_h);
12343
12344 encoder_retry:
12345         /* Ensure the port clock defaults are reset when retrying. */
12346         pipe_config->port_clock = 0;
12347         pipe_config->pixel_multiplier = 1;
12348
12349         /* Fill in default crtc timings, allow encoders to overwrite them. */
12350         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12351                               CRTC_STEREO_DOUBLE);
12352
12353         /* Pass our mode to the connectors and the CRTC to give them a chance to
12354          * adjust it according to limitations or connector properties, and also
12355          * a chance to reject the mode entirely.
12356          */
12357         for_each_connector_in_state(state, connector, connector_state, i) {
12358                 if (connector_state->crtc != crtc)
12359                         continue;
12360
12361                 encoder = to_intel_encoder(connector_state->best_encoder);
12362
12363                 if (!(encoder->compute_config(encoder, pipe_config))) {
12364                         DRM_DEBUG_KMS("Encoder config failure\n");
12365                         goto fail;
12366                 }
12367         }
12368
12369         /* Set default port clock if not overwritten by the encoder. Needs to be
12370          * done afterwards in case the encoder adjusts the mode. */
12371         if (!pipe_config->port_clock)
12372                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12373                         * pipe_config->pixel_multiplier;
12374
12375         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12376         if (ret < 0) {
12377                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12378                 goto fail;
12379         }
12380
12381         if (ret == RETRY) {
12382                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12383                         ret = -EINVAL;
12384                         goto fail;
12385                 }
12386
12387                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12388                 retry = false;
12389                 goto encoder_retry;
12390         }
12391
12392         /* Dithering seems to not pass-through bits correctly when it should, so
12393          * only enable it on 6bpc panels. */
12394         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12395         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12396                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12397
12398 fail:
12399         return ret;
12400 }
12401
12402 static void
12403 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12404 {
12405         struct drm_crtc *crtc;
12406         struct drm_crtc_state *crtc_state;
12407         int i;
12408
12409         /* Double check state. */
12410         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12411                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12412
12413                 /* Update hwmode for vblank functions */
12414                 if (crtc->state->active)
12415                         crtc->hwmode = crtc->state->adjusted_mode;
12416                 else
12417                         crtc->hwmode.crtc_clock = 0;
12418
12419                 /*
12420                  * Update legacy state to satisfy fbc code. This can
12421                  * be removed when fbc uses the atomic state.
12422                  */
12423                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12424                         struct drm_plane_state *plane_state = crtc->primary->state;
12425
12426                         crtc->primary->fb = plane_state->fb;
12427                         crtc->x = plane_state->src_x >> 16;
12428                         crtc->y = plane_state->src_y >> 16;
12429                 }
12430         }
12431 }
12432
12433 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12434 {
12435         int diff;
12436
12437         if (clock1 == clock2)
12438                 return true;
12439
12440         if (!clock1 || !clock2)
12441                 return false;
12442
12443         diff = abs(clock1 - clock2);
12444
12445         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12446                 return true;
12447
12448         return false;
12449 }
12450
12451 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12452         list_for_each_entry((intel_crtc), \
12453                             &(dev)->mode_config.crtc_list, \
12454                             base.head) \
12455                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12456
12457 static bool
12458 intel_compare_m_n(unsigned int m, unsigned int n,
12459                   unsigned int m2, unsigned int n2,
12460                   bool exact)
12461 {
12462         if (m == m2 && n == n2)
12463                 return true;
12464
12465         if (exact || !m || !n || !m2 || !n2)
12466                 return false;
12467
12468         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12469
12470         if (n > n2) {
12471                 while (n > n2) {
12472                         m2 <<= 1;
12473                         n2 <<= 1;
12474                 }
12475         } else if (n < n2) {
12476                 while (n < n2) {
12477                         m <<= 1;
12478                         n <<= 1;
12479                 }
12480         }
12481
12482         if (n != n2)
12483                 return false;
12484
12485         return intel_fuzzy_clock_check(m, m2);
12486 }
12487
12488 static bool
12489 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12490                        struct intel_link_m_n *m2_n2,
12491                        bool adjust)
12492 {
12493         if (m_n->tu == m2_n2->tu &&
12494             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12495                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12496             intel_compare_m_n(m_n->link_m, m_n->link_n,
12497                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12498                 if (adjust)
12499                         *m2_n2 = *m_n;
12500
12501                 return true;
12502         }
12503
12504         return false;
12505 }
12506
12507 static bool
12508 intel_pipe_config_compare(struct drm_device *dev,
12509                           struct intel_crtc_state *current_config,
12510                           struct intel_crtc_state *pipe_config,
12511                           bool adjust)
12512 {
12513         bool ret = true;
12514
12515 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12516         do { \
12517                 if (!adjust) \
12518                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12519                 else \
12520                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12521         } while (0)
12522
12523 #define PIPE_CONF_CHECK_X(name) \
12524         if (current_config->name != pipe_config->name) { \
12525                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12526                           "(expected 0x%08x, found 0x%08x)\n", \
12527                           current_config->name, \
12528                           pipe_config->name); \
12529                 ret = false; \
12530         }
12531
12532 #define PIPE_CONF_CHECK_I(name) \
12533         if (current_config->name != pipe_config->name) { \
12534                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12535                           "(expected %i, found %i)\n", \
12536                           current_config->name, \
12537                           pipe_config->name); \
12538                 ret = false; \
12539         }
12540
12541 #define PIPE_CONF_CHECK_M_N(name) \
12542         if (!intel_compare_link_m_n(&current_config->name, \
12543                                     &pipe_config->name,\
12544                                     adjust)) { \
12545                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12546                           "(expected tu %i gmch %i/%i link %i/%i, " \
12547                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12548                           current_config->name.tu, \
12549                           current_config->name.gmch_m, \
12550                           current_config->name.gmch_n, \
12551                           current_config->name.link_m, \
12552                           current_config->name.link_n, \
12553                           pipe_config->name.tu, \
12554                           pipe_config->name.gmch_m, \
12555                           pipe_config->name.gmch_n, \
12556                           pipe_config->name.link_m, \
12557                           pipe_config->name.link_n); \
12558                 ret = false; \
12559         }
12560
12561 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12562         if (!intel_compare_link_m_n(&current_config->name, \
12563                                     &pipe_config->name, adjust) && \
12564             !intel_compare_link_m_n(&current_config->alt_name, \
12565                                     &pipe_config->name, adjust)) { \
12566                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12567                           "(expected tu %i gmch %i/%i link %i/%i, " \
12568                           "or tu %i gmch %i/%i link %i/%i, " \
12569                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12570                           current_config->name.tu, \
12571                           current_config->name.gmch_m, \
12572                           current_config->name.gmch_n, \
12573                           current_config->name.link_m, \
12574                           current_config->name.link_n, \
12575                           current_config->alt_name.tu, \
12576                           current_config->alt_name.gmch_m, \
12577                           current_config->alt_name.gmch_n, \
12578                           current_config->alt_name.link_m, \
12579                           current_config->alt_name.link_n, \
12580                           pipe_config->name.tu, \
12581                           pipe_config->name.gmch_m, \
12582                           pipe_config->name.gmch_n, \
12583                           pipe_config->name.link_m, \
12584                           pipe_config->name.link_n); \
12585                 ret = false; \
12586         }
12587
12588 /* This is required for BDW+ where there is only one set of registers for
12589  * switching between high and low RR.
12590  * This macro can be used whenever a comparison has to be made between one
12591  * hw state and multiple sw state variables.
12592  */
12593 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12594         if ((current_config->name != pipe_config->name) && \
12595                 (current_config->alt_name != pipe_config->name)) { \
12596                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12597                                   "(expected %i or %i, found %i)\n", \
12598                                   current_config->name, \
12599                                   current_config->alt_name, \
12600                                   pipe_config->name); \
12601                         ret = false; \
12602         }
12603
12604 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12605         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12606                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12607                           "(expected %i, found %i)\n", \
12608                           current_config->name & (mask), \
12609                           pipe_config->name & (mask)); \
12610                 ret = false; \
12611         }
12612
12613 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12614         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12615                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12616                           "(expected %i, found %i)\n", \
12617                           current_config->name, \
12618                           pipe_config->name); \
12619                 ret = false; \
12620         }
12621
12622 #define PIPE_CONF_QUIRK(quirk)  \
12623         ((current_config->quirks | pipe_config->quirks) & (quirk))
12624
12625         PIPE_CONF_CHECK_I(cpu_transcoder);
12626
12627         PIPE_CONF_CHECK_I(has_pch_encoder);
12628         PIPE_CONF_CHECK_I(fdi_lanes);
12629         PIPE_CONF_CHECK_M_N(fdi_m_n);
12630
12631         PIPE_CONF_CHECK_I(has_dp_encoder);
12632         PIPE_CONF_CHECK_I(lane_count);
12633
12634         if (INTEL_INFO(dev)->gen < 8) {
12635                 PIPE_CONF_CHECK_M_N(dp_m_n);
12636
12637                 if (current_config->has_drrs)
12638                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12639         } else
12640                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12641
12642         PIPE_CONF_CHECK_I(has_dsi_encoder);
12643
12644         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12645         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12646         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12647         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12648         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12649         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12650
12651         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12652         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12653         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12654         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12655         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12656         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12657
12658         PIPE_CONF_CHECK_I(pixel_multiplier);
12659         PIPE_CONF_CHECK_I(has_hdmi_sink);
12660         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12661             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12662                 PIPE_CONF_CHECK_I(limited_color_range);
12663         PIPE_CONF_CHECK_I(has_infoframe);
12664
12665         PIPE_CONF_CHECK_I(has_audio);
12666
12667         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12668                               DRM_MODE_FLAG_INTERLACE);
12669
12670         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12671                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12672                                       DRM_MODE_FLAG_PHSYNC);
12673                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12674                                       DRM_MODE_FLAG_NHSYNC);
12675                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12676                                       DRM_MODE_FLAG_PVSYNC);
12677                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12678                                       DRM_MODE_FLAG_NVSYNC);
12679         }
12680
12681         PIPE_CONF_CHECK_X(gmch_pfit.control);
12682         /* pfit ratios are autocomputed by the hw on gen4+ */
12683         if (INTEL_INFO(dev)->gen < 4)
12684                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12685         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12686
12687         if (!adjust) {
12688                 PIPE_CONF_CHECK_I(pipe_src_w);
12689                 PIPE_CONF_CHECK_I(pipe_src_h);
12690
12691                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12692                 if (current_config->pch_pfit.enabled) {
12693                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12694                         PIPE_CONF_CHECK_X(pch_pfit.size);
12695                 }
12696
12697                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12698         }
12699
12700         /* BDW+ don't expose a synchronous way to read the state */
12701         if (IS_HASWELL(dev))
12702                 PIPE_CONF_CHECK_I(ips_enabled);
12703
12704         PIPE_CONF_CHECK_I(double_wide);
12705
12706         PIPE_CONF_CHECK_X(ddi_pll_sel);
12707
12708         PIPE_CONF_CHECK_I(shared_dpll);
12709         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12710         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12711         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12712         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12713         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12714         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12715         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12716         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12717         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12718
12719         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12720                 PIPE_CONF_CHECK_I(pipe_bpp);
12721
12722         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12723         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12724
12725 #undef PIPE_CONF_CHECK_X
12726 #undef PIPE_CONF_CHECK_I
12727 #undef PIPE_CONF_CHECK_I_ALT
12728 #undef PIPE_CONF_CHECK_FLAGS
12729 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12730 #undef PIPE_CONF_QUIRK
12731 #undef INTEL_ERR_OR_DBG_KMS
12732
12733         return ret;
12734 }
12735
12736 static void check_wm_state(struct drm_device *dev)
12737 {
12738         struct drm_i915_private *dev_priv = dev->dev_private;
12739         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12740         struct intel_crtc *intel_crtc;
12741         int plane;
12742
12743         if (INTEL_INFO(dev)->gen < 9)
12744                 return;
12745
12746         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12747         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12748
12749         for_each_intel_crtc(dev, intel_crtc) {
12750                 struct skl_ddb_entry *hw_entry, *sw_entry;
12751                 const enum pipe pipe = intel_crtc->pipe;
12752
12753                 if (!intel_crtc->active)
12754                         continue;
12755
12756                 /* planes */
12757                 for_each_plane(dev_priv, pipe, plane) {
12758                         hw_entry = &hw_ddb.plane[pipe][plane];
12759                         sw_entry = &sw_ddb->plane[pipe][plane];
12760
12761                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12762                                 continue;
12763
12764                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12765                                   "(expected (%u,%u), found (%u,%u))\n",
12766                                   pipe_name(pipe), plane + 1,
12767                                   sw_entry->start, sw_entry->end,
12768                                   hw_entry->start, hw_entry->end);
12769                 }
12770
12771                 /* cursor */
12772                 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12773                 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12774
12775                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12776                         continue;
12777
12778                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12779                           "(expected (%u,%u), found (%u,%u))\n",
12780                           pipe_name(pipe),
12781                           sw_entry->start, sw_entry->end,
12782                           hw_entry->start, hw_entry->end);
12783         }
12784 }
12785
12786 static void
12787 check_connector_state(struct drm_device *dev,
12788                       struct drm_atomic_state *old_state)
12789 {
12790         struct drm_connector_state *old_conn_state;
12791         struct drm_connector *connector;
12792         int i;
12793
12794         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12795                 struct drm_encoder *encoder = connector->encoder;
12796                 struct drm_connector_state *state = connector->state;
12797
12798                 /* This also checks the encoder/connector hw state with the
12799                  * ->get_hw_state callbacks. */
12800                 intel_connector_check_state(to_intel_connector(connector));
12801
12802                 I915_STATE_WARN(state->best_encoder != encoder,
12803                      "connector's atomic encoder doesn't match legacy encoder\n");
12804         }
12805 }
12806
12807 static void
12808 check_encoder_state(struct drm_device *dev)
12809 {
12810         struct intel_encoder *encoder;
12811         struct intel_connector *connector;
12812
12813         for_each_intel_encoder(dev, encoder) {
12814                 bool enabled = false;
12815                 enum pipe pipe;
12816
12817                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12818                               encoder->base.base.id,
12819                               encoder->base.name);
12820
12821                 for_each_intel_connector(dev, connector) {
12822                         if (connector->base.state->best_encoder != &encoder->base)
12823                                 continue;
12824                         enabled = true;
12825
12826                         I915_STATE_WARN(connector->base.state->crtc !=
12827                                         encoder->base.crtc,
12828                              "connector's crtc doesn't match encoder crtc\n");
12829                 }
12830
12831                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12832                      "encoder's enabled state mismatch "
12833                      "(expected %i, found %i)\n",
12834                      !!encoder->base.crtc, enabled);
12835
12836                 if (!encoder->base.crtc) {
12837                         bool active;
12838
12839                         active = encoder->get_hw_state(encoder, &pipe);
12840                         I915_STATE_WARN(active,
12841                              "encoder detached but still enabled on pipe %c.\n",
12842                              pipe_name(pipe));
12843                 }
12844         }
12845 }
12846
12847 static void
12848 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12849 {
12850         struct drm_i915_private *dev_priv = dev->dev_private;
12851         struct intel_encoder *encoder;
12852         struct drm_crtc_state *old_crtc_state;
12853         struct drm_crtc *crtc;
12854         int i;
12855
12856         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12857                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12858                 struct intel_crtc_state *pipe_config, *sw_config;
12859                 bool active;
12860
12861                 if (!needs_modeset(crtc->state) &&
12862                     !to_intel_crtc_state(crtc->state)->update_pipe)
12863                         continue;
12864
12865                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12866                 pipe_config = to_intel_crtc_state(old_crtc_state);
12867                 memset(pipe_config, 0, sizeof(*pipe_config));
12868                 pipe_config->base.crtc = crtc;
12869                 pipe_config->base.state = old_state;
12870
12871                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12872                               crtc->base.id);
12873
12874                 active = dev_priv->display.get_pipe_config(intel_crtc,
12875                                                            pipe_config);
12876
12877                 /* hw state is inconsistent with the pipe quirk */
12878                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12879                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12880                         active = crtc->state->active;
12881
12882                 I915_STATE_WARN(crtc->state->active != active,
12883                      "crtc active state doesn't match with hw state "
12884                      "(expected %i, found %i)\n", crtc->state->active, active);
12885
12886                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12887                      "transitional active state does not match atomic hw state "
12888                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12889
12890                 for_each_encoder_on_crtc(dev, crtc, encoder) {
12891                         enum pipe pipe;
12892
12893                         active = encoder->get_hw_state(encoder, &pipe);
12894                         I915_STATE_WARN(active != crtc->state->active,
12895                                 "[ENCODER:%i] active %i with crtc active %i\n",
12896                                 encoder->base.base.id, active, crtc->state->active);
12897
12898                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12899                                         "Encoder connected to wrong pipe %c\n",
12900                                         pipe_name(pipe));
12901
12902                         if (active)
12903                                 encoder->get_config(encoder, pipe_config);
12904                 }
12905
12906                 if (!crtc->state->active)
12907                         continue;
12908
12909                 sw_config = to_intel_crtc_state(crtc->state);
12910                 if (!intel_pipe_config_compare(dev, sw_config,
12911                                                pipe_config, false)) {
12912                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12913                         intel_dump_pipe_config(intel_crtc, pipe_config,
12914                                                "[hw state]");
12915                         intel_dump_pipe_config(intel_crtc, sw_config,
12916                                                "[sw state]");
12917                 }
12918         }
12919 }
12920
12921 static void
12922 check_shared_dpll_state(struct drm_device *dev)
12923 {
12924         struct drm_i915_private *dev_priv = dev->dev_private;
12925         struct intel_crtc *crtc;
12926         struct intel_dpll_hw_state dpll_hw_state;
12927         int i;
12928
12929         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12930                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12931                 int enabled_crtcs = 0, active_crtcs = 0;
12932                 bool active;
12933
12934                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12935
12936                 DRM_DEBUG_KMS("%s\n", pll->name);
12937
12938                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12939
12940                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12941                      "more active pll users than references: %i vs %i\n",
12942                      pll->active, hweight32(pll->config.crtc_mask));
12943                 I915_STATE_WARN(pll->active && !pll->on,
12944                      "pll in active use but not on in sw tracking\n");
12945                 I915_STATE_WARN(pll->on && !pll->active,
12946                      "pll in on but not on in use in sw tracking\n");
12947                 I915_STATE_WARN(pll->on != active,
12948                      "pll on state mismatch (expected %i, found %i)\n",
12949                      pll->on, active);
12950
12951                 for_each_intel_crtc(dev, crtc) {
12952                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12953                                 enabled_crtcs++;
12954                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12955                                 active_crtcs++;
12956                 }
12957                 I915_STATE_WARN(pll->active != active_crtcs,
12958                      "pll active crtcs mismatch (expected %i, found %i)\n",
12959                      pll->active, active_crtcs);
12960                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12961                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12962                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12963
12964                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12965                                        sizeof(dpll_hw_state)),
12966                      "pll hw state mismatch\n");
12967         }
12968 }
12969
12970 static void
12971 intel_modeset_check_state(struct drm_device *dev,
12972                           struct drm_atomic_state *old_state)
12973 {
12974         check_wm_state(dev);
12975         check_connector_state(dev, old_state);
12976         check_encoder_state(dev);
12977         check_crtc_state(dev, old_state);
12978         check_shared_dpll_state(dev);
12979 }
12980
12981 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12982                                      int dotclock)
12983 {
12984         /*
12985          * FDI already provided one idea for the dotclock.
12986          * Yell if the encoder disagrees.
12987          */
12988         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12989              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12990              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12991 }
12992
12993 static void update_scanline_offset(struct intel_crtc *crtc)
12994 {
12995         struct drm_device *dev = crtc->base.dev;
12996
12997         /*
12998          * The scanline counter increments at the leading edge of hsync.
12999          *
13000          * On most platforms it starts counting from vtotal-1 on the
13001          * first active line. That means the scanline counter value is
13002          * always one less than what we would expect. Ie. just after
13003          * start of vblank, which also occurs at start of hsync (on the
13004          * last active line), the scanline counter will read vblank_start-1.
13005          *
13006          * On gen2 the scanline counter starts counting from 1 instead
13007          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13008          * to keep the value positive), instead of adding one.
13009          *
13010          * On HSW+ the behaviour of the scanline counter depends on the output
13011          * type. For DP ports it behaves like most other platforms, but on HDMI
13012          * there's an extra 1 line difference. So we need to add two instead of
13013          * one to the value.
13014          */
13015         if (IS_GEN2(dev)) {
13016                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13017                 int vtotal;
13018
13019                 vtotal = adjusted_mode->crtc_vtotal;
13020                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13021                         vtotal /= 2;
13022
13023                 crtc->scanline_offset = vtotal - 1;
13024         } else if (HAS_DDI(dev) &&
13025                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13026                 crtc->scanline_offset = 2;
13027         } else
13028                 crtc->scanline_offset = 1;
13029 }
13030
13031 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13032 {
13033         struct drm_device *dev = state->dev;
13034         struct drm_i915_private *dev_priv = to_i915(dev);
13035         struct intel_shared_dpll_config *shared_dpll = NULL;
13036         struct drm_crtc *crtc;
13037         struct drm_crtc_state *crtc_state;
13038         int i;
13039
13040         if (!dev_priv->display.crtc_compute_clock)
13041                 return;
13042
13043         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13044                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13045                 int old_dpll = to_intel_crtc_state(crtc->state)->shared_dpll;
13046
13047                 if (!needs_modeset(crtc_state))
13048                         continue;
13049
13050                 to_intel_crtc_state(crtc_state)->shared_dpll = DPLL_ID_PRIVATE;
13051
13052                 if (old_dpll == DPLL_ID_PRIVATE)
13053                         continue;
13054
13055                 if (!shared_dpll)
13056                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13057
13058                 shared_dpll[old_dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
13059         }
13060 }
13061
13062 /*
13063  * This implements the workaround described in the "notes" section of the mode
13064  * set sequence documentation. When going from no pipes or single pipe to
13065  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13066  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13067  */
13068 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13069 {
13070         struct drm_crtc_state *crtc_state;
13071         struct intel_crtc *intel_crtc;
13072         struct drm_crtc *crtc;
13073         struct intel_crtc_state *first_crtc_state = NULL;
13074         struct intel_crtc_state *other_crtc_state = NULL;
13075         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13076         int i;
13077
13078         /* look at all crtc's that are going to be enabled in during modeset */
13079         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13080                 intel_crtc = to_intel_crtc(crtc);
13081
13082                 if (!crtc_state->active || !needs_modeset(crtc_state))
13083                         continue;
13084
13085                 if (first_crtc_state) {
13086                         other_crtc_state = to_intel_crtc_state(crtc_state);
13087                         break;
13088                 } else {
13089                         first_crtc_state = to_intel_crtc_state(crtc_state);
13090                         first_pipe = intel_crtc->pipe;
13091                 }
13092         }
13093
13094         /* No workaround needed? */
13095         if (!first_crtc_state)
13096                 return 0;
13097
13098         /* w/a possibly needed, check how many crtc's are already enabled. */
13099         for_each_intel_crtc(state->dev, intel_crtc) {
13100                 struct intel_crtc_state *pipe_config;
13101
13102                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13103                 if (IS_ERR(pipe_config))
13104                         return PTR_ERR(pipe_config);
13105
13106                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13107
13108                 if (!pipe_config->base.active ||
13109                     needs_modeset(&pipe_config->base))
13110                         continue;
13111
13112                 /* 2 or more enabled crtcs means no need for w/a */
13113                 if (enabled_pipe != INVALID_PIPE)
13114                         return 0;
13115
13116                 enabled_pipe = intel_crtc->pipe;
13117         }
13118
13119         if (enabled_pipe != INVALID_PIPE)
13120                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13121         else if (other_crtc_state)
13122                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13123
13124         return 0;
13125 }
13126
13127 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13128 {
13129         struct drm_crtc *crtc;
13130         struct drm_crtc_state *crtc_state;
13131         int ret = 0;
13132
13133         /* add all active pipes to the state */
13134         for_each_crtc(state->dev, crtc) {
13135                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13136                 if (IS_ERR(crtc_state))
13137                         return PTR_ERR(crtc_state);
13138
13139                 if (!crtc_state->active || needs_modeset(crtc_state))
13140                         continue;
13141
13142                 crtc_state->mode_changed = true;
13143
13144                 ret = drm_atomic_add_affected_connectors(state, crtc);
13145                 if (ret)
13146                         break;
13147
13148                 ret = drm_atomic_add_affected_planes(state, crtc);
13149                 if (ret)
13150                         break;
13151         }
13152
13153         return ret;
13154 }
13155
13156 static int intel_modeset_checks(struct drm_atomic_state *state)
13157 {
13158         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13159         struct drm_i915_private *dev_priv = state->dev->dev_private;
13160         struct drm_crtc *crtc;
13161         struct drm_crtc_state *crtc_state;
13162         int ret = 0, i;
13163
13164         if (!check_digital_port_conflicts(state)) {
13165                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13166                 return -EINVAL;
13167         }
13168
13169         intel_state->modeset = true;
13170         intel_state->active_crtcs = dev_priv->active_crtcs;
13171
13172         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13173                 if (crtc_state->active)
13174                         intel_state->active_crtcs |= 1 << i;
13175                 else
13176                         intel_state->active_crtcs &= ~(1 << i);
13177         }
13178
13179         /*
13180          * See if the config requires any additional preparation, e.g.
13181          * to adjust global state with pipes off.  We need to do this
13182          * here so we can get the modeset_pipe updated config for the new
13183          * mode set on this crtc.  For other crtcs we need to use the
13184          * adjusted_mode bits in the crtc directly.
13185          */
13186         if (dev_priv->display.modeset_calc_cdclk) {
13187                 ret = dev_priv->display.modeset_calc_cdclk(state);
13188
13189                 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
13190                         ret = intel_modeset_all_pipes(state);
13191
13192                 if (ret < 0)
13193                         return ret;
13194
13195                 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13196                               intel_state->cdclk, intel_state->dev_cdclk);
13197         } else
13198                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13199
13200         intel_modeset_clear_plls(state);
13201
13202         if (IS_HASWELL(dev_priv))
13203                 return haswell_mode_set_planes_workaround(state);
13204
13205         return 0;
13206 }
13207
13208 /*
13209  * Handle calculation of various watermark data at the end of the atomic check
13210  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13211  * handlers to ensure that all derived state has been updated.
13212  */
13213 static void calc_watermark_data(struct drm_atomic_state *state)
13214 {
13215         struct drm_device *dev = state->dev;
13216         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13217         struct drm_crtc *crtc;
13218         struct drm_crtc_state *cstate;
13219         struct drm_plane *plane;
13220         struct drm_plane_state *pstate;
13221
13222         /*
13223          * Calculate watermark configuration details now that derived
13224          * plane/crtc state is all properly updated.
13225          */
13226         drm_for_each_crtc(crtc, dev) {
13227                 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13228                         crtc->state;
13229
13230                 if (cstate->active)
13231                         intel_state->wm_config.num_pipes_active++;
13232         }
13233         drm_for_each_legacy_plane(plane, dev) {
13234                 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13235                         plane->state;
13236
13237                 if (!to_intel_plane_state(pstate)->visible)
13238                         continue;
13239
13240                 intel_state->wm_config.sprites_enabled = true;
13241                 if (pstate->crtc_w != pstate->src_w >> 16 ||
13242                     pstate->crtc_h != pstate->src_h >> 16)
13243                         intel_state->wm_config.sprites_scaled = true;
13244         }
13245 }
13246
13247 /**
13248  * intel_atomic_check - validate state object
13249  * @dev: drm device
13250  * @state: state to validate
13251  */
13252 static int intel_atomic_check(struct drm_device *dev,
13253                               struct drm_atomic_state *state)
13254 {
13255         struct drm_i915_private *dev_priv = to_i915(dev);
13256         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13257         struct drm_crtc *crtc;
13258         struct drm_crtc_state *crtc_state;
13259         int ret, i;
13260         bool any_ms = false;
13261
13262         ret = drm_atomic_helper_check_modeset(dev, state);
13263         if (ret)
13264                 return ret;
13265
13266         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13267                 struct intel_crtc_state *pipe_config =
13268                         to_intel_crtc_state(crtc_state);
13269
13270                 memset(&to_intel_crtc(crtc)->atomic, 0,
13271                        sizeof(struct intel_crtc_atomic_commit));
13272
13273                 /* Catch I915_MODE_FLAG_INHERITED */
13274                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13275                         crtc_state->mode_changed = true;
13276
13277                 if (!crtc_state->enable) {
13278                         if (needs_modeset(crtc_state))
13279                                 any_ms = true;
13280                         continue;
13281                 }
13282
13283                 if (!needs_modeset(crtc_state))
13284                         continue;
13285
13286                 /* FIXME: For only active_changed we shouldn't need to do any
13287                  * state recomputation at all. */
13288
13289                 ret = drm_atomic_add_affected_connectors(state, crtc);
13290                 if (ret)
13291                         return ret;
13292
13293                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13294                 if (ret)
13295                         return ret;
13296
13297                 if (i915.fastboot &&
13298                     intel_pipe_config_compare(dev,
13299                                         to_intel_crtc_state(crtc->state),
13300                                         pipe_config, true)) {
13301                         crtc_state->mode_changed = false;
13302                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13303                 }
13304
13305                 if (needs_modeset(crtc_state)) {
13306                         any_ms = true;
13307
13308                         ret = drm_atomic_add_affected_planes(state, crtc);
13309                         if (ret)
13310                                 return ret;
13311                 }
13312
13313                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13314                                        needs_modeset(crtc_state) ?
13315                                        "[modeset]" : "[fastset]");
13316         }
13317
13318         if (any_ms) {
13319                 ret = intel_modeset_checks(state);
13320
13321                 if (ret)
13322                         return ret;
13323         } else
13324                 intel_state->cdclk = dev_priv->cdclk_freq;
13325
13326         ret = drm_atomic_helper_check_planes(dev, state);
13327         if (ret)
13328                 return ret;
13329
13330         intel_fbc_choose_crtc(dev_priv, state);
13331         calc_watermark_data(state);
13332
13333         return 0;
13334 }
13335
13336 static int intel_atomic_prepare_commit(struct drm_device *dev,
13337                                        struct drm_atomic_state *state,
13338                                        bool async)
13339 {
13340         struct drm_i915_private *dev_priv = dev->dev_private;
13341         struct drm_plane_state *plane_state;
13342         struct drm_crtc_state *crtc_state;
13343         struct drm_plane *plane;
13344         struct drm_crtc *crtc;
13345         int i, ret;
13346
13347         if (async) {
13348                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13349                 return -EINVAL;
13350         }
13351
13352         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13353                 if (state->legacy_cursor_update)
13354                         continue;
13355
13356                 ret = intel_crtc_wait_for_pending_flips(crtc);
13357                 if (ret)
13358                         return ret;
13359
13360                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13361                         flush_workqueue(dev_priv->wq);
13362         }
13363
13364         ret = mutex_lock_interruptible(&dev->struct_mutex);
13365         if (ret)
13366                 return ret;
13367
13368         ret = drm_atomic_helper_prepare_planes(dev, state);
13369         if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13370                 u32 reset_counter;
13371
13372                 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13373                 mutex_unlock(&dev->struct_mutex);
13374
13375                 for_each_plane_in_state(state, plane, plane_state, i) {
13376                         struct intel_plane_state *intel_plane_state =
13377                                 to_intel_plane_state(plane_state);
13378
13379                         if (!intel_plane_state->wait_req)
13380                                 continue;
13381
13382                         ret = __i915_wait_request(intel_plane_state->wait_req,
13383                                                   reset_counter, true,
13384                                                   NULL, NULL);
13385
13386                         /* Swallow -EIO errors to allow updates during hw lockup. */
13387                         if (ret == -EIO)
13388                                 ret = 0;
13389
13390                         if (ret)
13391                                 break;
13392                 }
13393
13394                 if (!ret)
13395                         return 0;
13396
13397                 mutex_lock(&dev->struct_mutex);
13398                 drm_atomic_helper_cleanup_planes(dev, state);
13399         }
13400
13401         mutex_unlock(&dev->struct_mutex);
13402         return ret;
13403 }
13404
13405 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13406                                           struct drm_i915_private *dev_priv,
13407                                           unsigned crtc_mask)
13408 {
13409         unsigned last_vblank_count[I915_MAX_PIPES];
13410         enum pipe pipe;
13411         int ret;
13412
13413         if (!crtc_mask)
13414                 return;
13415
13416         for_each_pipe(dev_priv, pipe) {
13417                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13418
13419                 if (!((1 << pipe) & crtc_mask))
13420                         continue;
13421
13422                 ret = drm_crtc_vblank_get(crtc);
13423                 if (WARN_ON(ret != 0)) {
13424                         crtc_mask &= ~(1 << pipe);
13425                         continue;
13426                 }
13427
13428                 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13429         }
13430
13431         for_each_pipe(dev_priv, pipe) {
13432                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13433                 long lret;
13434
13435                 if (!((1 << pipe) & crtc_mask))
13436                         continue;
13437
13438                 lret = wait_event_timeout(dev->vblank[pipe].queue,
13439                                 last_vblank_count[pipe] !=
13440                                         drm_crtc_vblank_count(crtc),
13441                                 msecs_to_jiffies(50));
13442
13443                 WARN_ON(!lret);
13444
13445                 drm_crtc_vblank_put(crtc);
13446         }
13447 }
13448
13449 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13450 {
13451         /* fb updated, need to unpin old fb */
13452         if (crtc_state->fb_changed)
13453                 return true;
13454
13455         /* wm changes, need vblank before final wm's */
13456         if (crtc_state->wm_changed)
13457                 return true;
13458
13459         /*
13460          * cxsr is re-enabled after vblank.
13461          * This is already handled by crtc_state->wm_changed,
13462          * but added for clarity.
13463          */
13464         if (crtc_state->disable_cxsr)
13465                 return true;
13466
13467         return false;
13468 }
13469
13470 /**
13471  * intel_atomic_commit - commit validated state object
13472  * @dev: DRM device
13473  * @state: the top-level driver state object
13474  * @async: asynchronous commit
13475  *
13476  * This function commits a top-level state object that has been validated
13477  * with drm_atomic_helper_check().
13478  *
13479  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13480  * we can only handle plane-related operations and do not yet support
13481  * asynchronous commit.
13482  *
13483  * RETURNS
13484  * Zero for success or -errno.
13485  */
13486 static int intel_atomic_commit(struct drm_device *dev,
13487                                struct drm_atomic_state *state,
13488                                bool async)
13489 {
13490         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13491         struct drm_i915_private *dev_priv = dev->dev_private;
13492         struct drm_crtc_state *crtc_state;
13493         struct drm_crtc *crtc;
13494         int ret = 0, i;
13495         bool hw_check = intel_state->modeset;
13496         unsigned long put_domains[I915_MAX_PIPES] = {};
13497         unsigned crtc_vblank_mask = 0;
13498
13499         ret = intel_atomic_prepare_commit(dev, state, async);
13500         if (ret) {
13501                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13502                 return ret;
13503         }
13504
13505         drm_atomic_helper_swap_state(dev, state);
13506         dev_priv->wm.config = to_intel_atomic_state(state)->wm_config;
13507
13508         if (intel_state->modeset) {
13509                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13510                        sizeof(intel_state->min_pixclk));
13511                 dev_priv->active_crtcs = intel_state->active_crtcs;
13512                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13513
13514                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13515         }
13516
13517         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13518                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13519
13520                 if (needs_modeset(crtc->state) ||
13521                     to_intel_crtc_state(crtc->state)->update_pipe) {
13522                         hw_check = true;
13523
13524                         put_domains[to_intel_crtc(crtc)->pipe] =
13525                                 modeset_get_crtc_power_domains(crtc,
13526                                         to_intel_crtc_state(crtc->state));
13527                 }
13528
13529                 if (!needs_modeset(crtc->state))
13530                         continue;
13531
13532                 intel_pre_plane_update(to_intel_crtc_state(crtc_state));
13533
13534                 if (crtc_state->active) {
13535                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13536                         dev_priv->display.crtc_disable(crtc);
13537                         intel_crtc->active = false;
13538                         intel_fbc_disable(intel_crtc);
13539                         intel_disable_shared_dpll(intel_crtc);
13540
13541                         /*
13542                          * Underruns don't always raise
13543                          * interrupts, so check manually.
13544                          */
13545                         intel_check_cpu_fifo_underruns(dev_priv);
13546                         intel_check_pch_fifo_underruns(dev_priv);
13547
13548                         if (!crtc->state->active)
13549                                 intel_update_watermarks(crtc);
13550                 }
13551         }
13552
13553         /* Only after disabling all output pipelines that will be changed can we
13554          * update the the output configuration. */
13555         intel_modeset_update_crtc_state(state);
13556
13557         if (intel_state->modeset) {
13558                 intel_shared_dpll_commit(state);
13559
13560                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13561
13562                 if (dev_priv->display.modeset_commit_cdclk &&
13563                     intel_state->dev_cdclk != dev_priv->cdclk_freq)
13564                         dev_priv->display.modeset_commit_cdclk(state);
13565         }
13566
13567         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13568         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13569                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13570                 bool modeset = needs_modeset(crtc->state);
13571                 struct intel_crtc_state *pipe_config =
13572                         to_intel_crtc_state(crtc->state);
13573                 bool update_pipe = !modeset && pipe_config->update_pipe;
13574
13575                 if (modeset && crtc->state->active) {
13576                         update_scanline_offset(to_intel_crtc(crtc));
13577                         dev_priv->display.crtc_enable(crtc);
13578                 }
13579
13580                 if (!modeset)
13581                         intel_pre_plane_update(to_intel_crtc_state(crtc_state));
13582
13583                 if (crtc->state->active && intel_crtc->atomic.update_fbc)
13584                         intel_fbc_enable(intel_crtc);
13585
13586                 if (crtc->state->active &&
13587                     (crtc->state->planes_changed || update_pipe))
13588                         drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13589
13590                 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13591                         crtc_vblank_mask |= 1 << i;
13592         }
13593
13594         /* FIXME: add subpixel order */
13595
13596         if (!state->legacy_cursor_update)
13597                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13598
13599         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13600                 intel_post_plane_update(to_intel_crtc(crtc));
13601
13602                 if (put_domains[i])
13603                         modeset_put_power_domains(dev_priv, put_domains[i]);
13604         }
13605
13606         if (intel_state->modeset)
13607                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13608
13609         mutex_lock(&dev->struct_mutex);
13610         drm_atomic_helper_cleanup_planes(dev, state);
13611         mutex_unlock(&dev->struct_mutex);
13612
13613         if (hw_check)
13614                 intel_modeset_check_state(dev, state);
13615
13616         drm_atomic_state_free(state);
13617
13618         /* As one of the primary mmio accessors, KMS has a high likelihood
13619          * of triggering bugs in unclaimed access. After we finish
13620          * modesetting, see if an error has been flagged, and if so
13621          * enable debugging for the next modeset - and hope we catch
13622          * the culprit.
13623          *
13624          * XXX note that we assume display power is on at this point.
13625          * This might hold true now but we need to add pm helper to check
13626          * unclaimed only when the hardware is on, as atomic commits
13627          * can happen also when the device is completely off.
13628          */
13629         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13630
13631         return 0;
13632 }
13633
13634 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13635 {
13636         struct drm_device *dev = crtc->dev;
13637         struct drm_atomic_state *state;
13638         struct drm_crtc_state *crtc_state;
13639         int ret;
13640
13641         state = drm_atomic_state_alloc(dev);
13642         if (!state) {
13643                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13644                               crtc->base.id);
13645                 return;
13646         }
13647
13648         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13649
13650 retry:
13651         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13652         ret = PTR_ERR_OR_ZERO(crtc_state);
13653         if (!ret) {
13654                 if (!crtc_state->active)
13655                         goto out;
13656
13657                 crtc_state->mode_changed = true;
13658                 ret = drm_atomic_commit(state);
13659         }
13660
13661         if (ret == -EDEADLK) {
13662                 drm_atomic_state_clear(state);
13663                 drm_modeset_backoff(state->acquire_ctx);
13664                 goto retry;
13665         }
13666
13667         if (ret)
13668 out:
13669                 drm_atomic_state_free(state);
13670 }
13671
13672 #undef for_each_intel_crtc_masked
13673
13674 static const struct drm_crtc_funcs intel_crtc_funcs = {
13675         .gamma_set = intel_crtc_gamma_set,
13676         .set_config = drm_atomic_helper_set_config,
13677         .destroy = intel_crtc_destroy,
13678         .page_flip = intel_crtc_page_flip,
13679         .atomic_duplicate_state = intel_crtc_duplicate_state,
13680         .atomic_destroy_state = intel_crtc_destroy_state,
13681 };
13682
13683 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13684                                       struct intel_shared_dpll *pll,
13685                                       struct intel_dpll_hw_state *hw_state)
13686 {
13687         uint32_t val;
13688
13689         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
13690                 return false;
13691
13692         val = I915_READ(PCH_DPLL(pll->id));
13693         hw_state->dpll = val;
13694         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13695         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13696
13697         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
13698
13699         return val & DPLL_VCO_ENABLE;
13700 }
13701
13702 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13703                                   struct intel_shared_dpll *pll)
13704 {
13705         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13706         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13707 }
13708
13709 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13710                                 struct intel_shared_dpll *pll)
13711 {
13712         /* PCH refclock must be enabled first */
13713         ibx_assert_pch_refclk_enabled(dev_priv);
13714
13715         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13716
13717         /* Wait for the clocks to stabilize. */
13718         POSTING_READ(PCH_DPLL(pll->id));
13719         udelay(150);
13720
13721         /* The pixel multiplier can only be updated once the
13722          * DPLL is enabled and the clocks are stable.
13723          *
13724          * So write it again.
13725          */
13726         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13727         POSTING_READ(PCH_DPLL(pll->id));
13728         udelay(200);
13729 }
13730
13731 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13732                                  struct intel_shared_dpll *pll)
13733 {
13734         struct drm_device *dev = dev_priv->dev;
13735         struct intel_crtc *crtc;
13736
13737         /* Make sure no transcoder isn't still depending on us. */
13738         for_each_intel_crtc(dev, crtc) {
13739                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13740                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13741         }
13742
13743         I915_WRITE(PCH_DPLL(pll->id), 0);
13744         POSTING_READ(PCH_DPLL(pll->id));
13745         udelay(200);
13746 }
13747
13748 static char *ibx_pch_dpll_names[] = {
13749         "PCH DPLL A",
13750         "PCH DPLL B",
13751 };
13752
13753 static void ibx_pch_dpll_init(struct drm_device *dev)
13754 {
13755         struct drm_i915_private *dev_priv = dev->dev_private;
13756         int i;
13757
13758         dev_priv->num_shared_dpll = 2;
13759
13760         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13761                 dev_priv->shared_dplls[i].id = i;
13762                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13763                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13764                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13765                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13766                 dev_priv->shared_dplls[i].get_hw_state =
13767                         ibx_pch_dpll_get_hw_state;
13768         }
13769 }
13770
13771 static void intel_shared_dpll_init(struct drm_device *dev)
13772 {
13773         struct drm_i915_private *dev_priv = dev->dev_private;
13774
13775         if (HAS_DDI(dev))
13776                 intel_ddi_pll_init(dev);
13777         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13778                 ibx_pch_dpll_init(dev);
13779         else
13780                 dev_priv->num_shared_dpll = 0;
13781
13782         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13783 }
13784
13785 /**
13786  * intel_prepare_plane_fb - Prepare fb for usage on plane
13787  * @plane: drm plane to prepare for
13788  * @fb: framebuffer to prepare for presentation
13789  *
13790  * Prepares a framebuffer for usage on a display plane.  Generally this
13791  * involves pinning the underlying object and updating the frontbuffer tracking
13792  * bits.  Some older platforms need special physical address handling for
13793  * cursor planes.
13794  *
13795  * Must be called with struct_mutex held.
13796  *
13797  * Returns 0 on success, negative error code on failure.
13798  */
13799 int
13800 intel_prepare_plane_fb(struct drm_plane *plane,
13801                        const struct drm_plane_state *new_state)
13802 {
13803         struct drm_device *dev = plane->dev;
13804         struct drm_framebuffer *fb = new_state->fb;
13805         struct intel_plane *intel_plane = to_intel_plane(plane);
13806         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13807         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13808         int ret = 0;
13809
13810         if (!obj && !old_obj)
13811                 return 0;
13812
13813         if (old_obj) {
13814                 struct drm_crtc_state *crtc_state =
13815                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13816
13817                 /* Big Hammer, we also need to ensure that any pending
13818                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13819                  * current scanout is retired before unpinning the old
13820                  * framebuffer. Note that we rely on userspace rendering
13821                  * into the buffer attached to the pipe they are waiting
13822                  * on. If not, userspace generates a GPU hang with IPEHR
13823                  * point to the MI_WAIT_FOR_EVENT.
13824                  *
13825                  * This should only fail upon a hung GPU, in which case we
13826                  * can safely continue.
13827                  */
13828                 if (needs_modeset(crtc_state))
13829                         ret = i915_gem_object_wait_rendering(old_obj, true);
13830
13831                 /* Swallow -EIO errors to allow updates during hw lockup. */
13832                 if (ret && ret != -EIO)
13833                         return ret;
13834         }
13835
13836         /* For framebuffer backed by dmabuf, wait for fence */
13837         if (obj && obj->base.dma_buf) {
13838                 long lret;
13839
13840                 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13841                                                            false, true,
13842                                                            MAX_SCHEDULE_TIMEOUT);
13843                 if (lret == -ERESTARTSYS)
13844                         return lret;
13845
13846                 WARN(lret < 0, "waiting returns %li\n", lret);
13847         }
13848
13849         if (!obj) {
13850                 ret = 0;
13851         } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13852             INTEL_INFO(dev)->cursor_needs_physical) {
13853                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13854                 ret = i915_gem_object_attach_phys(obj, align);
13855                 if (ret)
13856                         DRM_DEBUG_KMS("failed to attach phys object\n");
13857         } else {
13858                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state);
13859         }
13860
13861         if (ret == 0) {
13862                 if (obj) {
13863                         struct intel_plane_state *plane_state =
13864                                 to_intel_plane_state(new_state);
13865
13866                         i915_gem_request_assign(&plane_state->wait_req,
13867                                                 obj->last_write_req);
13868                 }
13869
13870                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13871         }
13872
13873         return ret;
13874 }
13875
13876 /**
13877  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13878  * @plane: drm plane to clean up for
13879  * @fb: old framebuffer that was on plane
13880  *
13881  * Cleans up a framebuffer that has just been removed from a plane.
13882  *
13883  * Must be called with struct_mutex held.
13884  */
13885 void
13886 intel_cleanup_plane_fb(struct drm_plane *plane,
13887                        const struct drm_plane_state *old_state)
13888 {
13889         struct drm_device *dev = plane->dev;
13890         struct intel_plane *intel_plane = to_intel_plane(plane);
13891         struct intel_plane_state *old_intel_state;
13892         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13893         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13894
13895         old_intel_state = to_intel_plane_state(old_state);
13896
13897         if (!obj && !old_obj)
13898                 return;
13899
13900         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13901             !INTEL_INFO(dev)->cursor_needs_physical))
13902                 intel_unpin_fb_obj(old_state->fb, old_state);
13903
13904         /* prepare_fb aborted? */
13905         if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13906             (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13907                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13908
13909         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13910
13911 }
13912
13913 int
13914 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13915 {
13916         int max_scale;
13917         struct drm_device *dev;
13918         struct drm_i915_private *dev_priv;
13919         int crtc_clock, cdclk;
13920
13921         if (!intel_crtc || !crtc_state->base.enable)
13922                 return DRM_PLANE_HELPER_NO_SCALING;
13923
13924         dev = intel_crtc->base.dev;
13925         dev_priv = dev->dev_private;
13926         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13927         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13928
13929         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13930                 return DRM_PLANE_HELPER_NO_SCALING;
13931
13932         /*
13933          * skl max scale is lower of:
13934          *    close to 3 but not 3, -1 is for that purpose
13935          *            or
13936          *    cdclk/crtc_clock
13937          */
13938         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13939
13940         return max_scale;
13941 }
13942
13943 static int
13944 intel_check_primary_plane(struct drm_plane *plane,
13945                           struct intel_crtc_state *crtc_state,
13946                           struct intel_plane_state *state)
13947 {
13948         struct drm_crtc *crtc = state->base.crtc;
13949         struct drm_framebuffer *fb = state->base.fb;
13950         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13951         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13952         bool can_position = false;
13953
13954         if (INTEL_INFO(plane->dev)->gen >= 9) {
13955                 /* use scaler when colorkey is not required */
13956                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13957                         min_scale = 1;
13958                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13959                 }
13960                 can_position = true;
13961         }
13962
13963         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13964                                              &state->dst, &state->clip,
13965                                              min_scale, max_scale,
13966                                              can_position, true,
13967                                              &state->visible);
13968 }
13969
13970 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13971                                     struct drm_crtc_state *old_crtc_state)
13972 {
13973         struct drm_device *dev = crtc->dev;
13974         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13975         struct intel_crtc_state *old_intel_state =
13976                 to_intel_crtc_state(old_crtc_state);
13977         bool modeset = needs_modeset(crtc->state);
13978
13979         /* Perform vblank evasion around commit operation */
13980         intel_pipe_update_start(intel_crtc);
13981
13982         if (modeset)
13983                 return;
13984
13985         if (to_intel_crtc_state(crtc->state)->update_pipe)
13986                 intel_update_pipe_config(intel_crtc, old_intel_state);
13987         else if (INTEL_INFO(dev)->gen >= 9)
13988                 skl_detach_scalers(intel_crtc);
13989 }
13990
13991 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13992                                      struct drm_crtc_state *old_crtc_state)
13993 {
13994         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13995
13996         intel_pipe_update_end(intel_crtc);
13997 }
13998
13999 /**
14000  * intel_plane_destroy - destroy a plane
14001  * @plane: plane to destroy
14002  *
14003  * Common destruction function for all types of planes (primary, cursor,
14004  * sprite).
14005  */
14006 void intel_plane_destroy(struct drm_plane *plane)
14007 {
14008         struct intel_plane *intel_plane = to_intel_plane(plane);
14009         drm_plane_cleanup(plane);
14010         kfree(intel_plane);
14011 }
14012
14013 const struct drm_plane_funcs intel_plane_funcs = {
14014         .update_plane = drm_atomic_helper_update_plane,
14015         .disable_plane = drm_atomic_helper_disable_plane,
14016         .destroy = intel_plane_destroy,
14017         .set_property = drm_atomic_helper_plane_set_property,
14018         .atomic_get_property = intel_plane_atomic_get_property,
14019         .atomic_set_property = intel_plane_atomic_set_property,
14020         .atomic_duplicate_state = intel_plane_duplicate_state,
14021         .atomic_destroy_state = intel_plane_destroy_state,
14022
14023 };
14024
14025 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14026                                                     int pipe)
14027 {
14028         struct intel_plane *primary;
14029         struct intel_plane_state *state;
14030         const uint32_t *intel_primary_formats;
14031         unsigned int num_formats;
14032
14033         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14034         if (primary == NULL)
14035                 return NULL;
14036
14037         state = intel_create_plane_state(&primary->base);
14038         if (!state) {
14039                 kfree(primary);
14040                 return NULL;
14041         }
14042         primary->base.state = &state->base;
14043
14044         primary->can_scale = false;
14045         primary->max_downscale = 1;
14046         if (INTEL_INFO(dev)->gen >= 9) {
14047                 primary->can_scale = true;
14048                 state->scaler_id = -1;
14049         }
14050         primary->pipe = pipe;
14051         primary->plane = pipe;
14052         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14053         primary->check_plane = intel_check_primary_plane;
14054         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14055                 primary->plane = !pipe;
14056
14057         if (INTEL_INFO(dev)->gen >= 9) {
14058                 intel_primary_formats = skl_primary_formats;
14059                 num_formats = ARRAY_SIZE(skl_primary_formats);
14060
14061                 primary->update_plane = skylake_update_primary_plane;
14062                 primary->disable_plane = skylake_disable_primary_plane;
14063         } else if (HAS_PCH_SPLIT(dev)) {
14064                 intel_primary_formats = i965_primary_formats;
14065                 num_formats = ARRAY_SIZE(i965_primary_formats);
14066
14067                 primary->update_plane = ironlake_update_primary_plane;
14068                 primary->disable_plane = i9xx_disable_primary_plane;
14069         } else if (INTEL_INFO(dev)->gen >= 4) {
14070                 intel_primary_formats = i965_primary_formats;
14071                 num_formats = ARRAY_SIZE(i965_primary_formats);
14072
14073                 primary->update_plane = i9xx_update_primary_plane;
14074                 primary->disable_plane = i9xx_disable_primary_plane;
14075         } else {
14076                 intel_primary_formats = i8xx_primary_formats;
14077                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14078
14079                 primary->update_plane = i9xx_update_primary_plane;
14080                 primary->disable_plane = i9xx_disable_primary_plane;
14081         }
14082
14083         drm_universal_plane_init(dev, &primary->base, 0,
14084                                  &intel_plane_funcs,
14085                                  intel_primary_formats, num_formats,
14086                                  DRM_PLANE_TYPE_PRIMARY, NULL);
14087
14088         if (INTEL_INFO(dev)->gen >= 4)
14089                 intel_create_rotation_property(dev, primary);
14090
14091         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14092
14093         return &primary->base;
14094 }
14095
14096 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14097 {
14098         if (!dev->mode_config.rotation_property) {
14099                 unsigned long flags = BIT(DRM_ROTATE_0) |
14100                         BIT(DRM_ROTATE_180);
14101
14102                 if (INTEL_INFO(dev)->gen >= 9)
14103                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14104
14105                 dev->mode_config.rotation_property =
14106                         drm_mode_create_rotation_property(dev, flags);
14107         }
14108         if (dev->mode_config.rotation_property)
14109                 drm_object_attach_property(&plane->base.base,
14110                                 dev->mode_config.rotation_property,
14111                                 plane->base.state->rotation);
14112 }
14113
14114 static int
14115 intel_check_cursor_plane(struct drm_plane *plane,
14116                          struct intel_crtc_state *crtc_state,
14117                          struct intel_plane_state *state)
14118 {
14119         struct drm_crtc *crtc = crtc_state->base.crtc;
14120         struct drm_framebuffer *fb = state->base.fb;
14121         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14122         enum pipe pipe = to_intel_plane(plane)->pipe;
14123         unsigned stride;
14124         int ret;
14125
14126         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14127                                             &state->dst, &state->clip,
14128                                             DRM_PLANE_HELPER_NO_SCALING,
14129                                             DRM_PLANE_HELPER_NO_SCALING,
14130                                             true, true, &state->visible);
14131         if (ret)
14132                 return ret;
14133
14134         /* if we want to turn off the cursor ignore width and height */
14135         if (!obj)
14136                 return 0;
14137
14138         /* Check for which cursor types we support */
14139         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14140                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14141                           state->base.crtc_w, state->base.crtc_h);
14142                 return -EINVAL;
14143         }
14144
14145         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14146         if (obj->base.size < stride * state->base.crtc_h) {
14147                 DRM_DEBUG_KMS("buffer is too small\n");
14148                 return -ENOMEM;
14149         }
14150
14151         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14152                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14153                 return -EINVAL;
14154         }
14155
14156         /*
14157          * There's something wrong with the cursor on CHV pipe C.
14158          * If it straddles the left edge of the screen then
14159          * moving it away from the edge or disabling it often
14160          * results in a pipe underrun, and often that can lead to
14161          * dead pipe (constant underrun reported, and it scans
14162          * out just a solid color). To recover from that, the
14163          * display power well must be turned off and on again.
14164          * Refuse the put the cursor into that compromised position.
14165          */
14166         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14167             state->visible && state->base.crtc_x < 0) {
14168                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14169                 return -EINVAL;
14170         }
14171
14172         return 0;
14173 }
14174
14175 static void
14176 intel_disable_cursor_plane(struct drm_plane *plane,
14177                            struct drm_crtc *crtc)
14178 {
14179         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14180
14181         intel_crtc->cursor_addr = 0;
14182         intel_crtc_update_cursor(crtc, NULL);
14183 }
14184
14185 static void
14186 intel_update_cursor_plane(struct drm_plane *plane,
14187                           const struct intel_crtc_state *crtc_state,
14188                           const struct intel_plane_state *state)
14189 {
14190         struct drm_crtc *crtc = crtc_state->base.crtc;
14191         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14192         struct drm_device *dev = plane->dev;
14193         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14194         uint32_t addr;
14195
14196         if (!obj)
14197                 addr = 0;
14198         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14199                 addr = i915_gem_obj_ggtt_offset(obj);
14200         else
14201                 addr = obj->phys_handle->busaddr;
14202
14203         intel_crtc->cursor_addr = addr;
14204         intel_crtc_update_cursor(crtc, state);
14205 }
14206
14207 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14208                                                    int pipe)
14209 {
14210         struct intel_plane *cursor;
14211         struct intel_plane_state *state;
14212
14213         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14214         if (cursor == NULL)
14215                 return NULL;
14216
14217         state = intel_create_plane_state(&cursor->base);
14218         if (!state) {
14219                 kfree(cursor);
14220                 return NULL;
14221         }
14222         cursor->base.state = &state->base;
14223
14224         cursor->can_scale = false;
14225         cursor->max_downscale = 1;
14226         cursor->pipe = pipe;
14227         cursor->plane = pipe;
14228         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14229         cursor->check_plane = intel_check_cursor_plane;
14230         cursor->update_plane = intel_update_cursor_plane;
14231         cursor->disable_plane = intel_disable_cursor_plane;
14232
14233         drm_universal_plane_init(dev, &cursor->base, 0,
14234                                  &intel_plane_funcs,
14235                                  intel_cursor_formats,
14236                                  ARRAY_SIZE(intel_cursor_formats),
14237                                  DRM_PLANE_TYPE_CURSOR, NULL);
14238
14239         if (INTEL_INFO(dev)->gen >= 4) {
14240                 if (!dev->mode_config.rotation_property)
14241                         dev->mode_config.rotation_property =
14242                                 drm_mode_create_rotation_property(dev,
14243                                                         BIT(DRM_ROTATE_0) |
14244                                                         BIT(DRM_ROTATE_180));
14245                 if (dev->mode_config.rotation_property)
14246                         drm_object_attach_property(&cursor->base.base,
14247                                 dev->mode_config.rotation_property,
14248                                 state->base.rotation);
14249         }
14250
14251         if (INTEL_INFO(dev)->gen >=9)
14252                 state->scaler_id = -1;
14253
14254         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14255
14256         return &cursor->base;
14257 }
14258
14259 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14260         struct intel_crtc_state *crtc_state)
14261 {
14262         int i;
14263         struct intel_scaler *intel_scaler;
14264         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14265
14266         for (i = 0; i < intel_crtc->num_scalers; i++) {
14267                 intel_scaler = &scaler_state->scalers[i];
14268                 intel_scaler->in_use = 0;
14269                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14270         }
14271
14272         scaler_state->scaler_id = -1;
14273 }
14274
14275 static void intel_crtc_init(struct drm_device *dev, int pipe)
14276 {
14277         struct drm_i915_private *dev_priv = dev->dev_private;
14278         struct intel_crtc *intel_crtc;
14279         struct intel_crtc_state *crtc_state = NULL;
14280         struct drm_plane *primary = NULL;
14281         struct drm_plane *cursor = NULL;
14282         int i, ret;
14283
14284         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14285         if (intel_crtc == NULL)
14286                 return;
14287
14288         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14289         if (!crtc_state)
14290                 goto fail;
14291         intel_crtc->config = crtc_state;
14292         intel_crtc->base.state = &crtc_state->base;
14293         crtc_state->base.crtc = &intel_crtc->base;
14294
14295         /* initialize shared scalers */
14296         if (INTEL_INFO(dev)->gen >= 9) {
14297                 if (pipe == PIPE_C)
14298                         intel_crtc->num_scalers = 1;
14299                 else
14300                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14301
14302                 skl_init_scalers(dev, intel_crtc, crtc_state);
14303         }
14304
14305         primary = intel_primary_plane_create(dev, pipe);
14306         if (!primary)
14307                 goto fail;
14308
14309         cursor = intel_cursor_plane_create(dev, pipe);
14310         if (!cursor)
14311                 goto fail;
14312
14313         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14314                                         cursor, &intel_crtc_funcs, NULL);
14315         if (ret)
14316                 goto fail;
14317
14318         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
14319         for (i = 0; i < 256; i++) {
14320                 intel_crtc->lut_r[i] = i;
14321                 intel_crtc->lut_g[i] = i;
14322                 intel_crtc->lut_b[i] = i;
14323         }
14324
14325         /*
14326          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14327          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14328          */
14329         intel_crtc->pipe = pipe;
14330         intel_crtc->plane = pipe;
14331         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14332                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14333                 intel_crtc->plane = !pipe;
14334         }
14335
14336         intel_crtc->cursor_base = ~0;
14337         intel_crtc->cursor_cntl = ~0;
14338         intel_crtc->cursor_size = ~0;
14339
14340         intel_crtc->wm.cxsr_allowed = true;
14341
14342         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14343                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14344         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14345         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14346
14347         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14348
14349         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14350         return;
14351
14352 fail:
14353         if (primary)
14354                 drm_plane_cleanup(primary);
14355         if (cursor)
14356                 drm_plane_cleanup(cursor);
14357         kfree(crtc_state);
14358         kfree(intel_crtc);
14359 }
14360
14361 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14362 {
14363         struct drm_encoder *encoder = connector->base.encoder;
14364         struct drm_device *dev = connector->base.dev;
14365
14366         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14367
14368         if (!encoder || WARN_ON(!encoder->crtc))
14369                 return INVALID_PIPE;
14370
14371         return to_intel_crtc(encoder->crtc)->pipe;
14372 }
14373
14374 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14375                                 struct drm_file *file)
14376 {
14377         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14378         struct drm_crtc *drmmode_crtc;
14379         struct intel_crtc *crtc;
14380
14381         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14382
14383         if (!drmmode_crtc) {
14384                 DRM_ERROR("no such CRTC id\n");
14385                 return -ENOENT;
14386         }
14387
14388         crtc = to_intel_crtc(drmmode_crtc);
14389         pipe_from_crtc_id->pipe = crtc->pipe;
14390
14391         return 0;
14392 }
14393
14394 static int intel_encoder_clones(struct intel_encoder *encoder)
14395 {
14396         struct drm_device *dev = encoder->base.dev;
14397         struct intel_encoder *source_encoder;
14398         int index_mask = 0;
14399         int entry = 0;
14400
14401         for_each_intel_encoder(dev, source_encoder) {
14402                 if (encoders_cloneable(encoder, source_encoder))
14403                         index_mask |= (1 << entry);
14404
14405                 entry++;
14406         }
14407
14408         return index_mask;
14409 }
14410
14411 static bool has_edp_a(struct drm_device *dev)
14412 {
14413         struct drm_i915_private *dev_priv = dev->dev_private;
14414
14415         if (!IS_MOBILE(dev))
14416                 return false;
14417
14418         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14419                 return false;
14420
14421         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14422                 return false;
14423
14424         return true;
14425 }
14426
14427 static bool intel_crt_present(struct drm_device *dev)
14428 {
14429         struct drm_i915_private *dev_priv = dev->dev_private;
14430
14431         if (INTEL_INFO(dev)->gen >= 9)
14432                 return false;
14433
14434         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14435                 return false;
14436
14437         if (IS_CHERRYVIEW(dev))
14438                 return false;
14439
14440         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14441                 return false;
14442
14443         /* DDI E can't be used if DDI A requires 4 lanes */
14444         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14445                 return false;
14446
14447         if (!dev_priv->vbt.int_crt_support)
14448                 return false;
14449
14450         return true;
14451 }
14452
14453 static void intel_setup_outputs(struct drm_device *dev)
14454 {
14455         struct drm_i915_private *dev_priv = dev->dev_private;
14456         struct intel_encoder *encoder;
14457         bool dpd_is_edp = false;
14458
14459         intel_lvds_init(dev);
14460
14461         if (intel_crt_present(dev))
14462                 intel_crt_init(dev);
14463
14464         if (IS_BROXTON(dev)) {
14465                 /*
14466                  * FIXME: Broxton doesn't support port detection via the
14467                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14468                  * detect the ports.
14469                  */
14470                 intel_ddi_init(dev, PORT_A);
14471                 intel_ddi_init(dev, PORT_B);
14472                 intel_ddi_init(dev, PORT_C);
14473         } else if (HAS_DDI(dev)) {
14474                 int found;
14475
14476                 /*
14477                  * Haswell uses DDI functions to detect digital outputs.
14478                  * On SKL pre-D0 the strap isn't connected, so we assume
14479                  * it's there.
14480                  */
14481                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14482                 /* WaIgnoreDDIAStrap: skl */
14483                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14484                         intel_ddi_init(dev, PORT_A);
14485
14486                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14487                  * register */
14488                 found = I915_READ(SFUSE_STRAP);
14489
14490                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14491                         intel_ddi_init(dev, PORT_B);
14492                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14493                         intel_ddi_init(dev, PORT_C);
14494                 if (found & SFUSE_STRAP_DDID_DETECTED)
14495                         intel_ddi_init(dev, PORT_D);
14496                 /*
14497                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14498                  */
14499                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14500                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14501                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14502                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14503                         intel_ddi_init(dev, PORT_E);
14504
14505         } else if (HAS_PCH_SPLIT(dev)) {
14506                 int found;
14507                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14508
14509                 if (has_edp_a(dev))
14510                         intel_dp_init(dev, DP_A, PORT_A);
14511
14512                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14513                         /* PCH SDVOB multiplex with HDMIB */
14514                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14515                         if (!found)
14516                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14517                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14518                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14519                 }
14520
14521                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14522                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14523
14524                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14525                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14526
14527                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14528                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14529
14530                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14531                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14532         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14533                 /*
14534                  * The DP_DETECTED bit is the latched state of the DDC
14535                  * SDA pin at boot. However since eDP doesn't require DDC
14536                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14537                  * eDP ports may have been muxed to an alternate function.
14538                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14539                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14540                  * detect eDP ports.
14541                  */
14542                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14543                     !intel_dp_is_edp(dev, PORT_B))
14544                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14545                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14546                     intel_dp_is_edp(dev, PORT_B))
14547                         intel_dp_init(dev, VLV_DP_B, PORT_B);
14548
14549                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14550                     !intel_dp_is_edp(dev, PORT_C))
14551                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14552                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14553                     intel_dp_is_edp(dev, PORT_C))
14554                         intel_dp_init(dev, VLV_DP_C, PORT_C);
14555
14556                 if (IS_CHERRYVIEW(dev)) {
14557                         /* eDP not supported on port D, so don't check VBT */
14558                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14559                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14560                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
14561                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14562                 }
14563
14564                 intel_dsi_init(dev);
14565         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14566                 bool found = false;
14567
14568                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14569                         DRM_DEBUG_KMS("probing SDVOB\n");
14570                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14571                         if (!found && IS_G4X(dev)) {
14572                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14573                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14574                         }
14575
14576                         if (!found && IS_G4X(dev))
14577                                 intel_dp_init(dev, DP_B, PORT_B);
14578                 }
14579
14580                 /* Before G4X SDVOC doesn't have its own detect register */
14581
14582                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14583                         DRM_DEBUG_KMS("probing SDVOC\n");
14584                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14585                 }
14586
14587                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14588
14589                         if (IS_G4X(dev)) {
14590                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14591                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14592                         }
14593                         if (IS_G4X(dev))
14594                                 intel_dp_init(dev, DP_C, PORT_C);
14595                 }
14596
14597                 if (IS_G4X(dev) &&
14598                     (I915_READ(DP_D) & DP_DETECTED))
14599                         intel_dp_init(dev, DP_D, PORT_D);
14600         } else if (IS_GEN2(dev))
14601                 intel_dvo_init(dev);
14602
14603         if (SUPPORTS_TV(dev))
14604                 intel_tv_init(dev);
14605
14606         intel_psr_init(dev);
14607
14608         for_each_intel_encoder(dev, encoder) {
14609                 encoder->base.possible_crtcs = encoder->crtc_mask;
14610                 encoder->base.possible_clones =
14611                         intel_encoder_clones(encoder);
14612         }
14613
14614         intel_init_pch_refclk(dev);
14615
14616         drm_helper_move_panel_connectors_to_head(dev);
14617 }
14618
14619 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14620 {
14621         struct drm_device *dev = fb->dev;
14622         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14623
14624         drm_framebuffer_cleanup(fb);
14625         mutex_lock(&dev->struct_mutex);
14626         WARN_ON(!intel_fb->obj->framebuffer_references--);
14627         drm_gem_object_unreference(&intel_fb->obj->base);
14628         mutex_unlock(&dev->struct_mutex);
14629         kfree(intel_fb);
14630 }
14631
14632 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14633                                                 struct drm_file *file,
14634                                                 unsigned int *handle)
14635 {
14636         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14637         struct drm_i915_gem_object *obj = intel_fb->obj;
14638
14639         if (obj->userptr.mm) {
14640                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14641                 return -EINVAL;
14642         }
14643
14644         return drm_gem_handle_create(file, &obj->base, handle);
14645 }
14646
14647 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14648                                         struct drm_file *file,
14649                                         unsigned flags, unsigned color,
14650                                         struct drm_clip_rect *clips,
14651                                         unsigned num_clips)
14652 {
14653         struct drm_device *dev = fb->dev;
14654         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14655         struct drm_i915_gem_object *obj = intel_fb->obj;
14656
14657         mutex_lock(&dev->struct_mutex);
14658         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14659         mutex_unlock(&dev->struct_mutex);
14660
14661         return 0;
14662 }
14663
14664 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14665         .destroy = intel_user_framebuffer_destroy,
14666         .create_handle = intel_user_framebuffer_create_handle,
14667         .dirty = intel_user_framebuffer_dirty,
14668 };
14669
14670 static
14671 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14672                          uint32_t pixel_format)
14673 {
14674         u32 gen = INTEL_INFO(dev)->gen;
14675
14676         if (gen >= 9) {
14677                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14678
14679                 /* "The stride in bytes must not exceed the of the size of 8K
14680                  *  pixels and 32K bytes."
14681                  */
14682                 return min(8192 * cpp, 32768);
14683         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14684                 return 32*1024;
14685         } else if (gen >= 4) {
14686                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14687                         return 16*1024;
14688                 else
14689                         return 32*1024;
14690         } else if (gen >= 3) {
14691                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14692                         return 8*1024;
14693                 else
14694                         return 16*1024;
14695         } else {
14696                 /* XXX DSPC is limited to 4k tiled */
14697                 return 8*1024;
14698         }
14699 }
14700
14701 static int intel_framebuffer_init(struct drm_device *dev,
14702                                   struct intel_framebuffer *intel_fb,
14703                                   struct drm_mode_fb_cmd2 *mode_cmd,
14704                                   struct drm_i915_gem_object *obj)
14705 {
14706         struct drm_i915_private *dev_priv = to_i915(dev);
14707         unsigned int aligned_height;
14708         int ret;
14709         u32 pitch_limit, stride_alignment;
14710
14711         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14712
14713         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14714                 /* Enforce that fb modifier and tiling mode match, but only for
14715                  * X-tiled. This is needed for FBC. */
14716                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14717                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14718                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14719                         return -EINVAL;
14720                 }
14721         } else {
14722                 if (obj->tiling_mode == I915_TILING_X)
14723                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14724                 else if (obj->tiling_mode == I915_TILING_Y) {
14725                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14726                         return -EINVAL;
14727                 }
14728         }
14729
14730         /* Passed in modifier sanity checking. */
14731         switch (mode_cmd->modifier[0]) {
14732         case I915_FORMAT_MOD_Y_TILED:
14733         case I915_FORMAT_MOD_Yf_TILED:
14734                 if (INTEL_INFO(dev)->gen < 9) {
14735                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14736                                   mode_cmd->modifier[0]);
14737                         return -EINVAL;
14738                 }
14739         case DRM_FORMAT_MOD_NONE:
14740         case I915_FORMAT_MOD_X_TILED:
14741                 break;
14742         default:
14743                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14744                           mode_cmd->modifier[0]);
14745                 return -EINVAL;
14746         }
14747
14748         stride_alignment = intel_fb_stride_alignment(dev_priv,
14749                                                      mode_cmd->modifier[0],
14750                                                      mode_cmd->pixel_format);
14751         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14752                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14753                           mode_cmd->pitches[0], stride_alignment);
14754                 return -EINVAL;
14755         }
14756
14757         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14758                                            mode_cmd->pixel_format);
14759         if (mode_cmd->pitches[0] > pitch_limit) {
14760                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14761                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14762                           "tiled" : "linear",
14763                           mode_cmd->pitches[0], pitch_limit);
14764                 return -EINVAL;
14765         }
14766
14767         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14768             mode_cmd->pitches[0] != obj->stride) {
14769                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14770                           mode_cmd->pitches[0], obj->stride);
14771                 return -EINVAL;
14772         }
14773
14774         /* Reject formats not supported by any plane early. */
14775         switch (mode_cmd->pixel_format) {
14776         case DRM_FORMAT_C8:
14777         case DRM_FORMAT_RGB565:
14778         case DRM_FORMAT_XRGB8888:
14779         case DRM_FORMAT_ARGB8888:
14780                 break;
14781         case DRM_FORMAT_XRGB1555:
14782                 if (INTEL_INFO(dev)->gen > 3) {
14783                         DRM_DEBUG("unsupported pixel format: %s\n",
14784                                   drm_get_format_name(mode_cmd->pixel_format));
14785                         return -EINVAL;
14786                 }
14787                 break;
14788         case DRM_FORMAT_ABGR8888:
14789                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14790                     INTEL_INFO(dev)->gen < 9) {
14791                         DRM_DEBUG("unsupported pixel format: %s\n",
14792                                   drm_get_format_name(mode_cmd->pixel_format));
14793                         return -EINVAL;
14794                 }
14795                 break;
14796         case DRM_FORMAT_XBGR8888:
14797         case DRM_FORMAT_XRGB2101010:
14798         case DRM_FORMAT_XBGR2101010:
14799                 if (INTEL_INFO(dev)->gen < 4) {
14800                         DRM_DEBUG("unsupported pixel format: %s\n",
14801                                   drm_get_format_name(mode_cmd->pixel_format));
14802                         return -EINVAL;
14803                 }
14804                 break;
14805         case DRM_FORMAT_ABGR2101010:
14806                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14807                         DRM_DEBUG("unsupported pixel format: %s\n",
14808                                   drm_get_format_name(mode_cmd->pixel_format));
14809                         return -EINVAL;
14810                 }
14811                 break;
14812         case DRM_FORMAT_YUYV:
14813         case DRM_FORMAT_UYVY:
14814         case DRM_FORMAT_YVYU:
14815         case DRM_FORMAT_VYUY:
14816                 if (INTEL_INFO(dev)->gen < 5) {
14817                         DRM_DEBUG("unsupported pixel format: %s\n",
14818                                   drm_get_format_name(mode_cmd->pixel_format));
14819                         return -EINVAL;
14820                 }
14821                 break;
14822         default:
14823                 DRM_DEBUG("unsupported pixel format: %s\n",
14824                           drm_get_format_name(mode_cmd->pixel_format));
14825                 return -EINVAL;
14826         }
14827
14828         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14829         if (mode_cmd->offsets[0] != 0)
14830                 return -EINVAL;
14831
14832         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14833                                                mode_cmd->pixel_format,
14834                                                mode_cmd->modifier[0]);
14835         /* FIXME drm helper for size checks (especially planar formats)? */
14836         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14837                 return -EINVAL;
14838
14839         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14840         intel_fb->obj = obj;
14841
14842         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14843         if (ret) {
14844                 DRM_ERROR("framebuffer init failed %d\n", ret);
14845                 return ret;
14846         }
14847
14848         intel_fb->obj->framebuffer_references++;
14849
14850         return 0;
14851 }
14852
14853 static struct drm_framebuffer *
14854 intel_user_framebuffer_create(struct drm_device *dev,
14855                               struct drm_file *filp,
14856                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14857 {
14858         struct drm_framebuffer *fb;
14859         struct drm_i915_gem_object *obj;
14860         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14861
14862         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14863                                                 mode_cmd.handles[0]));
14864         if (&obj->base == NULL)
14865                 return ERR_PTR(-ENOENT);
14866
14867         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14868         if (IS_ERR(fb))
14869                 drm_gem_object_unreference_unlocked(&obj->base);
14870
14871         return fb;
14872 }
14873
14874 #ifndef CONFIG_DRM_FBDEV_EMULATION
14875 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14876 {
14877 }
14878 #endif
14879
14880 static const struct drm_mode_config_funcs intel_mode_funcs = {
14881         .fb_create = intel_user_framebuffer_create,
14882         .output_poll_changed = intel_fbdev_output_poll_changed,
14883         .atomic_check = intel_atomic_check,
14884         .atomic_commit = intel_atomic_commit,
14885         .atomic_state_alloc = intel_atomic_state_alloc,
14886         .atomic_state_clear = intel_atomic_state_clear,
14887 };
14888
14889 /* Set up chip specific display functions */
14890 static void intel_init_display(struct drm_device *dev)
14891 {
14892         struct drm_i915_private *dev_priv = dev->dev_private;
14893
14894         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14895                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14896         else if (IS_CHERRYVIEW(dev))
14897                 dev_priv->display.find_dpll = chv_find_best_dpll;
14898         else if (IS_VALLEYVIEW(dev))
14899                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14900         else if (IS_PINEVIEW(dev))
14901                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14902         else
14903                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14904
14905         if (INTEL_INFO(dev)->gen >= 9) {
14906                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14907                 dev_priv->display.get_initial_plane_config =
14908                         skylake_get_initial_plane_config;
14909                 dev_priv->display.crtc_compute_clock =
14910                         haswell_crtc_compute_clock;
14911                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14912                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14913         } else if (HAS_DDI(dev)) {
14914                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14915                 dev_priv->display.get_initial_plane_config =
14916                         ironlake_get_initial_plane_config;
14917                 dev_priv->display.crtc_compute_clock =
14918                         haswell_crtc_compute_clock;
14919                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14920                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14921         } else if (HAS_PCH_SPLIT(dev)) {
14922                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14923                 dev_priv->display.get_initial_plane_config =
14924                         ironlake_get_initial_plane_config;
14925                 dev_priv->display.crtc_compute_clock =
14926                         ironlake_crtc_compute_clock;
14927                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14928                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14929         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14930                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14931                 dev_priv->display.get_initial_plane_config =
14932                         i9xx_get_initial_plane_config;
14933                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14934                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14935                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14936         } else {
14937                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14938                 dev_priv->display.get_initial_plane_config =
14939                         i9xx_get_initial_plane_config;
14940                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14941                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14942                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14943         }
14944
14945         /* Returns the core display clock speed */
14946         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14947                 dev_priv->display.get_display_clock_speed =
14948                         skylake_get_display_clock_speed;
14949         else if (IS_BROXTON(dev))
14950                 dev_priv->display.get_display_clock_speed =
14951                         broxton_get_display_clock_speed;
14952         else if (IS_BROADWELL(dev))
14953                 dev_priv->display.get_display_clock_speed =
14954                         broadwell_get_display_clock_speed;
14955         else if (IS_HASWELL(dev))
14956                 dev_priv->display.get_display_clock_speed =
14957                         haswell_get_display_clock_speed;
14958         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
14959                 dev_priv->display.get_display_clock_speed =
14960                         valleyview_get_display_clock_speed;
14961         else if (IS_GEN5(dev))
14962                 dev_priv->display.get_display_clock_speed =
14963                         ilk_get_display_clock_speed;
14964         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14965                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14966                 dev_priv->display.get_display_clock_speed =
14967                         i945_get_display_clock_speed;
14968         else if (IS_GM45(dev))
14969                 dev_priv->display.get_display_clock_speed =
14970                         gm45_get_display_clock_speed;
14971         else if (IS_CRESTLINE(dev))
14972                 dev_priv->display.get_display_clock_speed =
14973                         i965gm_get_display_clock_speed;
14974         else if (IS_PINEVIEW(dev))
14975                 dev_priv->display.get_display_clock_speed =
14976                         pnv_get_display_clock_speed;
14977         else if (IS_G33(dev) || IS_G4X(dev))
14978                 dev_priv->display.get_display_clock_speed =
14979                         g33_get_display_clock_speed;
14980         else if (IS_I915G(dev))
14981                 dev_priv->display.get_display_clock_speed =
14982                         i915_get_display_clock_speed;
14983         else if (IS_I945GM(dev) || IS_845G(dev))
14984                 dev_priv->display.get_display_clock_speed =
14985                         i9xx_misc_get_display_clock_speed;
14986         else if (IS_I915GM(dev))
14987                 dev_priv->display.get_display_clock_speed =
14988                         i915gm_get_display_clock_speed;
14989         else if (IS_I865G(dev))
14990                 dev_priv->display.get_display_clock_speed =
14991                         i865_get_display_clock_speed;
14992         else if (IS_I85X(dev))
14993                 dev_priv->display.get_display_clock_speed =
14994                         i85x_get_display_clock_speed;
14995         else { /* 830 */
14996                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14997                 dev_priv->display.get_display_clock_speed =
14998                         i830_get_display_clock_speed;
14999         }
15000
15001         if (IS_GEN5(dev)) {
15002                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15003         } else if (IS_GEN6(dev)) {
15004                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15005         } else if (IS_IVYBRIDGE(dev)) {
15006                 /* FIXME: detect B0+ stepping and use auto training */
15007                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15008         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
15009                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15010                 if (IS_BROADWELL(dev)) {
15011                         dev_priv->display.modeset_commit_cdclk =
15012                                 broadwell_modeset_commit_cdclk;
15013                         dev_priv->display.modeset_calc_cdclk =
15014                                 broadwell_modeset_calc_cdclk;
15015                 }
15016         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
15017                 dev_priv->display.modeset_commit_cdclk =
15018                         valleyview_modeset_commit_cdclk;
15019                 dev_priv->display.modeset_calc_cdclk =
15020                         valleyview_modeset_calc_cdclk;
15021         } else if (IS_BROXTON(dev)) {
15022                 dev_priv->display.modeset_commit_cdclk =
15023                         broxton_modeset_commit_cdclk;
15024                 dev_priv->display.modeset_calc_cdclk =
15025                         broxton_modeset_calc_cdclk;
15026         }
15027
15028         switch (INTEL_INFO(dev)->gen) {
15029         case 2:
15030                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15031                 break;
15032
15033         case 3:
15034                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15035                 break;
15036
15037         case 4:
15038         case 5:
15039                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15040                 break;
15041
15042         case 6:
15043                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15044                 break;
15045         case 7:
15046         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15047                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15048                 break;
15049         case 9:
15050                 /* Drop through - unsupported since execlist only. */
15051         default:
15052                 /* Default just returns -ENODEV to indicate unsupported */
15053                 dev_priv->display.queue_flip = intel_default_queue_flip;
15054         }
15055
15056         mutex_init(&dev_priv->pps_mutex);
15057 }
15058
15059 /*
15060  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15061  * resume, or other times.  This quirk makes sure that's the case for
15062  * affected systems.
15063  */
15064 static void quirk_pipea_force(struct drm_device *dev)
15065 {
15066         struct drm_i915_private *dev_priv = dev->dev_private;
15067
15068         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15069         DRM_INFO("applying pipe a force quirk\n");
15070 }
15071
15072 static void quirk_pipeb_force(struct drm_device *dev)
15073 {
15074         struct drm_i915_private *dev_priv = dev->dev_private;
15075
15076         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15077         DRM_INFO("applying pipe b force quirk\n");
15078 }
15079
15080 /*
15081  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15082  */
15083 static void quirk_ssc_force_disable(struct drm_device *dev)
15084 {
15085         struct drm_i915_private *dev_priv = dev->dev_private;
15086         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15087         DRM_INFO("applying lvds SSC disable quirk\n");
15088 }
15089
15090 /*
15091  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15092  * brightness value
15093  */
15094 static void quirk_invert_brightness(struct drm_device *dev)
15095 {
15096         struct drm_i915_private *dev_priv = dev->dev_private;
15097         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15098         DRM_INFO("applying inverted panel brightness quirk\n");
15099 }
15100
15101 /* Some VBT's incorrectly indicate no backlight is present */
15102 static void quirk_backlight_present(struct drm_device *dev)
15103 {
15104         struct drm_i915_private *dev_priv = dev->dev_private;
15105         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15106         DRM_INFO("applying backlight present quirk\n");
15107 }
15108
15109 struct intel_quirk {
15110         int device;
15111         int subsystem_vendor;
15112         int subsystem_device;
15113         void (*hook)(struct drm_device *dev);
15114 };
15115
15116 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15117 struct intel_dmi_quirk {
15118         void (*hook)(struct drm_device *dev);
15119         const struct dmi_system_id (*dmi_id_list)[];
15120 };
15121
15122 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15123 {
15124         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15125         return 1;
15126 }
15127
15128 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15129         {
15130                 .dmi_id_list = &(const struct dmi_system_id[]) {
15131                         {
15132                                 .callback = intel_dmi_reverse_brightness,
15133                                 .ident = "NCR Corporation",
15134                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15135                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
15136                                 },
15137                         },
15138                         { }  /* terminating entry */
15139                 },
15140                 .hook = quirk_invert_brightness,
15141         },
15142 };
15143
15144 static struct intel_quirk intel_quirks[] = {
15145         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15146         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15147
15148         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15149         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15150
15151         /* 830 needs to leave pipe A & dpll A up */
15152         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15153
15154         /* 830 needs to leave pipe B & dpll B up */
15155         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15156
15157         /* Lenovo U160 cannot use SSC on LVDS */
15158         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15159
15160         /* Sony Vaio Y cannot use SSC on LVDS */
15161         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15162
15163         /* Acer Aspire 5734Z must invert backlight brightness */
15164         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15165
15166         /* Acer/eMachines G725 */
15167         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15168
15169         /* Acer/eMachines e725 */
15170         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15171
15172         /* Acer/Packard Bell NCL20 */
15173         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15174
15175         /* Acer Aspire 4736Z */
15176         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15177
15178         /* Acer Aspire 5336 */
15179         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15180
15181         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15182         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15183
15184         /* Acer C720 Chromebook (Core i3 4005U) */
15185         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15186
15187         /* Apple Macbook 2,1 (Core 2 T7400) */
15188         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15189
15190         /* Apple Macbook 4,1 */
15191         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15192
15193         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15194         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15195
15196         /* HP Chromebook 14 (Celeron 2955U) */
15197         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15198
15199         /* Dell Chromebook 11 */
15200         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15201
15202         /* Dell Chromebook 11 (2015 version) */
15203         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15204 };
15205
15206 static void intel_init_quirks(struct drm_device *dev)
15207 {
15208         struct pci_dev *d = dev->pdev;
15209         int i;
15210
15211         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15212                 struct intel_quirk *q = &intel_quirks[i];
15213
15214                 if (d->device == q->device &&
15215                     (d->subsystem_vendor == q->subsystem_vendor ||
15216                      q->subsystem_vendor == PCI_ANY_ID) &&
15217                     (d->subsystem_device == q->subsystem_device ||
15218                      q->subsystem_device == PCI_ANY_ID))
15219                         q->hook(dev);
15220         }
15221         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15222                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15223                         intel_dmi_quirks[i].hook(dev);
15224         }
15225 }
15226
15227 /* Disable the VGA plane that we never use */
15228 static void i915_disable_vga(struct drm_device *dev)
15229 {
15230         struct drm_i915_private *dev_priv = dev->dev_private;
15231         u8 sr1;
15232         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15233
15234         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15235         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15236         outb(SR01, VGA_SR_INDEX);
15237         sr1 = inb(VGA_SR_DATA);
15238         outb(sr1 | 1<<5, VGA_SR_DATA);
15239         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15240         udelay(300);
15241
15242         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15243         POSTING_READ(vga_reg);
15244 }
15245
15246 void intel_modeset_init_hw(struct drm_device *dev)
15247 {
15248         struct drm_i915_private *dev_priv = dev->dev_private;
15249
15250         intel_update_cdclk(dev);
15251
15252         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15253
15254         intel_init_clock_gating(dev);
15255         intel_enable_gt_powersave(dev);
15256 }
15257
15258 /*
15259  * Calculate what we think the watermarks should be for the state we've read
15260  * out of the hardware and then immediately program those watermarks so that
15261  * we ensure the hardware settings match our internal state.
15262  *
15263  * We can calculate what we think WM's should be by creating a duplicate of the
15264  * current state (which was constructed during hardware readout) and running it
15265  * through the atomic check code to calculate new watermark values in the
15266  * state object.
15267  */
15268 static void sanitize_watermarks(struct drm_device *dev)
15269 {
15270         struct drm_i915_private *dev_priv = to_i915(dev);
15271         struct drm_atomic_state *state;
15272         struct drm_crtc *crtc;
15273         struct drm_crtc_state *cstate;
15274         struct drm_modeset_acquire_ctx ctx;
15275         int ret;
15276         int i;
15277
15278         /* Only supported on platforms that use atomic watermark design */
15279         if (!dev_priv->display.program_watermarks)
15280                 return;
15281
15282         /*
15283          * We need to hold connection_mutex before calling duplicate_state so
15284          * that the connector loop is protected.
15285          */
15286         drm_modeset_acquire_init(&ctx, 0);
15287 retry:
15288         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15289         if (ret == -EDEADLK) {
15290                 drm_modeset_backoff(&ctx);
15291                 goto retry;
15292         } else if (WARN_ON(ret)) {
15293                 goto fail;
15294         }
15295
15296         state = drm_atomic_helper_duplicate_state(dev, &ctx);
15297         if (WARN_ON(IS_ERR(state)))
15298                 goto fail;
15299
15300         ret = intel_atomic_check(dev, state);
15301         if (ret) {
15302                 /*
15303                  * If we fail here, it means that the hardware appears to be
15304                  * programmed in a way that shouldn't be possible, given our
15305                  * understanding of watermark requirements.  This might mean a
15306                  * mistake in the hardware readout code or a mistake in the
15307                  * watermark calculations for a given platform.  Raise a WARN
15308                  * so that this is noticeable.
15309                  *
15310                  * If this actually happens, we'll have to just leave the
15311                  * BIOS-programmed watermarks untouched and hope for the best.
15312                  */
15313                 WARN(true, "Could not determine valid watermarks for inherited state\n");
15314                 goto fail;
15315         }
15316
15317         /* Write calculated watermark values back */
15318         to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15319         for_each_crtc_in_state(state, crtc, cstate, i) {
15320                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15321
15322                 dev_priv->display.program_watermarks(cs);
15323         }
15324
15325         drm_atomic_state_free(state);
15326 fail:
15327         drm_modeset_drop_locks(&ctx);
15328         drm_modeset_acquire_fini(&ctx);
15329 }
15330
15331 void intel_modeset_init(struct drm_device *dev)
15332 {
15333         struct drm_i915_private *dev_priv = dev->dev_private;
15334         int sprite, ret;
15335         enum pipe pipe;
15336         struct intel_crtc *crtc;
15337
15338         drm_mode_config_init(dev);
15339
15340         dev->mode_config.min_width = 0;
15341         dev->mode_config.min_height = 0;
15342
15343         dev->mode_config.preferred_depth = 24;
15344         dev->mode_config.prefer_shadow = 1;
15345
15346         dev->mode_config.allow_fb_modifiers = true;
15347
15348         dev->mode_config.funcs = &intel_mode_funcs;
15349
15350         intel_init_quirks(dev);
15351
15352         intel_init_pm(dev);
15353
15354         if (INTEL_INFO(dev)->num_pipes == 0)
15355                 return;
15356
15357         /*
15358          * There may be no VBT; and if the BIOS enabled SSC we can
15359          * just keep using it to avoid unnecessary flicker.  Whereas if the
15360          * BIOS isn't using it, don't assume it will work even if the VBT
15361          * indicates as much.
15362          */
15363         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15364                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15365                                             DREF_SSC1_ENABLE);
15366
15367                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15368                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15369                                      bios_lvds_use_ssc ? "en" : "dis",
15370                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15371                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15372                 }
15373         }
15374
15375         intel_init_display(dev);
15376         intel_init_audio(dev);
15377
15378         if (IS_GEN2(dev)) {
15379                 dev->mode_config.max_width = 2048;
15380                 dev->mode_config.max_height = 2048;
15381         } else if (IS_GEN3(dev)) {
15382                 dev->mode_config.max_width = 4096;
15383                 dev->mode_config.max_height = 4096;
15384         } else {
15385                 dev->mode_config.max_width = 8192;
15386                 dev->mode_config.max_height = 8192;
15387         }
15388
15389         if (IS_845G(dev) || IS_I865G(dev)) {
15390                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15391                 dev->mode_config.cursor_height = 1023;
15392         } else if (IS_GEN2(dev)) {
15393                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15394                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15395         } else {
15396                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15397                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15398         }
15399
15400         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
15401
15402         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15403                       INTEL_INFO(dev)->num_pipes,
15404                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15405
15406         for_each_pipe(dev_priv, pipe) {
15407                 intel_crtc_init(dev, pipe);
15408                 for_each_sprite(dev_priv, pipe, sprite) {
15409                         ret = intel_plane_init(dev, pipe, sprite);
15410                         if (ret)
15411                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15412                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15413                 }
15414         }
15415
15416         intel_update_czclk(dev_priv);
15417         intel_update_cdclk(dev);
15418
15419         intel_shared_dpll_init(dev);
15420
15421         /* Just disable it once at startup */
15422         i915_disable_vga(dev);
15423         intel_setup_outputs(dev);
15424
15425         drm_modeset_lock_all(dev);
15426         intel_modeset_setup_hw_state(dev);
15427         drm_modeset_unlock_all(dev);
15428
15429         for_each_intel_crtc(dev, crtc) {
15430                 struct intel_initial_plane_config plane_config = {};
15431
15432                 if (!crtc->active)
15433                         continue;
15434
15435                 /*
15436                  * Note that reserving the BIOS fb up front prevents us
15437                  * from stuffing other stolen allocations like the ring
15438                  * on top.  This prevents some ugliness at boot time, and
15439                  * can even allow for smooth boot transitions if the BIOS
15440                  * fb is large enough for the active pipe configuration.
15441                  */
15442                 dev_priv->display.get_initial_plane_config(crtc,
15443                                                            &plane_config);
15444
15445                 /*
15446                  * If the fb is shared between multiple heads, we'll
15447                  * just get the first one.
15448                  */
15449                 intel_find_initial_plane_obj(crtc, &plane_config);
15450         }
15451
15452         /*
15453          * Make sure hardware watermarks really match the state we read out.
15454          * Note that we need to do this after reconstructing the BIOS fb's
15455          * since the watermark calculation done here will use pstate->fb.
15456          */
15457         sanitize_watermarks(dev);
15458 }
15459
15460 static void intel_enable_pipe_a(struct drm_device *dev)
15461 {
15462         struct intel_connector *connector;
15463         struct drm_connector *crt = NULL;
15464         struct intel_load_detect_pipe load_detect_temp;
15465         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15466
15467         /* We can't just switch on the pipe A, we need to set things up with a
15468          * proper mode and output configuration. As a gross hack, enable pipe A
15469          * by enabling the load detect pipe once. */
15470         for_each_intel_connector(dev, connector) {
15471                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15472                         crt = &connector->base;
15473                         break;
15474                 }
15475         }
15476
15477         if (!crt)
15478                 return;
15479
15480         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15481                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15482 }
15483
15484 static bool
15485 intel_check_plane_mapping(struct intel_crtc *crtc)
15486 {
15487         struct drm_device *dev = crtc->base.dev;
15488         struct drm_i915_private *dev_priv = dev->dev_private;
15489         u32 val;
15490
15491         if (INTEL_INFO(dev)->num_pipes == 1)
15492                 return true;
15493
15494         val = I915_READ(DSPCNTR(!crtc->plane));
15495
15496         if ((val & DISPLAY_PLANE_ENABLE) &&
15497             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15498                 return false;
15499
15500         return true;
15501 }
15502
15503 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15504 {
15505         struct drm_device *dev = crtc->base.dev;
15506         struct intel_encoder *encoder;
15507
15508         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15509                 return true;
15510
15511         return false;
15512 }
15513
15514 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15515 {
15516         struct drm_device *dev = encoder->base.dev;
15517         struct intel_connector *connector;
15518
15519         for_each_connector_on_encoder(dev, &encoder->base, connector)
15520                 return true;
15521
15522         return false;
15523 }
15524
15525 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15526 {
15527         struct drm_device *dev = crtc->base.dev;
15528         struct drm_i915_private *dev_priv = dev->dev_private;
15529         i915_reg_t reg = PIPECONF(crtc->config->cpu_transcoder);
15530
15531         /* Clear any frame start delays used for debugging left by the BIOS */
15532         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15533
15534         /* restore vblank interrupts to correct state */
15535         drm_crtc_vblank_reset(&crtc->base);
15536         if (crtc->active) {
15537                 struct intel_plane *plane;
15538
15539                 drm_crtc_vblank_on(&crtc->base);
15540
15541                 /* Disable everything but the primary plane */
15542                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15543                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15544                                 continue;
15545
15546                         plane->disable_plane(&plane->base, &crtc->base);
15547                 }
15548         }
15549
15550         /* We need to sanitize the plane -> pipe mapping first because this will
15551          * disable the crtc (and hence change the state) if it is wrong. Note
15552          * that gen4+ has a fixed plane -> pipe mapping.  */
15553         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15554                 bool plane;
15555
15556                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15557                               crtc->base.base.id);
15558
15559                 /* Pipe has the wrong plane attached and the plane is active.
15560                  * Temporarily change the plane mapping and disable everything
15561                  * ...  */
15562                 plane = crtc->plane;
15563                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15564                 crtc->plane = !plane;
15565                 intel_crtc_disable_noatomic(&crtc->base);
15566                 crtc->plane = plane;
15567         }
15568
15569         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15570             crtc->pipe == PIPE_A && !crtc->active) {
15571                 /* BIOS forgot to enable pipe A, this mostly happens after
15572                  * resume. Force-enable the pipe to fix this, the update_dpms
15573                  * call below we restore the pipe to the right state, but leave
15574                  * the required bits on. */
15575                 intel_enable_pipe_a(dev);
15576         }
15577
15578         /* Adjust the state of the output pipe according to whether we
15579          * have active connectors/encoders. */
15580         if (!intel_crtc_has_encoders(crtc))
15581                 intel_crtc_disable_noatomic(&crtc->base);
15582
15583         if (crtc->active != crtc->base.state->active) {
15584                 struct intel_encoder *encoder;
15585
15586                 /* This can happen either due to bugs in the get_hw_state
15587                  * functions or because of calls to intel_crtc_disable_noatomic,
15588                  * or because the pipe is force-enabled due to the
15589                  * pipe A quirk. */
15590                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15591                               crtc->base.base.id,
15592                               crtc->base.state->enable ? "enabled" : "disabled",
15593                               crtc->active ? "enabled" : "disabled");
15594
15595                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15596                 crtc->base.state->active = crtc->active;
15597                 crtc->base.enabled = crtc->active;
15598                 crtc->base.state->connector_mask = 0;
15599                 crtc->base.state->encoder_mask = 0;
15600
15601                 /* Because we only establish the connector -> encoder ->
15602                  * crtc links if something is active, this means the
15603                  * crtc is now deactivated. Break the links. connector
15604                  * -> encoder links are only establish when things are
15605                  *  actually up, hence no need to break them. */
15606                 WARN_ON(crtc->active);
15607
15608                 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15609                         encoder->base.crtc = NULL;
15610         }
15611
15612         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15613                 /*
15614                  * We start out with underrun reporting disabled to avoid races.
15615                  * For correct bookkeeping mark this on active crtcs.
15616                  *
15617                  * Also on gmch platforms we dont have any hardware bits to
15618                  * disable the underrun reporting. Which means we need to start
15619                  * out with underrun reporting disabled also on inactive pipes,
15620                  * since otherwise we'll complain about the garbage we read when
15621                  * e.g. coming up after runtime pm.
15622                  *
15623                  * No protection against concurrent access is required - at
15624                  * worst a fifo underrun happens which also sets this to false.
15625                  */
15626                 crtc->cpu_fifo_underrun_disabled = true;
15627                 crtc->pch_fifo_underrun_disabled = true;
15628         }
15629 }
15630
15631 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15632 {
15633         struct intel_connector *connector;
15634         struct drm_device *dev = encoder->base.dev;
15635
15636         /* We need to check both for a crtc link (meaning that the
15637          * encoder is active and trying to read from a pipe) and the
15638          * pipe itself being active. */
15639         bool has_active_crtc = encoder->base.crtc &&
15640                 to_intel_crtc(encoder->base.crtc)->active;
15641
15642         if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15643                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15644                               encoder->base.base.id,
15645                               encoder->base.name);
15646
15647                 /* Connector is active, but has no active pipe. This is
15648                  * fallout from our resume register restoring. Disable
15649                  * the encoder manually again. */
15650                 if (encoder->base.crtc) {
15651                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15652                                       encoder->base.base.id,
15653                                       encoder->base.name);
15654                         encoder->disable(encoder);
15655                         if (encoder->post_disable)
15656                                 encoder->post_disable(encoder);
15657                 }
15658                 encoder->base.crtc = NULL;
15659
15660                 /* Inconsistent output/port/pipe state happens presumably due to
15661                  * a bug in one of the get_hw_state functions. Or someplace else
15662                  * in our code, like the register restore mess on resume. Clamp
15663                  * things to off as a safer default. */
15664                 for_each_intel_connector(dev, connector) {
15665                         if (connector->encoder != encoder)
15666                                 continue;
15667                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15668                         connector->base.encoder = NULL;
15669                 }
15670         }
15671         /* Enabled encoders without active connectors will be fixed in
15672          * the crtc fixup. */
15673 }
15674
15675 void i915_redisable_vga_power_on(struct drm_device *dev)
15676 {
15677         struct drm_i915_private *dev_priv = dev->dev_private;
15678         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15679
15680         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15681                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15682                 i915_disable_vga(dev);
15683         }
15684 }
15685
15686 void i915_redisable_vga(struct drm_device *dev)
15687 {
15688         struct drm_i915_private *dev_priv = dev->dev_private;
15689
15690         /* This function can be called both from intel_modeset_setup_hw_state or
15691          * at a very early point in our resume sequence, where the power well
15692          * structures are not yet restored. Since this function is at a very
15693          * paranoid "someone might have enabled VGA while we were not looking"
15694          * level, just check if the power well is enabled instead of trying to
15695          * follow the "don't touch the power well if we don't need it" policy
15696          * the rest of the driver uses. */
15697         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15698                 return;
15699
15700         i915_redisable_vga_power_on(dev);
15701
15702         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15703 }
15704
15705 static bool primary_get_hw_state(struct intel_plane *plane)
15706 {
15707         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15708
15709         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15710 }
15711
15712 /* FIXME read out full plane state for all planes */
15713 static void readout_plane_state(struct intel_crtc *crtc)
15714 {
15715         struct drm_plane *primary = crtc->base.primary;
15716         struct intel_plane_state *plane_state =
15717                 to_intel_plane_state(primary->state);
15718
15719         plane_state->visible = crtc->active &&
15720                 primary_get_hw_state(to_intel_plane(primary));
15721
15722         if (plane_state->visible)
15723                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15724 }
15725
15726 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15727 {
15728         struct drm_i915_private *dev_priv = dev->dev_private;
15729         enum pipe pipe;
15730         struct intel_crtc *crtc;
15731         struct intel_encoder *encoder;
15732         struct intel_connector *connector;
15733         int i;
15734
15735         dev_priv->active_crtcs = 0;
15736
15737         for_each_intel_crtc(dev, crtc) {
15738                 struct intel_crtc_state *crtc_state = crtc->config;
15739                 int pixclk = 0;
15740
15741                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
15742                 memset(crtc_state, 0, sizeof(*crtc_state));
15743                 crtc_state->base.crtc = &crtc->base;
15744
15745                 crtc_state->base.active = crtc_state->base.enable =
15746                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15747
15748                 crtc->base.enabled = crtc_state->base.enable;
15749                 crtc->active = crtc_state->base.active;
15750
15751                 if (crtc_state->base.active) {
15752                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15753
15754                         if (IS_BROADWELL(dev_priv)) {
15755                                 pixclk = ilk_pipe_pixel_rate(crtc_state);
15756
15757                                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15758                                 if (crtc_state->ips_enabled)
15759                                         pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15760                         } else if (IS_VALLEYVIEW(dev_priv) ||
15761                                    IS_CHERRYVIEW(dev_priv) ||
15762                                    IS_BROXTON(dev_priv))
15763                                 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15764                         else
15765                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15766                 }
15767
15768                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15769
15770                 readout_plane_state(crtc);
15771
15772                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15773                               crtc->base.base.id,
15774                               crtc->active ? "enabled" : "disabled");
15775         }
15776
15777         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15778                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15779
15780                 pll->on = pll->get_hw_state(dev_priv, pll,
15781                                             &pll->config.hw_state);
15782                 pll->active = 0;
15783                 pll->config.crtc_mask = 0;
15784                 for_each_intel_crtc(dev, crtc) {
15785                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15786                                 pll->active++;
15787                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15788                         }
15789                 }
15790
15791                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15792                               pll->name, pll->config.crtc_mask, pll->on);
15793
15794                 if (pll->config.crtc_mask)
15795                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15796         }
15797
15798         for_each_intel_encoder(dev, encoder) {
15799                 pipe = 0;
15800
15801                 if (encoder->get_hw_state(encoder, &pipe)) {
15802                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15803                         encoder->base.crtc = &crtc->base;
15804                         encoder->get_config(encoder, crtc->config);
15805                 } else {
15806                         encoder->base.crtc = NULL;
15807                 }
15808
15809                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15810                               encoder->base.base.id,
15811                               encoder->base.name,
15812                               encoder->base.crtc ? "enabled" : "disabled",
15813                               pipe_name(pipe));
15814         }
15815
15816         for_each_intel_connector(dev, connector) {
15817                 if (connector->get_hw_state(connector)) {
15818                         connector->base.dpms = DRM_MODE_DPMS_ON;
15819
15820                         encoder = connector->encoder;
15821                         connector->base.encoder = &encoder->base;
15822
15823                         if (encoder->base.crtc &&
15824                             encoder->base.crtc->state->active) {
15825                                 /*
15826                                  * This has to be done during hardware readout
15827                                  * because anything calling .crtc_disable may
15828                                  * rely on the connector_mask being accurate.
15829                                  */
15830                                 encoder->base.crtc->state->connector_mask |=
15831                                         1 << drm_connector_index(&connector->base);
15832                                 encoder->base.crtc->state->encoder_mask |=
15833                                         1 << drm_encoder_index(&encoder->base);
15834                         }
15835
15836                 } else {
15837                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15838                         connector->base.encoder = NULL;
15839                 }
15840                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15841                               connector->base.base.id,
15842                               connector->base.name,
15843                               connector->base.encoder ? "enabled" : "disabled");
15844         }
15845
15846         for_each_intel_crtc(dev, crtc) {
15847                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15848
15849                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15850                 if (crtc->base.state->active) {
15851                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15852                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15853                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15854
15855                         /*
15856                          * The initial mode needs to be set in order to keep
15857                          * the atomic core happy. It wants a valid mode if the
15858                          * crtc's enabled, so we do the above call.
15859                          *
15860                          * At this point some state updated by the connectors
15861                          * in their ->detect() callback has not run yet, so
15862                          * no recalculation can be done yet.
15863                          *
15864                          * Even if we could do a recalculation and modeset
15865                          * right now it would cause a double modeset if
15866                          * fbdev or userspace chooses a different initial mode.
15867                          *
15868                          * If that happens, someone indicated they wanted a
15869                          * mode change, which means it's safe to do a full
15870                          * recalculation.
15871                          */
15872                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15873
15874                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15875                         update_scanline_offset(crtc);
15876                 }
15877         }
15878 }
15879
15880 /* Scan out the current hw modeset state,
15881  * and sanitizes it to the current state
15882  */
15883 static void
15884 intel_modeset_setup_hw_state(struct drm_device *dev)
15885 {
15886         struct drm_i915_private *dev_priv = dev->dev_private;
15887         enum pipe pipe;
15888         struct intel_crtc *crtc;
15889         struct intel_encoder *encoder;
15890         int i;
15891
15892         intel_modeset_readout_hw_state(dev);
15893
15894         /* HW state is read out, now we need to sanitize this mess. */
15895         for_each_intel_encoder(dev, encoder) {
15896                 intel_sanitize_encoder(encoder);
15897         }
15898
15899         for_each_pipe(dev_priv, pipe) {
15900                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15901                 intel_sanitize_crtc(crtc);
15902                 intel_dump_pipe_config(crtc, crtc->config,
15903                                        "[setup_hw_state]");
15904         }
15905
15906         intel_modeset_update_connector_atomic_state(dev);
15907
15908         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15909                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15910
15911                 if (!pll->on || pll->active)
15912                         continue;
15913
15914                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15915
15916                 pll->disable(dev_priv, pll);
15917                 pll->on = false;
15918         }
15919
15920         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15921                 vlv_wm_get_hw_state(dev);
15922         else if (IS_GEN9(dev))
15923                 skl_wm_get_hw_state(dev);
15924         else if (HAS_PCH_SPLIT(dev))
15925                 ilk_wm_get_hw_state(dev);
15926
15927         for_each_intel_crtc(dev, crtc) {
15928                 unsigned long put_domains;
15929
15930                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15931                 if (WARN_ON(put_domains))
15932                         modeset_put_power_domains(dev_priv, put_domains);
15933         }
15934         intel_display_set_init_power(dev_priv, false);
15935
15936         intel_fbc_init_pipe_state(dev_priv);
15937 }
15938
15939 void intel_display_resume(struct drm_device *dev)
15940 {
15941         struct drm_i915_private *dev_priv = to_i915(dev);
15942         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15943         struct drm_modeset_acquire_ctx ctx;
15944         int ret;
15945         bool setup = false;
15946
15947         dev_priv->modeset_restore_state = NULL;
15948
15949         /*
15950          * This is a cludge because with real atomic modeset mode_config.mutex
15951          * won't be taken. Unfortunately some probed state like
15952          * audio_codec_enable is still protected by mode_config.mutex, so lock
15953          * it here for now.
15954          */
15955         mutex_lock(&dev->mode_config.mutex);
15956         drm_modeset_acquire_init(&ctx, 0);
15957
15958 retry:
15959         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15960
15961         if (ret == 0 && !setup) {
15962                 setup = true;
15963
15964                 intel_modeset_setup_hw_state(dev);
15965                 i915_redisable_vga(dev);
15966         }
15967
15968         if (ret == 0 && state) {
15969                 struct drm_crtc_state *crtc_state;
15970                 struct drm_crtc *crtc;
15971                 int i;
15972
15973                 state->acquire_ctx = &ctx;
15974
15975                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
15976                         /*
15977                          * Force recalculation even if we restore
15978                          * current state. With fast modeset this may not result
15979                          * in a modeset when the state is compatible.
15980                          */
15981                         crtc_state->mode_changed = true;
15982                 }
15983
15984                 ret = drm_atomic_commit(state);
15985         }
15986
15987         if (ret == -EDEADLK) {
15988                 drm_modeset_backoff(&ctx);
15989                 goto retry;
15990         }
15991
15992         drm_modeset_drop_locks(&ctx);
15993         drm_modeset_acquire_fini(&ctx);
15994         mutex_unlock(&dev->mode_config.mutex);
15995
15996         if (ret) {
15997                 DRM_ERROR("Restoring old state failed with %i\n", ret);
15998                 drm_atomic_state_free(state);
15999         }
16000 }
16001
16002 void intel_modeset_gem_init(struct drm_device *dev)
16003 {
16004         struct drm_crtc *c;
16005         struct drm_i915_gem_object *obj;
16006         int ret;
16007
16008         intel_init_gt_powersave(dev);
16009
16010         intel_modeset_init_hw(dev);
16011
16012         intel_setup_overlay(dev);
16013
16014         /*
16015          * Make sure any fbs we allocated at startup are properly
16016          * pinned & fenced.  When we do the allocation it's too early
16017          * for this.
16018          */
16019         for_each_crtc(dev, c) {
16020                 obj = intel_fb_obj(c->primary->fb);
16021                 if (obj == NULL)
16022                         continue;
16023
16024                 mutex_lock(&dev->struct_mutex);
16025                 ret = intel_pin_and_fence_fb_obj(c->primary,
16026                                                  c->primary->fb,
16027                                                  c->primary->state);
16028                 mutex_unlock(&dev->struct_mutex);
16029                 if (ret) {
16030                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
16031                                   to_intel_crtc(c)->pipe);
16032                         drm_framebuffer_unreference(c->primary->fb);
16033                         c->primary->fb = NULL;
16034                         c->primary->crtc = c->primary->state->crtc = NULL;
16035                         update_state_fb(c->primary);
16036                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16037                 }
16038         }
16039
16040         intel_backlight_register(dev);
16041 }
16042
16043 void intel_connector_unregister(struct intel_connector *intel_connector)
16044 {
16045         struct drm_connector *connector = &intel_connector->base;
16046
16047         intel_panel_destroy_backlight(connector);
16048         drm_connector_unregister(connector);
16049 }
16050
16051 void intel_modeset_cleanup(struct drm_device *dev)
16052 {
16053         struct drm_i915_private *dev_priv = dev->dev_private;
16054         struct intel_connector *connector;
16055
16056         intel_disable_gt_powersave(dev);
16057
16058         intel_backlight_unregister(dev);
16059
16060         /*
16061          * Interrupts and polling as the first thing to avoid creating havoc.
16062          * Too much stuff here (turning of connectors, ...) would
16063          * experience fancy races otherwise.
16064          */
16065         intel_irq_uninstall(dev_priv);
16066
16067         /*
16068          * Due to the hpd irq storm handling the hotplug work can re-arm the
16069          * poll handlers. Hence disable polling after hpd handling is shut down.
16070          */
16071         drm_kms_helper_poll_fini(dev);
16072
16073         intel_unregister_dsm_handler();
16074
16075         intel_fbc_global_disable(dev_priv);
16076
16077         /* flush any delayed tasks or pending work */
16078         flush_scheduled_work();
16079
16080         /* destroy the backlight and sysfs files before encoders/connectors */
16081         for_each_intel_connector(dev, connector)
16082                 connector->unregister(connector);
16083
16084         drm_mode_config_cleanup(dev);
16085
16086         intel_cleanup_overlay(dev);
16087
16088         intel_cleanup_gt_powersave(dev);
16089
16090         intel_teardown_gmbus(dev);
16091 }
16092
16093 /*
16094  * Return which encoder is currently attached for connector.
16095  */
16096 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
16097 {
16098         return &intel_attached_encoder(connector)->base;
16099 }
16100
16101 void intel_connector_attach_encoder(struct intel_connector *connector,
16102                                     struct intel_encoder *encoder)
16103 {
16104         connector->encoder = encoder;
16105         drm_mode_connector_attach_encoder(&connector->base,
16106                                           &encoder->base);
16107 }
16108
16109 /*
16110  * set vga decode state - true == enable VGA decode
16111  */
16112 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16113 {
16114         struct drm_i915_private *dev_priv = dev->dev_private;
16115         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16116         u16 gmch_ctrl;
16117
16118         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16119                 DRM_ERROR("failed to read control word\n");
16120                 return -EIO;
16121         }
16122
16123         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16124                 return 0;
16125
16126         if (state)
16127                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16128         else
16129                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16130
16131         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16132                 DRM_ERROR("failed to write control word\n");
16133                 return -EIO;
16134         }
16135
16136         return 0;
16137 }
16138
16139 struct intel_display_error_state {
16140
16141         u32 power_well_driver;
16142
16143         int num_transcoders;
16144
16145         struct intel_cursor_error_state {
16146                 u32 control;
16147                 u32 position;
16148                 u32 base;
16149                 u32 size;
16150         } cursor[I915_MAX_PIPES];
16151
16152         struct intel_pipe_error_state {
16153                 bool power_domain_on;
16154                 u32 source;
16155                 u32 stat;
16156         } pipe[I915_MAX_PIPES];
16157
16158         struct intel_plane_error_state {
16159                 u32 control;
16160                 u32 stride;
16161                 u32 size;
16162                 u32 pos;
16163                 u32 addr;
16164                 u32 surface;
16165                 u32 tile_offset;
16166         } plane[I915_MAX_PIPES];
16167
16168         struct intel_transcoder_error_state {
16169                 bool power_domain_on;
16170                 enum transcoder cpu_transcoder;
16171
16172                 u32 conf;
16173
16174                 u32 htotal;
16175                 u32 hblank;
16176                 u32 hsync;
16177                 u32 vtotal;
16178                 u32 vblank;
16179                 u32 vsync;
16180         } transcoder[4];
16181 };
16182
16183 struct intel_display_error_state *
16184 intel_display_capture_error_state(struct drm_device *dev)
16185 {
16186         struct drm_i915_private *dev_priv = dev->dev_private;
16187         struct intel_display_error_state *error;
16188         int transcoders[] = {
16189                 TRANSCODER_A,
16190                 TRANSCODER_B,
16191                 TRANSCODER_C,
16192                 TRANSCODER_EDP,
16193         };
16194         int i;
16195
16196         if (INTEL_INFO(dev)->num_pipes == 0)
16197                 return NULL;
16198
16199         error = kzalloc(sizeof(*error), GFP_ATOMIC);
16200         if (error == NULL)
16201                 return NULL;
16202
16203         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16204                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16205
16206         for_each_pipe(dev_priv, i) {
16207                 error->pipe[i].power_domain_on =
16208                         __intel_display_power_is_enabled(dev_priv,
16209                                                          POWER_DOMAIN_PIPE(i));
16210                 if (!error->pipe[i].power_domain_on)
16211                         continue;
16212
16213                 error->cursor[i].control = I915_READ(CURCNTR(i));
16214                 error->cursor[i].position = I915_READ(CURPOS(i));
16215                 error->cursor[i].base = I915_READ(CURBASE(i));
16216
16217                 error->plane[i].control = I915_READ(DSPCNTR(i));
16218                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16219                 if (INTEL_INFO(dev)->gen <= 3) {
16220                         error->plane[i].size = I915_READ(DSPSIZE(i));
16221                         error->plane[i].pos = I915_READ(DSPPOS(i));
16222                 }
16223                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16224                         error->plane[i].addr = I915_READ(DSPADDR(i));
16225                 if (INTEL_INFO(dev)->gen >= 4) {
16226                         error->plane[i].surface = I915_READ(DSPSURF(i));
16227                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16228                 }
16229
16230                 error->pipe[i].source = I915_READ(PIPESRC(i));
16231
16232                 if (HAS_GMCH_DISPLAY(dev))
16233                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
16234         }
16235
16236         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16237         if (HAS_DDI(dev_priv->dev))
16238                 error->num_transcoders++; /* Account for eDP. */
16239
16240         for (i = 0; i < error->num_transcoders; i++) {
16241                 enum transcoder cpu_transcoder = transcoders[i];
16242
16243                 error->transcoder[i].power_domain_on =
16244                         __intel_display_power_is_enabled(dev_priv,
16245                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16246                 if (!error->transcoder[i].power_domain_on)
16247                         continue;
16248
16249                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16250
16251                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16252                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16253                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16254                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16255                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16256                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16257                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16258         }
16259
16260         return error;
16261 }
16262
16263 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16264
16265 void
16266 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16267                                 struct drm_device *dev,
16268                                 struct intel_display_error_state *error)
16269 {
16270         struct drm_i915_private *dev_priv = dev->dev_private;
16271         int i;
16272
16273         if (!error)
16274                 return;
16275
16276         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16277         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16278                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16279                            error->power_well_driver);
16280         for_each_pipe(dev_priv, i) {
16281                 err_printf(m, "Pipe [%d]:\n", i);
16282                 err_printf(m, "  Power: %s\n",
16283                            onoff(error->pipe[i].power_domain_on));
16284                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16285                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16286
16287                 err_printf(m, "Plane [%d]:\n", i);
16288                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16289                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16290                 if (INTEL_INFO(dev)->gen <= 3) {
16291                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16292                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16293                 }
16294                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16295                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16296                 if (INTEL_INFO(dev)->gen >= 4) {
16297                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16298                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16299                 }
16300
16301                 err_printf(m, "Cursor [%d]:\n", i);
16302                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16303                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16304                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16305         }
16306
16307         for (i = 0; i < error->num_transcoders; i++) {
16308                 err_printf(m, "CPU transcoder: %c\n",
16309                            transcoder_name(error->transcoder[i].cpu_transcoder));
16310                 err_printf(m, "  Power: %s\n",
16311                            onoff(error->transcoder[i].power_domain_on));
16312                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16313                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16314                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16315                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16316                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16317                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16318                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16319         }
16320 }