Merge remote-tracking branch 'airlied/drm-next' into drm-intel-next
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 struct dp_link_dpll {
42         int link_bw;
43         struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47         { DP_LINK_BW_1_62,
48                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49         { DP_LINK_BW_2_7,
50                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54         { DP_LINK_BW_1_62,
55                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56         { DP_LINK_BW_2_7,
57                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61         { DP_LINK_BW_1_62,
62                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63         { DP_LINK_BW_2_7,
64                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /**
68  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69  * @intel_dp: DP struct
70  *
71  * If a CPU or PCH DP output is attached to an eDP panel, this function
72  * will return true, and false otherwise.
73  */
74 static bool is_edp(struct intel_dp *intel_dp)
75 {
76         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79 }
80
81 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82 {
83         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85         return intel_dig_port->base.base.dev;
86 }
87
88 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89 {
90         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91 }
92
93 static void intel_dp_link_down(struct intel_dp *intel_dp);
94 static void edp_panel_vdd_on(struct intel_dp *intel_dp);
95 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
96
97 static int
98 intel_dp_max_link_bw(struct intel_dp *intel_dp)
99 {
100         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
101         struct drm_device *dev = intel_dp->attached_connector->base.dev;
102
103         switch (max_link_bw) {
104         case DP_LINK_BW_1_62:
105         case DP_LINK_BW_2_7:
106                 break;
107         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
108                 if ((IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8) &&
109                     intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
110                         max_link_bw = DP_LINK_BW_5_4;
111                 else
112                         max_link_bw = DP_LINK_BW_2_7;
113                 break;
114         default:
115                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
116                      max_link_bw);
117                 max_link_bw = DP_LINK_BW_1_62;
118                 break;
119         }
120         return max_link_bw;
121 }
122
123 /*
124  * The units on the numbers in the next two are... bizarre.  Examples will
125  * make it clearer; this one parallels an example in the eDP spec.
126  *
127  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
128  *
129  *     270000 * 1 * 8 / 10 == 216000
130  *
131  * The actual data capacity of that configuration is 2.16Gbit/s, so the
132  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
133  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
134  * 119000.  At 18bpp that's 2142000 kilobits per second.
135  *
136  * Thus the strange-looking division by 10 in intel_dp_link_required, to
137  * get the result in decakilobits instead of kilobits.
138  */
139
140 static int
141 intel_dp_link_required(int pixel_clock, int bpp)
142 {
143         return (pixel_clock * bpp + 9) / 10;
144 }
145
146 static int
147 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
148 {
149         return (max_link_clock * max_lanes * 8) / 10;
150 }
151
152 static enum drm_mode_status
153 intel_dp_mode_valid(struct drm_connector *connector,
154                     struct drm_display_mode *mode)
155 {
156         struct intel_dp *intel_dp = intel_attached_dp(connector);
157         struct intel_connector *intel_connector = to_intel_connector(connector);
158         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
159         int target_clock = mode->clock;
160         int max_rate, mode_rate, max_lanes, max_link_clock;
161
162         if (is_edp(intel_dp) && fixed_mode) {
163                 if (mode->hdisplay > fixed_mode->hdisplay)
164                         return MODE_PANEL;
165
166                 if (mode->vdisplay > fixed_mode->vdisplay)
167                         return MODE_PANEL;
168
169                 target_clock = fixed_mode->clock;
170         }
171
172         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
173         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
174
175         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
176         mode_rate = intel_dp_link_required(target_clock, 18);
177
178         if (mode_rate > max_rate)
179                 return MODE_CLOCK_HIGH;
180
181         if (mode->clock < 10000)
182                 return MODE_CLOCK_LOW;
183
184         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
185                 return MODE_H_ILLEGAL;
186
187         return MODE_OK;
188 }
189
190 static uint32_t
191 pack_aux(uint8_t *src, int src_bytes)
192 {
193         int     i;
194         uint32_t v = 0;
195
196         if (src_bytes > 4)
197                 src_bytes = 4;
198         for (i = 0; i < src_bytes; i++)
199                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
200         return v;
201 }
202
203 static void
204 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
205 {
206         int i;
207         if (dst_bytes > 4)
208                 dst_bytes = 4;
209         for (i = 0; i < dst_bytes; i++)
210                 dst[i] = src >> ((3-i) * 8);
211 }
212
213 /* hrawclock is 1/4 the FSB frequency */
214 static int
215 intel_hrawclk(struct drm_device *dev)
216 {
217         struct drm_i915_private *dev_priv = dev->dev_private;
218         uint32_t clkcfg;
219
220         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
221         if (IS_VALLEYVIEW(dev))
222                 return 200;
223
224         clkcfg = I915_READ(CLKCFG);
225         switch (clkcfg & CLKCFG_FSB_MASK) {
226         case CLKCFG_FSB_400:
227                 return 100;
228         case CLKCFG_FSB_533:
229                 return 133;
230         case CLKCFG_FSB_667:
231                 return 166;
232         case CLKCFG_FSB_800:
233                 return 200;
234         case CLKCFG_FSB_1067:
235                 return 266;
236         case CLKCFG_FSB_1333:
237                 return 333;
238         /* these two are just a guess; one of them might be right */
239         case CLKCFG_FSB_1600:
240         case CLKCFG_FSB_1600_ALT:
241                 return 400;
242         default:
243                 return 133;
244         }
245 }
246
247 static void
248 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
249                                     struct intel_dp *intel_dp,
250                                     struct edp_power_seq *out);
251 static void
252 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
253                                               struct intel_dp *intel_dp,
254                                               struct edp_power_seq *out);
255
256 static enum pipe
257 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
258 {
259         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
260         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
261         struct drm_device *dev = intel_dig_port->base.base.dev;
262         struct drm_i915_private *dev_priv = dev->dev_private;
263         enum port port = intel_dig_port->port;
264         enum pipe pipe;
265
266         /* modeset should have pipe */
267         if (crtc)
268                 return to_intel_crtc(crtc)->pipe;
269
270         /* init time, try to find a pipe with this port selected */
271         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
272                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
273                         PANEL_PORT_SELECT_MASK;
274                 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
275                         return pipe;
276                 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
277                         return pipe;
278         }
279
280         /* shrug */
281         return PIPE_A;
282 }
283
284 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
285 {
286         struct drm_device *dev = intel_dp_to_dev(intel_dp);
287
288         if (HAS_PCH_SPLIT(dev))
289                 return PCH_PP_CONTROL;
290         else
291                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
292 }
293
294 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
295 {
296         struct drm_device *dev = intel_dp_to_dev(intel_dp);
297
298         if (HAS_PCH_SPLIT(dev))
299                 return PCH_PP_STATUS;
300         else
301                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
302 }
303
304 static bool edp_have_panel_power(struct intel_dp *intel_dp)
305 {
306         struct drm_device *dev = intel_dp_to_dev(intel_dp);
307         struct drm_i915_private *dev_priv = dev->dev_private;
308
309         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
310 }
311
312 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
313 {
314         struct drm_device *dev = intel_dp_to_dev(intel_dp);
315         struct drm_i915_private *dev_priv = dev->dev_private;
316
317         return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
318 }
319
320 static void
321 intel_dp_check_edp(struct intel_dp *intel_dp)
322 {
323         struct drm_device *dev = intel_dp_to_dev(intel_dp);
324         struct drm_i915_private *dev_priv = dev->dev_private;
325
326         if (!is_edp(intel_dp))
327                 return;
328
329         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
330                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
331                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
332                               I915_READ(_pp_stat_reg(intel_dp)),
333                               I915_READ(_pp_ctrl_reg(intel_dp)));
334         }
335 }
336
337 static uint32_t
338 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
339 {
340         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
341         struct drm_device *dev = intel_dig_port->base.base.dev;
342         struct drm_i915_private *dev_priv = dev->dev_private;
343         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
344         uint32_t status;
345         bool done;
346
347 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
348         if (has_aux_irq)
349                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
350                                           msecs_to_jiffies_timeout(10));
351         else
352                 done = wait_for_atomic(C, 10) == 0;
353         if (!done)
354                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
355                           has_aux_irq);
356 #undef C
357
358         return status;
359 }
360
361 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
362 {
363         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
364         struct drm_device *dev = intel_dig_port->base.base.dev;
365
366         /*
367          * The clock divider is based off the hrawclk, and would like to run at
368          * 2MHz.  So, take the hrawclk value and divide by 2 and use that
369          */
370         return index ? 0 : intel_hrawclk(dev) / 2;
371 }
372
373 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
374 {
375         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
376         struct drm_device *dev = intel_dig_port->base.base.dev;
377
378         if (index)
379                 return 0;
380
381         if (intel_dig_port->port == PORT_A) {
382                 if (IS_GEN6(dev) || IS_GEN7(dev))
383                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
384                 else
385                         return 225; /* eDP input clock at 450Mhz */
386         } else {
387                 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
388         }
389 }
390
391 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
392 {
393         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
394         struct drm_device *dev = intel_dig_port->base.base.dev;
395         struct drm_i915_private *dev_priv = dev->dev_private;
396
397         if (intel_dig_port->port == PORT_A) {
398                 if (index)
399                         return 0;
400                 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
401         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
402                 /* Workaround for non-ULT HSW */
403                 switch (index) {
404                 case 0: return 63;
405                 case 1: return 72;
406                 default: return 0;
407                 }
408         } else  {
409                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
410         }
411 }
412
413 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
414 {
415         return index ? 0 : 100;
416 }
417
418 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
419                                       bool has_aux_irq,
420                                       int send_bytes,
421                                       uint32_t aux_clock_divider)
422 {
423         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
424         struct drm_device *dev = intel_dig_port->base.base.dev;
425         uint32_t precharge, timeout;
426
427         if (IS_GEN6(dev))
428                 precharge = 3;
429         else
430                 precharge = 5;
431
432         if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
433                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
434         else
435                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
436
437         return DP_AUX_CH_CTL_SEND_BUSY |
438                DP_AUX_CH_CTL_DONE |
439                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
440                DP_AUX_CH_CTL_TIME_OUT_ERROR |
441                timeout |
442                DP_AUX_CH_CTL_RECEIVE_ERROR |
443                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
444                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
445                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
446 }
447
448 static int
449 intel_dp_aux_ch(struct intel_dp *intel_dp,
450                 uint8_t *send, int send_bytes,
451                 uint8_t *recv, int recv_size)
452 {
453         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
454         struct drm_device *dev = intel_dig_port->base.base.dev;
455         struct drm_i915_private *dev_priv = dev->dev_private;
456         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
457         uint32_t ch_data = ch_ctl + 4;
458         uint32_t aux_clock_divider;
459         int i, ret, recv_bytes;
460         uint32_t status;
461         int try, clock = 0;
462         bool has_aux_irq = HAS_AUX_IRQ(dev);
463
464         /* dp aux is extremely sensitive to irq latency, hence request the
465          * lowest possible wakeup latency and so prevent the cpu from going into
466          * deep sleep states.
467          */
468         pm_qos_update_request(&dev_priv->pm_qos, 0);
469
470         intel_dp_check_edp(intel_dp);
471
472         intel_aux_display_runtime_get(dev_priv);
473
474         /* Try to wait for any previous AUX channel activity */
475         for (try = 0; try < 3; try++) {
476                 status = I915_READ_NOTRACE(ch_ctl);
477                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
478                         break;
479                 msleep(1);
480         }
481
482         if (try == 3) {
483                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
484                      I915_READ(ch_ctl));
485                 ret = -EBUSY;
486                 goto out;
487         }
488
489         /* Only 5 data registers! */
490         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
491                 ret = -E2BIG;
492                 goto out;
493         }
494
495         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
496                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
497                                                           has_aux_irq,
498                                                           send_bytes,
499                                                           aux_clock_divider);
500
501                 /* Must try at least 3 times according to DP spec */
502                 for (try = 0; try < 5; try++) {
503                         /* Load the send data into the aux channel data registers */
504                         for (i = 0; i < send_bytes; i += 4)
505                                 I915_WRITE(ch_data + i,
506                                            pack_aux(send + i, send_bytes - i));
507
508                         /* Send the command and wait for it to complete */
509                         I915_WRITE(ch_ctl, send_ctl);
510
511                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
512
513                         /* Clear done status and any errors */
514                         I915_WRITE(ch_ctl,
515                                    status |
516                                    DP_AUX_CH_CTL_DONE |
517                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
518                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
519
520                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
521                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
522                                 continue;
523                         if (status & DP_AUX_CH_CTL_DONE)
524                                 break;
525                 }
526                 if (status & DP_AUX_CH_CTL_DONE)
527                         break;
528         }
529
530         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
531                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
532                 ret = -EBUSY;
533                 goto out;
534         }
535
536         /* Check for timeout or receive error.
537          * Timeouts occur when the sink is not connected
538          */
539         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
540                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
541                 ret = -EIO;
542                 goto out;
543         }
544
545         /* Timeouts occur when the device isn't connected, so they're
546          * "normal" -- don't fill the kernel log with these */
547         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
548                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
549                 ret = -ETIMEDOUT;
550                 goto out;
551         }
552
553         /* Unload any bytes sent back from the other side */
554         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
555                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
556         if (recv_bytes > recv_size)
557                 recv_bytes = recv_size;
558
559         for (i = 0; i < recv_bytes; i += 4)
560                 unpack_aux(I915_READ(ch_data + i),
561                            recv + i, recv_bytes - i);
562
563         ret = recv_bytes;
564 out:
565         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
566         intel_aux_display_runtime_put(dev_priv);
567
568         return ret;
569 }
570
571 /* Write data to the aux channel in native mode */
572 static int
573 intel_dp_aux_native_write(struct intel_dp *intel_dp,
574                           uint16_t address, uint8_t *send, int send_bytes)
575 {
576         int ret;
577         uint8_t msg[20];
578         int msg_bytes;
579         uint8_t ack;
580         int retry;
581
582         if (WARN_ON(send_bytes > 16))
583                 return -E2BIG;
584
585         intel_dp_check_edp(intel_dp);
586         msg[0] = DP_AUX_NATIVE_WRITE << 4;
587         msg[1] = address >> 8;
588         msg[2] = address & 0xff;
589         msg[3] = send_bytes - 1;
590         memcpy(&msg[4], send, send_bytes);
591         msg_bytes = send_bytes + 4;
592         for (retry = 0; retry < 7; retry++) {
593                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
594                 if (ret < 0)
595                         return ret;
596                 ack >>= 4;
597                 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
598                         return send_bytes;
599                 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
600                         usleep_range(400, 500);
601                 else
602                         return -EIO;
603         }
604
605         DRM_ERROR("too many retries, giving up\n");
606         return -EIO;
607 }
608
609 /* Write a single byte to the aux channel in native mode */
610 static int
611 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
612                             uint16_t address, uint8_t byte)
613 {
614         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
615 }
616
617 /* read bytes from a native aux channel */
618 static int
619 intel_dp_aux_native_read(struct intel_dp *intel_dp,
620                          uint16_t address, uint8_t *recv, int recv_bytes)
621 {
622         uint8_t msg[4];
623         int msg_bytes;
624         uint8_t reply[20];
625         int reply_bytes;
626         uint8_t ack;
627         int ret;
628         int retry;
629
630         if (WARN_ON(recv_bytes > 19))
631                 return -E2BIG;
632
633         intel_dp_check_edp(intel_dp);
634         msg[0] = DP_AUX_NATIVE_READ << 4;
635         msg[1] = address >> 8;
636         msg[2] = address & 0xff;
637         msg[3] = recv_bytes - 1;
638
639         msg_bytes = 4;
640         reply_bytes = recv_bytes + 1;
641
642         for (retry = 0; retry < 7; retry++) {
643                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
644                                       reply, reply_bytes);
645                 if (ret == 0)
646                         return -EPROTO;
647                 if (ret < 0)
648                         return ret;
649                 ack = reply[0] >> 4;
650                 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
651                         memcpy(recv, reply + 1, ret - 1);
652                         return ret - 1;
653                 }
654                 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
655                         usleep_range(400, 500);
656                 else
657                         return -EIO;
658         }
659
660         DRM_ERROR("too many retries, giving up\n");
661         return -EIO;
662 }
663
664 static int
665 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
666                     uint8_t write_byte, uint8_t *read_byte)
667 {
668         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
669         struct intel_dp *intel_dp = container_of(adapter,
670                                                 struct intel_dp,
671                                                 adapter);
672         uint16_t address = algo_data->address;
673         uint8_t msg[5];
674         uint8_t reply[2];
675         unsigned retry;
676         int msg_bytes;
677         int reply_bytes;
678         int ret;
679
680         edp_panel_vdd_on(intel_dp);
681         intel_dp_check_edp(intel_dp);
682         /* Set up the command byte */
683         if (mode & MODE_I2C_READ)
684                 msg[0] = DP_AUX_I2C_READ << 4;
685         else
686                 msg[0] = DP_AUX_I2C_WRITE << 4;
687
688         if (!(mode & MODE_I2C_STOP))
689                 msg[0] |= DP_AUX_I2C_MOT << 4;
690
691         msg[1] = address >> 8;
692         msg[2] = address;
693
694         switch (mode) {
695         case MODE_I2C_WRITE:
696                 msg[3] = 0;
697                 msg[4] = write_byte;
698                 msg_bytes = 5;
699                 reply_bytes = 1;
700                 break;
701         case MODE_I2C_READ:
702                 msg[3] = 0;
703                 msg_bytes = 4;
704                 reply_bytes = 2;
705                 break;
706         default:
707                 msg_bytes = 3;
708                 reply_bytes = 1;
709                 break;
710         }
711
712         /*
713          * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
714          * required to retry at least seven times upon receiving AUX_DEFER
715          * before giving up the AUX transaction.
716          */
717         for (retry = 0; retry < 7; retry++) {
718                 ret = intel_dp_aux_ch(intel_dp,
719                                       msg, msg_bytes,
720                                       reply, reply_bytes);
721                 if (ret < 0) {
722                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
723                         goto out;
724                 }
725
726                 switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
727                 case DP_AUX_NATIVE_REPLY_ACK:
728                         /* I2C-over-AUX Reply field is only valid
729                          * when paired with AUX ACK.
730                          */
731                         break;
732                 case DP_AUX_NATIVE_REPLY_NACK:
733                         DRM_DEBUG_KMS("aux_ch native nack\n");
734                         ret = -EREMOTEIO;
735                         goto out;
736                 case DP_AUX_NATIVE_REPLY_DEFER:
737                         /*
738                          * For now, just give more slack to branch devices. We
739                          * could check the DPCD for I2C bit rate capabilities,
740                          * and if available, adjust the interval. We could also
741                          * be more careful with DP-to-Legacy adapters where a
742                          * long legacy cable may force very low I2C bit rates.
743                          */
744                         if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
745                             DP_DWN_STRM_PORT_PRESENT)
746                                 usleep_range(500, 600);
747                         else
748                                 usleep_range(300, 400);
749                         continue;
750                 default:
751                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
752                                   reply[0]);
753                         ret = -EREMOTEIO;
754                         goto out;
755                 }
756
757                 switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
758                 case DP_AUX_I2C_REPLY_ACK:
759                         if (mode == MODE_I2C_READ) {
760                                 *read_byte = reply[1];
761                         }
762                         ret = reply_bytes - 1;
763                         goto out;
764                 case DP_AUX_I2C_REPLY_NACK:
765                         DRM_DEBUG_KMS("aux_i2c nack\n");
766                         ret = -EREMOTEIO;
767                         goto out;
768                 case DP_AUX_I2C_REPLY_DEFER:
769                         DRM_DEBUG_KMS("aux_i2c defer\n");
770                         udelay(100);
771                         break;
772                 default:
773                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
774                         ret = -EREMOTEIO;
775                         goto out;
776                 }
777         }
778
779         DRM_ERROR("too many retries, giving up\n");
780         ret = -EREMOTEIO;
781
782 out:
783         edp_panel_vdd_off(intel_dp, false);
784         return ret;
785 }
786
787 static void
788 intel_dp_connector_unregister(struct intel_connector *intel_connector)
789 {
790         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
791
792         sysfs_remove_link(&intel_connector->base.kdev->kobj,
793                           intel_dp->adapter.dev.kobj.name);
794         intel_connector_unregister(intel_connector);
795 }
796
797 static int
798 intel_dp_i2c_init(struct intel_dp *intel_dp,
799                   struct intel_connector *intel_connector, const char *name)
800 {
801         int     ret;
802
803         DRM_DEBUG_KMS("i2c_init %s\n", name);
804         intel_dp->algo.running = false;
805         intel_dp->algo.address = 0;
806         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
807
808         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
809         intel_dp->adapter.owner = THIS_MODULE;
810         intel_dp->adapter.class = I2C_CLASS_DDC;
811         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
812         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
813         intel_dp->adapter.algo_data = &intel_dp->algo;
814         intel_dp->adapter.dev.parent = intel_connector->base.dev->dev;
815
816         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
817         if (ret < 0)
818                 return ret;
819
820         ret = sysfs_create_link(&intel_connector->base.kdev->kobj,
821                                 &intel_dp->adapter.dev.kobj,
822                                 intel_dp->adapter.dev.kobj.name);
823
824         if (ret < 0)
825                 i2c_del_adapter(&intel_dp->adapter);
826
827         return ret;
828 }
829
830 static void
831 intel_dp_set_clock(struct intel_encoder *encoder,
832                    struct intel_crtc_config *pipe_config, int link_bw)
833 {
834         struct drm_device *dev = encoder->base.dev;
835         const struct dp_link_dpll *divisor = NULL;
836         int i, count = 0;
837
838         if (IS_G4X(dev)) {
839                 divisor = gen4_dpll;
840                 count = ARRAY_SIZE(gen4_dpll);
841         } else if (IS_HASWELL(dev)) {
842                 /* Haswell has special-purpose DP DDI clocks. */
843         } else if (HAS_PCH_SPLIT(dev)) {
844                 divisor = pch_dpll;
845                 count = ARRAY_SIZE(pch_dpll);
846         } else if (IS_VALLEYVIEW(dev)) {
847                 divisor = vlv_dpll;
848                 count = ARRAY_SIZE(vlv_dpll);
849         }
850
851         if (divisor && count) {
852                 for (i = 0; i < count; i++) {
853                         if (link_bw == divisor[i].link_bw) {
854                                 pipe_config->dpll = divisor[i].dpll;
855                                 pipe_config->clock_set = true;
856                                 break;
857                         }
858                 }
859         }
860 }
861
862 bool
863 intel_dp_compute_config(struct intel_encoder *encoder,
864                         struct intel_crtc_config *pipe_config)
865 {
866         struct drm_device *dev = encoder->base.dev;
867         struct drm_i915_private *dev_priv = dev->dev_private;
868         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
869         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
870         enum port port = dp_to_dig_port(intel_dp)->port;
871         struct intel_crtc *intel_crtc = encoder->new_crtc;
872         struct intel_connector *intel_connector = intel_dp->attached_connector;
873         int lane_count, clock;
874         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
875         /* Conveniently, the link BW constants become indices with a shift...*/
876         int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
877         int bpp, mode_rate;
878         static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
879         int link_avail, link_clock;
880
881         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
882                 pipe_config->has_pch_encoder = true;
883
884         pipe_config->has_dp_encoder = true;
885
886         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
887                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
888                                        adjusted_mode);
889                 if (!HAS_PCH_SPLIT(dev))
890                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
891                                                  intel_connector->panel.fitting_mode);
892                 else
893                         intel_pch_panel_fitting(intel_crtc, pipe_config,
894                                                 intel_connector->panel.fitting_mode);
895         }
896
897         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
898                 return false;
899
900         DRM_DEBUG_KMS("DP link computation with max lane count %i "
901                       "max bw %02x pixel clock %iKHz\n",
902                       max_lane_count, bws[max_clock],
903                       adjusted_mode->crtc_clock);
904
905         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
906          * bpc in between. */
907         bpp = pipe_config->pipe_bpp;
908         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
909             dev_priv->vbt.edp_bpp < bpp) {
910                 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
911                               dev_priv->vbt.edp_bpp);
912                 bpp = dev_priv->vbt.edp_bpp;
913         }
914
915         for (; bpp >= 6*3; bpp -= 2*3) {
916                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
917                                                    bpp);
918
919                 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
920                         for (clock = 0; clock <= max_clock; clock++) {
921                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
922                                 link_avail = intel_dp_max_data_rate(link_clock,
923                                                                     lane_count);
924
925                                 if (mode_rate <= link_avail) {
926                                         goto found;
927                                 }
928                         }
929                 }
930         }
931
932         return false;
933
934 found:
935         if (intel_dp->color_range_auto) {
936                 /*
937                  * See:
938                  * CEA-861-E - 5.1 Default Encoding Parameters
939                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
940                  */
941                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
942                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
943                 else
944                         intel_dp->color_range = 0;
945         }
946
947         if (intel_dp->color_range)
948                 pipe_config->limited_color_range = true;
949
950         intel_dp->link_bw = bws[clock];
951         intel_dp->lane_count = lane_count;
952         pipe_config->pipe_bpp = bpp;
953         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
954
955         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
956                       intel_dp->link_bw, intel_dp->lane_count,
957                       pipe_config->port_clock, bpp);
958         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
959                       mode_rate, link_avail);
960
961         intel_link_compute_m_n(bpp, lane_count,
962                                adjusted_mode->crtc_clock,
963                                pipe_config->port_clock,
964                                &pipe_config->dp_m_n);
965
966         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
967
968         return true;
969 }
970
971 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
972 {
973         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
974         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
975         struct drm_device *dev = crtc->base.dev;
976         struct drm_i915_private *dev_priv = dev->dev_private;
977         u32 dpa_ctl;
978
979         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
980         dpa_ctl = I915_READ(DP_A);
981         dpa_ctl &= ~DP_PLL_FREQ_MASK;
982
983         if (crtc->config.port_clock == 162000) {
984                 /* For a long time we've carried around a ILK-DevA w/a for the
985                  * 160MHz clock. If we're really unlucky, it's still required.
986                  */
987                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
988                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
989                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
990         } else {
991                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
992                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
993         }
994
995         I915_WRITE(DP_A, dpa_ctl);
996
997         POSTING_READ(DP_A);
998         udelay(500);
999 }
1000
1001 static void intel_dp_mode_set(struct intel_encoder *encoder)
1002 {
1003         struct drm_device *dev = encoder->base.dev;
1004         struct drm_i915_private *dev_priv = dev->dev_private;
1005         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1006         enum port port = dp_to_dig_port(intel_dp)->port;
1007         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1008         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1009
1010         /*
1011          * There are four kinds of DP registers:
1012          *
1013          *      IBX PCH
1014          *      SNB CPU
1015          *      IVB CPU
1016          *      CPT PCH
1017          *
1018          * IBX PCH and CPU are the same for almost everything,
1019          * except that the CPU DP PLL is configured in this
1020          * register
1021          *
1022          * CPT PCH is quite different, having many bits moved
1023          * to the TRANS_DP_CTL register instead. That
1024          * configuration happens (oddly) in ironlake_pch_enable
1025          */
1026
1027         /* Preserve the BIOS-computed detected bit. This is
1028          * supposed to be read-only.
1029          */
1030         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1031
1032         /* Handle DP bits in common between all three register formats */
1033         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1034         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1035
1036         if (intel_dp->has_audio) {
1037                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1038                                  pipe_name(crtc->pipe));
1039                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1040                 intel_write_eld(&encoder->base, adjusted_mode);
1041         }
1042
1043         /* Split out the IBX/CPU vs CPT settings */
1044
1045         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1046                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1047                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1048                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1049                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1050                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1051
1052                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1053                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1054
1055                 intel_dp->DP |= crtc->pipe << 29;
1056         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1057                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1058                         intel_dp->DP |= intel_dp->color_range;
1059
1060                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1061                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1062                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1063                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1064                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1065
1066                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1067                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1068
1069                 if (crtc->pipe == 1)
1070                         intel_dp->DP |= DP_PIPEB_SELECT;
1071         } else {
1072                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1073         }
1074
1075         if (port == PORT_A && !IS_VALLEYVIEW(dev))
1076                 ironlake_set_pll_cpu_edp(intel_dp);
1077 }
1078
1079 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1080 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1081
1082 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1083 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1084
1085 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1086 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1087
1088 static void wait_panel_status(struct intel_dp *intel_dp,
1089                                        u32 mask,
1090                                        u32 value)
1091 {
1092         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1093         struct drm_i915_private *dev_priv = dev->dev_private;
1094         u32 pp_stat_reg, pp_ctrl_reg;
1095
1096         pp_stat_reg = _pp_stat_reg(intel_dp);
1097         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1098
1099         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1100                         mask, value,
1101                         I915_READ(pp_stat_reg),
1102                         I915_READ(pp_ctrl_reg));
1103
1104         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1105                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1106                                 I915_READ(pp_stat_reg),
1107                                 I915_READ(pp_ctrl_reg));
1108         }
1109
1110         DRM_DEBUG_KMS("Wait complete\n");
1111 }
1112
1113 static void wait_panel_on(struct intel_dp *intel_dp)
1114 {
1115         DRM_DEBUG_KMS("Wait for panel power on\n");
1116         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1117 }
1118
1119 static void wait_panel_off(struct intel_dp *intel_dp)
1120 {
1121         DRM_DEBUG_KMS("Wait for panel power off time\n");
1122         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1123 }
1124
1125 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1126 {
1127         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1128
1129         /* When we disable the VDD override bit last we have to do the manual
1130          * wait. */
1131         wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1132                                        intel_dp->panel_power_cycle_delay);
1133
1134         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1135 }
1136
1137 static void wait_backlight_on(struct intel_dp *intel_dp)
1138 {
1139         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1140                                        intel_dp->backlight_on_delay);
1141 }
1142
1143 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1144 {
1145         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1146                                        intel_dp->backlight_off_delay);
1147 }
1148
1149 /* Read the current pp_control value, unlocking the register if it
1150  * is locked
1151  */
1152
1153 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1154 {
1155         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1156         struct drm_i915_private *dev_priv = dev->dev_private;
1157         u32 control;
1158
1159         control = I915_READ(_pp_ctrl_reg(intel_dp));
1160         control &= ~PANEL_UNLOCK_MASK;
1161         control |= PANEL_UNLOCK_REGS;
1162         return control;
1163 }
1164
1165 static void edp_panel_vdd_on(struct intel_dp *intel_dp)
1166 {
1167         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1168         struct drm_i915_private *dev_priv = dev->dev_private;
1169         u32 pp;
1170         u32 pp_stat_reg, pp_ctrl_reg;
1171
1172         if (!is_edp(intel_dp))
1173                 return;
1174
1175         WARN(intel_dp->want_panel_vdd,
1176              "eDP VDD already requested on\n");
1177
1178         intel_dp->want_panel_vdd = true;
1179
1180         if (edp_have_panel_vdd(intel_dp))
1181                 return;
1182
1183         intel_runtime_pm_get(dev_priv);
1184
1185         DRM_DEBUG_KMS("Turning eDP VDD on\n");
1186
1187         if (!edp_have_panel_power(intel_dp))
1188                 wait_panel_power_cycle(intel_dp);
1189
1190         pp = ironlake_get_pp_control(intel_dp);
1191         pp |= EDP_FORCE_VDD;
1192
1193         pp_stat_reg = _pp_stat_reg(intel_dp);
1194         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1195
1196         I915_WRITE(pp_ctrl_reg, pp);
1197         POSTING_READ(pp_ctrl_reg);
1198         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1199                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1200         /*
1201          * If the panel wasn't on, delay before accessing aux channel
1202          */
1203         if (!edp_have_panel_power(intel_dp)) {
1204                 DRM_DEBUG_KMS("eDP was not running\n");
1205                 msleep(intel_dp->panel_power_up_delay);
1206         }
1207 }
1208
1209 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1210 {
1211         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1212         struct drm_i915_private *dev_priv = dev->dev_private;
1213         u32 pp;
1214         u32 pp_stat_reg, pp_ctrl_reg;
1215
1216         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1217
1218         if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1219                 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1220
1221                 pp = ironlake_get_pp_control(intel_dp);
1222                 pp &= ~EDP_FORCE_VDD;
1223
1224                 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1225                 pp_stat_reg = _pp_stat_reg(intel_dp);
1226
1227                 I915_WRITE(pp_ctrl_reg, pp);
1228                 POSTING_READ(pp_ctrl_reg);
1229
1230                 /* Make sure sequencer is idle before allowing subsequent activity */
1231                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1232                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1233
1234                 if ((pp & POWER_TARGET_ON) == 0)
1235                         intel_dp->last_power_cycle = jiffies;
1236
1237                 intel_runtime_pm_put(dev_priv);
1238         }
1239 }
1240
1241 static void edp_panel_vdd_work(struct work_struct *__work)
1242 {
1243         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1244                                                  struct intel_dp, panel_vdd_work);
1245         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1246
1247         mutex_lock(&dev->mode_config.mutex);
1248         edp_panel_vdd_off_sync(intel_dp);
1249         mutex_unlock(&dev->mode_config.mutex);
1250 }
1251
1252 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1253 {
1254         if (!is_edp(intel_dp))
1255                 return;
1256
1257         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1258
1259         intel_dp->want_panel_vdd = false;
1260
1261         if (sync) {
1262                 edp_panel_vdd_off_sync(intel_dp);
1263         } else {
1264                 /*
1265                  * Queue the timer to fire a long
1266                  * time from now (relative to the power down delay)
1267                  * to keep the panel power up across a sequence of operations
1268                  */
1269                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1270                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1271         }
1272 }
1273
1274 void intel_edp_panel_on(struct intel_dp *intel_dp)
1275 {
1276         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1277         struct drm_i915_private *dev_priv = dev->dev_private;
1278         u32 pp;
1279         u32 pp_ctrl_reg;
1280
1281         if (!is_edp(intel_dp))
1282                 return;
1283
1284         DRM_DEBUG_KMS("Turn eDP power on\n");
1285
1286         if (edp_have_panel_power(intel_dp)) {
1287                 DRM_DEBUG_KMS("eDP power already on\n");
1288                 return;
1289         }
1290
1291         wait_panel_power_cycle(intel_dp);
1292
1293         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1294         pp = ironlake_get_pp_control(intel_dp);
1295         if (IS_GEN5(dev)) {
1296                 /* ILK workaround: disable reset around power sequence */
1297                 pp &= ~PANEL_POWER_RESET;
1298                 I915_WRITE(pp_ctrl_reg, pp);
1299                 POSTING_READ(pp_ctrl_reg);
1300         }
1301
1302         pp |= POWER_TARGET_ON;
1303         if (!IS_GEN5(dev))
1304                 pp |= PANEL_POWER_RESET;
1305
1306         I915_WRITE(pp_ctrl_reg, pp);
1307         POSTING_READ(pp_ctrl_reg);
1308
1309         wait_panel_on(intel_dp);
1310         intel_dp->last_power_on = jiffies;
1311
1312         if (IS_GEN5(dev)) {
1313                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1314                 I915_WRITE(pp_ctrl_reg, pp);
1315                 POSTING_READ(pp_ctrl_reg);
1316         }
1317 }
1318
1319 void intel_edp_panel_off(struct intel_dp *intel_dp)
1320 {
1321         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1322         struct drm_i915_private *dev_priv = dev->dev_private;
1323         u32 pp;
1324         u32 pp_ctrl_reg;
1325
1326         if (!is_edp(intel_dp))
1327                 return;
1328
1329         DRM_DEBUG_KMS("Turn eDP power off\n");
1330
1331         edp_wait_backlight_off(intel_dp);
1332
1333         pp = ironlake_get_pp_control(intel_dp);
1334         /* We need to switch off panel power _and_ force vdd, for otherwise some
1335          * panels get very unhappy and cease to work. */
1336         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1337                 EDP_BLC_ENABLE);
1338
1339         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1340
1341         I915_WRITE(pp_ctrl_reg, pp);
1342         POSTING_READ(pp_ctrl_reg);
1343
1344         intel_dp->last_power_cycle = jiffies;
1345         wait_panel_off(intel_dp);
1346 }
1347
1348 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1349 {
1350         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1351         struct drm_device *dev = intel_dig_port->base.base.dev;
1352         struct drm_i915_private *dev_priv = dev->dev_private;
1353         u32 pp;
1354         u32 pp_ctrl_reg;
1355
1356         if (!is_edp(intel_dp))
1357                 return;
1358
1359         DRM_DEBUG_KMS("\n");
1360         /*
1361          * If we enable the backlight right away following a panel power
1362          * on, we may see slight flicker as the panel syncs with the eDP
1363          * link.  So delay a bit to make sure the image is solid before
1364          * allowing it to appear.
1365          */
1366         wait_backlight_on(intel_dp);
1367         pp = ironlake_get_pp_control(intel_dp);
1368         pp |= EDP_BLC_ENABLE;
1369
1370         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1371
1372         I915_WRITE(pp_ctrl_reg, pp);
1373         POSTING_READ(pp_ctrl_reg);
1374
1375         intel_panel_enable_backlight(intel_dp->attached_connector);
1376 }
1377
1378 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1379 {
1380         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1381         struct drm_i915_private *dev_priv = dev->dev_private;
1382         u32 pp;
1383         u32 pp_ctrl_reg;
1384
1385         if (!is_edp(intel_dp))
1386                 return;
1387
1388         intel_panel_disable_backlight(intel_dp->attached_connector);
1389
1390         DRM_DEBUG_KMS("\n");
1391         pp = ironlake_get_pp_control(intel_dp);
1392         pp &= ~EDP_BLC_ENABLE;
1393
1394         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1395
1396         I915_WRITE(pp_ctrl_reg, pp);
1397         POSTING_READ(pp_ctrl_reg);
1398         intel_dp->last_backlight_off = jiffies;
1399 }
1400
1401 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1402 {
1403         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1404         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1405         struct drm_device *dev = crtc->dev;
1406         struct drm_i915_private *dev_priv = dev->dev_private;
1407         u32 dpa_ctl;
1408
1409         assert_pipe_disabled(dev_priv,
1410                              to_intel_crtc(crtc)->pipe);
1411
1412         DRM_DEBUG_KMS("\n");
1413         dpa_ctl = I915_READ(DP_A);
1414         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1415         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1416
1417         /* We don't adjust intel_dp->DP while tearing down the link, to
1418          * facilitate link retraining (e.g. after hotplug). Hence clear all
1419          * enable bits here to ensure that we don't enable too much. */
1420         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1421         intel_dp->DP |= DP_PLL_ENABLE;
1422         I915_WRITE(DP_A, intel_dp->DP);
1423         POSTING_READ(DP_A);
1424         udelay(200);
1425 }
1426
1427 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1428 {
1429         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1430         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1431         struct drm_device *dev = crtc->dev;
1432         struct drm_i915_private *dev_priv = dev->dev_private;
1433         u32 dpa_ctl;
1434
1435         assert_pipe_disabled(dev_priv,
1436                              to_intel_crtc(crtc)->pipe);
1437
1438         dpa_ctl = I915_READ(DP_A);
1439         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1440              "dp pll off, should be on\n");
1441         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1442
1443         /* We can't rely on the value tracked for the DP register in
1444          * intel_dp->DP because link_down must not change that (otherwise link
1445          * re-training will fail. */
1446         dpa_ctl &= ~DP_PLL_ENABLE;
1447         I915_WRITE(DP_A, dpa_ctl);
1448         POSTING_READ(DP_A);
1449         udelay(200);
1450 }
1451
1452 /* If the sink supports it, try to set the power state appropriately */
1453 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1454 {
1455         int ret, i;
1456
1457         /* Should have a valid DPCD by this point */
1458         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1459                 return;
1460
1461         if (mode != DRM_MODE_DPMS_ON) {
1462                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1463                                                   DP_SET_POWER_D3);
1464                 if (ret != 1)
1465                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1466         } else {
1467                 /*
1468                  * When turning on, we need to retry for 1ms to give the sink
1469                  * time to wake up.
1470                  */
1471                 for (i = 0; i < 3; i++) {
1472                         ret = intel_dp_aux_native_write_1(intel_dp,
1473                                                           DP_SET_POWER,
1474                                                           DP_SET_POWER_D0);
1475                         if (ret == 1)
1476                                 break;
1477                         msleep(1);
1478                 }
1479         }
1480 }
1481
1482 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1483                                   enum pipe *pipe)
1484 {
1485         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1486         enum port port = dp_to_dig_port(intel_dp)->port;
1487         struct drm_device *dev = encoder->base.dev;
1488         struct drm_i915_private *dev_priv = dev->dev_private;
1489         enum intel_display_power_domain power_domain;
1490         u32 tmp;
1491
1492         power_domain = intel_display_port_power_domain(encoder);
1493         if (!intel_display_power_enabled(dev_priv, power_domain))
1494                 return false;
1495
1496         tmp = I915_READ(intel_dp->output_reg);
1497
1498         if (!(tmp & DP_PORT_EN))
1499                 return false;
1500
1501         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1502                 *pipe = PORT_TO_PIPE_CPT(tmp);
1503         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1504                 *pipe = PORT_TO_PIPE(tmp);
1505         } else {
1506                 u32 trans_sel;
1507                 u32 trans_dp;
1508                 int i;
1509
1510                 switch (intel_dp->output_reg) {
1511                 case PCH_DP_B:
1512                         trans_sel = TRANS_DP_PORT_SEL_B;
1513                         break;
1514                 case PCH_DP_C:
1515                         trans_sel = TRANS_DP_PORT_SEL_C;
1516                         break;
1517                 case PCH_DP_D:
1518                         trans_sel = TRANS_DP_PORT_SEL_D;
1519                         break;
1520                 default:
1521                         return true;
1522                 }
1523
1524                 for_each_pipe(i) {
1525                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1526                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1527                                 *pipe = i;
1528                                 return true;
1529                         }
1530                 }
1531
1532                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1533                               intel_dp->output_reg);
1534         }
1535
1536         return true;
1537 }
1538
1539 static void intel_dp_get_config(struct intel_encoder *encoder,
1540                                 struct intel_crtc_config *pipe_config)
1541 {
1542         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1543         u32 tmp, flags = 0;
1544         struct drm_device *dev = encoder->base.dev;
1545         struct drm_i915_private *dev_priv = dev->dev_private;
1546         enum port port = dp_to_dig_port(intel_dp)->port;
1547         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1548         int dotclock;
1549
1550         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1551                 tmp = I915_READ(intel_dp->output_reg);
1552                 if (tmp & DP_SYNC_HS_HIGH)
1553                         flags |= DRM_MODE_FLAG_PHSYNC;
1554                 else
1555                         flags |= DRM_MODE_FLAG_NHSYNC;
1556
1557                 if (tmp & DP_SYNC_VS_HIGH)
1558                         flags |= DRM_MODE_FLAG_PVSYNC;
1559                 else
1560                         flags |= DRM_MODE_FLAG_NVSYNC;
1561         } else {
1562                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1563                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1564                         flags |= DRM_MODE_FLAG_PHSYNC;
1565                 else
1566                         flags |= DRM_MODE_FLAG_NHSYNC;
1567
1568                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1569                         flags |= DRM_MODE_FLAG_PVSYNC;
1570                 else
1571                         flags |= DRM_MODE_FLAG_NVSYNC;
1572         }
1573
1574         pipe_config->adjusted_mode.flags |= flags;
1575
1576         pipe_config->has_dp_encoder = true;
1577
1578         intel_dp_get_m_n(crtc, pipe_config);
1579
1580         if (port == PORT_A) {
1581                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1582                         pipe_config->port_clock = 162000;
1583                 else
1584                         pipe_config->port_clock = 270000;
1585         }
1586
1587         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1588                                             &pipe_config->dp_m_n);
1589
1590         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1591                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1592
1593         pipe_config->adjusted_mode.crtc_clock = dotclock;
1594
1595         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1596             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1597                 /*
1598                  * This is a big fat ugly hack.
1599                  *
1600                  * Some machines in UEFI boot mode provide us a VBT that has 18
1601                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1602                  * unknown we fail to light up. Yet the same BIOS boots up with
1603                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1604                  * max, not what it tells us to use.
1605                  *
1606                  * Note: This will still be broken if the eDP panel is not lit
1607                  * up by the BIOS, and thus we can't get the mode at module
1608                  * load.
1609                  */
1610                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1611                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1612                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1613         }
1614 }
1615
1616 static bool is_edp_psr(struct drm_device *dev)
1617 {
1618         struct drm_i915_private *dev_priv = dev->dev_private;
1619
1620         return dev_priv->psr.sink_support;
1621 }
1622
1623 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1624 {
1625         struct drm_i915_private *dev_priv = dev->dev_private;
1626
1627         if (!HAS_PSR(dev))
1628                 return false;
1629
1630         return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1631 }
1632
1633 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1634                                     struct edp_vsc_psr *vsc_psr)
1635 {
1636         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1637         struct drm_device *dev = dig_port->base.base.dev;
1638         struct drm_i915_private *dev_priv = dev->dev_private;
1639         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1640         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1641         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1642         uint32_t *data = (uint32_t *) vsc_psr;
1643         unsigned int i;
1644
1645         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1646            the video DIP being updated before program video DIP data buffer
1647            registers for DIP being updated. */
1648         I915_WRITE(ctl_reg, 0);
1649         POSTING_READ(ctl_reg);
1650
1651         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1652                 if (i < sizeof(struct edp_vsc_psr))
1653                         I915_WRITE(data_reg + i, *data++);
1654                 else
1655                         I915_WRITE(data_reg + i, 0);
1656         }
1657
1658         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1659         POSTING_READ(ctl_reg);
1660 }
1661
1662 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1663 {
1664         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1665         struct drm_i915_private *dev_priv = dev->dev_private;
1666         struct edp_vsc_psr psr_vsc;
1667
1668         if (intel_dp->psr_setup_done)
1669                 return;
1670
1671         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1672         memset(&psr_vsc, 0, sizeof(psr_vsc));
1673         psr_vsc.sdp_header.HB0 = 0;
1674         psr_vsc.sdp_header.HB1 = 0x7;
1675         psr_vsc.sdp_header.HB2 = 0x2;
1676         psr_vsc.sdp_header.HB3 = 0x8;
1677         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1678
1679         /* Avoid continuous PSR exit by masking memup and hpd */
1680         I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1681                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1682
1683         intel_dp->psr_setup_done = true;
1684 }
1685
1686 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1687 {
1688         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1689         struct drm_i915_private *dev_priv = dev->dev_private;
1690         uint32_t aux_clock_divider;
1691         int precharge = 0x3;
1692         int msg_size = 5;       /* Header(4) + Message(1) */
1693
1694         aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1695
1696         /* Enable PSR in sink */
1697         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1698                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1699                                             DP_PSR_ENABLE &
1700                                             ~DP_PSR_MAIN_LINK_ACTIVE);
1701         else
1702                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1703                                             DP_PSR_ENABLE |
1704                                             DP_PSR_MAIN_LINK_ACTIVE);
1705
1706         /* Setup AUX registers */
1707         I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1708         I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1709         I915_WRITE(EDP_PSR_AUX_CTL(dev),
1710                    DP_AUX_CH_CTL_TIME_OUT_400us |
1711                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1712                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1713                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1714 }
1715
1716 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1717 {
1718         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1719         struct drm_i915_private *dev_priv = dev->dev_private;
1720         uint32_t max_sleep_time = 0x1f;
1721         uint32_t idle_frames = 1;
1722         uint32_t val = 0x0;
1723         const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1724
1725         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1726                 val |= EDP_PSR_LINK_STANDBY;
1727                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1728                 val |= EDP_PSR_TP1_TIME_0us;
1729                 val |= EDP_PSR_SKIP_AUX_EXIT;
1730         } else
1731                 val |= EDP_PSR_LINK_DISABLE;
1732
1733         I915_WRITE(EDP_PSR_CTL(dev), val |
1734                    IS_BROADWELL(dev) ? 0 : link_entry_time |
1735                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1736                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1737                    EDP_PSR_ENABLE);
1738 }
1739
1740 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1741 {
1742         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1743         struct drm_device *dev = dig_port->base.base.dev;
1744         struct drm_i915_private *dev_priv = dev->dev_private;
1745         struct drm_crtc *crtc = dig_port->base.base.crtc;
1746         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1747         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1748         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1749
1750         dev_priv->psr.source_ok = false;
1751
1752         if (!HAS_PSR(dev)) {
1753                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1754                 return false;
1755         }
1756
1757         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1758             (dig_port->port != PORT_A)) {
1759                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1760                 return false;
1761         }
1762
1763         if (!i915.enable_psr) {
1764                 DRM_DEBUG_KMS("PSR disable by flag\n");
1765                 return false;
1766         }
1767
1768         crtc = dig_port->base.base.crtc;
1769         if (crtc == NULL) {
1770                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1771                 return false;
1772         }
1773
1774         intel_crtc = to_intel_crtc(crtc);
1775         if (!intel_crtc_active(crtc)) {
1776                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1777                 return false;
1778         }
1779
1780         obj = to_intel_framebuffer(crtc->fb)->obj;
1781         if (obj->tiling_mode != I915_TILING_X ||
1782             obj->fence_reg == I915_FENCE_REG_NONE) {
1783                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1784                 return false;
1785         }
1786
1787         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1788                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1789                 return false;
1790         }
1791
1792         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1793             S3D_ENABLE) {
1794                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1795                 return false;
1796         }
1797
1798         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1799                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1800                 return false;
1801         }
1802
1803         dev_priv->psr.source_ok = true;
1804         return true;
1805 }
1806
1807 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1808 {
1809         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1810
1811         if (!intel_edp_psr_match_conditions(intel_dp) ||
1812             intel_edp_is_psr_enabled(dev))
1813                 return;
1814
1815         /* Setup PSR once */
1816         intel_edp_psr_setup(intel_dp);
1817
1818         /* Enable PSR on the panel */
1819         intel_edp_psr_enable_sink(intel_dp);
1820
1821         /* Enable PSR on the host */
1822         intel_edp_psr_enable_source(intel_dp);
1823 }
1824
1825 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1826 {
1827         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1828
1829         if (intel_edp_psr_match_conditions(intel_dp) &&
1830             !intel_edp_is_psr_enabled(dev))
1831                 intel_edp_psr_do_enable(intel_dp);
1832 }
1833
1834 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1835 {
1836         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1837         struct drm_i915_private *dev_priv = dev->dev_private;
1838
1839         if (!intel_edp_is_psr_enabled(dev))
1840                 return;
1841
1842         I915_WRITE(EDP_PSR_CTL(dev),
1843                    I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1844
1845         /* Wait till PSR is idle */
1846         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1847                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1848                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1849 }
1850
1851 void intel_edp_psr_update(struct drm_device *dev)
1852 {
1853         struct intel_encoder *encoder;
1854         struct intel_dp *intel_dp = NULL;
1855
1856         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1857                 if (encoder->type == INTEL_OUTPUT_EDP) {
1858                         intel_dp = enc_to_intel_dp(&encoder->base);
1859
1860                         if (!is_edp_psr(dev))
1861                                 return;
1862
1863                         if (!intel_edp_psr_match_conditions(intel_dp))
1864                                 intel_edp_psr_disable(intel_dp);
1865                         else
1866                                 if (!intel_edp_is_psr_enabled(dev))
1867                                         intel_edp_psr_do_enable(intel_dp);
1868                 }
1869 }
1870
1871 static void intel_disable_dp(struct intel_encoder *encoder)
1872 {
1873         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1874         enum port port = dp_to_dig_port(intel_dp)->port;
1875         struct drm_device *dev = encoder->base.dev;
1876
1877         /* Make sure the panel is off before trying to change the mode. But also
1878          * ensure that we have vdd while we switch off the panel. */
1879         edp_panel_vdd_on(intel_dp);
1880         intel_edp_backlight_off(intel_dp);
1881         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1882         intel_edp_panel_off(intel_dp);
1883         edp_panel_vdd_off(intel_dp, true);
1884
1885         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1886         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1887                 intel_dp_link_down(intel_dp);
1888 }
1889
1890 static void intel_post_disable_dp(struct intel_encoder *encoder)
1891 {
1892         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1893         enum port port = dp_to_dig_port(intel_dp)->port;
1894         struct drm_device *dev = encoder->base.dev;
1895
1896         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1897                 intel_dp_link_down(intel_dp);
1898                 if (!IS_VALLEYVIEW(dev))
1899                         ironlake_edp_pll_off(intel_dp);
1900         }
1901 }
1902
1903 static void intel_enable_dp(struct intel_encoder *encoder)
1904 {
1905         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1906         struct drm_device *dev = encoder->base.dev;
1907         struct drm_i915_private *dev_priv = dev->dev_private;
1908         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1909
1910         if (WARN_ON(dp_reg & DP_PORT_EN))
1911                 return;
1912
1913         edp_panel_vdd_on(intel_dp);
1914         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1915         intel_dp_start_link_train(intel_dp);
1916         intel_edp_panel_on(intel_dp);
1917         edp_panel_vdd_off(intel_dp, true);
1918         intel_dp_complete_link_train(intel_dp);
1919         intel_dp_stop_link_train(intel_dp);
1920 }
1921
1922 static void g4x_enable_dp(struct intel_encoder *encoder)
1923 {
1924         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1925
1926         intel_enable_dp(encoder);
1927         intel_edp_backlight_on(intel_dp);
1928 }
1929
1930 static void vlv_enable_dp(struct intel_encoder *encoder)
1931 {
1932         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1933
1934         intel_edp_backlight_on(intel_dp);
1935 }
1936
1937 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1938 {
1939         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1940         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1941
1942         if (dport->port == PORT_A)
1943                 ironlake_edp_pll_on(intel_dp);
1944 }
1945
1946 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1947 {
1948         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1949         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1950         struct drm_device *dev = encoder->base.dev;
1951         struct drm_i915_private *dev_priv = dev->dev_private;
1952         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1953         enum dpio_channel port = vlv_dport_to_channel(dport);
1954         int pipe = intel_crtc->pipe;
1955         struct edp_power_seq power_seq;
1956         u32 val;
1957
1958         mutex_lock(&dev_priv->dpio_lock);
1959
1960         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1961         val = 0;
1962         if (pipe)
1963                 val |= (1<<21);
1964         else
1965                 val &= ~(1<<21);
1966         val |= 0x001000c4;
1967         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1968         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1969         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1970
1971         mutex_unlock(&dev_priv->dpio_lock);
1972
1973         if (is_edp(intel_dp)) {
1974                 /* init power sequencer on this pipe and port */
1975                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1976                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1977                                                               &power_seq);
1978         }
1979
1980         intel_enable_dp(encoder);
1981
1982         vlv_wait_port_ready(dev_priv, dport);
1983 }
1984
1985 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1986 {
1987         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1988         struct drm_device *dev = encoder->base.dev;
1989         struct drm_i915_private *dev_priv = dev->dev_private;
1990         struct intel_crtc *intel_crtc =
1991                 to_intel_crtc(encoder->base.crtc);
1992         enum dpio_channel port = vlv_dport_to_channel(dport);
1993         int pipe = intel_crtc->pipe;
1994
1995         /* Program Tx lane resets to default */
1996         mutex_lock(&dev_priv->dpio_lock);
1997         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1998                          DPIO_PCS_TX_LANE2_RESET |
1999                          DPIO_PCS_TX_LANE1_RESET);
2000         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2001                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2002                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2003                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2004                                  DPIO_PCS_CLK_SOFT_RESET);
2005
2006         /* Fix up inter-pair skew failure */
2007         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2008         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2009         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2010         mutex_unlock(&dev_priv->dpio_lock);
2011 }
2012
2013 /*
2014  * Native read with retry for link status and receiver capability reads for
2015  * cases where the sink may still be asleep.
2016  */
2017 static bool
2018 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
2019                                uint8_t *recv, int recv_bytes)
2020 {
2021         int ret, i;
2022
2023         /*
2024          * Sinks are *supposed* to come up within 1ms from an off state,
2025          * but we're also supposed to retry 3 times per the spec.
2026          */
2027         for (i = 0; i < 3; i++) {
2028                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
2029                                                recv_bytes);
2030                 if (ret == recv_bytes)
2031                         return true;
2032                 msleep(1);
2033         }
2034
2035         return false;
2036 }
2037
2038 /*
2039  * Fetch AUX CH registers 0x202 - 0x207 which contain
2040  * link status information
2041  */
2042 static bool
2043 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2044 {
2045         return intel_dp_aux_native_read_retry(intel_dp,
2046                                               DP_LANE0_1_STATUS,
2047                                               link_status,
2048                                               DP_LINK_STATUS_SIZE);
2049 }
2050
2051 /*
2052  * These are source-specific values; current Intel hardware supports
2053  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
2054  */
2055
2056 static uint8_t
2057 intel_dp_voltage_max(struct intel_dp *intel_dp)
2058 {
2059         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2060         enum port port = dp_to_dig_port(intel_dp)->port;
2061
2062         if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
2063                 return DP_TRAIN_VOLTAGE_SWING_1200;
2064         else if (IS_GEN7(dev) && port == PORT_A)
2065                 return DP_TRAIN_VOLTAGE_SWING_800;
2066         else if (HAS_PCH_CPT(dev) && port != PORT_A)
2067                 return DP_TRAIN_VOLTAGE_SWING_1200;
2068         else
2069                 return DP_TRAIN_VOLTAGE_SWING_800;
2070 }
2071
2072 static uint8_t
2073 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2074 {
2075         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2076         enum port port = dp_to_dig_port(intel_dp)->port;
2077
2078         if (IS_BROADWELL(dev)) {
2079                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2080                 case DP_TRAIN_VOLTAGE_SWING_400:
2081                 case DP_TRAIN_VOLTAGE_SWING_600:
2082                         return DP_TRAIN_PRE_EMPHASIS_6;
2083                 case DP_TRAIN_VOLTAGE_SWING_800:
2084                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2085                 case DP_TRAIN_VOLTAGE_SWING_1200:
2086                 default:
2087                         return DP_TRAIN_PRE_EMPHASIS_0;
2088                 }
2089         } else if (IS_HASWELL(dev)) {
2090                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2091                 case DP_TRAIN_VOLTAGE_SWING_400:
2092                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2093                 case DP_TRAIN_VOLTAGE_SWING_600:
2094                         return DP_TRAIN_PRE_EMPHASIS_6;
2095                 case DP_TRAIN_VOLTAGE_SWING_800:
2096                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2097                 case DP_TRAIN_VOLTAGE_SWING_1200:
2098                 default:
2099                         return DP_TRAIN_PRE_EMPHASIS_0;
2100                 }
2101         } else if (IS_VALLEYVIEW(dev)) {
2102                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2103                 case DP_TRAIN_VOLTAGE_SWING_400:
2104                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2105                 case DP_TRAIN_VOLTAGE_SWING_600:
2106                         return DP_TRAIN_PRE_EMPHASIS_6;
2107                 case DP_TRAIN_VOLTAGE_SWING_800:
2108                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2109                 case DP_TRAIN_VOLTAGE_SWING_1200:
2110                 default:
2111                         return DP_TRAIN_PRE_EMPHASIS_0;
2112                 }
2113         } else if (IS_GEN7(dev) && port == PORT_A) {
2114                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2115                 case DP_TRAIN_VOLTAGE_SWING_400:
2116                         return DP_TRAIN_PRE_EMPHASIS_6;
2117                 case DP_TRAIN_VOLTAGE_SWING_600:
2118                 case DP_TRAIN_VOLTAGE_SWING_800:
2119                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2120                 default:
2121                         return DP_TRAIN_PRE_EMPHASIS_0;
2122                 }
2123         } else {
2124                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2125                 case DP_TRAIN_VOLTAGE_SWING_400:
2126                         return DP_TRAIN_PRE_EMPHASIS_6;
2127                 case DP_TRAIN_VOLTAGE_SWING_600:
2128                         return DP_TRAIN_PRE_EMPHASIS_6;
2129                 case DP_TRAIN_VOLTAGE_SWING_800:
2130                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2131                 case DP_TRAIN_VOLTAGE_SWING_1200:
2132                 default:
2133                         return DP_TRAIN_PRE_EMPHASIS_0;
2134                 }
2135         }
2136 }
2137
2138 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2139 {
2140         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2141         struct drm_i915_private *dev_priv = dev->dev_private;
2142         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2143         struct intel_crtc *intel_crtc =
2144                 to_intel_crtc(dport->base.base.crtc);
2145         unsigned long demph_reg_value, preemph_reg_value,
2146                 uniqtranscale_reg_value;
2147         uint8_t train_set = intel_dp->train_set[0];
2148         enum dpio_channel port = vlv_dport_to_channel(dport);
2149         int pipe = intel_crtc->pipe;
2150
2151         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2152         case DP_TRAIN_PRE_EMPHASIS_0:
2153                 preemph_reg_value = 0x0004000;
2154                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2155                 case DP_TRAIN_VOLTAGE_SWING_400:
2156                         demph_reg_value = 0x2B405555;
2157                         uniqtranscale_reg_value = 0x552AB83A;
2158                         break;
2159                 case DP_TRAIN_VOLTAGE_SWING_600:
2160                         demph_reg_value = 0x2B404040;
2161                         uniqtranscale_reg_value = 0x5548B83A;
2162                         break;
2163                 case DP_TRAIN_VOLTAGE_SWING_800:
2164                         demph_reg_value = 0x2B245555;
2165                         uniqtranscale_reg_value = 0x5560B83A;
2166                         break;
2167                 case DP_TRAIN_VOLTAGE_SWING_1200:
2168                         demph_reg_value = 0x2B405555;
2169                         uniqtranscale_reg_value = 0x5598DA3A;
2170                         break;
2171                 default:
2172                         return 0;
2173                 }
2174                 break;
2175         case DP_TRAIN_PRE_EMPHASIS_3_5:
2176                 preemph_reg_value = 0x0002000;
2177                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2178                 case DP_TRAIN_VOLTAGE_SWING_400:
2179                         demph_reg_value = 0x2B404040;
2180                         uniqtranscale_reg_value = 0x5552B83A;
2181                         break;
2182                 case DP_TRAIN_VOLTAGE_SWING_600:
2183                         demph_reg_value = 0x2B404848;
2184                         uniqtranscale_reg_value = 0x5580B83A;
2185                         break;
2186                 case DP_TRAIN_VOLTAGE_SWING_800:
2187                         demph_reg_value = 0x2B404040;
2188                         uniqtranscale_reg_value = 0x55ADDA3A;
2189                         break;
2190                 default:
2191                         return 0;
2192                 }
2193                 break;
2194         case DP_TRAIN_PRE_EMPHASIS_6:
2195                 preemph_reg_value = 0x0000000;
2196                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2197                 case DP_TRAIN_VOLTAGE_SWING_400:
2198                         demph_reg_value = 0x2B305555;
2199                         uniqtranscale_reg_value = 0x5570B83A;
2200                         break;
2201                 case DP_TRAIN_VOLTAGE_SWING_600:
2202                         demph_reg_value = 0x2B2B4040;
2203                         uniqtranscale_reg_value = 0x55ADDA3A;
2204                         break;
2205                 default:
2206                         return 0;
2207                 }
2208                 break;
2209         case DP_TRAIN_PRE_EMPHASIS_9_5:
2210                 preemph_reg_value = 0x0006000;
2211                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2212                 case DP_TRAIN_VOLTAGE_SWING_400:
2213                         demph_reg_value = 0x1B405555;
2214                         uniqtranscale_reg_value = 0x55ADDA3A;
2215                         break;
2216                 default:
2217                         return 0;
2218                 }
2219                 break;
2220         default:
2221                 return 0;
2222         }
2223
2224         mutex_lock(&dev_priv->dpio_lock);
2225         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2226         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2227         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2228                          uniqtranscale_reg_value);
2229         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2230         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2231         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2232         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2233         mutex_unlock(&dev_priv->dpio_lock);
2234
2235         return 0;
2236 }
2237
2238 static void
2239 intel_get_adjust_train(struct intel_dp *intel_dp,
2240                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
2241 {
2242         uint8_t v = 0;
2243         uint8_t p = 0;
2244         int lane;
2245         uint8_t voltage_max;
2246         uint8_t preemph_max;
2247
2248         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2249                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2250                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2251
2252                 if (this_v > v)
2253                         v = this_v;
2254                 if (this_p > p)
2255                         p = this_p;
2256         }
2257
2258         voltage_max = intel_dp_voltage_max(intel_dp);
2259         if (v >= voltage_max)
2260                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2261
2262         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2263         if (p >= preemph_max)
2264                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2265
2266         for (lane = 0; lane < 4; lane++)
2267                 intel_dp->train_set[lane] = v | p;
2268 }
2269
2270 static uint32_t
2271 intel_gen4_signal_levels(uint8_t train_set)
2272 {
2273         uint32_t        signal_levels = 0;
2274
2275         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2276         case DP_TRAIN_VOLTAGE_SWING_400:
2277         default:
2278                 signal_levels |= DP_VOLTAGE_0_4;
2279                 break;
2280         case DP_TRAIN_VOLTAGE_SWING_600:
2281                 signal_levels |= DP_VOLTAGE_0_6;
2282                 break;
2283         case DP_TRAIN_VOLTAGE_SWING_800:
2284                 signal_levels |= DP_VOLTAGE_0_8;
2285                 break;
2286         case DP_TRAIN_VOLTAGE_SWING_1200:
2287                 signal_levels |= DP_VOLTAGE_1_2;
2288                 break;
2289         }
2290         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2291         case DP_TRAIN_PRE_EMPHASIS_0:
2292         default:
2293                 signal_levels |= DP_PRE_EMPHASIS_0;
2294                 break;
2295         case DP_TRAIN_PRE_EMPHASIS_3_5:
2296                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2297                 break;
2298         case DP_TRAIN_PRE_EMPHASIS_6:
2299                 signal_levels |= DP_PRE_EMPHASIS_6;
2300                 break;
2301         case DP_TRAIN_PRE_EMPHASIS_9_5:
2302                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2303                 break;
2304         }
2305         return signal_levels;
2306 }
2307
2308 /* Gen6's DP voltage swing and pre-emphasis control */
2309 static uint32_t
2310 intel_gen6_edp_signal_levels(uint8_t train_set)
2311 {
2312         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2313                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2314         switch (signal_levels) {
2315         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2316         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2317                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2318         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2319                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2320         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2321         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2322                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2323         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2324         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2325                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2326         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2327         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2328                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2329         default:
2330                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2331                               "0x%x\n", signal_levels);
2332                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2333         }
2334 }
2335
2336 /* Gen7's DP voltage swing and pre-emphasis control */
2337 static uint32_t
2338 intel_gen7_edp_signal_levels(uint8_t train_set)
2339 {
2340         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2341                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2342         switch (signal_levels) {
2343         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2344                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2345         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2346                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2347         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2348                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2349
2350         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2351                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2352         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2353                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2354
2355         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2356                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2357         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2358                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2359
2360         default:
2361                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2362                               "0x%x\n", signal_levels);
2363                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2364         }
2365 }
2366
2367 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2368 static uint32_t
2369 intel_hsw_signal_levels(uint8_t train_set)
2370 {
2371         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2372                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2373         switch (signal_levels) {
2374         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2375                 return DDI_BUF_EMP_400MV_0DB_HSW;
2376         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2377                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2378         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2379                 return DDI_BUF_EMP_400MV_6DB_HSW;
2380         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2381                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2382
2383         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2384                 return DDI_BUF_EMP_600MV_0DB_HSW;
2385         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2386                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2387         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2388                 return DDI_BUF_EMP_600MV_6DB_HSW;
2389
2390         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2391                 return DDI_BUF_EMP_800MV_0DB_HSW;
2392         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2393                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2394         default:
2395                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2396                               "0x%x\n", signal_levels);
2397                 return DDI_BUF_EMP_400MV_0DB_HSW;
2398         }
2399 }
2400
2401 static uint32_t
2402 intel_bdw_signal_levels(uint8_t train_set)
2403 {
2404         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2405                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2406         switch (signal_levels) {
2407         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2408                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2409         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2410                 return DDI_BUF_EMP_400MV_3_5DB_BDW;     /* Sel1 */
2411         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2412                 return DDI_BUF_EMP_400MV_6DB_BDW;       /* Sel2 */
2413
2414         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2415                 return DDI_BUF_EMP_600MV_0DB_BDW;       /* Sel3 */
2416         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2417                 return DDI_BUF_EMP_600MV_3_5DB_BDW;     /* Sel4 */
2418         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2419                 return DDI_BUF_EMP_600MV_6DB_BDW;       /* Sel5 */
2420
2421         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2422                 return DDI_BUF_EMP_800MV_0DB_BDW;       /* Sel6 */
2423         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2424                 return DDI_BUF_EMP_800MV_3_5DB_BDW;     /* Sel7 */
2425
2426         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2427                 return DDI_BUF_EMP_1200MV_0DB_BDW;      /* Sel8 */
2428
2429         default:
2430                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2431                               "0x%x\n", signal_levels);
2432                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2433         }
2434 }
2435
2436 /* Properly updates "DP" with the correct signal levels. */
2437 static void
2438 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2439 {
2440         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2441         enum port port = intel_dig_port->port;
2442         struct drm_device *dev = intel_dig_port->base.base.dev;
2443         uint32_t signal_levels, mask;
2444         uint8_t train_set = intel_dp->train_set[0];
2445
2446         if (IS_BROADWELL(dev)) {
2447                 signal_levels = intel_bdw_signal_levels(train_set);
2448                 mask = DDI_BUF_EMP_MASK;
2449         } else if (IS_HASWELL(dev)) {
2450                 signal_levels = intel_hsw_signal_levels(train_set);
2451                 mask = DDI_BUF_EMP_MASK;
2452         } else if (IS_VALLEYVIEW(dev)) {
2453                 signal_levels = intel_vlv_signal_levels(intel_dp);
2454                 mask = 0;
2455         } else if (IS_GEN7(dev) && port == PORT_A) {
2456                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2457                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2458         } else if (IS_GEN6(dev) && port == PORT_A) {
2459                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2460                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2461         } else {
2462                 signal_levels = intel_gen4_signal_levels(train_set);
2463                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2464         }
2465
2466         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2467
2468         *DP = (*DP & ~mask) | signal_levels;
2469 }
2470
2471 static bool
2472 intel_dp_set_link_train(struct intel_dp *intel_dp,
2473                         uint32_t *DP,
2474                         uint8_t dp_train_pat)
2475 {
2476         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2477         struct drm_device *dev = intel_dig_port->base.base.dev;
2478         struct drm_i915_private *dev_priv = dev->dev_private;
2479         enum port port = intel_dig_port->port;
2480         uint8_t buf[sizeof(intel_dp->train_set) + 1];
2481         int ret, len;
2482
2483         if (HAS_DDI(dev)) {
2484                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2485
2486                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2487                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2488                 else
2489                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2490
2491                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2492                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2493                 case DP_TRAINING_PATTERN_DISABLE:
2494                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2495
2496                         break;
2497                 case DP_TRAINING_PATTERN_1:
2498                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2499                         break;
2500                 case DP_TRAINING_PATTERN_2:
2501                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2502                         break;
2503                 case DP_TRAINING_PATTERN_3:
2504                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2505                         break;
2506                 }
2507                 I915_WRITE(DP_TP_CTL(port), temp);
2508
2509         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2510                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2511
2512                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2513                 case DP_TRAINING_PATTERN_DISABLE:
2514                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2515                         break;
2516                 case DP_TRAINING_PATTERN_1:
2517                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2518                         break;
2519                 case DP_TRAINING_PATTERN_2:
2520                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2521                         break;
2522                 case DP_TRAINING_PATTERN_3:
2523                         DRM_ERROR("DP training pattern 3 not supported\n");
2524                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2525                         break;
2526                 }
2527
2528         } else {
2529                 *DP &= ~DP_LINK_TRAIN_MASK;
2530
2531                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2532                 case DP_TRAINING_PATTERN_DISABLE:
2533                         *DP |= DP_LINK_TRAIN_OFF;
2534                         break;
2535                 case DP_TRAINING_PATTERN_1:
2536                         *DP |= DP_LINK_TRAIN_PAT_1;
2537                         break;
2538                 case DP_TRAINING_PATTERN_2:
2539                         *DP |= DP_LINK_TRAIN_PAT_2;
2540                         break;
2541                 case DP_TRAINING_PATTERN_3:
2542                         DRM_ERROR("DP training pattern 3 not supported\n");
2543                         *DP |= DP_LINK_TRAIN_PAT_2;
2544                         break;
2545                 }
2546         }
2547
2548         I915_WRITE(intel_dp->output_reg, *DP);
2549         POSTING_READ(intel_dp->output_reg);
2550
2551         buf[0] = dp_train_pat;
2552         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2553             DP_TRAINING_PATTERN_DISABLE) {
2554                 /* don't write DP_TRAINING_LANEx_SET on disable */
2555                 len = 1;
2556         } else {
2557                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2558                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2559                 len = intel_dp->lane_count + 1;
2560         }
2561
2562         ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_PATTERN_SET,
2563                                         buf, len);
2564
2565         return ret == len;
2566 }
2567
2568 static bool
2569 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2570                         uint8_t dp_train_pat)
2571 {
2572         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2573         intel_dp_set_signal_levels(intel_dp, DP);
2574         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2575 }
2576
2577 static bool
2578 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2579                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
2580 {
2581         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2582         struct drm_device *dev = intel_dig_port->base.base.dev;
2583         struct drm_i915_private *dev_priv = dev->dev_private;
2584         int ret;
2585
2586         intel_get_adjust_train(intel_dp, link_status);
2587         intel_dp_set_signal_levels(intel_dp, DP);
2588
2589         I915_WRITE(intel_dp->output_reg, *DP);
2590         POSTING_READ(intel_dp->output_reg);
2591
2592         ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET,
2593                                         intel_dp->train_set,
2594                                         intel_dp->lane_count);
2595
2596         return ret == intel_dp->lane_count;
2597 }
2598
2599 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2600 {
2601         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2602         struct drm_device *dev = intel_dig_port->base.base.dev;
2603         struct drm_i915_private *dev_priv = dev->dev_private;
2604         enum port port = intel_dig_port->port;
2605         uint32_t val;
2606
2607         if (!HAS_DDI(dev))
2608                 return;
2609
2610         val = I915_READ(DP_TP_CTL(port));
2611         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2612         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2613         I915_WRITE(DP_TP_CTL(port), val);
2614
2615         /*
2616          * On PORT_A we can have only eDP in SST mode. There the only reason
2617          * we need to set idle transmission mode is to work around a HW issue
2618          * where we enable the pipe while not in idle link-training mode.
2619          * In this case there is requirement to wait for a minimum number of
2620          * idle patterns to be sent.
2621          */
2622         if (port == PORT_A)
2623                 return;
2624
2625         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2626                      1))
2627                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2628 }
2629
2630 /* Enable corresponding port and start training pattern 1 */
2631 void
2632 intel_dp_start_link_train(struct intel_dp *intel_dp)
2633 {
2634         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2635         struct drm_device *dev = encoder->dev;
2636         int i;
2637         uint8_t voltage;
2638         int voltage_tries, loop_tries;
2639         uint32_t DP = intel_dp->DP;
2640         uint8_t link_config[2];
2641
2642         if (HAS_DDI(dev))
2643                 intel_ddi_prepare_link_retrain(encoder);
2644
2645         /* Write the link configuration data */
2646         link_config[0] = intel_dp->link_bw;
2647         link_config[1] = intel_dp->lane_count;
2648         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2649                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2650         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, link_config, 2);
2651
2652         link_config[0] = 0;
2653         link_config[1] = DP_SET_ANSI_8B10B;
2654         intel_dp_aux_native_write(intel_dp, DP_DOWNSPREAD_CTRL, link_config, 2);
2655
2656         DP |= DP_PORT_EN;
2657
2658         /* clock recovery */
2659         if (!intel_dp_reset_link_train(intel_dp, &DP,
2660                                        DP_TRAINING_PATTERN_1 |
2661                                        DP_LINK_SCRAMBLING_DISABLE)) {
2662                 DRM_ERROR("failed to enable link training\n");
2663                 return;
2664         }
2665
2666         voltage = 0xff;
2667         voltage_tries = 0;
2668         loop_tries = 0;
2669         for (;;) {
2670                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2671
2672                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2673                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2674                         DRM_ERROR("failed to get link status\n");
2675                         break;
2676                 }
2677
2678                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2679                         DRM_DEBUG_KMS("clock recovery OK\n");
2680                         break;
2681                 }
2682
2683                 /* Check to see if we've tried the max voltage */
2684                 for (i = 0; i < intel_dp->lane_count; i++)
2685                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2686                                 break;
2687                 if (i == intel_dp->lane_count) {
2688                         ++loop_tries;
2689                         if (loop_tries == 5) {
2690                                 DRM_ERROR("too many full retries, give up\n");
2691                                 break;
2692                         }
2693                         intel_dp_reset_link_train(intel_dp, &DP,
2694                                                   DP_TRAINING_PATTERN_1 |
2695                                                   DP_LINK_SCRAMBLING_DISABLE);
2696                         voltage_tries = 0;
2697                         continue;
2698                 }
2699
2700                 /* Check to see if we've tried the same voltage 5 times */
2701                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2702                         ++voltage_tries;
2703                         if (voltage_tries == 5) {
2704                                 DRM_ERROR("too many voltage retries, give up\n");
2705                                 break;
2706                         }
2707                 } else
2708                         voltage_tries = 0;
2709                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2710
2711                 /* Update training set as requested by target */
2712                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2713                         DRM_ERROR("failed to update link training\n");
2714                         break;
2715                 }
2716         }
2717
2718         intel_dp->DP = DP;
2719 }
2720
2721 void
2722 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2723 {
2724         bool channel_eq = false;
2725         int tries, cr_tries;
2726         uint32_t DP = intel_dp->DP;
2727         uint32_t training_pattern = DP_TRAINING_PATTERN_2;
2728
2729         /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
2730         if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
2731                 training_pattern = DP_TRAINING_PATTERN_3;
2732
2733         /* channel equalization */
2734         if (!intel_dp_set_link_train(intel_dp, &DP,
2735                                      training_pattern |
2736                                      DP_LINK_SCRAMBLING_DISABLE)) {
2737                 DRM_ERROR("failed to start channel equalization\n");
2738                 return;
2739         }
2740
2741         tries = 0;
2742         cr_tries = 0;
2743         channel_eq = false;
2744         for (;;) {
2745                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2746
2747                 if (cr_tries > 5) {
2748                         DRM_ERROR("failed to train DP, aborting\n");
2749                         break;
2750                 }
2751
2752                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2753                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2754                         DRM_ERROR("failed to get link status\n");
2755                         break;
2756                 }
2757
2758                 /* Make sure clock is still ok */
2759                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2760                         intel_dp_start_link_train(intel_dp);
2761                         intel_dp_set_link_train(intel_dp, &DP,
2762                                                 training_pattern |
2763                                                 DP_LINK_SCRAMBLING_DISABLE);
2764                         cr_tries++;
2765                         continue;
2766                 }
2767
2768                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2769                         channel_eq = true;
2770                         break;
2771                 }
2772
2773                 /* Try 5 times, then try clock recovery if that fails */
2774                 if (tries > 5) {
2775                         intel_dp_link_down(intel_dp);
2776                         intel_dp_start_link_train(intel_dp);
2777                         intel_dp_set_link_train(intel_dp, &DP,
2778                                                 training_pattern |
2779                                                 DP_LINK_SCRAMBLING_DISABLE);
2780                         tries = 0;
2781                         cr_tries++;
2782                         continue;
2783                 }
2784
2785                 /* Update training set as requested by target */
2786                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2787                         DRM_ERROR("failed to update link training\n");
2788                         break;
2789                 }
2790                 ++tries;
2791         }
2792
2793         intel_dp_set_idle_link_train(intel_dp);
2794
2795         intel_dp->DP = DP;
2796
2797         if (channel_eq)
2798                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2799
2800 }
2801
2802 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2803 {
2804         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2805                                 DP_TRAINING_PATTERN_DISABLE);
2806 }
2807
2808 static void
2809 intel_dp_link_down(struct intel_dp *intel_dp)
2810 {
2811         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2812         enum port port = intel_dig_port->port;
2813         struct drm_device *dev = intel_dig_port->base.base.dev;
2814         struct drm_i915_private *dev_priv = dev->dev_private;
2815         struct intel_crtc *intel_crtc =
2816                 to_intel_crtc(intel_dig_port->base.base.crtc);
2817         uint32_t DP = intel_dp->DP;
2818
2819         /*
2820          * DDI code has a strict mode set sequence and we should try to respect
2821          * it, otherwise we might hang the machine in many different ways. So we
2822          * really should be disabling the port only on a complete crtc_disable
2823          * sequence. This function is just called under two conditions on DDI
2824          * code:
2825          * - Link train failed while doing crtc_enable, and on this case we
2826          *   really should respect the mode set sequence and wait for a
2827          *   crtc_disable.
2828          * - Someone turned the monitor off and intel_dp_check_link_status
2829          *   called us. We don't need to disable the whole port on this case, so
2830          *   when someone turns the monitor on again,
2831          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2832          *   train.
2833          */
2834         if (HAS_DDI(dev))
2835                 return;
2836
2837         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2838                 return;
2839
2840         DRM_DEBUG_KMS("\n");
2841
2842         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2843                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2844                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2845         } else {
2846                 DP &= ~DP_LINK_TRAIN_MASK;
2847                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2848         }
2849         POSTING_READ(intel_dp->output_reg);
2850
2851         /* We don't really know why we're doing this */
2852         intel_wait_for_vblank(dev, intel_crtc->pipe);
2853
2854         if (HAS_PCH_IBX(dev) &&
2855             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2856                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2857
2858                 /* Hardware workaround: leaving our transcoder select
2859                  * set to transcoder B while it's off will prevent the
2860                  * corresponding HDMI output on transcoder A.
2861                  *
2862                  * Combine this with another hardware workaround:
2863                  * transcoder select bit can only be cleared while the
2864                  * port is enabled.
2865                  */
2866                 DP &= ~DP_PIPEB_SELECT;
2867                 I915_WRITE(intel_dp->output_reg, DP);
2868
2869                 /* Changes to enable or select take place the vblank
2870                  * after being written.
2871                  */
2872                 if (WARN_ON(crtc == NULL)) {
2873                         /* We should never try to disable a port without a crtc
2874                          * attached. For paranoia keep the code around for a
2875                          * bit. */
2876                         POSTING_READ(intel_dp->output_reg);
2877                         msleep(50);
2878                 } else
2879                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2880         }
2881
2882         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2883         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2884         POSTING_READ(intel_dp->output_reg);
2885         msleep(intel_dp->panel_power_down_delay);
2886 }
2887
2888 static bool
2889 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2890 {
2891         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2892         struct drm_device *dev = dig_port->base.base.dev;
2893         struct drm_i915_private *dev_priv = dev->dev_private;
2894
2895         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2896
2897         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2898                                            sizeof(intel_dp->dpcd)) == 0)
2899                 return false; /* aux transfer failed */
2900
2901         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2902                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2903         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2904
2905         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2906                 return false; /* DPCD not present */
2907
2908         /* Check if the panel supports PSR */
2909         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2910         if (is_edp(intel_dp)) {
2911                 intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2912                                                intel_dp->psr_dpcd,
2913                                                sizeof(intel_dp->psr_dpcd));
2914                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2915                         dev_priv->psr.sink_support = true;
2916                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2917                 }
2918         }
2919
2920         /* Training Pattern 3 support */
2921         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
2922             intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
2923                 intel_dp->use_tps3 = true;
2924                 DRM_DEBUG_KMS("Displayport TPS3 supported");
2925         } else
2926                 intel_dp->use_tps3 = false;
2927
2928         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2929               DP_DWN_STRM_PORT_PRESENT))
2930                 return true; /* native DP sink */
2931
2932         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2933                 return true; /* no per-port downstream info */
2934
2935         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2936                                            intel_dp->downstream_ports,
2937                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2938                 return false; /* downstream port status fetch failed */
2939
2940         return true;
2941 }
2942
2943 static void
2944 intel_dp_probe_oui(struct intel_dp *intel_dp)
2945 {
2946         u8 buf[3];
2947
2948         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2949                 return;
2950
2951         edp_panel_vdd_on(intel_dp);
2952
2953         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2954                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2955                               buf[0], buf[1], buf[2]);
2956
2957         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2958                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2959                               buf[0], buf[1], buf[2]);
2960
2961         edp_panel_vdd_off(intel_dp, false);
2962 }
2963
2964 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
2965 {
2966         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2967         struct drm_device *dev = intel_dig_port->base.base.dev;
2968         struct intel_crtc *intel_crtc =
2969                 to_intel_crtc(intel_dig_port->base.base.crtc);
2970         u8 buf[1];
2971
2972         if (!intel_dp_aux_native_read(intel_dp, DP_TEST_SINK_MISC, buf, 1))
2973                 return -EAGAIN;
2974
2975         if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
2976                 return -ENOTTY;
2977
2978         if (!intel_dp_aux_native_write_1(intel_dp, DP_TEST_SINK,
2979                                          DP_TEST_SINK_START))
2980                 return -EAGAIN;
2981
2982         /* Wait 2 vblanks to be sure we will have the correct CRC value */
2983         intel_wait_for_vblank(dev, intel_crtc->pipe);
2984         intel_wait_for_vblank(dev, intel_crtc->pipe);
2985
2986         if (!intel_dp_aux_native_read(intel_dp, DP_TEST_CRC_R_CR, crc, 6))
2987                 return -EAGAIN;
2988
2989         intel_dp_aux_native_write_1(intel_dp, DP_TEST_SINK, 0);
2990         return 0;
2991 }
2992
2993 static bool
2994 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2995 {
2996         int ret;
2997
2998         ret = intel_dp_aux_native_read_retry(intel_dp,
2999                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
3000                                              sink_irq_vector, 1);
3001         if (!ret)
3002                 return false;
3003
3004         return true;
3005 }
3006
3007 static void
3008 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3009 {
3010         /* NAK by default */
3011         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
3012 }
3013
3014 /*
3015  * According to DP spec
3016  * 5.1.2:
3017  *  1. Read DPCD
3018  *  2. Configure link according to Receiver Capabilities
3019  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3020  *  4. Check link status on receipt of hot-plug interrupt
3021  */
3022
3023 void
3024 intel_dp_check_link_status(struct intel_dp *intel_dp)
3025 {
3026         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3027         u8 sink_irq_vector;
3028         u8 link_status[DP_LINK_STATUS_SIZE];
3029
3030         if (!intel_encoder->connectors_active)
3031                 return;
3032
3033         if (WARN_ON(!intel_encoder->base.crtc))
3034                 return;
3035
3036         /* Try to read receiver status if the link appears to be up */
3037         if (!intel_dp_get_link_status(intel_dp, link_status)) {
3038                 return;
3039         }
3040
3041         /* Now read the DPCD to see if it's actually running */
3042         if (!intel_dp_get_dpcd(intel_dp)) {
3043                 return;
3044         }
3045
3046         /* Try to read the source of the interrupt */
3047         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3048             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3049                 /* Clear interrupt source */
3050                 intel_dp_aux_native_write_1(intel_dp,
3051                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
3052                                             sink_irq_vector);
3053
3054                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3055                         intel_dp_handle_test_request(intel_dp);
3056                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3057                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3058         }
3059
3060         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3061                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3062                               drm_get_encoder_name(&intel_encoder->base));
3063                 intel_dp_start_link_train(intel_dp);
3064                 intel_dp_complete_link_train(intel_dp);
3065                 intel_dp_stop_link_train(intel_dp);
3066         }
3067 }
3068
3069 /* XXX this is probably wrong for multiple downstream ports */
3070 static enum drm_connector_status
3071 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3072 {
3073         uint8_t *dpcd = intel_dp->dpcd;
3074         uint8_t type;
3075
3076         if (!intel_dp_get_dpcd(intel_dp))
3077                 return connector_status_disconnected;
3078
3079         /* if there's no downstream port, we're done */
3080         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3081                 return connector_status_connected;
3082
3083         /* If we're HPD-aware, SINK_COUNT changes dynamically */
3084         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3085             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3086                 uint8_t reg;
3087                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
3088                                                     &reg, 1))
3089                         return connector_status_unknown;
3090                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3091                                               : connector_status_disconnected;
3092         }
3093
3094         /* If no HPD, poke DDC gently */
3095         if (drm_probe_ddc(&intel_dp->adapter))
3096                 return connector_status_connected;
3097
3098         /* Well we tried, say unknown for unreliable port types */
3099         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3100                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3101                 if (type == DP_DS_PORT_TYPE_VGA ||
3102                     type == DP_DS_PORT_TYPE_NON_EDID)
3103                         return connector_status_unknown;
3104         } else {
3105                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3106                         DP_DWN_STRM_PORT_TYPE_MASK;
3107                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3108                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
3109                         return connector_status_unknown;
3110         }
3111
3112         /* Anything else is out of spec, warn and ignore */
3113         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3114         return connector_status_disconnected;
3115 }
3116
3117 static enum drm_connector_status
3118 ironlake_dp_detect(struct intel_dp *intel_dp)
3119 {
3120         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3121         struct drm_i915_private *dev_priv = dev->dev_private;
3122         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3123         enum drm_connector_status status;
3124
3125         /* Can't disconnect eDP, but you can close the lid... */
3126         if (is_edp(intel_dp)) {
3127                 status = intel_panel_detect(dev);
3128                 if (status == connector_status_unknown)
3129                         status = connector_status_connected;
3130                 return status;
3131         }
3132
3133         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3134                 return connector_status_disconnected;
3135
3136         return intel_dp_detect_dpcd(intel_dp);
3137 }
3138
3139 static enum drm_connector_status
3140 g4x_dp_detect(struct intel_dp *intel_dp)
3141 {
3142         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3143         struct drm_i915_private *dev_priv = dev->dev_private;
3144         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3145         uint32_t bit;
3146
3147         /* Can't disconnect eDP, but you can close the lid... */
3148         if (is_edp(intel_dp)) {
3149                 enum drm_connector_status status;
3150
3151                 status = intel_panel_detect(dev);
3152                 if (status == connector_status_unknown)
3153                         status = connector_status_connected;
3154                 return status;
3155         }
3156
3157         if (IS_VALLEYVIEW(dev)) {
3158                 switch (intel_dig_port->port) {
3159                 case PORT_B:
3160                         bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3161                         break;
3162                 case PORT_C:
3163                         bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3164                         break;
3165                 case PORT_D:
3166                         bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3167                         break;
3168                 default:
3169                         return connector_status_unknown;
3170                 }
3171         } else {
3172                 switch (intel_dig_port->port) {
3173                 case PORT_B:
3174                         bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3175                         break;
3176                 case PORT_C:
3177                         bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3178                         break;
3179                 case PORT_D:
3180                         bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3181                         break;
3182                 default:
3183                         return connector_status_unknown;
3184                 }
3185         }
3186
3187         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3188                 return connector_status_disconnected;
3189
3190         return intel_dp_detect_dpcd(intel_dp);
3191 }
3192
3193 static struct edid *
3194 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3195 {
3196         struct intel_connector *intel_connector = to_intel_connector(connector);
3197
3198         /* use cached edid if we have one */
3199         if (intel_connector->edid) {
3200                 /* invalid edid */
3201                 if (IS_ERR(intel_connector->edid))
3202                         return NULL;
3203
3204                 return drm_edid_duplicate(intel_connector->edid);
3205         }
3206
3207         return drm_get_edid(connector, adapter);
3208 }
3209
3210 static int
3211 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3212 {
3213         struct intel_connector *intel_connector = to_intel_connector(connector);
3214
3215         /* use cached edid if we have one */
3216         if (intel_connector->edid) {
3217                 /* invalid edid */
3218                 if (IS_ERR(intel_connector->edid))
3219                         return 0;
3220
3221                 return intel_connector_update_modes(connector,
3222                                                     intel_connector->edid);
3223         }
3224
3225         return intel_ddc_get_modes(connector, adapter);
3226 }
3227
3228 static enum drm_connector_status
3229 intel_dp_detect(struct drm_connector *connector, bool force)
3230 {
3231         struct intel_dp *intel_dp = intel_attached_dp(connector);
3232         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3233         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3234         struct drm_device *dev = connector->dev;
3235         struct drm_i915_private *dev_priv = dev->dev_private;
3236         enum drm_connector_status status;
3237         enum intel_display_power_domain power_domain;
3238         struct edid *edid = NULL;
3239
3240         intel_runtime_pm_get(dev_priv);
3241
3242         power_domain = intel_display_port_power_domain(intel_encoder);
3243         intel_display_power_get(dev_priv, power_domain);
3244
3245         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3246                       connector->base.id, drm_get_connector_name(connector));
3247
3248         intel_dp->has_audio = false;
3249
3250         if (HAS_PCH_SPLIT(dev))
3251                 status = ironlake_dp_detect(intel_dp);
3252         else
3253                 status = g4x_dp_detect(intel_dp);
3254
3255         if (status != connector_status_connected)
3256                 goto out;
3257
3258         intel_dp_probe_oui(intel_dp);
3259
3260         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3261                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3262         } else {
3263                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3264                 if (edid) {
3265                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
3266                         kfree(edid);
3267                 }
3268         }
3269
3270         if (intel_encoder->type != INTEL_OUTPUT_EDP)
3271                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3272         status = connector_status_connected;
3273
3274 out:
3275         intel_display_power_put(dev_priv, power_domain);
3276
3277         intel_runtime_pm_put(dev_priv);
3278
3279         return status;
3280 }
3281
3282 static int intel_dp_get_modes(struct drm_connector *connector)
3283 {
3284         struct intel_dp *intel_dp = intel_attached_dp(connector);
3285         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3286         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3287         struct intel_connector *intel_connector = to_intel_connector(connector);
3288         struct drm_device *dev = connector->dev;
3289         struct drm_i915_private *dev_priv = dev->dev_private;
3290         enum intel_display_power_domain power_domain;
3291         int ret;
3292
3293         /* We should parse the EDID data and find out if it has an audio sink
3294          */
3295
3296         power_domain = intel_display_port_power_domain(intel_encoder);
3297         intel_display_power_get(dev_priv, power_domain);
3298
3299         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
3300         intel_display_power_put(dev_priv, power_domain);
3301         if (ret)
3302                 return ret;
3303
3304         /* if eDP has no EDID, fall back to fixed mode */
3305         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3306                 struct drm_display_mode *mode;
3307                 mode = drm_mode_duplicate(dev,
3308                                           intel_connector->panel.fixed_mode);
3309                 if (mode) {
3310                         drm_mode_probed_add(connector, mode);
3311                         return 1;
3312                 }
3313         }
3314         return 0;
3315 }
3316
3317 static bool
3318 intel_dp_detect_audio(struct drm_connector *connector)
3319 {
3320         struct intel_dp *intel_dp = intel_attached_dp(connector);
3321         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3322         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3323         struct drm_device *dev = connector->dev;
3324         struct drm_i915_private *dev_priv = dev->dev_private;
3325         enum intel_display_power_domain power_domain;
3326         struct edid *edid;
3327         bool has_audio = false;
3328
3329         power_domain = intel_display_port_power_domain(intel_encoder);
3330         intel_display_power_get(dev_priv, power_domain);
3331
3332         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3333         if (edid) {
3334                 has_audio = drm_detect_monitor_audio(edid);
3335                 kfree(edid);
3336         }
3337
3338         intel_display_power_put(dev_priv, power_domain);
3339
3340         return has_audio;
3341 }
3342
3343 static int
3344 intel_dp_set_property(struct drm_connector *connector,
3345                       struct drm_property *property,
3346                       uint64_t val)
3347 {
3348         struct drm_i915_private *dev_priv = connector->dev->dev_private;
3349         struct intel_connector *intel_connector = to_intel_connector(connector);
3350         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3351         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3352         int ret;
3353
3354         ret = drm_object_property_set_value(&connector->base, property, val);
3355         if (ret)
3356                 return ret;
3357
3358         if (property == dev_priv->force_audio_property) {
3359                 int i = val;
3360                 bool has_audio;
3361
3362                 if (i == intel_dp->force_audio)
3363                         return 0;
3364
3365                 intel_dp->force_audio = i;
3366
3367                 if (i == HDMI_AUDIO_AUTO)
3368                         has_audio = intel_dp_detect_audio(connector);
3369                 else
3370                         has_audio = (i == HDMI_AUDIO_ON);
3371
3372                 if (has_audio == intel_dp->has_audio)
3373                         return 0;
3374
3375                 intel_dp->has_audio = has_audio;
3376                 goto done;
3377         }
3378
3379         if (property == dev_priv->broadcast_rgb_property) {
3380                 bool old_auto = intel_dp->color_range_auto;
3381                 uint32_t old_range = intel_dp->color_range;
3382
3383                 switch (val) {
3384                 case INTEL_BROADCAST_RGB_AUTO:
3385                         intel_dp->color_range_auto = true;
3386                         break;
3387                 case INTEL_BROADCAST_RGB_FULL:
3388                         intel_dp->color_range_auto = false;
3389                         intel_dp->color_range = 0;
3390                         break;
3391                 case INTEL_BROADCAST_RGB_LIMITED:
3392                         intel_dp->color_range_auto = false;
3393                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
3394                         break;
3395                 default:
3396                         return -EINVAL;
3397                 }
3398
3399                 if (old_auto == intel_dp->color_range_auto &&
3400                     old_range == intel_dp->color_range)
3401                         return 0;
3402
3403                 goto done;
3404         }
3405
3406         if (is_edp(intel_dp) &&
3407             property == connector->dev->mode_config.scaling_mode_property) {
3408                 if (val == DRM_MODE_SCALE_NONE) {
3409                         DRM_DEBUG_KMS("no scaling not supported\n");
3410                         return -EINVAL;
3411                 }
3412
3413                 if (intel_connector->panel.fitting_mode == val) {
3414                         /* the eDP scaling property is not changed */
3415                         return 0;
3416                 }
3417                 intel_connector->panel.fitting_mode = val;
3418
3419                 goto done;
3420         }
3421
3422         return -EINVAL;
3423
3424 done:
3425         if (intel_encoder->base.crtc)
3426                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3427
3428         return 0;
3429 }
3430
3431 static void
3432 intel_dp_connector_destroy(struct drm_connector *connector)
3433 {
3434         struct intel_connector *intel_connector = to_intel_connector(connector);
3435
3436         if (!IS_ERR_OR_NULL(intel_connector->edid))
3437                 kfree(intel_connector->edid);
3438
3439         /* Can't call is_edp() since the encoder may have been destroyed
3440          * already. */
3441         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3442                 intel_panel_fini(&intel_connector->panel);
3443
3444         drm_connector_cleanup(connector);
3445         kfree(connector);
3446 }
3447
3448 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3449 {
3450         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3451         struct intel_dp *intel_dp = &intel_dig_port->dp;
3452         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3453
3454         i2c_del_adapter(&intel_dp->adapter);
3455         drm_encoder_cleanup(encoder);
3456         if (is_edp(intel_dp)) {
3457                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3458                 mutex_lock(&dev->mode_config.mutex);
3459                 edp_panel_vdd_off_sync(intel_dp);
3460                 mutex_unlock(&dev->mode_config.mutex);
3461         }
3462         kfree(intel_dig_port);
3463 }
3464
3465 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3466         .dpms = intel_connector_dpms,
3467         .detect = intel_dp_detect,
3468         .fill_modes = drm_helper_probe_single_connector_modes,
3469         .set_property = intel_dp_set_property,
3470         .destroy = intel_dp_connector_destroy,
3471 };
3472
3473 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3474         .get_modes = intel_dp_get_modes,
3475         .mode_valid = intel_dp_mode_valid,
3476         .best_encoder = intel_best_encoder,
3477 };
3478
3479 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3480         .destroy = intel_dp_encoder_destroy,
3481 };
3482
3483 static void
3484 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3485 {
3486         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3487
3488         intel_dp_check_link_status(intel_dp);
3489 }
3490
3491 /* Return which DP Port should be selected for Transcoder DP control */
3492 int
3493 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3494 {
3495         struct drm_device *dev = crtc->dev;
3496         struct intel_encoder *intel_encoder;
3497         struct intel_dp *intel_dp;
3498
3499         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3500                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3501
3502                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3503                     intel_encoder->type == INTEL_OUTPUT_EDP)
3504                         return intel_dp->output_reg;
3505         }
3506
3507         return -1;
3508 }
3509
3510 /* check the VBT to see whether the eDP is on DP-D port */
3511 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3512 {
3513         struct drm_i915_private *dev_priv = dev->dev_private;
3514         union child_device_config *p_child;
3515         int i;
3516         static const short port_mapping[] = {
3517                 [PORT_B] = PORT_IDPB,
3518                 [PORT_C] = PORT_IDPC,
3519                 [PORT_D] = PORT_IDPD,
3520         };
3521
3522         if (port == PORT_A)
3523                 return true;
3524
3525         if (!dev_priv->vbt.child_dev_num)
3526                 return false;
3527
3528         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3529                 p_child = dev_priv->vbt.child_dev + i;
3530
3531                 if (p_child->common.dvo_port == port_mapping[port] &&
3532                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3533                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3534                         return true;
3535         }
3536         return false;
3537 }
3538
3539 static void
3540 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3541 {
3542         struct intel_connector *intel_connector = to_intel_connector(connector);
3543
3544         intel_attach_force_audio_property(connector);
3545         intel_attach_broadcast_rgb_property(connector);
3546         intel_dp->color_range_auto = true;
3547
3548         if (is_edp(intel_dp)) {
3549                 drm_mode_create_scaling_mode_property(connector->dev);
3550                 drm_object_attach_property(
3551                         &connector->base,
3552                         connector->dev->mode_config.scaling_mode_property,
3553                         DRM_MODE_SCALE_ASPECT);
3554                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3555         }
3556 }
3557
3558 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3559 {
3560         intel_dp->last_power_cycle = jiffies;
3561         intel_dp->last_power_on = jiffies;
3562         intel_dp->last_backlight_off = jiffies;
3563 }
3564
3565 static void
3566 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3567                                     struct intel_dp *intel_dp,
3568                                     struct edp_power_seq *out)
3569 {
3570         struct drm_i915_private *dev_priv = dev->dev_private;
3571         struct edp_power_seq cur, vbt, spec, final;
3572         u32 pp_on, pp_off, pp_div, pp;
3573         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3574
3575         if (HAS_PCH_SPLIT(dev)) {
3576                 pp_ctrl_reg = PCH_PP_CONTROL;
3577                 pp_on_reg = PCH_PP_ON_DELAYS;
3578                 pp_off_reg = PCH_PP_OFF_DELAYS;
3579                 pp_div_reg = PCH_PP_DIVISOR;
3580         } else {
3581                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3582
3583                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3584                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3585                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3586                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3587         }
3588
3589         /* Workaround: Need to write PP_CONTROL with the unlock key as
3590          * the very first thing. */
3591         pp = ironlake_get_pp_control(intel_dp);
3592         I915_WRITE(pp_ctrl_reg, pp);
3593
3594         pp_on = I915_READ(pp_on_reg);
3595         pp_off = I915_READ(pp_off_reg);
3596         pp_div = I915_READ(pp_div_reg);
3597
3598         /* Pull timing values out of registers */
3599         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3600                 PANEL_POWER_UP_DELAY_SHIFT;
3601
3602         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3603                 PANEL_LIGHT_ON_DELAY_SHIFT;
3604
3605         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3606                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3607
3608         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3609                 PANEL_POWER_DOWN_DELAY_SHIFT;
3610
3611         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3612                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3613
3614         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3615                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3616
3617         vbt = dev_priv->vbt.edp_pps;
3618
3619         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3620          * our hw here, which are all in 100usec. */
3621         spec.t1_t3 = 210 * 10;
3622         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3623         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3624         spec.t10 = 500 * 10;
3625         /* This one is special and actually in units of 100ms, but zero
3626          * based in the hw (so we need to add 100 ms). But the sw vbt
3627          * table multiplies it with 1000 to make it in units of 100usec,
3628          * too. */
3629         spec.t11_t12 = (510 + 100) * 10;
3630
3631         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3632                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3633
3634         /* Use the max of the register settings and vbt. If both are
3635          * unset, fall back to the spec limits. */
3636 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3637                                        spec.field : \
3638                                        max(cur.field, vbt.field))
3639         assign_final(t1_t3);
3640         assign_final(t8);
3641         assign_final(t9);
3642         assign_final(t10);
3643         assign_final(t11_t12);
3644 #undef assign_final
3645
3646 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3647         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3648         intel_dp->backlight_on_delay = get_delay(t8);
3649         intel_dp->backlight_off_delay = get_delay(t9);
3650         intel_dp->panel_power_down_delay = get_delay(t10);
3651         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3652 #undef get_delay
3653
3654         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3655                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3656                       intel_dp->panel_power_cycle_delay);
3657
3658         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3659                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3660
3661         if (out)
3662                 *out = final;
3663 }
3664
3665 static void
3666 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3667                                               struct intel_dp *intel_dp,
3668                                               struct edp_power_seq *seq)
3669 {
3670         struct drm_i915_private *dev_priv = dev->dev_private;
3671         u32 pp_on, pp_off, pp_div, port_sel = 0;
3672         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3673         int pp_on_reg, pp_off_reg, pp_div_reg;
3674
3675         if (HAS_PCH_SPLIT(dev)) {
3676                 pp_on_reg = PCH_PP_ON_DELAYS;
3677                 pp_off_reg = PCH_PP_OFF_DELAYS;
3678                 pp_div_reg = PCH_PP_DIVISOR;
3679         } else {
3680                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3681
3682                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3683                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3684                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3685         }
3686
3687         /*
3688          * And finally store the new values in the power sequencer. The
3689          * backlight delays are set to 1 because we do manual waits on them. For
3690          * T8, even BSpec recommends doing it. For T9, if we don't do this,
3691          * we'll end up waiting for the backlight off delay twice: once when we
3692          * do the manual sleep, and once when we disable the panel and wait for
3693          * the PP_STATUS bit to become zero.
3694          */
3695         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3696                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
3697         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3698                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3699         /* Compute the divisor for the pp clock, simply match the Bspec
3700          * formula. */
3701         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3702         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3703                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3704
3705         /* Haswell doesn't have any port selection bits for the panel
3706          * power sequencer any more. */
3707         if (IS_VALLEYVIEW(dev)) {
3708                 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3709                         port_sel = PANEL_PORT_SELECT_DPB_VLV;
3710                 else
3711                         port_sel = PANEL_PORT_SELECT_DPC_VLV;
3712         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3713                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3714                         port_sel = PANEL_PORT_SELECT_DPA;
3715                 else
3716                         port_sel = PANEL_PORT_SELECT_DPD;
3717         }
3718
3719         pp_on |= port_sel;
3720
3721         I915_WRITE(pp_on_reg, pp_on);
3722         I915_WRITE(pp_off_reg, pp_off);
3723         I915_WRITE(pp_div_reg, pp_div);
3724
3725         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3726                       I915_READ(pp_on_reg),
3727                       I915_READ(pp_off_reg),
3728                       I915_READ(pp_div_reg));
3729 }
3730
3731 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3732                                      struct intel_connector *intel_connector,
3733                                      struct edp_power_seq *power_seq)
3734 {
3735         struct drm_connector *connector = &intel_connector->base;
3736         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3737         struct drm_device *dev = intel_dig_port->base.base.dev;
3738         struct drm_i915_private *dev_priv = dev->dev_private;
3739         struct drm_display_mode *fixed_mode = NULL;
3740         bool has_dpcd;
3741         struct drm_display_mode *scan;
3742         struct edid *edid;
3743
3744         if (!is_edp(intel_dp))
3745                 return true;
3746
3747         /* Cache DPCD and EDID for edp. */
3748         edp_panel_vdd_on(intel_dp);
3749         has_dpcd = intel_dp_get_dpcd(intel_dp);
3750         edp_panel_vdd_off(intel_dp, false);
3751
3752         if (has_dpcd) {
3753                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3754                         dev_priv->no_aux_handshake =
3755                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3756                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3757         } else {
3758                 /* if this fails, presume the device is a ghost */
3759                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3760                 return false;
3761         }
3762
3763         /* We now know it's not a ghost, init power sequence regs. */
3764         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
3765
3766         edid = drm_get_edid(connector, &intel_dp->adapter);
3767         if (edid) {
3768                 if (drm_add_edid_modes(connector, edid)) {
3769                         drm_mode_connector_update_edid_property(connector,
3770                                                                 edid);
3771                         drm_edid_to_eld(connector, edid);
3772                 } else {
3773                         kfree(edid);
3774                         edid = ERR_PTR(-EINVAL);
3775                 }
3776         } else {
3777                 edid = ERR_PTR(-ENOENT);
3778         }
3779         intel_connector->edid = edid;
3780
3781         /* prefer fixed mode from EDID if available */
3782         list_for_each_entry(scan, &connector->probed_modes, head) {
3783                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3784                         fixed_mode = drm_mode_duplicate(dev, scan);
3785                         break;
3786                 }
3787         }
3788
3789         /* fallback to VBT if available for eDP */
3790         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3791                 fixed_mode = drm_mode_duplicate(dev,
3792                                         dev_priv->vbt.lfp_lvds_vbt_mode);
3793                 if (fixed_mode)
3794                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3795         }
3796
3797         intel_panel_init(&intel_connector->panel, fixed_mode, NULL);
3798         intel_panel_setup_backlight(connector);
3799
3800         return true;
3801 }
3802
3803 bool
3804 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3805                         struct intel_connector *intel_connector)
3806 {
3807         struct drm_connector *connector = &intel_connector->base;
3808         struct intel_dp *intel_dp = &intel_dig_port->dp;
3809         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3810         struct drm_device *dev = intel_encoder->base.dev;
3811         struct drm_i915_private *dev_priv = dev->dev_private;
3812         enum port port = intel_dig_port->port;
3813         struct edp_power_seq power_seq = { 0 };
3814         const char *name = NULL;
3815         int type, error;
3816
3817         /* intel_dp vfuncs */
3818         if (IS_VALLEYVIEW(dev))
3819                 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
3820         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3821                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
3822         else if (HAS_PCH_SPLIT(dev))
3823                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
3824         else
3825                 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
3826
3827         intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
3828
3829         /* Preserve the current hw state. */
3830         intel_dp->DP = I915_READ(intel_dp->output_reg);
3831         intel_dp->attached_connector = intel_connector;
3832
3833         if (intel_dp_is_edp(dev, port))
3834                 type = DRM_MODE_CONNECTOR_eDP;
3835         else
3836                 type = DRM_MODE_CONNECTOR_DisplayPort;
3837
3838         /*
3839          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3840          * for DP the encoder type can be set by the caller to
3841          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3842          */
3843         if (type == DRM_MODE_CONNECTOR_eDP)
3844                 intel_encoder->type = INTEL_OUTPUT_EDP;
3845
3846         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3847                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3848                         port_name(port));
3849
3850         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3851         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3852
3853         connector->interlace_allowed = true;
3854         connector->doublescan_allowed = 0;
3855
3856         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3857                           edp_panel_vdd_work);
3858
3859         intel_connector_attach_encoder(intel_connector, intel_encoder);
3860         drm_sysfs_connector_add(connector);
3861
3862         if (HAS_DDI(dev))
3863                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3864         else
3865                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3866         intel_connector->unregister = intel_dp_connector_unregister;
3867
3868         intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3869         if (HAS_DDI(dev)) {
3870                 switch (intel_dig_port->port) {
3871                 case PORT_A:
3872                         intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3873                         break;
3874                 case PORT_B:
3875                         intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3876                         break;
3877                 case PORT_C:
3878                         intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3879                         break;
3880                 case PORT_D:
3881                         intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3882                         break;
3883                 default:
3884                         BUG();
3885                 }
3886         }
3887
3888         /* Set up the DDC bus. */
3889         switch (port) {
3890         case PORT_A:
3891                 intel_encoder->hpd_pin = HPD_PORT_A;
3892                 name = "DPDDC-A";
3893                 break;
3894         case PORT_B:
3895                 intel_encoder->hpd_pin = HPD_PORT_B;
3896                 name = "DPDDC-B";
3897                 break;
3898         case PORT_C:
3899                 intel_encoder->hpd_pin = HPD_PORT_C;
3900                 name = "DPDDC-C";
3901                 break;
3902         case PORT_D:
3903                 intel_encoder->hpd_pin = HPD_PORT_D;
3904                 name = "DPDDC-D";
3905                 break;
3906         default:
3907                 BUG();
3908         }
3909
3910         if (is_edp(intel_dp)) {
3911                 intel_dp_init_panel_power_timestamps(intel_dp);
3912                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3913         }
3914
3915         error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3916         WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3917              error, port_name(port));
3918
3919         intel_dp->psr_setup_done = false;
3920
3921         if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
3922                 i2c_del_adapter(&intel_dp->adapter);
3923                 if (is_edp(intel_dp)) {
3924                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3925                         mutex_lock(&dev->mode_config.mutex);
3926                         edp_panel_vdd_off_sync(intel_dp);
3927                         mutex_unlock(&dev->mode_config.mutex);
3928                 }
3929                 drm_sysfs_connector_remove(connector);
3930                 drm_connector_cleanup(connector);
3931                 return false;
3932         }
3933
3934         intel_dp_add_properties(intel_dp, connector);
3935
3936         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3937          * 0xd.  Failure to do so will result in spurious interrupts being
3938          * generated on the port when a cable is not attached.
3939          */
3940         if (IS_G4X(dev) && !IS_GM45(dev)) {
3941                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3942                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3943         }
3944
3945         return true;
3946 }
3947
3948 void
3949 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3950 {
3951         struct intel_digital_port *intel_dig_port;
3952         struct intel_encoder *intel_encoder;
3953         struct drm_encoder *encoder;
3954         struct intel_connector *intel_connector;
3955
3956         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3957         if (!intel_dig_port)
3958                 return;
3959
3960         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3961         if (!intel_connector) {
3962                 kfree(intel_dig_port);
3963                 return;
3964         }
3965
3966         intel_encoder = &intel_dig_port->base;
3967         encoder = &intel_encoder->base;
3968
3969         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3970                          DRM_MODE_ENCODER_TMDS);
3971
3972         intel_encoder->compute_config = intel_dp_compute_config;
3973         intel_encoder->mode_set = intel_dp_mode_set;
3974         intel_encoder->disable = intel_disable_dp;
3975         intel_encoder->post_disable = intel_post_disable_dp;
3976         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3977         intel_encoder->get_config = intel_dp_get_config;
3978         if (IS_VALLEYVIEW(dev)) {
3979                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3980                 intel_encoder->pre_enable = vlv_pre_enable_dp;
3981                 intel_encoder->enable = vlv_enable_dp;
3982         } else {
3983                 intel_encoder->pre_enable = g4x_pre_enable_dp;
3984                 intel_encoder->enable = g4x_enable_dp;
3985         }
3986
3987         intel_dig_port->port = port;
3988         intel_dig_port->dp.output_reg = output_reg;
3989
3990         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3991         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3992         intel_encoder->cloneable = false;
3993         intel_encoder->hot_plug = intel_dp_hot_plug;
3994
3995         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3996                 drm_encoder_cleanup(encoder);
3997                 kfree(intel_dig_port);
3998                 kfree(intel_connector);
3999         }
4000 }