Merge branch 'x86-cpufeature-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 struct dp_link_dpll {
44         int link_bw;
45         struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49         { DP_LINK_BW_1_62,
50                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51         { DP_LINK_BW_2_7,
52                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56         { DP_LINK_BW_1_62,
57                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58         { DP_LINK_BW_2_7,
59                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63         { DP_LINK_BW_1_62,
64                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65         { DP_LINK_BW_2_7,
66                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70  * CHV supports eDP 1.4 that have  more link rates.
71  * Below only provides the fixed rate but exclude variable rate.
72  */
73 static const struct dp_link_dpll chv_dpll[] = {
74         /*
75          * CHV requires to program fractional division for m2.
76          * m2 is stored in fixed point format using formula below
77          * (m2_int << 22) | m2_fraction
78          */
79         { DP_LINK_BW_1_62,      /* m2_int = 32, m2_fraction = 1677722 */
80                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81         { DP_LINK_BW_2_7,       /* m2_int = 27, m2_fraction = 0 */
82                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83         { DP_LINK_BW_5_4,       /* m2_int = 27, m2_fraction = 0 */
84                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89  * @intel_dp: DP struct
90  *
91  * If a CPU or PCH DP output is attached to an eDP panel, this function
92  * will return true, and false otherwise.
93  */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105         return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117 static int
118 intel_dp_max_link_bw(struct intel_dp *intel_dp)
119 {
120         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121         struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123         switch (max_link_bw) {
124         case DP_LINK_BW_1_62:
125         case DP_LINK_BW_2_7:
126                 break;
127         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128                 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129                      INTEL_INFO(dev)->gen >= 8) &&
130                     intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131                         max_link_bw = DP_LINK_BW_5_4;
132                 else
133                         max_link_bw = DP_LINK_BW_2_7;
134                 break;
135         default:
136                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137                      max_link_bw);
138                 max_link_bw = DP_LINK_BW_1_62;
139                 break;
140         }
141         return max_link_bw;
142 }
143
144 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145 {
146         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147         struct drm_device *dev = intel_dig_port->base.base.dev;
148         u8 source_max, sink_max;
149
150         source_max = 4;
151         if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152             (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153                 source_max = 2;
154
155         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157         return min(source_max, sink_max);
158 }
159
160 /*
161  * The units on the numbers in the next two are... bizarre.  Examples will
162  * make it clearer; this one parallels an example in the eDP spec.
163  *
164  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165  *
166  *     270000 * 1 * 8 / 10 == 216000
167  *
168  * The actual data capacity of that configuration is 2.16Gbit/s, so the
169  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
170  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171  * 119000.  At 18bpp that's 2142000 kilobits per second.
172  *
173  * Thus the strange-looking division by 10 in intel_dp_link_required, to
174  * get the result in decakilobits instead of kilobits.
175  */
176
177 static int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180         return (pixel_clock * bpp + 9) / 10;
181 }
182
183 static int
184 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185 {
186         return (max_link_clock * max_lanes * 8) / 10;
187 }
188
189 static enum drm_mode_status
190 intel_dp_mode_valid(struct drm_connector *connector,
191                     struct drm_display_mode *mode)
192 {
193         struct intel_dp *intel_dp = intel_attached_dp(connector);
194         struct intel_connector *intel_connector = to_intel_connector(connector);
195         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196         int target_clock = mode->clock;
197         int max_rate, mode_rate, max_lanes, max_link_clock;
198
199         if (is_edp(intel_dp) && fixed_mode) {
200                 if (mode->hdisplay > fixed_mode->hdisplay)
201                         return MODE_PANEL;
202
203                 if (mode->vdisplay > fixed_mode->vdisplay)
204                         return MODE_PANEL;
205
206                 target_clock = fixed_mode->clock;
207         }
208
209         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210         max_lanes = intel_dp_max_lane_count(intel_dp);
211
212         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213         mode_rate = intel_dp_link_required(target_clock, 18);
214
215         if (mode_rate > max_rate)
216                 return MODE_CLOCK_HIGH;
217
218         if (mode->clock < 10000)
219                 return MODE_CLOCK_LOW;
220
221         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222                 return MODE_H_ILLEGAL;
223
224         return MODE_OK;
225 }
226
227 static uint32_t
228 pack_aux(uint8_t *src, int src_bytes)
229 {
230         int     i;
231         uint32_t v = 0;
232
233         if (src_bytes > 4)
234                 src_bytes = 4;
235         for (i = 0; i < src_bytes; i++)
236                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
237         return v;
238 }
239
240 static void
241 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242 {
243         int i;
244         if (dst_bytes > 4)
245                 dst_bytes = 4;
246         for (i = 0; i < dst_bytes; i++)
247                 dst[i] = src >> ((3-i) * 8);
248 }
249
250 /* hrawclock is 1/4 the FSB frequency */
251 static int
252 intel_hrawclk(struct drm_device *dev)
253 {
254         struct drm_i915_private *dev_priv = dev->dev_private;
255         uint32_t clkcfg;
256
257         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258         if (IS_VALLEYVIEW(dev))
259                 return 200;
260
261         clkcfg = I915_READ(CLKCFG);
262         switch (clkcfg & CLKCFG_FSB_MASK) {
263         case CLKCFG_FSB_400:
264                 return 100;
265         case CLKCFG_FSB_533:
266                 return 133;
267         case CLKCFG_FSB_667:
268                 return 166;
269         case CLKCFG_FSB_800:
270                 return 200;
271         case CLKCFG_FSB_1067:
272                 return 266;
273         case CLKCFG_FSB_1333:
274                 return 333;
275         /* these two are just a guess; one of them might be right */
276         case CLKCFG_FSB_1600:
277         case CLKCFG_FSB_1600_ALT:
278                 return 400;
279         default:
280                 return 133;
281         }
282 }
283
284 static void
285 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286                                     struct intel_dp *intel_dp,
287                                     struct edp_power_seq *out);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290                                               struct intel_dp *intel_dp,
291                                               struct edp_power_seq *out);
292
293 static enum pipe
294 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
295 {
296         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
297         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
298         struct drm_device *dev = intel_dig_port->base.base.dev;
299         struct drm_i915_private *dev_priv = dev->dev_private;
300         enum port port = intel_dig_port->port;
301         enum pipe pipe;
302
303         /* modeset should have pipe */
304         if (crtc)
305                 return to_intel_crtc(crtc)->pipe;
306
307         /* init time, try to find a pipe with this port selected */
308         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
309                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
310                         PANEL_PORT_SELECT_MASK;
311                 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
312                         return pipe;
313                 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
314                         return pipe;
315         }
316
317         /* shrug */
318         return PIPE_A;
319 }
320
321 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
322 {
323         struct drm_device *dev = intel_dp_to_dev(intel_dp);
324
325         if (HAS_PCH_SPLIT(dev))
326                 return PCH_PP_CONTROL;
327         else
328                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
329 }
330
331 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
332 {
333         struct drm_device *dev = intel_dp_to_dev(intel_dp);
334
335         if (HAS_PCH_SPLIT(dev))
336                 return PCH_PP_STATUS;
337         else
338                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
339 }
340
341 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
342    This function only applicable when panel PM state is not to be tracked */
343 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
344                               void *unused)
345 {
346         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
347                                                  edp_notifier);
348         struct drm_device *dev = intel_dp_to_dev(intel_dp);
349         struct drm_i915_private *dev_priv = dev->dev_private;
350         u32 pp_div;
351         u32 pp_ctrl_reg, pp_div_reg;
352         enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
353
354         if (!is_edp(intel_dp) || code != SYS_RESTART)
355                 return 0;
356
357         if (IS_VALLEYVIEW(dev)) {
358                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
359                 pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
360                 pp_div = I915_READ(pp_div_reg);
361                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
362
363                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
364                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
365                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
366                 msleep(intel_dp->panel_power_cycle_delay);
367         }
368
369         return 0;
370 }
371
372 static bool edp_have_panel_power(struct intel_dp *intel_dp)
373 {
374         struct drm_device *dev = intel_dp_to_dev(intel_dp);
375         struct drm_i915_private *dev_priv = dev->dev_private;
376
377         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
378 }
379
380 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
381 {
382         struct drm_device *dev = intel_dp_to_dev(intel_dp);
383         struct drm_i915_private *dev_priv = dev->dev_private;
384         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
385         struct intel_encoder *intel_encoder = &intel_dig_port->base;
386         enum intel_display_power_domain power_domain;
387
388         power_domain = intel_display_port_power_domain(intel_encoder);
389         return intel_display_power_enabled(dev_priv, power_domain) &&
390                (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
391 }
392
393 static void
394 intel_dp_check_edp(struct intel_dp *intel_dp)
395 {
396         struct drm_device *dev = intel_dp_to_dev(intel_dp);
397         struct drm_i915_private *dev_priv = dev->dev_private;
398
399         if (!is_edp(intel_dp))
400                 return;
401
402         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
403                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
404                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
405                               I915_READ(_pp_stat_reg(intel_dp)),
406                               I915_READ(_pp_ctrl_reg(intel_dp)));
407         }
408 }
409
410 static uint32_t
411 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
412 {
413         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
414         struct drm_device *dev = intel_dig_port->base.base.dev;
415         struct drm_i915_private *dev_priv = dev->dev_private;
416         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
417         uint32_t status;
418         bool done;
419
420 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
421         if (has_aux_irq)
422                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
423                                           msecs_to_jiffies_timeout(10));
424         else
425                 done = wait_for_atomic(C, 10) == 0;
426         if (!done)
427                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
428                           has_aux_irq);
429 #undef C
430
431         return status;
432 }
433
434 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
435 {
436         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
437         struct drm_device *dev = intel_dig_port->base.base.dev;
438
439         /*
440          * The clock divider is based off the hrawclk, and would like to run at
441          * 2MHz.  So, take the hrawclk value and divide by 2 and use that
442          */
443         return index ? 0 : intel_hrawclk(dev) / 2;
444 }
445
446 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
447 {
448         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
449         struct drm_device *dev = intel_dig_port->base.base.dev;
450
451         if (index)
452                 return 0;
453
454         if (intel_dig_port->port == PORT_A) {
455                 if (IS_GEN6(dev) || IS_GEN7(dev))
456                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
457                 else
458                         return 225; /* eDP input clock at 450Mhz */
459         } else {
460                 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
461         }
462 }
463
464 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
465 {
466         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
467         struct drm_device *dev = intel_dig_port->base.base.dev;
468         struct drm_i915_private *dev_priv = dev->dev_private;
469
470         if (intel_dig_port->port == PORT_A) {
471                 if (index)
472                         return 0;
473                 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
474         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
475                 /* Workaround for non-ULT HSW */
476                 switch (index) {
477                 case 0: return 63;
478                 case 1: return 72;
479                 default: return 0;
480                 }
481         } else  {
482                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
483         }
484 }
485
486 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
487 {
488         return index ? 0 : 100;
489 }
490
491 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
492                                       bool has_aux_irq,
493                                       int send_bytes,
494                                       uint32_t aux_clock_divider)
495 {
496         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
497         struct drm_device *dev = intel_dig_port->base.base.dev;
498         uint32_t precharge, timeout;
499
500         if (IS_GEN6(dev))
501                 precharge = 3;
502         else
503                 precharge = 5;
504
505         if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
506                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
507         else
508                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
509
510         return DP_AUX_CH_CTL_SEND_BUSY |
511                DP_AUX_CH_CTL_DONE |
512                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
513                DP_AUX_CH_CTL_TIME_OUT_ERROR |
514                timeout |
515                DP_AUX_CH_CTL_RECEIVE_ERROR |
516                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
517                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
518                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
519 }
520
521 static int
522 intel_dp_aux_ch(struct intel_dp *intel_dp,
523                 uint8_t *send, int send_bytes,
524                 uint8_t *recv, int recv_size)
525 {
526         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
527         struct drm_device *dev = intel_dig_port->base.base.dev;
528         struct drm_i915_private *dev_priv = dev->dev_private;
529         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
530         uint32_t ch_data = ch_ctl + 4;
531         uint32_t aux_clock_divider;
532         int i, ret, recv_bytes;
533         uint32_t status;
534         int try, clock = 0;
535         bool has_aux_irq = HAS_AUX_IRQ(dev);
536         bool vdd;
537
538         vdd = _edp_panel_vdd_on(intel_dp);
539
540         /* dp aux is extremely sensitive to irq latency, hence request the
541          * lowest possible wakeup latency and so prevent the cpu from going into
542          * deep sleep states.
543          */
544         pm_qos_update_request(&dev_priv->pm_qos, 0);
545
546         intel_dp_check_edp(intel_dp);
547
548         intel_aux_display_runtime_get(dev_priv);
549
550         /* Try to wait for any previous AUX channel activity */
551         for (try = 0; try < 3; try++) {
552                 status = I915_READ_NOTRACE(ch_ctl);
553                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
554                         break;
555                 msleep(1);
556         }
557
558         if (try == 3) {
559                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
560                      I915_READ(ch_ctl));
561                 ret = -EBUSY;
562                 goto out;
563         }
564
565         /* Only 5 data registers! */
566         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
567                 ret = -E2BIG;
568                 goto out;
569         }
570
571         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
572                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
573                                                           has_aux_irq,
574                                                           send_bytes,
575                                                           aux_clock_divider);
576
577                 /* Must try at least 3 times according to DP spec */
578                 for (try = 0; try < 5; try++) {
579                         /* Load the send data into the aux channel data registers */
580                         for (i = 0; i < send_bytes; i += 4)
581                                 I915_WRITE(ch_data + i,
582                                            pack_aux(send + i, send_bytes - i));
583
584                         /* Send the command and wait for it to complete */
585                         I915_WRITE(ch_ctl, send_ctl);
586
587                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
588
589                         /* Clear done status and any errors */
590                         I915_WRITE(ch_ctl,
591                                    status |
592                                    DP_AUX_CH_CTL_DONE |
593                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
594                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
595
596                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
597                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
598                                 continue;
599                         if (status & DP_AUX_CH_CTL_DONE)
600                                 break;
601                 }
602                 if (status & DP_AUX_CH_CTL_DONE)
603                         break;
604         }
605
606         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
607                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
608                 ret = -EBUSY;
609                 goto out;
610         }
611
612         /* Check for timeout or receive error.
613          * Timeouts occur when the sink is not connected
614          */
615         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
616                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
617                 ret = -EIO;
618                 goto out;
619         }
620
621         /* Timeouts occur when the device isn't connected, so they're
622          * "normal" -- don't fill the kernel log with these */
623         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
624                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
625                 ret = -ETIMEDOUT;
626                 goto out;
627         }
628
629         /* Unload any bytes sent back from the other side */
630         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
631                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
632         if (recv_bytes > recv_size)
633                 recv_bytes = recv_size;
634
635         for (i = 0; i < recv_bytes; i += 4)
636                 unpack_aux(I915_READ(ch_data + i),
637                            recv + i, recv_bytes - i);
638
639         ret = recv_bytes;
640 out:
641         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
642         intel_aux_display_runtime_put(dev_priv);
643
644         if (vdd)
645                 edp_panel_vdd_off(intel_dp, false);
646
647         return ret;
648 }
649
650 #define BARE_ADDRESS_SIZE       3
651 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
652 static ssize_t
653 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
654 {
655         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
656         uint8_t txbuf[20], rxbuf[20];
657         size_t txsize, rxsize;
658         int ret;
659
660         txbuf[0] = msg->request << 4;
661         txbuf[1] = msg->address >> 8;
662         txbuf[2] = msg->address & 0xff;
663         txbuf[3] = msg->size - 1;
664
665         switch (msg->request & ~DP_AUX_I2C_MOT) {
666         case DP_AUX_NATIVE_WRITE:
667         case DP_AUX_I2C_WRITE:
668                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
669                 rxsize = 1;
670
671                 if (WARN_ON(txsize > 20))
672                         return -E2BIG;
673
674                 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
675
676                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
677                 if (ret > 0) {
678                         msg->reply = rxbuf[0] >> 4;
679
680                         /* Return payload size. */
681                         ret = msg->size;
682                 }
683                 break;
684
685         case DP_AUX_NATIVE_READ:
686         case DP_AUX_I2C_READ:
687                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
688                 rxsize = msg->size + 1;
689
690                 if (WARN_ON(rxsize > 20))
691                         return -E2BIG;
692
693                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
694                 if (ret > 0) {
695                         msg->reply = rxbuf[0] >> 4;
696                         /*
697                          * Assume happy day, and copy the data. The caller is
698                          * expected to check msg->reply before touching it.
699                          *
700                          * Return payload size.
701                          */
702                         ret--;
703                         memcpy(msg->buffer, rxbuf + 1, ret);
704                 }
705                 break;
706
707         default:
708                 ret = -EINVAL;
709                 break;
710         }
711
712         return ret;
713 }
714
715 static void
716 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
717 {
718         struct drm_device *dev = intel_dp_to_dev(intel_dp);
719         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
720         enum port port = intel_dig_port->port;
721         const char *name = NULL;
722         int ret;
723
724         switch (port) {
725         case PORT_A:
726                 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
727                 name = "DPDDC-A";
728                 break;
729         case PORT_B:
730                 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
731                 name = "DPDDC-B";
732                 break;
733         case PORT_C:
734                 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
735                 name = "DPDDC-C";
736                 break;
737         case PORT_D:
738                 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
739                 name = "DPDDC-D";
740                 break;
741         default:
742                 BUG();
743         }
744
745         if (!HAS_DDI(dev))
746                 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
747
748         intel_dp->aux.name = name;
749         intel_dp->aux.dev = dev->dev;
750         intel_dp->aux.transfer = intel_dp_aux_transfer;
751
752         DRM_DEBUG_KMS("registering %s bus for %s\n", name,
753                       connector->base.kdev->kobj.name);
754
755         ret = drm_dp_aux_register(&intel_dp->aux);
756         if (ret < 0) {
757                 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
758                           name, ret);
759                 return;
760         }
761
762         ret = sysfs_create_link(&connector->base.kdev->kobj,
763                                 &intel_dp->aux.ddc.dev.kobj,
764                                 intel_dp->aux.ddc.dev.kobj.name);
765         if (ret < 0) {
766                 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
767                 drm_dp_aux_unregister(&intel_dp->aux);
768         }
769 }
770
771 static void
772 intel_dp_connector_unregister(struct intel_connector *intel_connector)
773 {
774         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
775
776         sysfs_remove_link(&intel_connector->base.kdev->kobj,
777                           intel_dp->aux.ddc.dev.kobj.name);
778         intel_connector_unregister(intel_connector);
779 }
780
781 static void
782 intel_dp_set_clock(struct intel_encoder *encoder,
783                    struct intel_crtc_config *pipe_config, int link_bw)
784 {
785         struct drm_device *dev = encoder->base.dev;
786         const struct dp_link_dpll *divisor = NULL;
787         int i, count = 0;
788
789         if (IS_G4X(dev)) {
790                 divisor = gen4_dpll;
791                 count = ARRAY_SIZE(gen4_dpll);
792         } else if (IS_HASWELL(dev)) {
793                 /* Haswell has special-purpose DP DDI clocks. */
794         } else if (HAS_PCH_SPLIT(dev)) {
795                 divisor = pch_dpll;
796                 count = ARRAY_SIZE(pch_dpll);
797         } else if (IS_CHERRYVIEW(dev)) {
798                 divisor = chv_dpll;
799                 count = ARRAY_SIZE(chv_dpll);
800         } else if (IS_VALLEYVIEW(dev)) {
801                 divisor = vlv_dpll;
802                 count = ARRAY_SIZE(vlv_dpll);
803         }
804
805         if (divisor && count) {
806                 for (i = 0; i < count; i++) {
807                         if (link_bw == divisor[i].link_bw) {
808                                 pipe_config->dpll = divisor[i].dpll;
809                                 pipe_config->clock_set = true;
810                                 break;
811                         }
812                 }
813         }
814 }
815
816 static void
817 intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
818 {
819         struct drm_device *dev = crtc->base.dev;
820         struct drm_i915_private *dev_priv = dev->dev_private;
821         enum transcoder transcoder = crtc->config.cpu_transcoder;
822
823         I915_WRITE(PIPE_DATA_M2(transcoder),
824                 TU_SIZE(m_n->tu) | m_n->gmch_m);
825         I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
826         I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
827         I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
828 }
829
830 bool
831 intel_dp_compute_config(struct intel_encoder *encoder,
832                         struct intel_crtc_config *pipe_config)
833 {
834         struct drm_device *dev = encoder->base.dev;
835         struct drm_i915_private *dev_priv = dev->dev_private;
836         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
837         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
838         enum port port = dp_to_dig_port(intel_dp)->port;
839         struct intel_crtc *intel_crtc = encoder->new_crtc;
840         struct intel_connector *intel_connector = intel_dp->attached_connector;
841         int lane_count, clock;
842         int min_lane_count = 1;
843         int max_lane_count = intel_dp_max_lane_count(intel_dp);
844         /* Conveniently, the link BW constants become indices with a shift...*/
845         int min_clock = 0;
846         int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
847         int bpp, mode_rate;
848         static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
849         int link_avail, link_clock;
850
851         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
852                 pipe_config->has_pch_encoder = true;
853
854         pipe_config->has_dp_encoder = true;
855         pipe_config->has_audio = intel_dp->has_audio;
856
857         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
858                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
859                                        adjusted_mode);
860                 if (!HAS_PCH_SPLIT(dev))
861                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
862                                                  intel_connector->panel.fitting_mode);
863                 else
864                         intel_pch_panel_fitting(intel_crtc, pipe_config,
865                                                 intel_connector->panel.fitting_mode);
866         }
867
868         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
869                 return false;
870
871         DRM_DEBUG_KMS("DP link computation with max lane count %i "
872                       "max bw %02x pixel clock %iKHz\n",
873                       max_lane_count, bws[max_clock],
874                       adjusted_mode->crtc_clock);
875
876         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
877          * bpc in between. */
878         bpp = pipe_config->pipe_bpp;
879         if (is_edp(intel_dp)) {
880                 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
881                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
882                                       dev_priv->vbt.edp_bpp);
883                         bpp = dev_priv->vbt.edp_bpp;
884                 }
885
886                 if (IS_BROADWELL(dev)) {
887                         /* Yes, it's an ugly hack. */
888                         min_lane_count = max_lane_count;
889                         DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
890                                       min_lane_count);
891                 } else if (dev_priv->vbt.edp_lanes) {
892                         min_lane_count = min(dev_priv->vbt.edp_lanes,
893                                              max_lane_count);
894                         DRM_DEBUG_KMS("using min %u lanes per VBT\n",
895                                       min_lane_count);
896                 }
897
898                 if (dev_priv->vbt.edp_rate) {
899                         min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
900                         DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
901                                       bws[min_clock]);
902                 }
903         }
904
905         for (; bpp >= 6*3; bpp -= 2*3) {
906                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
907                                                    bpp);
908
909                 for (clock = min_clock; clock <= max_clock; clock++) {
910                         for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
911                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
912                                 link_avail = intel_dp_max_data_rate(link_clock,
913                                                                     lane_count);
914
915                                 if (mode_rate <= link_avail) {
916                                         goto found;
917                                 }
918                         }
919                 }
920         }
921
922         return false;
923
924 found:
925         if (intel_dp->color_range_auto) {
926                 /*
927                  * See:
928                  * CEA-861-E - 5.1 Default Encoding Parameters
929                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
930                  */
931                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
932                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
933                 else
934                         intel_dp->color_range = 0;
935         }
936
937         if (intel_dp->color_range)
938                 pipe_config->limited_color_range = true;
939
940         intel_dp->link_bw = bws[clock];
941         intel_dp->lane_count = lane_count;
942         pipe_config->pipe_bpp = bpp;
943         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
944
945         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
946                       intel_dp->link_bw, intel_dp->lane_count,
947                       pipe_config->port_clock, bpp);
948         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
949                       mode_rate, link_avail);
950
951         intel_link_compute_m_n(bpp, lane_count,
952                                adjusted_mode->crtc_clock,
953                                pipe_config->port_clock,
954                                &pipe_config->dp_m_n);
955
956         if (intel_connector->panel.downclock_mode != NULL &&
957                 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
958                         intel_link_compute_m_n(bpp, lane_count,
959                                 intel_connector->panel.downclock_mode->clock,
960                                 pipe_config->port_clock,
961                                 &pipe_config->dp_m2_n2);
962         }
963
964         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
965
966         return true;
967 }
968
969 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
970 {
971         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
972         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
973         struct drm_device *dev = crtc->base.dev;
974         struct drm_i915_private *dev_priv = dev->dev_private;
975         u32 dpa_ctl;
976
977         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
978         dpa_ctl = I915_READ(DP_A);
979         dpa_ctl &= ~DP_PLL_FREQ_MASK;
980
981         if (crtc->config.port_clock == 162000) {
982                 /* For a long time we've carried around a ILK-DevA w/a for the
983                  * 160MHz clock. If we're really unlucky, it's still required.
984                  */
985                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
986                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
987                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
988         } else {
989                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
990                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
991         }
992
993         I915_WRITE(DP_A, dpa_ctl);
994
995         POSTING_READ(DP_A);
996         udelay(500);
997 }
998
999 static void intel_dp_prepare(struct intel_encoder *encoder)
1000 {
1001         struct drm_device *dev = encoder->base.dev;
1002         struct drm_i915_private *dev_priv = dev->dev_private;
1003         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1004         enum port port = dp_to_dig_port(intel_dp)->port;
1005         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1006         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1007
1008         /*
1009          * There are four kinds of DP registers:
1010          *
1011          *      IBX PCH
1012          *      SNB CPU
1013          *      IVB CPU
1014          *      CPT PCH
1015          *
1016          * IBX PCH and CPU are the same for almost everything,
1017          * except that the CPU DP PLL is configured in this
1018          * register
1019          *
1020          * CPT PCH is quite different, having many bits moved
1021          * to the TRANS_DP_CTL register instead. That
1022          * configuration happens (oddly) in ironlake_pch_enable
1023          */
1024
1025         /* Preserve the BIOS-computed detected bit. This is
1026          * supposed to be read-only.
1027          */
1028         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1029
1030         /* Handle DP bits in common between all three register formats */
1031         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1032         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1033
1034         if (crtc->config.has_audio) {
1035                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1036                                  pipe_name(crtc->pipe));
1037                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1038                 intel_write_eld(&encoder->base, adjusted_mode);
1039         }
1040
1041         /* Split out the IBX/CPU vs CPT settings */
1042
1043         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1044                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1045                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1046                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1047                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1048                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1049
1050                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1051                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1052
1053                 intel_dp->DP |= crtc->pipe << 29;
1054         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1055                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1056                         intel_dp->DP |= intel_dp->color_range;
1057
1058                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1059                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1060                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1061                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1062                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1063
1064                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1065                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1066
1067                 if (!IS_CHERRYVIEW(dev)) {
1068                         if (crtc->pipe == 1)
1069                                 intel_dp->DP |= DP_PIPEB_SELECT;
1070                 } else {
1071                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1072                 }
1073         } else {
1074                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1075         }
1076 }
1077
1078 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1079 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1080
1081 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1082 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1083
1084 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1085 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1086
1087 static void wait_panel_status(struct intel_dp *intel_dp,
1088                                        u32 mask,
1089                                        u32 value)
1090 {
1091         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1092         struct drm_i915_private *dev_priv = dev->dev_private;
1093         u32 pp_stat_reg, pp_ctrl_reg;
1094
1095         pp_stat_reg = _pp_stat_reg(intel_dp);
1096         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1097
1098         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1099                         mask, value,
1100                         I915_READ(pp_stat_reg),
1101                         I915_READ(pp_ctrl_reg));
1102
1103         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1104                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1105                                 I915_READ(pp_stat_reg),
1106                                 I915_READ(pp_ctrl_reg));
1107         }
1108
1109         DRM_DEBUG_KMS("Wait complete\n");
1110 }
1111
1112 static void wait_panel_on(struct intel_dp *intel_dp)
1113 {
1114         DRM_DEBUG_KMS("Wait for panel power on\n");
1115         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1116 }
1117
1118 static void wait_panel_off(struct intel_dp *intel_dp)
1119 {
1120         DRM_DEBUG_KMS("Wait for panel power off time\n");
1121         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1122 }
1123
1124 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1125 {
1126         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1127
1128         /* When we disable the VDD override bit last we have to do the manual
1129          * wait. */
1130         wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1131                                        intel_dp->panel_power_cycle_delay);
1132
1133         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1134 }
1135
1136 static void wait_backlight_on(struct intel_dp *intel_dp)
1137 {
1138         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1139                                        intel_dp->backlight_on_delay);
1140 }
1141
1142 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1143 {
1144         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1145                                        intel_dp->backlight_off_delay);
1146 }
1147
1148 /* Read the current pp_control value, unlocking the register if it
1149  * is locked
1150  */
1151
1152 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1153 {
1154         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1155         struct drm_i915_private *dev_priv = dev->dev_private;
1156         u32 control;
1157
1158         control = I915_READ(_pp_ctrl_reg(intel_dp));
1159         control &= ~PANEL_UNLOCK_MASK;
1160         control |= PANEL_UNLOCK_REGS;
1161         return control;
1162 }
1163
1164 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1165 {
1166         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1167         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1168         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1169         struct drm_i915_private *dev_priv = dev->dev_private;
1170         enum intel_display_power_domain power_domain;
1171         u32 pp;
1172         u32 pp_stat_reg, pp_ctrl_reg;
1173         bool need_to_disable = !intel_dp->want_panel_vdd;
1174
1175         if (!is_edp(intel_dp))
1176                 return false;
1177
1178         intel_dp->want_panel_vdd = true;
1179
1180         if (edp_have_panel_vdd(intel_dp))
1181                 return need_to_disable;
1182
1183         power_domain = intel_display_port_power_domain(intel_encoder);
1184         intel_display_power_get(dev_priv, power_domain);
1185
1186         DRM_DEBUG_KMS("Turning eDP VDD on\n");
1187
1188         if (!edp_have_panel_power(intel_dp))
1189                 wait_panel_power_cycle(intel_dp);
1190
1191         pp = ironlake_get_pp_control(intel_dp);
1192         pp |= EDP_FORCE_VDD;
1193
1194         pp_stat_reg = _pp_stat_reg(intel_dp);
1195         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1196
1197         I915_WRITE(pp_ctrl_reg, pp);
1198         POSTING_READ(pp_ctrl_reg);
1199         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1200                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1201         /*
1202          * If the panel wasn't on, delay before accessing aux channel
1203          */
1204         if (!edp_have_panel_power(intel_dp)) {
1205                 DRM_DEBUG_KMS("eDP was not running\n");
1206                 msleep(intel_dp->panel_power_up_delay);
1207         }
1208
1209         return need_to_disable;
1210 }
1211
1212 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1213 {
1214         if (is_edp(intel_dp)) {
1215                 bool vdd = _edp_panel_vdd_on(intel_dp);
1216
1217                 WARN(!vdd, "eDP VDD already requested on\n");
1218         }
1219 }
1220
1221 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1222 {
1223         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1224         struct drm_i915_private *dev_priv = dev->dev_private;
1225         u32 pp;
1226         u32 pp_stat_reg, pp_ctrl_reg;
1227
1228         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1229
1230         if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1231                 struct intel_digital_port *intel_dig_port =
1232                                                 dp_to_dig_port(intel_dp);
1233                 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1234                 enum intel_display_power_domain power_domain;
1235
1236                 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1237
1238                 pp = ironlake_get_pp_control(intel_dp);
1239                 pp &= ~EDP_FORCE_VDD;
1240
1241                 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1242                 pp_stat_reg = _pp_stat_reg(intel_dp);
1243
1244                 I915_WRITE(pp_ctrl_reg, pp);
1245                 POSTING_READ(pp_ctrl_reg);
1246
1247                 /* Make sure sequencer is idle before allowing subsequent activity */
1248                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1249                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1250
1251                 if ((pp & POWER_TARGET_ON) == 0)
1252                         intel_dp->last_power_cycle = jiffies;
1253
1254                 power_domain = intel_display_port_power_domain(intel_encoder);
1255                 intel_display_power_put(dev_priv, power_domain);
1256         }
1257 }
1258
1259 static void edp_panel_vdd_work(struct work_struct *__work)
1260 {
1261         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1262                                                  struct intel_dp, panel_vdd_work);
1263         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1264
1265         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1266         edp_panel_vdd_off_sync(intel_dp);
1267         drm_modeset_unlock(&dev->mode_config.connection_mutex);
1268 }
1269
1270 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1271 {
1272         if (!is_edp(intel_dp))
1273                 return;
1274
1275         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1276
1277         intel_dp->want_panel_vdd = false;
1278
1279         if (sync) {
1280                 edp_panel_vdd_off_sync(intel_dp);
1281         } else {
1282                 /*
1283                  * Queue the timer to fire a long
1284                  * time from now (relative to the power down delay)
1285                  * to keep the panel power up across a sequence of operations
1286                  */
1287                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1288                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1289         }
1290 }
1291
1292 void intel_edp_panel_on(struct intel_dp *intel_dp)
1293 {
1294         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1295         struct drm_i915_private *dev_priv = dev->dev_private;
1296         u32 pp;
1297         u32 pp_ctrl_reg;
1298
1299         if (!is_edp(intel_dp))
1300                 return;
1301
1302         DRM_DEBUG_KMS("Turn eDP power on\n");
1303
1304         if (edp_have_panel_power(intel_dp)) {
1305                 DRM_DEBUG_KMS("eDP power already on\n");
1306                 return;
1307         }
1308
1309         wait_panel_power_cycle(intel_dp);
1310
1311         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1312         pp = ironlake_get_pp_control(intel_dp);
1313         if (IS_GEN5(dev)) {
1314                 /* ILK workaround: disable reset around power sequence */
1315                 pp &= ~PANEL_POWER_RESET;
1316                 I915_WRITE(pp_ctrl_reg, pp);
1317                 POSTING_READ(pp_ctrl_reg);
1318         }
1319
1320         pp |= POWER_TARGET_ON;
1321         if (!IS_GEN5(dev))
1322                 pp |= PANEL_POWER_RESET;
1323
1324         I915_WRITE(pp_ctrl_reg, pp);
1325         POSTING_READ(pp_ctrl_reg);
1326
1327         wait_panel_on(intel_dp);
1328         intel_dp->last_power_on = jiffies;
1329
1330         if (IS_GEN5(dev)) {
1331                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1332                 I915_WRITE(pp_ctrl_reg, pp);
1333                 POSTING_READ(pp_ctrl_reg);
1334         }
1335 }
1336
1337 void intel_edp_panel_off(struct intel_dp *intel_dp)
1338 {
1339         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1340         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1341         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1342         struct drm_i915_private *dev_priv = dev->dev_private;
1343         enum intel_display_power_domain power_domain;
1344         u32 pp;
1345         u32 pp_ctrl_reg;
1346
1347         if (!is_edp(intel_dp))
1348                 return;
1349
1350         DRM_DEBUG_KMS("Turn eDP power off\n");
1351
1352         edp_wait_backlight_off(intel_dp);
1353
1354         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1355
1356         pp = ironlake_get_pp_control(intel_dp);
1357         /* We need to switch off panel power _and_ force vdd, for otherwise some
1358          * panels get very unhappy and cease to work. */
1359         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1360                 EDP_BLC_ENABLE);
1361
1362         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1363
1364         intel_dp->want_panel_vdd = false;
1365
1366         I915_WRITE(pp_ctrl_reg, pp);
1367         POSTING_READ(pp_ctrl_reg);
1368
1369         intel_dp->last_power_cycle = jiffies;
1370         wait_panel_off(intel_dp);
1371
1372         /* We got a reference when we enabled the VDD. */
1373         power_domain = intel_display_port_power_domain(intel_encoder);
1374         intel_display_power_put(dev_priv, power_domain);
1375 }
1376
1377 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1378 {
1379         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1380         struct drm_device *dev = intel_dig_port->base.base.dev;
1381         struct drm_i915_private *dev_priv = dev->dev_private;
1382         u32 pp;
1383         u32 pp_ctrl_reg;
1384
1385         if (!is_edp(intel_dp))
1386                 return;
1387
1388         DRM_DEBUG_KMS("\n");
1389         /*
1390          * If we enable the backlight right away following a panel power
1391          * on, we may see slight flicker as the panel syncs with the eDP
1392          * link.  So delay a bit to make sure the image is solid before
1393          * allowing it to appear.
1394          */
1395         wait_backlight_on(intel_dp);
1396         pp = ironlake_get_pp_control(intel_dp);
1397         pp |= EDP_BLC_ENABLE;
1398
1399         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1400
1401         I915_WRITE(pp_ctrl_reg, pp);
1402         POSTING_READ(pp_ctrl_reg);
1403
1404         intel_panel_enable_backlight(intel_dp->attached_connector);
1405 }
1406
1407 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1408 {
1409         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1410         struct drm_i915_private *dev_priv = dev->dev_private;
1411         u32 pp;
1412         u32 pp_ctrl_reg;
1413
1414         if (!is_edp(intel_dp))
1415                 return;
1416
1417         intel_panel_disable_backlight(intel_dp->attached_connector);
1418
1419         DRM_DEBUG_KMS("\n");
1420         pp = ironlake_get_pp_control(intel_dp);
1421         pp &= ~EDP_BLC_ENABLE;
1422
1423         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1424
1425         I915_WRITE(pp_ctrl_reg, pp);
1426         POSTING_READ(pp_ctrl_reg);
1427         intel_dp->last_backlight_off = jiffies;
1428 }
1429
1430 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1431 {
1432         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1433         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1434         struct drm_device *dev = crtc->dev;
1435         struct drm_i915_private *dev_priv = dev->dev_private;
1436         u32 dpa_ctl;
1437
1438         assert_pipe_disabled(dev_priv,
1439                              to_intel_crtc(crtc)->pipe);
1440
1441         DRM_DEBUG_KMS("\n");
1442         dpa_ctl = I915_READ(DP_A);
1443         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1444         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1445
1446         /* We don't adjust intel_dp->DP while tearing down the link, to
1447          * facilitate link retraining (e.g. after hotplug). Hence clear all
1448          * enable bits here to ensure that we don't enable too much. */
1449         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1450         intel_dp->DP |= DP_PLL_ENABLE;
1451         I915_WRITE(DP_A, intel_dp->DP);
1452         POSTING_READ(DP_A);
1453         udelay(200);
1454 }
1455
1456 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1457 {
1458         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1459         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1460         struct drm_device *dev = crtc->dev;
1461         struct drm_i915_private *dev_priv = dev->dev_private;
1462         u32 dpa_ctl;
1463
1464         assert_pipe_disabled(dev_priv,
1465                              to_intel_crtc(crtc)->pipe);
1466
1467         dpa_ctl = I915_READ(DP_A);
1468         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1469              "dp pll off, should be on\n");
1470         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1471
1472         /* We can't rely on the value tracked for the DP register in
1473          * intel_dp->DP because link_down must not change that (otherwise link
1474          * re-training will fail. */
1475         dpa_ctl &= ~DP_PLL_ENABLE;
1476         I915_WRITE(DP_A, dpa_ctl);
1477         POSTING_READ(DP_A);
1478         udelay(200);
1479 }
1480
1481 /* If the sink supports it, try to set the power state appropriately */
1482 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1483 {
1484         int ret, i;
1485
1486         /* Should have a valid DPCD by this point */
1487         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1488                 return;
1489
1490         if (mode != DRM_MODE_DPMS_ON) {
1491                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1492                                          DP_SET_POWER_D3);
1493                 if (ret != 1)
1494                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1495         } else {
1496                 /*
1497                  * When turning on, we need to retry for 1ms to give the sink
1498                  * time to wake up.
1499                  */
1500                 for (i = 0; i < 3; i++) {
1501                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1502                                                  DP_SET_POWER_D0);
1503                         if (ret == 1)
1504                                 break;
1505                         msleep(1);
1506                 }
1507         }
1508 }
1509
1510 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1511                                   enum pipe *pipe)
1512 {
1513         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1514         enum port port = dp_to_dig_port(intel_dp)->port;
1515         struct drm_device *dev = encoder->base.dev;
1516         struct drm_i915_private *dev_priv = dev->dev_private;
1517         enum intel_display_power_domain power_domain;
1518         u32 tmp;
1519
1520         power_domain = intel_display_port_power_domain(encoder);
1521         if (!intel_display_power_enabled(dev_priv, power_domain))
1522                 return false;
1523
1524         tmp = I915_READ(intel_dp->output_reg);
1525
1526         if (!(tmp & DP_PORT_EN))
1527                 return false;
1528
1529         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1530                 *pipe = PORT_TO_PIPE_CPT(tmp);
1531         } else if (IS_CHERRYVIEW(dev)) {
1532                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1533         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1534                 *pipe = PORT_TO_PIPE(tmp);
1535         } else {
1536                 u32 trans_sel;
1537                 u32 trans_dp;
1538                 int i;
1539
1540                 switch (intel_dp->output_reg) {
1541                 case PCH_DP_B:
1542                         trans_sel = TRANS_DP_PORT_SEL_B;
1543                         break;
1544                 case PCH_DP_C:
1545                         trans_sel = TRANS_DP_PORT_SEL_C;
1546                         break;
1547                 case PCH_DP_D:
1548                         trans_sel = TRANS_DP_PORT_SEL_D;
1549                         break;
1550                 default:
1551                         return true;
1552                 }
1553
1554                 for_each_pipe(i) {
1555                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1556                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1557                                 *pipe = i;
1558                                 return true;
1559                         }
1560                 }
1561
1562                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1563                               intel_dp->output_reg);
1564         }
1565
1566         return true;
1567 }
1568
1569 static void intel_dp_get_config(struct intel_encoder *encoder,
1570                                 struct intel_crtc_config *pipe_config)
1571 {
1572         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1573         u32 tmp, flags = 0;
1574         struct drm_device *dev = encoder->base.dev;
1575         struct drm_i915_private *dev_priv = dev->dev_private;
1576         enum port port = dp_to_dig_port(intel_dp)->port;
1577         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1578         int dotclock;
1579
1580         tmp = I915_READ(intel_dp->output_reg);
1581         if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1582                 pipe_config->has_audio = true;
1583
1584         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1585                 if (tmp & DP_SYNC_HS_HIGH)
1586                         flags |= DRM_MODE_FLAG_PHSYNC;
1587                 else
1588                         flags |= DRM_MODE_FLAG_NHSYNC;
1589
1590                 if (tmp & DP_SYNC_VS_HIGH)
1591                         flags |= DRM_MODE_FLAG_PVSYNC;
1592                 else
1593                         flags |= DRM_MODE_FLAG_NVSYNC;
1594         } else {
1595                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1596                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1597                         flags |= DRM_MODE_FLAG_PHSYNC;
1598                 else
1599                         flags |= DRM_MODE_FLAG_NHSYNC;
1600
1601                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1602                         flags |= DRM_MODE_FLAG_PVSYNC;
1603                 else
1604                         flags |= DRM_MODE_FLAG_NVSYNC;
1605         }
1606
1607         pipe_config->adjusted_mode.flags |= flags;
1608
1609         pipe_config->has_dp_encoder = true;
1610
1611         intel_dp_get_m_n(crtc, pipe_config);
1612
1613         if (port == PORT_A) {
1614                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1615                         pipe_config->port_clock = 162000;
1616                 else
1617                         pipe_config->port_clock = 270000;
1618         }
1619
1620         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1621                                             &pipe_config->dp_m_n);
1622
1623         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1624                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1625
1626         pipe_config->adjusted_mode.crtc_clock = dotclock;
1627
1628         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1629             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1630                 /*
1631                  * This is a big fat ugly hack.
1632                  *
1633                  * Some machines in UEFI boot mode provide us a VBT that has 18
1634                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1635                  * unknown we fail to light up. Yet the same BIOS boots up with
1636                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1637                  * max, not what it tells us to use.
1638                  *
1639                  * Note: This will still be broken if the eDP panel is not lit
1640                  * up by the BIOS, and thus we can't get the mode at module
1641                  * load.
1642                  */
1643                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1644                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1645                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1646         }
1647 }
1648
1649 static bool is_edp_psr(struct drm_device *dev)
1650 {
1651         struct drm_i915_private *dev_priv = dev->dev_private;
1652
1653         return dev_priv->psr.sink_support;
1654 }
1655
1656 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1657 {
1658         struct drm_i915_private *dev_priv = dev->dev_private;
1659
1660         if (!HAS_PSR(dev))
1661                 return false;
1662
1663         return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1664 }
1665
1666 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1667                                     struct edp_vsc_psr *vsc_psr)
1668 {
1669         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1670         struct drm_device *dev = dig_port->base.base.dev;
1671         struct drm_i915_private *dev_priv = dev->dev_private;
1672         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1673         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1674         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1675         uint32_t *data = (uint32_t *) vsc_psr;
1676         unsigned int i;
1677
1678         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1679            the video DIP being updated before program video DIP data buffer
1680            registers for DIP being updated. */
1681         I915_WRITE(ctl_reg, 0);
1682         POSTING_READ(ctl_reg);
1683
1684         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1685                 if (i < sizeof(struct edp_vsc_psr))
1686                         I915_WRITE(data_reg + i, *data++);
1687                 else
1688                         I915_WRITE(data_reg + i, 0);
1689         }
1690
1691         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1692         POSTING_READ(ctl_reg);
1693 }
1694
1695 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1696 {
1697         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1698         struct drm_i915_private *dev_priv = dev->dev_private;
1699         struct edp_vsc_psr psr_vsc;
1700
1701         if (intel_dp->psr_setup_done)
1702                 return;
1703
1704         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1705         memset(&psr_vsc, 0, sizeof(psr_vsc));
1706         psr_vsc.sdp_header.HB0 = 0;
1707         psr_vsc.sdp_header.HB1 = 0x7;
1708         psr_vsc.sdp_header.HB2 = 0x2;
1709         psr_vsc.sdp_header.HB3 = 0x8;
1710         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1711
1712         /* Avoid continuous PSR exit by masking memup and hpd */
1713         I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1714                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1715
1716         intel_dp->psr_setup_done = true;
1717 }
1718
1719 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1720 {
1721         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1722         struct drm_i915_private *dev_priv = dev->dev_private;
1723         uint32_t aux_clock_divider;
1724         int precharge = 0x3;
1725         int msg_size = 5;       /* Header(4) + Message(1) */
1726
1727         aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1728
1729         /* Enable PSR in sink */
1730         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1731                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1732                                    DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1733         else
1734                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1735                                    DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1736
1737         /* Setup AUX registers */
1738         I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1739         I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1740         I915_WRITE(EDP_PSR_AUX_CTL(dev),
1741                    DP_AUX_CH_CTL_TIME_OUT_400us |
1742                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1743                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1744                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1745 }
1746
1747 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1748 {
1749         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1750         struct drm_i915_private *dev_priv = dev->dev_private;
1751         uint32_t max_sleep_time = 0x1f;
1752         uint32_t idle_frames = 1;
1753         uint32_t val = 0x0;
1754         const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1755
1756         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1757                 val |= EDP_PSR_LINK_STANDBY;
1758                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1759                 val |= EDP_PSR_TP1_TIME_0us;
1760                 val |= EDP_PSR_SKIP_AUX_EXIT;
1761         } else
1762                 val |= EDP_PSR_LINK_DISABLE;
1763
1764         I915_WRITE(EDP_PSR_CTL(dev), val |
1765                    (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1766                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1767                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1768                    EDP_PSR_ENABLE);
1769 }
1770
1771 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1772 {
1773         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1774         struct drm_device *dev = dig_port->base.base.dev;
1775         struct drm_i915_private *dev_priv = dev->dev_private;
1776         struct drm_crtc *crtc = dig_port->base.base.crtc;
1777         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1778         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1779         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1780
1781         dev_priv->psr.source_ok = false;
1782
1783         if (!HAS_PSR(dev)) {
1784                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1785                 return false;
1786         }
1787
1788         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1789             (dig_port->port != PORT_A)) {
1790                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1791                 return false;
1792         }
1793
1794         if (!i915.enable_psr) {
1795                 DRM_DEBUG_KMS("PSR disable by flag\n");
1796                 return false;
1797         }
1798
1799         crtc = dig_port->base.base.crtc;
1800         if (crtc == NULL) {
1801                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1802                 return false;
1803         }
1804
1805         intel_crtc = to_intel_crtc(crtc);
1806         if (!intel_crtc_active(crtc)) {
1807                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1808                 return false;
1809         }
1810
1811         obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1812         if (obj->tiling_mode != I915_TILING_X ||
1813             obj->fence_reg == I915_FENCE_REG_NONE) {
1814                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1815                 return false;
1816         }
1817
1818         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1819                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1820                 return false;
1821         }
1822
1823         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1824             S3D_ENABLE) {
1825                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1826                 return false;
1827         }
1828
1829         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1830                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1831                 return false;
1832         }
1833
1834         dev_priv->psr.source_ok = true;
1835         return true;
1836 }
1837
1838 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1839 {
1840         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1841
1842         if (!intel_edp_psr_match_conditions(intel_dp) ||
1843             intel_edp_is_psr_enabled(dev))
1844                 return;
1845
1846         /* Setup PSR once */
1847         intel_edp_psr_setup(intel_dp);
1848
1849         /* Enable PSR on the panel */
1850         intel_edp_psr_enable_sink(intel_dp);
1851
1852         /* Enable PSR on the host */
1853         intel_edp_psr_enable_source(intel_dp);
1854 }
1855
1856 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1857 {
1858         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1859
1860         if (intel_edp_psr_match_conditions(intel_dp) &&
1861             !intel_edp_is_psr_enabled(dev))
1862                 intel_edp_psr_do_enable(intel_dp);
1863 }
1864
1865 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1866 {
1867         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1868         struct drm_i915_private *dev_priv = dev->dev_private;
1869
1870         if (!intel_edp_is_psr_enabled(dev))
1871                 return;
1872
1873         I915_WRITE(EDP_PSR_CTL(dev),
1874                    I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1875
1876         /* Wait till PSR is idle */
1877         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1878                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1879                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1880 }
1881
1882 void intel_edp_psr_update(struct drm_device *dev)
1883 {
1884         struct intel_encoder *encoder;
1885         struct intel_dp *intel_dp = NULL;
1886
1887         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1888                 if (encoder->type == INTEL_OUTPUT_EDP) {
1889                         intel_dp = enc_to_intel_dp(&encoder->base);
1890
1891                         if (!is_edp_psr(dev))
1892                                 return;
1893
1894                         if (!intel_edp_psr_match_conditions(intel_dp))
1895                                 intel_edp_psr_disable(intel_dp);
1896                         else
1897                                 if (!intel_edp_is_psr_enabled(dev))
1898                                         intel_edp_psr_do_enable(intel_dp);
1899                 }
1900 }
1901
1902 static void intel_disable_dp(struct intel_encoder *encoder)
1903 {
1904         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1905         enum port port = dp_to_dig_port(intel_dp)->port;
1906         struct drm_device *dev = encoder->base.dev;
1907
1908         /* Make sure the panel is off before trying to change the mode. But also
1909          * ensure that we have vdd while we switch off the panel. */
1910         intel_edp_panel_vdd_on(intel_dp);
1911         intel_edp_backlight_off(intel_dp);
1912         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1913         intel_edp_panel_off(intel_dp);
1914
1915         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1916         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1917                 intel_dp_link_down(intel_dp);
1918 }
1919
1920 static void g4x_post_disable_dp(struct intel_encoder *encoder)
1921 {
1922         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1923         enum port port = dp_to_dig_port(intel_dp)->port;
1924
1925         if (port != PORT_A)
1926                 return;
1927
1928         intel_dp_link_down(intel_dp);
1929         ironlake_edp_pll_off(intel_dp);
1930 }
1931
1932 static void vlv_post_disable_dp(struct intel_encoder *encoder)
1933 {
1934         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1935
1936         intel_dp_link_down(intel_dp);
1937 }
1938
1939 static void chv_post_disable_dp(struct intel_encoder *encoder)
1940 {
1941         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1942         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1943         struct drm_device *dev = encoder->base.dev;
1944         struct drm_i915_private *dev_priv = dev->dev_private;
1945         struct intel_crtc *intel_crtc =
1946                 to_intel_crtc(encoder->base.crtc);
1947         enum dpio_channel ch = vlv_dport_to_channel(dport);
1948         enum pipe pipe = intel_crtc->pipe;
1949         u32 val;
1950
1951         intel_dp_link_down(intel_dp);
1952
1953         mutex_lock(&dev_priv->dpio_lock);
1954
1955         /* Propagate soft reset to data lane reset */
1956         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1957         val |= CHV_PCS_REQ_SOFTRESET_EN;
1958         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1959
1960         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1961         val |= CHV_PCS_REQ_SOFTRESET_EN;
1962         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1963
1964         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1965         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1966         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1967
1968         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1969         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1970         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1971
1972         mutex_unlock(&dev_priv->dpio_lock);
1973 }
1974
1975 static void intel_enable_dp(struct intel_encoder *encoder)
1976 {
1977         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1978         struct drm_device *dev = encoder->base.dev;
1979         struct drm_i915_private *dev_priv = dev->dev_private;
1980         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1981
1982         if (WARN_ON(dp_reg & DP_PORT_EN))
1983                 return;
1984
1985         intel_edp_panel_vdd_on(intel_dp);
1986         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1987         intel_dp_start_link_train(intel_dp);
1988         intel_edp_panel_on(intel_dp);
1989         edp_panel_vdd_off(intel_dp, true);
1990         intel_dp_complete_link_train(intel_dp);
1991         intel_dp_stop_link_train(intel_dp);
1992 }
1993
1994 static void g4x_enable_dp(struct intel_encoder *encoder)
1995 {
1996         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1997
1998         intel_enable_dp(encoder);
1999         intel_edp_backlight_on(intel_dp);
2000 }
2001
2002 static void vlv_enable_dp(struct intel_encoder *encoder)
2003 {
2004         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2005
2006         intel_edp_backlight_on(intel_dp);
2007 }
2008
2009 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2010 {
2011         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2012         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2013
2014         intel_dp_prepare(encoder);
2015
2016         /* Only ilk+ has port A */
2017         if (dport->port == PORT_A) {
2018                 ironlake_set_pll_cpu_edp(intel_dp);
2019                 ironlake_edp_pll_on(intel_dp);
2020         }
2021 }
2022
2023 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2024 {
2025         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2026         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2027         struct drm_device *dev = encoder->base.dev;
2028         struct drm_i915_private *dev_priv = dev->dev_private;
2029         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2030         enum dpio_channel port = vlv_dport_to_channel(dport);
2031         int pipe = intel_crtc->pipe;
2032         struct edp_power_seq power_seq;
2033         u32 val;
2034
2035         mutex_lock(&dev_priv->dpio_lock);
2036
2037         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2038         val = 0;
2039         if (pipe)
2040                 val |= (1<<21);
2041         else
2042                 val &= ~(1<<21);
2043         val |= 0x001000c4;
2044         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2045         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2046         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2047
2048         mutex_unlock(&dev_priv->dpio_lock);
2049
2050         if (is_edp(intel_dp)) {
2051                 /* init power sequencer on this pipe and port */
2052                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2053                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2054                                                               &power_seq);
2055         }
2056
2057         intel_enable_dp(encoder);
2058
2059         vlv_wait_port_ready(dev_priv, dport);
2060 }
2061
2062 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2063 {
2064         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2065         struct drm_device *dev = encoder->base.dev;
2066         struct drm_i915_private *dev_priv = dev->dev_private;
2067         struct intel_crtc *intel_crtc =
2068                 to_intel_crtc(encoder->base.crtc);
2069         enum dpio_channel port = vlv_dport_to_channel(dport);
2070         int pipe = intel_crtc->pipe;
2071
2072         intel_dp_prepare(encoder);
2073
2074         /* Program Tx lane resets to default */
2075         mutex_lock(&dev_priv->dpio_lock);
2076         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2077                          DPIO_PCS_TX_LANE2_RESET |
2078                          DPIO_PCS_TX_LANE1_RESET);
2079         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2080                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2081                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2082                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2083                                  DPIO_PCS_CLK_SOFT_RESET);
2084
2085         /* Fix up inter-pair skew failure */
2086         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2087         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2088         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2089         mutex_unlock(&dev_priv->dpio_lock);
2090 }
2091
2092 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2093 {
2094         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2095         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2096         struct drm_device *dev = encoder->base.dev;
2097         struct drm_i915_private *dev_priv = dev->dev_private;
2098         struct edp_power_seq power_seq;
2099         struct intel_crtc *intel_crtc =
2100                 to_intel_crtc(encoder->base.crtc);
2101         enum dpio_channel ch = vlv_dport_to_channel(dport);
2102         int pipe = intel_crtc->pipe;
2103         int data, i;
2104         u32 val;
2105
2106         mutex_lock(&dev_priv->dpio_lock);
2107
2108         /* Deassert soft data lane reset*/
2109         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2110         val |= CHV_PCS_REQ_SOFTRESET_EN;
2111         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2112
2113         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2114         val |= CHV_PCS_REQ_SOFTRESET_EN;
2115         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2116
2117         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2118         val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2119         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2120
2121         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2122         val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2123         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2124
2125         /* Program Tx lane latency optimal setting*/
2126         for (i = 0; i < 4; i++) {
2127                 /* Set the latency optimal bit */
2128                 data = (i == 1) ? 0x0 : 0x6;
2129                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2130                                 data << DPIO_FRC_LATENCY_SHFIT);
2131
2132                 /* Set the upar bit */
2133                 data = (i == 1) ? 0x0 : 0x1;
2134                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2135                                 data << DPIO_UPAR_SHIFT);
2136         }
2137
2138         /* Data lane stagger programming */
2139         /* FIXME: Fix up value only after power analysis */
2140
2141         mutex_unlock(&dev_priv->dpio_lock);
2142
2143         if (is_edp(intel_dp)) {
2144                 /* init power sequencer on this pipe and port */
2145                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2146                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2147                                                               &power_seq);
2148         }
2149
2150         intel_enable_dp(encoder);
2151
2152         vlv_wait_port_ready(dev_priv, dport);
2153 }
2154
2155 /*
2156  * Native read with retry for link status and receiver capability reads for
2157  * cases where the sink may still be asleep.
2158  *
2159  * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2160  * supposed to retry 3 times per the spec.
2161  */
2162 static ssize_t
2163 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2164                         void *buffer, size_t size)
2165 {
2166         ssize_t ret;
2167         int i;
2168
2169         for (i = 0; i < 3; i++) {
2170                 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2171                 if (ret == size)
2172                         return ret;
2173                 msleep(1);
2174         }
2175
2176         return ret;
2177 }
2178
2179 /*
2180  * Fetch AUX CH registers 0x202 - 0x207 which contain
2181  * link status information
2182  */
2183 static bool
2184 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2185 {
2186         return intel_dp_dpcd_read_wake(&intel_dp->aux,
2187                                        DP_LANE0_1_STATUS,
2188                                        link_status,
2189                                        DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2190 }
2191
2192 /*
2193  * These are source-specific values; current Intel hardware supports
2194  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
2195  */
2196
2197 static uint8_t
2198 intel_dp_voltage_max(struct intel_dp *intel_dp)
2199 {
2200         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2201         enum port port = dp_to_dig_port(intel_dp)->port;
2202
2203         if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
2204                 return DP_TRAIN_VOLTAGE_SWING_1200;
2205         else if (IS_GEN7(dev) && port == PORT_A)
2206                 return DP_TRAIN_VOLTAGE_SWING_800;
2207         else if (HAS_PCH_CPT(dev) && port != PORT_A)
2208                 return DP_TRAIN_VOLTAGE_SWING_1200;
2209         else
2210                 return DP_TRAIN_VOLTAGE_SWING_800;
2211 }
2212
2213 static uint8_t
2214 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2215 {
2216         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2217         enum port port = dp_to_dig_port(intel_dp)->port;
2218
2219         if (IS_BROADWELL(dev)) {
2220                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2221                 case DP_TRAIN_VOLTAGE_SWING_400:
2222                 case DP_TRAIN_VOLTAGE_SWING_600:
2223                         return DP_TRAIN_PRE_EMPHASIS_6;
2224                 case DP_TRAIN_VOLTAGE_SWING_800:
2225                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2226                 case DP_TRAIN_VOLTAGE_SWING_1200:
2227                 default:
2228                         return DP_TRAIN_PRE_EMPHASIS_0;
2229                 }
2230         } else if (IS_HASWELL(dev)) {
2231                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2232                 case DP_TRAIN_VOLTAGE_SWING_400:
2233                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2234                 case DP_TRAIN_VOLTAGE_SWING_600:
2235                         return DP_TRAIN_PRE_EMPHASIS_6;
2236                 case DP_TRAIN_VOLTAGE_SWING_800:
2237                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2238                 case DP_TRAIN_VOLTAGE_SWING_1200:
2239                 default:
2240                         return DP_TRAIN_PRE_EMPHASIS_0;
2241                 }
2242         } else if (IS_VALLEYVIEW(dev)) {
2243                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2244                 case DP_TRAIN_VOLTAGE_SWING_400:
2245                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2246                 case DP_TRAIN_VOLTAGE_SWING_600:
2247                         return DP_TRAIN_PRE_EMPHASIS_6;
2248                 case DP_TRAIN_VOLTAGE_SWING_800:
2249                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2250                 case DP_TRAIN_VOLTAGE_SWING_1200:
2251                 default:
2252                         return DP_TRAIN_PRE_EMPHASIS_0;
2253                 }
2254         } else if (IS_GEN7(dev) && port == PORT_A) {
2255                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2256                 case DP_TRAIN_VOLTAGE_SWING_400:
2257                         return DP_TRAIN_PRE_EMPHASIS_6;
2258                 case DP_TRAIN_VOLTAGE_SWING_600:
2259                 case DP_TRAIN_VOLTAGE_SWING_800:
2260                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2261                 default:
2262                         return DP_TRAIN_PRE_EMPHASIS_0;
2263                 }
2264         } else {
2265                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2266                 case DP_TRAIN_VOLTAGE_SWING_400:
2267                         return DP_TRAIN_PRE_EMPHASIS_6;
2268                 case DP_TRAIN_VOLTAGE_SWING_600:
2269                         return DP_TRAIN_PRE_EMPHASIS_6;
2270                 case DP_TRAIN_VOLTAGE_SWING_800:
2271                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2272                 case DP_TRAIN_VOLTAGE_SWING_1200:
2273                 default:
2274                         return DP_TRAIN_PRE_EMPHASIS_0;
2275                 }
2276         }
2277 }
2278
2279 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2280 {
2281         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2282         struct drm_i915_private *dev_priv = dev->dev_private;
2283         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2284         struct intel_crtc *intel_crtc =
2285                 to_intel_crtc(dport->base.base.crtc);
2286         unsigned long demph_reg_value, preemph_reg_value,
2287                 uniqtranscale_reg_value;
2288         uint8_t train_set = intel_dp->train_set[0];
2289         enum dpio_channel port = vlv_dport_to_channel(dport);
2290         int pipe = intel_crtc->pipe;
2291
2292         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2293         case DP_TRAIN_PRE_EMPHASIS_0:
2294                 preemph_reg_value = 0x0004000;
2295                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2296                 case DP_TRAIN_VOLTAGE_SWING_400:
2297                         demph_reg_value = 0x2B405555;
2298                         uniqtranscale_reg_value = 0x552AB83A;
2299                         break;
2300                 case DP_TRAIN_VOLTAGE_SWING_600:
2301                         demph_reg_value = 0x2B404040;
2302                         uniqtranscale_reg_value = 0x5548B83A;
2303                         break;
2304                 case DP_TRAIN_VOLTAGE_SWING_800:
2305                         demph_reg_value = 0x2B245555;
2306                         uniqtranscale_reg_value = 0x5560B83A;
2307                         break;
2308                 case DP_TRAIN_VOLTAGE_SWING_1200:
2309                         demph_reg_value = 0x2B405555;
2310                         uniqtranscale_reg_value = 0x5598DA3A;
2311                         break;
2312                 default:
2313                         return 0;
2314                 }
2315                 break;
2316         case DP_TRAIN_PRE_EMPHASIS_3_5:
2317                 preemph_reg_value = 0x0002000;
2318                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2319                 case DP_TRAIN_VOLTAGE_SWING_400:
2320                         demph_reg_value = 0x2B404040;
2321                         uniqtranscale_reg_value = 0x5552B83A;
2322                         break;
2323                 case DP_TRAIN_VOLTAGE_SWING_600:
2324                         demph_reg_value = 0x2B404848;
2325                         uniqtranscale_reg_value = 0x5580B83A;
2326                         break;
2327                 case DP_TRAIN_VOLTAGE_SWING_800:
2328                         demph_reg_value = 0x2B404040;
2329                         uniqtranscale_reg_value = 0x55ADDA3A;
2330                         break;
2331                 default:
2332                         return 0;
2333                 }
2334                 break;
2335         case DP_TRAIN_PRE_EMPHASIS_6:
2336                 preemph_reg_value = 0x0000000;
2337                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2338                 case DP_TRAIN_VOLTAGE_SWING_400:
2339                         demph_reg_value = 0x2B305555;
2340                         uniqtranscale_reg_value = 0x5570B83A;
2341                         break;
2342                 case DP_TRAIN_VOLTAGE_SWING_600:
2343                         demph_reg_value = 0x2B2B4040;
2344                         uniqtranscale_reg_value = 0x55ADDA3A;
2345                         break;
2346                 default:
2347                         return 0;
2348                 }
2349                 break;
2350         case DP_TRAIN_PRE_EMPHASIS_9_5:
2351                 preemph_reg_value = 0x0006000;
2352                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2353                 case DP_TRAIN_VOLTAGE_SWING_400:
2354                         demph_reg_value = 0x1B405555;
2355                         uniqtranscale_reg_value = 0x55ADDA3A;
2356                         break;
2357                 default:
2358                         return 0;
2359                 }
2360                 break;
2361         default:
2362                 return 0;
2363         }
2364
2365         mutex_lock(&dev_priv->dpio_lock);
2366         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2367         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2368         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2369                          uniqtranscale_reg_value);
2370         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2371         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2372         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2373         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2374         mutex_unlock(&dev_priv->dpio_lock);
2375
2376         return 0;
2377 }
2378
2379 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2380 {
2381         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2382         struct drm_i915_private *dev_priv = dev->dev_private;
2383         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2384         struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2385         u32 deemph_reg_value, margin_reg_value, val;
2386         uint8_t train_set = intel_dp->train_set[0];
2387         enum dpio_channel ch = vlv_dport_to_channel(dport);
2388         enum pipe pipe = intel_crtc->pipe;
2389         int i;
2390
2391         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2392         case DP_TRAIN_PRE_EMPHASIS_0:
2393                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2394                 case DP_TRAIN_VOLTAGE_SWING_400:
2395                         deemph_reg_value = 128;
2396                         margin_reg_value = 52;
2397                         break;
2398                 case DP_TRAIN_VOLTAGE_SWING_600:
2399                         deemph_reg_value = 128;
2400                         margin_reg_value = 77;
2401                         break;
2402                 case DP_TRAIN_VOLTAGE_SWING_800:
2403                         deemph_reg_value = 128;
2404                         margin_reg_value = 102;
2405                         break;
2406                 case DP_TRAIN_VOLTAGE_SWING_1200:
2407                         deemph_reg_value = 128;
2408                         margin_reg_value = 154;
2409                         /* FIXME extra to set for 1200 */
2410                         break;
2411                 default:
2412                         return 0;
2413                 }
2414                 break;
2415         case DP_TRAIN_PRE_EMPHASIS_3_5:
2416                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2417                 case DP_TRAIN_VOLTAGE_SWING_400:
2418                         deemph_reg_value = 85;
2419                         margin_reg_value = 78;
2420                         break;
2421                 case DP_TRAIN_VOLTAGE_SWING_600:
2422                         deemph_reg_value = 85;
2423                         margin_reg_value = 116;
2424                         break;
2425                 case DP_TRAIN_VOLTAGE_SWING_800:
2426                         deemph_reg_value = 85;
2427                         margin_reg_value = 154;
2428                         break;
2429                 default:
2430                         return 0;
2431                 }
2432                 break;
2433         case DP_TRAIN_PRE_EMPHASIS_6:
2434                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2435                 case DP_TRAIN_VOLTAGE_SWING_400:
2436                         deemph_reg_value = 64;
2437                         margin_reg_value = 104;
2438                         break;
2439                 case DP_TRAIN_VOLTAGE_SWING_600:
2440                         deemph_reg_value = 64;
2441                         margin_reg_value = 154;
2442                         break;
2443                 default:
2444                         return 0;
2445                 }
2446                 break;
2447         case DP_TRAIN_PRE_EMPHASIS_9_5:
2448                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2449                 case DP_TRAIN_VOLTAGE_SWING_400:
2450                         deemph_reg_value = 43;
2451                         margin_reg_value = 154;
2452                         break;
2453                 default:
2454                         return 0;
2455                 }
2456                 break;
2457         default:
2458                 return 0;
2459         }
2460
2461         mutex_lock(&dev_priv->dpio_lock);
2462
2463         /* Clear calc init */
2464         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2465         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2466         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2467
2468         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2469         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2470         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2471
2472         /* Program swing deemph */
2473         for (i = 0; i < 4; i++) {
2474                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2475                 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2476                 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2477                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2478         }
2479
2480         /* Program swing margin */
2481         for (i = 0; i < 4; i++) {
2482                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2483                 val &= ~DPIO_SWING_MARGIN_MASK;
2484                 val |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
2485                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2486         }
2487
2488         /* Disable unique transition scale */
2489         for (i = 0; i < 4; i++) {
2490                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2491                 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2492                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2493         }
2494
2495         if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2496                         == DP_TRAIN_PRE_EMPHASIS_0) &&
2497                 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2498                         == DP_TRAIN_VOLTAGE_SWING_1200)) {
2499
2500                 /*
2501                  * The document said it needs to set bit 27 for ch0 and bit 26
2502                  * for ch1. Might be a typo in the doc.
2503                  * For now, for this unique transition scale selection, set bit
2504                  * 27 for ch0 and ch1.
2505                  */
2506                 for (i = 0; i < 4; i++) {
2507                         val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2508                         val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2509                         vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2510                 }
2511
2512                 for (i = 0; i < 4; i++) {
2513                         val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2514                         val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2515                         val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2516                         vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2517                 }
2518         }
2519
2520         /* Start swing calculation */
2521         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2522         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2523         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2524
2525         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2526         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2527         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2528
2529         /* LRC Bypass */
2530         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2531         val |= DPIO_LRC_BYPASS;
2532         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2533
2534         mutex_unlock(&dev_priv->dpio_lock);
2535
2536         return 0;
2537 }
2538
2539 static void
2540 intel_get_adjust_train(struct intel_dp *intel_dp,
2541                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
2542 {
2543         uint8_t v = 0;
2544         uint8_t p = 0;
2545         int lane;
2546         uint8_t voltage_max;
2547         uint8_t preemph_max;
2548
2549         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2550                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2551                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2552
2553                 if (this_v > v)
2554                         v = this_v;
2555                 if (this_p > p)
2556                         p = this_p;
2557         }
2558
2559         voltage_max = intel_dp_voltage_max(intel_dp);
2560         if (v >= voltage_max)
2561                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2562
2563         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2564         if (p >= preemph_max)
2565                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2566
2567         for (lane = 0; lane < 4; lane++)
2568                 intel_dp->train_set[lane] = v | p;
2569 }
2570
2571 static uint32_t
2572 intel_gen4_signal_levels(uint8_t train_set)
2573 {
2574         uint32_t        signal_levels = 0;
2575
2576         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2577         case DP_TRAIN_VOLTAGE_SWING_400:
2578         default:
2579                 signal_levels |= DP_VOLTAGE_0_4;
2580                 break;
2581         case DP_TRAIN_VOLTAGE_SWING_600:
2582                 signal_levels |= DP_VOLTAGE_0_6;
2583                 break;
2584         case DP_TRAIN_VOLTAGE_SWING_800:
2585                 signal_levels |= DP_VOLTAGE_0_8;
2586                 break;
2587         case DP_TRAIN_VOLTAGE_SWING_1200:
2588                 signal_levels |= DP_VOLTAGE_1_2;
2589                 break;
2590         }
2591         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2592         case DP_TRAIN_PRE_EMPHASIS_0:
2593         default:
2594                 signal_levels |= DP_PRE_EMPHASIS_0;
2595                 break;
2596         case DP_TRAIN_PRE_EMPHASIS_3_5:
2597                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2598                 break;
2599         case DP_TRAIN_PRE_EMPHASIS_6:
2600                 signal_levels |= DP_PRE_EMPHASIS_6;
2601                 break;
2602         case DP_TRAIN_PRE_EMPHASIS_9_5:
2603                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2604                 break;
2605         }
2606         return signal_levels;
2607 }
2608
2609 /* Gen6's DP voltage swing and pre-emphasis control */
2610 static uint32_t
2611 intel_gen6_edp_signal_levels(uint8_t train_set)
2612 {
2613         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2614                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2615         switch (signal_levels) {
2616         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2617         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2618                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2619         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2620                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2621         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2622         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2623                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2624         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2625         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2626                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2627         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2628         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2629                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2630         default:
2631                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2632                               "0x%x\n", signal_levels);
2633                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2634         }
2635 }
2636
2637 /* Gen7's DP voltage swing and pre-emphasis control */
2638 static uint32_t
2639 intel_gen7_edp_signal_levels(uint8_t train_set)
2640 {
2641         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2642                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2643         switch (signal_levels) {
2644         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2645                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2646         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2647                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2648         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2649                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2650
2651         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2652                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2653         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2654                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2655
2656         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2657                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2658         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2659                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2660
2661         default:
2662                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2663                               "0x%x\n", signal_levels);
2664                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2665         }
2666 }
2667
2668 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2669 static uint32_t
2670 intel_hsw_signal_levels(uint8_t train_set)
2671 {
2672         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2673                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2674         switch (signal_levels) {
2675         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2676                 return DDI_BUF_EMP_400MV_0DB_HSW;
2677         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2678                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2679         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2680                 return DDI_BUF_EMP_400MV_6DB_HSW;
2681         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2682                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2683
2684         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2685                 return DDI_BUF_EMP_600MV_0DB_HSW;
2686         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2687                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2688         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2689                 return DDI_BUF_EMP_600MV_6DB_HSW;
2690
2691         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2692                 return DDI_BUF_EMP_800MV_0DB_HSW;
2693         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2694                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2695         default:
2696                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2697                               "0x%x\n", signal_levels);
2698                 return DDI_BUF_EMP_400MV_0DB_HSW;
2699         }
2700 }
2701
2702 static uint32_t
2703 intel_bdw_signal_levels(uint8_t train_set)
2704 {
2705         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2706                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2707         switch (signal_levels) {
2708         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2709                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2710         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2711                 return DDI_BUF_EMP_400MV_3_5DB_BDW;     /* Sel1 */
2712         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2713                 return DDI_BUF_EMP_400MV_6DB_BDW;       /* Sel2 */
2714
2715         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2716                 return DDI_BUF_EMP_600MV_0DB_BDW;       /* Sel3 */
2717         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2718                 return DDI_BUF_EMP_600MV_3_5DB_BDW;     /* Sel4 */
2719         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2720                 return DDI_BUF_EMP_600MV_6DB_BDW;       /* Sel5 */
2721
2722         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2723                 return DDI_BUF_EMP_800MV_0DB_BDW;       /* Sel6 */
2724         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2725                 return DDI_BUF_EMP_800MV_3_5DB_BDW;     /* Sel7 */
2726
2727         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2728                 return DDI_BUF_EMP_1200MV_0DB_BDW;      /* Sel8 */
2729
2730         default:
2731                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2732                               "0x%x\n", signal_levels);
2733                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2734         }
2735 }
2736
2737 /* Properly updates "DP" with the correct signal levels. */
2738 static void
2739 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2740 {
2741         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2742         enum port port = intel_dig_port->port;
2743         struct drm_device *dev = intel_dig_port->base.base.dev;
2744         uint32_t signal_levels, mask;
2745         uint8_t train_set = intel_dp->train_set[0];
2746
2747         if (IS_BROADWELL(dev)) {
2748                 signal_levels = intel_bdw_signal_levels(train_set);
2749                 mask = DDI_BUF_EMP_MASK;
2750         } else if (IS_HASWELL(dev)) {
2751                 signal_levels = intel_hsw_signal_levels(train_set);
2752                 mask = DDI_BUF_EMP_MASK;
2753         } else if (IS_CHERRYVIEW(dev)) {
2754                 signal_levels = intel_chv_signal_levels(intel_dp);
2755                 mask = 0;
2756         } else if (IS_VALLEYVIEW(dev)) {
2757                 signal_levels = intel_vlv_signal_levels(intel_dp);
2758                 mask = 0;
2759         } else if (IS_GEN7(dev) && port == PORT_A) {
2760                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2761                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2762         } else if (IS_GEN6(dev) && port == PORT_A) {
2763                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2764                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2765         } else {
2766                 signal_levels = intel_gen4_signal_levels(train_set);
2767                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2768         }
2769
2770         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2771
2772         *DP = (*DP & ~mask) | signal_levels;
2773 }
2774
2775 static bool
2776 intel_dp_set_link_train(struct intel_dp *intel_dp,
2777                         uint32_t *DP,
2778                         uint8_t dp_train_pat)
2779 {
2780         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2781         struct drm_device *dev = intel_dig_port->base.base.dev;
2782         struct drm_i915_private *dev_priv = dev->dev_private;
2783         enum port port = intel_dig_port->port;
2784         uint8_t buf[sizeof(intel_dp->train_set) + 1];
2785         int ret, len;
2786
2787         if (HAS_DDI(dev)) {
2788                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2789
2790                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2791                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2792                 else
2793                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2794
2795                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2796                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2797                 case DP_TRAINING_PATTERN_DISABLE:
2798                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2799
2800                         break;
2801                 case DP_TRAINING_PATTERN_1:
2802                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2803                         break;
2804                 case DP_TRAINING_PATTERN_2:
2805                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2806                         break;
2807                 case DP_TRAINING_PATTERN_3:
2808                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2809                         break;
2810                 }
2811                 I915_WRITE(DP_TP_CTL(port), temp);
2812
2813         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2814                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2815
2816                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2817                 case DP_TRAINING_PATTERN_DISABLE:
2818                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2819                         break;
2820                 case DP_TRAINING_PATTERN_1:
2821                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2822                         break;
2823                 case DP_TRAINING_PATTERN_2:
2824                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2825                         break;
2826                 case DP_TRAINING_PATTERN_3:
2827                         DRM_ERROR("DP training pattern 3 not supported\n");
2828                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2829                         break;
2830                 }
2831
2832         } else {
2833                 *DP &= ~DP_LINK_TRAIN_MASK;
2834
2835                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2836                 case DP_TRAINING_PATTERN_DISABLE:
2837                         *DP |= DP_LINK_TRAIN_OFF;
2838                         break;
2839                 case DP_TRAINING_PATTERN_1:
2840                         *DP |= DP_LINK_TRAIN_PAT_1;
2841                         break;
2842                 case DP_TRAINING_PATTERN_2:
2843                         *DP |= DP_LINK_TRAIN_PAT_2;
2844                         break;
2845                 case DP_TRAINING_PATTERN_3:
2846                         DRM_ERROR("DP training pattern 3 not supported\n");
2847                         *DP |= DP_LINK_TRAIN_PAT_2;
2848                         break;
2849                 }
2850         }
2851
2852         I915_WRITE(intel_dp->output_reg, *DP);
2853         POSTING_READ(intel_dp->output_reg);
2854
2855         buf[0] = dp_train_pat;
2856         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2857             DP_TRAINING_PATTERN_DISABLE) {
2858                 /* don't write DP_TRAINING_LANEx_SET on disable */
2859                 len = 1;
2860         } else {
2861                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2862                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2863                 len = intel_dp->lane_count + 1;
2864         }
2865
2866         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
2867                                 buf, len);
2868
2869         return ret == len;
2870 }
2871
2872 static bool
2873 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2874                         uint8_t dp_train_pat)
2875 {
2876         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2877         intel_dp_set_signal_levels(intel_dp, DP);
2878         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2879 }
2880
2881 static bool
2882 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2883                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
2884 {
2885         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2886         struct drm_device *dev = intel_dig_port->base.base.dev;
2887         struct drm_i915_private *dev_priv = dev->dev_private;
2888         int ret;
2889
2890         intel_get_adjust_train(intel_dp, link_status);
2891         intel_dp_set_signal_levels(intel_dp, DP);
2892
2893         I915_WRITE(intel_dp->output_reg, *DP);
2894         POSTING_READ(intel_dp->output_reg);
2895
2896         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2897                                 intel_dp->train_set, intel_dp->lane_count);
2898
2899         return ret == intel_dp->lane_count;
2900 }
2901
2902 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2903 {
2904         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2905         struct drm_device *dev = intel_dig_port->base.base.dev;
2906         struct drm_i915_private *dev_priv = dev->dev_private;
2907         enum port port = intel_dig_port->port;
2908         uint32_t val;
2909
2910         if (!HAS_DDI(dev))
2911                 return;
2912
2913         val = I915_READ(DP_TP_CTL(port));
2914         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2915         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2916         I915_WRITE(DP_TP_CTL(port), val);
2917
2918         /*
2919          * On PORT_A we can have only eDP in SST mode. There the only reason
2920          * we need to set idle transmission mode is to work around a HW issue
2921          * where we enable the pipe while not in idle link-training mode.
2922          * In this case there is requirement to wait for a minimum number of
2923          * idle patterns to be sent.
2924          */
2925         if (port == PORT_A)
2926                 return;
2927
2928         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2929                      1))
2930                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2931 }
2932
2933 /* Enable corresponding port and start training pattern 1 */
2934 void
2935 intel_dp_start_link_train(struct intel_dp *intel_dp)
2936 {
2937         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2938         struct drm_device *dev = encoder->dev;
2939         int i;
2940         uint8_t voltage;
2941         int voltage_tries, loop_tries;
2942         uint32_t DP = intel_dp->DP;
2943         uint8_t link_config[2];
2944
2945         if (HAS_DDI(dev))
2946                 intel_ddi_prepare_link_retrain(encoder);
2947
2948         /* Write the link configuration data */
2949         link_config[0] = intel_dp->link_bw;
2950         link_config[1] = intel_dp->lane_count;
2951         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2952                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2953         drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
2954
2955         link_config[0] = 0;
2956         link_config[1] = DP_SET_ANSI_8B10B;
2957         drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
2958
2959         DP |= DP_PORT_EN;
2960
2961         /* clock recovery */
2962         if (!intel_dp_reset_link_train(intel_dp, &DP,
2963                                        DP_TRAINING_PATTERN_1 |
2964                                        DP_LINK_SCRAMBLING_DISABLE)) {
2965                 DRM_ERROR("failed to enable link training\n");
2966                 return;
2967         }
2968
2969         voltage = 0xff;
2970         voltage_tries = 0;
2971         loop_tries = 0;
2972         for (;;) {
2973                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2974
2975                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2976                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2977                         DRM_ERROR("failed to get link status\n");
2978                         break;
2979                 }
2980
2981                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2982                         DRM_DEBUG_KMS("clock recovery OK\n");
2983                         break;
2984                 }
2985
2986                 /* Check to see if we've tried the max voltage */
2987                 for (i = 0; i < intel_dp->lane_count; i++)
2988                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2989                                 break;
2990                 if (i == intel_dp->lane_count) {
2991                         ++loop_tries;
2992                         if (loop_tries == 5) {
2993                                 DRM_ERROR("too many full retries, give up\n");
2994                                 break;
2995                         }
2996                         intel_dp_reset_link_train(intel_dp, &DP,
2997                                                   DP_TRAINING_PATTERN_1 |
2998                                                   DP_LINK_SCRAMBLING_DISABLE);
2999                         voltage_tries = 0;
3000                         continue;
3001                 }
3002
3003                 /* Check to see if we've tried the same voltage 5 times */
3004                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3005                         ++voltage_tries;
3006                         if (voltage_tries == 5) {
3007                                 DRM_ERROR("too many voltage retries, give up\n");
3008                                 break;
3009                         }
3010                 } else
3011                         voltage_tries = 0;
3012                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3013
3014                 /* Update training set as requested by target */
3015                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3016                         DRM_ERROR("failed to update link training\n");
3017                         break;
3018                 }
3019         }
3020
3021         intel_dp->DP = DP;
3022 }
3023
3024 void
3025 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3026 {
3027         bool channel_eq = false;
3028         int tries, cr_tries;
3029         uint32_t DP = intel_dp->DP;
3030         uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3031
3032         /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3033         if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3034                 training_pattern = DP_TRAINING_PATTERN_3;
3035
3036         /* channel equalization */
3037         if (!intel_dp_set_link_train(intel_dp, &DP,
3038                                      training_pattern |
3039                                      DP_LINK_SCRAMBLING_DISABLE)) {
3040                 DRM_ERROR("failed to start channel equalization\n");
3041                 return;
3042         }
3043
3044         tries = 0;
3045         cr_tries = 0;
3046         channel_eq = false;
3047         for (;;) {
3048                 uint8_t link_status[DP_LINK_STATUS_SIZE];
3049
3050                 if (cr_tries > 5) {
3051                         DRM_ERROR("failed to train DP, aborting\n");
3052                         break;
3053                 }
3054
3055                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3056                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3057                         DRM_ERROR("failed to get link status\n");
3058                         break;
3059                 }
3060
3061                 /* Make sure clock is still ok */
3062                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3063                         intel_dp_start_link_train(intel_dp);
3064                         intel_dp_set_link_train(intel_dp, &DP,
3065                                                 training_pattern |
3066                                                 DP_LINK_SCRAMBLING_DISABLE);
3067                         cr_tries++;
3068                         continue;
3069                 }
3070
3071                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3072                         channel_eq = true;
3073                         break;
3074                 }
3075
3076                 /* Try 5 times, then try clock recovery if that fails */
3077                 if (tries > 5) {
3078                         intel_dp_link_down(intel_dp);
3079                         intel_dp_start_link_train(intel_dp);
3080                         intel_dp_set_link_train(intel_dp, &DP,
3081                                                 training_pattern |
3082                                                 DP_LINK_SCRAMBLING_DISABLE);
3083                         tries = 0;
3084                         cr_tries++;
3085                         continue;
3086                 }
3087
3088                 /* Update training set as requested by target */
3089                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3090                         DRM_ERROR("failed to update link training\n");
3091                         break;
3092                 }
3093                 ++tries;
3094         }
3095
3096         intel_dp_set_idle_link_train(intel_dp);
3097
3098         intel_dp->DP = DP;
3099
3100         if (channel_eq)
3101                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3102
3103 }
3104
3105 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3106 {
3107         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3108                                 DP_TRAINING_PATTERN_DISABLE);
3109 }
3110
3111 static void
3112 intel_dp_link_down(struct intel_dp *intel_dp)
3113 {
3114         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3115         enum port port = intel_dig_port->port;
3116         struct drm_device *dev = intel_dig_port->base.base.dev;
3117         struct drm_i915_private *dev_priv = dev->dev_private;
3118         struct intel_crtc *intel_crtc =
3119                 to_intel_crtc(intel_dig_port->base.base.crtc);
3120         uint32_t DP = intel_dp->DP;
3121
3122         if (WARN_ON(HAS_DDI(dev)))
3123                 return;
3124
3125         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3126                 return;
3127
3128         DRM_DEBUG_KMS("\n");
3129
3130         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3131                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3132                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3133         } else {
3134                 DP &= ~DP_LINK_TRAIN_MASK;
3135                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3136         }
3137         POSTING_READ(intel_dp->output_reg);
3138
3139         if (HAS_PCH_IBX(dev) &&
3140             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3141                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3142
3143                 /* Hardware workaround: leaving our transcoder select
3144                  * set to transcoder B while it's off will prevent the
3145                  * corresponding HDMI output on transcoder A.
3146                  *
3147                  * Combine this with another hardware workaround:
3148                  * transcoder select bit can only be cleared while the
3149                  * port is enabled.
3150                  */
3151                 DP &= ~DP_PIPEB_SELECT;
3152                 I915_WRITE(intel_dp->output_reg, DP);
3153
3154                 /* Changes to enable or select take place the vblank
3155                  * after being written.
3156                  */
3157                 if (WARN_ON(crtc == NULL)) {
3158                         /* We should never try to disable a port without a crtc
3159                          * attached. For paranoia keep the code around for a
3160                          * bit. */
3161                         POSTING_READ(intel_dp->output_reg);
3162                         msleep(50);
3163                 } else
3164                         intel_wait_for_vblank(dev, intel_crtc->pipe);
3165         }
3166
3167         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3168         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3169         POSTING_READ(intel_dp->output_reg);
3170         msleep(intel_dp->panel_power_down_delay);
3171 }
3172
3173 static bool
3174 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3175 {
3176         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3177         struct drm_device *dev = dig_port->base.base.dev;
3178         struct drm_i915_private *dev_priv = dev->dev_private;
3179
3180         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3181
3182         if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3183                                     sizeof(intel_dp->dpcd)) < 0)
3184                 return false; /* aux transfer failed */
3185
3186         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3187                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3188         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3189
3190         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3191                 return false; /* DPCD not present */
3192
3193         /* Check if the panel supports PSR */
3194         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3195         if (is_edp(intel_dp)) {
3196                 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3197                                         intel_dp->psr_dpcd,
3198                                         sizeof(intel_dp->psr_dpcd));
3199                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3200                         dev_priv->psr.sink_support = true;
3201                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3202                 }
3203         }
3204
3205         /* Training Pattern 3 support */
3206         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3207             intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3208                 intel_dp->use_tps3 = true;
3209                 DRM_DEBUG_KMS("Displayport TPS3 supported");
3210         } else
3211                 intel_dp->use_tps3 = false;
3212
3213         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3214               DP_DWN_STRM_PORT_PRESENT))
3215                 return true; /* native DP sink */
3216
3217         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3218                 return true; /* no per-port downstream info */
3219
3220         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3221                                     intel_dp->downstream_ports,
3222                                     DP_MAX_DOWNSTREAM_PORTS) < 0)
3223                 return false; /* downstream port status fetch failed */
3224
3225         return true;
3226 }
3227
3228 static void
3229 intel_dp_probe_oui(struct intel_dp *intel_dp)
3230 {
3231         u8 buf[3];
3232
3233         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3234                 return;
3235
3236         intel_edp_panel_vdd_on(intel_dp);
3237
3238         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3239                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3240                               buf[0], buf[1], buf[2]);
3241
3242         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3243                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3244                               buf[0], buf[1], buf[2]);
3245
3246         edp_panel_vdd_off(intel_dp, false);
3247 }
3248
3249 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3250 {
3251         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3252         struct drm_device *dev = intel_dig_port->base.base.dev;
3253         struct intel_crtc *intel_crtc =
3254                 to_intel_crtc(intel_dig_port->base.base.crtc);
3255         u8 buf[1];
3256
3257         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3258                 return -EAGAIN;
3259
3260         if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3261                 return -ENOTTY;
3262
3263         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3264                                DP_TEST_SINK_START) < 0)
3265                 return -EAGAIN;
3266
3267         /* Wait 2 vblanks to be sure we will have the correct CRC value */
3268         intel_wait_for_vblank(dev, intel_crtc->pipe);
3269         intel_wait_for_vblank(dev, intel_crtc->pipe);
3270
3271         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3272                 return -EAGAIN;
3273
3274         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3275         return 0;
3276 }
3277
3278 static bool
3279 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3280 {
3281         return intel_dp_dpcd_read_wake(&intel_dp->aux,
3282                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
3283                                        sink_irq_vector, 1) == 1;
3284 }
3285
3286 static void
3287 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3288 {
3289         /* NAK by default */
3290         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3291 }
3292
3293 /*
3294  * According to DP spec
3295  * 5.1.2:
3296  *  1. Read DPCD
3297  *  2. Configure link according to Receiver Capabilities
3298  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3299  *  4. Check link status on receipt of hot-plug interrupt
3300  */
3301
3302 void
3303 intel_dp_check_link_status(struct intel_dp *intel_dp)
3304 {
3305         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3306         u8 sink_irq_vector;
3307         u8 link_status[DP_LINK_STATUS_SIZE];
3308
3309         /* FIXME: This access isn't protected by any locks. */
3310         if (!intel_encoder->connectors_active)
3311                 return;
3312
3313         if (WARN_ON(!intel_encoder->base.crtc))
3314                 return;
3315
3316         /* Try to read receiver status if the link appears to be up */
3317         if (!intel_dp_get_link_status(intel_dp, link_status)) {
3318                 return;
3319         }
3320
3321         /* Now read the DPCD to see if it's actually running */
3322         if (!intel_dp_get_dpcd(intel_dp)) {
3323                 return;
3324         }
3325
3326         /* Try to read the source of the interrupt */
3327         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3328             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3329                 /* Clear interrupt source */
3330                 drm_dp_dpcd_writeb(&intel_dp->aux,
3331                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
3332                                    sink_irq_vector);
3333
3334                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3335                         intel_dp_handle_test_request(intel_dp);
3336                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3337                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3338         }
3339
3340         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3341                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3342                               intel_encoder->base.name);
3343                 intel_dp_start_link_train(intel_dp);
3344                 intel_dp_complete_link_train(intel_dp);
3345                 intel_dp_stop_link_train(intel_dp);
3346         }
3347 }
3348
3349 /* XXX this is probably wrong for multiple downstream ports */
3350 static enum drm_connector_status
3351 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3352 {
3353         uint8_t *dpcd = intel_dp->dpcd;
3354         uint8_t type;
3355
3356         if (!intel_dp_get_dpcd(intel_dp))
3357                 return connector_status_disconnected;
3358
3359         /* if there's no downstream port, we're done */
3360         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3361                 return connector_status_connected;
3362
3363         /* If we're HPD-aware, SINK_COUNT changes dynamically */
3364         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3365             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3366                 uint8_t reg;
3367
3368                 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3369                                             &reg, 1) < 0)
3370                         return connector_status_unknown;
3371
3372                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3373                                               : connector_status_disconnected;
3374         }
3375
3376         /* If no HPD, poke DDC gently */
3377         if (drm_probe_ddc(&intel_dp->aux.ddc))
3378                 return connector_status_connected;
3379
3380         /* Well we tried, say unknown for unreliable port types */
3381         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3382                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3383                 if (type == DP_DS_PORT_TYPE_VGA ||
3384                     type == DP_DS_PORT_TYPE_NON_EDID)
3385                         return connector_status_unknown;
3386         } else {
3387                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3388                         DP_DWN_STRM_PORT_TYPE_MASK;
3389                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3390                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
3391                         return connector_status_unknown;
3392         }
3393
3394         /* Anything else is out of spec, warn and ignore */
3395         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3396         return connector_status_disconnected;
3397 }
3398
3399 static enum drm_connector_status
3400 ironlake_dp_detect(struct intel_dp *intel_dp)
3401 {
3402         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3403         struct drm_i915_private *dev_priv = dev->dev_private;
3404         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3405         enum drm_connector_status status;
3406
3407         /* Can't disconnect eDP, but you can close the lid... */
3408         if (is_edp(intel_dp)) {
3409                 status = intel_panel_detect(dev);
3410                 if (status == connector_status_unknown)
3411                         status = connector_status_connected;
3412                 return status;
3413         }
3414
3415         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3416                 return connector_status_disconnected;
3417
3418         return intel_dp_detect_dpcd(intel_dp);
3419 }
3420
3421 static enum drm_connector_status
3422 g4x_dp_detect(struct intel_dp *intel_dp)
3423 {
3424         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3425         struct drm_i915_private *dev_priv = dev->dev_private;
3426         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3427         uint32_t bit;
3428
3429         /* Can't disconnect eDP, but you can close the lid... */
3430         if (is_edp(intel_dp)) {
3431                 enum drm_connector_status status;
3432
3433                 status = intel_panel_detect(dev);
3434                 if (status == connector_status_unknown)
3435                         status = connector_status_connected;
3436                 return status;
3437         }
3438
3439         if (IS_VALLEYVIEW(dev)) {
3440                 switch (intel_dig_port->port) {
3441                 case PORT_B:
3442                         bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3443                         break;
3444                 case PORT_C:
3445                         bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3446                         break;
3447                 case PORT_D:
3448                         bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3449                         break;
3450                 default:
3451                         return connector_status_unknown;
3452                 }
3453         } else {
3454                 switch (intel_dig_port->port) {
3455                 case PORT_B:
3456                         bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3457                         break;
3458                 case PORT_C:
3459                         bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3460                         break;
3461                 case PORT_D:
3462                         bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3463                         break;
3464                 default:
3465                         return connector_status_unknown;
3466                 }
3467         }
3468
3469         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3470                 return connector_status_disconnected;
3471
3472         return intel_dp_detect_dpcd(intel_dp);
3473 }
3474
3475 static struct edid *
3476 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3477 {
3478         struct intel_connector *intel_connector = to_intel_connector(connector);
3479
3480         /* use cached edid if we have one */
3481         if (intel_connector->edid) {
3482                 /* invalid edid */
3483                 if (IS_ERR(intel_connector->edid))
3484                         return NULL;
3485
3486                 return drm_edid_duplicate(intel_connector->edid);
3487         }
3488
3489         return drm_get_edid(connector, adapter);
3490 }
3491
3492 static int
3493 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3494 {
3495         struct intel_connector *intel_connector = to_intel_connector(connector);
3496
3497         /* use cached edid if we have one */
3498         if (intel_connector->edid) {
3499                 /* invalid edid */
3500                 if (IS_ERR(intel_connector->edid))
3501                         return 0;
3502
3503                 return intel_connector_update_modes(connector,
3504                                                     intel_connector->edid);
3505         }
3506
3507         return intel_ddc_get_modes(connector, adapter);
3508 }
3509
3510 static enum drm_connector_status
3511 intel_dp_detect(struct drm_connector *connector, bool force)
3512 {
3513         struct intel_dp *intel_dp = intel_attached_dp(connector);
3514         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3515         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3516         struct drm_device *dev = connector->dev;
3517         struct drm_i915_private *dev_priv = dev->dev_private;
3518         enum drm_connector_status status;
3519         enum intel_display_power_domain power_domain;
3520         struct edid *edid = NULL;
3521
3522         intel_runtime_pm_get(dev_priv);
3523
3524         power_domain = intel_display_port_power_domain(intel_encoder);
3525         intel_display_power_get(dev_priv, power_domain);
3526
3527         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3528                       connector->base.id, connector->name);
3529
3530         intel_dp->has_audio = false;
3531
3532         if (HAS_PCH_SPLIT(dev))
3533                 status = ironlake_dp_detect(intel_dp);
3534         else
3535                 status = g4x_dp_detect(intel_dp);
3536
3537         if (status != connector_status_connected)
3538                 goto out;
3539
3540         intel_dp_probe_oui(intel_dp);
3541
3542         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3543                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3544         } else {
3545                 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3546                 if (edid) {
3547                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
3548                         kfree(edid);
3549                 }
3550         }
3551
3552         if (intel_encoder->type != INTEL_OUTPUT_EDP)
3553                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3554         status = connector_status_connected;
3555
3556 out:
3557         intel_display_power_put(dev_priv, power_domain);
3558
3559         intel_runtime_pm_put(dev_priv);
3560
3561         return status;
3562 }
3563
3564 static int intel_dp_get_modes(struct drm_connector *connector)
3565 {
3566         struct intel_dp *intel_dp = intel_attached_dp(connector);
3567         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3568         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3569         struct intel_connector *intel_connector = to_intel_connector(connector);
3570         struct drm_device *dev = connector->dev;
3571         struct drm_i915_private *dev_priv = dev->dev_private;
3572         enum intel_display_power_domain power_domain;
3573         int ret;
3574
3575         /* We should parse the EDID data and find out if it has an audio sink
3576          */
3577
3578         power_domain = intel_display_port_power_domain(intel_encoder);
3579         intel_display_power_get(dev_priv, power_domain);
3580
3581         ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3582         intel_display_power_put(dev_priv, power_domain);
3583         if (ret)
3584                 return ret;
3585
3586         /* if eDP has no EDID, fall back to fixed mode */
3587         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3588                 struct drm_display_mode *mode;
3589                 mode = drm_mode_duplicate(dev,
3590                                           intel_connector->panel.fixed_mode);
3591                 if (mode) {
3592                         drm_mode_probed_add(connector, mode);
3593                         return 1;
3594                 }
3595         }
3596         return 0;
3597 }
3598
3599 static bool
3600 intel_dp_detect_audio(struct drm_connector *connector)
3601 {
3602         struct intel_dp *intel_dp = intel_attached_dp(connector);
3603         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3604         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3605         struct drm_device *dev = connector->dev;
3606         struct drm_i915_private *dev_priv = dev->dev_private;
3607         enum intel_display_power_domain power_domain;
3608         struct edid *edid;
3609         bool has_audio = false;
3610
3611         power_domain = intel_display_port_power_domain(intel_encoder);
3612         intel_display_power_get(dev_priv, power_domain);
3613
3614         edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3615         if (edid) {
3616                 has_audio = drm_detect_monitor_audio(edid);
3617                 kfree(edid);
3618         }
3619
3620         intel_display_power_put(dev_priv, power_domain);
3621
3622         return has_audio;
3623 }
3624
3625 static int
3626 intel_dp_set_property(struct drm_connector *connector,
3627                       struct drm_property *property,
3628                       uint64_t val)
3629 {
3630         struct drm_i915_private *dev_priv = connector->dev->dev_private;
3631         struct intel_connector *intel_connector = to_intel_connector(connector);
3632         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3633         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3634         int ret;
3635
3636         ret = drm_object_property_set_value(&connector->base, property, val);
3637         if (ret)
3638                 return ret;
3639
3640         if (property == dev_priv->force_audio_property) {
3641                 int i = val;
3642                 bool has_audio;
3643
3644                 if (i == intel_dp->force_audio)
3645                         return 0;
3646
3647                 intel_dp->force_audio = i;
3648
3649                 if (i == HDMI_AUDIO_AUTO)
3650                         has_audio = intel_dp_detect_audio(connector);
3651                 else
3652                         has_audio = (i == HDMI_AUDIO_ON);
3653
3654                 if (has_audio == intel_dp->has_audio)
3655                         return 0;
3656
3657                 intel_dp->has_audio = has_audio;
3658                 goto done;
3659         }
3660
3661         if (property == dev_priv->broadcast_rgb_property) {
3662                 bool old_auto = intel_dp->color_range_auto;
3663                 uint32_t old_range = intel_dp->color_range;
3664
3665                 switch (val) {
3666                 case INTEL_BROADCAST_RGB_AUTO:
3667                         intel_dp->color_range_auto = true;
3668                         break;
3669                 case INTEL_BROADCAST_RGB_FULL:
3670                         intel_dp->color_range_auto = false;
3671                         intel_dp->color_range = 0;
3672                         break;
3673                 case INTEL_BROADCAST_RGB_LIMITED:
3674                         intel_dp->color_range_auto = false;
3675                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
3676                         break;
3677                 default:
3678                         return -EINVAL;
3679                 }
3680
3681                 if (old_auto == intel_dp->color_range_auto &&
3682                     old_range == intel_dp->color_range)
3683                         return 0;
3684
3685                 goto done;
3686         }
3687
3688         if (is_edp(intel_dp) &&
3689             property == connector->dev->mode_config.scaling_mode_property) {
3690                 if (val == DRM_MODE_SCALE_NONE) {
3691                         DRM_DEBUG_KMS("no scaling not supported\n");
3692                         return -EINVAL;
3693                 }
3694
3695                 if (intel_connector->panel.fitting_mode == val) {
3696                         /* the eDP scaling property is not changed */
3697                         return 0;
3698                 }
3699                 intel_connector->panel.fitting_mode = val;
3700
3701                 goto done;
3702         }
3703
3704         return -EINVAL;
3705
3706 done:
3707         if (intel_encoder->base.crtc)
3708                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3709
3710         return 0;
3711 }
3712
3713 static void
3714 intel_dp_connector_destroy(struct drm_connector *connector)
3715 {
3716         struct intel_connector *intel_connector = to_intel_connector(connector);
3717
3718         if (!IS_ERR_OR_NULL(intel_connector->edid))
3719                 kfree(intel_connector->edid);
3720
3721         /* Can't call is_edp() since the encoder may have been destroyed
3722          * already. */
3723         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3724                 intel_panel_fini(&intel_connector->panel);
3725
3726         drm_connector_cleanup(connector);
3727         kfree(connector);
3728 }
3729
3730 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3731 {
3732         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3733         struct intel_dp *intel_dp = &intel_dig_port->dp;
3734         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3735
3736         drm_dp_aux_unregister(&intel_dp->aux);
3737         drm_encoder_cleanup(encoder);
3738         if (is_edp(intel_dp)) {
3739                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3740                 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3741                 edp_panel_vdd_off_sync(intel_dp);
3742                 drm_modeset_unlock(&dev->mode_config.connection_mutex);
3743                 if (intel_dp->edp_notifier.notifier_call) {
3744                         unregister_reboot_notifier(&intel_dp->edp_notifier);
3745                         intel_dp->edp_notifier.notifier_call = NULL;
3746                 }
3747         }
3748         kfree(intel_dig_port);
3749 }
3750
3751 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3752         .dpms = intel_connector_dpms,
3753         .detect = intel_dp_detect,
3754         .fill_modes = drm_helper_probe_single_connector_modes,
3755         .set_property = intel_dp_set_property,
3756         .destroy = intel_dp_connector_destroy,
3757 };
3758
3759 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3760         .get_modes = intel_dp_get_modes,
3761         .mode_valid = intel_dp_mode_valid,
3762         .best_encoder = intel_best_encoder,
3763 };
3764
3765 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3766         .destroy = intel_dp_encoder_destroy,
3767 };
3768
3769 static void
3770 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3771 {
3772         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3773
3774         intel_dp_check_link_status(intel_dp);
3775 }
3776
3777 /* Return which DP Port should be selected for Transcoder DP control */
3778 int
3779 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3780 {
3781         struct drm_device *dev = crtc->dev;
3782         struct intel_encoder *intel_encoder;
3783         struct intel_dp *intel_dp;
3784
3785         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3786                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3787
3788                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3789                     intel_encoder->type == INTEL_OUTPUT_EDP)
3790                         return intel_dp->output_reg;
3791         }
3792
3793         return -1;
3794 }
3795
3796 /* check the VBT to see whether the eDP is on DP-D port */
3797 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3798 {
3799         struct drm_i915_private *dev_priv = dev->dev_private;
3800         union child_device_config *p_child;
3801         int i;
3802         static const short port_mapping[] = {
3803                 [PORT_B] = PORT_IDPB,
3804                 [PORT_C] = PORT_IDPC,
3805                 [PORT_D] = PORT_IDPD,
3806         };
3807
3808         if (port == PORT_A)
3809                 return true;
3810
3811         if (!dev_priv->vbt.child_dev_num)
3812                 return false;
3813
3814         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3815                 p_child = dev_priv->vbt.child_dev + i;
3816
3817                 if (p_child->common.dvo_port == port_mapping[port] &&
3818                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3819                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3820                         return true;
3821         }
3822         return false;
3823 }
3824
3825 static void
3826 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3827 {
3828         struct intel_connector *intel_connector = to_intel_connector(connector);
3829
3830         intel_attach_force_audio_property(connector);
3831         intel_attach_broadcast_rgb_property(connector);
3832         intel_dp->color_range_auto = true;
3833
3834         if (is_edp(intel_dp)) {
3835                 drm_mode_create_scaling_mode_property(connector->dev);
3836                 drm_object_attach_property(
3837                         &connector->base,
3838                         connector->dev->mode_config.scaling_mode_property,
3839                         DRM_MODE_SCALE_ASPECT);
3840                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3841         }
3842 }
3843
3844 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3845 {
3846         intel_dp->last_power_cycle = jiffies;
3847         intel_dp->last_power_on = jiffies;
3848         intel_dp->last_backlight_off = jiffies;
3849 }
3850
3851 static void
3852 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3853                                     struct intel_dp *intel_dp,
3854                                     struct edp_power_seq *out)
3855 {
3856         struct drm_i915_private *dev_priv = dev->dev_private;
3857         struct edp_power_seq cur, vbt, spec, final;
3858         u32 pp_on, pp_off, pp_div, pp;
3859         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3860
3861         if (HAS_PCH_SPLIT(dev)) {
3862                 pp_ctrl_reg = PCH_PP_CONTROL;
3863                 pp_on_reg = PCH_PP_ON_DELAYS;
3864                 pp_off_reg = PCH_PP_OFF_DELAYS;
3865                 pp_div_reg = PCH_PP_DIVISOR;
3866         } else {
3867                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3868
3869                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3870                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3871                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3872                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3873         }
3874
3875         /* Workaround: Need to write PP_CONTROL with the unlock key as
3876          * the very first thing. */
3877         pp = ironlake_get_pp_control(intel_dp);
3878         I915_WRITE(pp_ctrl_reg, pp);
3879
3880         pp_on = I915_READ(pp_on_reg);
3881         pp_off = I915_READ(pp_off_reg);
3882         pp_div = I915_READ(pp_div_reg);
3883
3884         /* Pull timing values out of registers */
3885         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3886                 PANEL_POWER_UP_DELAY_SHIFT;
3887
3888         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3889                 PANEL_LIGHT_ON_DELAY_SHIFT;
3890
3891         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3892                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3893
3894         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3895                 PANEL_POWER_DOWN_DELAY_SHIFT;
3896
3897         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3898                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3899
3900         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3901                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3902
3903         vbt = dev_priv->vbt.edp_pps;
3904
3905         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3906          * our hw here, which are all in 100usec. */
3907         spec.t1_t3 = 210 * 10;
3908         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3909         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3910         spec.t10 = 500 * 10;
3911         /* This one is special and actually in units of 100ms, but zero
3912          * based in the hw (so we need to add 100 ms). But the sw vbt
3913          * table multiplies it with 1000 to make it in units of 100usec,
3914          * too. */
3915         spec.t11_t12 = (510 + 100) * 10;
3916
3917         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3918                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3919
3920         /* Use the max of the register settings and vbt. If both are
3921          * unset, fall back to the spec limits. */
3922 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3923                                        spec.field : \
3924                                        max(cur.field, vbt.field))
3925         assign_final(t1_t3);
3926         assign_final(t8);
3927         assign_final(t9);
3928         assign_final(t10);
3929         assign_final(t11_t12);
3930 #undef assign_final
3931
3932 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3933         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3934         intel_dp->backlight_on_delay = get_delay(t8);
3935         intel_dp->backlight_off_delay = get_delay(t9);
3936         intel_dp->panel_power_down_delay = get_delay(t10);
3937         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3938 #undef get_delay
3939
3940         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3941                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3942                       intel_dp->panel_power_cycle_delay);
3943
3944         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3945                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3946
3947         if (out)
3948                 *out = final;
3949 }
3950
3951 static void
3952 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3953                                               struct intel_dp *intel_dp,
3954                                               struct edp_power_seq *seq)
3955 {
3956         struct drm_i915_private *dev_priv = dev->dev_private;
3957         u32 pp_on, pp_off, pp_div, port_sel = 0;
3958         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3959         int pp_on_reg, pp_off_reg, pp_div_reg;
3960
3961         if (HAS_PCH_SPLIT(dev)) {
3962                 pp_on_reg = PCH_PP_ON_DELAYS;
3963                 pp_off_reg = PCH_PP_OFF_DELAYS;
3964                 pp_div_reg = PCH_PP_DIVISOR;
3965         } else {
3966                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3967
3968                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3969                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3970                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3971         }
3972
3973         /*
3974          * And finally store the new values in the power sequencer. The
3975          * backlight delays are set to 1 because we do manual waits on them. For
3976          * T8, even BSpec recommends doing it. For T9, if we don't do this,
3977          * we'll end up waiting for the backlight off delay twice: once when we
3978          * do the manual sleep, and once when we disable the panel and wait for
3979          * the PP_STATUS bit to become zero.
3980          */
3981         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3982                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
3983         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3984                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3985         /* Compute the divisor for the pp clock, simply match the Bspec
3986          * formula. */
3987         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3988         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3989                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3990
3991         /* Haswell doesn't have any port selection bits for the panel
3992          * power sequencer any more. */
3993         if (IS_VALLEYVIEW(dev)) {
3994                 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3995                         port_sel = PANEL_PORT_SELECT_DPB_VLV;
3996                 else
3997                         port_sel = PANEL_PORT_SELECT_DPC_VLV;
3998         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3999                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
4000                         port_sel = PANEL_PORT_SELECT_DPA;
4001                 else
4002                         port_sel = PANEL_PORT_SELECT_DPD;
4003         }
4004
4005         pp_on |= port_sel;
4006
4007         I915_WRITE(pp_on_reg, pp_on);
4008         I915_WRITE(pp_off_reg, pp_off);
4009         I915_WRITE(pp_div_reg, pp_div);
4010
4011         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4012                       I915_READ(pp_on_reg),
4013                       I915_READ(pp_off_reg),
4014                       I915_READ(pp_div_reg));
4015 }
4016
4017 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4018 {
4019         struct drm_i915_private *dev_priv = dev->dev_private;
4020         struct intel_encoder *encoder;
4021         struct intel_dp *intel_dp = NULL;
4022         struct intel_crtc_config *config = NULL;
4023         struct intel_crtc *intel_crtc = NULL;
4024         struct intel_connector *intel_connector = dev_priv->drrs.connector;
4025         u32 reg, val;
4026         enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4027
4028         if (refresh_rate <= 0) {
4029                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4030                 return;
4031         }
4032
4033         if (intel_connector == NULL) {
4034                 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4035                 return;
4036         }
4037
4038         if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4039                 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4040                 return;
4041         }
4042
4043         encoder = intel_attached_encoder(&intel_connector->base);
4044         intel_dp = enc_to_intel_dp(&encoder->base);
4045         intel_crtc = encoder->new_crtc;
4046
4047         if (!intel_crtc) {
4048                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4049                 return;
4050         }
4051
4052         config = &intel_crtc->config;
4053
4054         if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4055                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4056                 return;
4057         }
4058
4059         if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4060                 index = DRRS_LOW_RR;
4061
4062         if (index == intel_dp->drrs_state.refresh_rate_type) {
4063                 DRM_DEBUG_KMS(
4064                         "DRRS requested for previously set RR...ignoring\n");
4065                 return;
4066         }
4067
4068         if (!intel_crtc->active) {
4069                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4070                 return;
4071         }
4072
4073         if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4074                 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4075                 val = I915_READ(reg);
4076                 if (index > DRRS_HIGH_RR) {
4077                         val |= PIPECONF_EDP_RR_MODE_SWITCH;
4078                         intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
4079                 } else {
4080                         val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4081                 }
4082                 I915_WRITE(reg, val);
4083         }
4084
4085         /*
4086          * mutex taken to ensure that there is no race between differnt
4087          * drrs calls trying to update refresh rate. This scenario may occur
4088          * in future when idleness detection based DRRS in kernel and
4089          * possible calls from user space to set differnt RR are made.
4090          */
4091
4092         mutex_lock(&intel_dp->drrs_state.mutex);
4093
4094         intel_dp->drrs_state.refresh_rate_type = index;
4095
4096         mutex_unlock(&intel_dp->drrs_state.mutex);
4097
4098         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4099 }
4100
4101 static struct drm_display_mode *
4102 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4103                         struct intel_connector *intel_connector,
4104                         struct drm_display_mode *fixed_mode)
4105 {
4106         struct drm_connector *connector = &intel_connector->base;
4107         struct intel_dp *intel_dp = &intel_dig_port->dp;
4108         struct drm_device *dev = intel_dig_port->base.base.dev;
4109         struct drm_i915_private *dev_priv = dev->dev_private;
4110         struct drm_display_mode *downclock_mode = NULL;
4111
4112         if (INTEL_INFO(dev)->gen <= 6) {
4113                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4114                 return NULL;
4115         }
4116
4117         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4118                 DRM_INFO("VBT doesn't support DRRS\n");
4119                 return NULL;
4120         }
4121
4122         downclock_mode = intel_find_panel_downclock
4123                                         (dev, fixed_mode, connector);
4124
4125         if (!downclock_mode) {
4126                 DRM_INFO("DRRS not supported\n");
4127                 return NULL;
4128         }
4129
4130         dev_priv->drrs.connector = intel_connector;
4131
4132         mutex_init(&intel_dp->drrs_state.mutex);
4133
4134         intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4135
4136         intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4137         DRM_INFO("seamless DRRS supported for eDP panel.\n");
4138         return downclock_mode;
4139 }
4140
4141 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4142                                      struct intel_connector *intel_connector,
4143                                      struct edp_power_seq *power_seq)
4144 {
4145         struct drm_connector *connector = &intel_connector->base;
4146         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4147         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4148         struct drm_device *dev = intel_encoder->base.dev;
4149         struct drm_i915_private *dev_priv = dev->dev_private;
4150         struct drm_display_mode *fixed_mode = NULL;
4151         struct drm_display_mode *downclock_mode = NULL;
4152         bool has_dpcd;
4153         struct drm_display_mode *scan;
4154         struct edid *edid;
4155
4156         intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4157
4158         if (!is_edp(intel_dp))
4159                 return true;
4160
4161         /* The VDD bit needs a power domain reference, so if the bit is already
4162          * enabled when we boot, grab this reference. */
4163         if (edp_have_panel_vdd(intel_dp)) {
4164                 enum intel_display_power_domain power_domain;
4165                 power_domain = intel_display_port_power_domain(intel_encoder);
4166                 intel_display_power_get(dev_priv, power_domain);
4167         }
4168
4169         /* Cache DPCD and EDID for edp. */
4170         intel_edp_panel_vdd_on(intel_dp);
4171         has_dpcd = intel_dp_get_dpcd(intel_dp);
4172         edp_panel_vdd_off(intel_dp, false);
4173
4174         if (has_dpcd) {
4175                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4176                         dev_priv->no_aux_handshake =
4177                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4178                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4179         } else {
4180                 /* if this fails, presume the device is a ghost */
4181                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4182                 return false;
4183         }
4184
4185         /* We now know it's not a ghost, init power sequence regs. */
4186         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4187
4188         mutex_lock(&dev->mode_config.mutex);
4189         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4190         if (edid) {
4191                 if (drm_add_edid_modes(connector, edid)) {
4192                         drm_mode_connector_update_edid_property(connector,
4193                                                                 edid);
4194                         drm_edid_to_eld(connector, edid);
4195                 } else {
4196                         kfree(edid);
4197                         edid = ERR_PTR(-EINVAL);
4198                 }
4199         } else {
4200                 edid = ERR_PTR(-ENOENT);
4201         }
4202         intel_connector->edid = edid;
4203
4204         /* prefer fixed mode from EDID if available */
4205         list_for_each_entry(scan, &connector->probed_modes, head) {
4206                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4207                         fixed_mode = drm_mode_duplicate(dev, scan);
4208                         downclock_mode = intel_dp_drrs_init(
4209                                                 intel_dig_port,
4210                                                 intel_connector, fixed_mode);
4211                         break;
4212                 }
4213         }
4214
4215         /* fallback to VBT if available for eDP */
4216         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4217                 fixed_mode = drm_mode_duplicate(dev,
4218                                         dev_priv->vbt.lfp_lvds_vbt_mode);
4219                 if (fixed_mode)
4220                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4221         }
4222         mutex_unlock(&dev->mode_config.mutex);
4223
4224         if (IS_VALLEYVIEW(dev)) {
4225                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
4226                 register_reboot_notifier(&intel_dp->edp_notifier);
4227         }
4228
4229         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4230         intel_panel_setup_backlight(connector);
4231
4232         return true;
4233 }
4234
4235 bool
4236 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4237                         struct intel_connector *intel_connector)
4238 {
4239         struct drm_connector *connector = &intel_connector->base;
4240         struct intel_dp *intel_dp = &intel_dig_port->dp;
4241         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4242         struct drm_device *dev = intel_encoder->base.dev;
4243         struct drm_i915_private *dev_priv = dev->dev_private;
4244         enum port port = intel_dig_port->port;
4245         struct edp_power_seq power_seq = { 0 };
4246         int type;
4247
4248         /* intel_dp vfuncs */
4249         if (IS_VALLEYVIEW(dev))
4250                 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4251         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4252                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4253         else if (HAS_PCH_SPLIT(dev))
4254                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4255         else
4256                 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4257
4258         intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4259
4260         /* Preserve the current hw state. */
4261         intel_dp->DP = I915_READ(intel_dp->output_reg);
4262         intel_dp->attached_connector = intel_connector;
4263
4264         if (intel_dp_is_edp(dev, port))
4265                 type = DRM_MODE_CONNECTOR_eDP;
4266         else
4267                 type = DRM_MODE_CONNECTOR_DisplayPort;
4268
4269         /*
4270          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4271          * for DP the encoder type can be set by the caller to
4272          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4273          */
4274         if (type == DRM_MODE_CONNECTOR_eDP)
4275                 intel_encoder->type = INTEL_OUTPUT_EDP;
4276
4277         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4278                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4279                         port_name(port));
4280
4281         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4282         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4283
4284         connector->interlace_allowed = true;
4285         connector->doublescan_allowed = 0;
4286
4287         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4288                           edp_panel_vdd_work);
4289
4290         intel_connector_attach_encoder(intel_connector, intel_encoder);
4291         drm_sysfs_connector_add(connector);
4292
4293         if (HAS_DDI(dev))
4294                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4295         else
4296                 intel_connector->get_hw_state = intel_connector_get_hw_state;
4297         intel_connector->unregister = intel_dp_connector_unregister;
4298
4299         /* Set up the hotplug pin. */
4300         switch (port) {
4301         case PORT_A:
4302                 intel_encoder->hpd_pin = HPD_PORT_A;
4303                 break;
4304         case PORT_B:
4305                 intel_encoder->hpd_pin = HPD_PORT_B;
4306                 break;
4307         case PORT_C:
4308                 intel_encoder->hpd_pin = HPD_PORT_C;
4309                 break;
4310         case PORT_D:
4311                 intel_encoder->hpd_pin = HPD_PORT_D;
4312                 break;
4313         default:
4314                 BUG();
4315         }
4316
4317         if (is_edp(intel_dp)) {
4318                 intel_dp_init_panel_power_timestamps(intel_dp);
4319                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4320         }
4321
4322         intel_dp_aux_init(intel_dp, intel_connector);
4323
4324         intel_dp->psr_setup_done = false;
4325
4326         if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4327                 drm_dp_aux_unregister(&intel_dp->aux);
4328                 if (is_edp(intel_dp)) {
4329                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4330                         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4331                         edp_panel_vdd_off_sync(intel_dp);
4332                         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4333                 }
4334                 drm_sysfs_connector_remove(connector);
4335                 drm_connector_cleanup(connector);
4336                 return false;
4337         }
4338
4339         intel_dp_add_properties(intel_dp, connector);
4340
4341         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4342          * 0xd.  Failure to do so will result in spurious interrupts being
4343          * generated on the port when a cable is not attached.
4344          */
4345         if (IS_G4X(dev) && !IS_GM45(dev)) {
4346                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4347                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4348         }
4349
4350         return true;
4351 }
4352
4353 void
4354 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4355 {
4356         struct intel_digital_port *intel_dig_port;
4357         struct intel_encoder *intel_encoder;
4358         struct drm_encoder *encoder;
4359         struct intel_connector *intel_connector;
4360
4361         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4362         if (!intel_dig_port)
4363                 return;
4364
4365         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4366         if (!intel_connector) {
4367                 kfree(intel_dig_port);
4368                 return;
4369         }
4370
4371         intel_encoder = &intel_dig_port->base;
4372         encoder = &intel_encoder->base;
4373
4374         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4375                          DRM_MODE_ENCODER_TMDS);
4376
4377         intel_encoder->compute_config = intel_dp_compute_config;
4378         intel_encoder->disable = intel_disable_dp;
4379         intel_encoder->get_hw_state = intel_dp_get_hw_state;
4380         intel_encoder->get_config = intel_dp_get_config;
4381         if (IS_CHERRYVIEW(dev)) {
4382                 intel_encoder->pre_enable = chv_pre_enable_dp;
4383                 intel_encoder->enable = vlv_enable_dp;
4384                 intel_encoder->post_disable = chv_post_disable_dp;
4385         } else if (IS_VALLEYVIEW(dev)) {
4386                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4387                 intel_encoder->pre_enable = vlv_pre_enable_dp;
4388                 intel_encoder->enable = vlv_enable_dp;
4389                 intel_encoder->post_disable = vlv_post_disable_dp;
4390         } else {
4391                 intel_encoder->pre_enable = g4x_pre_enable_dp;
4392                 intel_encoder->enable = g4x_enable_dp;
4393                 intel_encoder->post_disable = g4x_post_disable_dp;
4394         }
4395
4396         intel_dig_port->port = port;
4397         intel_dig_port->dp.output_reg = output_reg;
4398
4399         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4400         if (IS_CHERRYVIEW(dev)) {
4401                 if (port == PORT_D)
4402                         intel_encoder->crtc_mask = 1 << 2;
4403                 else
4404                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4405         } else {
4406                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4407         }
4408         intel_encoder->cloneable = 0;
4409         intel_encoder->hot_plug = intel_dp_hot_plug;
4410
4411         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4412                 drm_encoder_cleanup(encoder);
4413                 kfree(intel_dig_port);
4414                 kfree(intel_connector);
4415         }
4416 }