Merge remote-tracking branch 'asoc/topic/max98371' into asoc-next
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 /* Compliance test status bits  */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
46 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51         int clock;
52         struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56         { 162000,
57                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58         { 270000,
59                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63         { 162000,
64                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65         { 270000,
66                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70         { 162000,
71                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72         { 270000,
73                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77  * CHV supports eDP 1.4 that have  more link rates.
78  * Below only provides the fixed rate but exclude variable rate.
79  */
80 static const struct dp_link_dpll chv_dpll[] = {
81         /*
82          * CHV requires to program fractional division for m2.
83          * m2 is stored in fixed point format using formula below
84          * (m2_int << 22) | m2_fraction
85          */
86         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
87                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88         { 270000,       /* m2_int = 27, m2_fraction = 0 */
89                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90         { 540000,       /* m2_int = 27, m2_fraction = 0 */
91                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95                                   324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97                                   324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102  * @intel_dp: DP struct
103  *
104  * If a CPU or PCH DP output is attached to an eDP panel, this function
105  * will return true, and false otherwise.
106  */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118         return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131                                       enum pipe pipe);
132
133 static unsigned int intel_dp_unused_lane_mask(int lane_count)
134 {
135         return ~((1 << lane_count) - 1) & 0xf;
136 }
137
138 static int
139 intel_dp_max_link_bw(struct intel_dp  *intel_dp)
140 {
141         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
142
143         switch (max_link_bw) {
144         case DP_LINK_BW_1_62:
145         case DP_LINK_BW_2_7:
146         case DP_LINK_BW_5_4:
147                 break;
148         default:
149                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
150                      max_link_bw);
151                 max_link_bw = DP_LINK_BW_1_62;
152                 break;
153         }
154         return max_link_bw;
155 }
156
157 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
158 {
159         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
160         u8 source_max, sink_max;
161
162         source_max = intel_dig_port->max_lanes;
163         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
164
165         return min(source_max, sink_max);
166 }
167
168 /*
169  * The units on the numbers in the next two are... bizarre.  Examples will
170  * make it clearer; this one parallels an example in the eDP spec.
171  *
172  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
173  *
174  *     270000 * 1 * 8 / 10 == 216000
175  *
176  * The actual data capacity of that configuration is 2.16Gbit/s, so the
177  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
178  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
179  * 119000.  At 18bpp that's 2142000 kilobits per second.
180  *
181  * Thus the strange-looking division by 10 in intel_dp_link_required, to
182  * get the result in decakilobits instead of kilobits.
183  */
184
185 static int
186 intel_dp_link_required(int pixel_clock, int bpp)
187 {
188         return (pixel_clock * bpp + 9) / 10;
189 }
190
191 static int
192 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
193 {
194         return (max_link_clock * max_lanes * 8) / 10;
195 }
196
197 static enum drm_mode_status
198 intel_dp_mode_valid(struct drm_connector *connector,
199                     struct drm_display_mode *mode)
200 {
201         struct intel_dp *intel_dp = intel_attached_dp(connector);
202         struct intel_connector *intel_connector = to_intel_connector(connector);
203         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
204         int target_clock = mode->clock;
205         int max_rate, mode_rate, max_lanes, max_link_clock;
206         int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
207
208         if (is_edp(intel_dp) && fixed_mode) {
209                 if (mode->hdisplay > fixed_mode->hdisplay)
210                         return MODE_PANEL;
211
212                 if (mode->vdisplay > fixed_mode->vdisplay)
213                         return MODE_PANEL;
214
215                 target_clock = fixed_mode->clock;
216         }
217
218         max_link_clock = intel_dp_max_link_rate(intel_dp);
219         max_lanes = intel_dp_max_lane_count(intel_dp);
220
221         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
222         mode_rate = intel_dp_link_required(target_clock, 18);
223
224         if (mode_rate > max_rate || target_clock > max_dotclk)
225                 return MODE_CLOCK_HIGH;
226
227         if (mode->clock < 10000)
228                 return MODE_CLOCK_LOW;
229
230         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
231                 return MODE_H_ILLEGAL;
232
233         return MODE_OK;
234 }
235
236 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
237 {
238         int     i;
239         uint32_t v = 0;
240
241         if (src_bytes > 4)
242                 src_bytes = 4;
243         for (i = 0; i < src_bytes; i++)
244                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
245         return v;
246 }
247
248 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
249 {
250         int i;
251         if (dst_bytes > 4)
252                 dst_bytes = 4;
253         for (i = 0; i < dst_bytes; i++)
254                 dst[i] = src >> ((3-i) * 8);
255 }
256
257 static void
258 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
259                                     struct intel_dp *intel_dp);
260 static void
261 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
262                                               struct intel_dp *intel_dp);
263
264 static void pps_lock(struct intel_dp *intel_dp)
265 {
266         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
267         struct intel_encoder *encoder = &intel_dig_port->base;
268         struct drm_device *dev = encoder->base.dev;
269         struct drm_i915_private *dev_priv = dev->dev_private;
270         enum intel_display_power_domain power_domain;
271
272         /*
273          * See vlv_power_sequencer_reset() why we need
274          * a power domain reference here.
275          */
276         power_domain = intel_display_port_aux_power_domain(encoder);
277         intel_display_power_get(dev_priv, power_domain);
278
279         mutex_lock(&dev_priv->pps_mutex);
280 }
281
282 static void pps_unlock(struct intel_dp *intel_dp)
283 {
284         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
285         struct intel_encoder *encoder = &intel_dig_port->base;
286         struct drm_device *dev = encoder->base.dev;
287         struct drm_i915_private *dev_priv = dev->dev_private;
288         enum intel_display_power_domain power_domain;
289
290         mutex_unlock(&dev_priv->pps_mutex);
291
292         power_domain = intel_display_port_aux_power_domain(encoder);
293         intel_display_power_put(dev_priv, power_domain);
294 }
295
296 static void
297 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
298 {
299         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
300         struct drm_device *dev = intel_dig_port->base.base.dev;
301         struct drm_i915_private *dev_priv = dev->dev_private;
302         enum pipe pipe = intel_dp->pps_pipe;
303         bool pll_enabled, release_cl_override = false;
304         enum dpio_phy phy = DPIO_PHY(pipe);
305         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
306         uint32_t DP;
307
308         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
309                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
310                  pipe_name(pipe), port_name(intel_dig_port->port)))
311                 return;
312
313         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
314                       pipe_name(pipe), port_name(intel_dig_port->port));
315
316         /* Preserve the BIOS-computed detected bit. This is
317          * supposed to be read-only.
318          */
319         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
320         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
321         DP |= DP_PORT_WIDTH(1);
322         DP |= DP_LINK_TRAIN_PAT_1;
323
324         if (IS_CHERRYVIEW(dev))
325                 DP |= DP_PIPE_SELECT_CHV(pipe);
326         else if (pipe == PIPE_B)
327                 DP |= DP_PIPEB_SELECT;
328
329         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
330
331         /*
332          * The DPLL for the pipe must be enabled for this to work.
333          * So enable temporarily it if it's not already enabled.
334          */
335         if (!pll_enabled) {
336                 release_cl_override = IS_CHERRYVIEW(dev) &&
337                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
338
339                 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
340                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
341                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
342                                   pipe_name(pipe));
343                         return;
344                 }
345         }
346
347         /*
348          * Similar magic as in intel_dp_enable_port().
349          * We _must_ do this port enable + disable trick
350          * to make this power seqeuencer lock onto the port.
351          * Otherwise even VDD force bit won't work.
352          */
353         I915_WRITE(intel_dp->output_reg, DP);
354         POSTING_READ(intel_dp->output_reg);
355
356         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
357         POSTING_READ(intel_dp->output_reg);
358
359         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
360         POSTING_READ(intel_dp->output_reg);
361
362         if (!pll_enabled) {
363                 vlv_force_pll_off(dev, pipe);
364
365                 if (release_cl_override)
366                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
367         }
368 }
369
370 static enum pipe
371 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
372 {
373         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
374         struct drm_device *dev = intel_dig_port->base.base.dev;
375         struct drm_i915_private *dev_priv = dev->dev_private;
376         struct intel_encoder *encoder;
377         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
378         enum pipe pipe;
379
380         lockdep_assert_held(&dev_priv->pps_mutex);
381
382         /* We should never land here with regular DP ports */
383         WARN_ON(!is_edp(intel_dp));
384
385         if (intel_dp->pps_pipe != INVALID_PIPE)
386                 return intel_dp->pps_pipe;
387
388         /*
389          * We don't have power sequencer currently.
390          * Pick one that's not used by other ports.
391          */
392         for_each_intel_encoder(dev, encoder) {
393                 struct intel_dp *tmp;
394
395                 if (encoder->type != INTEL_OUTPUT_EDP)
396                         continue;
397
398                 tmp = enc_to_intel_dp(&encoder->base);
399
400                 if (tmp->pps_pipe != INVALID_PIPE)
401                         pipes &= ~(1 << tmp->pps_pipe);
402         }
403
404         /*
405          * Didn't find one. This should not happen since there
406          * are two power sequencers and up to two eDP ports.
407          */
408         if (WARN_ON(pipes == 0))
409                 pipe = PIPE_A;
410         else
411                 pipe = ffs(pipes) - 1;
412
413         vlv_steal_power_sequencer(dev, pipe);
414         intel_dp->pps_pipe = pipe;
415
416         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
417                       pipe_name(intel_dp->pps_pipe),
418                       port_name(intel_dig_port->port));
419
420         /* init power sequencer on this pipe and port */
421         intel_dp_init_panel_power_sequencer(dev, intel_dp);
422         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
423
424         /*
425          * Even vdd force doesn't work until we've made
426          * the power sequencer lock in on the port.
427          */
428         vlv_power_sequencer_kick(intel_dp);
429
430         return intel_dp->pps_pipe;
431 }
432
433 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
434                                enum pipe pipe);
435
436 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
437                                enum pipe pipe)
438 {
439         return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
440 }
441
442 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
443                                 enum pipe pipe)
444 {
445         return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
446 }
447
448 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
449                          enum pipe pipe)
450 {
451         return true;
452 }
453
454 static enum pipe
455 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
456                      enum port port,
457                      vlv_pipe_check pipe_check)
458 {
459         enum pipe pipe;
460
461         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
462                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
463                         PANEL_PORT_SELECT_MASK;
464
465                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
466                         continue;
467
468                 if (!pipe_check(dev_priv, pipe))
469                         continue;
470
471                 return pipe;
472         }
473
474         return INVALID_PIPE;
475 }
476
477 static void
478 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
479 {
480         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
481         struct drm_device *dev = intel_dig_port->base.base.dev;
482         struct drm_i915_private *dev_priv = dev->dev_private;
483         enum port port = intel_dig_port->port;
484
485         lockdep_assert_held(&dev_priv->pps_mutex);
486
487         /* try to find a pipe with this port selected */
488         /* first pick one where the panel is on */
489         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
490                                                   vlv_pipe_has_pp_on);
491         /* didn't find one? pick one where vdd is on */
492         if (intel_dp->pps_pipe == INVALID_PIPE)
493                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
494                                                           vlv_pipe_has_vdd_on);
495         /* didn't find one? pick one with just the correct port */
496         if (intel_dp->pps_pipe == INVALID_PIPE)
497                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
498                                                           vlv_pipe_any);
499
500         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
501         if (intel_dp->pps_pipe == INVALID_PIPE) {
502                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
503                               port_name(port));
504                 return;
505         }
506
507         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
508                       port_name(port), pipe_name(intel_dp->pps_pipe));
509
510         intel_dp_init_panel_power_sequencer(dev, intel_dp);
511         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
512 }
513
514 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
515 {
516         struct drm_device *dev = dev_priv->dev;
517         struct intel_encoder *encoder;
518
519         if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)))
520                 return;
521
522         /*
523          * We can't grab pps_mutex here due to deadlock with power_domain
524          * mutex when power_domain functions are called while holding pps_mutex.
525          * That also means that in order to use pps_pipe the code needs to
526          * hold both a power domain reference and pps_mutex, and the power domain
527          * reference get/put must be done while _not_ holding pps_mutex.
528          * pps_{lock,unlock}() do these steps in the correct order, so one
529          * should use them always.
530          */
531
532         for_each_intel_encoder(dev, encoder) {
533                 struct intel_dp *intel_dp;
534
535                 if (encoder->type != INTEL_OUTPUT_EDP)
536                         continue;
537
538                 intel_dp = enc_to_intel_dp(&encoder->base);
539                 intel_dp->pps_pipe = INVALID_PIPE;
540         }
541 }
542
543 static i915_reg_t
544 _pp_ctrl_reg(struct intel_dp *intel_dp)
545 {
546         struct drm_device *dev = intel_dp_to_dev(intel_dp);
547
548         if (IS_BROXTON(dev))
549                 return BXT_PP_CONTROL(0);
550         else if (HAS_PCH_SPLIT(dev))
551                 return PCH_PP_CONTROL;
552         else
553                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
554 }
555
556 static i915_reg_t
557 _pp_stat_reg(struct intel_dp *intel_dp)
558 {
559         struct drm_device *dev = intel_dp_to_dev(intel_dp);
560
561         if (IS_BROXTON(dev))
562                 return BXT_PP_STATUS(0);
563         else if (HAS_PCH_SPLIT(dev))
564                 return PCH_PP_STATUS;
565         else
566                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
567 }
568
569 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
570    This function only applicable when panel PM state is not to be tracked */
571 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
572                               void *unused)
573 {
574         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
575                                                  edp_notifier);
576         struct drm_device *dev = intel_dp_to_dev(intel_dp);
577         struct drm_i915_private *dev_priv = dev->dev_private;
578
579         if (!is_edp(intel_dp) || code != SYS_RESTART)
580                 return 0;
581
582         pps_lock(intel_dp);
583
584         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
585                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
586                 i915_reg_t pp_ctrl_reg, pp_div_reg;
587                 u32 pp_div;
588
589                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
590                 pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
591                 pp_div = I915_READ(pp_div_reg);
592                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
593
594                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
595                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
596                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
597                 msleep(intel_dp->panel_power_cycle_delay);
598         }
599
600         pps_unlock(intel_dp);
601
602         return 0;
603 }
604
605 static bool edp_have_panel_power(struct intel_dp *intel_dp)
606 {
607         struct drm_device *dev = intel_dp_to_dev(intel_dp);
608         struct drm_i915_private *dev_priv = dev->dev_private;
609
610         lockdep_assert_held(&dev_priv->pps_mutex);
611
612         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
613             intel_dp->pps_pipe == INVALID_PIPE)
614                 return false;
615
616         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
617 }
618
619 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
620 {
621         struct drm_device *dev = intel_dp_to_dev(intel_dp);
622         struct drm_i915_private *dev_priv = dev->dev_private;
623
624         lockdep_assert_held(&dev_priv->pps_mutex);
625
626         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
627             intel_dp->pps_pipe == INVALID_PIPE)
628                 return false;
629
630         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
631 }
632
633 static void
634 intel_dp_check_edp(struct intel_dp *intel_dp)
635 {
636         struct drm_device *dev = intel_dp_to_dev(intel_dp);
637         struct drm_i915_private *dev_priv = dev->dev_private;
638
639         if (!is_edp(intel_dp))
640                 return;
641
642         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
643                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
644                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
645                               I915_READ(_pp_stat_reg(intel_dp)),
646                               I915_READ(_pp_ctrl_reg(intel_dp)));
647         }
648 }
649
650 static uint32_t
651 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
652 {
653         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
654         struct drm_device *dev = intel_dig_port->base.base.dev;
655         struct drm_i915_private *dev_priv = dev->dev_private;
656         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
657         uint32_t status;
658         bool done;
659
660 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
661         if (has_aux_irq)
662                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
663                                           msecs_to_jiffies_timeout(10));
664         else
665                 done = wait_for_atomic(C, 10) == 0;
666         if (!done)
667                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
668                           has_aux_irq);
669 #undef C
670
671         return status;
672 }
673
674 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
675 {
676         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
677         struct drm_device *dev = intel_dig_port->base.base.dev;
678
679         /*
680          * The clock divider is based off the hrawclk, and would like to run at
681          * 2MHz.  So, take the hrawclk value and divide by 2 and use that
682          */
683         return index ? 0 : DIV_ROUND_CLOSEST(intel_hrawclk(dev), 2);
684 }
685
686 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
687 {
688         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
689         struct drm_device *dev = intel_dig_port->base.base.dev;
690         struct drm_i915_private *dev_priv = dev->dev_private;
691
692         if (index)
693                 return 0;
694
695         if (intel_dig_port->port == PORT_A) {
696                 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
697
698         } else {
699                 return DIV_ROUND_CLOSEST(intel_pch_rawclk(dev), 2);
700         }
701 }
702
703 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
704 {
705         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
706         struct drm_device *dev = intel_dig_port->base.base.dev;
707         struct drm_i915_private *dev_priv = dev->dev_private;
708
709         if (intel_dig_port->port == PORT_A) {
710                 if (index)
711                         return 0;
712                 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
713         } else if (HAS_PCH_LPT_H(dev_priv)) {
714                 /* Workaround for non-ULT HSW */
715                 switch (index) {
716                 case 0: return 63;
717                 case 1: return 72;
718                 default: return 0;
719                 }
720         } else  {
721                 return index ? 0 : DIV_ROUND_CLOSEST(intel_pch_rawclk(dev), 2);
722         }
723 }
724
725 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
726 {
727         return index ? 0 : 100;
728 }
729
730 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
731 {
732         /*
733          * SKL doesn't need us to program the AUX clock divider (Hardware will
734          * derive the clock from CDCLK automatically). We still implement the
735          * get_aux_clock_divider vfunc to plug-in into the existing code.
736          */
737         return index ? 0 : 1;
738 }
739
740 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
741                                       bool has_aux_irq,
742                                       int send_bytes,
743                                       uint32_t aux_clock_divider)
744 {
745         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
746         struct drm_device *dev = intel_dig_port->base.base.dev;
747         uint32_t precharge, timeout;
748
749         if (IS_GEN6(dev))
750                 precharge = 3;
751         else
752                 precharge = 5;
753
754         if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
755                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
756         else
757                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
758
759         return DP_AUX_CH_CTL_SEND_BUSY |
760                DP_AUX_CH_CTL_DONE |
761                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
762                DP_AUX_CH_CTL_TIME_OUT_ERROR |
763                timeout |
764                DP_AUX_CH_CTL_RECEIVE_ERROR |
765                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
766                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
767                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
768 }
769
770 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
771                                       bool has_aux_irq,
772                                       int send_bytes,
773                                       uint32_t unused)
774 {
775         return DP_AUX_CH_CTL_SEND_BUSY |
776                DP_AUX_CH_CTL_DONE |
777                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
778                DP_AUX_CH_CTL_TIME_OUT_ERROR |
779                DP_AUX_CH_CTL_TIME_OUT_1600us |
780                DP_AUX_CH_CTL_RECEIVE_ERROR |
781                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
782                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
783 }
784
785 static int
786 intel_dp_aux_ch(struct intel_dp *intel_dp,
787                 const uint8_t *send, int send_bytes,
788                 uint8_t *recv, int recv_size)
789 {
790         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
791         struct drm_device *dev = intel_dig_port->base.base.dev;
792         struct drm_i915_private *dev_priv = dev->dev_private;
793         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
794         uint32_t aux_clock_divider;
795         int i, ret, recv_bytes;
796         uint32_t status;
797         int try, clock = 0;
798         bool has_aux_irq = HAS_AUX_IRQ(dev);
799         bool vdd;
800
801         pps_lock(intel_dp);
802
803         /*
804          * We will be called with VDD already enabled for dpcd/edid/oui reads.
805          * In such cases we want to leave VDD enabled and it's up to upper layers
806          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
807          * ourselves.
808          */
809         vdd = edp_panel_vdd_on(intel_dp);
810
811         /* dp aux is extremely sensitive to irq latency, hence request the
812          * lowest possible wakeup latency and so prevent the cpu from going into
813          * deep sleep states.
814          */
815         pm_qos_update_request(&dev_priv->pm_qos, 0);
816
817         intel_dp_check_edp(intel_dp);
818
819         /* Try to wait for any previous AUX channel activity */
820         for (try = 0; try < 3; try++) {
821                 status = I915_READ_NOTRACE(ch_ctl);
822                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
823                         break;
824                 msleep(1);
825         }
826
827         if (try == 3) {
828                 static u32 last_status = -1;
829                 const u32 status = I915_READ(ch_ctl);
830
831                 if (status != last_status) {
832                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
833                              status);
834                         last_status = status;
835                 }
836
837                 ret = -EBUSY;
838                 goto out;
839         }
840
841         /* Only 5 data registers! */
842         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
843                 ret = -E2BIG;
844                 goto out;
845         }
846
847         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
848                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
849                                                           has_aux_irq,
850                                                           send_bytes,
851                                                           aux_clock_divider);
852
853                 /* Must try at least 3 times according to DP spec */
854                 for (try = 0; try < 5; try++) {
855                         /* Load the send data into the aux channel data registers */
856                         for (i = 0; i < send_bytes; i += 4)
857                                 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
858                                            intel_dp_pack_aux(send + i,
859                                                              send_bytes - i));
860
861                         /* Send the command and wait for it to complete */
862                         I915_WRITE(ch_ctl, send_ctl);
863
864                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
865
866                         /* Clear done status and any errors */
867                         I915_WRITE(ch_ctl,
868                                    status |
869                                    DP_AUX_CH_CTL_DONE |
870                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
871                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
872
873                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
874                                 continue;
875
876                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
877                          *   400us delay required for errors and timeouts
878                          *   Timeout errors from the HW already meet this
879                          *   requirement so skip to next iteration
880                          */
881                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
882                                 usleep_range(400, 500);
883                                 continue;
884                         }
885                         if (status & DP_AUX_CH_CTL_DONE)
886                                 goto done;
887                 }
888         }
889
890         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
891                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
892                 ret = -EBUSY;
893                 goto out;
894         }
895
896 done:
897         /* Check for timeout or receive error.
898          * Timeouts occur when the sink is not connected
899          */
900         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
901                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
902                 ret = -EIO;
903                 goto out;
904         }
905
906         /* Timeouts occur when the device isn't connected, so they're
907          * "normal" -- don't fill the kernel log with these */
908         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
909                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
910                 ret = -ETIMEDOUT;
911                 goto out;
912         }
913
914         /* Unload any bytes sent back from the other side */
915         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
916                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
917
918         /*
919          * By BSpec: "Message sizes of 0 or >20 are not allowed."
920          * We have no idea of what happened so we return -EBUSY so
921          * drm layer takes care for the necessary retries.
922          */
923         if (recv_bytes == 0 || recv_bytes > 20) {
924                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
925                               recv_bytes);
926                 /*
927                  * FIXME: This patch was created on top of a series that
928                  * organize the retries at drm level. There EBUSY should
929                  * also take care for 1ms wait before retrying.
930                  * That aux retries re-org is still needed and after that is
931                  * merged we remove this sleep from here.
932                  */
933                 usleep_range(1000, 1500);
934                 ret = -EBUSY;
935                 goto out;
936         }
937
938         if (recv_bytes > recv_size)
939                 recv_bytes = recv_size;
940
941         for (i = 0; i < recv_bytes; i += 4)
942                 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
943                                     recv + i, recv_bytes - i);
944
945         ret = recv_bytes;
946 out:
947         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
948
949         if (vdd)
950                 edp_panel_vdd_off(intel_dp, false);
951
952         pps_unlock(intel_dp);
953
954         return ret;
955 }
956
957 #define BARE_ADDRESS_SIZE       3
958 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
959 static ssize_t
960 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
961 {
962         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
963         uint8_t txbuf[20], rxbuf[20];
964         size_t txsize, rxsize;
965         int ret;
966
967         txbuf[0] = (msg->request << 4) |
968                 ((msg->address >> 16) & 0xf);
969         txbuf[1] = (msg->address >> 8) & 0xff;
970         txbuf[2] = msg->address & 0xff;
971         txbuf[3] = msg->size - 1;
972
973         switch (msg->request & ~DP_AUX_I2C_MOT) {
974         case DP_AUX_NATIVE_WRITE:
975         case DP_AUX_I2C_WRITE:
976         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
977                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
978                 rxsize = 2; /* 0 or 1 data bytes */
979
980                 if (WARN_ON(txsize > 20))
981                         return -E2BIG;
982
983                 if (msg->buffer)
984                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
985                 else
986                         WARN_ON(msg->size);
987
988                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
989                 if (ret > 0) {
990                         msg->reply = rxbuf[0] >> 4;
991
992                         if (ret > 1) {
993                                 /* Number of bytes written in a short write. */
994                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
995                         } else {
996                                 /* Return payload size. */
997                                 ret = msg->size;
998                         }
999                 }
1000                 break;
1001
1002         case DP_AUX_NATIVE_READ:
1003         case DP_AUX_I2C_READ:
1004                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1005                 rxsize = msg->size + 1;
1006
1007                 if (WARN_ON(rxsize > 20))
1008                         return -E2BIG;
1009
1010                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1011                 if (ret > 0) {
1012                         msg->reply = rxbuf[0] >> 4;
1013                         /*
1014                          * Assume happy day, and copy the data. The caller is
1015                          * expected to check msg->reply before touching it.
1016                          *
1017                          * Return payload size.
1018                          */
1019                         ret--;
1020                         memcpy(msg->buffer, rxbuf + 1, ret);
1021                 }
1022                 break;
1023
1024         default:
1025                 ret = -EINVAL;
1026                 break;
1027         }
1028
1029         return ret;
1030 }
1031
1032 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1033                                        enum port port)
1034 {
1035         switch (port) {
1036         case PORT_B:
1037         case PORT_C:
1038         case PORT_D:
1039                 return DP_AUX_CH_CTL(port);
1040         default:
1041                 MISSING_CASE(port);
1042                 return DP_AUX_CH_CTL(PORT_B);
1043         }
1044 }
1045
1046 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1047                                         enum port port, int index)
1048 {
1049         switch (port) {
1050         case PORT_B:
1051         case PORT_C:
1052         case PORT_D:
1053                 return DP_AUX_CH_DATA(port, index);
1054         default:
1055                 MISSING_CASE(port);
1056                 return DP_AUX_CH_DATA(PORT_B, index);
1057         }
1058 }
1059
1060 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1061                                        enum port port)
1062 {
1063         switch (port) {
1064         case PORT_A:
1065                 return DP_AUX_CH_CTL(port);
1066         case PORT_B:
1067         case PORT_C:
1068         case PORT_D:
1069                 return PCH_DP_AUX_CH_CTL(port);
1070         default:
1071                 MISSING_CASE(port);
1072                 return DP_AUX_CH_CTL(PORT_A);
1073         }
1074 }
1075
1076 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1077                                         enum port port, int index)
1078 {
1079         switch (port) {
1080         case PORT_A:
1081                 return DP_AUX_CH_DATA(port, index);
1082         case PORT_B:
1083         case PORT_C:
1084         case PORT_D:
1085                 return PCH_DP_AUX_CH_DATA(port, index);
1086         default:
1087                 MISSING_CASE(port);
1088                 return DP_AUX_CH_DATA(PORT_A, index);
1089         }
1090 }
1091
1092 /*
1093  * On SKL we don't have Aux for port E so we rely
1094  * on VBT to set a proper alternate aux channel.
1095  */
1096 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1097 {
1098         const struct ddi_vbt_port_info *info =
1099                 &dev_priv->vbt.ddi_port_info[PORT_E];
1100
1101         switch (info->alternate_aux_channel) {
1102         case DP_AUX_A:
1103                 return PORT_A;
1104         case DP_AUX_B:
1105                 return PORT_B;
1106         case DP_AUX_C:
1107                 return PORT_C;
1108         case DP_AUX_D:
1109                 return PORT_D;
1110         default:
1111                 MISSING_CASE(info->alternate_aux_channel);
1112                 return PORT_A;
1113         }
1114 }
1115
1116 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1117                                        enum port port)
1118 {
1119         if (port == PORT_E)
1120                 port = skl_porte_aux_port(dev_priv);
1121
1122         switch (port) {
1123         case PORT_A:
1124         case PORT_B:
1125         case PORT_C:
1126         case PORT_D:
1127                 return DP_AUX_CH_CTL(port);
1128         default:
1129                 MISSING_CASE(port);
1130                 return DP_AUX_CH_CTL(PORT_A);
1131         }
1132 }
1133
1134 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1135                                         enum port port, int index)
1136 {
1137         if (port == PORT_E)
1138                 port = skl_porte_aux_port(dev_priv);
1139
1140         switch (port) {
1141         case PORT_A:
1142         case PORT_B:
1143         case PORT_C:
1144         case PORT_D:
1145                 return DP_AUX_CH_DATA(port, index);
1146         default:
1147                 MISSING_CASE(port);
1148                 return DP_AUX_CH_DATA(PORT_A, index);
1149         }
1150 }
1151
1152 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1153                                          enum port port)
1154 {
1155         if (INTEL_INFO(dev_priv)->gen >= 9)
1156                 return skl_aux_ctl_reg(dev_priv, port);
1157         else if (HAS_PCH_SPLIT(dev_priv))
1158                 return ilk_aux_ctl_reg(dev_priv, port);
1159         else
1160                 return g4x_aux_ctl_reg(dev_priv, port);
1161 }
1162
1163 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1164                                           enum port port, int index)
1165 {
1166         if (INTEL_INFO(dev_priv)->gen >= 9)
1167                 return skl_aux_data_reg(dev_priv, port, index);
1168         else if (HAS_PCH_SPLIT(dev_priv))
1169                 return ilk_aux_data_reg(dev_priv, port, index);
1170         else
1171                 return g4x_aux_data_reg(dev_priv, port, index);
1172 }
1173
1174 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1175 {
1176         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1177         enum port port = dp_to_dig_port(intel_dp)->port;
1178         int i;
1179
1180         intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1181         for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1182                 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1183 }
1184
1185 static void
1186 intel_dp_aux_fini(struct intel_dp *intel_dp)
1187 {
1188         drm_dp_aux_unregister(&intel_dp->aux);
1189         kfree(intel_dp->aux.name);
1190 }
1191
1192 static int
1193 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1194 {
1195         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1196         enum port port = intel_dig_port->port;
1197         int ret;
1198
1199         intel_aux_reg_init(intel_dp);
1200
1201         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1202         if (!intel_dp->aux.name)
1203                 return -ENOMEM;
1204
1205         intel_dp->aux.dev = connector->base.kdev;
1206         intel_dp->aux.transfer = intel_dp_aux_transfer;
1207
1208         DRM_DEBUG_KMS("registering %s bus for %s\n",
1209                       intel_dp->aux.name,
1210                       connector->base.kdev->kobj.name);
1211
1212         ret = drm_dp_aux_register(&intel_dp->aux);
1213         if (ret < 0) {
1214                 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1215                           intel_dp->aux.name, ret);
1216                 kfree(intel_dp->aux.name);
1217                 return ret;
1218         }
1219
1220         return 0;
1221 }
1222
1223 static void
1224 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1225 {
1226         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1227
1228         intel_dp_aux_fini(intel_dp);
1229         intel_connector_unregister(intel_connector);
1230 }
1231
1232 static void
1233 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config)
1234 {
1235         u32 ctrl1;
1236
1237         memset(&pipe_config->dpll_hw_state, 0,
1238                sizeof(pipe_config->dpll_hw_state));
1239
1240         pipe_config->ddi_pll_sel = SKL_DPLL0;
1241         pipe_config->dpll_hw_state.cfgcr1 = 0;
1242         pipe_config->dpll_hw_state.cfgcr2 = 0;
1243
1244         ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1245         switch (pipe_config->port_clock / 2) {
1246         case 81000:
1247                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
1248                                               SKL_DPLL0);
1249                 break;
1250         case 135000:
1251                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
1252                                               SKL_DPLL0);
1253                 break;
1254         case 270000:
1255                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
1256                                               SKL_DPLL0);
1257                 break;
1258         case 162000:
1259                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
1260                                               SKL_DPLL0);
1261                 break;
1262         /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1263         results in CDCLK change. Need to handle the change of CDCLK by
1264         disabling pipes and re-enabling them */
1265         case 108000:
1266                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
1267                                               SKL_DPLL0);
1268                 break;
1269         case 216000:
1270                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
1271                                               SKL_DPLL0);
1272                 break;
1273
1274         }
1275         pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1276 }
1277
1278 void
1279 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config)
1280 {
1281         memset(&pipe_config->dpll_hw_state, 0,
1282                sizeof(pipe_config->dpll_hw_state));
1283
1284         switch (pipe_config->port_clock / 2) {
1285         case 81000:
1286                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1287                 break;
1288         case 135000:
1289                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1290                 break;
1291         case 270000:
1292                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1293                 break;
1294         }
1295 }
1296
1297 static int
1298 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1299 {
1300         if (intel_dp->num_sink_rates) {
1301                 *sink_rates = intel_dp->sink_rates;
1302                 return intel_dp->num_sink_rates;
1303         }
1304
1305         *sink_rates = default_rates;
1306
1307         return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1308 }
1309
1310 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1311 {
1312         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1313         struct drm_device *dev = dig_port->base.base.dev;
1314
1315         /* WaDisableHBR2:skl */
1316         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1317                 return false;
1318
1319         if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1320             (INTEL_INFO(dev)->gen >= 9))
1321                 return true;
1322         else
1323                 return false;
1324 }
1325
1326 static int
1327 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1328 {
1329         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1330         struct drm_device *dev = dig_port->base.base.dev;
1331         int size;
1332
1333         if (IS_BROXTON(dev)) {
1334                 *source_rates = bxt_rates;
1335                 size = ARRAY_SIZE(bxt_rates);
1336         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1337                 *source_rates = skl_rates;
1338                 size = ARRAY_SIZE(skl_rates);
1339         } else {
1340                 *source_rates = default_rates;
1341                 size = ARRAY_SIZE(default_rates);
1342         }
1343
1344         /* This depends on the fact that 5.4 is last value in the array */
1345         if (!intel_dp_source_supports_hbr2(intel_dp))
1346                 size--;
1347
1348         return size;
1349 }
1350
1351 static void
1352 intel_dp_set_clock(struct intel_encoder *encoder,
1353                    struct intel_crtc_state *pipe_config)
1354 {
1355         struct drm_device *dev = encoder->base.dev;
1356         const struct dp_link_dpll *divisor = NULL;
1357         int i, count = 0;
1358
1359         if (IS_G4X(dev)) {
1360                 divisor = gen4_dpll;
1361                 count = ARRAY_SIZE(gen4_dpll);
1362         } else if (HAS_PCH_SPLIT(dev)) {
1363                 divisor = pch_dpll;
1364                 count = ARRAY_SIZE(pch_dpll);
1365         } else if (IS_CHERRYVIEW(dev)) {
1366                 divisor = chv_dpll;
1367                 count = ARRAY_SIZE(chv_dpll);
1368         } else if (IS_VALLEYVIEW(dev)) {
1369                 divisor = vlv_dpll;
1370                 count = ARRAY_SIZE(vlv_dpll);
1371         }
1372
1373         if (divisor && count) {
1374                 for (i = 0; i < count; i++) {
1375                         if (pipe_config->port_clock == divisor[i].clock) {
1376                                 pipe_config->dpll = divisor[i].dpll;
1377                                 pipe_config->clock_set = true;
1378                                 break;
1379                         }
1380                 }
1381         }
1382 }
1383
1384 static int intersect_rates(const int *source_rates, int source_len,
1385                            const int *sink_rates, int sink_len,
1386                            int *common_rates)
1387 {
1388         int i = 0, j = 0, k = 0;
1389
1390         while (i < source_len && j < sink_len) {
1391                 if (source_rates[i] == sink_rates[j]) {
1392                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1393                                 return k;
1394                         common_rates[k] = source_rates[i];
1395                         ++k;
1396                         ++i;
1397                         ++j;
1398                 } else if (source_rates[i] < sink_rates[j]) {
1399                         ++i;
1400                 } else {
1401                         ++j;
1402                 }
1403         }
1404         return k;
1405 }
1406
1407 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1408                                  int *common_rates)
1409 {
1410         const int *source_rates, *sink_rates;
1411         int source_len, sink_len;
1412
1413         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1414         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1415
1416         return intersect_rates(source_rates, source_len,
1417                                sink_rates, sink_len,
1418                                common_rates);
1419 }
1420
1421 static void snprintf_int_array(char *str, size_t len,
1422                                const int *array, int nelem)
1423 {
1424         int i;
1425
1426         str[0] = '\0';
1427
1428         for (i = 0; i < nelem; i++) {
1429                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1430                 if (r >= len)
1431                         return;
1432                 str += r;
1433                 len -= r;
1434         }
1435 }
1436
1437 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1438 {
1439         const int *source_rates, *sink_rates;
1440         int source_len, sink_len, common_len;
1441         int common_rates[DP_MAX_SUPPORTED_RATES];
1442         char str[128]; /* FIXME: too big for stack? */
1443
1444         if ((drm_debug & DRM_UT_KMS) == 0)
1445                 return;
1446
1447         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1448         snprintf_int_array(str, sizeof(str), source_rates, source_len);
1449         DRM_DEBUG_KMS("source rates: %s\n", str);
1450
1451         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1452         snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1453         DRM_DEBUG_KMS("sink rates: %s\n", str);
1454
1455         common_len = intel_dp_common_rates(intel_dp, common_rates);
1456         snprintf_int_array(str, sizeof(str), common_rates, common_len);
1457         DRM_DEBUG_KMS("common rates: %s\n", str);
1458 }
1459
1460 static int rate_to_index(int find, const int *rates)
1461 {
1462         int i = 0;
1463
1464         for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1465                 if (find == rates[i])
1466                         break;
1467
1468         return i;
1469 }
1470
1471 int
1472 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1473 {
1474         int rates[DP_MAX_SUPPORTED_RATES] = {};
1475         int len;
1476
1477         len = intel_dp_common_rates(intel_dp, rates);
1478         if (WARN_ON(len <= 0))
1479                 return 162000;
1480
1481         return rates[rate_to_index(0, rates) - 1];
1482 }
1483
1484 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1485 {
1486         return rate_to_index(rate, intel_dp->sink_rates);
1487 }
1488
1489 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1490                            uint8_t *link_bw, uint8_t *rate_select)
1491 {
1492         if (intel_dp->num_sink_rates) {
1493                 *link_bw = 0;
1494                 *rate_select =
1495                         intel_dp_rate_select(intel_dp, port_clock);
1496         } else {
1497                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1498                 *rate_select = 0;
1499         }
1500 }
1501
1502 bool
1503 intel_dp_compute_config(struct intel_encoder *encoder,
1504                         struct intel_crtc_state *pipe_config)
1505 {
1506         struct drm_device *dev = encoder->base.dev;
1507         struct drm_i915_private *dev_priv = dev->dev_private;
1508         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1509         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1510         enum port port = dp_to_dig_port(intel_dp)->port;
1511         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1512         struct intel_connector *intel_connector = intel_dp->attached_connector;
1513         int lane_count, clock;
1514         int min_lane_count = 1;
1515         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1516         /* Conveniently, the link BW constants become indices with a shift...*/
1517         int min_clock = 0;
1518         int max_clock;
1519         int bpp, mode_rate;
1520         int link_avail, link_clock;
1521         int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1522         int common_len;
1523         uint8_t link_bw, rate_select;
1524
1525         common_len = intel_dp_common_rates(intel_dp, common_rates);
1526
1527         /* No common link rates between source and sink */
1528         WARN_ON(common_len <= 0);
1529
1530         max_clock = common_len - 1;
1531
1532         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1533                 pipe_config->has_pch_encoder = true;
1534
1535         pipe_config->has_dp_encoder = true;
1536         pipe_config->has_drrs = false;
1537         pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1538
1539         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1540                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1541                                        adjusted_mode);
1542
1543                 if (INTEL_INFO(dev)->gen >= 9) {
1544                         int ret;
1545                         ret = skl_update_scaler_crtc(pipe_config);
1546                         if (ret)
1547                                 return ret;
1548                 }
1549
1550                 if (HAS_GMCH_DISPLAY(dev))
1551                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1552                                                  intel_connector->panel.fitting_mode);
1553                 else
1554                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1555                                                 intel_connector->panel.fitting_mode);
1556         }
1557
1558         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1559                 return false;
1560
1561         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1562                       "max bw %d pixel clock %iKHz\n",
1563                       max_lane_count, common_rates[max_clock],
1564                       adjusted_mode->crtc_clock);
1565
1566         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1567          * bpc in between. */
1568         bpp = pipe_config->pipe_bpp;
1569         if (is_edp(intel_dp)) {
1570
1571                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1572                 if (intel_connector->base.display_info.bpc == 0 &&
1573                         (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp)) {
1574                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1575                                       dev_priv->vbt.edp_bpp);
1576                         bpp = dev_priv->vbt.edp_bpp;
1577                 }
1578
1579                 /*
1580                  * Use the maximum clock and number of lanes the eDP panel
1581                  * advertizes being capable of. The panels are generally
1582                  * designed to support only a single clock and lane
1583                  * configuration, and typically these values correspond to the
1584                  * native resolution of the panel.
1585                  */
1586                 min_lane_count = max_lane_count;
1587                 min_clock = max_clock;
1588         }
1589
1590         for (; bpp >= 6*3; bpp -= 2*3) {
1591                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1592                                                    bpp);
1593
1594                 for (clock = min_clock; clock <= max_clock; clock++) {
1595                         for (lane_count = min_lane_count;
1596                                 lane_count <= max_lane_count;
1597                                 lane_count <<= 1) {
1598
1599                                 link_clock = common_rates[clock];
1600                                 link_avail = intel_dp_max_data_rate(link_clock,
1601                                                                     lane_count);
1602
1603                                 if (mode_rate <= link_avail) {
1604                                         goto found;
1605                                 }
1606                         }
1607                 }
1608         }
1609
1610         return false;
1611
1612 found:
1613         if (intel_dp->color_range_auto) {
1614                 /*
1615                  * See:
1616                  * CEA-861-E - 5.1 Default Encoding Parameters
1617                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1618                  */
1619                 pipe_config->limited_color_range =
1620                         bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1621         } else {
1622                 pipe_config->limited_color_range =
1623                         intel_dp->limited_color_range;
1624         }
1625
1626         pipe_config->lane_count = lane_count;
1627
1628         pipe_config->pipe_bpp = bpp;
1629         pipe_config->port_clock = common_rates[clock];
1630
1631         intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1632                               &link_bw, &rate_select);
1633
1634         DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1635                       link_bw, rate_select, pipe_config->lane_count,
1636                       pipe_config->port_clock, bpp);
1637         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1638                       mode_rate, link_avail);
1639
1640         intel_link_compute_m_n(bpp, lane_count,
1641                                adjusted_mode->crtc_clock,
1642                                pipe_config->port_clock,
1643                                &pipe_config->dp_m_n);
1644
1645         if (intel_connector->panel.downclock_mode != NULL &&
1646                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1647                         pipe_config->has_drrs = true;
1648                         intel_link_compute_m_n(bpp, lane_count,
1649                                 intel_connector->panel.downclock_mode->clock,
1650                                 pipe_config->port_clock,
1651                                 &pipe_config->dp_m2_n2);
1652         }
1653
1654         if ((IS_SKYLAKE(dev)  || IS_KABYLAKE(dev)) && is_edp(intel_dp))
1655                 skl_edp_set_pll_config(pipe_config);
1656         else if (IS_BROXTON(dev))
1657                 /* handled in ddi */;
1658         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1659                 hsw_dp_set_ddi_pll_sel(pipe_config);
1660         else
1661                 intel_dp_set_clock(encoder, pipe_config);
1662
1663         return true;
1664 }
1665
1666 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1667                               const struct intel_crtc_state *pipe_config)
1668 {
1669         intel_dp->link_rate = pipe_config->port_clock;
1670         intel_dp->lane_count = pipe_config->lane_count;
1671 }
1672
1673 static void intel_dp_prepare(struct intel_encoder *encoder)
1674 {
1675         struct drm_device *dev = encoder->base.dev;
1676         struct drm_i915_private *dev_priv = dev->dev_private;
1677         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1678         enum port port = dp_to_dig_port(intel_dp)->port;
1679         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1680         const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1681
1682         intel_dp_set_link_params(intel_dp, crtc->config);
1683
1684         /*
1685          * There are four kinds of DP registers:
1686          *
1687          *      IBX PCH
1688          *      SNB CPU
1689          *      IVB CPU
1690          *      CPT PCH
1691          *
1692          * IBX PCH and CPU are the same for almost everything,
1693          * except that the CPU DP PLL is configured in this
1694          * register
1695          *
1696          * CPT PCH is quite different, having many bits moved
1697          * to the TRANS_DP_CTL register instead. That
1698          * configuration happens (oddly) in ironlake_pch_enable
1699          */
1700
1701         /* Preserve the BIOS-computed detected bit. This is
1702          * supposed to be read-only.
1703          */
1704         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1705
1706         /* Handle DP bits in common between all three register formats */
1707         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1708         intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1709
1710         /* Split out the IBX/CPU vs CPT settings */
1711
1712         if (IS_GEN7(dev) && port == PORT_A) {
1713                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1714                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1715                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1716                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1717                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1718
1719                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1720                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1721
1722                 intel_dp->DP |= crtc->pipe << 29;
1723         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1724                 u32 trans_dp;
1725
1726                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1727
1728                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1729                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1730                         trans_dp |= TRANS_DP_ENH_FRAMING;
1731                 else
1732                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
1733                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1734         } else {
1735                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1736                     !IS_CHERRYVIEW(dev) && crtc->config->limited_color_range)
1737                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
1738
1739                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1740                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1741                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1742                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1743                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1744
1745                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1746                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1747
1748                 if (IS_CHERRYVIEW(dev))
1749                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1750                 else if (crtc->pipe == PIPE_B)
1751                         intel_dp->DP |= DP_PIPEB_SELECT;
1752         }
1753 }
1754
1755 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1756 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1757
1758 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1759 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1760
1761 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1762 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1763
1764 static void wait_panel_status(struct intel_dp *intel_dp,
1765                                        u32 mask,
1766                                        u32 value)
1767 {
1768         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1769         struct drm_i915_private *dev_priv = dev->dev_private;
1770         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1771
1772         lockdep_assert_held(&dev_priv->pps_mutex);
1773
1774         pp_stat_reg = _pp_stat_reg(intel_dp);
1775         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1776
1777         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1778                         mask, value,
1779                         I915_READ(pp_stat_reg),
1780                         I915_READ(pp_ctrl_reg));
1781
1782         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1783                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1784                                 I915_READ(pp_stat_reg),
1785                                 I915_READ(pp_ctrl_reg));
1786         }
1787
1788         DRM_DEBUG_KMS("Wait complete\n");
1789 }
1790
1791 static void wait_panel_on(struct intel_dp *intel_dp)
1792 {
1793         DRM_DEBUG_KMS("Wait for panel power on\n");
1794         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1795 }
1796
1797 static void wait_panel_off(struct intel_dp *intel_dp)
1798 {
1799         DRM_DEBUG_KMS("Wait for panel power off time\n");
1800         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1801 }
1802
1803 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1804 {
1805         ktime_t panel_power_on_time;
1806         s64 panel_power_off_duration;
1807
1808         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1809
1810         /* take the difference of currrent time and panel power off time
1811          * and then make panel wait for t11_t12 if needed. */
1812         panel_power_on_time = ktime_get_boottime();
1813         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1814
1815         /* When we disable the VDD override bit last we have to do the manual
1816          * wait. */
1817         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1818                 wait_remaining_ms_from_jiffies(jiffies,
1819                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1820
1821         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1822 }
1823
1824 static void wait_backlight_on(struct intel_dp *intel_dp)
1825 {
1826         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1827                                        intel_dp->backlight_on_delay);
1828 }
1829
1830 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1831 {
1832         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1833                                        intel_dp->backlight_off_delay);
1834 }
1835
1836 /* Read the current pp_control value, unlocking the register if it
1837  * is locked
1838  */
1839
1840 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1841 {
1842         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1843         struct drm_i915_private *dev_priv = dev->dev_private;
1844         u32 control;
1845
1846         lockdep_assert_held(&dev_priv->pps_mutex);
1847
1848         control = I915_READ(_pp_ctrl_reg(intel_dp));
1849         if (!IS_BROXTON(dev)) {
1850                 control &= ~PANEL_UNLOCK_MASK;
1851                 control |= PANEL_UNLOCK_REGS;
1852         }
1853         return control;
1854 }
1855
1856 /*
1857  * Must be paired with edp_panel_vdd_off().
1858  * Must hold pps_mutex around the whole on/off sequence.
1859  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1860  */
1861 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1862 {
1863         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1864         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1865         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1866         struct drm_i915_private *dev_priv = dev->dev_private;
1867         enum intel_display_power_domain power_domain;
1868         u32 pp;
1869         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1870         bool need_to_disable = !intel_dp->want_panel_vdd;
1871
1872         lockdep_assert_held(&dev_priv->pps_mutex);
1873
1874         if (!is_edp(intel_dp))
1875                 return false;
1876
1877         cancel_delayed_work(&intel_dp->panel_vdd_work);
1878         intel_dp->want_panel_vdd = true;
1879
1880         if (edp_have_panel_vdd(intel_dp))
1881                 return need_to_disable;
1882
1883         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1884         intel_display_power_get(dev_priv, power_domain);
1885
1886         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1887                       port_name(intel_dig_port->port));
1888
1889         if (!edp_have_panel_power(intel_dp))
1890                 wait_panel_power_cycle(intel_dp);
1891
1892         pp = ironlake_get_pp_control(intel_dp);
1893         pp |= EDP_FORCE_VDD;
1894
1895         pp_stat_reg = _pp_stat_reg(intel_dp);
1896         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1897
1898         I915_WRITE(pp_ctrl_reg, pp);
1899         POSTING_READ(pp_ctrl_reg);
1900         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1901                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1902         /*
1903          * If the panel wasn't on, delay before accessing aux channel
1904          */
1905         if (!edp_have_panel_power(intel_dp)) {
1906                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1907                               port_name(intel_dig_port->port));
1908                 msleep(intel_dp->panel_power_up_delay);
1909         }
1910
1911         return need_to_disable;
1912 }
1913
1914 /*
1915  * Must be paired with intel_edp_panel_vdd_off() or
1916  * intel_edp_panel_off().
1917  * Nested calls to these functions are not allowed since
1918  * we drop the lock. Caller must use some higher level
1919  * locking to prevent nested calls from other threads.
1920  */
1921 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1922 {
1923         bool vdd;
1924
1925         if (!is_edp(intel_dp))
1926                 return;
1927
1928         pps_lock(intel_dp);
1929         vdd = edp_panel_vdd_on(intel_dp);
1930         pps_unlock(intel_dp);
1931
1932         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1933              port_name(dp_to_dig_port(intel_dp)->port));
1934 }
1935
1936 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1937 {
1938         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1939         struct drm_i915_private *dev_priv = dev->dev_private;
1940         struct intel_digital_port *intel_dig_port =
1941                 dp_to_dig_port(intel_dp);
1942         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1943         enum intel_display_power_domain power_domain;
1944         u32 pp;
1945         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1946
1947         lockdep_assert_held(&dev_priv->pps_mutex);
1948
1949         WARN_ON(intel_dp->want_panel_vdd);
1950
1951         if (!edp_have_panel_vdd(intel_dp))
1952                 return;
1953
1954         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1955                       port_name(intel_dig_port->port));
1956
1957         pp = ironlake_get_pp_control(intel_dp);
1958         pp &= ~EDP_FORCE_VDD;
1959
1960         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1961         pp_stat_reg = _pp_stat_reg(intel_dp);
1962
1963         I915_WRITE(pp_ctrl_reg, pp);
1964         POSTING_READ(pp_ctrl_reg);
1965
1966         /* Make sure sequencer is idle before allowing subsequent activity */
1967         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1968         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1969
1970         if ((pp & POWER_TARGET_ON) == 0)
1971                 intel_dp->panel_power_off_time = ktime_get_boottime();
1972
1973         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1974         intel_display_power_put(dev_priv, power_domain);
1975 }
1976
1977 static void edp_panel_vdd_work(struct work_struct *__work)
1978 {
1979         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1980                                                  struct intel_dp, panel_vdd_work);
1981
1982         pps_lock(intel_dp);
1983         if (!intel_dp->want_panel_vdd)
1984                 edp_panel_vdd_off_sync(intel_dp);
1985         pps_unlock(intel_dp);
1986 }
1987
1988 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1989 {
1990         unsigned long delay;
1991
1992         /*
1993          * Queue the timer to fire a long time from now (relative to the power
1994          * down delay) to keep the panel power up across a sequence of
1995          * operations.
1996          */
1997         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1998         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1999 }
2000
2001 /*
2002  * Must be paired with edp_panel_vdd_on().
2003  * Must hold pps_mutex around the whole on/off sequence.
2004  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2005  */
2006 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2007 {
2008         struct drm_i915_private *dev_priv =
2009                 intel_dp_to_dev(intel_dp)->dev_private;
2010
2011         lockdep_assert_held(&dev_priv->pps_mutex);
2012
2013         if (!is_edp(intel_dp))
2014                 return;
2015
2016         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2017              port_name(dp_to_dig_port(intel_dp)->port));
2018
2019         intel_dp->want_panel_vdd = false;
2020
2021         if (sync)
2022                 edp_panel_vdd_off_sync(intel_dp);
2023         else
2024                 edp_panel_vdd_schedule_off(intel_dp);
2025 }
2026
2027 static void edp_panel_on(struct intel_dp *intel_dp)
2028 {
2029         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2030         struct drm_i915_private *dev_priv = dev->dev_private;
2031         u32 pp;
2032         i915_reg_t pp_ctrl_reg;
2033
2034         lockdep_assert_held(&dev_priv->pps_mutex);
2035
2036         if (!is_edp(intel_dp))
2037                 return;
2038
2039         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2040                       port_name(dp_to_dig_port(intel_dp)->port));
2041
2042         if (WARN(edp_have_panel_power(intel_dp),
2043                  "eDP port %c panel power already on\n",
2044                  port_name(dp_to_dig_port(intel_dp)->port)))
2045                 return;
2046
2047         wait_panel_power_cycle(intel_dp);
2048
2049         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2050         pp = ironlake_get_pp_control(intel_dp);
2051         if (IS_GEN5(dev)) {
2052                 /* ILK workaround: disable reset around power sequence */
2053                 pp &= ~PANEL_POWER_RESET;
2054                 I915_WRITE(pp_ctrl_reg, pp);
2055                 POSTING_READ(pp_ctrl_reg);
2056         }
2057
2058         pp |= POWER_TARGET_ON;
2059         if (!IS_GEN5(dev))
2060                 pp |= PANEL_POWER_RESET;
2061
2062         I915_WRITE(pp_ctrl_reg, pp);
2063         POSTING_READ(pp_ctrl_reg);
2064
2065         wait_panel_on(intel_dp);
2066         intel_dp->last_power_on = jiffies;
2067
2068         if (IS_GEN5(dev)) {
2069                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2070                 I915_WRITE(pp_ctrl_reg, pp);
2071                 POSTING_READ(pp_ctrl_reg);
2072         }
2073 }
2074
2075 void intel_edp_panel_on(struct intel_dp *intel_dp)
2076 {
2077         if (!is_edp(intel_dp))
2078                 return;
2079
2080         pps_lock(intel_dp);
2081         edp_panel_on(intel_dp);
2082         pps_unlock(intel_dp);
2083 }
2084
2085
2086 static void edp_panel_off(struct intel_dp *intel_dp)
2087 {
2088         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2089         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2090         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2091         struct drm_i915_private *dev_priv = dev->dev_private;
2092         enum intel_display_power_domain power_domain;
2093         u32 pp;
2094         i915_reg_t pp_ctrl_reg;
2095
2096         lockdep_assert_held(&dev_priv->pps_mutex);
2097
2098         if (!is_edp(intel_dp))
2099                 return;
2100
2101         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2102                       port_name(dp_to_dig_port(intel_dp)->port));
2103
2104         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2105              port_name(dp_to_dig_port(intel_dp)->port));
2106
2107         pp = ironlake_get_pp_control(intel_dp);
2108         /* We need to switch off panel power _and_ force vdd, for otherwise some
2109          * panels get very unhappy and cease to work. */
2110         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2111                 EDP_BLC_ENABLE);
2112
2113         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2114
2115         intel_dp->want_panel_vdd = false;
2116
2117         I915_WRITE(pp_ctrl_reg, pp);
2118         POSTING_READ(pp_ctrl_reg);
2119
2120         intel_dp->panel_power_off_time = ktime_get_boottime();
2121         wait_panel_off(intel_dp);
2122
2123         /* We got a reference when we enabled the VDD. */
2124         power_domain = intel_display_port_aux_power_domain(intel_encoder);
2125         intel_display_power_put(dev_priv, power_domain);
2126 }
2127
2128 void intel_edp_panel_off(struct intel_dp *intel_dp)
2129 {
2130         if (!is_edp(intel_dp))
2131                 return;
2132
2133         pps_lock(intel_dp);
2134         edp_panel_off(intel_dp);
2135         pps_unlock(intel_dp);
2136 }
2137
2138 /* Enable backlight in the panel power control. */
2139 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2140 {
2141         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2142         struct drm_device *dev = intel_dig_port->base.base.dev;
2143         struct drm_i915_private *dev_priv = dev->dev_private;
2144         u32 pp;
2145         i915_reg_t pp_ctrl_reg;
2146
2147         /*
2148          * If we enable the backlight right away following a panel power
2149          * on, we may see slight flicker as the panel syncs with the eDP
2150          * link.  So delay a bit to make sure the image is solid before
2151          * allowing it to appear.
2152          */
2153         wait_backlight_on(intel_dp);
2154
2155         pps_lock(intel_dp);
2156
2157         pp = ironlake_get_pp_control(intel_dp);
2158         pp |= EDP_BLC_ENABLE;
2159
2160         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2161
2162         I915_WRITE(pp_ctrl_reg, pp);
2163         POSTING_READ(pp_ctrl_reg);
2164
2165         pps_unlock(intel_dp);
2166 }
2167
2168 /* Enable backlight PWM and backlight PP control. */
2169 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2170 {
2171         if (!is_edp(intel_dp))
2172                 return;
2173
2174         DRM_DEBUG_KMS("\n");
2175
2176         intel_panel_enable_backlight(intel_dp->attached_connector);
2177         _intel_edp_backlight_on(intel_dp);
2178 }
2179
2180 /* Disable backlight in the panel power control. */
2181 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2182 {
2183         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2184         struct drm_i915_private *dev_priv = dev->dev_private;
2185         u32 pp;
2186         i915_reg_t pp_ctrl_reg;
2187
2188         if (!is_edp(intel_dp))
2189                 return;
2190
2191         pps_lock(intel_dp);
2192
2193         pp = ironlake_get_pp_control(intel_dp);
2194         pp &= ~EDP_BLC_ENABLE;
2195
2196         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2197
2198         I915_WRITE(pp_ctrl_reg, pp);
2199         POSTING_READ(pp_ctrl_reg);
2200
2201         pps_unlock(intel_dp);
2202
2203         intel_dp->last_backlight_off = jiffies;
2204         edp_wait_backlight_off(intel_dp);
2205 }
2206
2207 /* Disable backlight PP control and backlight PWM. */
2208 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2209 {
2210         if (!is_edp(intel_dp))
2211                 return;
2212
2213         DRM_DEBUG_KMS("\n");
2214
2215         _intel_edp_backlight_off(intel_dp);
2216         intel_panel_disable_backlight(intel_dp->attached_connector);
2217 }
2218
2219 /*
2220  * Hook for controlling the panel power control backlight through the bl_power
2221  * sysfs attribute. Take care to handle multiple calls.
2222  */
2223 static void intel_edp_backlight_power(struct intel_connector *connector,
2224                                       bool enable)
2225 {
2226         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2227         bool is_enabled;
2228
2229         pps_lock(intel_dp);
2230         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2231         pps_unlock(intel_dp);
2232
2233         if (is_enabled == enable)
2234                 return;
2235
2236         DRM_DEBUG_KMS("panel power control backlight %s\n",
2237                       enable ? "enable" : "disable");
2238
2239         if (enable)
2240                 _intel_edp_backlight_on(intel_dp);
2241         else
2242                 _intel_edp_backlight_off(intel_dp);
2243 }
2244
2245 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2246 {
2247         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2248         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2249         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2250
2251         I915_STATE_WARN(cur_state != state,
2252                         "DP port %c state assertion failure (expected %s, current %s)\n",
2253                         port_name(dig_port->port),
2254                         onoff(state), onoff(cur_state));
2255 }
2256 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2257
2258 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2259 {
2260         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2261
2262         I915_STATE_WARN(cur_state != state,
2263                         "eDP PLL state assertion failure (expected %s, current %s)\n",
2264                         onoff(state), onoff(cur_state));
2265 }
2266 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2267 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2268
2269 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2270 {
2271         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2272         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2273         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2274
2275         assert_pipe_disabled(dev_priv, crtc->pipe);
2276         assert_dp_port_disabled(intel_dp);
2277         assert_edp_pll_disabled(dev_priv);
2278
2279         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2280                       crtc->config->port_clock);
2281
2282         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2283
2284         if (crtc->config->port_clock == 162000)
2285                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2286         else
2287                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2288
2289         I915_WRITE(DP_A, intel_dp->DP);
2290         POSTING_READ(DP_A);
2291         udelay(500);
2292
2293         intel_dp->DP |= DP_PLL_ENABLE;
2294
2295         I915_WRITE(DP_A, intel_dp->DP);
2296         POSTING_READ(DP_A);
2297         udelay(200);
2298 }
2299
2300 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2301 {
2302         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2303         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2304         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2305
2306         assert_pipe_disabled(dev_priv, crtc->pipe);
2307         assert_dp_port_disabled(intel_dp);
2308         assert_edp_pll_enabled(dev_priv);
2309
2310         DRM_DEBUG_KMS("disabling eDP PLL\n");
2311
2312         intel_dp->DP &= ~DP_PLL_ENABLE;
2313
2314         I915_WRITE(DP_A, intel_dp->DP);
2315         POSTING_READ(DP_A);
2316         udelay(200);
2317 }
2318
2319 /* If the sink supports it, try to set the power state appropriately */
2320 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2321 {
2322         int ret, i;
2323
2324         /* Should have a valid DPCD by this point */
2325         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2326                 return;
2327
2328         if (mode != DRM_MODE_DPMS_ON) {
2329                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2330                                          DP_SET_POWER_D3);
2331         } else {
2332                 /*
2333                  * When turning on, we need to retry for 1ms to give the sink
2334                  * time to wake up.
2335                  */
2336                 for (i = 0; i < 3; i++) {
2337                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2338                                                  DP_SET_POWER_D0);
2339                         if (ret == 1)
2340                                 break;
2341                         msleep(1);
2342                 }
2343         }
2344
2345         if (ret != 1)
2346                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2347                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2348 }
2349
2350 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2351                                   enum pipe *pipe)
2352 {
2353         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2354         enum port port = dp_to_dig_port(intel_dp)->port;
2355         struct drm_device *dev = encoder->base.dev;
2356         struct drm_i915_private *dev_priv = dev->dev_private;
2357         enum intel_display_power_domain power_domain;
2358         u32 tmp;
2359         bool ret;
2360
2361         power_domain = intel_display_port_power_domain(encoder);
2362         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2363                 return false;
2364
2365         ret = false;
2366
2367         tmp = I915_READ(intel_dp->output_reg);
2368
2369         if (!(tmp & DP_PORT_EN))
2370                 goto out;
2371
2372         if (IS_GEN7(dev) && port == PORT_A) {
2373                 *pipe = PORT_TO_PIPE_CPT(tmp);
2374         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2375                 enum pipe p;
2376
2377                 for_each_pipe(dev_priv, p) {
2378                         u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2379                         if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2380                                 *pipe = p;
2381                                 ret = true;
2382
2383                                 goto out;
2384                         }
2385                 }
2386
2387                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2388                               i915_mmio_reg_offset(intel_dp->output_reg));
2389         } else if (IS_CHERRYVIEW(dev)) {
2390                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2391         } else {
2392                 *pipe = PORT_TO_PIPE(tmp);
2393         }
2394
2395         ret = true;
2396
2397 out:
2398         intel_display_power_put(dev_priv, power_domain);
2399
2400         return ret;
2401 }
2402
2403 static void intel_dp_get_config(struct intel_encoder *encoder,
2404                                 struct intel_crtc_state *pipe_config)
2405 {
2406         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2407         u32 tmp, flags = 0;
2408         struct drm_device *dev = encoder->base.dev;
2409         struct drm_i915_private *dev_priv = dev->dev_private;
2410         enum port port = dp_to_dig_port(intel_dp)->port;
2411         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2412         int dotclock;
2413
2414         tmp = I915_READ(intel_dp->output_reg);
2415
2416         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2417
2418         if (HAS_PCH_CPT(dev) && port != PORT_A) {
2419                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2420
2421                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2422                         flags |= DRM_MODE_FLAG_PHSYNC;
2423                 else
2424                         flags |= DRM_MODE_FLAG_NHSYNC;
2425
2426                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2427                         flags |= DRM_MODE_FLAG_PVSYNC;
2428                 else
2429                         flags |= DRM_MODE_FLAG_NVSYNC;
2430         } else {
2431                 if (tmp & DP_SYNC_HS_HIGH)
2432                         flags |= DRM_MODE_FLAG_PHSYNC;
2433                 else
2434                         flags |= DRM_MODE_FLAG_NHSYNC;
2435
2436                 if (tmp & DP_SYNC_VS_HIGH)
2437                         flags |= DRM_MODE_FLAG_PVSYNC;
2438                 else
2439                         flags |= DRM_MODE_FLAG_NVSYNC;
2440         }
2441
2442         pipe_config->base.adjusted_mode.flags |= flags;
2443
2444         if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2445             !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2446                 pipe_config->limited_color_range = true;
2447
2448         pipe_config->has_dp_encoder = true;
2449
2450         pipe_config->lane_count =
2451                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2452
2453         intel_dp_get_m_n(crtc, pipe_config);
2454
2455         if (port == PORT_A) {
2456                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2457                         pipe_config->port_clock = 162000;
2458                 else
2459                         pipe_config->port_clock = 270000;
2460         }
2461
2462         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2463                                             &pipe_config->dp_m_n);
2464
2465         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2466                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2467
2468         pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2469
2470         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2471             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2472                 /*
2473                  * This is a big fat ugly hack.
2474                  *
2475                  * Some machines in UEFI boot mode provide us a VBT that has 18
2476                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2477                  * unknown we fail to light up. Yet the same BIOS boots up with
2478                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2479                  * max, not what it tells us to use.
2480                  *
2481                  * Note: This will still be broken if the eDP panel is not lit
2482                  * up by the BIOS, and thus we can't get the mode at module
2483                  * load.
2484                  */
2485                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2486                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2487                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2488         }
2489 }
2490
2491 static void intel_disable_dp(struct intel_encoder *encoder)
2492 {
2493         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2494         struct drm_device *dev = encoder->base.dev;
2495         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2496
2497         if (crtc->config->has_audio)
2498                 intel_audio_codec_disable(encoder);
2499
2500         if (HAS_PSR(dev) && !HAS_DDI(dev))
2501                 intel_psr_disable(intel_dp);
2502
2503         /* Make sure the panel is off before trying to change the mode. But also
2504          * ensure that we have vdd while we switch off the panel. */
2505         intel_edp_panel_vdd_on(intel_dp);
2506         intel_edp_backlight_off(intel_dp);
2507         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2508         intel_edp_panel_off(intel_dp);
2509
2510         /* disable the port before the pipe on g4x */
2511         if (INTEL_INFO(dev)->gen < 5)
2512                 intel_dp_link_down(intel_dp);
2513 }
2514
2515 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2516 {
2517         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2518         enum port port = dp_to_dig_port(intel_dp)->port;
2519
2520         intel_dp_link_down(intel_dp);
2521
2522         /* Only ilk+ has port A */
2523         if (port == PORT_A)
2524                 ironlake_edp_pll_off(intel_dp);
2525 }
2526
2527 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2528 {
2529         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2530
2531         intel_dp_link_down(intel_dp);
2532 }
2533
2534 static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
2535                                      bool reset)
2536 {
2537         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2538         enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
2539         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2540         enum pipe pipe = crtc->pipe;
2541         uint32_t val;
2542
2543         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2544         if (reset)
2545                 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2546         else
2547                 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2548         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2549
2550         if (crtc->config->lane_count > 2) {
2551                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2552                 if (reset)
2553                         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2554                 else
2555                         val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2556                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2557         }
2558
2559         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2560         val |= CHV_PCS_REQ_SOFTRESET_EN;
2561         if (reset)
2562                 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2563         else
2564                 val |= DPIO_PCS_CLK_SOFT_RESET;
2565         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2566
2567         if (crtc->config->lane_count > 2) {
2568                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2569                 val |= CHV_PCS_REQ_SOFTRESET_EN;
2570                 if (reset)
2571                         val &= ~DPIO_PCS_CLK_SOFT_RESET;
2572                 else
2573                         val |= DPIO_PCS_CLK_SOFT_RESET;
2574                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2575         }
2576 }
2577
2578 static void chv_post_disable_dp(struct intel_encoder *encoder)
2579 {
2580         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2581         struct drm_device *dev = encoder->base.dev;
2582         struct drm_i915_private *dev_priv = dev->dev_private;
2583
2584         intel_dp_link_down(intel_dp);
2585
2586         mutex_lock(&dev_priv->sb_lock);
2587
2588         /* Assert data lane reset */
2589         chv_data_lane_soft_reset(encoder, true);
2590
2591         mutex_unlock(&dev_priv->sb_lock);
2592 }
2593
2594 static void
2595 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2596                          uint32_t *DP,
2597                          uint8_t dp_train_pat)
2598 {
2599         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2600         struct drm_device *dev = intel_dig_port->base.base.dev;
2601         struct drm_i915_private *dev_priv = dev->dev_private;
2602         enum port port = intel_dig_port->port;
2603
2604         if (HAS_DDI(dev)) {
2605                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2606
2607                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2608                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2609                 else
2610                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2611
2612                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2613                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2614                 case DP_TRAINING_PATTERN_DISABLE:
2615                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2616
2617                         break;
2618                 case DP_TRAINING_PATTERN_1:
2619                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2620                         break;
2621                 case DP_TRAINING_PATTERN_2:
2622                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2623                         break;
2624                 case DP_TRAINING_PATTERN_3:
2625                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2626                         break;
2627                 }
2628                 I915_WRITE(DP_TP_CTL(port), temp);
2629
2630         } else if ((IS_GEN7(dev) && port == PORT_A) ||
2631                    (HAS_PCH_CPT(dev) && port != PORT_A)) {
2632                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2633
2634                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2635                 case DP_TRAINING_PATTERN_DISABLE:
2636                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2637                         break;
2638                 case DP_TRAINING_PATTERN_1:
2639                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2640                         break;
2641                 case DP_TRAINING_PATTERN_2:
2642                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2643                         break;
2644                 case DP_TRAINING_PATTERN_3:
2645                         DRM_ERROR("DP training pattern 3 not supported\n");
2646                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2647                         break;
2648                 }
2649
2650         } else {
2651                 if (IS_CHERRYVIEW(dev))
2652                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2653                 else
2654                         *DP &= ~DP_LINK_TRAIN_MASK;
2655
2656                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2657                 case DP_TRAINING_PATTERN_DISABLE:
2658                         *DP |= DP_LINK_TRAIN_OFF;
2659                         break;
2660                 case DP_TRAINING_PATTERN_1:
2661                         *DP |= DP_LINK_TRAIN_PAT_1;
2662                         break;
2663                 case DP_TRAINING_PATTERN_2:
2664                         *DP |= DP_LINK_TRAIN_PAT_2;
2665                         break;
2666                 case DP_TRAINING_PATTERN_3:
2667                         if (IS_CHERRYVIEW(dev)) {
2668                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2669                         } else {
2670                                 DRM_ERROR("DP training pattern 3 not supported\n");
2671                                 *DP |= DP_LINK_TRAIN_PAT_2;
2672                         }
2673                         break;
2674                 }
2675         }
2676 }
2677
2678 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2679 {
2680         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2681         struct drm_i915_private *dev_priv = dev->dev_private;
2682         struct intel_crtc *crtc =
2683                 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
2684
2685         /* enable with pattern 1 (as per spec) */
2686         _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2687                                  DP_TRAINING_PATTERN_1);
2688
2689         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2690         POSTING_READ(intel_dp->output_reg);
2691
2692         /*
2693          * Magic for VLV/CHV. We _must_ first set up the register
2694          * without actually enabling the port, and then do another
2695          * write to enable the port. Otherwise link training will
2696          * fail when the power sequencer is freshly used for this port.
2697          */
2698         intel_dp->DP |= DP_PORT_EN;
2699         if (crtc->config->has_audio)
2700                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2701
2702         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2703         POSTING_READ(intel_dp->output_reg);
2704 }
2705
2706 static void intel_enable_dp(struct intel_encoder *encoder)
2707 {
2708         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2709         struct drm_device *dev = encoder->base.dev;
2710         struct drm_i915_private *dev_priv = dev->dev_private;
2711         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2712         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2713         enum port port = dp_to_dig_port(intel_dp)->port;
2714         enum pipe pipe = crtc->pipe;
2715
2716         if (WARN_ON(dp_reg & DP_PORT_EN))
2717                 return;
2718
2719         pps_lock(intel_dp);
2720
2721         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2722                 vlv_init_panel_power_sequencer(intel_dp);
2723
2724         /*
2725          * We get an occasional spurious underrun between the port
2726          * enable and vdd enable, when enabling port A eDP.
2727          *
2728          * FIXME: Not sure if this applies to (PCH) port D eDP as well
2729          */
2730         if (port == PORT_A)
2731                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
2732
2733         intel_dp_enable_port(intel_dp);
2734
2735         if (port == PORT_A && IS_GEN5(dev_priv)) {
2736                 /*
2737                  * Underrun reporting for the other pipe was disabled in
2738                  * g4x_pre_enable_dp(). The eDP PLL and port have now been
2739                  * enabled, so it's now safe to re-enable underrun reporting.
2740                  */
2741                 intel_wait_for_vblank_if_active(dev_priv->dev, !pipe);
2742                 intel_set_cpu_fifo_underrun_reporting(dev_priv, !pipe, true);
2743                 intel_set_pch_fifo_underrun_reporting(dev_priv, !pipe, true);
2744         }
2745
2746         edp_panel_vdd_on(intel_dp);
2747         edp_panel_on(intel_dp);
2748         edp_panel_vdd_off(intel_dp, true);
2749
2750         if (port == PORT_A)
2751                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
2752
2753         pps_unlock(intel_dp);
2754
2755         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2756                 unsigned int lane_mask = 0x0;
2757
2758                 if (IS_CHERRYVIEW(dev))
2759                         lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2760
2761                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2762                                     lane_mask);
2763         }
2764
2765         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2766         intel_dp_start_link_train(intel_dp);
2767         intel_dp_stop_link_train(intel_dp);
2768
2769         if (crtc->config->has_audio) {
2770                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2771                                  pipe_name(pipe));
2772                 intel_audio_codec_enable(encoder);
2773         }
2774 }
2775
2776 static void g4x_enable_dp(struct intel_encoder *encoder)
2777 {
2778         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2779
2780         intel_enable_dp(encoder);
2781         intel_edp_backlight_on(intel_dp);
2782 }
2783
2784 static void vlv_enable_dp(struct intel_encoder *encoder)
2785 {
2786         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2787
2788         intel_edp_backlight_on(intel_dp);
2789         intel_psr_enable(intel_dp);
2790 }
2791
2792 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2793 {
2794         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2795         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2796         enum port port = dp_to_dig_port(intel_dp)->port;
2797         enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
2798
2799         intel_dp_prepare(encoder);
2800
2801         if (port == PORT_A && IS_GEN5(dev_priv)) {
2802                 /*
2803                  * We get FIFO underruns on the other pipe when
2804                  * enabling the CPU eDP PLL, and when enabling CPU
2805                  * eDP port. We could potentially avoid the PLL
2806                  * underrun with a vblank wait just prior to enabling
2807                  * the PLL, but that doesn't appear to help the port
2808                  * enable case. Just sweep it all under the rug.
2809                  */
2810                 intel_set_cpu_fifo_underrun_reporting(dev_priv, !pipe, false);
2811                 intel_set_pch_fifo_underrun_reporting(dev_priv, !pipe, false);
2812         }
2813
2814         /* Only ilk+ has port A */
2815         if (port == PORT_A)
2816                 ironlake_edp_pll_on(intel_dp);
2817 }
2818
2819 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2820 {
2821         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2822         struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2823         enum pipe pipe = intel_dp->pps_pipe;
2824         i915_reg_t pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2825
2826         edp_panel_vdd_off_sync(intel_dp);
2827
2828         /*
2829          * VLV seems to get confused when multiple power seqeuencers
2830          * have the same port selected (even if only one has power/vdd
2831          * enabled). The failure manifests as vlv_wait_port_ready() failing
2832          * CHV on the other hand doesn't seem to mind having the same port
2833          * selected in multiple power seqeuencers, but let's clear the
2834          * port select always when logically disconnecting a power sequencer
2835          * from a port.
2836          */
2837         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2838                       pipe_name(pipe), port_name(intel_dig_port->port));
2839         I915_WRITE(pp_on_reg, 0);
2840         POSTING_READ(pp_on_reg);
2841
2842         intel_dp->pps_pipe = INVALID_PIPE;
2843 }
2844
2845 static void vlv_steal_power_sequencer(struct drm_device *dev,
2846                                       enum pipe pipe)
2847 {
2848         struct drm_i915_private *dev_priv = dev->dev_private;
2849         struct intel_encoder *encoder;
2850
2851         lockdep_assert_held(&dev_priv->pps_mutex);
2852
2853         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2854                 return;
2855
2856         for_each_intel_encoder(dev, encoder) {
2857                 struct intel_dp *intel_dp;
2858                 enum port port;
2859
2860                 if (encoder->type != INTEL_OUTPUT_EDP)
2861                         continue;
2862
2863                 intel_dp = enc_to_intel_dp(&encoder->base);
2864                 port = dp_to_dig_port(intel_dp)->port;
2865
2866                 if (intel_dp->pps_pipe != pipe)
2867                         continue;
2868
2869                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2870                               pipe_name(pipe), port_name(port));
2871
2872                 WARN(encoder->base.crtc,
2873                      "stealing pipe %c power sequencer from active eDP port %c\n",
2874                      pipe_name(pipe), port_name(port));
2875
2876                 /* make sure vdd is off before we steal it */
2877                 vlv_detach_power_sequencer(intel_dp);
2878         }
2879 }
2880
2881 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2882 {
2883         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2884         struct intel_encoder *encoder = &intel_dig_port->base;
2885         struct drm_device *dev = encoder->base.dev;
2886         struct drm_i915_private *dev_priv = dev->dev_private;
2887         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2888
2889         lockdep_assert_held(&dev_priv->pps_mutex);
2890
2891         if (!is_edp(intel_dp))
2892                 return;
2893
2894         if (intel_dp->pps_pipe == crtc->pipe)
2895                 return;
2896
2897         /*
2898          * If another power sequencer was being used on this
2899          * port previously make sure to turn off vdd there while
2900          * we still have control of it.
2901          */
2902         if (intel_dp->pps_pipe != INVALID_PIPE)
2903                 vlv_detach_power_sequencer(intel_dp);
2904
2905         /*
2906          * We may be stealing the power
2907          * sequencer from another port.
2908          */
2909         vlv_steal_power_sequencer(dev, crtc->pipe);
2910
2911         /* now it's all ours */
2912         intel_dp->pps_pipe = crtc->pipe;
2913
2914         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2915                       pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2916
2917         /* init power sequencer on this pipe and port */
2918         intel_dp_init_panel_power_sequencer(dev, intel_dp);
2919         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2920 }
2921
2922 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2923 {
2924         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2925         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2926         struct drm_device *dev = encoder->base.dev;
2927         struct drm_i915_private *dev_priv = dev->dev_private;
2928         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2929         enum dpio_channel port = vlv_dport_to_channel(dport);
2930         int pipe = intel_crtc->pipe;
2931         u32 val;
2932
2933         mutex_lock(&dev_priv->sb_lock);
2934
2935         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2936         val = 0;
2937         if (pipe)
2938                 val |= (1<<21);
2939         else
2940                 val &= ~(1<<21);
2941         val |= 0x001000c4;
2942         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2943         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2944         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2945
2946         mutex_unlock(&dev_priv->sb_lock);
2947
2948         intel_enable_dp(encoder);
2949 }
2950
2951 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2952 {
2953         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2954         struct drm_device *dev = encoder->base.dev;
2955         struct drm_i915_private *dev_priv = dev->dev_private;
2956         struct intel_crtc *intel_crtc =
2957                 to_intel_crtc(encoder->base.crtc);
2958         enum dpio_channel port = vlv_dport_to_channel(dport);
2959         int pipe = intel_crtc->pipe;
2960
2961         intel_dp_prepare(encoder);
2962
2963         /* Program Tx lane resets to default */
2964         mutex_lock(&dev_priv->sb_lock);
2965         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2966                          DPIO_PCS_TX_LANE2_RESET |
2967                          DPIO_PCS_TX_LANE1_RESET);
2968         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2969                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2970                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2971                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2972                                  DPIO_PCS_CLK_SOFT_RESET);
2973
2974         /* Fix up inter-pair skew failure */
2975         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2976         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2977         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2978         mutex_unlock(&dev_priv->sb_lock);
2979 }
2980
2981 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2982 {
2983         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2984         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2985         struct drm_device *dev = encoder->base.dev;
2986         struct drm_i915_private *dev_priv = dev->dev_private;
2987         struct intel_crtc *intel_crtc =
2988                 to_intel_crtc(encoder->base.crtc);
2989         enum dpio_channel ch = vlv_dport_to_channel(dport);
2990         int pipe = intel_crtc->pipe;
2991         int data, i, stagger;
2992         u32 val;
2993
2994         mutex_lock(&dev_priv->sb_lock);
2995
2996         /* allow hardware to manage TX FIFO reset source */
2997         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2998         val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2999         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
3000
3001         if (intel_crtc->config->lane_count > 2) {
3002                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
3003                 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
3004                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
3005         }
3006
3007         /* Program Tx lane latency optimal setting*/
3008         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3009                 /* Set the upar bit */
3010                 if (intel_crtc->config->lane_count == 1)
3011                         data = 0x0;
3012                 else
3013                         data = (i == 1) ? 0x0 : 0x1;
3014                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
3015                                 data << DPIO_UPAR_SHIFT);
3016         }
3017
3018         /* Data lane stagger programming */
3019         if (intel_crtc->config->port_clock > 270000)
3020                 stagger = 0x18;
3021         else if (intel_crtc->config->port_clock > 135000)
3022                 stagger = 0xd;
3023         else if (intel_crtc->config->port_clock > 67500)
3024                 stagger = 0x7;
3025         else if (intel_crtc->config->port_clock > 33750)
3026                 stagger = 0x4;
3027         else
3028                 stagger = 0x2;
3029
3030         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
3031         val |= DPIO_TX2_STAGGER_MASK(0x1f);
3032         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
3033
3034         if (intel_crtc->config->lane_count > 2) {
3035                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
3036                 val |= DPIO_TX2_STAGGER_MASK(0x1f);
3037                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
3038         }
3039
3040         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
3041                        DPIO_LANESTAGGER_STRAP(stagger) |
3042                        DPIO_LANESTAGGER_STRAP_OVRD |
3043                        DPIO_TX1_STAGGER_MASK(0x1f) |
3044                        DPIO_TX1_STAGGER_MULT(6) |
3045                        DPIO_TX2_STAGGER_MULT(0));
3046
3047         if (intel_crtc->config->lane_count > 2) {
3048                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
3049                                DPIO_LANESTAGGER_STRAP(stagger) |
3050                                DPIO_LANESTAGGER_STRAP_OVRD |
3051                                DPIO_TX1_STAGGER_MASK(0x1f) |
3052                                DPIO_TX1_STAGGER_MULT(7) |
3053                                DPIO_TX2_STAGGER_MULT(5));
3054         }
3055
3056         /* Deassert data lane reset */
3057         chv_data_lane_soft_reset(encoder, false);
3058
3059         mutex_unlock(&dev_priv->sb_lock);
3060
3061         intel_enable_dp(encoder);
3062
3063         /* Second common lane will stay alive on its own now */
3064         if (dport->release_cl2_override) {
3065                 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
3066                 dport->release_cl2_override = false;
3067         }
3068 }
3069
3070 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
3071 {
3072         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
3073         struct drm_device *dev = encoder->base.dev;
3074         struct drm_i915_private *dev_priv = dev->dev_private;
3075         struct intel_crtc *intel_crtc =
3076                 to_intel_crtc(encoder->base.crtc);
3077         enum dpio_channel ch = vlv_dport_to_channel(dport);
3078         enum pipe pipe = intel_crtc->pipe;
3079         unsigned int lane_mask =
3080                 intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
3081         u32 val;
3082
3083         intel_dp_prepare(encoder);
3084
3085         /*
3086          * Must trick the second common lane into life.
3087          * Otherwise we can't even access the PLL.
3088          */
3089         if (ch == DPIO_CH0 && pipe == PIPE_B)
3090                 dport->release_cl2_override =
3091                         !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
3092
3093         chv_phy_powergate_lanes(encoder, true, lane_mask);
3094
3095         mutex_lock(&dev_priv->sb_lock);
3096
3097         /* Assert data lane reset */
3098         chv_data_lane_soft_reset(encoder, true);
3099
3100         /* program left/right clock distribution */
3101         if (pipe != PIPE_B) {
3102                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
3103                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
3104                 if (ch == DPIO_CH0)
3105                         val |= CHV_BUFLEFTENA1_FORCE;
3106                 if (ch == DPIO_CH1)
3107                         val |= CHV_BUFRIGHTENA1_FORCE;
3108                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
3109         } else {
3110                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3111                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3112                 if (ch == DPIO_CH0)
3113                         val |= CHV_BUFLEFTENA2_FORCE;
3114                 if (ch == DPIO_CH1)
3115                         val |= CHV_BUFRIGHTENA2_FORCE;
3116                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3117         }
3118
3119         /* program clock channel usage */
3120         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
3121         val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
3122         if (pipe != PIPE_B)
3123                 val &= ~CHV_PCS_USEDCLKCHANNEL;
3124         else
3125                 val |= CHV_PCS_USEDCLKCHANNEL;
3126         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
3127
3128         if (intel_crtc->config->lane_count > 2) {
3129                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
3130                 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
3131                 if (pipe != PIPE_B)
3132                         val &= ~CHV_PCS_USEDCLKCHANNEL;
3133                 else
3134                         val |= CHV_PCS_USEDCLKCHANNEL;
3135                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
3136         }
3137
3138         /*
3139          * This a a bit weird since generally CL
3140          * matches the pipe, but here we need to
3141          * pick the CL based on the port.
3142          */
3143         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
3144         if (pipe != PIPE_B)
3145                 val &= ~CHV_CMN_USEDCLKCHANNEL;
3146         else
3147                 val |= CHV_CMN_USEDCLKCHANNEL;
3148         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
3149
3150         mutex_unlock(&dev_priv->sb_lock);
3151 }
3152
3153 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
3154 {
3155         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3156         enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
3157         u32 val;
3158
3159         mutex_lock(&dev_priv->sb_lock);
3160
3161         /* disable left/right clock distribution */
3162         if (pipe != PIPE_B) {
3163                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
3164                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
3165                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
3166         } else {
3167                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3168                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3169                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3170         }
3171
3172         mutex_unlock(&dev_priv->sb_lock);
3173
3174         /*
3175          * Leave the power down bit cleared for at least one
3176          * lane so that chv_powergate_phy_ch() will power
3177          * on something when the channel is otherwise unused.
3178          * When the port is off and the override is removed
3179          * the lanes power down anyway, so otherwise it doesn't
3180          * really matter what the state of power down bits is
3181          * after this.
3182          */
3183         chv_phy_powergate_lanes(encoder, false, 0x0);
3184 }
3185
3186 /*
3187  * Native read with retry for link status and receiver capability reads for
3188  * cases where the sink may still be asleep.
3189  *
3190  * Sinks are *supposed* to come up within 1ms from an off state, but we're also
3191  * supposed to retry 3 times per the spec.
3192  */
3193 static ssize_t
3194 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
3195                         void *buffer, size_t size)
3196 {
3197         ssize_t ret;
3198         int i;
3199
3200         /*
3201          * Sometime we just get the same incorrect byte repeated
3202          * over the entire buffer. Doing just one throw away read
3203          * initially seems to "solve" it.
3204          */
3205         drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
3206
3207         for (i = 0; i < 3; i++) {
3208                 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
3209                 if (ret == size)
3210                         return ret;
3211                 msleep(1);
3212         }
3213
3214         return ret;
3215 }
3216
3217 /*
3218  * Fetch AUX CH registers 0x202 - 0x207 which contain
3219  * link status information
3220  */
3221 bool
3222 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3223 {
3224         return intel_dp_dpcd_read_wake(&intel_dp->aux,
3225                                        DP_LANE0_1_STATUS,
3226                                        link_status,
3227                                        DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3228 }
3229
3230 /* These are source-specific values. */
3231 uint8_t
3232 intel_dp_voltage_max(struct intel_dp *intel_dp)
3233 {
3234         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3235         struct drm_i915_private *dev_priv = dev->dev_private;
3236         enum port port = dp_to_dig_port(intel_dp)->port;
3237
3238         if (IS_BROXTON(dev))
3239                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3240         else if (INTEL_INFO(dev)->gen >= 9) {
3241                 if (dev_priv->edp_low_vswing && port == PORT_A)
3242                         return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3243                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3244         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3245                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3246         else if (IS_GEN7(dev) && port == PORT_A)
3247                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3248         else if (HAS_PCH_CPT(dev) && port != PORT_A)
3249                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3250         else
3251                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3252 }
3253
3254 uint8_t
3255 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3256 {
3257         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3258         enum port port = dp_to_dig_port(intel_dp)->port;
3259
3260         if (INTEL_INFO(dev)->gen >= 9) {
3261                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3262                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3263                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3264                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3265                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3266                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3267                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3268                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3269                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3270                 default:
3271                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3272                 }
3273         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3274                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3275                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3276                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3277                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3278                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3279                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3280                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3281                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3282                 default:
3283                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3284                 }
3285         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3286                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3287                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3288                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3289                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3290                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3291                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3292                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3293                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3294                 default:
3295                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3296                 }
3297         } else if (IS_GEN7(dev) && port == PORT_A) {
3298                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3299                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3300                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3301                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3302                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3303                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3304                 default:
3305                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3306                 }
3307         } else {
3308                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3309                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3310                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3311                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3312                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3313                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3314                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3315                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3316                 default:
3317                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3318                 }
3319         }
3320 }
3321
3322 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3323 {
3324         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3325         struct drm_i915_private *dev_priv = dev->dev_private;
3326         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3327         struct intel_crtc *intel_crtc =
3328                 to_intel_crtc(dport->base.base.crtc);
3329         unsigned long demph_reg_value, preemph_reg_value,
3330                 uniqtranscale_reg_value;
3331         uint8_t train_set = intel_dp->train_set[0];
3332         enum dpio_channel port = vlv_dport_to_channel(dport);
3333         int pipe = intel_crtc->pipe;
3334
3335         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3336         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3337                 preemph_reg_value = 0x0004000;
3338                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3339                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3340                         demph_reg_value = 0x2B405555;
3341                         uniqtranscale_reg_value = 0x552AB83A;
3342                         break;
3343                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3344                         demph_reg_value = 0x2B404040;
3345                         uniqtranscale_reg_value = 0x5548B83A;
3346                         break;
3347                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3348                         demph_reg_value = 0x2B245555;
3349                         uniqtranscale_reg_value = 0x5560B83A;
3350                         break;
3351                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3352                         demph_reg_value = 0x2B405555;
3353                         uniqtranscale_reg_value = 0x5598DA3A;
3354                         break;
3355                 default:
3356                         return 0;
3357                 }
3358                 break;
3359         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3360                 preemph_reg_value = 0x0002000;
3361                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3362                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3363                         demph_reg_value = 0x2B404040;
3364                         uniqtranscale_reg_value = 0x5552B83A;
3365                         break;
3366                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3367                         demph_reg_value = 0x2B404848;
3368                         uniqtranscale_reg_value = 0x5580B83A;
3369                         break;
3370                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3371                         demph_reg_value = 0x2B404040;
3372                         uniqtranscale_reg_value = 0x55ADDA3A;
3373                         break;
3374                 default:
3375                         return 0;
3376                 }
3377                 break;
3378         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3379                 preemph_reg_value = 0x0000000;
3380                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3381                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3382                         demph_reg_value = 0x2B305555;
3383                         uniqtranscale_reg_value = 0x5570B83A;
3384                         break;
3385                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3386                         demph_reg_value = 0x2B2B4040;
3387                         uniqtranscale_reg_value = 0x55ADDA3A;
3388                         break;
3389                 default:
3390                         return 0;
3391                 }
3392                 break;
3393         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3394                 preemph_reg_value = 0x0006000;
3395                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3396                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3397                         demph_reg_value = 0x1B405555;
3398                         uniqtranscale_reg_value = 0x55ADDA3A;
3399                         break;
3400                 default:
3401                         return 0;
3402                 }
3403                 break;
3404         default:
3405                 return 0;
3406         }
3407
3408         mutex_lock(&dev_priv->sb_lock);
3409         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3410         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3411         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3412                          uniqtranscale_reg_value);
3413         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3414         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3415         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3416         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3417         mutex_unlock(&dev_priv->sb_lock);
3418
3419         return 0;
3420 }
3421
3422 static bool chv_need_uniq_trans_scale(uint8_t train_set)
3423 {
3424         return (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) == DP_TRAIN_PRE_EMPH_LEVEL_0 &&
3425                 (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3426 }
3427
3428 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3429 {
3430         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3431         struct drm_i915_private *dev_priv = dev->dev_private;
3432         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3433         struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3434         u32 deemph_reg_value, margin_reg_value, val;
3435         uint8_t train_set = intel_dp->train_set[0];
3436         enum dpio_channel ch = vlv_dport_to_channel(dport);
3437         enum pipe pipe = intel_crtc->pipe;
3438         int i;
3439
3440         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3441         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3442                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3443                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3444                         deemph_reg_value = 128;
3445                         margin_reg_value = 52;
3446                         break;
3447                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3448                         deemph_reg_value = 128;
3449                         margin_reg_value = 77;
3450                         break;
3451                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3452                         deemph_reg_value = 128;
3453                         margin_reg_value = 102;
3454                         break;
3455                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3456                         deemph_reg_value = 128;
3457                         margin_reg_value = 154;
3458                         /* FIXME extra to set for 1200 */
3459                         break;
3460                 default:
3461                         return 0;
3462                 }
3463                 break;
3464         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3465                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3466                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3467                         deemph_reg_value = 85;
3468                         margin_reg_value = 78;
3469                         break;
3470                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3471                         deemph_reg_value = 85;
3472                         margin_reg_value = 116;
3473                         break;
3474                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3475                         deemph_reg_value = 85;
3476                         margin_reg_value = 154;
3477                         break;
3478                 default:
3479                         return 0;
3480                 }
3481                 break;
3482         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3483                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3484                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3485                         deemph_reg_value = 64;
3486                         margin_reg_value = 104;
3487                         break;
3488                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3489                         deemph_reg_value = 64;
3490                         margin_reg_value = 154;
3491                         break;
3492                 default:
3493                         return 0;
3494                 }
3495                 break;
3496         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3497                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3498                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3499                         deemph_reg_value = 43;
3500                         margin_reg_value = 154;
3501                         break;
3502                 default:
3503                         return 0;
3504                 }
3505                 break;
3506         default:
3507                 return 0;
3508         }
3509
3510         mutex_lock(&dev_priv->sb_lock);
3511
3512         /* Clear calc init */
3513         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3514         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3515         val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3516         val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3517         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3518
3519         if (intel_crtc->config->lane_count > 2) {
3520                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3521                 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3522                 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3523                 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3524                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3525         }
3526
3527         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3528         val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3529         val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3530         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3531
3532         if (intel_crtc->config->lane_count > 2) {
3533                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3534                 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3535                 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3536                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3537         }
3538
3539         /* Program swing deemph */
3540         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3541                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3542                 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3543                 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3544                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3545         }
3546
3547         /* Program swing margin */
3548         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3549                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3550
3551                 val &= ~DPIO_SWING_MARGIN000_MASK;
3552                 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3553
3554                 /*
3555                  * Supposedly this value shouldn't matter when unique transition
3556                  * scale is disabled, but in fact it does matter. Let's just
3557                  * always program the same value and hope it's OK.
3558                  */
3559                 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3560                 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
3561
3562                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3563         }
3564
3565         /*
3566          * The document said it needs to set bit 27 for ch0 and bit 26
3567          * for ch1. Might be a typo in the doc.
3568          * For now, for this unique transition scale selection, set bit
3569          * 27 for ch0 and ch1.
3570          */
3571         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3572                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3573                 if (chv_need_uniq_trans_scale(train_set))
3574                         val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3575                 else
3576                         val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3577                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3578         }
3579
3580         /* Start swing calculation */
3581         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3582         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3583         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3584
3585         if (intel_crtc->config->lane_count > 2) {
3586                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3587                 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3588                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3589         }
3590
3591         mutex_unlock(&dev_priv->sb_lock);
3592
3593         return 0;
3594 }
3595
3596 static uint32_t
3597 gen4_signal_levels(uint8_t train_set)
3598 {
3599         uint32_t        signal_levels = 0;
3600
3601         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3602         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3603         default:
3604                 signal_levels |= DP_VOLTAGE_0_4;
3605                 break;
3606         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3607                 signal_levels |= DP_VOLTAGE_0_6;
3608                 break;
3609         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3610                 signal_levels |= DP_VOLTAGE_0_8;
3611                 break;
3612         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3613                 signal_levels |= DP_VOLTAGE_1_2;
3614                 break;
3615         }
3616         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3617         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3618         default:
3619                 signal_levels |= DP_PRE_EMPHASIS_0;
3620                 break;
3621         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3622                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3623                 break;
3624         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3625                 signal_levels |= DP_PRE_EMPHASIS_6;
3626                 break;
3627         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3628                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3629                 break;
3630         }
3631         return signal_levels;
3632 }
3633
3634 /* Gen6's DP voltage swing and pre-emphasis control */
3635 static uint32_t
3636 gen6_edp_signal_levels(uint8_t train_set)
3637 {
3638         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3639                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3640         switch (signal_levels) {
3641         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3642         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3643                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3644         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3645                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3646         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3647         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3648                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3649         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3650         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3651                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3652         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3653         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3654                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3655         default:
3656                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3657                               "0x%x\n", signal_levels);
3658                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3659         }
3660 }
3661
3662 /* Gen7's DP voltage swing and pre-emphasis control */
3663 static uint32_t
3664 gen7_edp_signal_levels(uint8_t train_set)
3665 {
3666         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3667                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3668         switch (signal_levels) {
3669         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3670                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3671         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3672                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3673         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3674                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3675
3676         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3677                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3678         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3679                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3680
3681         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3682                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3683         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3684                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3685
3686         default:
3687                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3688                               "0x%x\n", signal_levels);
3689                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3690         }
3691 }
3692
3693 void
3694 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3695 {
3696         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3697         enum port port = intel_dig_port->port;
3698         struct drm_device *dev = intel_dig_port->base.base.dev;
3699         struct drm_i915_private *dev_priv = to_i915(dev);
3700         uint32_t signal_levels, mask = 0;
3701         uint8_t train_set = intel_dp->train_set[0];
3702
3703         if (HAS_DDI(dev)) {
3704                 signal_levels = ddi_signal_levels(intel_dp);
3705
3706                 if (IS_BROXTON(dev))
3707                         signal_levels = 0;
3708                 else
3709                         mask = DDI_BUF_EMP_MASK;
3710         } else if (IS_CHERRYVIEW(dev)) {
3711                 signal_levels = chv_signal_levels(intel_dp);
3712         } else if (IS_VALLEYVIEW(dev)) {
3713                 signal_levels = vlv_signal_levels(intel_dp);
3714         } else if (IS_GEN7(dev) && port == PORT_A) {
3715                 signal_levels = gen7_edp_signal_levels(train_set);
3716                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3717         } else if (IS_GEN6(dev) && port == PORT_A) {
3718                 signal_levels = gen6_edp_signal_levels(train_set);
3719                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3720         } else {
3721                 signal_levels = gen4_signal_levels(train_set);
3722                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3723         }
3724
3725         if (mask)
3726                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3727
3728         DRM_DEBUG_KMS("Using vswing level %d\n",
3729                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3730         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3731                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3732                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
3733
3734         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3735
3736         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3737         POSTING_READ(intel_dp->output_reg);
3738 }
3739
3740 void
3741 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3742                                        uint8_t dp_train_pat)
3743 {
3744         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3745         struct drm_i915_private *dev_priv =
3746                 to_i915(intel_dig_port->base.base.dev);
3747
3748         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3749
3750         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3751         POSTING_READ(intel_dp->output_reg);
3752 }
3753
3754 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3755 {
3756         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3757         struct drm_device *dev = intel_dig_port->base.base.dev;
3758         struct drm_i915_private *dev_priv = dev->dev_private;
3759         enum port port = intel_dig_port->port;
3760         uint32_t val;
3761
3762         if (!HAS_DDI(dev))
3763                 return;
3764
3765         val = I915_READ(DP_TP_CTL(port));
3766         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3767         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3768         I915_WRITE(DP_TP_CTL(port), val);
3769
3770         /*
3771          * On PORT_A we can have only eDP in SST mode. There the only reason
3772          * we need to set idle transmission mode is to work around a HW issue
3773          * where we enable the pipe while not in idle link-training mode.
3774          * In this case there is requirement to wait for a minimum number of
3775          * idle patterns to be sent.
3776          */
3777         if (port == PORT_A)
3778                 return;
3779
3780         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3781                      1))
3782                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3783 }
3784
3785 static void
3786 intel_dp_link_down(struct intel_dp *intel_dp)
3787 {
3788         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3789         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3790         enum port port = intel_dig_port->port;
3791         struct drm_device *dev = intel_dig_port->base.base.dev;
3792         struct drm_i915_private *dev_priv = dev->dev_private;
3793         uint32_t DP = intel_dp->DP;
3794
3795         if (WARN_ON(HAS_DDI(dev)))
3796                 return;
3797
3798         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3799                 return;
3800
3801         DRM_DEBUG_KMS("\n");
3802
3803         if ((IS_GEN7(dev) && port == PORT_A) ||
3804             (HAS_PCH_CPT(dev) && port != PORT_A)) {
3805                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3806                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3807         } else {
3808                 if (IS_CHERRYVIEW(dev))
3809                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3810                 else
3811                         DP &= ~DP_LINK_TRAIN_MASK;
3812                 DP |= DP_LINK_TRAIN_PAT_IDLE;
3813         }
3814         I915_WRITE(intel_dp->output_reg, DP);
3815         POSTING_READ(intel_dp->output_reg);
3816
3817         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3818         I915_WRITE(intel_dp->output_reg, DP);
3819         POSTING_READ(intel_dp->output_reg);
3820
3821         /*
3822          * HW workaround for IBX, we need to move the port
3823          * to transcoder A after disabling it to allow the
3824          * matching HDMI port to be enabled on transcoder A.
3825          */
3826         if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3827                 /*
3828                  * We get CPU/PCH FIFO underruns on the other pipe when
3829                  * doing the workaround. Sweep them under the rug.
3830                  */
3831                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3832                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3833
3834                 /* always enable with pattern 1 (as per spec) */
3835                 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3836                 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3837                 I915_WRITE(intel_dp->output_reg, DP);
3838                 POSTING_READ(intel_dp->output_reg);
3839
3840                 DP &= ~DP_PORT_EN;
3841                 I915_WRITE(intel_dp->output_reg, DP);
3842                 POSTING_READ(intel_dp->output_reg);
3843
3844                 intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
3845                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3846                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3847         }
3848
3849         msleep(intel_dp->panel_power_down_delay);
3850
3851         intel_dp->DP = DP;
3852 }
3853
3854 static bool
3855 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3856 {
3857         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3858         struct drm_device *dev = dig_port->base.base.dev;
3859         struct drm_i915_private *dev_priv = dev->dev_private;
3860         uint8_t rev;
3861
3862         if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3863                                     sizeof(intel_dp->dpcd)) < 0)
3864                 return false; /* aux transfer failed */
3865
3866         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3867
3868         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3869                 return false; /* DPCD not present */
3870
3871         /* Check if the panel supports PSR */
3872         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3873         if (is_edp(intel_dp)) {
3874                 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3875                                         intel_dp->psr_dpcd,
3876                                         sizeof(intel_dp->psr_dpcd));
3877                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3878                         dev_priv->psr.sink_support = true;
3879                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3880                 }
3881
3882                 if (INTEL_INFO(dev)->gen >= 9 &&
3883                         (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3884                         uint8_t frame_sync_cap;
3885
3886                         dev_priv->psr.sink_support = true;
3887                         intel_dp_dpcd_read_wake(&intel_dp->aux,
3888                                         DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3889                                         &frame_sync_cap, 1);
3890                         dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3891                         /* PSR2 needs frame sync as well */
3892                         dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3893                         DRM_DEBUG_KMS("PSR2 %s on sink",
3894                                 dev_priv->psr.psr2_support ? "supported" : "not supported");
3895                 }
3896         }
3897
3898         DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
3899                       yesno(intel_dp_source_supports_hbr2(intel_dp)),
3900                       yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
3901
3902         /* Intermediate frequency support */
3903         if (is_edp(intel_dp) &&
3904             (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3905             (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3906             (rev >= 0x03)) { /* eDp v1.4 or higher */
3907                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3908                 int i;
3909
3910                 intel_dp_dpcd_read_wake(&intel_dp->aux,
3911                                 DP_SUPPORTED_LINK_RATES,
3912                                 sink_rates,
3913                                 sizeof(sink_rates));
3914
3915                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3916                         int val = le16_to_cpu(sink_rates[i]);
3917
3918                         if (val == 0)
3919                                 break;
3920
3921                         /* Value read is in kHz while drm clock is saved in deca-kHz */
3922                         intel_dp->sink_rates[i] = (val * 200) / 10;
3923                 }
3924                 intel_dp->num_sink_rates = i;
3925         }
3926
3927         intel_dp_print_rates(intel_dp);
3928
3929         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3930               DP_DWN_STRM_PORT_PRESENT))
3931                 return true; /* native DP sink */
3932
3933         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3934                 return true; /* no per-port downstream info */
3935
3936         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3937                                     intel_dp->downstream_ports,
3938                                     DP_MAX_DOWNSTREAM_PORTS) < 0)
3939                 return false; /* downstream port status fetch failed */
3940
3941         return true;
3942 }
3943
3944 static void
3945 intel_dp_probe_oui(struct intel_dp *intel_dp)
3946 {
3947         u8 buf[3];
3948
3949         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3950                 return;
3951
3952         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3953                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3954                               buf[0], buf[1], buf[2]);
3955
3956         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3957                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3958                               buf[0], buf[1], buf[2]);
3959 }
3960
3961 static bool
3962 intel_dp_probe_mst(struct intel_dp *intel_dp)
3963 {
3964         u8 buf[1];
3965
3966         if (!intel_dp->can_mst)
3967                 return false;
3968
3969         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3970                 return false;
3971
3972         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3973                 if (buf[0] & DP_MST_CAP) {
3974                         DRM_DEBUG_KMS("Sink is MST capable\n");
3975                         intel_dp->is_mst = true;
3976                 } else {
3977                         DRM_DEBUG_KMS("Sink is not MST capable\n");
3978                         intel_dp->is_mst = false;
3979                 }
3980         }
3981
3982         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3983         return intel_dp->is_mst;
3984 }
3985
3986 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3987 {
3988         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3989         struct drm_device *dev = dig_port->base.base.dev;
3990         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3991         u8 buf;
3992         int ret = 0;
3993         int count = 0;
3994         int attempts = 10;
3995
3996         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3997                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3998                 ret = -EIO;
3999                 goto out;
4000         }
4001
4002         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4003                                buf & ~DP_TEST_SINK_START) < 0) {
4004                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
4005                 ret = -EIO;
4006                 goto out;
4007         }
4008
4009         do {
4010                 intel_wait_for_vblank(dev, intel_crtc->pipe);
4011
4012                 if (drm_dp_dpcd_readb(&intel_dp->aux,
4013                                       DP_TEST_SINK_MISC, &buf) < 0) {
4014                         ret = -EIO;
4015                         goto out;
4016                 }
4017                 count = buf & DP_TEST_COUNT_MASK;
4018         } while (--attempts && count);
4019
4020         if (attempts == 0) {
4021                 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
4022                 ret = -ETIMEDOUT;
4023         }
4024
4025  out:
4026         hsw_enable_ips(intel_crtc);
4027         return ret;
4028 }
4029
4030 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
4031 {
4032         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4033         struct drm_device *dev = dig_port->base.base.dev;
4034         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4035         u8 buf;
4036         int ret;
4037
4038         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
4039                 return -EIO;
4040
4041         if (!(buf & DP_TEST_CRC_SUPPORTED))
4042                 return -ENOTTY;
4043
4044         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4045                 return -EIO;
4046
4047         if (buf & DP_TEST_SINK_START) {
4048                 ret = intel_dp_sink_crc_stop(intel_dp);
4049                 if (ret)
4050                         return ret;
4051         }
4052
4053         hsw_disable_ips(intel_crtc);
4054
4055         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4056                                buf | DP_TEST_SINK_START) < 0) {
4057                 hsw_enable_ips(intel_crtc);
4058                 return -EIO;
4059         }
4060
4061         intel_wait_for_vblank(dev, intel_crtc->pipe);
4062         return 0;
4063 }
4064
4065 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4066 {
4067         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4068         struct drm_device *dev = dig_port->base.base.dev;
4069         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4070         u8 buf;
4071         int count, ret;
4072         int attempts = 6;
4073
4074         ret = intel_dp_sink_crc_start(intel_dp);
4075         if (ret)
4076                 return ret;
4077
4078         do {
4079                 intel_wait_for_vblank(dev, intel_crtc->pipe);
4080
4081                 if (drm_dp_dpcd_readb(&intel_dp->aux,
4082                                       DP_TEST_SINK_MISC, &buf) < 0) {
4083                         ret = -EIO;
4084                         goto stop;
4085                 }
4086                 count = buf & DP_TEST_COUNT_MASK;
4087
4088         } while (--attempts && count == 0);
4089
4090         if (attempts == 0) {
4091                 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
4092                 ret = -ETIMEDOUT;
4093                 goto stop;
4094         }
4095
4096         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
4097                 ret = -EIO;
4098                 goto stop;
4099         }
4100
4101 stop:
4102         intel_dp_sink_crc_stop(intel_dp);
4103         return ret;
4104 }
4105
4106 static bool
4107 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4108 {
4109         return intel_dp_dpcd_read_wake(&intel_dp->aux,
4110                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
4111                                        sink_irq_vector, 1) == 1;
4112 }
4113
4114 static bool
4115 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4116 {
4117         int ret;
4118
4119         ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4120                                              DP_SINK_COUNT_ESI,
4121                                              sink_irq_vector, 14);
4122         if (ret != 14)
4123                 return false;
4124
4125         return true;
4126 }
4127
4128 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4129 {
4130         uint8_t test_result = DP_TEST_ACK;
4131         return test_result;
4132 }
4133
4134 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4135 {
4136         uint8_t test_result = DP_TEST_NAK;
4137         return test_result;
4138 }
4139
4140 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4141 {
4142         uint8_t test_result = DP_TEST_NAK;
4143         struct intel_connector *intel_connector = intel_dp->attached_connector;
4144         struct drm_connector *connector = &intel_connector->base;
4145
4146         if (intel_connector->detect_edid == NULL ||
4147             connector->edid_corrupt ||
4148             intel_dp->aux.i2c_defer_count > 6) {
4149                 /* Check EDID read for NACKs, DEFERs and corruption
4150                  * (DP CTS 1.2 Core r1.1)
4151                  *    4.2.2.4 : Failed EDID read, I2C_NAK
4152                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
4153                  *    4.2.2.6 : EDID corruption detected
4154                  * Use failsafe mode for all cases
4155                  */
4156                 if (intel_dp->aux.i2c_nack_count > 0 ||
4157                         intel_dp->aux.i2c_defer_count > 0)
4158                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4159                                       intel_dp->aux.i2c_nack_count,
4160                                       intel_dp->aux.i2c_defer_count);
4161                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4162         } else {
4163                 struct edid *block = intel_connector->detect_edid;
4164
4165                 /* We have to write the checksum
4166                  * of the last block read
4167                  */
4168                 block += intel_connector->detect_edid->extensions;
4169
4170                 if (!drm_dp_dpcd_write(&intel_dp->aux,
4171                                         DP_TEST_EDID_CHECKSUM,
4172                                         &block->checksum,
4173                                         1))
4174                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4175
4176                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4177                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4178         }
4179
4180         /* Set test active flag here so userspace doesn't interrupt things */
4181         intel_dp->compliance_test_active = 1;
4182
4183         return test_result;
4184 }
4185
4186 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4187 {
4188         uint8_t test_result = DP_TEST_NAK;
4189         return test_result;
4190 }
4191
4192 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4193 {
4194         uint8_t response = DP_TEST_NAK;
4195         uint8_t rxdata = 0;
4196         int status = 0;
4197
4198         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4199         if (status <= 0) {
4200                 DRM_DEBUG_KMS("Could not read test request from sink\n");
4201                 goto update_status;
4202         }
4203
4204         switch (rxdata) {
4205         case DP_TEST_LINK_TRAINING:
4206                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4207                 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4208                 response = intel_dp_autotest_link_training(intel_dp);
4209                 break;
4210         case DP_TEST_LINK_VIDEO_PATTERN:
4211                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4212                 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4213                 response = intel_dp_autotest_video_pattern(intel_dp);
4214                 break;
4215         case DP_TEST_LINK_EDID_READ:
4216                 DRM_DEBUG_KMS("EDID test requested\n");
4217                 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4218                 response = intel_dp_autotest_edid(intel_dp);
4219                 break;
4220         case DP_TEST_LINK_PHY_TEST_PATTERN:
4221                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4222                 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4223                 response = intel_dp_autotest_phy_pattern(intel_dp);
4224                 break;
4225         default:
4226                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4227                 break;
4228         }
4229
4230 update_status:
4231         status = drm_dp_dpcd_write(&intel_dp->aux,
4232                                    DP_TEST_RESPONSE,
4233                                    &response, 1);
4234         if (status <= 0)
4235                 DRM_DEBUG_KMS("Could not write test response to sink\n");
4236 }
4237
4238 static int
4239 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4240 {
4241         bool bret;
4242
4243         if (intel_dp->is_mst) {
4244                 u8 esi[16] = { 0 };
4245                 int ret = 0;
4246                 int retry;
4247                 bool handled;
4248                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4249 go_again:
4250                 if (bret == true) {
4251
4252                         /* check link status - esi[10] = 0x200c */
4253                         if (intel_dp->active_mst_links &&
4254                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4255                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4256                                 intel_dp_start_link_train(intel_dp);
4257                                 intel_dp_stop_link_train(intel_dp);
4258                         }
4259
4260                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
4261                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4262
4263                         if (handled) {
4264                                 for (retry = 0; retry < 3; retry++) {
4265                                         int wret;
4266                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
4267                                                                  DP_SINK_COUNT_ESI+1,
4268                                                                  &esi[1], 3);
4269                                         if (wret == 3) {
4270                                                 break;
4271                                         }
4272                                 }
4273
4274                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4275                                 if (bret == true) {
4276                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4277                                         goto go_again;
4278                                 }
4279                         } else
4280                                 ret = 0;
4281
4282                         return ret;
4283                 } else {
4284                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4285                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4286                         intel_dp->is_mst = false;
4287                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4288                         /* send a hotplug event */
4289                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4290                 }
4291         }
4292         return -EINVAL;
4293 }
4294
4295 /*
4296  * According to DP spec
4297  * 5.1.2:
4298  *  1. Read DPCD
4299  *  2. Configure link according to Receiver Capabilities
4300  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4301  *  4. Check link status on receipt of hot-plug interrupt
4302  */
4303 static void
4304 intel_dp_check_link_status(struct intel_dp *intel_dp)
4305 {
4306         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4307         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4308         u8 sink_irq_vector;
4309         u8 link_status[DP_LINK_STATUS_SIZE];
4310
4311         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4312
4313         /*
4314          * Clearing compliance test variables to allow capturing
4315          * of values for next automated test request.
4316          */
4317         intel_dp->compliance_test_active = 0;
4318         intel_dp->compliance_test_type = 0;
4319         intel_dp->compliance_test_data = 0;
4320
4321         if (!intel_encoder->base.crtc)
4322                 return;
4323
4324         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4325                 return;
4326
4327         /* Try to read receiver status if the link appears to be up */
4328         if (!intel_dp_get_link_status(intel_dp, link_status)) {
4329                 return;
4330         }
4331
4332         /* Now read the DPCD to see if it's actually running */
4333         if (!intel_dp_get_dpcd(intel_dp)) {
4334                 return;
4335         }
4336
4337         /* Try to read the source of the interrupt */
4338         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4339             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4340                 /* Clear interrupt source */
4341                 drm_dp_dpcd_writeb(&intel_dp->aux,
4342                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4343                                    sink_irq_vector);
4344
4345                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4346                         DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4347                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4348                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4349         }
4350
4351         /* if link training is requested we should perform it always */
4352         if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4353                 (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4354                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4355                               intel_encoder->base.name);
4356                 intel_dp_start_link_train(intel_dp);
4357                 intel_dp_stop_link_train(intel_dp);
4358         }
4359 }
4360
4361 /* XXX this is probably wrong for multiple downstream ports */
4362 static enum drm_connector_status
4363 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4364 {
4365         uint8_t *dpcd = intel_dp->dpcd;
4366         uint8_t type;
4367
4368         if (!intel_dp_get_dpcd(intel_dp))
4369                 return connector_status_disconnected;
4370
4371         /* if there's no downstream port, we're done */
4372         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4373                 return connector_status_connected;
4374
4375         /* If we're HPD-aware, SINK_COUNT changes dynamically */
4376         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4377             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4378                 uint8_t reg;
4379
4380                 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4381                                             &reg, 1) < 0)
4382                         return connector_status_unknown;
4383
4384                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4385                                               : connector_status_disconnected;
4386         }
4387
4388         /* If no HPD, poke DDC gently */
4389         if (drm_probe_ddc(&intel_dp->aux.ddc))
4390                 return connector_status_connected;
4391
4392         /* Well we tried, say unknown for unreliable port types */
4393         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4394                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4395                 if (type == DP_DS_PORT_TYPE_VGA ||
4396                     type == DP_DS_PORT_TYPE_NON_EDID)
4397                         return connector_status_unknown;
4398         } else {
4399                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4400                         DP_DWN_STRM_PORT_TYPE_MASK;
4401                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4402                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4403                         return connector_status_unknown;
4404         }
4405
4406         /* Anything else is out of spec, warn and ignore */
4407         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4408         return connector_status_disconnected;
4409 }
4410
4411 static enum drm_connector_status
4412 edp_detect(struct intel_dp *intel_dp)
4413 {
4414         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4415         enum drm_connector_status status;
4416
4417         status = intel_panel_detect(dev);
4418         if (status == connector_status_unknown)
4419                 status = connector_status_connected;
4420
4421         return status;
4422 }
4423
4424 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4425                                        struct intel_digital_port *port)
4426 {
4427         u32 bit;
4428
4429         switch (port->port) {
4430         case PORT_A:
4431                 return true;
4432         case PORT_B:
4433                 bit = SDE_PORTB_HOTPLUG;
4434                 break;
4435         case PORT_C:
4436                 bit = SDE_PORTC_HOTPLUG;
4437                 break;
4438         case PORT_D:
4439                 bit = SDE_PORTD_HOTPLUG;
4440                 break;
4441         default:
4442                 MISSING_CASE(port->port);
4443                 return false;
4444         }
4445
4446         return I915_READ(SDEISR) & bit;
4447 }
4448
4449 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4450                                        struct intel_digital_port *port)
4451 {
4452         u32 bit;
4453
4454         switch (port->port) {
4455         case PORT_A:
4456                 return true;
4457         case PORT_B:
4458                 bit = SDE_PORTB_HOTPLUG_CPT;
4459                 break;
4460         case PORT_C:
4461                 bit = SDE_PORTC_HOTPLUG_CPT;
4462                 break;
4463         case PORT_D:
4464                 bit = SDE_PORTD_HOTPLUG_CPT;
4465                 break;
4466         case PORT_E:
4467                 bit = SDE_PORTE_HOTPLUG_SPT;
4468                 break;
4469         default:
4470                 MISSING_CASE(port->port);
4471                 return false;
4472         }
4473
4474         return I915_READ(SDEISR) & bit;
4475 }
4476
4477 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4478                                        struct intel_digital_port *port)
4479 {
4480         u32 bit;
4481
4482         switch (port->port) {
4483         case PORT_B:
4484                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4485                 break;
4486         case PORT_C:
4487                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4488                 break;
4489         case PORT_D:
4490                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4491                 break;
4492         default:
4493                 MISSING_CASE(port->port);
4494                 return false;
4495         }
4496
4497         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4498 }
4499
4500 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4501                                         struct intel_digital_port *port)
4502 {
4503         u32 bit;
4504
4505         switch (port->port) {
4506         case PORT_B:
4507                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4508                 break;
4509         case PORT_C:
4510                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4511                 break;
4512         case PORT_D:
4513                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4514                 break;
4515         default:
4516                 MISSING_CASE(port->port);
4517                 return false;
4518         }
4519
4520         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4521 }
4522
4523 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4524                                        struct intel_digital_port *intel_dig_port)
4525 {
4526         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4527         enum port port;
4528         u32 bit;
4529
4530         intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4531         switch (port) {
4532         case PORT_A:
4533                 bit = BXT_DE_PORT_HP_DDIA;
4534                 break;
4535         case PORT_B:
4536                 bit = BXT_DE_PORT_HP_DDIB;
4537                 break;
4538         case PORT_C:
4539                 bit = BXT_DE_PORT_HP_DDIC;
4540                 break;
4541         default:
4542                 MISSING_CASE(port);
4543                 return false;
4544         }
4545
4546         return I915_READ(GEN8_DE_PORT_ISR) & bit;
4547 }
4548
4549 /*
4550  * intel_digital_port_connected - is the specified port connected?
4551  * @dev_priv: i915 private structure
4552  * @port: the port to test
4553  *
4554  * Return %true if @port is connected, %false otherwise.
4555  */
4556 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4557                                          struct intel_digital_port *port)
4558 {
4559         if (HAS_PCH_IBX(dev_priv))
4560                 return ibx_digital_port_connected(dev_priv, port);
4561         else if (HAS_PCH_SPLIT(dev_priv))
4562                 return cpt_digital_port_connected(dev_priv, port);
4563         else if (IS_BROXTON(dev_priv))
4564                 return bxt_digital_port_connected(dev_priv, port);
4565         else if (IS_GM45(dev_priv))
4566                 return gm45_digital_port_connected(dev_priv, port);
4567         else
4568                 return g4x_digital_port_connected(dev_priv, port);
4569 }
4570
4571 static struct edid *
4572 intel_dp_get_edid(struct intel_dp *intel_dp)
4573 {
4574         struct intel_connector *intel_connector = intel_dp->attached_connector;
4575
4576         /* use cached edid if we have one */
4577         if (intel_connector->edid) {
4578                 /* invalid edid */
4579                 if (IS_ERR(intel_connector->edid))
4580                         return NULL;
4581
4582                 return drm_edid_duplicate(intel_connector->edid);
4583         } else
4584                 return drm_get_edid(&intel_connector->base,
4585                                     &intel_dp->aux.ddc);
4586 }
4587
4588 static void
4589 intel_dp_set_edid(struct intel_dp *intel_dp)
4590 {
4591         struct intel_connector *intel_connector = intel_dp->attached_connector;
4592         struct edid *edid;
4593
4594         edid = intel_dp_get_edid(intel_dp);
4595         intel_connector->detect_edid = edid;
4596
4597         if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4598                 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4599         else
4600                 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4601 }
4602
4603 static void
4604 intel_dp_unset_edid(struct intel_dp *intel_dp)
4605 {
4606         struct intel_connector *intel_connector = intel_dp->attached_connector;
4607
4608         kfree(intel_connector->detect_edid);
4609         intel_connector->detect_edid = NULL;
4610
4611         intel_dp->has_audio = false;
4612 }
4613
4614 static enum drm_connector_status
4615 intel_dp_detect(struct drm_connector *connector, bool force)
4616 {
4617         struct intel_dp *intel_dp = intel_attached_dp(connector);
4618         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4619         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4620         struct drm_device *dev = connector->dev;
4621         enum drm_connector_status status;
4622         enum intel_display_power_domain power_domain;
4623         bool ret;
4624         u8 sink_irq_vector;
4625
4626         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4627                       connector->base.id, connector->name);
4628         intel_dp_unset_edid(intel_dp);
4629
4630         if (intel_dp->is_mst) {
4631                 /* MST devices are disconnected from a monitor POV */
4632                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4633                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4634                 return connector_status_disconnected;
4635         }
4636
4637         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4638         intel_display_power_get(to_i915(dev), power_domain);
4639
4640         /* Can't disconnect eDP, but you can close the lid... */
4641         if (is_edp(intel_dp))
4642                 status = edp_detect(intel_dp);
4643         else if (intel_digital_port_connected(to_i915(dev),
4644                                               dp_to_dig_port(intel_dp)))
4645                 status = intel_dp_detect_dpcd(intel_dp);
4646         else
4647                 status = connector_status_disconnected;
4648
4649         if (status != connector_status_connected) {
4650                 intel_dp->compliance_test_active = 0;
4651                 intel_dp->compliance_test_type = 0;
4652                 intel_dp->compliance_test_data = 0;
4653
4654                 goto out;
4655         }
4656
4657         intel_dp_probe_oui(intel_dp);
4658
4659         ret = intel_dp_probe_mst(intel_dp);
4660         if (ret) {
4661                 /* if we are in MST mode then this connector
4662                    won't appear connected or have anything with EDID on it */
4663                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4664                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4665                 status = connector_status_disconnected;
4666                 goto out;
4667         }
4668
4669         /*
4670          * Clearing NACK and defer counts to get their exact values
4671          * while reading EDID which are required by Compliance tests
4672          * 4.2.2.4 and 4.2.2.5
4673          */
4674         intel_dp->aux.i2c_nack_count = 0;
4675         intel_dp->aux.i2c_defer_count = 0;
4676
4677         intel_dp_set_edid(intel_dp);
4678
4679         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4680                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4681         status = connector_status_connected;
4682
4683         /* Try to read the source of the interrupt */
4684         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4685             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4686                 /* Clear interrupt source */
4687                 drm_dp_dpcd_writeb(&intel_dp->aux,
4688                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4689                                    sink_irq_vector);
4690
4691                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4692                         intel_dp_handle_test_request(intel_dp);
4693                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4694                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4695         }
4696
4697 out:
4698         intel_display_power_put(to_i915(dev), power_domain);
4699         return status;
4700 }
4701
4702 static void
4703 intel_dp_force(struct drm_connector *connector)
4704 {
4705         struct intel_dp *intel_dp = intel_attached_dp(connector);
4706         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4707         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4708         enum intel_display_power_domain power_domain;
4709
4710         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4711                       connector->base.id, connector->name);
4712         intel_dp_unset_edid(intel_dp);
4713
4714         if (connector->status != connector_status_connected)
4715                 return;
4716
4717         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4718         intel_display_power_get(dev_priv, power_domain);
4719
4720         intel_dp_set_edid(intel_dp);
4721
4722         intel_display_power_put(dev_priv, power_domain);
4723
4724         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4725                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4726 }
4727
4728 static int intel_dp_get_modes(struct drm_connector *connector)
4729 {
4730         struct intel_connector *intel_connector = to_intel_connector(connector);
4731         struct edid *edid;
4732
4733         edid = intel_connector->detect_edid;
4734         if (edid) {
4735                 int ret = intel_connector_update_modes(connector, edid);
4736                 if (ret)
4737                         return ret;
4738         }
4739
4740         /* if eDP has no EDID, fall back to fixed mode */
4741         if (is_edp(intel_attached_dp(connector)) &&
4742             intel_connector->panel.fixed_mode) {
4743                 struct drm_display_mode *mode;
4744
4745                 mode = drm_mode_duplicate(connector->dev,
4746                                           intel_connector->panel.fixed_mode);
4747                 if (mode) {
4748                         drm_mode_probed_add(connector, mode);
4749                         return 1;
4750                 }
4751         }
4752
4753         return 0;
4754 }
4755
4756 static bool
4757 intel_dp_detect_audio(struct drm_connector *connector)
4758 {
4759         bool has_audio = false;
4760         struct edid *edid;
4761
4762         edid = to_intel_connector(connector)->detect_edid;
4763         if (edid)
4764                 has_audio = drm_detect_monitor_audio(edid);
4765
4766         return has_audio;
4767 }
4768
4769 static int
4770 intel_dp_set_property(struct drm_connector *connector,
4771                       struct drm_property *property,
4772                       uint64_t val)
4773 {
4774         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4775         struct intel_connector *intel_connector = to_intel_connector(connector);
4776         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4777         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4778         int ret;
4779
4780         ret = drm_object_property_set_value(&connector->base, property, val);
4781         if (ret)
4782                 return ret;
4783
4784         if (property == dev_priv->force_audio_property) {
4785                 int i = val;
4786                 bool has_audio;
4787
4788                 if (i == intel_dp->force_audio)
4789                         return 0;
4790
4791                 intel_dp->force_audio = i;
4792
4793                 if (i == HDMI_AUDIO_AUTO)
4794                         has_audio = intel_dp_detect_audio(connector);
4795                 else
4796                         has_audio = (i == HDMI_AUDIO_ON);
4797
4798                 if (has_audio == intel_dp->has_audio)
4799                         return 0;
4800
4801                 intel_dp->has_audio = has_audio;
4802                 goto done;
4803         }
4804
4805         if (property == dev_priv->broadcast_rgb_property) {
4806                 bool old_auto = intel_dp->color_range_auto;
4807                 bool old_range = intel_dp->limited_color_range;
4808
4809                 switch (val) {
4810                 case INTEL_BROADCAST_RGB_AUTO:
4811                         intel_dp->color_range_auto = true;
4812                         break;
4813                 case INTEL_BROADCAST_RGB_FULL:
4814                         intel_dp->color_range_auto = false;
4815                         intel_dp->limited_color_range = false;
4816                         break;
4817                 case INTEL_BROADCAST_RGB_LIMITED:
4818                         intel_dp->color_range_auto = false;
4819                         intel_dp->limited_color_range = true;
4820                         break;
4821                 default:
4822                         return -EINVAL;
4823                 }
4824
4825                 if (old_auto == intel_dp->color_range_auto &&
4826                     old_range == intel_dp->limited_color_range)
4827                         return 0;
4828
4829                 goto done;
4830         }
4831
4832         if (is_edp(intel_dp) &&
4833             property == connector->dev->mode_config.scaling_mode_property) {
4834                 if (val == DRM_MODE_SCALE_NONE) {
4835                         DRM_DEBUG_KMS("no scaling not supported\n");
4836                         return -EINVAL;
4837                 }
4838
4839                 if (intel_connector->panel.fitting_mode == val) {
4840                         /* the eDP scaling property is not changed */
4841                         return 0;
4842                 }
4843                 intel_connector->panel.fitting_mode = val;
4844
4845                 goto done;
4846         }
4847
4848         return -EINVAL;
4849
4850 done:
4851         if (intel_encoder->base.crtc)
4852                 intel_crtc_restore_mode(intel_encoder->base.crtc);
4853
4854         return 0;
4855 }
4856
4857 static void
4858 intel_dp_connector_destroy(struct drm_connector *connector)
4859 {
4860         struct intel_connector *intel_connector = to_intel_connector(connector);
4861
4862         kfree(intel_connector->detect_edid);
4863
4864         if (!IS_ERR_OR_NULL(intel_connector->edid))
4865                 kfree(intel_connector->edid);
4866
4867         /* Can't call is_edp() since the encoder may have been destroyed
4868          * already. */
4869         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4870                 intel_panel_fini(&intel_connector->panel);
4871
4872         drm_connector_cleanup(connector);
4873         kfree(connector);
4874 }
4875
4876 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4877 {
4878         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4879         struct intel_dp *intel_dp = &intel_dig_port->dp;
4880
4881         intel_dp_mst_encoder_cleanup(intel_dig_port);
4882         if (is_edp(intel_dp)) {
4883                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4884                 /*
4885                  * vdd might still be enabled do to the delayed vdd off.
4886                  * Make sure vdd is actually turned off here.
4887                  */
4888                 pps_lock(intel_dp);
4889                 edp_panel_vdd_off_sync(intel_dp);
4890                 pps_unlock(intel_dp);
4891
4892                 if (intel_dp->edp_notifier.notifier_call) {
4893                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4894                         intel_dp->edp_notifier.notifier_call = NULL;
4895                 }
4896         }
4897         drm_encoder_cleanup(encoder);
4898         kfree(intel_dig_port);
4899 }
4900
4901 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4902 {
4903         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4904
4905         if (!is_edp(intel_dp))
4906                 return;
4907
4908         /*
4909          * vdd might still be enabled do to the delayed vdd off.
4910          * Make sure vdd is actually turned off here.
4911          */
4912         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4913         pps_lock(intel_dp);
4914         edp_panel_vdd_off_sync(intel_dp);
4915         pps_unlock(intel_dp);
4916 }
4917
4918 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4919 {
4920         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4921         struct drm_device *dev = intel_dig_port->base.base.dev;
4922         struct drm_i915_private *dev_priv = dev->dev_private;
4923         enum intel_display_power_domain power_domain;
4924
4925         lockdep_assert_held(&dev_priv->pps_mutex);
4926
4927         if (!edp_have_panel_vdd(intel_dp))
4928                 return;
4929
4930         /*
4931          * The VDD bit needs a power domain reference, so if the bit is
4932          * already enabled when we boot or resume, grab this reference and
4933          * schedule a vdd off, so we don't hold on to the reference
4934          * indefinitely.
4935          */
4936         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4937         power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4938         intel_display_power_get(dev_priv, power_domain);
4939
4940         edp_panel_vdd_schedule_off(intel_dp);
4941 }
4942
4943 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4944 {
4945         struct intel_dp *intel_dp;
4946
4947         if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4948                 return;
4949
4950         intel_dp = enc_to_intel_dp(encoder);
4951
4952         pps_lock(intel_dp);
4953
4954         /*
4955          * Read out the current power sequencer assignment,
4956          * in case the BIOS did something with it.
4957          */
4958         if (IS_VALLEYVIEW(encoder->dev) || IS_CHERRYVIEW(encoder->dev))
4959                 vlv_initial_power_sequencer_setup(intel_dp);
4960
4961         intel_edp_panel_vdd_sanitize(intel_dp);
4962
4963         pps_unlock(intel_dp);
4964 }
4965
4966 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4967         .dpms = drm_atomic_helper_connector_dpms,
4968         .detect = intel_dp_detect,
4969         .force = intel_dp_force,
4970         .fill_modes = drm_helper_probe_single_connector_modes,
4971         .set_property = intel_dp_set_property,
4972         .atomic_get_property = intel_connector_atomic_get_property,
4973         .destroy = intel_dp_connector_destroy,
4974         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4975         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4976 };
4977
4978 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4979         .get_modes = intel_dp_get_modes,
4980         .mode_valid = intel_dp_mode_valid,
4981         .best_encoder = intel_best_encoder,
4982 };
4983
4984 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4985         .reset = intel_dp_encoder_reset,
4986         .destroy = intel_dp_encoder_destroy,
4987 };
4988
4989 enum irqreturn
4990 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4991 {
4992         struct intel_dp *intel_dp = &intel_dig_port->dp;
4993         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4994         struct drm_device *dev = intel_dig_port->base.base.dev;
4995         struct drm_i915_private *dev_priv = dev->dev_private;
4996         enum intel_display_power_domain power_domain;
4997         enum irqreturn ret = IRQ_NONE;
4998
4999         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
5000             intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
5001                 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
5002
5003         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
5004                 /*
5005                  * vdd off can generate a long pulse on eDP which
5006                  * would require vdd on to handle it, and thus we
5007                  * would end up in an endless cycle of
5008                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5009                  */
5010                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5011                               port_name(intel_dig_port->port));
5012                 return IRQ_HANDLED;
5013         }
5014
5015         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5016                       port_name(intel_dig_port->port),
5017                       long_hpd ? "long" : "short");
5018
5019         power_domain = intel_display_port_aux_power_domain(intel_encoder);
5020         intel_display_power_get(dev_priv, power_domain);
5021
5022         if (long_hpd) {
5023                 /* indicate that we need to restart link training */
5024                 intel_dp->train_set_valid = false;
5025
5026                 if (!intel_digital_port_connected(dev_priv, intel_dig_port))
5027                         goto mst_fail;
5028
5029                 if (!intel_dp_get_dpcd(intel_dp)) {
5030                         goto mst_fail;
5031                 }
5032
5033                 intel_dp_probe_oui(intel_dp);
5034
5035                 if (!intel_dp_probe_mst(intel_dp)) {
5036                         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5037                         intel_dp_check_link_status(intel_dp);
5038                         drm_modeset_unlock(&dev->mode_config.connection_mutex);
5039                         goto mst_fail;
5040                 }
5041         } else {
5042                 if (intel_dp->is_mst) {
5043                         if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
5044                                 goto mst_fail;
5045                 }
5046
5047                 if (!intel_dp->is_mst) {
5048                         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5049                         intel_dp_check_link_status(intel_dp);
5050                         drm_modeset_unlock(&dev->mode_config.connection_mutex);
5051                 }
5052         }
5053
5054         ret = IRQ_HANDLED;
5055
5056         goto put_power;
5057 mst_fail:
5058         /* if we were in MST mode, and device is not there get out of MST mode */
5059         if (intel_dp->is_mst) {
5060                 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5061                 intel_dp->is_mst = false;
5062                 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
5063         }
5064 put_power:
5065         intel_display_power_put(dev_priv, power_domain);
5066
5067         return ret;
5068 }
5069
5070 /* check the VBT to see whether the eDP is on another port */
5071 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5072 {
5073         struct drm_i915_private *dev_priv = dev->dev_private;
5074         union child_device_config *p_child;
5075         int i;
5076         static const short port_mapping[] = {
5077                 [PORT_B] = DVO_PORT_DPB,
5078                 [PORT_C] = DVO_PORT_DPC,
5079                 [PORT_D] = DVO_PORT_DPD,
5080                 [PORT_E] = DVO_PORT_DPE,
5081         };
5082
5083         /*
5084          * eDP not supported on g4x. so bail out early just
5085          * for a bit extra safety in case the VBT is bonkers.
5086          */
5087         if (INTEL_INFO(dev)->gen < 5)
5088                 return false;
5089
5090         if (port == PORT_A)
5091                 return true;
5092
5093         if (!dev_priv->vbt.child_dev_num)
5094                 return false;
5095
5096         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
5097                 p_child = dev_priv->vbt.child_dev + i;
5098
5099                 if (p_child->common.dvo_port == port_mapping[port] &&
5100                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
5101                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
5102                         return true;
5103         }
5104         return false;
5105 }
5106
5107 void
5108 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5109 {
5110         struct intel_connector *intel_connector = to_intel_connector(connector);
5111
5112         intel_attach_force_audio_property(connector);
5113         intel_attach_broadcast_rgb_property(connector);
5114         intel_dp->color_range_auto = true;
5115
5116         if (is_edp(intel_dp)) {
5117                 drm_mode_create_scaling_mode_property(connector->dev);
5118                 drm_object_attach_property(
5119                         &connector->base,
5120                         connector->dev->mode_config.scaling_mode_property,
5121                         DRM_MODE_SCALE_ASPECT);
5122                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5123         }
5124 }
5125
5126 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5127 {
5128         intel_dp->panel_power_off_time = ktime_get_boottime();
5129         intel_dp->last_power_on = jiffies;
5130         intel_dp->last_backlight_off = jiffies;
5131 }
5132
5133 static void
5134 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5135                                     struct intel_dp *intel_dp)
5136 {
5137         struct drm_i915_private *dev_priv = dev->dev_private;
5138         struct edp_power_seq cur, vbt, spec,
5139                 *final = &intel_dp->pps_delays;
5140         u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5141         i915_reg_t pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
5142
5143         lockdep_assert_held(&dev_priv->pps_mutex);
5144
5145         /* already initialized? */
5146         if (final->t11_t12 != 0)
5147                 return;
5148
5149         if (IS_BROXTON(dev)) {
5150                 /*
5151                  * TODO: BXT has 2 sets of PPS registers.
5152                  * Correct Register for Broxton need to be identified
5153                  * using VBT. hardcoding for now
5154                  */
5155                 pp_ctrl_reg = BXT_PP_CONTROL(0);
5156                 pp_on_reg = BXT_PP_ON_DELAYS(0);
5157                 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5158         } else if (HAS_PCH_SPLIT(dev)) {
5159                 pp_ctrl_reg = PCH_PP_CONTROL;
5160                 pp_on_reg = PCH_PP_ON_DELAYS;
5161                 pp_off_reg = PCH_PP_OFF_DELAYS;
5162                 pp_div_reg = PCH_PP_DIVISOR;
5163         } else {
5164                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5165
5166                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5167                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5168                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5169                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5170         }
5171
5172         /* Workaround: Need to write PP_CONTROL with the unlock key as
5173          * the very first thing. */
5174         pp_ctl = ironlake_get_pp_control(intel_dp);
5175
5176         pp_on = I915_READ(pp_on_reg);
5177         pp_off = I915_READ(pp_off_reg);
5178         if (!IS_BROXTON(dev)) {
5179                 I915_WRITE(pp_ctrl_reg, pp_ctl);
5180                 pp_div = I915_READ(pp_div_reg);
5181         }
5182
5183         /* Pull timing values out of registers */
5184         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5185                 PANEL_POWER_UP_DELAY_SHIFT;
5186
5187         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5188                 PANEL_LIGHT_ON_DELAY_SHIFT;
5189
5190         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5191                 PANEL_LIGHT_OFF_DELAY_SHIFT;
5192
5193         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5194                 PANEL_POWER_DOWN_DELAY_SHIFT;
5195
5196         if (IS_BROXTON(dev)) {
5197                 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5198                         BXT_POWER_CYCLE_DELAY_SHIFT;
5199                 if (tmp > 0)
5200                         cur.t11_t12 = (tmp - 1) * 1000;
5201                 else
5202                         cur.t11_t12 = 0;
5203         } else {
5204                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5205                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5206         }
5207
5208         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5209                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5210
5211         vbt = dev_priv->vbt.edp_pps;
5212
5213         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5214          * our hw here, which are all in 100usec. */
5215         spec.t1_t3 = 210 * 10;
5216         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5217         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5218         spec.t10 = 500 * 10;
5219         /* This one is special and actually in units of 100ms, but zero
5220          * based in the hw (so we need to add 100 ms). But the sw vbt
5221          * table multiplies it with 1000 to make it in units of 100usec,
5222          * too. */
5223         spec.t11_t12 = (510 + 100) * 10;
5224
5225         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5226                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5227
5228         /* Use the max of the register settings and vbt. If both are
5229          * unset, fall back to the spec limits. */
5230 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
5231                                        spec.field : \
5232                                        max(cur.field, vbt.field))
5233         assign_final(t1_t3);
5234         assign_final(t8);
5235         assign_final(t9);
5236         assign_final(t10);
5237         assign_final(t11_t12);
5238 #undef assign_final
5239
5240 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
5241         intel_dp->panel_power_up_delay = get_delay(t1_t3);
5242         intel_dp->backlight_on_delay = get_delay(t8);
5243         intel_dp->backlight_off_delay = get_delay(t9);
5244         intel_dp->panel_power_down_delay = get_delay(t10);
5245         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5246 #undef get_delay
5247
5248         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5249                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5250                       intel_dp->panel_power_cycle_delay);
5251
5252         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5253                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5254 }
5255
5256 static void
5257 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5258                                               struct intel_dp *intel_dp)
5259 {
5260         struct drm_i915_private *dev_priv = dev->dev_private;
5261         u32 pp_on, pp_off, pp_div, port_sel = 0;
5262         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5263         i915_reg_t pp_on_reg, pp_off_reg, pp_div_reg, pp_ctrl_reg;
5264         enum port port = dp_to_dig_port(intel_dp)->port;
5265         const struct edp_power_seq *seq = &intel_dp->pps_delays;
5266
5267         lockdep_assert_held(&dev_priv->pps_mutex);
5268
5269         if (IS_BROXTON(dev)) {
5270                 /*
5271                  * TODO: BXT has 2 sets of PPS registers.
5272                  * Correct Register for Broxton need to be identified
5273                  * using VBT. hardcoding for now
5274                  */
5275                 pp_ctrl_reg = BXT_PP_CONTROL(0);
5276                 pp_on_reg = BXT_PP_ON_DELAYS(0);
5277                 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5278
5279         } else if (HAS_PCH_SPLIT(dev)) {
5280                 pp_on_reg = PCH_PP_ON_DELAYS;
5281                 pp_off_reg = PCH_PP_OFF_DELAYS;
5282                 pp_div_reg = PCH_PP_DIVISOR;
5283         } else {
5284                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5285
5286                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5287                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5288                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5289         }
5290
5291         /*
5292          * And finally store the new values in the power sequencer. The
5293          * backlight delays are set to 1 because we do manual waits on them. For
5294          * T8, even BSpec recommends doing it. For T9, if we don't do this,
5295          * we'll end up waiting for the backlight off delay twice: once when we
5296          * do the manual sleep, and once when we disable the panel and wait for
5297          * the PP_STATUS bit to become zero.
5298          */
5299         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5300                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5301         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5302                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5303         /* Compute the divisor for the pp clock, simply match the Bspec
5304          * formula. */
5305         if (IS_BROXTON(dev)) {
5306                 pp_div = I915_READ(pp_ctrl_reg);
5307                 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5308                 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5309                                 << BXT_POWER_CYCLE_DELAY_SHIFT);
5310         } else {
5311                 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5312                 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5313                                 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5314         }
5315
5316         /* Haswell doesn't have any port selection bits for the panel
5317          * power sequencer any more. */
5318         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5319                 port_sel = PANEL_PORT_SELECT_VLV(port);
5320         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5321                 if (port == PORT_A)
5322                         port_sel = PANEL_PORT_SELECT_DPA;
5323                 else
5324                         port_sel = PANEL_PORT_SELECT_DPD;
5325         }
5326
5327         pp_on |= port_sel;
5328
5329         I915_WRITE(pp_on_reg, pp_on);
5330         I915_WRITE(pp_off_reg, pp_off);
5331         if (IS_BROXTON(dev))
5332                 I915_WRITE(pp_ctrl_reg, pp_div);
5333         else
5334                 I915_WRITE(pp_div_reg, pp_div);
5335
5336         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5337                       I915_READ(pp_on_reg),
5338                       I915_READ(pp_off_reg),
5339                       IS_BROXTON(dev) ?
5340                       (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
5341                       I915_READ(pp_div_reg));
5342 }
5343
5344 /**
5345  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5346  * @dev: DRM device
5347  * @refresh_rate: RR to be programmed
5348  *
5349  * This function gets called when refresh rate (RR) has to be changed from
5350  * one frequency to another. Switches can be between high and low RR
5351  * supported by the panel or to any other RR based on media playback (in
5352  * this case, RR value needs to be passed from user space).
5353  *
5354  * The caller of this function needs to take a lock on dev_priv->drrs.
5355  */
5356 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5357 {
5358         struct drm_i915_private *dev_priv = dev->dev_private;
5359         struct intel_encoder *encoder;
5360         struct intel_digital_port *dig_port = NULL;
5361         struct intel_dp *intel_dp = dev_priv->drrs.dp;
5362         struct intel_crtc_state *config = NULL;
5363         struct intel_crtc *intel_crtc = NULL;
5364         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5365
5366         if (refresh_rate <= 0) {
5367                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5368                 return;
5369         }
5370
5371         if (intel_dp == NULL) {
5372                 DRM_DEBUG_KMS("DRRS not supported.\n");
5373                 return;
5374         }
5375
5376         /*
5377          * FIXME: This needs proper synchronization with psr state for some
5378          * platforms that cannot have PSR and DRRS enabled at the same time.
5379          */
5380
5381         dig_port = dp_to_dig_port(intel_dp);
5382         encoder = &dig_port->base;
5383         intel_crtc = to_intel_crtc(encoder->base.crtc);
5384
5385         if (!intel_crtc) {
5386                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5387                 return;
5388         }
5389
5390         config = intel_crtc->config;
5391
5392         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5393                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5394                 return;
5395         }
5396
5397         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5398                         refresh_rate)
5399                 index = DRRS_LOW_RR;
5400
5401         if (index == dev_priv->drrs.refresh_rate_type) {
5402                 DRM_DEBUG_KMS(
5403                         "DRRS requested for previously set RR...ignoring\n");
5404                 return;
5405         }
5406
5407         if (!intel_crtc->active) {
5408                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5409                 return;
5410         }
5411
5412         if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5413                 switch (index) {
5414                 case DRRS_HIGH_RR:
5415                         intel_dp_set_m_n(intel_crtc, M1_N1);
5416                         break;
5417                 case DRRS_LOW_RR:
5418                         intel_dp_set_m_n(intel_crtc, M2_N2);
5419                         break;
5420                 case DRRS_MAX_RR:
5421                 default:
5422                         DRM_ERROR("Unsupported refreshrate type\n");
5423                 }
5424         } else if (INTEL_INFO(dev)->gen > 6) {
5425                 i915_reg_t reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5426                 u32 val;
5427
5428                 val = I915_READ(reg);
5429                 if (index > DRRS_HIGH_RR) {
5430                         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5431                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5432                         else
5433                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5434                 } else {
5435                         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5436                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5437                         else
5438                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5439                 }
5440                 I915_WRITE(reg, val);
5441         }
5442
5443         dev_priv->drrs.refresh_rate_type = index;
5444
5445         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5446 }
5447
5448 /**
5449  * intel_edp_drrs_enable - init drrs struct if supported
5450  * @intel_dp: DP struct
5451  *
5452  * Initializes frontbuffer_bits and drrs.dp
5453  */
5454 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5455 {
5456         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5457         struct drm_i915_private *dev_priv = dev->dev_private;
5458         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5459         struct drm_crtc *crtc = dig_port->base.base.crtc;
5460         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5461
5462         if (!intel_crtc->config->has_drrs) {
5463                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5464                 return;
5465         }
5466
5467         mutex_lock(&dev_priv->drrs.mutex);
5468         if (WARN_ON(dev_priv->drrs.dp)) {
5469                 DRM_ERROR("DRRS already enabled\n");
5470                 goto unlock;
5471         }
5472
5473         dev_priv->drrs.busy_frontbuffer_bits = 0;
5474
5475         dev_priv->drrs.dp = intel_dp;
5476
5477 unlock:
5478         mutex_unlock(&dev_priv->drrs.mutex);
5479 }
5480
5481 /**
5482  * intel_edp_drrs_disable - Disable DRRS
5483  * @intel_dp: DP struct
5484  *
5485  */
5486 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5487 {
5488         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5489         struct drm_i915_private *dev_priv = dev->dev_private;
5490         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5491         struct drm_crtc *crtc = dig_port->base.base.crtc;
5492         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5493
5494         if (!intel_crtc->config->has_drrs)
5495                 return;
5496
5497         mutex_lock(&dev_priv->drrs.mutex);
5498         if (!dev_priv->drrs.dp) {
5499                 mutex_unlock(&dev_priv->drrs.mutex);
5500                 return;
5501         }
5502
5503         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5504                 intel_dp_set_drrs_state(dev_priv->dev,
5505                         intel_dp->attached_connector->panel.
5506                         fixed_mode->vrefresh);
5507
5508         dev_priv->drrs.dp = NULL;
5509         mutex_unlock(&dev_priv->drrs.mutex);
5510
5511         cancel_delayed_work_sync(&dev_priv->drrs.work);
5512 }
5513
5514 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5515 {
5516         struct drm_i915_private *dev_priv =
5517                 container_of(work, typeof(*dev_priv), drrs.work.work);
5518         struct intel_dp *intel_dp;
5519
5520         mutex_lock(&dev_priv->drrs.mutex);
5521
5522         intel_dp = dev_priv->drrs.dp;
5523
5524         if (!intel_dp)
5525                 goto unlock;
5526
5527         /*
5528          * The delayed work can race with an invalidate hence we need to
5529          * recheck.
5530          */
5531
5532         if (dev_priv->drrs.busy_frontbuffer_bits)
5533                 goto unlock;
5534
5535         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5536                 intel_dp_set_drrs_state(dev_priv->dev,
5537                         intel_dp->attached_connector->panel.
5538                         downclock_mode->vrefresh);
5539
5540 unlock:
5541         mutex_unlock(&dev_priv->drrs.mutex);
5542 }
5543
5544 /**
5545  * intel_edp_drrs_invalidate - Disable Idleness DRRS
5546  * @dev: DRM device
5547  * @frontbuffer_bits: frontbuffer plane tracking bits
5548  *
5549  * This function gets called everytime rendering on the given planes start.
5550  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5551  *
5552  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5553  */
5554 void intel_edp_drrs_invalidate(struct drm_device *dev,
5555                 unsigned frontbuffer_bits)
5556 {
5557         struct drm_i915_private *dev_priv = dev->dev_private;
5558         struct drm_crtc *crtc;
5559         enum pipe pipe;
5560
5561         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5562                 return;
5563
5564         cancel_delayed_work(&dev_priv->drrs.work);
5565
5566         mutex_lock(&dev_priv->drrs.mutex);
5567         if (!dev_priv->drrs.dp) {
5568                 mutex_unlock(&dev_priv->drrs.mutex);
5569                 return;
5570         }
5571
5572         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5573         pipe = to_intel_crtc(crtc)->pipe;
5574
5575         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5576         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5577
5578         /* invalidate means busy screen hence upclock */
5579         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5580                 intel_dp_set_drrs_state(dev_priv->dev,
5581                                 dev_priv->drrs.dp->attached_connector->panel.
5582                                 fixed_mode->vrefresh);
5583
5584         mutex_unlock(&dev_priv->drrs.mutex);
5585 }
5586
5587 /**
5588  * intel_edp_drrs_flush - Restart Idleness DRRS
5589  * @dev: DRM device
5590  * @frontbuffer_bits: frontbuffer plane tracking bits
5591  *
5592  * This function gets called every time rendering on the given planes has
5593  * completed or flip on a crtc is completed. So DRRS should be upclocked
5594  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5595  * if no other planes are dirty.
5596  *
5597  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5598  */
5599 void intel_edp_drrs_flush(struct drm_device *dev,
5600                 unsigned frontbuffer_bits)
5601 {
5602         struct drm_i915_private *dev_priv = dev->dev_private;
5603         struct drm_crtc *crtc;
5604         enum pipe pipe;
5605
5606         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5607                 return;
5608
5609         cancel_delayed_work(&dev_priv->drrs.work);
5610
5611         mutex_lock(&dev_priv->drrs.mutex);
5612         if (!dev_priv->drrs.dp) {
5613                 mutex_unlock(&dev_priv->drrs.mutex);
5614                 return;
5615         }
5616
5617         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5618         pipe = to_intel_crtc(crtc)->pipe;
5619
5620         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5621         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5622
5623         /* flush means busy screen hence upclock */
5624         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5625                 intel_dp_set_drrs_state(dev_priv->dev,
5626                                 dev_priv->drrs.dp->attached_connector->panel.
5627                                 fixed_mode->vrefresh);
5628
5629         /*
5630          * flush also means no more activity hence schedule downclock, if all
5631          * other fbs are quiescent too
5632          */
5633         if (!dev_priv->drrs.busy_frontbuffer_bits)
5634                 schedule_delayed_work(&dev_priv->drrs.work,
5635                                 msecs_to_jiffies(1000));
5636         mutex_unlock(&dev_priv->drrs.mutex);
5637 }
5638
5639 /**
5640  * DOC: Display Refresh Rate Switching (DRRS)
5641  *
5642  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5643  * which enables swtching between low and high refresh rates,
5644  * dynamically, based on the usage scenario. This feature is applicable
5645  * for internal panels.
5646  *
5647  * Indication that the panel supports DRRS is given by the panel EDID, which
5648  * would list multiple refresh rates for one resolution.
5649  *
5650  * DRRS is of 2 types - static and seamless.
5651  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5652  * (may appear as a blink on screen) and is used in dock-undock scenario.
5653  * Seamless DRRS involves changing RR without any visual effect to the user
5654  * and can be used during normal system usage. This is done by programming
5655  * certain registers.
5656  *
5657  * Support for static/seamless DRRS may be indicated in the VBT based on
5658  * inputs from the panel spec.
5659  *
5660  * DRRS saves power by switching to low RR based on usage scenarios.
5661  *
5662  * eDP DRRS:-
5663  *        The implementation is based on frontbuffer tracking implementation.
5664  * When there is a disturbance on the screen triggered by user activity or a
5665  * periodic system activity, DRRS is disabled (RR is changed to high RR).
5666  * When there is no movement on screen, after a timeout of 1 second, a switch
5667  * to low RR is made.
5668  *        For integration with frontbuffer tracking code,
5669  * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5670  *
5671  * DRRS can be further extended to support other internal panels and also
5672  * the scenario of video playback wherein RR is set based on the rate
5673  * requested by userspace.
5674  */
5675
5676 /**
5677  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5678  * @intel_connector: eDP connector
5679  * @fixed_mode: preferred mode of panel
5680  *
5681  * This function is  called only once at driver load to initialize basic
5682  * DRRS stuff.
5683  *
5684  * Returns:
5685  * Downclock mode if panel supports it, else return NULL.
5686  * DRRS support is determined by the presence of downclock mode (apart
5687  * from VBT setting).
5688  */
5689 static struct drm_display_mode *
5690 intel_dp_drrs_init(struct intel_connector *intel_connector,
5691                 struct drm_display_mode *fixed_mode)
5692 {
5693         struct drm_connector *connector = &intel_connector->base;
5694         struct drm_device *dev = connector->dev;
5695         struct drm_i915_private *dev_priv = dev->dev_private;
5696         struct drm_display_mode *downclock_mode = NULL;
5697
5698         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5699         mutex_init(&dev_priv->drrs.mutex);
5700
5701         if (INTEL_INFO(dev)->gen <= 6) {
5702                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5703                 return NULL;
5704         }
5705
5706         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5707                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5708                 return NULL;
5709         }
5710
5711         downclock_mode = intel_find_panel_downclock
5712                                         (dev, fixed_mode, connector);
5713
5714         if (!downclock_mode) {
5715                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5716                 return NULL;
5717         }
5718
5719         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5720
5721         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5722         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5723         return downclock_mode;
5724 }
5725
5726 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5727                                      struct intel_connector *intel_connector)
5728 {
5729         struct drm_connector *connector = &intel_connector->base;
5730         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5731         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5732         struct drm_device *dev = intel_encoder->base.dev;
5733         struct drm_i915_private *dev_priv = dev->dev_private;
5734         struct drm_display_mode *fixed_mode = NULL;
5735         struct drm_display_mode *downclock_mode = NULL;
5736         bool has_dpcd;
5737         struct drm_display_mode *scan;
5738         struct edid *edid;
5739         enum pipe pipe = INVALID_PIPE;
5740
5741         if (!is_edp(intel_dp))
5742                 return true;
5743
5744         pps_lock(intel_dp);
5745         intel_edp_panel_vdd_sanitize(intel_dp);
5746         pps_unlock(intel_dp);
5747
5748         /* Cache DPCD and EDID for edp. */
5749         has_dpcd = intel_dp_get_dpcd(intel_dp);
5750
5751         if (has_dpcd) {
5752                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5753                         dev_priv->no_aux_handshake =
5754                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5755                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5756         } else {
5757                 /* if this fails, presume the device is a ghost */
5758                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5759                 return false;
5760         }
5761
5762         /* We now know it's not a ghost, init power sequence regs. */
5763         pps_lock(intel_dp);
5764         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5765         pps_unlock(intel_dp);
5766
5767         mutex_lock(&dev->mode_config.mutex);
5768         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5769         if (edid) {
5770                 if (drm_add_edid_modes(connector, edid)) {
5771                         drm_mode_connector_update_edid_property(connector,
5772                                                                 edid);
5773                         drm_edid_to_eld(connector, edid);
5774                 } else {
5775                         kfree(edid);
5776                         edid = ERR_PTR(-EINVAL);
5777                 }
5778         } else {
5779                 edid = ERR_PTR(-ENOENT);
5780         }
5781         intel_connector->edid = edid;
5782
5783         /* prefer fixed mode from EDID if available */
5784         list_for_each_entry(scan, &connector->probed_modes, head) {
5785                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5786                         fixed_mode = drm_mode_duplicate(dev, scan);
5787                         downclock_mode = intel_dp_drrs_init(
5788                                                 intel_connector, fixed_mode);
5789                         break;
5790                 }
5791         }
5792
5793         /* fallback to VBT if available for eDP */
5794         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5795                 fixed_mode = drm_mode_duplicate(dev,
5796                                         dev_priv->vbt.lfp_lvds_vbt_mode);
5797                 if (fixed_mode)
5798                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5799         }
5800         mutex_unlock(&dev->mode_config.mutex);
5801
5802         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5803                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5804                 register_reboot_notifier(&intel_dp->edp_notifier);
5805
5806                 /*
5807                  * Figure out the current pipe for the initial backlight setup.
5808                  * If the current pipe isn't valid, try the PPS pipe, and if that
5809                  * fails just assume pipe A.
5810                  */
5811                 if (IS_CHERRYVIEW(dev))
5812                         pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5813                 else
5814                         pipe = PORT_TO_PIPE(intel_dp->DP);
5815
5816                 if (pipe != PIPE_A && pipe != PIPE_B)
5817                         pipe = intel_dp->pps_pipe;
5818
5819                 if (pipe != PIPE_A && pipe != PIPE_B)
5820                         pipe = PIPE_A;
5821
5822                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5823                               pipe_name(pipe));
5824         }
5825
5826         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5827         intel_connector->panel.backlight.power = intel_edp_backlight_power;
5828         intel_panel_setup_backlight(connector, pipe);
5829
5830         return true;
5831 }
5832
5833 bool
5834 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5835                         struct intel_connector *intel_connector)
5836 {
5837         struct drm_connector *connector = &intel_connector->base;
5838         struct intel_dp *intel_dp = &intel_dig_port->dp;
5839         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5840         struct drm_device *dev = intel_encoder->base.dev;
5841         struct drm_i915_private *dev_priv = dev->dev_private;
5842         enum port port = intel_dig_port->port;
5843         int type, ret;
5844
5845         if (WARN(intel_dig_port->max_lanes < 1,
5846                  "Not enough lanes (%d) for DP on port %c\n",
5847                  intel_dig_port->max_lanes, port_name(port)))
5848                 return false;
5849
5850         intel_dp->pps_pipe = INVALID_PIPE;
5851
5852         /* intel_dp vfuncs */
5853         if (INTEL_INFO(dev)->gen >= 9)
5854                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5855         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5856                 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5857         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5858                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5859         else if (HAS_PCH_SPLIT(dev))
5860                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5861         else
5862                 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5863
5864         if (INTEL_INFO(dev)->gen >= 9)
5865                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5866         else
5867                 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5868
5869         if (HAS_DDI(dev))
5870                 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5871
5872         /* Preserve the current hw state. */
5873         intel_dp->DP = I915_READ(intel_dp->output_reg);
5874         intel_dp->attached_connector = intel_connector;
5875
5876         if (intel_dp_is_edp(dev, port))
5877                 type = DRM_MODE_CONNECTOR_eDP;
5878         else
5879                 type = DRM_MODE_CONNECTOR_DisplayPort;
5880
5881         /*
5882          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5883          * for DP the encoder type can be set by the caller to
5884          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5885          */
5886         if (type == DRM_MODE_CONNECTOR_eDP)
5887                 intel_encoder->type = INTEL_OUTPUT_EDP;
5888
5889         /* eDP only on port B and/or C on vlv/chv */
5890         if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5891                     is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5892                 return false;
5893
5894         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5895                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5896                         port_name(port));
5897
5898         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5899         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5900
5901         connector->interlace_allowed = true;
5902         connector->doublescan_allowed = 0;
5903
5904         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5905                           edp_panel_vdd_work);
5906
5907         intel_connector_attach_encoder(intel_connector, intel_encoder);
5908         drm_connector_register(connector);
5909
5910         if (HAS_DDI(dev))
5911                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5912         else
5913                 intel_connector->get_hw_state = intel_connector_get_hw_state;
5914         intel_connector->unregister = intel_dp_connector_unregister;
5915
5916         /* Set up the hotplug pin. */
5917         switch (port) {
5918         case PORT_A:
5919                 intel_encoder->hpd_pin = HPD_PORT_A;
5920                 break;
5921         case PORT_B:
5922                 intel_encoder->hpd_pin = HPD_PORT_B;
5923                 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5924                         intel_encoder->hpd_pin = HPD_PORT_A;
5925                 break;
5926         case PORT_C:
5927                 intel_encoder->hpd_pin = HPD_PORT_C;
5928                 break;
5929         case PORT_D:
5930                 intel_encoder->hpd_pin = HPD_PORT_D;
5931                 break;
5932         case PORT_E:
5933                 intel_encoder->hpd_pin = HPD_PORT_E;
5934                 break;
5935         default:
5936                 BUG();
5937         }
5938
5939         if (is_edp(intel_dp)) {
5940                 pps_lock(intel_dp);
5941                 intel_dp_init_panel_power_timestamps(intel_dp);
5942                 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5943                         vlv_initial_power_sequencer_setup(intel_dp);
5944                 else
5945                         intel_dp_init_panel_power_sequencer(dev, intel_dp);
5946                 pps_unlock(intel_dp);
5947         }
5948
5949         ret = intel_dp_aux_init(intel_dp, intel_connector);
5950         if (ret)
5951                 goto fail;
5952
5953         /* init MST on ports that can support it */
5954         if (HAS_DP_MST(dev) &&
5955             (port == PORT_B || port == PORT_C || port == PORT_D))
5956                 intel_dp_mst_encoder_init(intel_dig_port,
5957                                           intel_connector->base.base.id);
5958
5959         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5960                 intel_dp_aux_fini(intel_dp);
5961                 intel_dp_mst_encoder_cleanup(intel_dig_port);
5962                 goto fail;
5963         }
5964
5965         intel_dp_add_properties(intel_dp, connector);
5966
5967         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5968          * 0xd.  Failure to do so will result in spurious interrupts being
5969          * generated on the port when a cable is not attached.
5970          */
5971         if (IS_G4X(dev) && !IS_GM45(dev)) {
5972                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5973                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5974         }
5975
5976         i915_debugfs_connector_add(connector);
5977
5978         return true;
5979
5980 fail:
5981         if (is_edp(intel_dp)) {
5982                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5983                 /*
5984                  * vdd might still be enabled do to the delayed vdd off.
5985                  * Make sure vdd is actually turned off here.
5986                  */
5987                 pps_lock(intel_dp);
5988                 edp_panel_vdd_off_sync(intel_dp);
5989                 pps_unlock(intel_dp);
5990         }
5991         drm_connector_unregister(connector);
5992         drm_connector_cleanup(connector);
5993
5994         return false;
5995 }
5996
5997 void
5998 intel_dp_init(struct drm_device *dev,
5999               i915_reg_t output_reg, enum port port)
6000 {
6001         struct drm_i915_private *dev_priv = dev->dev_private;
6002         struct intel_digital_port *intel_dig_port;
6003         struct intel_encoder *intel_encoder;
6004         struct drm_encoder *encoder;
6005         struct intel_connector *intel_connector;
6006
6007         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6008         if (!intel_dig_port)
6009                 return;
6010
6011         intel_connector = intel_connector_alloc();
6012         if (!intel_connector)
6013                 goto err_connector_alloc;
6014
6015         intel_encoder = &intel_dig_port->base;
6016         encoder = &intel_encoder->base;
6017
6018         if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
6019                              DRM_MODE_ENCODER_TMDS, NULL))
6020                 goto err_encoder_init;
6021
6022         intel_encoder->compute_config = intel_dp_compute_config;
6023         intel_encoder->disable = intel_disable_dp;
6024         intel_encoder->get_hw_state = intel_dp_get_hw_state;
6025         intel_encoder->get_config = intel_dp_get_config;
6026         intel_encoder->suspend = intel_dp_encoder_suspend;
6027         if (IS_CHERRYVIEW(dev)) {
6028                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6029                 intel_encoder->pre_enable = chv_pre_enable_dp;
6030                 intel_encoder->enable = vlv_enable_dp;
6031                 intel_encoder->post_disable = chv_post_disable_dp;
6032                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6033         } else if (IS_VALLEYVIEW(dev)) {
6034                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6035                 intel_encoder->pre_enable = vlv_pre_enable_dp;
6036                 intel_encoder->enable = vlv_enable_dp;
6037                 intel_encoder->post_disable = vlv_post_disable_dp;
6038         } else {
6039                 intel_encoder->pre_enable = g4x_pre_enable_dp;
6040                 intel_encoder->enable = g4x_enable_dp;
6041                 if (INTEL_INFO(dev)->gen >= 5)
6042                         intel_encoder->post_disable = ilk_post_disable_dp;
6043         }
6044
6045         intel_dig_port->port = port;
6046         intel_dig_port->dp.output_reg = output_reg;
6047         intel_dig_port->max_lanes = 4;
6048
6049         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
6050         if (IS_CHERRYVIEW(dev)) {
6051                 if (port == PORT_D)
6052                         intel_encoder->crtc_mask = 1 << 2;
6053                 else
6054                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6055         } else {
6056                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6057         }
6058         intel_encoder->cloneable = 0;
6059
6060         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6061         dev_priv->hotplug.irq_port[port] = intel_dig_port;
6062
6063         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6064                 goto err_init_connector;
6065
6066         return;
6067
6068 err_init_connector:
6069         drm_encoder_cleanup(encoder);
6070 err_encoder_init:
6071         kfree(intel_connector);
6072 err_connector_alloc:
6073         kfree(intel_dig_port);
6074
6075         return;
6076 }
6077
6078 void intel_dp_mst_suspend(struct drm_device *dev)
6079 {
6080         struct drm_i915_private *dev_priv = dev->dev_private;
6081         int i;
6082
6083         /* disable MST */
6084         for (i = 0; i < I915_MAX_PORTS; i++) {
6085                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6086                 if (!intel_dig_port)
6087                         continue;
6088
6089                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6090                         if (!intel_dig_port->dp.can_mst)
6091                                 continue;
6092                         if (intel_dig_port->dp.is_mst)
6093                                 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6094                 }
6095         }
6096 }
6097
6098 void intel_dp_mst_resume(struct drm_device *dev)
6099 {
6100         struct drm_i915_private *dev_priv = dev->dev_private;
6101         int i;
6102
6103         for (i = 0; i < I915_MAX_PORTS; i++) {
6104                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6105                 if (!intel_dig_port)
6106                         continue;
6107                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6108                         int ret;
6109
6110                         if (!intel_dig_port->dp.can_mst)
6111                                 continue;
6112
6113                         ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6114                         if (ret != 0) {
6115                                 intel_dp_check_mst_status(&intel_dig_port->dp);
6116                         }
6117                 }
6118         }
6119 }